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Abstract

Ultrasonic beam transmission through solid plates has been extensively studied over
the past decades. Through this study many anomalies have been found. Plane-
wave theory can not account for these anomalies. It is therefore important to have
a fundamental understanding of these effects in order to accurately model guided
ultrasonic waves in solids. Through the use of experiments and modelling these
effects can be studied.

The objective of this thesis is to study ultrasonic beam transmission through steel at
a normal incidence angle. This study is done by studying the on-axis pressure with
measurement techniques used by numerous members of the acoustics group. In
addition to the on-axis pressure the use of equidistant measurements along an axis
are introduced to the normal incidence ultrasonic beam transmission measurement.
This use of equidistant measurements allows for the use of 2D Fourier transforma-
tions, and the study of beam transmission in the wavenumber domain. Using these
pressure wavenumber spectra the reconstruction of the transmission coefficient can
be achieved using results from measurements. This method is replicated in simula-
tion by using the angular spectrum method and offers comparable results.
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Chapter 1

Introduction

1.1 Motivation

Signal transmission through fluid embedded visco-elastic solids has an integral role
in many research and industrial uses, with Guided Ultrasonic Waves (GUW) of par-
ticular interest. GUW are especially of interest in the form of non-destructive test-
ing and evaluation (NDT & E) and non-invasive ultrasonic technology as these are
favourable methods of crack detection, flow measurement, material characterization
and corrosion measurements among others. However the process of signal trans-
mission through solids is complex. As the interaction of the beam and solid can be
subject to effects such as reflection, dispersion, interference and diffraction among
others. Itis therefore important to have a good understanding of the process of GUW
in order to have reliable and accurate models of the processes. The use of numeri-
cal models and physical measurements can contribute to the understanding of this.
The acoustics group at the University of Bergen have both conducted measurements
and made models of this process. This thesis is a part of that research and aims to
contribute to further research within this field.

1.2 Previous Work

Rayleigh first wrote about free vibrations of an infinite plate in 1888 [1]. The theory
for the symmetric and anti-symmetric Lamb modes and their dispersion relation for
a vacuum embedded plate was formulated by Lamb in 1889 [2], and further in 1917
[3]. Following this Reissner[4], in 1938, and Osborne and Hart, in 1945 [5] and 1946
[6], formulated the theory for these waves in a fluid embedded plate. In 1939 Sanders
[7] performed measurements of transmission through thin plates. The general struc-
ture and properties for the dispersion curves for a vacuum embedded plate was
found by Mindlin et al. throughout the 1950’s e.g. [8]. These dispersion properties
for leaky Lamb modes and numerical solutions for them have been studied by nu-
merous researchers e.g. [9]. Throughout the 20th century these researchers, among
many others, built a fundamental understanding of sound propagation and trans-
mission through elastics. The use of plane-wave theory has been used to explain the
propagation of waves in plates [4] [5]. However studies into how normal incident
beams interact with solid plates show effects plane-wave theory does not account
for. These include increase of on-axis transmitted pressure, frequency downshift
and narrowing of the transmitted beam, all associated with the excitation of leaky
Lamb waves e.g.[10, 11, 12, 13]. The acoustics group at the University of Bergen have
conducted significant research into the transmission of sound through elastic plates.
Among others, in 2008 Lohne et al. [12] wrote on ultrasonic signal transmission in
plates and compared simulated models with experiments. Lohne observed the three
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aforementioned effects through measurements. In 2011 Aanes et al. compared sim-
ulated beam interactions at normal incidence using finite element method and com-
paring with an angular spectrum method and measurements [13] confirming the
results of Lohne. Aanes continued the research into his PhD-thesis [11] developing
two models for simulation of beam transmission which incorporated the transducer
into the simulation allowing for more realistic beam interactions with the plate. In
2017 Aanes et al. wrote on and discussed the complex dispersion properties of Lamb
and leaky Lamb modes in elastic and viscoelastic plates [14].

The transmission coefficient, T, is a plane-wave coefficient and describes the trans-
mission of plane waves through the solid. A finite transducer is however not a plane-
wave transmitter and has a complex angular spread. This dilemma has been solved
numerous ways, among others using a large (80 mm x 40 mm) ultrasonic transducer
by Cawley [10] and using spacial distributed measurements e.g. [15, 16]. Safaeinili et
al. [16] used air coupled materials and many different emitter-receiver positions and
angles to synthesize a wide angle focused transducer aperture. Through the summa-
tion of these one dimensional scans they were able to reconstruct the transmission
coefficient with excellent agreement to theory. Joecker and Smeulders [15] used the
synthesized aperture technique of Safaeinili in conjunction with spatial measure-
ments without the solid for spectral decomposition in order to determine the trans-
mission coefficient, and found excellent agreement between the measurements and
theory. Both of these techniques used angled beam incidence and reconstructed the
transmission coefficient as a function of frequency and and incident angle.

