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Abstract

The goal of this thesis is to solve Maxwell’s equations in vacuum by applying a discon-

tinuous Galerkin method. A brief introduction to numerical methods for solving partial

differential equations is given before we present the discontinuous Galerkin method more

closely. Analysis and numerical experiments are performed regarding the advection equa-

tion on both structured and unstructured grids, and we show that optimal convergence

rate is achieved. The theory is extended to systems of partial differential equations in

order to solve Maxwell’s equations. We run a simple test problem in order to show

that we still obtain optimal convergence. We conclude the work by introducing the per-

fect electric conductor boundary conditions to our test problem, and observe how the

conductor influence our solution.
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Chapter 1

Motivation

1.1 Numerical methods and PDEs

Partial differential equations (PDEs) can be used to describe a wide range of natural

phenomena, such as heat, diffusion, sound, fluid dynamics, electrodynamics, and so on.

As we usually are unable to obtain an analytical solution to most of these problems,

we apply some numerical method in order to obtain an approximate solution instead.

This is done by discretizing our domain of interest into a computational domain, where

we formulate a numerical scheme which solves the problem. One such method is the

finite difference method (FDM), where we simply replace each derivative by a difference

quotient which follows from a Taylor expansion. The intuitive idea, and the fact that

we quite easily can obtain higher-order approximations, are the biggest advantages for

using the FDM. However, this is only true for simple problems. If we try to handle

complex geometries or unstructured grids the simplicity is lost, and although it is still

possible to formulate a finite difference scheme, it might be beneficial to consider other

methods.

One could for instance consider the finite volume method (FVM) or the finite element

method (FEM) in the case of complex geometries. A brief introduction to these method

is given in Section 2.1. FVMs are robust and well suited for complex geometries, but it

is difficult to obtain high order of accuracy. If one wants a higher-order approximation

on unstructured grid, one could consider a finite element method instead. It works
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well on complex geometries and one can easily obtain higher-order accuracy on the

approximation. It is however rather costly on time-dependent problems, as we will

obtain an implicit semi-discrete scheme. This is a clear disadvantage over the FDM and

FVM where one will obtain an explicit semi-discrete formulation.

The discontinuous Galerkin finite element method (DG-FEM) was first introduced by

Reed and Hill in 1973 for steady-state neutron transport as an hyperbolic problem [10].

Over the last two decades it has become a popular alternative to both FVMs and FEMs.

FVMs can only use lower degree polynomials, and continuous FEMs require higher reg-

ularity due to the continuity requirements. The discontinuous Galerkin (DG) methods

combine the best properties of FVMs and continuous FEMs such as consistency, flex-

ibility, stability, conservation of local quantities, robustness and compactness [11]. We

obtain a DG-formulation by following the FEM approach, but satisfying the equation in

a sense closer to the FVM. We will see how this is done in Section 2.2.

Complex High-order Explicit semi-
geometries accuracy discrete form

FDM × X X
FVM X × X
FEM X X ×

DG-FEM X X X

Table 1.1: A summary of some properties of the most widely used methods for discret-
izing PDEs, compared to the DG-FEM. A checkmark (X) indicates that the method is
well-suited to fulfill the desired property, while a cross (×) indicates a short-coming on
the property.

1.2 Outline

We will in the next chapter give a brief introduction to the finite volume method and

finite element method, and get an understanding on how to combine ideas from these

methods into the discontinuous Galerkin method. Then an example on the DG method

is given, before we consider some computational matters.

In Chapter 3 we will look closer on the two-dimensional advection equation. We show
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well-posedness of the problem and obtain a time stable semi-discrete scheme. The

chapter is concluded by a brief convergence analysis and numerical experiments.

We begin the discussion on Maxwell’s equations in Chapter 4, where we first present the

three-dimensional system. Then we formulate the two-dimensional problem on trans-

verse electric mode, and show that it is well-posed. The problem is discretized to a

semi-discrete formulation, which we show is time stable. We will then introduce shortly

the perfect electric conductor (PEC), and give some of the assumptions under which

we obtain the PEC boundary conditions. The chapter concludes with numerical exper-

iments.

Lastly we give a short conclusion and final remarks in Chapter 5. Some suggestions on

future work is presented.
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Chapter 2

The Discontinuous Galerkin
Method

We start this chapter off by introducing the finite volume method and the finite element

method, before we see how they connects to the discontinuous Galerkin method. Then

we will introduce our reference element in two dimensions, and show how the operators

transform over a change of basis. This chapter concludes by a brief discussion on how

to solve the semi-discrete problem obtained after discretization.

2.1 Finite volume and finite element methods

A FVM is based on subdividing the spatial domain into grid cells (the finite volumes),

and keeping track of the an approximation of the integral of q over each of these volumes.

In each time step we update these values using approximations to the flux through the

boundary of the grid cells. For simplicity, if we consider the one-dimensional case, the

grid cell is just a sub-interval.

We start by looking at the one-dimensional conservation law, qt+cqx = 0. Let us denote

the i-th grid cell by Ci = (xi−1/2, xi+1/2). The value Qni will approximate the average

value of q over the i-th grid cell at time tn:

Qni =
1

∆x

∫ xi+1/2

xi−1/2

q(x, tn) dx ≡ 1

∆x

∫
Ci

q(x, tn) dx,
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2.1. FINITE VOLUME AND FINITE ELEMENT METHODS

where ∆x = xi+1/2 − xi−1/2 is the length of the cell. Applying the integral form of the

conservation law
d

dt

∫ x2

x1

q(x, t) dx = F1(t)− F2(t)

yields
d

dt

∫
Ci

q(x, t) dx = f(q(xi−1/2, t))− f(q(xi+1/2, t)),

which is a semi-discrete formulation of our problem. Integration in time from tn to tn+1

gives∫
Ci

q(x, tn+1) dx−
∫
Ci

q(x, tn) dx =

∫ tn+1

tn

[
f(q(xi−1/2, t))− f(q(xi+1/2, t))

]
dt.

Rearranging and dividing by ∆x gives

1

∆x

∫
Ci

q(x, tn+1) dx =
1

∆x

∫
Ci

q(x, tn) dx− 1

∆x

[
f(q(xi+1/2, t))− f(q(xi−1/2, t))

]
.

By this we know how the cell average of q should be updated in a time step. However, we

generally can’t evaluate the time integral on the right-hand side of the equation exactly,

since q(xi±1/2, t) varies in time over along the cell edge. But it suggests a method on

the form

Qn+1
i = Qni −

∆t

∆x
(Fni+1/2 − F

n
i−1/2),

where Fni±1/2 is some approximation to the average flux along x = xi±1/2. In order to get

the fully discrete formulation, we need an approximation to Fni±1/2 based on the values

of Qn.

For a hyperbolic problem information propagates with finite speed, so we suppose that

Fni±1/2 can be obtained only by using the cell averages on either side of the interface.

Considering Fni−1/2 we can introduce the numerical flux function F as

Fni−1/2 = F(Qni−1, Q
n
i ),

to obtain a fully discrete formulation as

Qn+1
i = Qni −

∆t

∆x

[
F(Qni , Q

n
i+1)−F(Qni−1, Q

n
i )
]
.

A more thorough discussion on this method is presented in [8].
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2.1. FINITE VOLUME AND FINITE ELEMENT METHODS

FEMs on the other hand were originally developed for elliptic problems in a variational

formulation, i.e. the solution is required to minimize an integral representing the energy

of a system. We take the standard Galerkin approach to get a FEM formulation to the

one-dimensional conservation law ut +∇ · f(u) = 0 with f(u) = au over Ω × [0, T ] for

Ω ⊂ R.

We define the inner product and the norm in the usual way by

〈u, v〉 =

∫
Ω
uv dx, ‖u‖2 = 〈u, u〉.

