
Model selection in time series by

Deep Learning

Master’s thesis in Actuarial Science

Benedikte Evensen

Supervisor

Hans A. Karlsen

Co-supervisor

Sondre Hølleland

Department of Mathematics

University of Bergen

June 2020

Abstract

In this thesis, we will explore the use of deep learning techniques for model selection in time series.

We compare the results from this with more traditional approaches for model selection, namely

the Akaike and Bayesian information criterion. Specifically, we simulate data from AR(p), MA(q)

and, ARMA(p, q) time series of three different lengths. Neural network models, such as fully

connected, convolutional (CNN) and, Long Short-Term Memory (LSTM) models, are trained on

this data to classify the true order of each sample. The accuracy of the Akaike and Bayesian

information criterion and the accuracies of the neural network models in classifying the correct

order are then compared. We found that deep learning models outperform or perform as well as

the information criterion method in selecting the true order for each dataset.

Acknowledgements

I want to thank my supervisors Hans A. Karlsen and Sondre Hølleland, for the idea and guidance

on this thesis. I would also like to thank my fellow students, friends, and family, for their support.

Contents

1 Introduction 1

2 Time series 3

2.1 Time series models . 3

2.2 Methods for model selection . 5

3 Deep learning 7

3.1 Fully connected neural networks . 7

3.1.1 Structure . 7

3.1.2 Model fitting . 11

3.1.3 Some important terms and methods . 18

3.2 Convolutional neural networks . 24

3.3 Recurrent neural networks . 29

3.3.1 Long Short-Term Memory . 36

4 Simulating data 41

5 Model training and evaluation of results 45

5.1 Software . 45

5.2 Model training . 45

5.3 Results . 47

5.3.1 Time series of length 30 . 47

5.3.2 Time series of length 100 . 48

5.3.3 Time series of length 1000 . 49

6 Conclusion 51

A Models and results 53

A.1 Models . 53

v

CONTENTS vi

A.2 Tables . 62

A.3 Distribution of the order selections . 67

B Technical details 85

B.1 Tensorflow and Keras . 85

B.2 Machines . 85

Bibliography 85

Chapter 1

Introduction

The field of deep learning has developed rapidly in the past decade due to many innovations and

increasing computing power. Deep learning is usually used as a general term for artificial neural

networks with multiple layers. The early development of what we now call neural networks was

originally inspired by the structure of the brain and how humans learn. The human brain is very

complicated and still not fully understood, but simply put, it consists of a network of neurons

that are connected by synapses. The synapses let neurons pass signals to each other. In artificial

neural networks, the analogue for neurons and synapses are nodes that are connected through a

network of weights. Despite the similarities between a human brain and a neural network, it has

become evident that the similarities are superficial and neural networks are much simpler and

do not perform tasks the way a human brain does. Still, neural networks have been capable of

solving complex problems, like classifying images with high accuracy (Krizhevsky et al., 2012).

Neural networks have also been used on time series data, especially in forecasting, i.e., predict-

ing future values. Siami-Namini et al. (2018) found that a type of neural network called Long

Short-Term Memory (LSTM), was superior to the Autoregressive Integrated Moving Average

(ARIMA) model in predicting future values.

In time series analysis, there already exist several methods for model selection for ARMA time

series, like the Akaike and Bayesian information criteria. There have also been some attempts of

model order selection in time series using neural networks, with varying results. Chenoweth et al.

(2000) trained a neural network to identify the order of ARMA processes given their extended

sample autocorrelation function (ESACF) table (Tsay and Tiao, 1984). The authors found that

the neural network identified the correct order for 49.38% of the samples when the length of the

time series was 3000 and 20.38% for length 100. However, the datasets were small, with only

800 samples in total for each time series length.

Al-Qawasmi et al. (2010) used another approach. The authors trained a neural network on

1

CHAPTER 1. INTRODUCTION 2

a matrix constructed from the Minimum Eginevalue (MEV) criterion (Liang et al., 1993) to

determine the ARMA model order. The length of each time series was 1500, and the results

showed significant improvement in accuracy compared to using the MEV method alone.

The approaches in (Tsay and Tiao, 1984) and (Liang et al., 1993) use statistical properties

or features of time series as inputs. Our approach is to use unprocessed time series data directly

as input to train neural network models.

From Chapter 2 and 3, it will be apparent that deep learning methods and information

criterion methods use a different approach to solve the order selection problem. When we use

AIC or BIC to select order, we are selecting the orders that minimizes the one-step prediction

error of the time series. This goal is not necessarily achieved by using the true order of the

model. The predicted error is composed of a bias term and a variance term. The bias term is

minimized at the order of the model, while the variance term increases with increased order.

This is a classic trade-off between bias and variance. In the neural network method, this is not

a concern. The neural network approach maximizes the probability of choosing the true order

given a sample of time series data. That is, we simply seek to find a model that can correctly

identify the true order. Thus, this thesis’s objective is not necessarily to show that deep learning

methods are better at order selection than AIC or BIC. Still, a comparison of these methods

serves as a means to tell if a method that is not based on estimating the parameters in time

series models can work.

The outline of this thesis is as follows. In Chapter 2, we briefly define the time series models

used in this thesis and the two model selection methods AIC and BIC. We then introduce deep

learning methods like fully connected, convolutional, and recurrent neural networks in chapter

3. In Chapter 4, we give a summary of how the datasets used in this thesis are simulated, and

how we select orders using AIC and BIC scores. In Chapter 5, we discuss how the models are

trained and the results. In Chapter 6, we summarize what we have learned and make some

concluding remarks. In Appendix A, we present the models, tables, and plots of our results, and

in Appendix B, we go more into detail about the technical details for model training.

Chapter 2

Time series

This chapter is based on Brockwell and Davis (2016). A time series {Xt} is a stochastic process

in discrete time. We observe time series data in many different areas, like finance, macroeconomy,

climate data, and earthquake data. Statistical modelling of time series data typically consists

of two steps. In the first step, different methods are used to transform the data into what

could be recognized as a realization of a stationary time series. Then, we fit a time series

model to the transformed data. This model might be an ARMA(p, q) model, which describes

a stationary stochastic process. The hyperparameters (p, q), the order of the model, has to be

chosen appropriately. This is a model selection problem.

Stationarity

Definition 2.1. A time series {Xt, t = 0,±1, . . .} is said to be stationary if the mean E(Xt) =

µX(t) is independent of t, and the covariance Cov(Xt+h, Xt) = γX(t + h, t) is independent of t

for any integer h.

This means that for a time series to be stationary {Xt} has to have the same second-order

properties as {Xt+h} for any h.

2.1. Time series models

White noise

Definition 2.2. A stationary time series {Zt} of uncorrelated variables with zero mean is called

white noise. We denote white noise as {Zt} ∼ WN
(
0, σ2

)
. This means that γZ(h) = δ0,h σ

2,

where δ is the Kronecker-delta symbol.

3

CHAPTER 2. TIME SERIES 4

Autoregressive moving-average (ARMA) model

Definition 2.3. The time series {Xt} is an ARMA process of order (p, q) if it is stationary and

Xt − φ1Xt−1 − · · · − φpXt−p = Zt + θ1Zt−1 + · · ·+ θqZt−q for t ∈ Z, (2.1)

where {Zt} ∼ WN
(
0, σ2

)
. The polynomials φ(z) = 1 − φ1z − · · · − φpzp and θ(z) = 1 + θ1z +

· · ·+ θqz
q are the autoregressive and the moving-average polynomial, respectively.

If {Xt} is an ARMA(p, q) process, then φ(z) and θ(z) has no roots on the unit circle. If

the white noise process {Zt} and the polynomials φ(z), θ(z) are given, then (2.1) defines an

ARMA(p, q) model where {Xt} is a possible solution that is required to be stationary. The

model is causal if φ(z) has all roots strictly outside the unit circle. Then, Xt can be expressed

in terms of past and present values of {Zt}. Invertibility is defined similarly, but with the roots

of θ(z) strictly outside the unit circle. If the model is invertible, Zt can be expressed in terms of

past and present values of {Xt}.

Note that if {Xt} is an ARMA process the polynomials φ(z) and θ(z) are not unique, but

the order (p, q) and the spectral density are unique.

Autoregressive (AR) model

Definition 2.4. The time series {Xt} is a AR process of order p if

Xt = φ1Xt−1 + · · ·+ φpXt−p + Zt for t ∈ Z, (2.2)

where {Zt} ∼WN
(
0, σ2

)
and φp 6= 0.

We see that this model is a special case of ARMA(p, q) with q = 0. The conditions for

stationarity and causality for AR(p) are the same as that for ARMA(p, q), and from equation

(2.2), we observe that AR(p) is always invertible by definition.

Moving-average (MA) model

Definition 2.5. The time series {Xt} is a MA process of order q if

Xt = Zt + θ1Zt−1 + · · ·+ θqZt−q for t ∈ Z, (2.3)

where {Zt} ∼WN
(
0, σ2

)
and θq 6= 0.

Again, we see that this model is a special case of ARMA(p, q) with p = 0, and from equation

(2.3) we observe that MA(q) by definition always is causal and stationary. It is also invertible if

the condition for invertibility that we described for ARMA(p, q) is fulfilled.

CHAPTER 2. TIME SERIES 5

2.2. Methods for model selection

In time series analysis, we often want to find a model for our data. There are several methods

to fit a model, and one of these methods is maximum likelihood estimation.

If we have a time series {Xt} with {Zt} ∼ N
(
0, σ2

)
and covariance matrix Γn = E(XnX

T
n)

which we assume to be non-singular, where Xn = [X1, . . . , Xn]T , then the likelihood function of

Xn is given by

L(Γn) = (2π)−n/2(det Γn)−1/2 exp
(
− 1

2
XT

n Γ−1n Xn

)
. (2.4)

If {Xt} is a ARMA(p,q) process, then we have a finite set of parameters, φ1, . . . , φp, θ1, . . . , θq, σ2,

and Γn can be expressed in terms of these. The likelihood function is a measure of how well the

model fits the data given values for the parameters. To find the maximum likelihood estimators

(MLE), i.e., the values that maximize L, we compute the partial derivatives of logL with respect

to the parameters that we want to estimate to find the global maximum of L. In a practical

setting, this is done by numerical methods.

For a given order (p, q) we want to find the parameters, φ̂, θ̂ and σ̂2, that maximizes the

likelihood function, but in practice, we do not know the true order of the process the data is

generated from. If we were to use the likelihood function evaluated at the values for the maximum

likelihood estimators as a means to select the appropriate order, we would overfit the data. This

is because the likelihood function increases with the number of parameters. Hence, we want to

use another goodness of fit measure to select the right orders for our model. Akaike information

criteria (Akaike, 1974) and the closely related Bayesian information criteria (Schwarz, 1978), are

two such measures based on the likelihood function, but penalize a high number of parameters.

Akaike information criterion (AIC) and Bayesian information criterion (BIC) are given by

AIC = −2 log(L(φ̂, θ̂, σ̂2)) + 2(p+ q + 1),

and

BIC = −2 log(L(φ̂, θ̂, σ̂2)) + (p+ q + 1) log(n).

Thus, when selecting the order based on AIC or BIC, we want to find the (p, q) that minimizes

the AIC or BIC value. The difference between the two is that the penalty term for BIC depends

on the number of observations, n, in the sample. If n ≥ 8, then BIC > AIC and thus a high

number of parameters is more heavily penalized by BIC than AIC. Hence, BIC will often tend

to select a model with fewer parameters.

It can be shown that we can express XT
n Γ−1n Xn and det Γn in equation (2.4) in terms of

Xj − X̂j , the one-step prediction errors, and their variances νj = E[(Xj − X̂j)
2]. Hence, the

CHAPTER 2. TIME SERIES 6

likelihood of Xn can be rewritten as

L(Γn) = (2π)−n/2(ν0 · · · νn−1)−1/2 exp
(
− 1

2

n∑
j=1

(Xj − X̂j)
2/νj−1

)
.

Thus, finding the order (p, q) that minimizes AIC or BIC is equivalent to finding the order that

minimizes the prediction error while penalizing large models.

Chapter 3

Deep learning

Deep learning is a subfield of machine learning, and we can divide machine learning problems

into two categories, unsupervised and supervised learning. When we have labelled data, i.e., a set

of input variables x with an associated output label y, we have a supervised learning problem.

In unsupervised learning, the data is not labelled.

We also distinguish between classification and regression in supervised learning. If the output

y is continuous, we have a regression problem, and if it is categorical, we have a classification

problem. Either way, the goal in supervised learning is to estimate a function f , which describes

the approximate relationship between the input vector x and the output variable y.

It can be shown that under very general conditions, a neural network is a universal approx-

imator (Hornik, 1991). That is, given a function f , a neural network can approximate f such

that the error ε is arbitrarily small.

f(x) = y + ε.

3.1. Fully connected neural networks

This section is based on Efron and Hastie (2016). There are many types of neural networks, but

the basic form of a network is made up of layers, where each layer contains a specific number of

nodes, and every node in each layer is connected to every node in the next layer via a vector of

weights. This is called a fully connected neural network. Each weight can be interpreted as the

"strength" of the connection between two nodes. The first layer is the input layer, and the last

layer is the output layer. The layers in between are referred to as hidden layers.

3.1.1. Structure

To mathematically describe a fully connected network, we look at a neural network with K layers,

including the input and output layer, where each layer is denoted by Lk for k = 1, 2, . . . ,K. The

7

CHAPTER 3. DEEP LEARNING 8

first layer represents the input vector x = {xt, t = 1, 2, . . . , T}, and we begin with the transition

from the input layer to the first hidden layer L2. A linear combination of the input and a weight

matrix W (1) that consists of all weights between the first and second layer is computed and for

each pair of nodes this can be written as

z
(2)
l = w

(1)
l0 +

T∑
t=1

w
(1)
lj xt for l = 1, . . . , n2, (3.1)

where w(1)
l0 is the bias weight or intercept, T is the number elements in the input vector, and n2

is the number of nodes in the first hidden layer. Then the z(2)l ’s are passed through a non-linear

activation function and become the values for the nodes in the second layer L2. We write this as

a
(2)
l = g(2)

(
z
(2)
l

)
for l = 1, . . . , n2, (3.2)

where the a(2)l ’s are the values for the nodes in this layer. These are the values that will be

passed onto the next layer, L3. See Figure 3.1 for an illustration of a single node in the first

hidden layer.

Figure 3.1: Illustration of a single node that computes the activation.