The modelling of sound transmission has been done in numerous ways including
more recently within Gaussian beam method e.g. [17], Finite Element Modelling
(FEM) e.g. [18, 19], Distributed Point Source Modelling (DPSM) e.g. [20] and Angu-
lar Spectrum Method (ASM) e.g. [21, 22]. The Angular spectrum method simulates
a baffled piston, with the sound-field decomposed into infinitely many plane waves,
allowing for plane-wave theory and the use of plane-wave transmission and reflec-
tion coefficients. FE and FEM can simulate a real transducer and it’s sound field,
making it more accurate, but is load heavy. Kocbach developed a FEM program for
piezoelectric transducers [23] and has been used extensively in the Acoustics group
at the university of Bergen. Midtbe [24] developed an ASM model based on a model
developed by Anderson and Martin [25].

1.3 Objective

The objective of this thesis is to study the beam transmission through a steel plate
from normal incidence, this includes the excitation of leaky Lamb waves and the the
effects associated with this from the plate. The goal is to study this through measure-
ment and compare with an implementation of ASM based on the model by Midtbe
[24]. Through the measurement and simulation of the pressure spectra, effects such
as transmission can be studied. Furthermore, to reconstruct the transmission coef-
ficient as a function of the horizontal wavenumber and frequency using the normal
incidence measurements. This will be done by using the same measurement tech-
niques that have been previously utilized by the acoustics group [11, 24, 26], but in-
troducing equidistant traversing measurements along an axis in order to transform
the measurements from the spatial domain to the wavenumber domain. Throughout
this process several comparisons to previous works will be made.
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1.4 Outline of Thesis

In Ch. 2 the theory that forms the basis for this thesis is presented. This includes
plane-wave transmission, a summarized derivation of Lamb modes and leaky Lamb
modes. The theory the simulation model used in this thesis. And the equations for
the Fourier transformations used.

In Ch. 3 the different experimental setups are explained, including the components
used. The different methods used to conduct the measurements are presented. The
Experimental setups for both on-axis and transverse measurements are presented.
Lastly the methods used for post-processing are presented.

In Ch. 4 the simulation model is discussed. The different variables and parame-
ters used are presented and discussed. Lastly the different post-processing methods
used are presented, this includes the testing of post-processing methods used in the
experimental setup.

In Ch. 5 the results from the simulations and measurements are presented. This
includes all the stages of the simulation and measurements. For the simulations
this entails the verification of post-processing. For the measurements this includes
results from both on-axis and transverse measurements. Lastly the results are com-
pared.

In Ch. 6 a final conclusion on the work throughout the thesis is given and sugges-
tions for further work.






Chapter 2

Theory

In this chapter the theory this thesis is based upon will be presented. The theory is
a selection of different subjects ranging from basic beam transmission to a specific
simulation method. In Sect. 2.1 the theory of beam transmission is presented, this
includes the pressure-to-pressure transfer function. Sect. 2.2 and 2.3 present the
theory for Lamb and leaky Lamb modes. Sect. 2.4 presents the theory and equations
for the simulation method Angular spectrum method (ASM). Lastly the theory for
the discrete Fourier transform and Hankel transformation is presented in Sect. 2.5.

2.1 Beam Transmission

p(XIOIZZIf)

FIGURE 2.1: Illustration of beam transmission from baffled piston
through fluid embedded solid plate, y-axis is pointing out of paper.

