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Abstract. The accurate description of fluid flow and transport in fractured porous media is of paramount
importance to capture the macroscopic behavior of an oil reservoir, a geothermal system, or a CO2 sequestra-
tion site, to name few applications. The construction of accurate simulation models for flow in fractures is
challenging due to the high ratio between a fracture’s length and width. In this paper, we present a mixed-
dimensional Darcy problem which can represent the pressure and Darcy velocity in all the dimensions,
i.e. in the rock matrix, in the fractures, and in their intersections. Moreover, we present a mixed-dimensional
transport problem which, given the Darcy velocity, describes advection of a passive scalar into the fractured
porous media. The approach can handle both conducting and blocking fractures. Our computational grids
are created by coarsening of simplex tessellations that conform to the fracture’s surfaces. A suitable choice
of the discrete approximation of the previous model, by virtual finite element and finite volume methods, allows
us to simulate complex problems with a good balance of accuracy and computational cost. We illustrate the
performance of our method by comparing to benchmark studies for two-dimensional fractured porous media,
as well as a complex three-dimensional fracture geometry.

1 Introduction

Fractures and faults can strongly influence fluid flow in a
porous media, acting, depending on their permeability
and porosity, as a preferential path or a barrier. As fracture
aperture is several orders of magnitude smaller than any
other characteristic size in the domain, fracture modeling
is one of the main challenges in subsurface problems.

Geological movements, chemical reaction, or infilling
processes may substantially alter the local orientation and
composition of the material present in the fractures, leading
to anisotropies and strong heterogeneities in both fractures
and their intersections. It is thus crucial to be able to
include also these phenomenological aspects in the concep-
tual model.

Applications where fractures can be determinant for
reservoir behavior include exploitation of geothermal sys-
tem, CO2 storage and sequestration, enhanced oil recovery,
and nuclear waste disposal. In these fields the solution may
dramatically depend on the presence of fractures, thus a
correct derivation of suitable mathematical models and
their accurate numerical solution is essential.

Our computational model is based on a Discrete
Fracture Matrix (DFM) approach, e.g. [1], which aims to

balance computational cost and modeling accuracy in the
presence of fractures on multiple scales. Small scale
fractures are incorporated in the matrix permeability by
analytical or numerical upscaling techniques (e.g. see [2–4]
and [5–7]), thus only macroscopic fractures and faults are
considered and explicitly described. However, the
computational cost associated with their equi-dimensional
representation in the grid is still prohibitively high. Follow-
ing the idea presented, among the others, in references
[8–15] fractures and faults are represented as lower-dimen-
sional objects embedded in the rock matrix. This approach
is commonly denoted reduced models, hybrid-dimensional
models, and mixed-dimensional models. In this approach,
fracture aperture becomes a coefficient in the equations,
instead of a geometrical constraint for grid generation.
The flow equations are averaged along the normal direction
of the fractures, yielding a new set of reduced models
that are suited for the co-dimensional, that is, lower-
dimensional, description of fluid flow. Suitable coupling
conditions are necessary to exchange information between
all the objects (rock matrix, fractures, and their
intersections).

The reduction of dimensionality is an essential step to
overcome most of the difficulties associated to the problem.
However, in the presence of several fractures that together
form a complex network, more advanced numerical* Corresponding author: alessio.fumagalli1984@gmail.com
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techniques are crucial to obtain an accurate solution in a
reasonable amount of time. The main aspect is the geomet-
rical treatment of the fracture grid with respect to the rock
matrix grid. Popular approaches can be classified according
to whether the grid in the rock matrix matches the fracture
surfaces or not. The matching case can further be split into
methods that assume full conformity between the rock
matrix and fracture grid, and methods that relaxe this
assumption.

In the class of conforming methods, where fracture grids
are composed by faces of the rock matrix grid, several
numerical schemes have been considered, including finite
elements [13, 16–19], finite volumes [6, 20–23], Mimetic
Finite Differences (MFD) [24, 25], and the newly introduced
Virtual Finite Elements (VEM) [26–28]. For the latter see
also [29–33] for the non-fractured case. All these methods
highlight specific advantages for example related to local
mass conservation, capability to be implemented in stan-
dard software packages, or relax some constraints on grid
cell shapes to name a few.

In the class of non-conforming discretization, the main
tool is a mortar coupling between the rock matrix grid
and the fracture grids. The rock mesh is constrained with
the position of the fractures but not strictly with the actual
fracture meshes, and vice versa. Some examples are
reported in [10, 27, 34] where different type of mortar
variables as well as numerical schemes are considered. The
mortar variables allow for a generalized formulation that
unifies conforming and non-conforming approaches [35].

Finally, a fully non-matching coupling among the grids
requires ad-hoc solutions to establish a communication
between the fractures and the rock matrix. One possibility
is the class of eXtended Finite Element Methods (XFEM)
[36–41], where a local enrichment with new basis functions
is considered to handle the non-conformity, or the class of
Embedded Discrete Fracture Matrix Methods (EDFM)
[5, 41–43], where approximate formulas for fracture-matrix
transmissibilities are computed based on geometrical
considerations.

In this paper we consider a conforming discretization
with the dual virtual element approximation to simulate a
mixed-dimensional Darcy problem and a finite volume dis-
cretization for the mixed-dimensional transport problem.
The first choice is motivated by the flexibility of the VEMs
with respect to the shape of the grid cells. With this choice it
is possible to relax most of the difficulties related with con-
forming discretization, e.g. the computational cost associ-
ated to resolve, by the rock matrix grid, a complex system
composed of several intersecting fractures. Moreover, this
approximation ensures local mass conservation and is able
to consider heterogeneous and anisotropic permeability
tensors. The Darcy velocity can thus be used in the mixed-
dimensional transport problem. In this case we consider an
upwind scheme, extended to handle the mixed-dimensional
nature of the problem.

The paper is structured as follows: In Section 2, we pre-
sent both the physical equations and the reduced model,
with the interface conditions that couple the matrix-
fracture system and the fracture-fracture system for both
the Darcy and transport problems. Section 3 deals with

the weak and integral formulation of the previous physical
processes. In Section 4, we present the numerical discretiza-
tion of the problem with a highlight on the enrichment of
the finite element spaces. In Section 5, we present some
numerical experiments to assess the effectiveness of the
proposed method. Finally, Section 6 is devoted to conclu-
sion and to ongoing work.