Instead of requiring that the differential equation is satisfied for all x in the domain, we

take the inner product with a test function v(x):

〈ut +∇ · f(u), v〉 = 0,

and require that this equation holds for all v in some function space V [5]. Performing

an integration by parts yields

〈ut+∇·f(u), v〉 =

∫
Ω

(ut+∇·f(u))v dx =

∫
Ω

(utv−f(u) ·∇v) dx+

∫
∂Ω
f(u)v ·n dS = 0.

Now we want to express this in a more concrete way. By suggesting a set of basis func-

tions {φi(x)}Ni=1 on V , we can express any member q in V as q(x, t) =
∑N

i=1 q̂i(t)φi(x).

Assuming u as a member of V , and taking v the sum of basis functions on V , we get∫
Ω

N∑
i=1

N∑
j=1

(
dûi(t)

dt
φi(x)φj(x)− aûi(t)φi(x)

dφj(x)

dx

)
dx =

−
∑
edges

∫
edge

N∑
i=1

N∑
j=1

(aûi(t))φi(x)φj(x) · nedge dS.

Defining the discrete operators

Mij =

∫
Ω
φiφj dx, Sij =

∫
Ω
φi
dφj
dx

dx, Qkij =

∫
Γk

φiφj dS,

where Γk is the k-th edge of ∂Ω, gives the semi-discrete formulation

Mût − aST û = −
∑
k

Qk(aû) · nk,

or equivalently

ût = M−1

(
aST û−

∑
k

Qk(aû) · nk

)
.

Integration in time will again give the fully discrete formulation.
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2.2 Discontinuous Galerkin finite elements

We consider once again the one-dimensional conservation law to illustrate how the FVM

and FEM is combined to obtain a DG formulation of a problem by following the discus-

sion presented in [6].

Let the problem be given by

ut +∇ · f(u) = 0, x ∈ Ω ⊂ R, t ∈ [0, T ];

u(x, 0) = g(x);

u(L, t) = h(t),

for f(u) = au, where a > 0, and appropriate initial data g(x) and boundary condition

h(t).

The domain, Ω, will be well approximated by the computational domain, Ωh, which is

a subdivision of Ω into K elements.

We define the local inner product and norm as

〈u, v〉Dk =

∫
Dk

uv dx, ‖u‖2Dk = 〈u, u〉Dk ,

and the broken inner product and norm as

〈u, v〉Ω,h =
K∑
k=1

〈u, v〉Dk , ‖u‖2Ω,h = 〈u, v〉Ω,h.

Here, (Ω, h) reflects that Ω is only approximated by the union of Dk, that is

Ω ' Ωh =
K⋃
k=1

Dk.

For the one-dimensional case we take Ω = [L,R] and approximate Ω byK non-overlapping

elements, x ∈ [xkl , x
k
r ] = Dk. On each of these elements we apply a modal expansion to

our solution,

x ∈ Dk : ukh(x, t) =
N∑
n=1

ûkn(t)φn(x).
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2.2. DISCONTINUOUS GALERKIN FINITE ELEMENTS

We start by taking the standard Galerkin approach from the FEM by applying the local

inner product with a test function v(x) and performing an integration by parts:

〈ut +∇ · f(u), v〉 =

∫
Dk

(utv − f(u) · ∇v) dx+

∫
∂Dk

f(u)v · n dS = 0.

The global solution, u(x, t), is then assumed to be approximated by

u(x, t) ' uh(x, t) =
K⊕
k=1

ukh(x, t),

the direct sum of the K local approximations ukh(x, t). As a consequence of the lack of

conditions on the local solution and the test functions, the solution at interfaces between

elements is multiply defined and we need to choose which solution, or combination of

solutions, is correct. In order to do so, we introduce the concept of numerical flux known

from the FVM, in order to obtain a local expression∫
Dk

(utv − f(u) · ∇v) dx = −
∫
∂Dk

f∗(u)v · n dS.

Making use of the modal expansion of our solution, and taking the normal Galerkin

approach by assuming v =
∑N

n=1 φn(x), we obtain a local semi-discrete formulation as

Mût − aST û = −
∑
j

Qj(aû)∗ · nj ,

or equivalently,

ût = M−1

aST û−∑
j

Qj(aû)∗ · nj

 .

In this thesis we will consider an upwind scheme, giving the numerical flux as (au)∗ =

a+uleft + a−uright , where a+ = max(a, 0), a− = min(a, 0). uleft and uright denotes the

solution on the left and right side of an interface, respectively.

There are, however, several other ways of defining this numerical flux, such as an central

flux, Lax Friedrichs flux, etc. It is known that the upwind scheme will give optimal

convergence, O(hn+1), using n-th order polynomial approximations, while for instance

the central flux shows a pattern of being O(hn) for n odd and O(hn+1) for n even.
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2.3. GEOMETRIC ASPECTS

2.3 Geometric aspects

We will in this section present some geometric concepts that will prepare us for the two-

dimensional computations. Previously we stated that our domain, Ω, is approximated

by a subdivision known as the computational domain, Ωh. It is now fitting to give a

couple of definitions on the properties of the computational domain.

Definition 2.1 (Subdivision of a domain [1]). A subdivision of a domain Ω is a finite
collection of element domains {Dk} such that

(i) intDi ∩ intDj = ∅ if i 6= j;

(ii)
⋃
Dk = Ω.

Definition 2.2 (Triangulation [1]). A triangulation of a polygonal domain Ω is a sub-
division consisting of triangles having the property that

(iii) no vertex of any triangle lies in the interior of an edge of another triangle.

We will in the computations use a triangulation consisting of straight-sided triangles of

the domain according to the definitions above, but due to the locality of our method a

subdivision would be sufficient (i.e. we could have vertices in the interior of an edge of

another element domain).

With a triangulation in place, we introduce a mapping, Ψ, that connects a general

triangle to a reference triangle, defined as

R = {ξ = (ξ, η) : (ξ, η) ≥ 0, ξ + η ≤ 1}.

In order to connect them, we assume that the element, Dk, is spanned by three ver-

tices, (v1,v2,v3), counted counterclockwise, see Figure 2.1. We define the barycentric

coordinates, (λ1, λ2, λ3), with the properties that

0 ≤ λi ≤ 1, λ1 + λ2 + λ3 = 1. (2.1)

Then any point in the triangle, spanned by the three vertices, can be expressed as

x = λ1v1 + λ2v2 + λ3v3.

9
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(0, 0) (1, 0)

(0, 1)

R

v1 v2

v3

Dk

Ψ−1 : Dk → R

Ψ: R→ Dk

x

y

ξ

η

Figure 2.1: Transformation between an arbitrary element Dk to the reference element
R.

Similarly, any point ξ ∈ R can be expressed as

ξ = λ1

(
0

0

)
+ λ2

(
1

0

)
+ λ3

(
0

1

)
.

Combining this with (2.1), we obtain that

λ2 = ξ, λ3 = η, λ1 = 1− ξ − η,

and so we get the mapping

x = (1− ξ − η)v1 + ξv2 + ηv3 =
(
v2 − v1,v3 − v1

)
ξ + v1 = Aξ + v1.

That is, Ψ: R→ Dk defined by Ψ(ξ) = Aξ + v1.

Assuming that the triangles are non-degenerate we have that the columns of A are

linearly independent, and so A is invertible. The inverse mapping is given by Ψ−1(x) =

A−1(x− v1).

On the reference element we introduce the polynomial basis {ξ, η, 1− ξ − η}, and we

define the matrix operators on this element. We will apply this transformation in order

to obtain the local operators on each element.

We consider only the one-dimensional case, as the two-dimensional will follow in the

exact same way.