Fig. 2.1 shows a model of the system used in this thesis and is based on the model
used by Aanes [11]. The model is the basis for both simulation and measurements.
This model has a uniformly vibrating circular baffled piston radiating towards a
solid plate with infinite extent in two directions, submerged in a fluid. The piston
is assumed to be perfectly perpendicular to the z-axis and thus having an incident
angle 0 = 0 with the z-axis. As the angle 0 is zero it is not shown in the figure. The
coordinates are shown in the figure with the x-axis horizontal and z-axis vertical,
and y-axis out of the paper, with origin placed at the center of the pistons lower face.
The plate has infinite extent in the x and y-directions and a thickness of d = 6.05mm
in the z-direction. The piston has a radius of 2 = 10.55mm, why this radius is chosen
is discussed in Sect 4.1. The solid plate has its upper face placed at z = 270 mm and
is denoted zp which is consistent with previous work such as Aanes [11]. The piston
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uniformly vibrates and radiates a pulsed ultrasonic beam into the fluid propagating
at fluid velocity c¢. The pressure at the piston-fluid interface is denoted p(xo,0,0, f),
where xo denotes x = 0 and f is the frequency of the pulsed beam. The beam
then reaches the fluid solid interface at zg. The pressure spectrum at this interface is
denoted p(x,0,zo, f). The beam is transmitted through the solid plate, this process
is expanded on in Sect. 2.2. The lower plate face then re-radiates into the fluid. The
transmitted pressure spectrum used throughout simulations and measurements is
located 100 mm below the lower face of the solid plate at position zo = 376.05mm.
This pressure spectrum is denoted p(x, 0, z, f). This model is symmetric around the
z-axis and therefore only the z and x coordinates will be used from this point on.
The y-coordinate can be assumed to be y = 0 if not specified otherwise. The entire
system is assumed to be lossless.

2.1.1 Transfer Function

The pressure-to-pressure transfer function, or H,,, is used in order to investigate
the transmission through the solid plate. The equation is consistent with its use
previously [11, 24, 27, 28].

p(x, 22, f)
Hyy(x,22,f) = —F/——F. 21
ez f) = 20 ) @1)
Where p(x,zo, f) is the incident pressure located at distance zy from the source.
p(x,z2, f) is the transmitted pressure spectrum at the position (x,z2). The Hp),-
transfer function is often plotted logarithmic as 20l0g10(Hpp)-

Source Scenario 2] Source
A x A X
z z
o o
N N
o
N
Y ® P(Xo,2o,)

L4 p(XIZZIf)

FIGURE 2.2: Illustrated position of pressure measurement for Hy,
transfer function. y-axis is pointing out of paper

Fig. 2.2 an example of the positions for p(x, z, f) and p(0, zp, f), are given and how
they can be oriented in relation to one another.
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2.2 Lamb Modes

The derivation and formulation of plane waves in elastic media has been done by
many, and are cited by Aanes, but this brief formulation will follow the one given by
Aanes [11]. Lamb modes occur in solid plates in a vacuum [2]. The plate is assumed
to be of infinite extent in the x, y directions and isotropic homogeneous. There is also
assumed to be no Lamb mode particle motion in the y-direction as this is confined to
the x, z directions, making this a 2D-description. The confinement of particle motion
means shear horizontal waves (SH) are excluded from the derivation. This is ex-
plored further later on in the derivation. Lamb modes are divided into two distinct
type of modes, symmetric and anti-symmetric. Lamb waves are the waves propa-
gating through the solid and are the superposition of propagating longitudinal and
shear modes [29]. The longitudinal waves, denoted P (Primary), propagate in the
medium as the compression an rarefaction of the solid. The shear waves, denoted S,
propagate through the shear displacement of particles perpendicular to the direction
of wave propagation [29]. Here only shear vertical waves are used further, denoted
SV.

Vacuum 7' = -L
“d
X
z'l_.
v SOLID
Vacuum zZ' =1L

FIGURE 2.3: Illustration of propagation of Lamb wave within a vac-
uum embedded solid plate of thickness d. y-axis is pointing out of

paper.
The propagation of Lamb waves is illustrated in Fig. 2.3. Here the z’-axis is oriented

the same as z in Fig. 2.1, but has the origin placed in the middle of the solid plate.
The plate has a thickness of 4 = 2L. The longitudinal and shear velocities are given

respectively by
o = A2 2.2)
Os
s
g = ,/—. (2.3)
S o,

The linearized displacement equation of motion for an isotropic elastic, homoge-
neous solid medium is given as

and
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%u
A +21)V (V1) =u[V > (V xu)] = ps—== (2.4)
where A is the first Lamé parameter, the elastic modulus, and y is the second Lamé
parameter, the shear modulus. u = (uy, Uy, u) is the particle displacement and p; is
the density of the solid and ¢ is time [30]. Equation 2.4 can be decomposed into two

new expressions by using the longitudinal and shear velocities introduced in Eq. 2.2
and 2.3 [12].