2 Mathematical model

In this section, we introduce the mathematical models in
the mixed-dimensional setting, i.e. equations that couple
different spatial dimensions and together describe the quan-
tities of interest. We present two mathematical models
useful for subsurface simulations: the mixed-dimensional
Darcy problem, presented in Section 2.1, to describe the
flow and pressure, and the mixed-dimensional transport
problem, presented in Section 2.2, to describe the motion
of a passive scalar transported by the Darcy velocity.

The motivation for the mixed-dimensional formulation
is the observation that the fracture aperture is orders of
magnitude smaller than other characteristic sizes of the
problem. Hence, a straightforward mesh construction with
the two fracture surfaces as constraints would produce high
numbers of cells and/or low-quality cells due to high aspect
ratios or sharp angles. To avoid this geometrical constraint,
fractures are represented as lower dimensional objects
embedded in the rock matrix. Fracture intersections, and
their intersections again, are considered as objects of even
lower dimensions. To be specific, in a three-dimensional
domain, we consider fracture surfaces as 2d objects, the
intersection between two (or more) fractures form a 1d line,
and two (or more) intersection lines can meet in a 0d point.
The physical processes are described via reduced models
with suitable coupling conditions among the objects of
different dimensions. The fracture aperture is now part of
the equations and not any more a geometrical constraint.
For more details on the derivation of the reduced model
we refer to [8–11, 13, 26–28, 37, 39, 40, 44, 45].

In the reduced model, it is a common choice to consider
the reduced scalar variables as averaged and the vector
variables as integrated along cross section of the fracture.
In this work we follow this approach.

In the sequel we indicate by (�,�)A the scalar product in
L2 (A). Moreover, the trace operator on a domain A will be
indicated by �|A.

2.1 Mixed-dimensional Darcy problem

Let us consider a regular domain X � RN , for N > 0, with
outer boundary @X. The domain X is composed by a single,
possibly non-connected, equi-dimensional domain XN and
several lower-dimensional domains Xd for d < N, which
are possibly non-connected. Clearly [d=0,. . .,N Xd ¼ X and
Xd \ Xd 0 = ; for d 6¼ d 0. However, we indicate with
Cd = @Xd \ Xd�1, which is geometrically equivalent to
Xd�1 but it will be more convenient to keep them separate.
We have C = [d=0,. . .,N Cd. See Figure 1 as an example of
the subdivision.
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We are interested in the mixed-dimensional Darcy prob-
lem which describes the pressure and velocity fields in X.
Following the idea presented in [10], we define the pressure
compound p = (p0, . . ., pN) which represents the pressure in
each dimension, indicated as superscript. Similarly, we
introduce the velocity compound u = (0, u1, . . ., uN, 0),
which is the velocity field defined in XN or in the tangential
spaces of each dimension d < N. The meaning of the two 0 s
will be clarified below. In the following problem, each
dimension is coupled with the lower dimension; we consider
thus two normals n associated to a d< N-dimensional man-
ifold with respect to its “two sides’’, indicated by n+ and
n�. Each disconnected object with dimension d < N when
immersed in the surrounding d + 1-manifold, it is assumed
to be an orientable d-dimensional manifold, with unique
normal n lying on the tangent space of the d + 1-manifold.
This implies n+ = �n�, an illustration is given in Figure 2.
In the particular case of T-type intersection only one side
can be defined and the following equations should be under-
stood in this sense. Given a side, by convention the normal
vector points from the higher dimensional to the lower-
dimensional domain. Moreover, we indicate by the same
subscript �± the restriction of elements in Xd defined on each
side of Cd through a suitable trace operator.

2.1.1 Fixed-dimensional Darcy problem

We consider the Darcy problem for the pressure and
velocity as

u þ Krp ¼ 0

r � �u � sû � n̂t ¼ �f
inX: ð1aÞ

The �̂ notation means “on the higher dimensional object”
and the �� means “on the lower dimensional object”, i.e. fix a
dimension d the second of (1a) becomes

r � ud � sudþ1 � ndþ1t ¼ f d 0 � d � N :

In the system (1a) thefirst equation and second equations are
defined on domains of the same dimension. For lower dimen-
sional objects, the differential operators are defined in the
tangent plane of the objects; in the special 0d case these
objects are void.K represents the effective permeability com-
poundK= (1,K1, . . ., KN), which is a collection of symmet-
ric and positive defined tensors. For d< N,Kd is interpreted
as laying in the tangent plane of the relevant physical
object. Model (1a) allows for permeability variations both

between all objects considered, and spatially within each
object. The permeabilities are scaled by the “aperture” of
each dimension: Denote by �d the length (N � 1), area
(N � 2), or cross-sectional volume (N � 3). The permeabil-
ity of a lower d-dimensional (d < N) object is then defined
as Kd ¼ �d eKd , with eKd the permeability of its equi-dimen-
sional representation. The unit of measure of Kd is thus
[m4�d/s]. The source or sink term f is defined as the com-
pound f = (f 0, . . ., f N), which are scalar functions defined
in each dimension. Finally, the jump operator
sû � n̂t ¼ P

�û � n̂j� is imposed on each side of Xd�1

viewed as immersed in Xd.
The first equation in (1a) is the generalized Darcy law in

each dimension, note that for the 0d case it is simply an
identity. The second equation of (1a) represents conserva-
tion of mass: The divergence term prescribes conservation
of mass within the dimension, while the jump term repre-
sents the inflow/outflow from the higher dimension.
Interaction with the lower dimension is incorporated into
the boundary conditions, see Section 2.1.3. Due to the def-
inition of the velocity compound, for d = N equation (1a)
the inflow/outflow from the “higher dimension” is null.
For d = 0 the conservation of mass equation represents
the continuity of the fluxes for the 1-dimensional objects
involved in the intersection.

We emphasize that the mixed-dimensional problem only
considers direct interaction between objects one dimen-
sion apart. That is, quantities defined on Xd�1 are in com-
munication with the quantities defined on Xd, but not
directly with quantities defined on Xd+1.