First consider the mass matrix, M , given as

Mk
i,j =

∫
Dk

φi(x)φj(x)dx =

∫
R
φi(ξ)φj(ξ)

∣∣∣∣dxdξ
∣∣∣∣ dξ = JkMR

i,j ,
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2.4. SOLVING THE SEMI-DISCRETE PROBLEM

where Jk is the Jacobian determinant of the transformation. This gives the relation

Mk = JkMR, and we can easily obtain a local mass matrix on each element by scaling

the mass matrix on the reference element by the Jacobian of the transformation.

For the stiffness matrix, S, we have

Ski,j =

∫
Dk

φi(x)
dφj(x)

dx
dx =

∫
R
φi(ξ)

dφj(ξ)

dξ
dξ = SRi,j ,

and so the stiffness matrix is invariant to the transformation.

2.4 Solving the semi-discrete problem

In order to solve the time stable semi-discrete scheme one need to apply some standard

technique for solving an ordinary differential equation. We will use the fourth order

Runge-Kutta method (RK4), which provides high-order accuracy and is easily imple-

mented. If we consider a problem on the form

duh
dt

= Lh(u, t),

we apply the scheme

k1 = Lh(unh, t
n),

k2 = Lh
(
unh +

∆t

2
k1, t

n +
∆t

2

)
,

k3 = Lh
(
unh +

∆t

2
k2, t

n +
∆t

2

)
,

k4 = Lh (unh + ∆tk3, t
n + ∆t) ,

un+1
h = unh +

∆t

6
(k1 + 2k2 + 2k3 + k4) ,

to advance from unh to un+1
h , separated by the time step, ∆t.

We discretize time in equidistantly, {0,∆t, 2∆t, . . . , T − ∆t, T}, where it is necessary

for ∆t to satisfy the CFL-condition in order to obtain stability. The CFL-condition is

formulated:

A numerical method can be convergent only if its numerical domain of de-

pendence contains the true domain of dependence of the PDE, at least in the

limit as ∆t and ∆x go to zero.

11



2.4. SOLVING THE SEMI-DISCRETE PROBLEM

For a hyperbolic problem the Courant number , ν, is defined as

ν =
∆t

∆x
|λ|,

where |λ| denotes the wave speed [8]. For the two-dimensional case we use a similar

relation,

ν =
∆t

∆x
|λx|+

∆t

∆y
|λy|,

where |λx,y| denotes the speed in the x and y direction, respectively. This relation is

used to obtain a bound on ∆t:

∆t ≤

 ν
|λx|
∆x +

|λy |
∆y

 . (2.2)
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Chapter 3

The Advection Equation

This chapter contains a discussion on how the two-dimensional advection equation is

solved using the discontinuous Galerkin method. We will start by some analysis to

prove well-posedness of the problem, before a discretization is performed. We give a

stability estimate for the discrete problem and conclude with convergence analysis and

numerical experiments.

3.1 Well-posedness for the continuous problem

We consider the problem

ut +∇ · f(u) = g(x, t), x ∈ Ω ⊂ R2, t ∈ [0, T ];

u(x, 0) = u0(x);

u(x, t) = h(x, t), x ∈ Γ ⊆ ∂Ω,

(3.1)

for f(u) = [au, bu]T . With no loss of generality for the analysis, we suppose that a, b ≥ 0,

Ω = [0, 1]× [0, 1] and Γ = {x = 0 ∪ y = 0}.

Definition 3.1 (Well-posedness for an IBVP [5]). The problem

ut = Du+ F, 0 ≤ t
Bu = g;

u = f, t = 0,

13



3.1. WELL-POSEDNESS FOR THE CONTINUOUS PROBLEM

for D a differential operator and B a boundary operator acting on the solution at the
spatial boundary, is well-posed if for F = 0, g = 0 there is a unique solution satisfying

‖u(·, t)‖ ≤ Keαt‖f(·)‖, (3.2)

where K and α are constant independent of f .

Proposition 3.1. The problem (3.1) is well-posed.

Proof. We begin by showing the stability estimate by using the energy method. Let
g(x, t) = 0 in the expression (3.1). Then we multiply by u and integrate in time to get∫

Ω
uut dx = −

∫
Ω
u∇ · f(u) dx.

Using the fact that 2uut = (u2)t, gives

1

2

d

dt
‖u‖2 = −

∫
Ω
u∇ · f(u) dx.

Now we apply integration by parts on half of the integral on the right-hand side before
we use the divergence theorem, such that

1

2

d

dt
‖u‖2 = −1

2

∫
Ω
u∇ · f(u) dx− 1

2

(∫
Ω
∇ · (uf(u)) dx−

∫
Ω
∇u · f(u) dx

)
= −1

2

(∫
Ω
u∇ · f(u) dx−

∫
Ω
∇u · f(u) dx

)
− 1

2

∫
∂Ω
uf(u) · n dS

= −1

2

∫
∂Ω
uf(u) · n dS.

Since h = 0 on {x = 0 ∪ y = 0}, this reduces to

1

2

d

dt
‖u‖2 = −1

2

∫
x=1

au2 dS − 1

2

∫
y=1

bu2 dS ≤ 0.

If we now multiply by 2 and integrate in time, we get

‖u(·, t)‖ ≤ ‖u0(·)‖,

which proves the estimate (3.2).

One can construct a DG-FEM solution of this problem. Together with the energy es-
timate and consistency of the method, this will ensure existence of a solution.

Now we will show the uniqueness of such a solution by reductio ad absurdum. Suppose
that there exists two different solutions u and v of the problem (3.1). We define w :=
u− v, the difference of the two solutions. Then w satisfy the IBVP

wt +∇ · f(w) = 0, x ∈ Ω ⊂ R2, t ∈ [0, T ];

w(x, 0) = 0;

w(x, t) = 0, x ∈ Γ,

14



3.2. DISCRETIZATION AND TIME-STABILITY

However, we just proved that the energy estimate ‖w(·, t)‖ ≤ ‖w(x, 0)‖ = 0 holds. We
obtain that u = v, which proves uniqueness of the solution satisfying (3.2). Hence the
problem is well-posed. �

3.2 Discretization and time-stability

Having proved well-posedness for our problem, we proceed by discretizing the equation

in order to obtain a local semi-discrete formulation. Then we show that the global

approximation is time-stable.

Following the discussion from Section 2.2, we first triangulate our domain into K non-

overlapping elements, Dk, such that Ω =
⋃K
k=1D

k. We apply the local inner product

with a test function v := v(x) and using the product rule for divergence gives

〈ut +∇ · f(u), v〉Dk =

∫
Dk

(utv +∇ · f(u)v) dx

=

∫
Dk

[utv +∇ · (f(u)v)− f(u) · ∇v] dx = 0.

If we now apply the divergence theorem, introduce the numerical flux and rearrange, we

are left with ∫
Dk

[utv − f(u) · ∇v] dx = −
∫
∂Dk

f∗(u)v · n dS.

Introducing the modal expansion, u(x, t) =
∑N

i=1 ûi(t)φi(x), and v(x) =
∑N

j=1 φj(x),

gives

∫
Dk

 N∑
i=1

N∑
j=1

(
∂ûi
∂t

φiφj − aûiφi
∂φj
∂x
− bûiφi

∂φj
∂y

) dx = −
∫
∂Dk

[
a

b

]
û∗iφiφj · n dS.