1 92

(V2= 5 =5)®=0 (2.5)
c2 ot
and 22
1
(V2= 557)¥ =0 (2.6)

The Hermholtz decomposition yields us the displacement vector, u expressed as the
scalar potential, ® and a vector potential, ¥, i.e. u = VO +V x ¥. Here Eq. 2.5
describes the longitudinal wave and Eq. 2.6 describes the shear wave. As stated
previously the particle motion is restricted to the (x,z)-plane. This can be done
without any loss of generality [12]. The waves can propagate in the x-direction,
making ® and ¥ independent of y, thus making a% = 0. The horizontal and vertical
displacements and stresses are given as [31]

od oY
e "X 27)

0d Y
U=+ e 28)

B o/ duy, duy
e = A+ 20) (G5 + MG + 50 2.9)
Oy Oy

T = n(50 +52). (2.10)

By separation of variables the solutions for the scalar fields and vector fields, ® and
Y, are given as [12]

D = (A e M7 4 Ateiha?)pil1x—wt) (2.11)
and . ‘ :
R ) @12)
where
w = 2nf. (2.13)

Here A, and A; are the longitudinal wave amplitudes in positive and negative z'-
directions within the solid. B, and B; are the equivalent amplitudes only for shear
waves. Here the formulation differs from Aanes [11], as he uses a time convention
of ¢!, but here a time convention of e~ ! will be used in order to be consistent with
other sections. The wavenumbers for the longitudinal and shear waves are given as
(11]

h="2, (2.14)

w
CL
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k=% (2.15)
Cs
and the vertical components of these and the horizontal wavenumber 7 are given as
[32]

{ h2—n? fory<h (2.16)

i/n?—h?* forn>nh’

VK2 —n? fory <k (2.17)
iv/n?—k?> forn >k’ '

7= hy = ky. (2.18)

The boundary conditions for an elastic plate in a vacuum are zero normal and shear
stresses at the interface of the solid and vacuum, such that

Ty =0, at z=+L (2.19)
T, =0, at 7 = +L. (2.20)

The rest of the derivation and formulation of the Lamb modes will not be included
in this thesis, rather a brief summation of the steps will be given. Aanes [11] fol-
lowing [12] introduces trigonometric functions for Eqs. 2.11 and 2.12. Further these
two functions are inserted into the equations for displacement and stress Eqgs. 2.7,
2.8,2.10 and 2.9. Using the boundary conditions from Eqgs. 2.19 and 2.20 and Gaus-
sian elimination of the trigonometric equations for displacement and stress a matrix
is obtained. Setting the determinant of the matrix to zero, the dispersion relation
for the symmetric and anti-symmetric lamb modes for a solid plate in a vacuum
are given. This defines the symmetric and anti-symmetric modes for the vacuum
embedded solid plate as [11]

. tan(kZ/L) 4172]12/](2/
S : = — .
ymmetric tan(is L) 2P - R (2.21)
tan(kyL) — (2n> — k)
tan(hyL)  (4n2hyky)”
These are further defined as the characteristic functions for the symmetric, S, and
anti-symmetric, AS, modes

Anti — symmetric : (2.22)

(k> —21%)2  4nhyky

5= tan(hyL)  tan(kyL)

=0 (2.23)

and
k> — 27]2)2 417th/sz .

_
AS = tan(ky L) * tan(hyL)

(2.24)
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2.2.1 Cut-off Frequencies

Some certain frequencies generate standing compressional and shear waves across
the thickness of the plate [11, 33]. This happens when the phase velocity of the Lamb
waves approach infinity [11, 34]. This can be calculated by letting the horizontal
wavenumber 7 approach zero in Egs. 2.21 and 2.22. The phase-velocity in the x-
direction is given as [11, 12, 34]
cop = . 2.2

ph 7 ( 5)
Egs. 2.21 and 2.22 become zero if the numerator or denominator of the expressions
become zero or infinity,

lim tan(kL) =0 or lim tan(kL) = co wheren =1,2,3... (2.26)

kL—nrm kL—"%

This gives us cut-off frequencies for symmetric Lamb modes [11]

2 2m —1
f =S =1,2,3,..and ff, = (’”4L)“m _1,2,3,..  (227)
and for anti-symmetric modes
2ncy (2m —1)cs
i = TR 1,2,3,..and fi} = g m= 1,2,3,... (2.28)

Where £}, is the corresponding frequencies for the symmetrical thickness-shear, TS,
modes. f; is the corresponding frequencies for the symmetrical thickness-extensional,
TE, modes. f{, and f{} are the equivalent frequencies for the anti-symmetrical TS
and TE modes respectively
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2.3 Leaky Lamb Modes

A

FIGURE 2.4: Illustration of leaky Lamb wave propagation through
fluid embedded solid plate with thickness d. y-axis pointing out of

paper.

If the solid plate, of thickness d = 2L, is submerged in a single fluid propagating
waves in the solid can leak energy into the fluid. These waves leaking energy into
the fluid are called leaky Lamb waves. The waves generate a pressure wave in the
fluid, illustrated in Fig. 2.4. The pressure wave in fluid travel with velocity cy.