2.1.2 Flow between dimensions

The coupling conditions between two subsequent dimen-
sions are defined for each side as

û � n̂j� þ k̂� �p � p̂j�Þ ¼ 0 onC :ð ð1bÞ
The k� is the effective normal permeability, defined as
k� ¼ ðk0�; . . . ; kN�1

� Þ. Clearly, equation (1b) is valid
between dimension d and d + 1 for 0 � d < N. Note that
in equation (1b) it is possible to define different effective
normal permeability on each side ±, however, to simplify
the notation, we assume only one single value.

(a) (b)

(c)

Fig. 2. Representation of the fracture normal associated with
respect to each “side” (+ and �). (a) A bidimensional domain X2,
(b) The fracture is fictitiously enlarged. (c) For a 0d intersection.

Fig. 1. Domain subdivision for N = 2. In gray X2, in red X1, and
in blue X0.
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2.1.3 Boundary conditions

To obtain a well-posed problem, boundary conditions must
be assigned on the external boundary @X and the boundary
of the sub-domains of each dimension, Xd. We indicate by
oXd

out the (possibly empty) portion of the boundary of Xd

that intersects the boundary of X, for d > 0. We introduce
also oXd

in the portion of boundary of Xd that does not inter-
sect with @X, for d > 0. oXd

in is further split into the internal
boundaries Cd, which are formed by the embedding of
objects in Xd�1 into Xd, and the remaining part, oXd

in n Cd .
For simplicity we assume only pressure boundary condi-

tions on @Xd
out, given as

pd ¼ pd on @Xd
out ; ð1cÞ

with pd is a given pressure at the boundary for each d > 0.
On the internal boundary Cd, we impose flux conditions
that represent the inflow and outflow from lower dimen-
sions, in accordance with (1b). In practice, this couples
the flux between dimensions with the pressure in both
dimensions, in what can be interpreted as a Robin-type
condition.

On the remaining internal portion @Xd
in n Cd , for d > 0,

we assign the so-called “tip-condition”, namely

ud � nj@Xd
in
¼ 0 on @Xd

in ; ð1dÞ

where in the previous equation n stands for the outward
unit normal of @Xd

in.

2.1.4 Generalized formulation

Equation (1) is the mixed-dimensional Darcy problem, for-
mulated in terms of pressure and velocity. The problem (1)
may be recast into a pure pressure formulation, however the
numerical scheme introduced in Section 4 considers explic-
itly the pressure and velocity fields as unknowns.

Following the idea presented in [10, 34, 46], we can write
problem (1) in a more compact form similar to the standard
Darcy formulation. To this end, we introduce the following
divergence operator D� between dimensions as such that

D �w ¼ r � �w�sŵ � n̂t;
as well as a mixed-dimensional gradient operator D such
that

Dq ¼ r �q; �q � q̂�T :�
Considering the Darcy velocity composed by u in X and
u � n on C, system (1) becomes

u þ KDp ¼ 0 in X	 C

D � u ¼ f inX
: ð1a; 1b-bisÞ

In the previous equation K is defined accordingly to include
both the effective tangential and normal permeabilities.

2.2 Mixed-dimensional transport problem

Once the problem (1) is solved, the velocity field u can be
used to describe the mixed-dimensional transport problem.
We consider the same splitting of X as in Section 2.1.

We introduce the concentration compound as c =
(0, c1, . . ., cN, 0), with 0 � c � 1 for all d, to describe the
portion of a passive tracer in a grid cell. We indicate by t
the time variable and (0, T) the time interval. The proposed
model extends to multiple fracture networks the model pre-
sented in [47] with multi-dimensional treatment of fracture
intersections. Other important references on this subject are
[20, 22].

2.2.1 Fixed-dimensional transport problem

The model is the following, given u find c such that

�/ �� @ t �cþr � �u�cÞ� sû � n̂ĉt¼ �r in X	ð0;T Þ;ð ð2aÞ

where we have indicated with @tc the time derivative of c,
while / and r are the porosity and a scalar source/sink
term in each dimension, represented as compounds.
Finally, � represents the “fracture aperture’’ in each
dimension, we have � ¼ ð�0; . . . ; �N�1; 1Þ. We assume that
�d > 0 for all 0 � d � N. For simplicity we assume that �
does not depend on time.

In (2a), the divergence term models the conservation of
c in the current dimension d and the flow exchange with the
lower dimension d – 1. The jump operator describes the flow
exchange with the higher dimension d + 1. The coupling
conditions, related to the definition of inflow/outflow of
the lower-dimensional objects, associated to (2a) are

ĉj� xð Þ ¼ ĉj� xð Þ if û � n̂j� 
 0

�c xð Þ otherwise
on C	 0; Tð Þ:

�
ð2bÞ

Also in this case, problem (2) couples the concentration
defined on Xd with Xd�1 and Xd+1, but not directly with
Xd�2 or Xd+2.

2.2.2 Initial and boundary conditions

With (2a) we need to assign initial condition c for the
concentration c, as

c t ¼ tinið Þ ¼ c on X	 f0g; ð2cÞ

with tini the initial time. Finally, on the inflow part of the
outer boundary we assign a boundary condition c for (2a)

c ¼ c on @Xd
out;u�n>0 	 0; Tð Þ; ð2dÞ

where @Xd
out;u�n>0 is the portion of @Xd

out such that an
inflow occurs. Equation (2) is the mixed-dimensional
transport problem.

2.2.3 Generalized formulation

The problem (2) can be condensed, using the formalism
introduce at the end of the previous subsection, as

/�@ tcþD � ucð Þ ¼ r in X	 ð0; T Þ; ð2a-bisÞ

which is a general form of a conservative equation in the
mixed-dimensional setting.
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3 Weak and integral formulation

In the view of introducing the numerical approximations, in
this part we consider the weak formulation of (1) and the
integral formulation of (2).

3.1 Weak formulation of mixed-dimensional Darcy
problem

We introduce the functional spaces suitable to approximate
the pressure and the velocity. The domains Xd may contain
cuts or internal interfaces, in this case refer to [17, 34, 48] for
a more detailed description of functional setting. Consider-
ing a fixed-dimensional domain Xd we have for the pressure
pd 2 Qd ¼ L2ðXdÞ, for d > 0, and p0 2 Q0 ¼ R. For the
velocity we consider, for d > 0, the Hilbert space:

V d ¼ v 2 HdivðXdÞ : v � nj� 2 L2ðCd�1Þ� �
:

The additional condition in Vd is related to the Robin-type
nature of the condition (1b), see [13, 28]. The global spaces
Q and V are defined as the union of the local spaces.