For a general layer, Lk, we extend (3.1) and (3.2) to:

z
(k)
l = w

(k−1)
l0 +

nk−1∑
j=1

w
(k−1)
lt a

(k−1)
j ,

for l = 1, . . . , nk,

a
(k)
l = g(k)(z

(k)
l),

(3.3)

where nk−1 is the number of nodes in layer Lk−1. These general equations are also true for k = 2

if we let a(1)j = xj .

CHAPTER 3. DEEP LEARNING 9

1 1

Hidden	layer Output	layerInput	layer

Figure 3.2: A fully connected neural network for classification with one hidden layer.

The process of passing the input values through the nodes in a neural network is often referred

to as the feed-forward pass. See Figure 3.2 for an illustration of a fully connected neural network.

Activation functions

The non-linear g(k)(·) is the activation function for layer Lk. Some of the most common activation

functions for the hidden layers are sigmoid, rectified linear unit (reLU) and tanh (see Figure 3.3).

5.0 2.5 0.0 2.5 5.0
0.0

0.2

0.4

0.6

0.8

1.0 sigmoid

5.0 2.5 0.0 2.5 5.0
0

1

2

3

4

5 reLU

5.0 2.5 0.0 2.5 5.0
1.0

0.5

0.0

0.5

1.0 tanh

Figure 3.3: Activation functions

CHAPTER 3. DEEP LEARNING 10

In the output layer the activation function, g(K) (·) is usually different. For multiclass clas-

sification, the softmax function is used, and each node in the output layer represents one of the

classes. If there are M classes, the softmax function will be

a
(K)
j = g(K)

(
z
(K)
j ; z(K)

)
=

exp z
(K)
j∑M

l=1 exp z
(K)
l

, for j = 1, . . . ,M. (3.4)

Unlike the activation functions for the hidden layers, this is a function of all zl’s in the output

layer. We see that the denominator of (3.4) ensures that the function outputs values in the

interval (0, 1), and that
M∑
j=1

a
(K)
j = 1,

the sum of the outputs over all classes M is 1. Thus, we can view a
(K)
j as the probability the

neural network model predicts for the j-th class being the correct class, given z(K). That is,

a
(K)
j = P

(
true class = j | z(K)

)
.

The index of the output activation element with the highest value, arg max
j

a
(K)
j , is the predicted

class.

Feed-forward pass in matrix-vector notation

The following set of equations is a complete description of the feed-forward pass

a(1) = x,

z(k) = W (k−1)a(k−1),
for k = 2, . . . ,K,

a(k) = g(k)
(
z(k)

)
,

(3.5)

or written out



z
(k)
1

z
(k)
2

...

z
(k)
nk


=



w
(k−1)
1,0 w

(k−1)
1,1 . . . w

(k−1)
1,nk−1

w
(k−1)
2,0 w

(k−1)
2,1 . . . w

(k−1)
2,nk−1

...
...

. . .
...

w
(k−1)
nk,0

w
(k−1)
nk,1

. . . w
(k−1)
nk,nk−1





1

a
(k−1)
1

...

a
(k−1)
nk−1


and


a
(k)
1

...

a
(k)
nk

 =


g(k)

(
z
(k)
1

)
...

g(k)
(
z
(k)
nk

)


.

CHAPTER 3. DEEP LEARNING 11

3.1.2. Model fitting

When we talk about training or fitting a model, we mean solving an optimization problem, and

this amounts to minimize a cost (sometimes called loss) function. We denote the cost function

by C = C
(
y, f(x,W)

)
, where the target is y = {yi, i = 1, . . . ,M}, and f is an function of

all the weights, W = {W (k), k = 1, 2, . . . ,K − 1}, and the input, x = {xt, t = 1, 2, . . . , T}.

Equation (3.5) implies the useful recursion

z(k) = W (k−1)g(k−1)(z(k−1)). (3.6)

Now,

f(x,W) = g(K)
(
z(K)

)
= g(K)

(
W (K−1)g(K−1)

(
z(K−1)

))
= f1

(
W (K−1), z(K−1)

)
= g(K)

(
W (K−1)g(K−1)

(
W (K−2)z(K−2)

))
= f2

(
W (K−1),W (K−2), z(K−2)

)
= fK−k

(
W (K−1), . . . ,W (K−k), z(K−k)

)
.

This can also be written as

f(x,W) = fK−k
(
W (K−1), . . . ,W (K−k),a(K−k)

)
.

The goal is to estimate or "learn" the optimal weights by minimizing the cost function with

respect to the weights. Since our cost function is usually non-convex, there will be several local

minima, and finding the global one is difficult or impossible. Thus, we often have to settle

for a good local minimum, but this is not considered a big problem in machine learning. A

regularization term is often added to the cost function, and this will be discussed in more detail

in 3.1.3.

In our case the input x is one single sample of a time series,W (k) is the weight matrix between

layers Lk and Lk+1 and y is the true order of x. We use the optimization technique gradient

descent to minimize the cost function. To compute the gradient descent, an algorithm called

backpropagation is used. To illustrate how backpropagation and gradient descent works we first

use a batch size of one to train the network, which means that for each pair of input x and label

y, we compute the per-sample cost C and then the gradient, using backpropagation to update

the weights. After this, we use the next pair (x,y) and do the same, until we have done this for

all the pairs in our training dataset at least once. Later we will generalize backpropagation and

gradient descent for multiple samples at a time.

Again we look at a neural network with K layers. Since we want to minimize C with respect

CHAPTER 3. DEEP LEARNING 12

to the weights, we have to take the partial derivative with respect to each element w(k)
lj in each

weight matrix W (k) for k = 1, 2, . . . ,K − 1,

∂C

∂w
(k)
lj

=
∂C

∂z
(k+1)
l

∂z
(k+1)
l

∂w
(k)
lj

. (3.7)

First, we look closer at the first term on the right-hand side in (3.7). For layer k and the nodes

in this layer, we want to compute

δ
(k)
l

def
=

∂C

∂z
(k)
l

.

We can interpret δ(k)l as a measure of how much node l in layer k contributes to the total cost,

C. For each node in the output layer k = K, we have

δ
(K)
l =

∂C

∂z
(K)
l

=
∂C

∂a
(K)
l

∂a
(K)
l

∂z
(K)
l

. (3.8)

For each node in layers k = K − 1,K − 2, . . . , 2 we have

δ
(k)
l =

∂C

∂z
(k)
l

=

nk+1∑
j=1

[
∂C

∂a
(k+1)
j

∂a
(k+1)
j

∂z
(k+1)
j

∂z
(k+1)
j

∂a
(k)
l

]
∂a

(k)
l

∂z
(k)
l

,

where nk+1 is the number of nodes in layer Lk+1. We observe that

∂C

∂a
(k+1)
j

∂a
(k+1)
j

∂z
(k+1)
j

= δ
(k+1)
j

and

∂z
(k+1)
j

∂a
(k)
l

=
∂

∂a
(k)
l

[
w

(k)
j0 +

nk∑
i=1

w
(k)
ji a

(k)
i

]
= w

(k)
jl .

Thus, we have

δ
(k)
l =

∂C

∂z
(k)
l

=

nk+1∑
j=1

[
δ
(k+1)
j w

(k)
jl

] ∂a(k)l
∂z

(k)
l

. (3.9)

Going back to the partial derivative (3.7) and the second term on the right-hand side, we see

that this becomes

∂z
(k+1)
l

∂w
(k)
lj

=
∂

∂w
(k)
lj

w(k)
l0 +

nk∑
j=1

w
(k)
lj a

(k)
j

 = a
(k)
j .

Thus,

CHAPTER 3. DEEP LEARNING 13

∂C (y, f(x,W))

∂w
(k)
lj

= δ
(k+1)
l a

(k)
j , for k = 1, 2, . . . ,K − 1. (3.10)

The backpropagacation algorithm

For a single training pair (y,x), where x is passed through the network we:

1. Calculate δ(K)
l for all nodes l in layer LK .

2. Calculate δ(k)l for k = K − 1 and all nodes l in layer LK−1 and then do the

same iteratively for k = K − 2, . . . , 2.

3. Now that all δ’s are calculated, we can compute the partial derivatives of

the cost function C (y, f(x,W)) with respect to each weight w(k)
lj .

After we have used backpropagation to calculate the derivatives, we update each weight in

response to the derivatives in the following way

w
∗(k)
lj = w

(k)
lj − α δ

(k+1)
l a

(k)
j , (3.11)

where w∗(k)lj denotes the updated weight and α is a constant called the learning rate. Details

about the learning rate will be discussed in section 3.1.3.

Since we will use neural networks to classify time series, we have a multiclass classification

problem. In these cases we use cross-entropy as the cost function.

C
(
y, f(x,W)

)
= −yT log

(
a(K)

)
= −

M∑
j=1

yj log
(
a
(K)
j

)
, (3.12)

where M is the number of classes, and the label vector y, is a one-hot encoded vector, which

means that all elements are zero, except the true class t which is one. In other words yt = 1 and

yj = 0 for all j 6= t.

The reason for using the cross-entropy as a cost function in the case of multiclass classification

problems is that we want to maximize the probability of correctly classifying a sample. We can do

this by using maximum likelihood estimation to find the weights that maximize the conditional

probability P (y|z,W). We can write this probability as

P (y|x,W) =
M∏
j=1

P
(
true class = j | z(K)

)yj =
M∏
j=1

(a
(K)
j)yj .

Maximizing this is equivalent to minimizing

CHAPTER 3. DEEP LEARNING 14

− logP (y|x,W) = − log
M∏
j=1

(a
(K)
j)yj = −

M∑
j=1

yj log
(
a
(K)
j

)
,

which is the cross-entropy function.

We can now calculate the partial derivative of C with respect to z(K)
l from equation (3.8).

∂C

∂z
(K)
l

=−
M∑
j=1

yj
∂

∂z
(K)
l

log(a
(K)
j) = −

M∑
j=1

yj
1

a
(K)
j

∂a
(K)
j

∂z
(K)
l

=− yt
1

a
(K)
t

∂a
(K)
t

∂z
(K)
l

= − 1

a
(K)
t

∂a
(K)
t

∂z
(K)
l

,

because when t is the true class, yt = 1 and yj = 0 for all j 6= t. Also recall that

a
(K)
j =

exp z
(K)
j∑M

i=1 exp z
(K)
i

.

Therefore, when l = t, we have

∂a
(K)
t

∂z
(K)
l

=
∂a

(K)
t

∂z
(K)
t

=

exp z
(K)
t

(∑M
i=1 exp z

(K)
i − exp z

(K)
t

)
(∑M

i=1 exp z
(K)
i

)2 ,

and thus,

∂C

∂z
(K)
l

=−
(∑M

i=1 exp z
(K)
i

exp z
(K)
t

)(
exp z

(K)
t (

∑M
i=1 exp z

(K)
i − exp zt)(∑M

i=1 exp z
(K)
i

)2)

=−
(
∑M

i=1 exp z
(K)
i − exp z

(K)
t)∑M

i=1 exp z
(K)
i

=
exp z

(K)
t∑M

i=1 exp z
(K)
i

− 1 = a
(K)
t − 1.

When l 6= t, we have that

∂a
(K)
t

∂z
(K)
l

= −
exp z

(K)
t exp z

(K)
l(∑M

i=1 exp z
(K)
i

)2 ,
and

∂C

∂z
(K)
l

=

(
−
∑M

i=1 exp z
(K)
i

exp z
(K)
t

)(
−

exp z
(K)
t exp z

(K)
l(∑M

i=1 exp z
(K)
i

)2)

=
exp z

(K)
l∑M

i=1 exp z
(K)
i

= a
(K)
l .

CHAPTER 3. DEEP LEARNING 15

Hence, we conclude that

δ
(K)
l =

∂C

∂z
(K)
l

= a
(K)
l − yl =


a
(K)
t − 1, when l = t,

a
(K)
l , when l 6= t.

(3.13)

Example 3.1. Let us look at the backpropagation and gradient descent calculations for a neural

network for classification of M classes with one hidden layer. We have the function for the network

f(x,W) = f
(
W (2),W (1),x

)
,

that represents a feed-forward pass of the sample x. We use the categorical cross-entropy as cost

function (3.12) and g(3) is the softmax function. The δ(K)’s are already calculated from (3.13),

so we have

δ
(3)
l =

∂C

∂z
(3)
l

= a
(3)
l − yl =


a
(3)
t − 1, when l = t,

a
(3)
l , when l 6= t,

where t is the true class for x. In this example we let the activation function for the transition

between the input and hidden layer g(2), be the sigmoid function

a
(2)
l = g(2)(z

(2)
l) =

1

1 + exp
(
− z(2)l

) .
We then calculate the δ(2)’s. From equation (3.9), we have

δ
(2)
l =

∂C

∂z
(2)
l

=

M∑
j=1

[
δ
(3)
j w

(2)
jl

] ∂a(2)l
∂z

(2)
l

=
M∑
j=1

[
(a

(3)
l − yl)w

(2)
jl

] exp(−z(2)l)(
1 + exp(−z(2)l)

)2
=

M∑
j=1

[(
exp z

(3)
l∑M

i=1 exp z
(3)
i

− yl

)
w

(2)
jl

]
exp(−z(2)l)(

1 + exp(−z(2)l)
)2 .

We can now calculate the gradients with respect to each weight using equation (3.10);

∂C

∂w
(2)
lj

= δ
(3)
l a

(2)
j =

(
a
(3)
l − yl

)
a
(2)
j =

(
exp z

(3)
l∑M

i=1 exp z
(3)
i

− yl

)(
1

1 + exp
(
− z(2)j

))
and

∂C

∂w
(1)
lj

= δ
(2)
l a

(1)
j =

M∑
j=1

[(
exp z

(3)
l∑M

i=1 exp z
(3)
i

− yl

)
w

(2)
jl

]
exp(−z(2)l)(

1 + exp(−z(2)l)
)2xj .

CHAPTER 3. DEEP LEARNING 16

Thus, we get the weight updates

w
∗(2)
lj = w

(2)
lj − α

((
exp z

(3)
l∑M

i=1 exp z
(3)
i

− yl

)(
1

1 + exp
(
− z(2)j

)))
and

w
∗(1)
lj = w

(1)
lj − α

 M∑
j=1

[(
exp z

(3)
l∑M

i=1 exp z
(3)
i

− yl

)
w

(2)
jl

]
exp(−z(2)l)(

1 + exp(−z(2)l)
)2xj


.