Fluid AT | Ap
Layer 1 7' = -L
Solid
Layer 2
X
Z-l—' A3 A B By
Fluid z'=1L
Layer 3 Az

FIGURE 2.5: Illustration of solid plate embedded in fluid

The following derivation also follows [11, 12]. Fig. 2.5 shows the solid plate im-
mersed in a single fluid. The figure is divided into three layers. Layer 1 is the fluid
above the plate, the plate is layer 2 and the fluid below the plate is layer 3. In Layer
1 an incident plane wave A", where 1 denotes layer and + denotes the propagating
z'-direction, coming from 7z = —oo. A reflected plane wave A;, also in layer 1, is
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propagating towards z’ = —oco. In layer 3 a transmitted plane wave AJ is propagat-
ing towards z’ = co. The waves in layer 1 and 3 can written as [11, 12]

@) = Afere® 4 Aye M (2.29)

and

D3 = Afelre?, (2.30)

The boundary conditions for an isotropic infinite plate, fully immersed in a single
fluid, are continuity of normal displacement u,/, normal stress T,/ and vanishing
shear stress T/, and are given as [11, 12]

Uy g = Uy 1 atz = £L (2.31)
Tz’z’,n = lzy 41 at Z'=+L (2.32)
Tywp=0atz = +L (2.33)

Where 1 and n 4 1 denote the layer number, 1,2 or 3. The vertical wavenumber for
the fluid, hy ./ is defined as [11, 12]

W2 —n2 forn<h
hy.r = { V. ! T (2.34)
1

,/112—11% for n > hy. '

Where [35]

hy = (2.35)

w
Cr '
The horizontal and normal displacement, and the normal stress in layers 1 and 3 are
now given as

0P

ux,l/\3 = ar (236)
9P
Uz 1n3 = 3% (2.37)
au au /
Tozans=—p= )\f(Txx + ETZZ’) (2.38)

Where p is the sound pressure and A is the Lamé parameter for the fluid. For layer
1 this is given as [[11] [12]]

Uy = ihp g [AfeMT — ATe M, (2.39)
Toup = —p = ppe?[Af "% — Ape "7, (2.40)

For layer 3 this is given as
U3 = ihy o ATe"27, (2.41)

Tous = —p = —psw?Afe#%, (2.42)
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As in the previous section the further derivation will not be explored, but a more
rigorous one can be found in Aanes thesis [11]. A brief summary of what is done
will be given. Using the boundary conditions at z’ = +L and using trigonometric
functions the displacement 1, and T,/ are rewritten. T, is the same as in Sect. 2.2.
These equations are arranged into matrix A [11]. The dispersion relations for the
symmetric and anti-symmetric leaky Lamb waves are found by setting determinant
of the matrix to zero, det|A| = 0, The determinant is calculated using cofactor ex-
pansion [11]. Then the dispersion relation for the symmetrical and anti-symmetrical
leaky Lamb modes for an infinite isotropic plate fully immersed in a single fluid are
given as [11]

S+iY=0 (2.43)
and
AS—iY =0. (2.44)
Where [11]
hy
y = P g (2.45)
Pshf,z’

2.3.1 Plane-wave Transmission and Reflection Coefficients
for Fluid Embedded Plate

The transmission and reflection coefficients are more rigorously derived by Aanes
[11] and Lohne [12], but a summation of what is done will be given. The time con-
vention used here is e 7!, Setting the incident wave, A] = 1 and inserting this into
equations the for the reflection and transmission coefficient given as [12, 11]

AT .
R(p, L, f) = et (2.46)
1
and
T(n,L, f) = 25 gL 2.47
(1, L, f) = e, (247)
1

Using Cramer’s rule and using the matrix, A, from Sect. 2.3 A and AJ are cal-
culated [11]. Giving the transmission and reflection coefficient for infinite isotropic
plate immersed in a single fluid

_ iY(AS+59)
and
SAS — Y?
R(n, L f) = (5 —iY)(AS 1+ 1Y)’ (2:49)

AS, S and Y are given respectively in Eqs. 2.23, 2.24 and 2.45.
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2.4 Angular Spectrum Method

In this section the simulation method Angular Spectrum Method (ASM) will be pre-
sented. This ASM model was developed Midtbe [24] and was implemented in this
thesis in Matlab. The Angular Spectrum Method simulates a uniformly vibrating
planar circular piston in a rigid baffle. The piston is radiating, at an incident angle
of 8 = 0, into a fluid with a solid steel plate at a distance of 270 mm. The piston is
assumed to be vibrating uniformly at a constant normal surface velocity of vy. The
velocity of the fluid is cf and the system is assumed to be lossless. Fig. 2.1 shows the
system in detail. In ASM cylindrical coordinates replace the Cartesian coordinates
of Sect. 2.1. The position is now a function of (7, z) where r represents the radial dis-
tance and z represents the vertical distance, the system is assumed to be symmetrical
around the z-axis. All other variables are still consistent with section 2.1.