We introduce now the bilinear forms associated to the
problem (1). We have adð�; �Þ : V d 	 V d ! R and
bdð�; �Þ : V d 	 Qd ! R, defined as

adðw; vÞ ¼ ðK�1w; vÞXd bdðw; qÞ ¼ ðr �w; qÞXd ;

with w,v 2 Vd and q 2 Qd. For the coupling between
dimensions, d > 0, we introduce adð�; �Þ : Vd 	 Vd ! R
and bd;d�1ð�; �Þ : Vd 	 Qd�1 ! R defined as

adðw; vÞ ¼
X
�

ðgd�w � nj�; v � nj�ÞXd�1 ;

bd;d�1ðw; qÞ ¼
X
�

ðw � nj�; qÞXd�1 ;

where w; v 2 Vd and q 2 Qd�1. In the previous definition
we have gd� the inverse of kd� and n the normal of Xd�1 in the
tangent space of Xd. The global bilinear forms are defined
by að�; �Þ : V 	 V ! R and by bð�; �Þ : V 	 Q ! R as

a w; vð Þ ¼
X
d>0

ad wd ; vd
� �þ ad wd ; vd

� �
;

b w; qð Þ ¼
X
d>0

bd wd ; qd
� �þ bd;d�1 wd ; qd�1

� �
;

with w, v 2 V and q 2 Q. We can introduce the weak
formulation of (1), which reads: find ðu; pÞ 2 V 	 Q such
that

aðu; vÞ þ bðv; pÞ ¼ GðvÞ 8v 2 V

bðu; qÞ ¼ F ðqÞ 8q 2 Q
; ð3Þ

where the functionals are defined as

F ðqÞ ¼
X
d

ðf d ; qdÞXd GðvÞ ¼ �
X
d>0

ðv � nj@Xd
out
; pdÞ@Xd

out
:

3.2 Integral formulation of mixed-dimensional
transport problem

In Section 4.2 we consider a finite volume approximation
of problem (2), thus we introduce here its integral
formulation.

Considering a suitable sub-domain of Xd called E, later
will be a cell of the computational grid, we integrate
equation (2) obtaining the following

ð �/ �� @t �c; 1ÞE þ ð�u � �n j@E;�c j@EÞ@E
þ
X
�

ð�u � �njI;�;�c jI;�ÞI ;� � ðû � n̂jE;�; ĉjE;�ÞE ¼ ð�r; 1ÞE; ð4Þ

where I = E \ Xd�1 is the intersection between E and the
lower dimensional domain Xd�1, which can be an empty
set.

In (4), we notice the term depending on Iwhich describes
the inflow/outflow exchange between the current and lower
dimensions. Condition (2b) applies also in this case.

4 Numerical discretization

In this section we introduce the numerical scheme used to
solve the mixed-dimensional problems (1) and (2). In par-
ticular, for the former we consider the lowest order dual
VEM approximation, while for the latter we employ a finite
volume discretization with an upwind scheme and implicit
Euler in time.

Let us introduce a suitable tessellation T of X in poly-
topes indicated by E, such that

T ¼ [iEi and Ei \ Ej ¼ ; for i 6¼ j:

We denote by hE the diameter of E, by xE the center of
E, by EðEÞ ¼ e 2 @Ef g the set of faces for the cell E, and by
ne with e 2 EðEÞ the unit normal of e pointing outward
with respect to the internal part of E. The term faces indi-
cates proper faces for the 3d grid, edges for the 2d grids, and
vertexes for the 1d grids. We indicate also by h ¼ maxE2T hE
the characteristic grid size and by E ¼ [E2T EðEÞ the set of
grid faces. It is important to note that the polytopes may
have different spatial dimension, i.e. they are 3d or 2d or
1d or 0d objects. However, fixing a single dimension d the
cells of the grid belongs to Xd.

For simplicity, both problems (1) and (2) use the same
computational grid.

In Section 4.1 we present the discretization for problem
(1), while in Section 4.2 the numerical approximation for
problem (2). Finally, in Section 4.3 we introduce a coarsen-
ing strategy used in the numerical examples.

4.1 Mixed-dimensional dual VEM discretization

We present a numerical scheme to solve the mixed-dimen-
sional Darcy problem (1) in presence of polytopes in the
grid. The resulting scheme will be locally and globally con-
servative, thus suitable to approximate the velocity field
used in (2). We consider the dual VEM of lowest order
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degree, for more details on the derivation and on the anal-
ysis of the method, see [26–33].

4.1.1 Discrete function spaces

We introduce finite dimensional spaces to approximate the
Darcy velocity u and the pressure p in each element of the
grid. For simplicity we consider a single dimension and, if
not essential, we drop the superscript d to simplify notation.
Again, the differential operators are understood to be
defined on the tangential space. Given an element E the
local discretization space for the pressure is Qd

hðEÞ ¼
P0ðEÞ � L2ðEÞ, where PrðEÞ is the space of polynomial of
order r on the domain E. While higher-order dual VEM
approximations are possible, see [31, 32], the solution will
often have low regularity caused by fractures or general
permeability heterogeneities. We therefore stay with the
lowest order formulation, as is common practice in the field.
For the velocity we need to introduce the following space:

V d
hðEÞ ¼ v 2 HdivðEÞ : v � ne 2 P0ðeÞ8e 2 EðEÞ;f

r � v 2 P0 Eð Þ;r	 v ¼ 0g:
The shape of the functions in V d

hðEÞ is not defined a-priori
and is implicitly defined by V d

hðEÞ. The curl-free condition is
necessary to uniquely define the elements in V d

hðEÞ. We
indicate by V d

h the velocity approximation space in the
same dimensional grid and by Vh the global discretization
space for the velocity formed by the compound
ðV 1

h; :::; V
N
h Þ. Similarly, Qd

h indicates the pressure approxi-
mation space in the same dimension d while Qh is the global
discretization space. For the velocity, we impose to the faces
which are not in contact with different dimensions to be sin-
gle value. Otherwise, the degree of freedom is doubled and
connected thorough the coupling condition (1b) to the
lower dimensional object. See Figure 3 for an example.