Backpropagation equations and gradient descent in vector-matrix notation

To sum up this part of the chapter, we will write the equations for backpropagation and gradient

descent in matrix-vector notation when using cross-entropy as cost function. We can write the

equations (3.8) and (3.9) as

δ(K) = a(K) − y

and

δ(k) =
(
W (k)Tδ(k+1)

)
� ∂g(k)

∂z(k)
, for k = K − 1, . . . , 2,

where � is the Hadamard product, i.e. an element-wise product. Note that

∂g(k)

∂z(k)
=



∂g(k)

∂z
(k)
1
...

∂g(k)

∂z
(k)
pk


=



∂a
(k)
1

∂z
(k)
1
...

∂a
(k)
pk

∂z
(k)
pk


.

The gradient of the cost function (3.10) with respect to each weight matrix can be written as

∇W (k)C =
∂C (y, f(x,W))

∂W (k)
= δ(k+1)a(k)

T
, k = 1, . . . ,K − 1. (3.14)

Lastly, we evaluate ∇W (k)C for the values in y, x and W. Then the update (3.11) of each weight

matrix can be calculated by the equation:

W ∗(k) = W (k) − α∇W (k)C, k = 1, . . . ,K − 1, (3.15)

where W ∗(k) is the updated weight matrix for layer Lk. We observe in equation (3.15) that the

update for the k-th weight matrix is independent of the updates for the other weight matrices.

Thus, we can calculate the weight updates for k = 1, . . . ,K− 1 at the same time, i.e. in parallel.

This is an important feature of gradient descent as it speeds up the training process.

CHAPTER 3. DEEP LEARNING 17

1.	Forward	pass

2.	Backward	pass

3.	Weight	updates

 . . .

. . .

Figure 3.4: Flow of the training process.

We can visualize the whole training process as three phases. In Figure 3.4, we see that an

input x is passed through the network, and we can call this the forward pass. This phase is just

a calculation of the function f(x,W), but we also save the values for each z and a, which will

be used in the two next phases. The second phase is the backward pass, where we pass the cost

function C backward through the network save the values for each δ along the way, which is the

backpropagation algorithm. The last phase is the weight updates, where the gradient of the cost

function with respect to the weights is calculated using the saved values for δ and a. When the

weights are updated, we return to phase one (the forward pass), where we pass a new input x

through the network with the updated weights. This process is repeated until each input x has

been passed through the network at least once, but usually several times.

At this point, we have only covered the case where we pass one single pair (x,y) through the

network before the weights are updated. It is also possible to pass multiple pairs (or the whole

training dataset) through the network before each calculation of the cost function and weight

update. If we have a batch of N samples that we pass through the network before each weight

update, we can express the cost function (for cross-entropy) as

C(Y , f(X,W)) =
1

N

N∑
i=1

C(yi, f(xi,W)) = − 1

N

N∑
i=1

M∑
j=1

yi,j log(a
(K)
i,j), (3.16)

where Y and X are matrices containing the N vectors yi and xi, respectively. The gradient of

this with respect to the weights becomes

CHAPTER 3. DEEP LEARNING 18

∇W (k)C =
∂C(Y , f(X,W))

∂W (k)
=

1

N

N∑
i=1

∂C (yi, f(xi,W))

∂W (k)
. (3.17)

In this case, the cost function and gradient for each (xi,yi) still has to be calculated in-

dividually before we can calculate the sums in (3.16) and (3.17). The difference is that we

can do these individual calculations simultaneously, since the weights are the same for every

{(xi,yi)}Ni=1. Thus, if we have the computing resources, we can calculate C(yi, f(xi,W)) and

∂C (yi, f(xi,W))/∂W (k) for multiple samples at the same time.

3.1.3. Some important terms and methods

Before we go on to describe two other types of neural networks (convolutional and recurrent),

we give a brief explanation of some terms and methods that have been or will be used later.

Training, validation and test set

Before a model is trained, we split our dataset in a training, validation, and test set. Only the

training data is used to train the model, that is, updating the weights. The validation set is also

used during training, but not to update weights. We use the validation data to find the optimal

model architecture and hyperparameters and to give us information on whether the model is

overfitting. After all training is finished, we use the test data to evaluate the performance of the

model. No further changes to the model should be done after this step.

Batch size and number of epochs

Batch size is the number of samples that is passed through the model before the cost function is

calculated, and weights are updated. The two ends of the extreme, are a batch size of one and

batch size of the whole training dataset. When batch size is one, weights will be updated after

each input is passed through the network. In the case with a batch size of the whole training

dataset, the weights will only be updated one time per epoch. Usually, we use a batch size in

the range 32− 512, as larger batch sizes tend to decrease the performance of the model (Keskar

et al., 2016).

In an epoch, all the training data has been passed through the network once. Thus, the

number of epochs is the number of times the model will see each sample during training. Usually,

we let the model train on the same data several times, i.e., the number of epochs is greater than

one. If the batch size is 1/Q of the data and we let epochs be equal to R, the weights will be

updated Q ·R times.

CHAPTER 3. DEEP LEARNING 19

Learning rate

As we have seen earlier, a learning rate α is used in gradient descent (3.15). This rate is essentially

how much we want the weights to be updated for each batch. We recall that the objective during

training is to minimize the cost function by updating the weights, and this process happens in

steps. The magnitude of these steps depends on the learning rate. Before we start the training,

the model is initialized with random weights, and during training, the weights are incrementally

updated to move closer to a minimum of the cost function. If the learning rate is large, training

might be faster, but we risk taking steps towards the minimum of the cost function that are too

big, such that we "miss" it. On the other hand, if the learning rate is very small, training might

take too long.

The learning rate is a hyperparameter, so the optimal value will vary with different models

and datasets, but is usually between 0.1 and 0.0001.

Overfitting

Overfitting means that the accuracy of the model predictions is significantly higher for the

training data than for the validation data. It occurs when the model becomes too "good" at

learning the features in the training data, but fails to generalize to data not used to train the

model. The smaller the training set is, the more likely it is for overfitting to occur.

There are several strategies to avoid overfitting. One is to reduce the complexity of the model.

In neural networks, this can be reducing the number of layers or nodes. Another approach is

to use a regularization method, such as parameter norm penalties, dropout, or early stopping.

Goodfellow et al. (2016)[p. 228] defines regularization as “any modification we make to a learning

algorithm that is intended to reduce its generalization error but not its training error”.

Parameter norm penalties

We follow Goodfellow et al. (2016) for a description of parameter norm penalties. In this type

of regularization, we add a parameter norm penalty Ω(W) to the cost function, so that we now

want to minimize

C̃(Y ,X,W) = C(Y , f(X,W)) + λΩ(W),

where λ ≥ 0 is a hyperparameter that controls how much regularization is done (larger λ = more

regularization), and can be different for each layer in the neural network.

The most common choice for Ω(W) is the L2 parameter norm penalty, which is often referred

to as ridge regression;

CHAPTER 3. DEEP LEARNING 20

Ω(W) =
1

2
‖W‖22 =

1

2

K−1∑
k=1

∥∥∥W (k)
∥∥∥2
2

=
1

2

K−1∑
k=1

∑
i

∑
j

(
w

(k)
ij

)2
.

Thus, the cost function with L2 regularization becomes

C̃(Y ,X,W) = C(Y , f(X,W)) +
λ

2

K−1∑
k=1

∑
i

∑
j

(
w

(k)
ij

)2
.

Taking the partial derivative with respect to each weight, this becomes

∂C̃(Y ,X,W)

∂w
(k)
ij

=
∂C(Y , f(X,W))

∂w
(k)
ij

+ λw
(k)
ij .

It follows from this that in terms of each weight matrix W (k), we can write the derivative as

∇W (k)C̃ =
∂C̃(Y ,X,W)

∂W (k)
= ∇W (k)C + λW (k).

The gradient update for each weight matrix is

W ∗(k) = W (k) − α
(
∇W (k)C + λW (k)

)
.

We can also write this as

W ∗(k) = W (k) − α∇W (k)C︸ ︷︷ ︸
regular gradient update

−αλW (k).

Thus, compared to the regular gradient update in equation (3.15), L2 regularization will shrink

the weights by an extra factor of αλ in every gradient update.

Another form of parameter norm penalty is the L1 norm, also known as Lasso. In this case,

we have

Ω(W) = ‖W‖1 =

K−1∑
k=1

∥∥∥W (k)
∥∥∥
1

=

K−1∑
k=1

∑
i

∑
j

|w(k)
ij |,

C̃(Y ,X,W) = C(Y , f(X,W)) + λ

K−1∑
k=1

∑
i

∑
j

|w(k)
ij |.

Taking the partial derivative with respect to each weight, this becomes

∂C̃(Y ,X,W)

∂w
(k)
ij

=
∂C(Y , f(X,W))

∂w
(k)
ij

+ λ sgn(w
(k)
ij),

where sgn is the signum function sgn(w) = w/|w|. In terms of each weight matrixW (k), we can

write

CHAPTER 3. DEEP LEARNING 21

∇W (k)C̃ =
∂C̃(Y ,X,W)

∂W (k)
= ∇W (k)C + λ sgn(W (k)).

Here we define sign(W (k)) as the signum function applied to each element w(k)
ij in W (k).

The gradient update for each weight matrix is thus

W ∗(k) = W (k) − α
(
∇W (k)C + λ sgn(W (k))

)
.

We can also write this as

W ∗(k) = W (k) − α∇W (k)C︸ ︷︷ ︸
regular gradient update

−αλ sgn(W (k)).

We observe that for a positive weight, we will subtract the constant αλ, and for a negative

weight, we will add αλ. So the regularization does not depend on the size of each weight (as

in L2 regularization), but only on the sign of each weight. Another essential difference between

L1 and L2 regularization is that L1 move the weights to zero, and thus give more sparse weight

matrices.

It is also possible to combine L1 and L2 regularization, which is called elastic net, proposed

by Zou and Hastie (2005).

Dropout

The idea of dropout is to randomly drop a fraction of the nodes during training, and this

regularization method was first described by Srivastava et al. (2014). For each training batch, a

set of nodes is removed along with their connections, which results in one subnetwork or thinned

network per training batch. We thus train an ensemble of subnetworks or thinned networks.

At validation and testing, we use all the nodes but multiply each weight by the probability of

keeping the node that the weight goes out from. This gives an approximation to averaging the

predictions of the subnetworks.

Dropout can be viewed as a way to train many models with different architectures (using

dropout in the hidden layers) on different training datasets (dropout in the input layer). Dropout

can be applied to all layers except the output layer.

If the probability to drop a node in layer k is q, the forward pass equations can be written as

r
(k)
l ∼ Bernoulli(1− q),

r(k) = [r
(k)
1 , r

(k)
2 , . . . , r(k)nk

]T ,

CHAPTER 3. DEEP LEARNING 22

and

ã(k) = a(k) � r(k),

z(k+1) = W (k)ã(k),

a(k+1) = g(k)
(
z(k+1)

)
.

Thus, r(k) is a vector of independent Bernoulli random variables, and each element has

probability q of being 0, and (1− q) of being 1. When taking the element-wise product between

a(k) and r(k), some of the elements in ã(k) will become zero. These are the nodes that we drop.

The weights in W (k) that are connected to ã(k) will also become zero.

When we use the validation and test data, all nodes are used again, but weights are scaled

according to the probability of keeping a node. The forward pass at validation and test time for

layer k, will be

z(k+1) = (1− q)W (k)a(k),

a(k+1) = g(k+1)
(
z(k+1)

)
.

Thus, the output at validation and test time is equal to the expected output at training time.

Early stopping

During training, we often see that while the cost function evaluated for the training data will

continue to decrease for each epoch, the cost function evaluated for the validation data will stop

decreasing or start increasing. We can avoid this by using early stopping. Early stopping will

stop the training when the value for the cost function evaluated for the validation set has not

improved for n epochs, and restore the weights back to the epoch with the lowest value for the

cost function. This is illustrated in Figure 3.5.

The value of n is the number of epochs to wait before the early stop and is called the patience.

The patience should not be too small, to allow for some fluctuation to occur. Using early stopping

requires that the weights of the model are saved each time the validation cost improves.

When training neural networks, early stopping is almost always used, due to its simplicity

and effectiveness. It is also frequently used in combination with other regularization strategies

such as parameter norm penalties and dropout.

Variants of gradient descent

There are many different optimizers that are variants of gradient descent, such as Adagrad (Duchi

et al., 2011) and RMSProp (Tieleman and Hinton, 2012). We will focus on the Adam optimizer,

CHAPTER 3. DEEP LEARNING 23

Epoch

C
os
t

Early	stopping

Validation	set

Training	set

n

Figure 3.5: Early stopping with patience of n.

proposed by Kingma and Ba (2014), which combines Adagrad and RMSProp. This optimizer

has been shown to yield good results in practice, and is one of the most popular optimizers in

deep learning. Adam is an algorithm that uses first and second moment estimates of the gradient

to update the weights. The moments are estimated by exponential moving averages and then

bias corrected. The algorithm assigns individually adapted "learning rates" for each weight.

Let

∇kCt = ∇W (k)C(Y , f(X,W))

∣∣∣∣
Y =Y (t),X=X(t),W=W (t−1)

,

where Y (t) and X(t) are matrices containing the vectors for the inputs and targets in batch t,

and W (t−1) is the updated weights from the previous batch.

We initialize the first and second moment estimator matrices asM (k)
0 = 0 and V (k)

0 = 0, for

k = 1, . . . ,K − 1. Also we let β1, β2 ∈ [0, 1) and ε = ε1 where ε ∈ R. As suggested by Kingma

and Ba (2014), good default values are β1 = 0.9, β2 = 0.999 and ε = 10−8.

For the t-th batch, the algorithm is given by (all operations on matrices are element-wise):

M
(k)
(t) = β1M

(k)
(t−1) + (1− β1)∇kCt,

V
(k)
(t) = β2V

(k)
(t−1) + (1− β2)[∇kCt]2,

M̂
(k)

(t) =
1

1− βt1
M

(k)
(t) ,

V̂
(k)

(t) =
1

1− βt2
V

(k)
(t) ,

W ∗(k)
(t) = W

(k)
(t−1) − α

M̂
(k)

(t)√
V̂

(k)

(t) + ε

, k = 1, . . . ,K − 1.

(3.18)

Note that βt1 and βt2 denote exponentiation with t and that [∇kCt]2 = ∇kCt �∇kCt.

CHAPTER 3. DEEP LEARNING 24

After t batches, we have that the bias corrected first moment estimator for the gradient is

given by

M̂
(k)

(t) =
1− β1
1− βt1

t∑
i=1

βt−i1 ∇kCi. (3.19)

Taking the excepted value of this estimator we get

E[M̂
(k)

(t)] =
1− β1
1− βt1

t∑
i=1

βt−i1 E[∇kCi].