241 ASM Method

As stated previously the normal particle velocity on the piston surface, v,(r,z =
0, f), is assumed to be constant and uniform, this boundary condition is written as
[24, 35]

vy, r<a

v(r,z=0,f) = { 0 Z (2.50)

r>a
where a is the radius of the piston. A Hankel transform/Fourier-Bessel transform is
used to decompose the normal particle velocity and is given as [24, 31]

Va(,,0, f) = 270 /0 " 0.(r,0, ) Jo(n,)rdr. 2.51)

Here 7, is distinguished from 7 of Sect. 2.2. Here 7, is a function of r and is defined
as the horizontal wavenumber 7, = h,. V;(1,,0, f) is known as the angular spectrum
of v;(r,0, f) and is characterized by the dependence on the horizontal wavenumber
r. Jo is the zeroth order Bessel function of the first kind. Here a time convention
of e7! is used. A known integral identity is used to write the angular spectrum as
[24, 31]

r

Vz(1,,0, f) = 27vg /Oa Jo(1,7)rdr = 27tav, h (;Ur) (2.52)

Where [; is the first order Bessel function of the first kind. This function is known
as the source aperture function. The identity 2]; (an,)/ay, is the directivity function
also known as the Jinc-function [24], which has the property [24]

lim M =1. (2.53)

x—0 X

The source aperture from Eq. 2.52 and the identity from Eq. 2.53 will be used later
on. The actual field variable of interest is the pressure, which is obtained from the
angular spectrum, Eq. 2.51. This is done by using Euler’s equation and Fourier
transform [35]. This derivation is expanded on in Midtbg’s thesis [24], but results in
the equation

1Y
P(W”’O’f) = hf

w
V (111, 0, f)- (2.54)

zf
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Here py is the fluid density and h, ; is fluid vertical wavenumber. When the pressure
is a function of the horizontal wavenumber it is referred to as the pressure wavenum-
ber spectrum. The equation is not valid for ks, = 1, because the denominator of
the fraction would become 0 and result in a singularity. This is discussed further in
Sect. 4.1.1. Using the Jinc function identity from Eq. 2.53 and Eq. 2.52 we can rewrite
Eq. 2.54

205, 21 (1r2) (2.55)

hz,f 1,a

Giving the pressure wavenumber spectrum at z = 0. The pressure in the wavenum-
ber domain at distance z is found by using plane wave field extrapolation [32]

P(n,,0,f) = ma

P(ny,z, f) = P(ny, O,f)e(ihz/fz). (2.56)

Accounting for a steel plate the transmission coefficient, T(1;, d, f), which is defined
Eq. 2.48, but defined here with cylindrical coordinates. T(#,,d, f) is introduced to
Eq. 2.56

P(itr, 22, f) = P(5,0, /)T (1, d, f)e™s=l2=4), (2.57)

Here d is the thickness of the steel plate and z, denotes the z-position of the trans-
mitted pressure. The wave field propagation term has (z, — d), as the transmission
coefficient includes the propagation through the plate. In order to get the pressure
from the wavenumber-domain to the spatial-domain an inverse Hankel transform
is used on Egs. 2.56 and 2.57 and give [32]

[ee]

1
p(r,z f) = E/o P(11r,2, f) 1 (177 ) 1761 (2.58)

and

[ee]

p(r,z2, f) = % /O P(n1r, 22, f)Jo (11 ) 171 (2.59)

The pressure here is a function of v the spatial position, and is referred to as the
pressure spectrum.

2.4.2 Pressure Calculated Transmission Coefficient

In addition to Eq. 2.48 the transmission coefficient can also be calculated using the
calculated the pressure wavenumber spectra P(#,,zy, f) and P(#,zo, f) from Egs.
2.57 and 2.56 respectively. Here zg denotes the pressure at the face of the steel plate.
Rearranging Eq. 2.57 we can calculate the transmission coefficient with

_ P(UT’/ ZZ/ f)
T(nr,d, f) = Plrniz0, fle-Cr D (2.60)

Here the incident pressure is calculated to zo, this is accounted for in the wave field
propagation term. Eq. 2.60 is used further in Ch. 3 and 4. The thickness of the plate
d = 2L is assumed to be unchanged further and is not listed as one of the variables
in further use.
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2.5 Fourier Transformation

In this section the equations for the Discrete Temporal Fourier transformation and
the Hankel transformation will be discussed. This is the basis of many simulation
and post processing methods discussed in Chs. 3 and 4.