4.1.2 Approximation of bilinear forms

With the previous definition of Qh and Vh it is immediate to
approximate the bilinear form b for all the dimensions as well
as the bilinear forms associatedwith the coupling conditions,
ad and bd,d�1. The functionals F and G are discretized
similarly. The bilinear forms ad are not immediately com-
putable with the degrees of freedom introduced, but require
the definition of a suitable projection operator. First, we
introduce the local space

Vd
hðEÞ ¼ v 2 V d

h Eð Þ : v ¼ Krv; for a v 2 P1ðEÞ
� �

; ð5Þ

and the projection operator is defined as
P0 : Vd

hðEÞ ! Vd
hðEÞ such that given v 2 Vd

hðEÞ we have
adðv �P0v;wÞ ¼ 0 for all w 2 Vd

hðEÞ. Note that the space
P1ðEÞ in the definition of Vd

hðEÞ will be approximated by a
(tangential) monomial basis. Where we are assuming a
constant value of the permeability in the element E. For
(5) to make sense, the permeability must be constant in
each cell. As discussed above, the permeability will in
practice often be spatially varying on all scales due to
the presence of smaller scale heterogeneities. Inclusion of
spatially varying permeabilities within a computational

cell would require corresponding modifications of the
approximation order for pressure and flux. Our preferred
approach to including more permeability variations is to
stay with lowest order approximations, but instead refine
the grid.

With the orthogonality property it is possible to split
the bilinear form ad in a term on Vd

hðEÞ and one on the
ad-orthogonal space of Vd

hðEÞ, namely

ad u; vð Þ ¼ ad P0u;P0vð Þ þ ad T 0u; T 0vð Þ
¼ ðKru;rvÞXd þ adðT 0u; T 0vÞ

;

with T0 = I�P0. The first bilinear form is now fully com-
putable with the velocity degrees of freedom introduced
before and represents a consistency term with respect to
ad(u,v). The second term is not yet computable and can
be replaced by a stabilization term. Following the ideas
presented in [31–33], we approximate the term by,

ad T 0u; T 0vð Þ � 1sd T 0u; T 0vð Þ;
where sd : Vd

hðEÞ 	 Vd
hðEÞ ! R is the bilinear form asso-

ciated with the stabilization and 1 ¼ 1ðdÞ 2 Rþ is a scal-
ing parameter described in the sequel. In details,
denoting by u an element of the basis for Vd

hðEÞ, in our
case we consider

sd T 0ux; T 0uhð Þ ¼
XNdof

i¼1

dof i T 0uxð Þdof i T 0uhð Þ;

with Ndof the total number of velocity degrees of freedom
of the element E and dof i : Vd

hðEÞ ! R is defined as

dof i uxð Þ ¼ ith degree of freedomof ux ¼ dix:

We introduce the discrete version adh : V
d
hðEÞ	 V d

hðEÞ ! R
of the bilinear form ad, defined as

adhðu; vÞ ¼ adðP0u;P0vÞ þ 1sdðT 0u; T 0vÞ;
and the discrete version of the weak problem (3), which
reads: find ðu; pÞ 2 Vh 	 Qh such that

ahðu; vÞ þ bðv; pÞ ¼ GðvÞ 8v 2 V h

bðu; qÞ ¼ F ðqÞ 8q 2 Qh

; ð6Þ

Fig. 3. Representation of the degrees of freedom for a 2d and 1d
grid. The pressure dof are represented by circles, red for the 2d
grid and green for the 1d. The velocity dof are depicted by yellow
diamonds for the 2d grid and purple diamonds for the 1d. The
nodes of the 2d grid are moved only for visualization purpose.
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where ahðu; vÞ ¼
P

d>0a
d
hðud ; vdÞ þ adðwd ; vdÞ. The con-

struction of the discrete problem in term of local matrix
computations is described in [28, 30].

The stabilization parameter 1 is used to impose the
scaling on h of the stabilization term equivalent to the
consistency term. In practice we require that, for a fixed
dimension d, there exists i�; i� 2 Rþ, independent from
the discretization, such that

i�ad v; vð Þ � 1sd v; vð Þ � i�ad v; vð Þ 8 v 2 V d
h :

Following [28], by a scaling computation we evaluate
the dependency of 1 from the local grid size hE and obtain
the following relation for a fix dimension d

1ðEÞ ¼ h2�d
E :

Note that this expression is local and independent from the
maximal dimension N of the problem.

4.1.3 Matrix formulation

We introduce the matrix formulation associated with the
problem (6). Considering the following matrices:

Ad½ �ij ¼ adh uj;ui

� �þ ad uj;ui

� �
;

Bd½ �ij ¼ bd uj;wi

� �
; Cd ;d�1½ �ij ¼ bd;d�1 uj;wi

� �
;

and vectors

Gd½ �i ¼ GðuiÞ; F d½ �i ¼ F wið Þ;
where / are basis for the pressure and �½ �i;j indicates the
element (i, j) in the matrix, a similar notation is used
for vectors. The global problem reads for N = 3, solve
the following linear system

A3 B3 0 C3;2 0 0 0 0

BT
3 0 0 0 0 0 0 0

0 0 A2 B2 0 C2;1 0 0

CT
3;2 0 BT

2 0 0 0 0 0

0 0 0 0 A1 B1 0 C1;0

0 0 CT
2;1 0 BT

1 0 0 0

0 0 0 0 0 0 I 0

0 0 0 0 CT
1;0 0 0 0

266666666666664

377777777777775

u3

p3
u2

p2
u1

p1
u0

p0

266666666666664

377777777777775
¼

G3

F 3

G2

F 2

G1

F 1

0

0

266666666666664

377777777777775
;

where ud and pd represent the vectors associated with the
degrees of freedom of velocity and pressure in each dimen-
sion d. We note that the u0 is considered only for clearness
and to preserve the structure of the matrix. In practice, it
is possible to remove u0 from the system.