Now we define the mass matrix, M , and stiffness matrices Sx and Sy, as

Mij =

∫
Dk

φiφj dx, (Sx)ij =

∫
Dk

φi
∂φj
dx

dx, (Sy)ij =

∫
Dk

φi
∂φj
dy

dx,

and line integral operators, Qm, as

Qmij =

∫
Γm

φiφj dS,
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3.2. DISCRETIZATION AND TIME-STABILITY

where Γm is the m-th edge of element Dk. We then obtain the semi-discrete formulation

Mût − aSTx û− bSTy û = −
∑
edges

[
a

b

]
· nedgeQ

edgeû∗,

or equivalently,

ût = M−1

aSTx û+ bSTy û−
∑
edges

[
a

b

]
· nedgeQ

edgeû∗

 . (3.3)

We will now define the notion of time-stability, before we show that the semi-discrete

formulation is in fact time stable.

Definition 3.2 (Time-stability for the semi-discrete approximation [5]). The problem

duj
dt

= Duj + Fj ;

Bhu = g(t);

uj(0) = fj ,

for D a differential operator and Bh a discrete boundary operator acting on the solution
at the spatial boundary, is time stable if for F = 0 and g = 0 there is a unique solution
satisfying

‖u(t)‖h ≤ K‖f‖h, (3.4)

where K is independent of f , h and t.

Proposition 3.2. The problem (3.3), with initial and boundary condition as in (3.1),
is time stable.

Proof. We will again use the energy method in order to obtain an estimate like (3.4).
Without loss of generality, let g = 0, h = 0 in (3.1), and suppose a, b ≥ 0. We con-
sider first the reference element, before we show that the connection of two randomly
connected elements still satisfy the estimate.

We begin by multiplying (3.3) with uTM and adding the transpose.

∂

∂t
‖u‖2h = uTMut + uTt Mu

= uT

a(STx + Sx)u+ b(STy + Sy)u− 2
∑
edges

[
a
b

]
· nedgeQ

edgeu∗

 .
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3.2. DISCRETIZATION AND TIME-STABILITY

Using the identities

Sx + STx =
1√
2
Q1 −Q2; Sy + STy =

1√
2
Q1 −Q3

allows us to investigate what happens on each edge separately.

Edge 1: We consider only the terms containing Q1:

∂

∂t
‖u‖2h,1 =

1√
2

(
auTQ1u+ buTQ1u− 2auTQ1u∗ − 2buTQ1u∗

)
.

Applying an upwind flux, we have u∗ = u, since [a, b]T · n1 ≥ 0. So

∂

∂t
‖u‖2h,1 = − 1√

2

(
auTQ1u+ buTQ1u

)
≤ 0.

Edge 2: We consider only the terms containing Q2.

∂

∂t
‖u‖2h,2 = −auTQ2u+ 2auTQ2u∗.

Applying an upwind flux, we have u∗ = h, since [a, b]T · n2 ≤ 0. So

∂

∂t
‖u‖2h,2 = −auTQ2u+ 2auTQ2h ≤ 0,

since h = 0.

Edge 3: We consider only the terms containing Q3.

∂

∂t
‖u‖2h,3 = −buTQ3u+ 2buTQ3u∗.

Applying an upwind flux, we have u∗ = h, since [a, b]T · n3 ≤ 0. So

∂

∂t
‖u‖2h,3 = −buTQ2u+ 2buTQ1h ≤ 0,

since h = 0.

Summation over all three edges and integration in time yields ‖u‖2h ≤ ‖u0‖2h, and we
obtain that the reference element is time stable. Now we need to show that connecting
two arbitrary connected elements will still give a time stable scheme.

Let 1 and 2 be two elements that is connected by an edge. Suppose that [a, b]T · n ≥ 0
on the edge with respect to element 1 (otherwise, just swap the two elements). Then
[a, b] · n ≤ 0 on the edge with respect to element 2 automatically.
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3.2. DISCRETIZATION AND TIME-STABILITY

On the connecting edge with respect to element 1 we have

∂

∂t
‖u‖21,i =

(
c1au

TQiu+ c2bu
TQiu− 2c1au

TQiu∗ − 2c2bu
TQiu∗

)
,

where c1,2 are non-negative coefficients subject to the elements orientation. Since [a, b]T · n ≥ 0,
we have u∗ = u, and so

∂

∂t
‖u‖21,i =

(
c1au

TQiu+ c2bu
TQiu− 2c1au

TQiu− 2c2bu
TQiu

)
.

Let us now consider the connecting edge with respect to element 2. In order to avoid
confusion, let ũ denote the local solution on this element. Then we have

∂

∂t
‖ũ‖22,i = −

(
c1aũ

TQiũ+ c2bũ
TQiũ− 2c1aũ

TQiũ∗ − 2c2bũ
TQiũ∗

)
.

Here [a, b]T · n ≤ 0, so ũ∗ = u, the solution on element 1. Then we have

∂

∂t
‖ũ‖22,i = −

(
c1aũ

TQiũ+ c2bũ
TQiũ− 2c1aũ

TQiu− 2c2bũ
TQiu

)
.

So in the sum we get that

∂

∂t
‖u‖2i = −

(
c1au

TQiu+ c2bu
TQiu

)
−(

c1aũ
TQiũ+ c2bũ

TQiũ− 2c1aũ
TQiu− 2c2bũ

TQiu
)
,

or,
∂

∂t
‖u‖2i = −c1a(u− ũ)Qi(u− ũ)− c2b(u− ũ)Qi(u− ũ) ≤ 0.

Since this was an arbitrary connection between two element, we can connect all the
elements without gaining energy. That is,

∂

∂t
‖u‖2h ≤ 0.

Integrating in time yields the final estimate

‖u(·, t)‖h ≤ ‖u0(·)‖h,

which proves (3.4).

Existence of a solution is ensured by consistency of the method and the global energy
estimate.

To prove uniqueness we consider the difference between two solutions u and v of the
problem, w := u − v. Then w is a solution of the advection equation with initial
condition w(x, 0) = 0. The energy estimate suggests that ‖w(·, t)‖h ≤ ‖w0(·)‖h = 0, and
it follows that the solution is unique. �
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3.3 Numerical results

3.3.1 Convergence analysis

The optimal convergence rate for the convection-reaction problem using the DG method

was shown by Cockburn, Dong and Gúzman in [3]. They showed that the optimal

convergence rate for the problem under constant transport velocity were k + 1, while

using a k-th order polynomial basis. This result were later generalized in [4], to hold

true also for variable transport velocities. We will give the assumptions under which

this is valid, and then construct a test problem under which we can expect to reach the

optimal convergence rate.

Considering the convection-reaction equation

β · ∇u+ cu = f, in Ω; (3.5)

u = g, on ∂Γ− = {x ∈ ∂Ω: β · n(x) < 0}, (3.6)

where c is a bounded function, β is non-zero constant vector and f, g are smooth func-

tions. The triangulation of our domain Th consisting of simplexes D needs to satisfy

flow conditions with respect to β:

1. Each simplex D has a unique outflow face with respect to β.

2. Each interior outflow face is included in an inflow face with respect to β of another

simplex.

In addition, the triangulation needs to satisfy the assumption of shape regularity, i.e.

there exists a constant σ > 0 such that for each simplex D ∈ Th we have hD/ρD < σ,

where hD = diam D and ρD denotes the diameter of the biggest ball included in D.

Lemma 1 ([3]). If the triangulation Th satisfies the flow conditions, the projection P
given by

〈Pu− u, v〉D = 0, for all v ∈ P k−1(D);

〈Pu− u,w〉e+D = 0, for all w ∈ P k(e+
D),

where e+
D is the outflow face of D and P k(D) is the space of polynomial with at most

degree k on D, is well defined. Moreover, if the triangulation Th is shape-regular, then
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3.3. NUMERICAL RESULTS

on each simplex D ∈ Th we have

‖Pu− u‖L2(D) ≤ Chk+1|u|Hk+1(D),

where C only depends on k and the shape regularity constant σ.

An error estimate will follow from the following theorem.