If we assume that E[∇kCi] = E[∇kCt], we get that

E[M̂
(k)

(t)] = E[∇kCt]
1− β1
1− βt1

t∑
i=0

βt−i1 = E[∇kCt].

Hence we have an unbiased estimator for the first moment of the gradient at batch t. The same

can be shown for the bias corrected second moment estimator V̂
(k)

(t) .

From equation (3.19), we observe that the unbiased first moment estimator for the gradient

at batch t, gets a greater contribution from the last batch gradients than the first ones. Similarly

for the unbiased second moment estimator for the gradient at batch t. Thus, when we update the

new weights, they will be more influenced by the last gradients, rather than equally contributing.

If ε = 0, the magnitude and direction of the step at batch t is ∆t = αM̂ (t)

/√
V̂ (t) and

this becomes smaller as the ratio of the first and second moment estimates decreases. That is,

when the uncertainty about the true direction of the gradient increases (V̂ (t) increases) we take

smaller effective steps. This is a desirable property, as we want to take smaller steps when we

move close to the optimal values for the weights.

3.2. Convolutional neural networks

Fully connected neural networks treat the elements of each input vector the same, meaning that

the order of the elements in each input does not matter. That is, one could permute the elements

of the input vector and get the same result. While this makes sense if the input data features are

age, weight, ect., it is clearly not well suited for input data like images and time series since they

are spatially or temporally correlated. Convolutional neural networks (CNNs) were specially

developed for this type of data. A convolutional neural network is a neural network with at least

one convolutional layer, but usually several (Goodfellow et al., 2016, ch. 9). A convolutional

layer differs from a standard fully connected layer in that it uses an operation called convolution

to extract particular features in the data. This is why it is so popular and effective, especially

for image data as different shapes and edges can be recognized by the network.

CHAPTER 3. DEEP LEARNING 25

Before we look at the structure of a convolutional neural network, we will briefly cover

convolution. In mathematics a convolution of two sequences, x and w, is given by

z[i] = (x ? w)[i] =

∞∑
r=−∞

x[r]w[i− r],

where x and w are two discrete functions, and i is some integer. This operation is commutative,

that is (x ? w) = (w ? x).

In neural network implementations we actually use cross-correlation, but usually call it con-

volution as the two operations are similar and would yield the same set of learned parameters

just in a "flipped" orientation with convolution. Cross-correlation of the discrete functions x and

w is given by

z[i] = (x ∗ w)[i] =

∞∑
r=−∞

x[i+ r]w[r].

Let us look at the convolution of x = {xt, t = 1, 2, . . . , T} and w = {wi, i = 1, . . . , s}.

We will refer to x as the input, w as the filter and the length of w as the kernel size. Since x is

a finite length vector and the filter is also of finite size, we get a finite summation:

zi =
s∑
r=1

xi−1+rwj , for i = 1, . . . , T − s+ 1.

The minus one in the subscript of x in the sum is due to the fact that we let the index of xi

start at one. We see that this operation is just sliding a filter across the input, and that is why

cross-correlation is sometimes referred to as the sliding dot product. The output zi is the i-th

element of the output vector z, and is called the feature map. We notice that the dimension of

the feature map is smaller than the input. If the input vector has T elements and kernel size

of the filter is s, then the feature map z will have T − s + 1 elements. See Figure 3.6 for an

illustration of this operation.

w1 w2 w3x1 x2 x3 x9 x10…

=z1

+ +x1w1 x2w2 x3w3

=z8

+ +x8w1 x9w2 x10w3

…
=z2

+ +x2w1 x3w2 x4w3

Feature map

Input Filter

Figure 3.6: Cross-correlation of input vector x with length 10 and filter w with kernel size 3.

CHAPTER 3. DEEP LEARNING 26

Structure

Now that we understand convolution and cross-correlation, we can look at the structure and

feed-forward equations of a convolutional neural network. From this point, we will refer to

the cross-correlation operation as convolution. We will also only cover 1D convolutional neural

networks, but 2D and higher dimensional convolutional neural networks are very similar. We

follow Kiranyaz et al. (2019) in this part.

In CNNs each convolutional layer will have several different filters with the same kernel size.

We want to learn different features of the data and do this by training the model to learn the

optimal values for the elements of each filter (the weights). If we have n filters, we will get n

feature maps as output. For the transition from the input layer L1 to the first convolutional

layer L2 with n1 filters having kernel size s1, we can write the equation for the i-th element in

the j-th feature map as

z
(2)
i,j = b

(1)
j +

s1∑
r=1

xi−1+r w
(1)
j,r for i = 1, . . . ,m1 and j = 1, . . . , n1, (3.20)

where b(1)j is the bias weight for the j-th filter, and m1 = T−s1+1. The total number of weights,

including the bias weights, between these layers is n1(s1 + 1). See Figure 3.7 for an illustration

of the convolution in equation (3.20).

Input Filters Feature	maps

Figure 3.7: Transition from the input to the first convolutional layer (without bias weights).

Just like in fully connected neural networks we perform an activation function on each element

zi,j so that

a
(2)
i,j = g(2)

(
z
(2)
i,j

)
for i = 1, . . . ,m1 and j = 1, . . . , n1,

where g(2) is the activation function for the first convolutional layer. As we can see, the output

(and thus the input for the next layer) from a convolutional layer consists of several feature

CHAPTER 3. DEEP LEARNING 27

maps. We will call the number of feature maps for channels. Thus, the number of channels

in a convolutional layer that comes after a convolutional layer corresponds with the number of

feature maps in this previous layer. Each filter will have the same number of channels as the

input. We can also extend this to the first layer, by viewing the input as having one channel.

For the general transition from one convolutional layer Ll−1 to another, Ll, with nl−1 filters

of kernel size sl−1 and nl−2 channels per filter, we have the equations

z
(l)
i,j = b

(l−1)
j +

nl−2∑
k=1

sl−1∑
r=1

a
(l−1)
i−1+r,k w

(l−1)
j,r,k , for i = 1, . . . ,ml−1 and j = 1, . . . , nl−1, (3.21)

and

a
(l)
i,j = g(l)

(
z
(l)
i,j

)
for i = 1, . . . ,ml−1, and j = 1, . . . , nl−1.

We notice the additional index k that represents the channels. The total number of weights,

including the bias weights, between these layers is nl−1 (sl−1 nl−2 + 1). See Figure 3.8 for an

illustration of the transition between two convolutional layers.

a
(2)
1,1

a
(2)
2,1

⋮

a
(2)

,1m1

a
(2)
1,2

a
(2)
2,2

⋮

a
(2)

,2m1

a
(2)
1,n1

a
(2)
2,n1

⋮

a
(2)

,m1 n1

…

 x m1 n1

w
(2)
1,1,1 … w

(2)
1, ,1s2

w
(3)
2,1,1 … w

(3)
2, ,1s2

w
(3)

,1,1n2
… w

(3)
, ,1n2 s2

⋮

z
(3)
1,1

z
(3)
2,1

⋮

z
(3)

,1m2

z
(3)
1,2

z
(3)
2,2

⋮

z
(3)

,2m2

z
(3)
1,n2

z
(3)
2,n2

⋮

z
(3)

,m2 n2

…

(= − + 1) x m2 m1 s2 n2

∗

 x x n2 s2 n1

Input from the previous
convolutional layer

Filters Feature maps

 c
ha

nn
el

s

n
1

Figure 3.8: Transition from the first to the second convolutional layer (without bias weights).

While there are many similarities between CNNs and fully connected neural networks, some

important differences are weight sharing and sparse connectivity. In a fully connected layer, each

weight is only used one time between an input node and an output node. This is not true for a

CNN layer, because here every weight in each filter is used in every position of the input. This

means that every element in the j-th feature map share the same weights from the j-th filter.

We see this most easily from equation (3.20), and we call this property weight sharing. The

other important difference is sparse connectivity. This is referring to the fact that in a CNN

layer, each element in the input is not connected to every element in the output. Again we can

CHAPTER 3. DEEP LEARNING 28

see this from equation (3.20), where the i-th element in each feature map is only connected to

the elements xi, . . . , xi−1+s1 in the input.

Stride and zero padding

Stride is how many steps the filter shifts across the input for the calculation of each feature map

zi,j . In equation (3.20) and (3.21) we have used a stride of 1. It is also possible to use a stride of

more than 1, but this might lead to problems for the boundary elements of the input. A solution

to this is to control the dimension of the input by padding the input to the layer with zeros.

This is called zero padding.

As previously stated, when using convolutional layers, the dimensions of the input will shrink

with one element less than the kernel size for each layer. This can limit how deep (i.e. how many

convolutional layers) the network can be, and the choice of kernel size. Thus, zero padding can

also be used to control the size of the output maps of each layer, and thus we have more choices

in the kernel size and number of convolutional layers in the network.

Pooling

Pooling is a type of layer that is often used in conjunction with convolutional layers. These are

layers that produce some type of summary of the feature maps of a convolutional layer. We use

pooling if we want the network to be less sensitive to the exact position of a feature in the data.

Examples of pooling layers are average pooling and max pooling. As the names suggest, average

pooling averages the elements in each feature map within a given window size, and max pooling

gives the maximum value within a window. Figure 3.9 illustrates average and max pooling.

Pooling layers can also help to reduce the complexity in the model, and thus reduce overfitting.

a
(l)
1,1

a
(l)
2,1

⋮

a
(l)
10,1

1
2
∑
i=1

2

a
(l)
i,1

⋮

1
2
∑
i=3

4

a
(l)
i,1

1
2
∑
i=9

10

a
(l)
i,1

a
(l)
1,1

a
(l)
2,1

⋮

a
(l)
10,1

max (,)a
(l)
1,1 a

(l)
2,1

max (,)a
(l)
3,1 a

(l)
4,1

⋮

max (,)a
(l)
9,1 a

(l)
10,1

Figure 3.9: Two examples of pooling for a single feature map of length 10 and pooling window

of 2. Left: Average pooling. Right: Max pooling.

CHAPTER 3. DEEP LEARNING 29

Flattening

A CNN always has at least one fully connected layer as the output layer, as we need to either

predict a single quantity (one fully connected node) or classify (several fully connected nodes).

Since a fully connected layer only can take a single one-dimensional vector as input, we need

to reshape the feature maps to a column vector. This is called flattening and is done between

a convolutional layer and one or more fully connected layers. Flattening is just stacking each

feature map into a single vector. This is shown in Figure 3.10.

a
(l−1)
1,1

a
(l−1)
2,1

⋮

a
(l−1)

,1ml−2

 x ml−2 nl−2

a
(l−1)
1,2

a
(l−1)
2,2

⋮

a
(l−1)

,2ml−2

a
(l−1)
1,nl−2

a
(l−1)
2,nl−2

⋮

a
(l−1)

,ml−2 nl−2

…

a
(l−1)
1,1

a
(l−1)
2,1

⋮

a
(l−1)

,ml−3 nl−2

a
(l−1)

,ml−2 nl−2

() x 1ml−2 nl−2

Fully connected layer

Figure 3.10: Flattening.

3.3. Recurrent neural networks

This section is based on Goodfellow et al. (2016) and Graves (2012). Recurrent neural networks

(RNNs) are a type of neural network that is used on sequential data, like time series or language.

What sets RNNs apart from fully connected neural networks is that weights are shared between

time-steps in the whole sequence. This is somewhat similar to 1D CNNs for sequential data, but

in convolution, weights are only shared between "patches" of each sequence.

Recurrent neural networks can be used in many different classification and regression prob-

lems, and each requires different architectures with respect to the input and output of the RNN

layer. Examples of this are "one-to-many", where the input can be a single image and output is

a sequence of words describing the image (image captioning). "Many-to-many" where the input

can be a sequence of words in one language and the output is a sequence of words in another

language (machine translation), and lastly "many-to-one" where we can have a sequence of words

(like a review of a movie) as input and the output is a class representing the sentiment (sentiment

analysis). Since we will be classifying time series, where the input is a sequence and output is a

CHAPTER 3. DEEP LEARNING 30

single class, we will focus on the "many-to-one" architecture, where many refer to the values in

the time series, and one the classification value.

Structure

Let us consider a neural network with only one hidden recurrent layer. We have some number

of time-series that we want to classify, and each of the time-series has an equal number of time-

steps (length) T . Our network will have one single input node that will take in one value of each

time-series at a time. As usual, let x = {xt, t = 1, . . . , T} be one of the time-series. Then we

have:

z
(2)
h,t = b

(1)
h + u

(1)
h xt +

H∑
i=1

w
(1)
h,i a

(2)
i,t−1 for t = 1, . . . , T and h = 1, . . . ,H, (3.22)

where z(2)h,t is the input to node h at time-step t, a(2)i,t−1 is the activation of node i at time-step

t − 1 and xt is the value of the input to the recurrent hidden layer at time-step t. The b(1)h is

the bias for the h-th node, u(1)h is the weight connecting the input xt and node h and, w(1)
h,i is the

weight connecting node i and h in time-steps (t − 1) and t. The weights remain the same for

every time-step t of the sequence. Notice that for t = 1 we do not have any past time-steps to

get values from so that ai,0 = 0, thus we get the equation

z
(2)
h,1 = b

(1)
h + u

(1)
h x1 for h = 1, . . . ,H.

As always we use an activation function

a
(2)
h,t = g

(
z
(2)
h,t

)
for t = 1, . . . , T and h = 1, . . . ,H. (3.23)

In RNN layers the tanh function is often used as activation.

At the last time-step t = T , the RNN layer will pass an ah,T for h = 1, . . . ,H to the fully

connected output layer with M nodes, one for each class.

z
(3)
j = b

(2)
j +

H∑
h=1

vj,h a
(2)
h,T , for j = 1, . . . ,M,

a
(3)
j = softmax

(
z
(3)
j

)
,

(3.24)

where vj,h is the weight between the h-th node in the hidden layer and the j-th node in the

output layer. This architecture is illustrated in Figure 3.11.