4.2 Mixed-dimensional FV discretization

We consider now the discretization of equation (4). For
simplicity, we consider a fixed time step Dt such that
T/Dt is an integer number. An implicit Euler is applied in
time obtaining the semi-discrete version of (4)

ð �/ ��ð�c nþ1 � �c nÞ; 1ÞE
�t

þ �
�u � �n��

@E
;�c nþ1

��
@E

�
@E

þ
X
�

	
�u � �n��

I ;�;�c
nþ1

��
I ;�



I ;�

� û � n̂��
E;�; ĉ

nþ1
��
E;�

	 

E

¼ ð�r nþ1; 1ÞE;
where the superscript indicates the time step index,
and c0 ¼ c. The approximation of the boundary integrals
in the previous equation rely on an upwind scheme.
We introduce a Kronecker-type delta as

du�n ¼ 1 if u � n 
 0

0 else

�
:

Given a cell face e 2 EðEÞ we have

�u � �n je;�c nþ1je
�
e

	
¼ �u � �n je d�u � �n je�c

nþ1ðEÞ þ ð1� d�u � �n jeÞ�c nþ1ðLÞ�;�
where the cells K and L share the face e. Given a cell E
such that one of its faces, e, intersects one side of I, we get

û � n̂je; ĉnþ1je
� �

e

¼ û � n̂je dû�n̂je ĉ
nþ1 Eð Þ þ 1� dû�n̂je

� �
�cnþ1 �eÞð �;�

where �e indicates a cell in the co-dimensional grid which is
in communication with the face e. Finally, on side giving
an element E of the last term of the semi-discrete problem
can be approximated by

û � n̂jE; ĉnþ1jE
� �

E

¼ û � n̂jE dû�n̂je ĉ
nþ1ðÊÞ þ ð1� dû�n̂jeÞ�c nþ1ðEÞ�;�

where Ê represents the cell in the higher dimensional grid
which has a face e in communication with the cell E.
The previous condition applies to both the equi- and
co-dimensional coupling, see Figure 4 for an example.
Note that the chosen discretization is compatible with
the coupling condition (2b).

For the matrix formulation of the transport problem, we
introduce the following matrices

Md½ �ii ¼
ð/d�d ; 1Þi

�t
; Ud½ �ii ¼

X
j2N ðiÞ;e2i\j

ðud � nd je; dud �nd jeÞe;

Ud½ �ij ¼
X

j2N ið Þ;e2i\j
ðud � nd je; 1� dud �nd jeÞe;

whereN ðEÞ is the set of all neighbor cells of E, i and j indi-
cate generic cells and e is a face shared by i and j. For the
coupling between dimensions we have

Ud;d�1½ �ii ¼
X

j2N d�1 ið Þ
ðud � nd jj; dud �nd jjÞj;
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Ud;d�1½ �ij ¼
X

j2N d�1 ið Þ
ðud � nd jj; 1� dud �nd jjÞj;

where N
d�1ðEÞ is the set of all neighbor cells of E in the

lower-dimensional grid. We obtain also

Ud;dþ1½ �ii ¼ �
X

j2N dþ1 ið Þ
ðudþ1 � ndþ1ji; dudþ1�ndþ1jiÞi;

Ud;dþ1½ �ij ¼ �
X

j2N dþ1ðiÞ
ðudþ1 � ndþ1ji; 1� dudþ1�ndþ1jiÞi;

where N
dþ1ðEÞ is the set of all neighbor cells of E in the

higher-dimensional grid. We finally obtain the following
linear system to be inverted

U 3 þM3 U 3;2 0 0

U 2;3 U 2 þM2 U 2;1 0

0 U 1;2 U 1 þM1 U 1;0

0 0 U 0;1 0

26664
37775

	

cnþ1
3

cnþ1
2

cnþ1
1

cnþ1
0

26664
37775 ¼

fn;nþ1
3

fn;nþ1
2

fn;nþ1
1

0

26664
37775;

where cd represents the vector associated with the degrees
of freedoms of the concentration in each dimension d. In
the previous linear system fd represents the right-hand
side, formed as a combination of the source term rnþ1

d
and the concentration at the previous time step. We get

fn;nþ1
d ¼ Mdcnd þ rnþ1

d :

4.3 Coarsening strategy

The construction of conforming grids in the presence of sev-
eral fractures can be a challenging task, especially in 3d. In
this work, our grids are constructed by the Gmsh mesh gen-
erator [49]. In the presence of almost intersecting fractures
or small fracture branches, the grid may contain a high
number of simplex cells, resulting in a high computational

cost. To overcome this difficulty, we exploit the ability of
VEM to handle cells of arbitrary geometry. To be specific,
the theory developed in [30–33] requires star-shaped cells,
however the study carry out in [50] shows that the VEM
is able to handle also cells with cuts.

Motivated by these observations we introduce a coars-
ening scheme that merges small simplex cells into larger
polygons or polyhedra. Starting from a given simplex grid,
the algorithm computes the measure (area or volume) of the
cells. Given the cell c with the smallest measure, it will be
merged to one or more neighboring cells, based on their
respective measure, creating a new coarse cell. The cluster-
ing stops when a cell measure threshold is reached. The cells
used in discretization are thus general polytopes, formed as
unions of simplexes.

The algorithm does not guarantee any regularity of the
final grid, as illustrated in Figure 5.

We emphasize that as elements are aggregated, a new
element with many faces is generated. The local matrices
will be denser and larger comparing to the original grid
and increase the stencil of the global matrix. Nevertheless,
the coarsening algorithm will decrease the computational
cost. Other strategies are possible but not considered in this
work.

Finally, we note that the assumption of a cell-wise con-
stant permeability applies also in this case. Thus, merging
of cells with different permeabilities requires the computa-
tion of an average permeability. Correspondingly, for highly
heterogeneous media, it may be beneficial to consider also
cell permeability as a parameter in the coarsening algorithm.

5 Applicative examples

We present three examples and test cases to assess the pre-
sented models and numerical schemes. The first example,
presented in Section 5.1, considers an extensive validation
of the mixed-dimensional Darcy problem solved by VEM
through a benchmark study presented in [51]. The second
test case, in Section 5.2, considers the transport problem
and analyzes the impact of the coarsening strategy on the
results. Finally, in Section 5.3 a realistic 3d example is intro-
duced and studied. In all the forthcoming examples we
assume unitary porosity and zero source terms for the
concentration and Darcy equations. The other parameters
will be specified.

(a) (b) (c)

Fig. 4. Representation of the coupling between dimension for the upwind discretization scheme. (a) Between two cells in the same
dimension d. (b) Between a d-dimensional cell and a d � 1-dimensional cell. (c) Between a d + 1-dimensional cell and a d-dimensional
cell.
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In all of the forthcoming examples a “Blue to Red
Rainbow’’ color map is used.