Theorem 3.1 (L2-estimate [3]). If Th satisfies the flow conditions and the shape regu-
larity, then the error between the exact solution u of (3.5) and the approximate solution
uh given by the discontinuous Galerkin method is bounded as follows:

‖Pu− uh‖L2(Th) ≤ C‖c(u− Pu)‖L2(Th), (3.7)

where C depend on ‖c‖L∞(Ω) and the diameter of Ω. In particular, if c ≡ 0 then uh = Pu.

Proposition 3.3 (Error estimate in L2-norm). Under the same assumptions given in
Theorem 3.1, the following estimate must hold true:

‖u− uh‖L2(Th) ≤ Chk+1|u|Hk+1(Th)

Proof. The estimate follows by a direct application of the triangle inequality on the
estimate (3.7).

‖u− uh‖L2(Th) ≤ ‖u− Pu‖L2(Th) + ‖uh − Pu‖L2(Th)

≤ ‖u− Pu‖L2(Th) + C‖c(u− Pu)‖L2(Th).

Since c is a bounded function, ‖c(u− Pu)‖L2(Th) ≤M‖u− Pu‖L2(Th). Then

‖u− uh‖L2(Th) ≤ (CM + 1)‖u− Pu‖L2(Th)

≤ Chk+1|u|Hk+1(Th).

�

Remark. This is valid for solutions u belonging in the space H2 for linear polynomial
approximations. Even though we only require u ∈ L2, we will in the following subsection
solve a problem where the solution in fact is in H2 ⊂ L2 in order to obtain an estimate
like ‖u− uh‖L2 ≤ Ch2, where C depends on |u|H2.

3.3.2 Experimental results

We consider the test problem

ut +∇ · f(u) = 0, x ∈ [0, 1]× [0, 1] = Ω, t ∈ [0, 1],

u(x, 0) = sin(2πx) sin(2πy),

u(x, t) = sin(2π(x− at)) sin(2π(y − bt)), x ∈ Γ ⊂ ∂Ω,
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for f(u) = [au, bu]T and x = [x, y]T . We let a = 1, b = 2, and apply boundary conditions

on Γ = {(x, y) ∈ ∂Ω: [a, b]T · n < 0}. In this case we have Γ = {x = 0 ∪ y = 0}
as the inflow boundary. The problem has an analytical solution given by u(x, y, t) =

sin(2π(x− t)) sin(2π(y − 2t)), which we will use in order to verify the convergence rate.

We triangulate our spatial domain as shown in Figure 3.1. The computations are done

with 9, 17, 33, 65, 129 points along each boundary. We discretize time equidistantly,

{0,∆t, 2∆t, . . . , T −∆t, T}, where ∆t is defined using (2.2) with ν = 0.3.

Figure 3.1: A triangulation of the unit square with 5 grid points along each boundary.

We obtain the numerical results presented in Figure 3.2. The L2-error for two of the

simulations are plotted in Figure 3.3, and we observe no magnification near the boundary.

The convergence is presented in Table 3.1. We are able to reach the optimal conver-

gence rate in our simulation. That is, we did obtain quadratic convergence for a linear

polynomial basis. This is visualized in the logarithmically scaled plot in Figure 3.4

Diameter of elements L2-error L2-convergence√
2/8 0.0335 —√
2/16 0.0093 1.8536√
2/32 0.0025 1.8679√
2/64 0.0007 1.9181√
2/128 0.0002 1.9563

Table 3.1: Table showing the L2-error and convergence rate for the advection equation
with a = 1, b = 2 and CFL-constant ν = 0.3.
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(a) Plot of numerical solution with

diam Dk =
√
2
8 .

(b) Plot of numerical solution with

diam Dk =
√
2

16 .

(c) Plot of numerical solution with

diam Dk =
√
2

32 .

(d) Plot of numerical solution with

diam Dk =
√
2

64 .

(e) Plot of numerical solution with diam Dk =
√
2

128 .

Figure 3.2: Plot of numerical results for the test problem with different diameters of the
elements.
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(a) Plot of L2-error in space for

diam Dk =
√
2

32 .

(b) Plot of L2-error in space for

diam Dk =
√
2

128 .

Figure 3.3: The L2-error of our numerical solution plotted in space for the simulations
(c) and (e) in Figure 3.2.

Figure 3.4: Logarithmically scaled plot of diameter h of the elements and calculated
L2-error.

We could also consider some unstructured domain, as seen in Figure 3.5. The solution is

presented in Figure 3.6, and it matches with the solution we know from the structured

triangulation.
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Figure 3.5: An unstructured triangulation of a computational domain.

(a) Plot of the numerical solution over
the domain presented in Figure 3.5.

(b) Plot of the L2-error in space.

(c) Plot of the numerical solution
where the grid from (a) is refined.

(d) Plot of the L2-error in space.

Figure 3.6: Plot of numerical results and L2-errors on the unstructured grids.
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Chapter 4

Maxwell’s equations

4.1 Overview

Maxwell discovered that the basic principles of electromagnetism can be expressed in

terms of four equations, which on differential form reads

∂B
∂t

+∇× E = 0 (Faraday’s law of induction);

∂D
∂t
−∇×H = −J (Ampere’s law);

∇ ·D = ρ (Gauss’ electric law);

∇ ·B = 0 (Gauss’ magnetic law).

The fields E and D denotes the electric field and electric displacement, respectively,

while H and B denote the magnetic field and magnetic flux density. Likewise, J and ρ

denote the current density and charge density of the medium.

Generally, these equations are not yet complete as there are more unknown than equa-

tions. We want to use the constitutive relations,

D = D(E,H); B = B(E,H),

to couple them. If we ignore ferro-electric and ferro-magnetic media and if the fields are

relatively small, we can model the dependencies by linear equations of the form

D = εE and B = µH,
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where ε denotes the dielectric tensor and µ denotes the permeability tensor [7]. We will

consider a homogeneous medium, where these tensors can be represented by a constant

value. Using this coupling will result in a complete set of equations:

µ
∂H
∂t

+∇× E = 0;

ε
∂E
∂t
−∇×H = −J ;

∇ · (εE) = ρ;

∇ · (µH) = 0.

Remark. The continuity equation is implied by Faraday’s law of induction and Ampere’s
law:

∂ρ

∂t
= ∇ · ∂D

∂t
= ∇ · (∇×H−J ) = −∇ ·J .

For simplicity, we will take our medium to be vacuum. Then the current density, J ,

and charge density, ρ, of the media both equals to zero. Both ε and µ are considered

to be non-zero constants. We then obtain the set of equations which we will consider in

this thesis:

µ
∂H
∂t

+∇× E = 0, ε
∂E
∂t
−∇×H = 0, (4.1)

∇ · (εE) = 0, ∇ · (µH) = 0. (4.2)

4.2 Two-dimensional equations

Maxwell’s equations stated in its original form is given in 3 space-dimensions. We want

to solve the two-dimensional problem on what is known as the transverse electric (TE)

mode. The formulation is obtained by assuming that the electric field propagates solely

in the xy-plane, E = [Ex, Ey, 0]T , and we have no variation in the z-direction. Then the

first equation in (4.1) becomes

µ
∂H
∂t

= −∇× E =

∣∣∣∣∣∣∣∣
e1 e2 e3
∂
∂x

∂
∂y 0

Ex Ey 0

∣∣∣∣∣∣∣∣ = 0e1 + 0e2 −
(
∂Ey

∂x
− ∂Ex

∂y

)
e3,
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while the second equation in (4.1) becomes

ε
∂E
∂t

= ∇×H =

∣∣∣∣∣∣∣∣
e1 e2 e3
∂
∂x

∂
∂y 0

Hx Hy Hz

∣∣∣∣∣∣∣∣ =
∂Hz

∂y
e1 −

∂Hz

∂x
e2 +

(
∂Hy

∂x
− ∂Hx

∂y

)
e3.