In Figure 3.11 we can observe that the recurrent neural network architecture for a single time-

step t looks similar to the fully connected network. If we compare the feed forward equation for

fully connected and recurrent networks without biases, we have the who equations:

CHAPTER 3. DEEP LEARNING 31

Figure 3.11: A recurrent neural network with one hidden layer. We see the hidden recurrent

layer for the two successive time-steps, t− 1 and t, in red, the input at time-step t, xt, in yellow

and the output layer in blue.

z
(2)
l =

T∑
t=1

w
(1)
l,j xt

z
(2)
h,t = u

(1)
h xt +

H∑
i=1

w
(1)
h,i a

(2)
i,t−1

The most obvious difference is that the inputs for the recurrent layer are xt and a
(2)
1,t−1, . . . , a

(2)
H,t−1

and for the fully connected the inputs are x1, . . . , xT . Still, the RNN layer for each time-step t

can be viewed as its own fully connected neural network, and over every time-step as T copies

of a fully connected neural network executed in a chain.

The number of weights for a recurrent layer is H + H + (H · H) where H is the number

of hidden nodes. The first H in the sum is the number of bias weights, and the second is the

weights between each input and hidden nodes and H · H is the number of weights connecting

the hidden nodes in different time-steps.

We can write the equations (3.22), (3.23) and (3.24) in vector notation as

z
(2)
t = b(1) + u(1) xt +W (1) a

(2)
t−1, for t = 1, . . . , T, (3.25)

a
(2)
t = g(z

(2)
t), for t = 1, . . . , T, (3.26)

CHAPTER 3. DEEP LEARNING 32

and

z(3) = b(2) + V a
(2)
T ,

a(3) = softmax(z(3)).
(3.27)

To better understand the recurrent neural network, we can "unfold" the network for all

time-steps. An illustration of this is shown in Figure 3.12.

Figure 3.12: Unfolded graph of an RNN with one hidden layer. Each circle and ellipse represents

a whole layer of nodes. The hidden recurrent layer is in red and fully connected output layer in

blue. Adapted from figure 10.5 in Goodfellow et al. (2016).

At this point, we have only looked at RNNs with one hidden layer. It is, of course, possible

to have multiple hidden recurrent layers. Let us say that we have an RNN consisting of a total

of K layers, and hence K − 2 hidden recurrent layers. We can then generalize equations (3.25)

and (3.26) in the following way:

z
(k)
t = b(k−1) +U (k−1) a

(k−1)
t +W (k−1) a

(k)
t−1,

for t = 1, . . . , T and k = 2, . . . ,K − 1,
a
(k)
t = g(z

(k)
t),

(3.28)

where z(k)t is the input to the nodes in the k-th layer at time-step t, and a(k)t is the activation

of the nodes in layer k at time-step t. In this case we let a(1)t = xt. We notice that the weights

between the outputs from one layer to the next now is written as a matrix U . This is because,

in exception of the first hidden layer, it will connect all the nodes in layer (k − 1) to the nodes

in layer k. The weights U (1) will still be a vector since it connects a single input to the nodes in

the first hidden layer.

After the input layer and the (K − 2) hidden layers, the output from the (K − 1)-th layer at

time-step T is passed to the output layer. We have the following equations:

CHAPTER 3. DEEP LEARNING 33

z(K) = b(K−1) + V a
(K−1)
T ,

a(K) = softmax(z(K)).
(3.29)

While recurrent neural networks have been shown to be very effective for a variety of tasks,

there are some disadvantages in using RNNs. From equation (3.25) and (3.26) we notice that

the activation at depends on at−1 from the previous time-step in the same recurrent layer,

i.e to calculate at we need to have already computed the values at−1, . . . ,a1 recursively. In

other words, at in every hidden recurrent layer must be computed T times, one for each time-

step. This computation can not be parallelized, i.e. done at the same time, since each time-

step is dependent on the previous. This is a significant difference between recurrent networks

and other types of neural networks, like fully connected or convolutional networks. In the two

latter types, the activations of each layer can be computed in one step (in parallel), since the

input x = {xt, i = 1, . . . , T} is passed to the network at the same time, and the activations

are not dependent on each other in the same layer. We face the same issue in the backward

pass (backpropagation) since the gradients must be computed backwards through time like it is

illustrated in Figure 3.13.

Figure 3.13: Gradients flow backwards through time.

To illustrate why that is, we first look at a recurrent neural network with one hidden layer

and the partial derivative of the cost function C with respect to the weights in the recurrent

layer,W . Since C is a function of a1,a2, . . . ,aT , andW is an independent variable, we use the

multivariate chain rule and get

∂C

∂W
=

∂C

∂a1

∂a1
∂W

+
∂C

∂a2

∂a2
∂W

+ . . .+
∂C

∂aT

∂aT
∂W

=
∂C

∂aT

∂aT
∂a1

∂a1
∂W

+
∂C

∂aT

∂aT
∂a2

∂a2
∂W

+ . . .+
∂C

∂aT

∂aT
∂aT

∂aT
∂W

=

T∑
t=1

∂C

∂aT

∂aT
∂at

∂at
∂W

.

Both ∂C/∂aT and ∂at/∂W can be calculated without relying on other recurrent activations

than aT and at respectively, but ∂aT /∂at is different:

CHAPTER 3. DEEP LEARNING 34

∂aT
∂at

=
∂aT
∂aT−1

∂aT−1
∂aT−2

. . .
∂at+1

∂at
=

∏
T≥τ>t

∂aτ
∂aτ−1

. (3.30)

This type of backpropagation is called backpropagation through time (BPTT).

In addition to taking longer to train, recurrent neural networks also require more memory.

This is because the values of zt and at at each time-step t = 1, . . . , T in the forward pass must

be stored, later to be used when calculating the values of the gradients. So compared with a

fully connected layer, a recurrent layer needs to store T times more values for each node. The

memory usage and time to train increases with the length of each training sample T . For large

T ’s we might face problems, even for relatively few number of nodes and one or a few hidden

layers, due to not having enough memory available on the device we use to train the network, or

that the training simply takes too long.

With the architecture for a basic RNN that we have described above, we might also face

a different problem; namely, vanishing or exploding gradients. As the names suggest, it means

that the gradients that we need to update the weights will either vanish or explode. This can

happen to any type of neural network, but will almost always happen to regular RNNs unless

the number of time-steps T in our data is very small. To show why this occurs, we investigate

the equation (3.30) further.

∂aτ
∂aτ−1

=
∂aτ
∂zτ

∂zτ
∂aτ−1

. (3.31)

The two elements of this product are the Jacobian matrices

∂aτ
∂zτ

=



∂a1,τ
∂z1,τ

∂a1,τ
∂z2,τ

. . .
∂a1,τ
∂zH,τ

∂a2,τ
∂z1,τ

∂a2,τ
∂z2,τ

. . .
∂a2,τ
∂zH,τ

...
...

. . .
...

∂aH,τ
∂z1,τ

∂aH,τ
∂z2,τ

. . .
∂aH,τ
∂zH,τ


(3.32)

and

∂zτ
∂aτ−1

=



∂z1,τ
∂a1,τ−1

∂z1,τ
∂a2,τ−1

. . .
∂z1,τ

∂aH,τ−1

∂z2,τ
∂a1,τ−1

∂z2,τ
∂a2,τ−1

. . .
∂z2,τ

∂aH,τ−1
...

...
. . .

...

∂zH,τ
∂a1,τ−1

∂zH,τ
∂a2,τ−1

. . .
∂zH,τ
∂aH,τ−1


. (3.33)

CHAPTER 3. DEEP LEARNING 35

To calculate the elements of (3.32) we use equation (3.23), and get

∂aj,τ
∂zk,τ

=
∂

∂zk,τ

(
g(zj,τ)

)
= g′(zk,τ) δkj ,

where δkj is the Kronecker delta. Thus,

∂aτ
∂zτ

= diag(g′(zτ)).

To calculate the elements of (3.33) we use equation (3.22), and get

∂zk,τ
∂aj,τ−1

=
∂

∂aj,τ−1

(
bk + uk xτ +

H∑
i=1

wk,i ai,τ−1
)

= wk,j .

Thus,

∂zτ
∂aτ−1

= W .

We now insert the two expressions in (3.31), and get the following:

∂aτ
∂aτ−1

= diag(g′(zτ))W .

Equation (3.30) now becomes

∂aT
∂at

=
∏

T≥τ>t
diag(g′(zτ)) W .

If g is the identity function such that aτ = zτ then

∂aτ
∂zτ

= I,

the identity matrix. Hence, we have

∂aT
∂at

=
∏

T≥τ>t
I W = W T−t−1.

So after l = T − t− 1 time-steps, the repeated multiplication of W is equivalent to multiplying

with W l, the weight matrix to the power of l. If we suppose that the square H × H weight

matrix W has an eigendecomposition W = Q diag(λ)Q−1, where λ = {λi, i = 1, . . . ,H} are

the corresponding eigenvalues, then

W l =
(
Q diag(λ)Q−1

)l
= Q diag(λ)lQ−1. (3.34)

CHAPTER 3. DEEP LEARNING 36

Thus, if l is sufficiently large and |λi| < 1 then λli → 0 (vanish) or if |λi| > 1 then λli → ∞

(explode). This is what is meant by exploding or vanishing gradients for simple RNNs. The

most common of the two is vanishing gradients, and if the gradients of the cost with respect to

the weights become very small, the weight updates will be small too, and thus the number of

epochs required to reach a local minimum for the cost function will be large. There will also be

a problem learning long term dependencies due to this.

The example above is a very simplified presentation of why the problem with vanishing

and exploding gradients occur. In a more realistic scenario, the weight matrix W will not be

diagonalizable and thus not have an eigendecomposition. In this case, we need to use Jordan

normal form of W instead, W = P J P−1. The matrix J is the Jordan matrix, which is an

upper triangular matrix, with the eigenvalues on the diagonal and ones on the superdiagonal.

We omit the calculations of W l in this case as they are similar to the above calculation (3.34),

and produce the same problem with vanishing or exploding gradients. For a detailed description

and proof that any square matrix W is similar to a Jordan matrix J , see appendix B in Strang

(2006).

It can also be shown that the gradients will either vanish or explode if the activation function

g is a non-linear function like tanh.

3.3.1. Long Short-Term Memory

There has been made different versions of the recurrent neural network to overcome the problem

of vanishing gradients, and one of the most successful is the long short-term memory (LSTM)

model. This type of recurrent neural network architecture was first introduced by Hochreiter and

Schmidhuber (1997). In LSTM networks, we replace the hidden recurrent layers with memory

blocks. These blocks are similar to simple recurrent layers in that both take as input xt and the

output from the previous time-step, at−1, but memory blocks also have a recurrently connected

cell state and gates. The gates are used to regulate the flow of information between time-steps,

and consist of a sigmoid activation, that outputs values between zero and one. Simply put, if the

value is zero, the gate is "closed" and no information is passed through the gate. Conversely, if

the value is one, the gate is fully "open", and all the information passes through the gate. The

memory block has three types of gates; the forget gate, the input gate and the output gate. The

different gates each have a specific "job" in the memory block and regulate different parts of the

information. The vector with the gate values between zero and one is element-wise multiplied

with the vector with the information which we want to control.

The memory cell holds a "cell state", ct. This cell state is passed on to the next time-step

CHAPTER 3. DEEP LEARNING 37

along with the output at, and updated in each time-step. An illustration of a memory block is

depicted in Figure 3.14, and shows the memory cell update and different gates.

Figure 3.14: Memory block in a LSTM network at time-step t. The red, green and blue ellipses

are the forget, input and output gates, respectively.

We will now look at the equations for a memory block in an LSTM network with one hidden

layer. First, we will give the equation for the forget gate at time-step t:

f t = σ(bf + ufxt +W f at−1).

The σ denotes the sigmoid activation function, and it takes xt and at−1, the output from the

memory block at time-step (t − 1), as input. Since we will have many different sets of weight

vectors and matrices in the memory block, we will denote the weights with a superscript to

differentiate between the weights. In the forget gate bf , uf and W f , are the bias weights,

the input weights and the recurrent weights between time-steps, respectively. The forget gate

will be multiplied element-wise with the cell state in the previous time-step, and controls what

information from this that we will remember or forget.

Next, we have the input gate. The equation for this gate is the same as for the forget gate,

except with different weights.

it = σ(bi + uixt +W i at−1).

The input gate will regulate how much of the new information from xt and at we will add to the

cell state in the current time-step t. It will be multiplied element-wise with the candidate cell

state. The equation for this is as follows:

c̃t = tanh(bc + ucxt +W c at−1).

CHAPTER 3. DEEP LEARNING 38

In this case, we have used the tanh function as activation, but it is also possible to use the

sigmoid. We then update the cell state using the forget gate, the previous cell state, the input

gate and the candidate cell state;

ct = f t � ct−1 + it � c̃t.

As we can see, the new cell state ct is the sum of the information we want to remember from the

previous cell state ct−1 and what we want to add from the new information. Lastly, we want to

decide what to output from the memory block. We do this using the output gate:

ot = σ(bo + uoxt +W o at−1).

The output gate is then multiplied element-wise with the cell state ct that has gone through a

tanh function first.

at = ot � tanh(ct)

Similar to the simple RNN model, at the last time-step T , the activation aT is passed to a fully

connected output layer like in equation (3.27).

Figure 3.15: Unfolded long short-term memory neural network with one hidden layer.

We have omitted the usual superscript (k) denoting the layer for simplicity, and easy reading

since our equations above all belong to the same hidden layer. We could of course have multiple

hidden layers of memory blocks, and the generalization for this will be similar to equations (3.28)

and (3.29). Long short-term networks with multiple hidden layers are often referred to as stacked

LSTM’s.

The question is, how does this type of architecture help with preventing the vanishing gradient

problem, and the answer lies in the cell state and the forget gate. In the LSTM network, the

backward propagation goes through time only in the cell states ct. We have

CHAPTER 3. DEEP LEARNING 39

∂cT
∂ct

=
∂cT
∂cT−1

∂cT−1
∂cT−2

. . .
∂ct+1

∂ct
=

∏
T≥τ>t

∂cτ
∂cτ−1

,

and

∂cτ
∂cτ−1

=
∂

∂cτ−1

(
f τ � cτ−1 + iτ � c̃τ .

)
= f τ .

Thus,

∂cT
∂ct

=
∏

T≥τ>t
f τ .

Since the network controls the forget gate activations, f τ , with the weights bf , uf and W f ,

and the activation function of the forget gate is the sigmoid function, the network can if it is

necessary, learn weights such that fτ ≈ 1. Thus, the network can learn weights such that the

gradients will not vanish or vanish at a much slower rate than for simple RNNs.

Chapter 4

Simulating data

In this chapter, we will demonstrate how we simulate the time series data that we need to train

the neural network models, and how we select order based on the AIC and BIC values. We will

simulate data from pure autoregressive (AR), and moving-average (MA) processes with orders

from 1 to 4, in addition to data from autoregressive moving-average (ARMA) processes with

orders from (1, 1) to (4, 4).