The examples are part of the PorePy package, which is
a simulation tool for fractured and deformable porous
media written in Python. See [52] and github.com/pmgber-
gen/porepy for more details.

5.1 Benchmark comparison

To validate the presentedmodel, we consider the benchmark
study presented in [51], specifically cases 1 and 4. The refer-
ence solutions pref were computed with a mimetic finite dif-
ference method [53] on a very fine grid that is able to
represent the thickness of the fractures by considering the
classical Darcy model. The error is thus evaluated by

err2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

jX2j�ref

X
E¼Eref\E2

jEj p2jE2 � pref jErefð Þ2
s

;

err1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

jX1j�ref

X
E¼Eref\E1

jEj p1jE1 � pref jErefð Þ2
s

;

for the matrix err2 and for the fractures err1, where
�ref ¼ ðmax pref �min prefÞ2 and E2 is a cell in the
mixed-dimensional problem related to the rock matrix,
respectively E1 for the fracture. The errors are computed
on the reference grid, p1 is assumed constant on the
normal direction of the fracture in the equi-dimensional
setting.

For more detail of problem setting refer to the aforemen-
tioned work.

5.1.1 Benchmark 1: regular fracture network

The problem is inspired by Geiger et al. [54] with different
boundary conditions and material properties. The domain
is the unit square containing six fractures, sketched in
Figure 6. The matrix permeability is taken as unitary,
and the fracture aperture is set equal to 10�4. No flux
boundary conditions are imposed on the top and bottom
of the domain, while unitary pressure is imposed on
the right boundary and �1 as flux on the left boundary.

The source term is set to zero. We consider two possibilities
for fracture permeability: it is either highly conductive with
permeability 104 and has conductivity with permeability
10�4. In the former case the solution obtained with the
method presented previously along with the computational
grid are presented in Figure 7(a), the latter in (b). We
observe a good agreement between the computed and refer-
ence solutions, the latter is described in [51]. We point out
that some of the elements present in Figure 7 are not
convex.

To obtain a more detailed comparison we consider two
plots over line for the permeable case and one for the block-
ing case, shown in Figure 8. From now on, the method
presented in this paper is labeled as VEM. Also in this case,
the agreement between the computed and reference
solutions is comparable to the other methods which are able
to represent blocking fractures. The small oscillations in the
line plots are related to grid effects.

Finally, in both cases we consider the error decay for
both the rock matrix and the system of fractures. We con-
sider a family of three grids where the coarsening is applied
in all the cases. We obtain again non-convex elements in all
the grids. Figure 9 plots for conductive and blocking frac-
tures the error decay. The errors are comparable with those
of others methods able to represent permeable and blocking
fractures. In the latter case we note a stagnation of the

Fig. 6. Domain with fractures (in red) and fracture intersec-
tions (in blue) for problem in Section 5.1.1.

(a) (b)

Fig. 5. Example of the coarsening strategy adopted. (a) The computational grid is artificially forced to be finer at the tip of a
fracture. (b) The resulting grid after the coarsening. Clearly the cell measures are comparable.
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fracture error which bounds the order of converge. This
phenomenon is common also for other methods presented
in the benchmark study [51].

5.1.2 Benchmark 4: a realistic case

We consider now a complex system of 64 fractures from a
real outcrop. The domain is X = (0, 700 m) 	 (0, 600 m),

sketched in Figure 10.We consider constant rock permeabil-
ity equal to 10�14 m2, uniform fracture permeability
10�8 m2, and fracture aperture 10�2 m2. We impose a pres-
sure gradient at the boundary from the left (1 013 250 Pa)
to the right (0 Pa), and no flow condition on the top and
bottom of the domain. The source term is set to zero. Also
in this case, a triangular grid is coarsened to reduce the grid
complexity. The reference grid is composed by 12 472 2d

(a) (b) (c)

Fig. 7. Benchmark 1. (a) Pressure solution (range (1, 1.6)) with conductive fractures and computational grid. (b) Pressure solution
(range (1, 3.6)) with blocking fractures and computational grid. (c) Zoom of the grid used.

(a) (b) (c)

Fig. 8. Benchmark 1 with conductive fractures. (a) Pressure along horizontal line at y = 0.7 with permeable fracture. (b) Pressure
along vertical fracture at x = 0.5 with permeable fractures. (c) Pressure along the line (0.0, 0.1)–(0.9, 1.0) with blocking fractures.

Fig. 9. Benchmark 1, error evolution for the matrix and the fractures with conductive and blocking fractures.
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cells, 1317 1d cells, and 85 0d cells. The coarse algorithm
decreases the number of 2d cells down to 4703. The total
number of degrees of freedom is 19 075 for the coarse
grid.

The computed solution is represented in Figure 12(a),
which matches the solution of the others method considered
in [51]. Because of the complexity of the network, conform-
ing and non-matching methods may pose a constraint to
the grid generation in particular for close fractures. How-
ever, the method presented allows general grid cells, and
thus alleviate the computational cost for the simulation.
For an illustration of the computational grid, we refer to
Figure 11, which zooms in on a region with almost intersect-
ing fractures.

As shown in Figure 11, some of the grid cells are non star-
shaped or even contains cuts. For a more detailed discussion
refer to [50]. Finally, to validate in more detail the computed
solution we present two plots over line and compare them

with the solutions obtained in the benchmark study, see
Figure 12. The curves for the current method are in good
agreement with the others. Again, the small oscillations that
can be observed are related to grids effects.

5.2 Passive scalar transport

In this part we consider both mixed-dimensional models (1)
and (2) to simulate a passive scalar transport. We consider
the geometry presented in Section 5.1.2 and compare the
solution obtained with both grids in Figure 11 for perme-
able and blocking fractures. For the reference grid, the total
number of degrees of freedom is 35 578. The aim of this test
is to validate the quality of the Darcy velocity on the
passive scalar in presence of the grid coarsening. In the fol-
lowing fracture aperture is constant and equal to 10�2 m, a
pressure gradient from the right to left boundary of the
domain of 3 	 107 Pa, a final simulation time of 40 years.