Using the fact that Ez ≡ 0, we obtain that ∂Hy

∂x −
∂Hx

∂y = 0, and we are left with the

three equations

ε
∂Ex

∂t
=
∂Hz

∂y
, ε

∂Ey

∂t
= −∂H

z

∂x
, µ

∂Hz

∂t
=
∂Ex

∂y
− ∂Ey

∂x
,

which is Maxwell’s equations on TE mode. This can be written as

C
∂u

∂t
+∇ · (F (u)) = 0, (4.3)

where F (u) = [Au, Bu]T , for

A =


0 0 0

0 0 1

0 1 0

 , B =


0 0 −1

0 0 0

−1 0 0

 , C =


ε 0 0

0 ε 0

0 0 µ

 , u =


Ex

Ey

Hz

 .
Consider now the divergence of (4.1),

∇ ·
(
µ
∂H
∂t

+∇ · E
)

=
∂

∂t
∇ · (µH) = 0,

∇ ·
(
ε
∂E
∂t
−∇×H

)
=

∂

∂t
∇ · (εE) = 0.

Integration in time leads to

(∇ · (µH)) (t) = (∇ · (µH)) (0), (∇ · (εE)) (t) = (∇ · (εE)) (0).

This implies that if (4.2) is satisfied initially, then it is satisfied for all t ≥ t0 [9]. That

is, any solution of (4.3) with initial data that satisfies (4.2) is a solution to the original

system.

4.3 Well-posedness for the continuous problem

Consider the problem

Kut +∇ · F (u) = g(x, t), x ∈ Ω ⊂ R2, t ∈ [0, T ];

u(x, 0) = u0(x);

u(x, t) = h(x, t), x ∈ Γ ⊆ ∂Ω,

(4.4)
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for F (u) = [Au, Bu]T , A,B symmetric matrices, K constant diagonal positive definite

matrix and Ω = [0, 1]× [0, 1].

Proposition 4.1. The problem (4.4) is well-posed.

Proof. We show that the problem is well-posed with respect to Definition 3.1. Suppose
that g(x, t) = 0, h(x, t) = 0, we want to show that the estimate (3.2) holds true by
using energy method.

Following the same approach as in the proof of Proposition 3.1, we multiply the expres-
sion by 2uT and integrate in time,

∂

∂t
‖u‖2 = 2

∫
Ω
uTKut dx = −2

∫
Ω
uT∇ · F (u) dx.

Using the product rule for divergence and Gauss’ theorem on half the expression on the
right-hand side gives

∂

∂t
‖u‖2 = −

∫
Ω
uT∇ · F (u) dx−

(∫
∂Ω
uTF (u) · n dS −

∫
Ω
∇uT · F (u) dx

)
.

This simplifies to

∂

∂t
‖u‖2 = −

∫
∂Ω
uTF (u) · n dS = −

4∑
i=1

∫
γi

uTF (u) · ni dS,

where γi denotes the i-th side of the unit square.

Since A,B are symmetric, they are diagonalizable by orthogonal matrices and so we can
write A = PAΛAP

T
A and B = PBΛBP

T
B , where ΛA,B are diagonal matrices containing

the eigenvalues of A and B, respectively. So we get

∂

∂t
‖u‖2 =

∫
x=0

uTPAΛAP
T
Au dS −

∫
x=1

uTPAΛAP
T
Au dS+∫

y=0
uTPBΛBP

T
Bu dS −

∫
y=1

uTPBΛBP
T
Bu dS

Splitting the matrices, ΛA,B = Λ+
A,B+Λ−A,B, as the sum of non-negative and non-positive

entries, respectively, yields

∂

∂t
‖u‖2 ≤

∫
x=0

uTPAΛ+
AP

T
Au dS −

∫
x=1

uTPAΛ−AP
T
Au dS +∫

y=0
uTPBΛ+

BP
T
Bu dS −

∫
y=1

uTPBΛ−BP
T
Bu dS
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If we apply boundary conditions to these terms, we get

∂

∂t
‖u‖2 ≤ 0.

Integration in time gives the final estimate,

‖u(·, t)‖ ≤ ‖u0(·)‖,

and we have shown the estimate (3.2).

Uniqueness of the solution is obtained by letting u,v be two solutions of (4.4), and
applying energy method to w := u− v. We then obtain an estimate

‖w(·, t)‖ ≤ ‖w0(·)‖ = 0,

which again implies that u = v. This concludes the proof. �

4.4 Discretization and time-stability

In order to obtain the semi-discrete formulation, we take a similar approach as in Sec-

tion 3.2. We let the domain Ω be approximated by K non-overlapping, space-filling

elements, Dk. Then we take the local inner product with a test function and apply the

divergence theorem to get

〈Kut +∇ · F (u), v〉Dk =

∫
Dk

Kutv − F (u) · ∇v dx+

∫
∂Dk

F ∗(u)v · n dS = 0.

Using a modal expansion, we can write u(x, t) =
∑N

i=1 ûi(t)φi(x) and v(x) =
∑N

j=1 φj(x).

So

∫
Dk

 N∑
i=1

N∑
j=1

(
K
∂ûi
∂t

φiφj −Aûiφi
∂φj
∂x
−Bûiφi

∂φj
∂y

) dx =

−
∫
∂Dk

[
A

B

]
û∗iφiφj · n dS.

Recalling the discrete operators defined in Section 3.2 gives

(K ⊗M)
∂û

∂t
−
(
A⊗ STx

)
û−

(
B ⊗ STy

)
û = −

∑
edges

[
A⊗Qedge

B ⊗Qedge

]
· nedgeû

∗,

29
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or equivalently,

∂û

∂t
= (K ⊗M)−1

(A⊗ STx ) û+
(
B ⊗ STy

)
û−

∑
edges

([
A

B

]
· nedge

)
⊗Qedgeû∗

 .
(4.5)

We will now show that the semi-discrete approximation is time-stable with respect to

Definition 3.2.

Proposition 4.2. The semi-discrete formulation (4.5), with initial-boundary conditions
as described in (4.4), is time stable.

Proof. We follow the same procedure as in the proof for Proposition 3.2. With no loss of
generality, we set g = 0 and h = 0 in (4.4). We show first that the reference element is
time stable, before we show stability of an arbitrary connection between two elements.

We begin by multiplying with uT (K ⊗M), and adding the transpose.

∂

∂t
‖u‖2h = u(K ⊗M)ut + ut(K ⊗M)u

= uT

[
A⊗ (STx + Sx)u+B ⊗ (STy + Sy)u− 2

3∑
i=1

[
A
B

]
· ni ⊗Qiû∗

]
.

We use the identities

Sx + STx =
1√
2
Q1 −Q2; Sy + STy =

1√
2
Q1 −Q3,

and investigate the stability on each edge of the element separately.

Edge 1: We consider only terms containing Q1.

∂

∂t
‖u‖2h,1 =

uT√
2

(
A⊗Q1u+B ⊗Q1u− 2A⊗Q1u∗ − 2B ⊗Q1u∗

)
=
uT√

2

[
(A+B)⊗Q1u− 2 (A+B)⊗Q1u∗

]
.

We diagonalize, A + B = PA+BΛA+BP
T
A+B, and write ΛA+B as the sum of its non-

negative and non-positive entries, ΛA+B = Λ+
A+B + Λ−A+B. The inflow is given by the

negative eigenvalues of A+B, or Λ−A+B. For inflow we have u∗ = h, so we get

∂

∂t
‖u‖2h,1,inflow =

uT√
2

[
(PA+BΛ−A+BP

T
A+B)⊗Q1u− 2(PA+BΛ−A+BP

T
A+B)⊗Q1h

]
=
uT√

2
(PA+BΛ−A+BP

T
A+B)⊗Q1u ≤ 0,
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4.4. DISCRETIZATION AND TIME-STABILITY

since PA+BΛ−A+BP
T
A+B ⊗Q1 is a negative semi-definite matrix.