Software

We use Python with the library statsmodels (Seabold and Perktold, 2010) to simulate the time

series data and calculate AIC and BIC values.

Approach for simulating data of length n from an ARMA(p,q) process

1. Generate uniform random samples of size p and q from the interval (−2.1,−0.1)∪(0.1, 2.1).

This will be the values for the p + q parameters. For AR(p) let q = 0 and for MA(q) let

p = 0.

2. Calculate the roots.

(a) If p 6= 0: let rAR be the roots for the autoregressive polynomial. If min(|rAR|) > 1 then

the model is stationary and causal, and we can proceed to the next step. Otherwise,

the model is neither stationary nor causal and we go back to step 1.

(b) If q 6= 0: let rMA be the roots for the moving-average polynomial. If min(|rMA|) > 1

then the model is invertible, and we can proceed to the next step. Otherwise, the

model is not invertible and we go back to step 1.

(c) If p 6= 0 and q 6= 0, then check if any of the roots in rAR is equal to any of the roots

in rMA. If we have any equal roots, we go back to step 1, otherwise, we proceed to

41

CHAPTER 4. SIMULATING DATA 42

the next step.

3. Simulate n values from an ARMA(p, q) model with the chosen parameters, and we use a

standard normal distribution for the white noise.

4. Label the simulated time series with the order (p, q).

The reason for drawing the autoregressive and moving average parameters from the interval

(−2.1,−0.1)∪ (0.1, 2.1) is that we want to avoid values too close to zero. Also, we found through

experimentation that values greater in absolute value than 2.1 did not yield causal and invertible

models.

We chose to simulate 250 000 samples per order in each dataset, yielding 1 000 000 and 4

000 000 samples for the AR/MA and ARMA datasets respectively. After simulation of data, we

split the data in a training, validation and test set. Then, we calculate the AIC and BIC for

each sample in the test dataset.

Approach for selecting order by AIC and BIC for the test sets

1. Fit a model for all orders to each sample we want to classify.

2. Calculate the AIC and BIC value for each fitted time series.

3. Label each sample with the order that gives the lowest AIC and BIC value, respectively.

Table 4.1: Datasets.

Dataset name Model and orders Length (n) Number of samples
Training/

validation/test split

AR30 AR(1)-AR(4) 30 1 000 000 0.98/0.01/0.01

AR100 AR(1)-AR(4) 100 1 000 000 0.98/0.01/0.01

AR1000 AR(1)-AR(4) 1000 1 000 000 0.98/0.01/0.01

MA30 MA(1)-MA(4) 30 1 000 000 0.98/0.01/0.01

MA100 MA(1)-MA(4) 100 1 000 000 0.98/0.01/0.01

MA1000 MA(1)-MA(4) 1000 1 000 000 0.98/0.01/0.01

ARMA30 ARMA(1,1)-ARMA(4,4) 30 4 000 000 0.98/0.01/0.01

ARMA100 ARMA(1,1)-ARMA(4,4) 100 4 000 000 0.98/0.01/0.01

ARMA1000 ARMA(1,1)-ARMA(4,4) 1000 4 000 000 0.98/0.01/0.01

CHAPTER 4. SIMULATING DATA 43

In many machine learning books, the authors will recommend as a general rule of thumb that

we split that data in 0.8/0.1/0.1 for the training, validation and test set. However, when the

dataset is very large, this might not be a good choice. We want the validation and test set to

represent the variation in the data and at the same time, use as much as possible of the data

for training. In our case, a split of 0.98/0.01/0.01 yields 10 000 samples in the AR/MA datasets

and 40 000 samples in the ARMA datasets for validation and testing. This seems sufficient.

A small fraction of the samples in some of the test datasets, specifically the AR and ARMA

datasets were not able to be fitted with any of the orders, and thus a AIC and BIC value was

not calculated. We still chose to keep these samples with NaN as AIC and BIC value, since

they amounted to 0.24% (AR30), 0.1% (AR100), 1.27% (ARMA30), 0.3% (ARMA100), 0.13%

(ARMA1000) and thus would not have a significant impact the accuracies of AIC and BIC.

Chapter 5

Model training and evaluation of results

5.1. Software

We use the Python library Keras (Chollet et al., 2015), which is a high-level application pro-

gramming interface (API), with Tensorflow (Abadi et al., 2015) as a backend to train all our

models. For further details on this, see Appendix B.

5.2. Model training

For the fully connected, convolutional and LSTM layers, we initialize the weights with values

before training begins. The default choices in Keras are zeros for the bias weights and the

Glorot uniform initializer (Glorot and Bengio, 2010) for weights used in the linear transformation

of the outputs. This initializes the weights by generating values from a uniform distribution,

W ∼ Unif(−6/(m + n), 6/(m + n)), where n is the number of nodes in the layer and m is the

number of nodes in the previous layer. For weights used in the linear transformation of the gates,

we use the orthogonal initializer, which generates an orthogonal matrix.

Each model will be trained using a mini-batch, that is a batch size between 64 and 512. Also,

we use early stopping with a patience between 10 and 30. So training is stopped when the cost

function evaluated for the validation set is not improved for 10 or 30 epochs, and we restore

the weights back to the epoch that gives the lowest validation cost. A larger batch size makes

training faster per epoch since the calculations can be parallelized, but uses more memory since

all the activation values must be stored until all the samples in the batch are passed through

the network. Higher patience results in more epochs before training is stopped, and thus makes

total training time longer. Thus, the exact choices for batch size and early stopping patience are

based on training time and memory limitations for a specific dataset and model.

When training the models we use the Adam optimizer from Chapter 3 in equation (3.18)

45

CHAPTER 5. MODEL TRAINING AND EVALUATION OF RESULTS 46

with learning rate α = 0.001, β1 = 0.9 and β2 = 0.999.

The results are based on training several different fully connected, convolutional and LSTM

neural network models on each training dataset. Then we choose the best model, i.e. the model

with the highest validation accuracy in each model category.

Accuracy =
Number of correctly classified samples

Total number of samples

After choosing a model, we evaluate it on the test data and calculate accuracies for each class

in addition to the average accuracy for all classes. We expect the test accuracies to be slightly

lower than the validation accuracies. This is because even though the models are not trained on

the validation data, we select our models based on evaluating the models on this data. Thus, it

will give us an overly optimistic result. In Appendix A, we illustrate the models used along with

a Table of accuracies for each dataset. We will also introduce a dummy classifier, that serves

as a baseline for accuracies of our methods. Since we have approximately equal representation

of each class, we use a uniform distribution to randomly classify samples. Thus, if we have M

classes, the uniform dummy classifier is,

P (true class = j) =
1

M
for j = 1, . . . ,M. (5.1)

We will also include order selection column charts showing what order the neural network

that performs best, along with AIC and BIC, selects given a true order. This will give a more

detailed picture of how an order selection method actually behaves for the samples that are

wrongly classified. These column charts are found in Appendix A.

It is important to note that the models and results in this thesis by no means represent the

best possible or optimal models for our data. Since we have trained at least two models in each

model category (fully connected, convolutional and recurrent) on each of the nine datasets, fine-

tuning the architectures and hyperparameters to find the optimal model for each dataset were

not realistic given the time frame. Thus, there will most likely exist other model architectures

that would give us better classification accuracies than the models we use.

Each model is only trained and evaluated on the test set one time. Training the same model

multiple times and taking the average of the classification accuracies would yield less variance

in the results because there is some randomness due to the weight initializations that possibly

result in different local minimums for the cost function. However, this risk is decreased when the

training dataset is large. In our case, we use training datasets with almost 1 000 000 samples

when we have 4 categories to classify and almost 4 000 000 samples when we have 16 categories

CHAPTER 5. MODEL TRAINING AND EVALUATION OF RESULTS 47

to classify. We found that the validation accuracies for models within the same model sub-class,

i.e. fully connected, convolutional or LSTM did not vary much even for possible large differences

in the number of hidden layers or size of layers. This suggests that the results we present are

relatively stable.

5.3. Results

5.3.1. Time series of length 30

We begin with the three datasets, AR30, MA30 and ARMA30, with the shortest length of

each sample. The neural network models for each of these datasets that provided the highest

validation accuracy scores are illustrated in Figures A.1 - A.3.

In Table A.1, we see the accuracy scores for the models evaluated on the test set of the AR30

dataset, together with accuracy scores for AIC and BIC. If the orders where randomly predicted

using the uniform dummy classifier (5.1) the accuracies would be 0.25, since we have 4 classes.

We notice that all the models, in addition to AIC and BIC, performs better than the uniform

dummy classifier on this dataset. We also observe that all the neural network models outperform

both AIC and BIC in the average accuracy for all orders. The LSTM model performs the best

with an average accuracy of 0.630, compared to 0.558 and 0.549 for AIC and BIC, respectively.

It is not surprising that the neural network model that has the best performance is the LSTM

since this model is designed for the type of sequential data that we use. It is also interesting to

note that while BIC is least accurate on average, it is most accurate in classifying AR(1) and

AR(2) models. This might occur because BIC penalizes a high number of parameters more, as

we see with the low accuracy for AR(3) and AR(4). In Figure A.9, we can see which order the

best neural network model (LSTM), together with AIC and BIC, chooses given a true order.

We observe that the LSTM model, AIC and BIC show a similar distribution of classifications,

especially AIC and LSTM. That is, given that the true order is, e.g. p = 3, LSTM and AIC will

select approximately the same number of samples with the order p = 4 etc.

For the MA30 dataset in Table A.2 we observe that all the neural network models outperform

both AIC and BIC, with a difference of 0.2 between the best performing model (LSTM) and

AIC/BIC. We notice that for MA(2) and MA(4), AIC and BIC yield accuracies that are only

slightly above or below what the accuracy for the uniform dummy classifier. Figure A.10 sheds

light on why this occurs; both AIC and BIC are most likely to select MA(1) regardless of the true

order. This explains the high accuracies for order q = 1 combined with relatively low average

accuracies for AIC and BIC. Further, we notice that unlike for the AR30 dataset, the LSTM

CHAPTER 5. MODEL TRAINING AND EVALUATION OF RESULTS 48

model show a very different distribution of classifications compared with AIC and BIC. While the

LSTM model shows a similar pattern of classification as the LSTM model for the AR30 dataset,

AIC and BIC fail to recognize which order the moving-average time series data is generated from.

In Table A.3 we find the accuracies for the ARMA30 dataset. We can observe that all three

neural network models, AIC and BIC perform poorly, especially for the higher orders of p and

q. Since we have 16 different combinations of p and q, the uniform dummy classifier would

accurately classify 0.063 of the samples. We notice that several of the individual order accuracy

scores are below this value, especially for BIC where half of the accuracies are less than 0.063.

The LSTM model performs slightly better than the other neural network models, AIC and BIC,

with an average accuracy of 0.199. In Figure A.11, we see that many of the column charts for

the LSTM model, AIC and BIC exhibit a wavy pattern. This makes sense because of the way

the orders on the x-axis is ordered. If e.g. the true order is (3, 2), the order (2, 2) which is four

steps left on the x-axis in A.11c, would likely fit the data well too. An interesting observation

is that when p > 2 and q > 2, the true order is never the most likely to be predicted by the

LSTM model or selected by AIC and BIC. The poor results for AIC and BIC can be explained

by the number of parameters to estimate, combined with only 30 observations per sample. For

the largest model, ARMA(4, 4), the number of parameters is 8, and this gives a ratio of only

3.75 between the number of parameters and observations.

5.3.2. Time series of length 100

Next, we will discuss the results for the datasets with time series of length 100, AR100, MA100

and ARMA100. The models that were chosen for these datasets are illustrated in Figures A.4

and A.5.

The accuracy scores for the AR100 data is in Table A.4, and shows that yet again the LSTM

model proves to yield the highest average accuracy with 0.822 correct classifications compared

to 0.756 for AIC and 0.800 for BIC. In Figure A.12, we find a very similar pattern of order

selections between LSTM and AIC/BIC, just like we found for the AR30 data.

In Table A.5 we find the accuracies for the MA100 dataset. Like we saw with MA30, all the

neural network models are significantly better at selecting the true order than AIC and BIC.

The best model is the LSTM, with a classification accuracy of 0.785. With 100 observations

per sample, we find that AIC and BIC performs much better for q = 3 and q = 4 than for the

MA30 data, but for q = 4 BIC still has an accuracy below 0.25. Figure A.13 shows that LSTM

compared to AIC and BIC behaves very differently when the true order is larger than one. While

LSTM gives sound order classifications, e.g. a larger number of the MA(3) samples are classified

CHAPTER 5. MODEL TRAINING AND EVALUATION OF RESULTS 49

as q = 2 than q = 1, AIC, and BIC does not behave this way. We observe that both AIC and

BIC are more likely to select q = 1 than q = 2 for the MA(3) samples, and similarly for the

MA(4) samples.

For the ARMA100 dataset, we find the results in Table A.6, and we observe that LSTM on

average yields a higher accuracy than all other models, AIC and BIC, with an accuracy of 0.364.

This is slightly higher than the accuracy of BIC with an accuracy of 0.327. Figure A.14 shows

that LSTM, AIC and BIC generally choose the true order more often than any other individual

orders, with a few exceptions for BIC. There are also some similarities in the patterns of order

selections given a true order between LSTM, AIC and BIC. However, they are not as apparent

as we observed for the pure autoregressive dataset.

5.3.3. Time series of length 1000

Lastly, we review the results for the three datasets AR1000, MA1000 and ARMA1000. We find

the models that are chosen for each dataset in Figures A.7- A.9.

For the AR1000 dataset, we find the accuracies in Table A.7, and observe that BIC performs

best with an average accuracy of 0.983 compared to 0.973 for the LSTM model. The difference is

very small, and as we can see in Figure A.15, LSTM and BIC have almost the same distribution

of order classifications.

The accuracy scores for the MA1000 dataset is in Table A.8. We observe that the LSTM

model gives almost perfect classification for all orders and an average accuracy of 0.974, compared

to 0.629 for BIC. We notice that the LSTM model for the MA1000 dataset performs similarly

as the LSTM model for AR1000 dataset, unlike AIC and BIC. In Figure A.16 we find, again,

inconsistency in the order selection by AIC and BIC for q ≥ 2.

In Table A.9, we find the results for the ARMA1000 dataset. First, we observe that BIC

performs the best with an average accuracy of 0.684. The LSTM model gives a slightly lower

average accuracy of 0.660. We also observe that the fully connected (NNET) only classifies 0.218

of the samples correctly, which is lover than what we found for the fully connected model for the

ARMA100 data. In Figure A.17, we can observe clear similarities between LSTM and BIC.