2.5.1 Discrete Fourier Transform (DFT)

The Fourier method is a mathematical operation that decomposes /or transforms
for example a signal of time into its frequency components. We can distinguish two
types of transformations, temporal and spatial. The temporal Fourier transformation
takes a continuous signal of time and transforms it to the frequency domain. For
sampled signals the signal is not continuous but is a set of discrete values. The
discrete Fourier transform (DFT) approximates the Fourier transform as a sum of all
the samples. The temporal DFT is given as [32]

N-1

F(f) = Y f(£)e2 /N, (2.61)

t=0

Where N is the number of of samples.

2.5.2 Hankel transformation

The Hankel transform of the zeroth order, or Fourier-Bessel transform, is a 2D Fourier
transform that assumes rotational symmetry as in Sect. 2.4. In the Hankel transfor-
mation used in this thesis the pressure is assumed to be symmetrical around the
z-axis. The Hankel transformation from the spatial x-domain to the wavenumber
n-domain is given as [32]

FO) = o [ f@ ot 2.62)

The inverse of Eq. 2.62 going from the wavenumber -domain to the spatial x-
domain is given as [32]

Fl) =2 [ ) o) 2.63)
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Chapter 3

Experimental Setup and Method

Through this chapter the experimental setup and individual components will be
presented. Following this the methods used for measurement and post-processing
are shown. This setup has was first used in this configuration by Aanes [11], and
subsequently by Midtbe [24] and Eileraas [26]. The basis for this setup is described
in Sec. 2.1. In Sect. 3.1.1 the components of the experimental setup are presented. In
Sect 3.1 the equipment used throughout the measurements are discussed. Sect. 3.2
presents the different experimental configurations used in this thesis. The methods
used to conduct the measurements are presented in Sect. 3.3. In Sect. 3.4 the post-
processing methods are presented.

3.1 Equipment

In this section the equipment used throughout the measurements are presented. The
equipment remains the same through all the different measurements.

3.1.1 Experimental Setup

FIGURE 3.1: Photo of measurement tank with steel plate immersed in
water
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FIGURE 3.2: Schematic of the experimental setup with top and side
view, the axes are oriented accordingly

In the photo Fig. 3.1 the experimental setup is shown. In Fig. 3.2 a schematic of
the setup is illustrated. The experimental setup consists of a steel plate submerged
in water within a tank with the dimensions measured to height x width x length =
60 x 75 x 160 cm3. The tank is filled to 51 cm + 1 cm in the y-direction. The steel plate
has been measured to dimensions 6,05 + 0,01 mm thick, 500 mm wide and 700 mm
long [26]. The piezoelectric transducer, to the left in the photo and schematic is
attached to the visible motor-stage, it is radiating towards the plate at a distance of
zo = 270mm from the plate, 440 mm from the back glass and 270 mm from the side
glass. The transducer radiates at an incident angle of § = 0°. On the other side of
the steel plate a needle hydrophone, attached to the rod seen on the right side of
photo Fig. 3.1, is placed 100 mm from the right side of the steel plate and 465 mm
from the glass wall. The total distance between the transducer and hydrophone is
zp = 376,05 mm. These distances were chosen to compare to previous work done by
among other Aanes [11]. The axes are consistent with that of Ch. 2, with the origin
placed in the middle of the transducer. The z-axis points towards the steel plate, the
x-axis along the short length of the tank and the y-axis in the vertical direction of
the tank. Measurements are made over the frequency range of 350 kHz to 1 MHz.
This range is chosen to be consistent with previous work [11, 24] and the excitation
of leaky Lamb modes within that range.
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3.1.2 Transducer and Needle Hydrophone

The transducer used in this setup was built by Aanes during his thesis (transducer
no. 3) [11]. Itis a piezoelectric transducer with e piezoelectric element with thickness
of 4,0mm and radius of 12,4 mm [11]. The transducer was calibrated by Aanes and
is intended for use in the 350 kHz — 1 MHz range.