Considering now the outflow given by the positive eigenvalues, Λ+
A+B, we have u∗ = u.

Then

∂

∂t
‖u‖2h,1,outflow =

uT√
2

[
(PA+BΛ+

A+BP
T
A+B)⊗Q1u− 2(PA+BΛ+

A+BP
T
A+B)⊗Q1u

]
= −u

T

√
2

(PA+BΛ+
A+BP

T
A+B)⊗Q1u ≤ 0,

since PA+BΛ+
A+BP

T
A+B)⊗Q1 is a positive semi-definite matrix.

Combining the inflowing and outflowing terms gives

∂

∂t
‖u‖2h,1 ≤ 0,

and so the exchange over edge 1 is stable.

Edge 2: We now consider only the terms containing Q2:

∂

∂t
‖u‖2h,2 = −uTA⊗Q2u+ 2uTA⊗Q2u∗.

We diagonalize as for edge 1, A = PAΛAP
T
A = PA(Λ+

A + Λ−A)P TA . The inflowing terms
are given by Λ+, and we set boundary condition u∗ = h. Then

∂

∂t
‖u‖2h,2,inflow = −uT (PAΛ+

AP
T
A )⊗Q2u+ 2uT (PAΛ+

AP
T
A )⊗Q2h ≤ 0,

since h = 0 and PAΛ+
AP

T
A ⊗Q2 is a positive semi-definite matrix.

Considering the outflowing terms, given by negative eigenvalues and u∗ = u, we get

∂

∂t
‖u‖2h,2,outflow = −uT (PAΛ−AP

T
A )⊗Q2u+ 2uT (PAΛ−AP

T
A )⊗Q2u

= uT (PAΛ−AP
T
A )⊗Q2u ≤ 0,

since (PAΛ−AP
T
A )⊗Q2 is a negative semi-definite matrix.

Combining the inflowing and outflowing terms gives

∂

∂t
‖u‖2h,2 ≤ 0,

and the exchange over edge 2 is stable.

Edge 3: We now consider only terms containing Q3.

∂

∂t
‖u‖2h,3 = −uTB ⊗Q3u+ 2uTB ⊗Q3u∗.
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4.4. DISCRETIZATION AND TIME-STABILITY

We diagonalize, B = PBΛBP
T
B = PB(Λ+

B+Λ−B)P TB . Considering first the inflowing terms
given by Λ+

B, with u∗ = h, gives

∂

∂t
‖u‖2h,3,inflow = −uTPBΛ+

BP
T
B ⊗Q3u+ 2uTPBΛ+

BP
T
B ⊗Q3h ≤ 0,

since PBΛ+
BP

T
B ⊗Q3 is a positive semi-definite matrix.

Now looking at the outflowing terms where u∗ = u, we get

∂

∂t
‖u‖2h,3,outflow = −uTPBΛ−BP

T
B ⊗Q3u+ 2uTPBΛ−BP

T
B ⊗Q3u

= uTPBΛ−BP
T
B ⊗Q3u ≤ 0,

since PBΛ−BP
T
B ⊗Q3 is a negative semi-definite matrix.

Now we obtain that
∂

∂t
‖u‖2h,3 ≤ 0,

so the sum over all edges gives
∂

∂t
‖u‖2h ≤ 0.

This proves time-stability for the reference element.

Consider now two elements, 1 and 2, that is connected by an edge. Let the solution on 1
be denoted by u, and the solution on 2 be denoted by ũ. Let Λ+ represent the outflowing
terms, and Λ− represent the inflowing terms on edge i with respect to element 1. If we
first consider what happens for element 1, we have

∂

∂t
‖u‖2h,1,i = −cuT (PΛ+P T )⊗Qiu+ cuT (PΛ−P T )⊗Qiu− 2cuT (PΛ−P T )⊗Qiũ,

where c is a positive constant depending on the normal.

Similarly, on element 2 we have

∂

∂t
‖u‖2h,2,i = cũT (PΛ−P T )⊗Qiũ− cũT (PΛ+P T )⊗Qiũ+ 2cũT (PΛ+P T )⊗Qiu.

So in the sum we get

∂

∂t
‖u‖2h,i = −cuT (PΛ+P T )⊗Qiu+ cuT (PΛ−P T )⊗Qiu− 2cuT (PΛ−P T )⊗Qiũ

+ cũT (PΛ−P T )⊗Qiũ− cũT (PΛ+P T )⊗Qiũ+ 2cũT (PΛ+P T )⊗Qiu,

which simplifies to

∂

∂t
‖u‖2h,i = −c(u− ũ)T (PΛ+P T )(u− ũ) + c(u− ũ)T (PΛ−P T )(u− ũ) ≤ 0.
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4.5. THE PERFECT ELECTRIC CONDUCTOR

Then we have an energy-stable connection between the two edges.

Since we now looked at an arbitrary connection between two elements, we can connect
all elements in a stable way. Then we get

∂

∂t
‖u‖2h ≤ 0.

Integration in time yields the final estimate,

‖u(·, t)‖h ≤ ‖u0(·)‖h.

Uniqueness of this solution follows as in the continuous case, and we have obtained the
desired result. �

4.5 The perfect electric conductor

Up until now we have discussed how to determine the value of electric and magnetic

fields in vacuum with no interference. In this section will we introduce the perfect

electric conductor (PEC) boundary conditions to model an electric conduction in our

computational domain. For simplicity, we will only consider a square conductor. The

assumptions given to establish the boundary conditions are given in [2], and among them

are the following:

1. There are no charges or electric fields at any point within the conductor.

2. The external electric field is decomposed into two components: a tangential (ET )

and a normal (EN ) one. E = ET + EN .

3. The normal component of the magnetic field is zero, HN = 0.

4. The tangential component of the electric field is zero, ET = 0.

We consider a domain in vacuum with a square conductor placed in the center. Our

domain is then triangulated around the conductor as shown in Figure 4.1. On the

boundary of the conductor we need the tangential component of the electric fields to be

zero. Thus we get boundary conditions as presented in Table 4.1.
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4.5. THE PERFECT ELECTRIC CONDUCTOR

(a) Domain with a square diffractor in
the center, gray area.

(b) Computational domain, (a), trian-
gulated.

Figure 4.1: Domain containing the PEC.

Square diffractor Boundary condition

Top boundary Ex = 0
Bottom boundary Ex = 0

Left boundary Ey = 0
Right boundary Ey = 0

Table 4.1: Table showing the boundary conditions needed for the square diffractor.

Proposition 4.3. The problem (4.4) with the additional conditions for the perfect elec-
tric conductor is well-posed.

Proof. Making the same approach as we did while not containing the PEC, we start by
showing the energy estimate. We multiply with 2uT , use the product rule for divergence
and Gauss’ theorem in order to obtain

∂

∂t
‖u‖2 = −

∫
∂Ω
uTF (u) · n dS,

where the boundary ∂Ω now consists of both the conductor and the outer boundary. We
have already proven that the stability estimate holds true on the main boundary, so we
only consider the new conditions for the conductor here.

We consider first the top and bottom side of the conductor. Then we have

∂

∂t
‖u‖2top,bottom = −

∫
y= 1

2

uTBu dS +

∫
y=− 1

2

uTBu dS.