Chapter 6

Conclusion

In this thesis we have explored if we can use deep learning methods to identify the order of sim-

ulated time series data, and how the performance of different types of neural networks compares

to the information criteria based order selection methods, AIC and BIC. We recall that AIC

and BIC are designed to minimize the one-step prediction error, and this goal is not necessarily

achieved by using the true order of the model. In the neural network method, we simply seek to

find a model that can correctly identify the true order. Thus, the comparison of the methods is

not to determine which method is "best", but rather to attempt to answer the question if neural

networks can be used for model selection in time series.

We also investigated how different time series processes (AR, MA and ARMA) in addition to

the number of observations per sample affected the results. We found that of the neural network

models, the LSTM model was most accurate in classifying the order for all datasets. This is in

accordance with the theory behind LSTM models. They are designed to be used on sequential

data, while fully connected and convolutional networks are not. Still, the fully connected models

seemed to work reasonably well for the datasets with samples of length 30 and 100, and in most

cases, the difference between CNN and LSTM was small.

When we compared the performance of neural networks with AIC and BIC, we found that

the LSTM model outperformed AIC for all datasets. The LSTM model also performed better

than BIC, except for the AR1000 and ARMA1000 datasets. It is worth to note that in those

cases, the difference in accuracy was small. We also found that for the neural network models,

the difference in performance on data from both MA and AR processes was not nearly as great

as that of AIC and BIC. In addition to this, the difference between deep learning and AIC/BIC

for the AR and ARMA data was less than that for MA data. This is probably because MA

parameters are more difficult to estimate than AR parameters.

In regards to how the length of the time series affected the results, we observed that the

51

CHAPTER 6. CONCLUSION 52

average accuracy performance in the deep learning models, AIC and BIC generally increased

with the number of observation per sample. An exception from this was the fully connected

(NNET) models when the number of observations was 1000.

Another interesting find was the similarities between LSTM and the information criterion

methods, in the distribution of order selections, especially for the AR data. Further investigation

could be done to find out whether these similarities stem from the same samples in the data.

That is, given a sample of time series data, will AIC or BIC and LSTM generally select the same

order, or can the similarities in order selection distribution be attributed to something else.

It would also be interesting to investigate how another distribution for the white noise would

affect the results, as the likelihood function that AIC and BIC are based on assumes a normal

distribution for the observations.

Appendix A

Models and results

A.1. Models

Since we will many different models, we want to have a clear way of describing the architecture

of each model. We will borrow the syntax from the Keras library to specify different layers.

• A fully connected layer with n nodes, and the rectified linear unit (reLU) as activation

function:

Dense(n), act = reLU

• A dropout layer, with dropout fraction q.

Dropout(q)

• A 1D convolutional layer with f filters and kernel size s with a sigmoid activation:

Conv1D(f,s), act = sigmoid

If we use zero padding, i.e keeping the dimensions of the output the same as the input to

the layer, we write:

Conv1D(f,s), act = sigmoid, pad

We use the default stride length of 1 in all convolutional layers.

• The flatten operation:

Flatten()

• A max pooling layer with a window size of r:

53

APPENDIX A. MODELS AND RESULTS 54

MaxPooling1D(r)

• A LSTM layer with n nodes in each gate, cell-state and output with tanh as activation for

the candidate cell state and output state:

LSTM(n), act = tanh

The default activation for the gates is the sigmoid activation and this is what we use for

all LSTM layers.

The Figures A.1-A.8 show the neural network architectures for each dataset.

Input X

Dense(500), act = reLU

Dense(250), act = reLU

Dense(100), act = reLU

Dense(50), act = reLU

Dense(4), act = softmax

Input X

Conv1D(50,3), act = reLU

Conv1D(50,3), act = reLU

MaxPooling1D(2)

Flatten()

Dense(50), act = reLU

Dense(4), act = softmax

Input X

LSTM(64), act = tanh

LSTM(64), act = tanh

Dense(50), act = tanh

Dense(4), act = softmax

Figure A.1: Models used for AR30 dataset. Left: fully connected model with 171 104 weights.

Middle: CNN model with 40 604 weights. Right: LSTM model with 53 374 weights.

APPENDIX A. MODELS AND RESULTS 55

Input X

Dense(500), act = reLU

Dense(250), act = reLU

Dense(100), act = reLU

Dense(50), act = reLU

Dense(4), act = softmax

Input X

Conv1D(32,3), act = reLU, pad

Conv1D(32,3), act = reLU

MaxPooling1D(2)

Dropout(0.1)

Conv1D(64,3), act = reLU, pad

Conv1D(64,3), act = reLU

MaxPooling1D(2)

Dropout(0.1)

Flatten()

Dense(512), act = reLU

Dropout(0.2)

Dense(4), act = softmax

Input X

LSTM(64), act = tanh

LSTM(64), act = tanh

Dense(50), act = tanh

Dense(4), act = softmax

Figure A.2: Models used for MA30 dataset. Left: fully connected model with 171 104 weights.

Middle: CNN model with 220 964 weights. Right: LSTM model with 53 374 weights.

APPENDIX A. MODELS AND RESULTS 56

Input X

Dense(2000), act = reLU

Dense(2000), act = reLU

Dense(2000), act = reLU

Dense(200), act = reLU

Dense(200), act = reLU

Dense(16), act = softmax

Input X

Conv1D(128,3), act = reLU, pad

Conv1D(128,3), act = reLU

MaxPooling1D(2)

Conv1D(64,3), act = reLU, pad

Conv1D(64,3), act = reLU

MaxPooling1D(2)

Conv1D(64,3), act = reLU, pad

Conv1D(64,3), act = reLU

Conv1D(64,3), act = reLU, pad

Conv1D(64,3), act = reLU

Flatten()

Dense(512), act = reLU

Dense(16), act = softmax

Input X

LSTM(200), act = tanh

LSTM(200), act = tanh

Dense(50), act = reLU

Dense(16), act = softmax

Figure A.3: Models used for the ARMA30 dataset. Left: fully connected model with 8 509 616

weights. Middle: CNN model with 210 448 weights. Right: LSTM model with 493 266 weights.

APPENDIX A. MODELS AND RESULTS 57

Input X

Dense(2000), act = reLU

Dense(2000), act = reLU

Dense(2000), act = reLU

Dense(200), act = reLU

Dense(200), act = reLU

Dense(4), act = softmax

Input X

Conv1D(128,3), act = reLU, pad

Conv1D(128,3), act = reLU

MaxPooling1D(2)

Conv1D(64,3), act = reLU, pad

Conv1D(64,3), act = reLU

MaxPooling1D(2)

Conv1D(64,3), act = reLU, pad

Conv1D(64,3), act = reLU

Conv1D(64,3), act = reLU, pad

Conv1D(64,3), act = reLU

Flatten()

Dense(512), act = reLU

Dense(4), act = softmax

Input X

LSTM(64), act = tanh

LSTM(64), act = tanh

Dense(50), act = tanh

Dense(4), act = softmax

Figure A.4: Models used for AR100 and MA100 dataset. Left: fully connected model with

8 647 204 weights. Middle: CNN model with 761 348 weights. Right: LSTM model with 53 374

weights.

APPENDIX A. MODELS AND RESULTS 58

Input X

Dense(2000), act = reLU

Dense(2000), act = reLU

Dense(2000), act = reLU

Dense(200), act = reLU

Dense(200), act = reLU

Dense(16), act = softmax

Input X

Conv1D(256,5), act = reLU, pad

Conv1D(256,5), act = reLU

MaxPooling1D(2)

Conv1D(124,3), act = reLU, pad

Conv1D(124,3), act = reLU

MaxPooling1D(2)

Conv1D(64,3), act = reLU, pad

Conv1D(64,3), act = reLU

Flatten()

Dense(512), act = reLU

Dense(16), act = softmax

Input X

LSTM(200), act = tanh

LSTM(200), act = tanh

Dense(50), act = reLU

Dense(16), act = softmax

Figure A.5: Models used for the ARMA100 dataset. Left: fully connected model with 8 649 616

weights. Middle: CNN model with 1 211 024 weights. Right: LSTM model with 493 266 weights.

APPENDIX A. MODELS AND RESULTS 59

Input X

Dense(2000), act = reLU

Dense(2000), act = reLU

Dense(2000), act = reLU

Dense(200), act = reLU

Dense(200), act = reLU

Dense(4), act = softmax

Input X

Conv1D(256,5), act = reLU, pad

Conv1D(256,5), act = reLU

MaxPooling1D(2)

Conv1D(124,3), act = reLU, pad

Conv1D(124,3), act = reLU

MaxPooling1D(2)

Conv1D(64,3), act = reLU, pad

Conv1D(64,3), act = reLU

Flatten()

Dense(512), act = reLU

Dense(4), act = softmax

Input X

LSTM(200), act = tanh

LSTM(100), act = tanh

Dense(100), act = reLU

Dense(4), act = softmax

Figure A.6: Models used for the AR1000 dataset. Left: fully connected model with 10 447 204

weights. Middle: CNN model with 8 285 828 weights. Right: LSTM model with 292 504 weights.

APPENDIX A. MODELS AND RESULTS 60

Input X

Dense(2000), act = reLU

Dense(2000), act = reLU

Dense(2000), act = reLU

Dense(200), act = reLU

Dense(200), act = reLU

Dense(4), act = softmax

Input X

Conv1D(128,3), act = reLU, pad

Conv1D(128,3), act = reLU

MaxPooling1D(2)

Conv1D(64,3), act = reLU, pad

Conv1D(64,3), act = reLU

MaxPooling1D(2)

Conv1D(64,3), act = reLU, pad

Conv1D(64,3), act = reLU

Conv1D(64,3), act = reLU, pad

Conv1D(64,3), act = reLU

Flatten()

Dense(512), act = reLU

Dense(4), act = softmax

Input X

LSTM(64), act = tanh

LSTM(64), act = tanh

Dense(50), act = reLU

Dense(4), act = softmax

Figure A.7: Models used for the MA1000 dataset. Left: fully connected model with 10 447 204

weights. Middle: CNN model with 8 134 148 weights. Right: LSTM model with 53 374 weights.

APPENDIX A. MODELS AND RESULTS 61

Input X

Dense(2000), act = reLU

Dense(2000), act = reLU

Dense(2000), act = reLU

Dense(200), act = reLU

Dense(200), act = reLU

Dense(16), act = softmax

Input X

Conv1D(128,3), act = reLU, pad

Conv1D(128,3), act = reLU

MaxPooling1D(2)

Conv1D(64,3), act = reLU, pad

Conv1D(64,3), act = reLU

MaxPooling1D(2)

Conv1D(64,3), act = reLU, pad

Conv1D(64,3), act = reLU

Conv1D(64,3), act = reLU, pad

Conv1D(64,3), act = reLU

Flatten()

Dense(512), act = reLU

Dense(16), act = softmax

Input X

LSTM(150), act = tanh

LSTM(100), act = tanh

Dense(1000), act = reLU

Dense(16), act = softmax

Figure A.8: Models used for the ARMA1000 dataset. Left: fully connected model with 10 449 616

weights. Middle: CNN model with 8 140 304 weights. Right: LSTM model with 308 616 weights.

APPENDIX A. MODELS AND RESULTS 62

A.2. Tables

Tables A.1-A.9 show the accuracy scores of the fully connected (NNET), convolutional (CNN),

LSTM model, AIC and BIC for each dataset. Highest accuracy scores are in bold and scores

below the uniform dummy classifier are in red.

Table A.1: Accuracy scores for the AR30 dataset.

Order NNET CNN LSTM AIC BIC

1 0.880 0.863 0.875 0.755 0.906

2 0.554 0.593 0.604 0.592 0.607

3 0.502 0.457 0.503 0.461 0.398

4 0.548 0.484 0.544 0.426 0.294

Average 0.618 0.598 0.630 0.558 0.549

Table A.2: Accuracy scores for the MA30 dataset.

Order NNET CNN LSTM AIC BIC

1 0.840 0.836 0.827 0.767 0.908

2 0.543 0.580 0.551 0.343 0.332

3 0.422 0.356 0.448 0.289 0.238

4 0.509 0.434 0.511 0.157 0.084

Average 0.576 0.550 0.582 0.386 0.386

APPENDIX A. MODELS AND RESULTS 63

Table A.3: Accuracy scores for the ARMA30 dataset.

Order NNET CNN LSTM AIC BIC

1,1 0.742 0.741 0.738 0.492 0.701

1,2 0.305 0.315 0.316 0.278 0.330

1,3 0.244 0.205 0.272 0.133 0.094

1,4 0.311 0.256 0.254 0.104 0.061

2,1 0.314 0.300 0.324 0.371 0.464

2,2 0.093 0.102 0.117 0.203 0.184

2,3 0.091 0.084 0.062 0.093 0.056

2,4 0.063 0.037 0.091 0.057 0.020

3,1 0.267 0.235 0.248 0.151 0.148

3,2 0.079 0.060 0.102 0.115 0.088

3,3 0.073 0.054 0.050 0.034 0.014

3,4 0.061 0.052 0.099 0.029 0.011

4,1 0.230 0.275 0.272 0.191 0.158

4,2 0.057 0.049 0.083 0.098 0.056

4,3 0.082 0.068 0.060 0.048 0.016

4,4 0.113 0.096 0.112 0.025 0.007

Average 0.194 0.182 0.199 0.150 0.149

Table A.4: Accuracy scores for the AR100 dataset.

Order NNET CNN LSTM AIC BIC

1 0.966 0.946 0.956 0.763 0.965

2 0.779 0.768 0.800 0.732 0.817

3 0.697 0.706 0.754 0.704 0.716

4 0.722 0.755 0.782 0.827 0.705

Average 0.790 0.792 0.822 0.756 0.800

APPENDIX A. MODELS AND RESULTS 64

Table A.5: Accuracy scores for the MA100 dataset.

Order NNET CNN LSTM AIC BIC

1 0.912 0.955 0.934 0.816 0.969

2 0.748 0.728 0.770 0.451 0.488

3 0.696 0.623 0.702 0.420 0.402

4 0.716 0.689 0.737 0.291 0.241

Average 0.767 0.747 0.785 0.492 0.521

Table A.6: Accuracy scores for the ARMA100 dataset.