5.2.1 Permeable fractures

We consider highly permeable fractures with tangential per-
meability of 5 	 10�6 m2 and normal permeability of
2.5 	 10�9 m2. The matrix permeability is set to 2.5 	
10�11 m2. Figure 13 compares the solutions obtained on
the reference triangular grid and on the coarse grid. More-
over Figure 14(a) presents a comparison of the passive sca-
lar production. We notice the good agreement in both the
pressure and concentration fields as well as in the produc-
tion curve. We can conclude that in this case the grid coars-
ening is not affecting the quality of the computed solutions.

Finally, in Figure 14(b) the temporal error decay is
reported. The spatial discretization is fixed and we consider
a sequence of simulation with (10, 20, 40, 80, 160, 320, 640,

(a)

(b)

Fig. 11. Benchmark 4. (a) Original grid composed by 12 302 2d-cells and 35 153 VEM dof and coarsened grid composed by
4599 2d-cells and 18 803 VEM dof. (b) A zoom on almost intersecting fractures for the original and coarsened grids, respectively. The
zoom is referred to the small rectangle at position, approximately (360, 350).

Fig. 10. Domain with fractures (in red) for problem in
Section 5.1.2.
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1280, 2560, 5120) time steps each. The error is computed as
the L2 difference from a reference solution obtained with 105

time steps after 10 years. A unitary error decay is achieved,
coherent with the numerical scheme considered.

5.2.2 Blocking fractures

Next, we consider blocking fractures with tangential and
normal permeability of 7.5	 10�16 m2. Matrix permeability
is set to 7.5 	 10�11 m2. Figure 15 compares the solutions
obtained on the reference triangular grid and on the coarse

grid. In this case we notice a pickpeak of velocity in the ref-
erence case due to small elements close to almost intersect-
ing fractures. This may affect an explicit in time solver.
Figure 16(a) presents a comparison of the passive scalar
production. We notice the good agreement in both the pres-
sure and concentration fields as well as in the production.
We can conclude that also in this case the grid coarsening
is not affecting the quality of the computed solutions.

Again, the temporal error decay is reported, see
Figure 16(b). The spatial discretization is fixed and we
assign (10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120) time

(a)

(b)

Fig. 13. Permeable fractures. (a) Reference and coarse solutions for pressure and velocity, as arrows. (b) Reference and coarse
solutions for concentration of the passive scalar.

(a) (b) (c)

Fig. 12. Benchmark 4. (a) Pressure solution computed with VEM. The pressure ranges in [0, 1 013 250] Pa. (b) Pressure along
horizontal line at y = 500 m. (c) Pressure along vertical line at x = 625 m.
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steps, respectively. A unitary error decay is achieved, con-
sistent with the numerical scheme considered.

5.3 Passive scalar transport on a realistic 3d-network

In this examplewe consider a realistic geometry for a geother-
mal system. We study a partial reconstruction of fractures
from test site at Soultz-sous-Forêts in France, for more
details see [55]. The network is composed by 20 fractures

represented as polygons with 10 edges each. The fracture
intersections result in 33 1d objects and 4 0d objects. In this
case the full model is needed to accurately simulate the fluid
flow and transport on the domain. The fracture geometry is
represented in Figure 17.We assume rock matrix permeabil-
ity as 7.5	 10�10 m2 and fracture permeability, in both the
normal and tangential direction, equal to 5 	 10�5 m2. The
fracture aperture is �2 = 10�2 m and, for the lower dimen-
sional objects, we consider their “aperture’’ as the square

(a) (b)

Fig. 14. Permeable fractures. (a) Comparison of passive scalar production at the outflow between the reference triangular grid and
the coarse grid. (b) Temporal error decay with reference Oð�tÞ in black.

(a)

(b)

Fig. 15. Blocking fractures. (a) Reference and coarse solutions for pressure and velocity, as arrows. (b) Reference and coarse solutions
for concentration of the passive scalar.
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and the cube of the fracture aperture, respectively for the 1d
and 0d objects. We impose a pressure from the top to
bottom of the domain and no flux boundary conditions
on the other sides. The reference grid is composed by
44 331 tetrahedra, 6197 triangles for the 2d grids, 151 seg-
ments for the 1d grids, and 4 point-cells for the 0d grids.
After the coarsening algorithm the resulting grid is
composed by 16 108 polyhedra, and for the lower dimen-
sional objects the grids are untouched. See Figure 19(b)
for an example of coarse cells. The transport simulation
runs for 40 years and, for the implicit Euler scheme, we con-
sider 100 time steps.

The objective is to study the robustness of the virtual
elements associated with the coarsening strategy and detect
if the coarse model gives accurately enough results. The
pressure solution and the concentration of the scalar passive
are depicted in Figures 17 and 18, respectively, for both the
reference and coarse case. Both the pressure and concentra-
tion profiles for the two grids are in good agreement. To
analyze the macroscopic behavior of the resulting solution

(a) (b)

Fig. 16. Blocking fractures. (a) Comparison of passive scalar production at the outflow between the reference triangular grid and the
coarse grid. (b) Temporal error decay with reference Oð�tÞ in black.

Fig. 17. On the left representation of the 20 fractures colored
by their identification number. Pressure and velocity for both
the reference and coarse grids. The pressure is scaled between 0
and 4.8 	 107 Pa.

Fig. 18. (a) Three time steps on the reference grid for the concentration. (b) At the same steps, the concentration computed on the
coarse grid.
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a production curve comparison is reported in Figure 19,
showing a small discrepancy from the reference and the
coarse production.

We can conclude that also in this case the adopted strat-
egy is effective and can be applied to complex system of
fractures, ensuring a good compromise between high accu-
racy and computational effort.

6 Conclusion

In the paper we presented two classes of mixed-dimensional
problems able to describe a single-phase flow and a trans-
port of a scalar passive in fractured porous media. The
latter is transported by the Darcy velocity computed by
the former model. The considered mixed-dimensional Darcy
problem is able to represent both channel and barrier
behaviors of fractures, as well as their intersections. The
models thus represent a comprehensive description of this
phenomena, which are key ingredients for the description
of several energy application problems. The numerical
schemes considered for the discretization of the Darcy equa-
tion are able to handle, supported by theoretical findings,
grid cells of arbitrary geometry becoming a strong advan-
tage when dealing with high and complex fractured porous
media. Numerical results have shown the capability to
apply this strategy obtaining accurate outcomes with a rea-
sonable computational cost. The transport model can be
viewed as a first attempt to introduce a full model for the
description of heat exchange in a porous media, which will
be a part of future investigations.
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