The electromagnetic fields are decomposed into tangential and normal components to
the conductor, such that u = utan +unor. Following the assumptions, we let the normal
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4.5. THE PERFECT ELECTRIC CONDUCTOR

component of the magnetic field be zero, and the tangential component of the electric
fields be zero. Then for the tangential components we get

∂

∂t
‖u‖2top,bottom = −

∫
y= 1

2

[
0 0 Hz

]  0 0 −1
0 0 0
−1 0 0

 0
0
Hz

 dS
+

∫
y=− 1

2

[
0 0 Hz

]  0 0 −1
0 0 0
−1 0 0

 0
0
Hz

 dS = 0,

and the normal components yields

∂

∂t
‖u‖2top,bottom = −

∫
y= 1

2

[
Ex Ey 0

]  0 0 −1
0 0 0
−1 0 0

ExEy
0

 dS
+

∫
y=− 1

2

[
Ex Ey 0

]  0 0 −1
0 0 0
−1 0 0

ExEy
0

 dS = 0.

Combining these results gives the estimate

∂

∂t
‖u‖2top,bottom = 0.

Similarly, considering the left and right side of the conductor, we get

∂

∂t
‖u‖2left,right = −

∫
x= 1

2

uTAu dS +

∫
x=− 1

2

uTAu dS.

We decompose the fields into normal and tangential components, u = utan + unor, and
use the assumptions for the PEC. Considering first the tangential components, we get

∂

∂t
‖u‖2left,right = −

∫
x= 1

2

[
0 0 Hz

] 0 0 0
0 0 1
0 1 0

 0
0
Hz

 dS
+

∫
x=− 1

2

[
0 0 Hz

] 0 0 0
0 0 1
0 1 0

 0
0
Hz

 dS = 0.
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Similarly, the normal components gives

∂

∂t
‖u‖2left,right = −

∫
x= 1

2

[
Ex Ey 0

] 0 0 0
0 0 1
0 1 0

ExEy
0

 dS
+

∫
x=− 1

2

[
Ex Ey 0

] 0 0 0
0 0 1
0 1 0

ExEy
0

 dS = 0.

Thus we get the estimate
∂

∂t
‖u‖2left,right = 0,

or combined with the top and bottom side,

∂

∂t
‖u‖2condutctor = 0.

Stability on the outer boundary follows as we showed in Proposition 4.1, and we get the
energy estimate

∂

∂t
‖u‖2L2(Ω) = 0.

Integrating in time yields the final estimate

‖u(·, t)‖L2(Ω) ≤ ‖u0(·)‖L2(Ω).

Existence and uniqueness of the solution follows by the same argument as presented in
the proof of Proposition 3.1. �

Remark. The semi-discrete formulation obtained in the previous section, with the new
set of boundary conditions, is time stable by a similar argument.

4.6 Numerical results

This section is split in two parts. Firstly we will solve a simple test problem in a domain

without interfaces. Then we show that optimal convergence rate is achieved. Secondly

we solve a problem over a domain containing a perfect electric conductor.
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4.6.1 Experimental results without diffractions

We consider the normalized problem

∂Ex

∂t
=
∂Hz

∂y
,

∂Ey

∂t
= −∂H

z

∂x
,

∂Hz

∂t
=
∂Ex

∂y
− ∂Ey

∂x
,

on the unit square Ω = [0, 1]× [0, 1], for t ∈ [0, 1]. We use the exact solution

Ex(x, y, t) =
1√
2

sin (πx) cos (πy) sin
(√

2πt
)
,

Ey(x, y, t) = − 1√
2

cos (πx) sin (πy) sin
(√

2πt
)
,

Hz(x, y, t) = sin (πx) sin (πy) cos
(√

2πt
)
,

to specify proper initial- and boundary conditions. As for the advection equation, we

triangulate space using 9, 17, 33, 65, 129 grid points along each boundary. Time is discret-

ized equidistantly, {0,∆t, 2∆t, . . . , T −∆t, T}, where ∆t is defined to satisfy a modified

version of (2.2). We set the bound

∆t ≤ ν
ρ(A)
∆x + ρ(B)

∆y

,

where ρ(M) denotes the spectral radius of M , to mimic what we did before. Once again,

we use ν = 0.3 in the computations. The results are presented in Figure 4.2.
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(a) Plot of numerical solution with

diam Dk =
√
2
8 .

(b) Plot of numerical solution with

diam Dk =
√
2

16 .

(c) Plot of numerical solution with

diam Dk =
√
2

32 .

(d) Plot of numerical solution with

diam Dk =
√
2

64 .

(e) Plot of numerical solution with diam Dk =
√
2

128 .

Figure 4.2: Plot of numerical results for the test problem of Maxwell’s equations with
different diameters of the elements.
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(a) Plot of L2-error in space for

diam Dk =
√
2

32 .

(b) Plot of L2-error in space for

diam Dk =
√
2

128 .

Figure 4.3: The L2-error of our numerical solution plotted in space for the simulations
(c) and (e) in Figure 3.2.

Diameter of elements L2-error L2-convergence√
2/8 9.3833e-3 —√
2/16 2.4865e-3 1.9160√
2/32 6.4199e-4 1.9535√
2/64 1.6338e-4 1.9743√
2/128 4.1218e-5 1.9868

Table 4.2: Table showing the L2-error and convergence rate for Maxwell’s equations with
CFL-constant ν = 0.3.

Also, one could consider the unstructured grid as we did in the previous chapter. Our

numerical solution on this grid is presented in Figure 4.4. This approximation agrees

with the one we had on the square domain.
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Figure 4.4: Numerical solution and L2-error of the test problem on an unstructured grid.

4.6.2 Experimental results with diffractions

We will now consider a problem on the domain with a perfect electric conductor. Let

the problem be given by

∂u

∂t
+∇ · F (u) = 0, x ∈ Ω× [0, T ]

u(x, 0) = 0, x ∈ Ω,

where Ω = {[−1, 1]×[−1, 1]}\{[−0.5, 0.5]×[−0.5, 0.5]}, T = 3, and F is given as in (4.3).

We apply the same outer boundary conditions as in the case without a conductor, and

on the conductor we apply conditions as given in Table 4.1. The results are presented

in Figure 4.5. We can here observe how the electromagnetic waves are influenced by the

conductor.
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(a) Plot of numerical solution with

diam Dk =
√
2

32

(b) Plot of numerical solution with

diam Dk =
√
2

64

Figure 4.5: Solution of Maxwell’s equations on a domain containing the perfect electric
conductor.
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Chapter 5

Conclusion

We have in this thesis we presented theory on the DG method and made an example on

the advection equation. Here we showed well-posedness of the problem, and obtained

a time stable semi-discrete scheme. Optimal convergence rate was achieved on a test

problem. Then we proceeded to complete the main goal of the thesis in Chapter 4,

namely solving Maxwell’s equations in vacuum by applying this method.

In our discussion of Maxwell’s equations, we were able to obtain a two-dimensional

formulation. This was successfully discretized and we obtained a time stable semi-

discrete formulation. We applied the DG method on a test problem, and were able to

verify the optimal rate of convergence using the structured grid. We also looked at an

unstructured grid on a more complex domain. The analytical solution is approximated

even on a unstructured grids of complex domains without making any changes to the

code.

Lastly, we introduced the perfect electric conductor boundary conditions. These were

used to solve a problem where the waves interacts with a conductor. For simplicity, we

only considered a square conductor, but the underlying assumptions will also lead to

stable boundary conditions if we were to consider other shapes on the conductor. By

running a simulation, we saw how the electromagnetic waves reflects off and is conducted

around the conductor.

A natural proceeding of this thesis could be to not only consider Maxwell’s equations in
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vacuum, but go back and study how this problem is solved in some material. We could

introduce more complicated shapes on the conductor, where the boundary conditions

are not as easily implemented. Lastly, it would be interesting to look closer on how to

handle more complex geometries by using curvilinear elements. Moreover, the triangu-

lations we used was in accordance to Definition 2.2, but one could consider more general

subdivisions into simplexes.
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