Order NNET CNN LSTM AIC BIC

1,1 0.839 0.824 0.849 0.424 0.828

1,2 0.434 0.462 0.521 0.354 0.566

1,3 0.426 0.424 0.454 0.281 0.315

1,4 0.411 0.422 0.499 0.308 0.310

2,1 0.394 0.415 0.510 0.390 0.612

2,2 0.191 0.255 0.308 0.313 0.406

2,3 0.126 0.160 0.249 0.250 0.237

2,4 0.063 0.122 0.243 0.260 0.204

3,1 0.379 0.360 0.464 0.305 0.362

3,2 0.135 0.162 0.242 0.266 0.266

3,3 0.067 0.082 0.167 0.178 0.116

3,4 0.119 0.146 0.186 0.212 0.122

4,1 0.308 0.390 0.461 0.346 0.383

4,2 0.090 0.161 0.250 0.299 0.241

4,3 0.099 0.063 0.197 0.227 0.139

4,4 0.111 0.124 0.239 0.248 0.123

Average 0.261 0.285 0.364 0.291 0.327

APPENDIX A. MODELS AND RESULTS 65

Table A.7: Accuracy scores for the AR1000 dataset.

Order NNET CNN LSTM AIC BIC

1 0.930 0.991 0.987 0.764 0.994

2 0.635 0.952 0.971 0.780 0.980

3 0.583 0.917 0.966 0.832 0.980

4 0.514 0.935 0.969 0.993 0.979

Average 0.664 0.949 0.973 0.843 0.983

Table A.8: Accuracy scores for the MA1000 dataset.

Order NNET CNN LSTM AIC BIC

1 0.923 0.989 0.991 0.810 0.991

2 0.782 0.943 0.974 0.503 0.609

3 0.449 0.921 0.964 0.501 0.561

4 0.762 0.917 0.967 0.363 0.361

Average 0.729 0.942 0.974 0.543 0.629

APPENDIX A. MODELS AND RESULTS 66

Table A.9: Accuracy scores for the ARMA1000 dataset.

Order NNET CNN LSTM AIC BIC

1,1 0.737 0.910 0.924 0.284 0.946

1,2 0.411 0.698 0.803 0.352 0.831

1,3 0.379 0.597 0.765 0.497 0.696

1,4 0.422 0.578 0.759 0.581 0.733

2,1 0.357 0.700 0.814 0.373 0.843

2,2 0.107 0.445 0.674 0.394 0.737

2,3 0.067 0.353 0.619 0.509 0.626

2,4 0.127 0.332 0.578 0.590 0.648

3,1 0.212 0.597 0.769 0.508 0.697

3,2 0.074 0.327 0.558 0.500 0.629

3,3 0.057 0.208 0.502 0.492 0.506

3,4 0.098 0.150 0.478 0.582 0.529

4,1 0.183 0.595 0.748 0.607 0.742

4,2 0.089 0.174 0.596 0.618 0.666

4,3 0.081 0.181 0.474 0.598 0.558

4,4 0.104 0.218 0.506 0.751 0.562

Average 0.218 0.440 0.660 0.515 0.684

APPENDIX A. MODELS AND RESULTS 67

A.3. Distribution of the order selections

Figures A.9 - A.17 show the distribution of order selections for the best performing neural

network, AIC and BIC for each dataset.

1 2 3 4
Order predicted by

LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

True order = 1

1 2 3 4
Order predicted by

LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 2

1 2 3 4
Order predicted by

LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 3

1 2 3 4
Order predicted by

LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 4

1 2 3 4
Order selected by AIC

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1 2 3 4
Order selected by AIC

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
Order selected by AIC

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
Order selected by AIC

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
Order selected by BIC

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1 2 3 4
Order selected by BIC

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
Order selected by BIC

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
Order selected by BIC

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.9: Distributions for the AR30 dataset.

1 2 3 4
Order predicted by

LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
True order = 1

1 2 3 4
Order predicted by

LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 2

1 2 3 4
Order predicted by

LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 3

1 2 3 4
Order predicted by

LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 4

1 2 3 4
Order selected by AIC

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1 2 3 4
Order selected by AIC

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
Order selected by AIC

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
Order selected by AIC

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
Order selected by BIC

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1 2 3 4
Order selected by BIC

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
Order selected by BIC

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
Order selected by BIC

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.10: Distributions for the MA30 dataset.

APPENDIX A. MODELS AND RESULTS 69

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

True order = 1,1

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 1,2

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 1,3

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 1,4

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

(a) Order (1,1) to (1,4).

Figure A.11: Distributions for the ARMA30 dataset.

APPENDIX A. MODELS AND RESULTS 70

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

True order = 2,1

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 2,2

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 2,3

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 2,4

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

(b) Order (2,1) to (2,4).

Figure A.11: Distributions for the ARMA30 dataset.

APPENDIX A. MODELS AND RESULTS 71

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

True order = 3,1

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 3,2

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 3,3

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 3,4

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

(c) Order (3,1) to (3,4).

Figure A.11: Distributions for the ARMA30 dataset.

APPENDIX A. MODELS AND RESULTS 72

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

True order = 4,1

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 4,2

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 4,3

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 4,4

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

(d) Order (4,1) to (4,4).

Figure A.11: Distributions for the ARMA30 dataset.

APPENDIX A. MODELS AND RESULTS 73

1 2 3 4
Order predicted by

LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

True order = 1

1 2 3 4
Order predicted by

LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 2

1 2 3 4
Order predicted by

LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 3

1 2 3 4
Order predicted by

LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 4

1 2 3 4
Order selected by AIC

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1 2 3 4
Order selected by AIC

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
Order selected by AIC

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
Order selected by AIC

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
Order selected by BIC

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1 2 3 4
Order selected by BIC

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
Order selected by BIC

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
Order selected by BIC

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.12: Distributions for the AR100 dataset.

APPENDIX A. MODELS AND RESULTS 74

1 2 3 4
Order predicted by

LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

True order = 1

1 2 3 4
Order predicted by

LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 2

1 2 3 4
Order predicted by

LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 3

1 2 3 4
Order predicted by

LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 4

1 2 3 4
Order selected by AIC

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1 2 3 4
Order selected by AIC

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
Order selected by AIC

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
Order selected by AIC

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
Order selected by BIC

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1 2 3 4
Order selected by BIC

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
Order selected by BIC

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
Order selected by BIC

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.13: Distributions for the MA100 dataset.

APPENDIX A. MODELS AND RESULTS 75

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

True order = 1,1

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 1,2

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 1,3

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 1,4

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

(a) Order (1,1) to (1,4).

Figure A.14: Distributions for the ARMA100 dataset.

APPENDIX A. MODELS AND RESULTS 76

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

True order = 2,1

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 2,2

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 2,3

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 2,4

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

(b) Order (2,1) to (2,4).

Figure A.14: Distributions for the ARMA100 dataset.

APPENDIX A. MODELS AND RESULTS 77

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

True order = 3,1

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 3,2

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 3,3

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 3,4

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

(c) Order (3,1) to (3,4).

Figure A.14: Distributions for the ARMA100 dataset.

APPENDIX A. MODELS AND RESULTS 78

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

True order = 4,1

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 4,2

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 4,3

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 4,4

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

(d) Order (4,1) to (4,4).

Figure A.14: Distributions for the ARMA100 dataset.

APPENDIX A. MODELS AND RESULTS 79

1 2 3 4
Order predicted by

LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

True order = 1

1 2 3 4
Order predicted by

LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 2

1 2 3 4
Order predicted by

LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 3

1 2 3 4
Order predicted by

LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 4

1 2 3 4
Order selected by AIC

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1 2 3 4
Order selected by AIC

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
Order selected by AIC

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
Order selected by AIC

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
Order selected by BIC

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1 2 3 4
Order selected by BIC

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
Order selected by BIC

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
Order selected by BIC

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.15: Distributions for the AR1000 dataset.

APPENDIX A. MODELS AND RESULTS 80

1 2 3 4
Order predicted by

LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

True order = 1

1 2 3 4
Order predicted by

LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 2

1 2 3 4
Order predicted by

LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 3

1 2 3 4
Order predicted by

LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 4

1 2 3 4
Order selected by AIC

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1 2 3 4
Order selected by AIC

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
Order selected by AIC

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
Order selected by AIC

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
Order selected by BIC

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1 2 3 4
Order selected by BIC

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
Order selected by BIC

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
Order selected by BIC

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.16: Distributions for the MA1000 dataset.

APPENDIX A. MODELS AND RESULTS 81

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

True order = 1,1

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 1,2

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 1,3

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 1,4

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

(a) Order (1,1) to (1,4).

Figure A.17: Distributions for the ARMA1000 dataset.

APPENDIX A. MODELS AND RESULTS 82

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

True order = 2,1

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 2,2

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 2,3

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 2,4

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

(b) Order (2,1) to (2,4).

Figure A.17: Distributions for the ARMA1000 dataset.

APPENDIX A. MODELS AND RESULTS 83

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

True order = 3,1

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 3,2

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 3,3

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 3,4

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

(c) Order (3,1) to (3,4).

Figure A.17: Distributions for the ARMA1000 dataset.

APPENDIX A. MODELS AND RESULTS 84

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

True order = 4,1

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 4,2

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 4,3

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order predicted by
LSTM model

0.0

0.2

0.4

0.6

0.8

1.0

True order = 4,4

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by AIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

1,
1

1,
2

1,
3

1,
4

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

4,
3

4,
4

Order selected by BIC
0.0

0.2

0.4

0.6

0.8

1.0

(d) Order (4,1) to (4,4).

Figure A.17: Distributions for the ARMA1000 dataset.

Appendix B

Technical details

B.1. Tensorflow and Keras

Tensorflow is Google’s open-source library for creating and developing deep learning models.

It was originally developed by researchers in the Google Brain project in the year 2015 (Abadi

et al., 2015). Tensorflow supports parallelization and can be used on a variety of systems, such as

GPU cards and large scale distributed systems. If a GPU card is available, Tensorflow will detect

this automatically and utilize it with no changes needed to the code, as long as the appropriate

software requirements are met. GPU computation can speed up training significantly compared

to using CPU alone.

Since deep learning is an optimization problem and often requires the computation of many

gradients, Tensorflow has implemented automatic differentiation. This is different from symbolic

and numerical differentiation and eliminates problems with the classical approaches such as round

off errors and slow computation of partial derivatives with many inputs.

Keras is a high-level deep learning API that runs on top of Tensorflow (Chollet et al., 2015).

The interface is user-friendly and lets the user experiment with different types of neural network

easily and efficiently.

B.2. Machines

In this thesis, we used two different devices to train models. One of them is a machine with

64 logical cores in total, and the other is a machine with an Nvidia Geforce RTX 2080 Ti GPU

card.

85

Bibliography

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-

fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz

Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,

Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,

Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol

Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL https:

//www.tensorflow.org/. Software available from tensorflow.org.

Hirotugu Akaike. A new look at the statistical model identification. IEEE transactions on

automatic control, 19(6):716–723, 1974.

Khaled E. Al-Qawasmi, Adnan M. Al-Smadi, and Alaa Al-Hamami. Artificial neural network-

based algorithm for ARMA model order estimation. In International Conference on Networked

Digital Technologies, pages 184–192. Springer, 2010.

Peter J. Brockwell and Richard A. Davis. Introduction to Time Series and Forecasting. Springer,

2016.

Tim Chenoweth, Robert Hubata, and Robert D St Louis. Automatic ARMA identification using

neural networks and the extended sample autocorrelation function: a reevaluation. Decision

Support Systems, 29(1):21–30, 2000.

François Chollet et al. Keras. https://keras.io, 2015.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning

and stochastic optimization. Journal of machine learning research, 12(Jul):2121–2159, 2011.

Bradley Efron and Trevor Hastie. Computer Age Statistical Inference: Algorithms, Evidence,

and Data Science, volume 5. Cambridge University Press, 2016.

86

https://www.tensorflow.org/
https://www.tensorflow.org/
https://keras.io

BIBLIOGRAPHY 87

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neu-

ral networks. In Proceedings of the thirteenth international conference on artificial intelligence

and statistics, pages 249–256, 2010.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:

//www.deeplearningbook.org.

Alex Graves. Supervised sequence labelling with recurrent neural networks. Springer, 2012.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):

1735–1780, 1997.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks,

4(2):251–257, 1991.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping

Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp

minima. arXiv preprint arXiv:1609.04836, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

Serkan Kiranyaz, Onur Avci, Osama Abdeljaber, Turker Ince, Moncef Gabbouj, and Daniel J.

Inman. 1D convolutional neural networks and applications: A survey. arXiv preprint

arXiv:1905.03554, 2019.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing systems, pages

1097–1105, 2012.

Gang Liang, D Mitchell Wilkes, and James A. Cadzow. ARMA model order estimation based

on the eigenvalues of the covariance matrix. IEEE transactions on signal processing, 41(10):

3003–3009, 1993.

Gideon Schwarz. Estimating the dimension of a model. The annals of statistics, 6(2):461–464,

1978.

Skipper Seabold and Josef Perktold. statsmodels: Econometric and statistical modeling with

python. In 9th Python in Science Conference, 2010.

http://www.deeplearningbook.org
http://www.deeplearningbook.org

BIBLIOGRAPHY 88

Sima Siami-Namini, Neda Tavakoli, and Akbar Siami Namin. A comparison of ARIMA and

LSTM in forecasting time series. In 2018 17th IEEE International Conference on Machine

Learning and Applications (ICMLA), pages 1394–1401. IEEE, 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.

Dropout: a simple way to prevent neural networks from overfitting. The journal of machine

learning research, 15(1):1929–1958, 2014.

Gilbert Strang. Linear algebra and its applications. Thomson, Brooks/Cole, 2006.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running

average of its recent magnitude, 2012.

Ruey S Tsay and George C Tiao. Consistent estimates of autoregressive parameters and extended

sample autocorrelation function for stationary and nonstationary ARMA models. Journal of

the American Statistical Association, 79(385):84–96, 1984.

Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of

the royal statistical society: series B (statistical methodology), 67(2):301–320, 2005.

	Introduction
	Time series
	Time series models
	Methods for model selection

	Deep learning
	Fully connected neural networks
	Structure
	Model fitting
	Some important terms and methods

	Convolutional neural networks
	Recurrent neural networks
	Long Short-Term Memory

	Simulating data
	Model training and evaluation of results
	Software
	Model training
	Results
	Time series of length 30
	Time series of length 100
	Time series of length 1000

	Conclusion
	Models and results
	Models
	Tables
	Distribution of the order selections

	Technical details
	Tensorflow and Keras
	Machines

	Bibliography