r—

FIGURE 3.3: Photograph of the piezoelectric transducer

FIGURE 3.4: Photograph of PA needle hydrophone
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The needle hydrophone is also the same as used by Aanes [11], Midtbo [24] and
Eileraas [26]. This hydrophone was produced by Precision Acoustics Ltd. and is a
PVDF needle hydrophone. It consists of a 1 mm diameter hydrophone with a 100mm
probe length. The hydrophone has National Physical Laboratory (NPL) calibration
as well as in-house calibration. The in-house calibration is detailed in M. Aanes’ the-
sis [11]. Here the NPL calibration is used [36]. The hydrophone is connected with a
coaxial plug and has an uncertainty of +0,84B [36]. The Hydrophone is calibrated
from NPL in the frequency range of 100 kHz to 1 MHz with 10kHz increments pro-
viding a level of confidence of approximately 95% [36]. In the calibration certificate
it was also noted that "The tolerance on the orientation of the hydrophone relative to
the direction of propagation of the incoming wave was £3° in the horizontal plane
and £3° in the vertical plane." [36]. No other data regarding this is provided, so
the actual effect of this is uncertain. Lastly the certificate from NPL also noted that
the soaking time of the hydrophone was approximately 1 hour prior to use and a
significantly different soaking time may affect the measured sensitivity [36].

3.1.3 Electronic Transmission and Measurement Components

End Tektronix Krohne-Hite FEMTO
PC [ DbrPo3012 3040 HVA-10M-60-F
Oscilloscope Banpass-filter Amplifier
Start] 50 @
HP33120A
Signal PDa prea|1|1p.
Generator C-coupler
[Signal out]| Signal in

FIGURE 3.5: Illustration of electrical components and their
connections

In Fig 3.5 an illustration of the electrical components used in the measurements is
shown. The computer controlled signal generator, HP33120A, generates a sinusoidal
signal. It is set up to supply a 10 V peak-to-peak sine burst of 130 ys duration with
a burst rate of 50 Hz. It also triggers the oscilloscope. It transmits the resulting
waveform to the piezoelectric transducer. The signal is then radiated from the trans-
ducer and picked up by the needle hydrophone. The hydrophone is connected to a
pre-amplifier, PA110078, and DC coupler, DCPS223 (Precision Acoustics Ltd.). The
signal is terminated with 50 Q) in parallel with an amplifier, HVA-10M-60-F (Pre-
cision Acoustics Ltd.) with an input impedance of 1 M() and an amplifier gain of
around 46 dB [11]. This gain is used for all frequencies, as Aanes found that the fre-
quency response of the amplification factor is relatively flat in the frequency range,
350kHz to 1 MHZ [11]. The amplifier is connected through a coaxial cable with the
DC-coupler. The signal is then filtered through a band-pass filter (200 kHz-2MHZz)
of the type Krohne Hite model 3940. Lastly the signal is received by the oscilloscope,
Tektronix DPO 3012. The parameters of the oscilloscope such as sample frequency,
average of bursts and time delay before storage are computer controlled.
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3.1.4 Positioning System
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FIGURE 3.6: Illustration of motor-stages and their axes. The top part
is seen from above and the bottom part is from the side.

In Fig. 3.6 the four motor-stages used in the experimental setup are depicted. The
motor-stages are used to position the transducer and hydrophone. The transducer
is only controlled on the rotary axis, 0. This is controlled by the Micos PRS-110 with
an accuracy of +0.006° [37]. The hydrophone is controlled by three motor-stages,
one for each linear axes. The x-position is controlled by the Micos LMS-100, with
an accuracy of +3um [37]. The range is limited by the cable connected to the motor
stage, but is sufficient for the measurements. The y-position is controlled by the
Parker 404XE T09 and the z-position is controlled by the Parker 404XE T07. The
Parker 404XE T09 has a range of 400 mm and an accuracy of £106 um [38]. The
Parker 404XE T07 has a range of 300 mm and accuracy of 90 um [38]. All of the
motor-stages are controlled through the use of Matlab and corresponding scripts.
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3.2 Experimental Setups

In this section the different experimental setups are presented. There are two pairs
of measurements conducted. each of these will be presented. The x and z positions
will vary in the setups, but the y-coordinate remains unchanged at y = 0 and is not
listed as one of the variables in p(x, z, f).

3.2.1 On-Axis Free Field Measurement

End Tektronix Krohne-Hite EEMTO
PC DPO 3012 3940 HVA-10M-60-F
Star 20 @
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< 160 cm >

FIGURE 3.7: [Illustration of on-axis free field measurement,
p(xo,zo, f). View from the side.

In this setup the pressure p(xo, zo, f) is measured. This is one of the measurements
needed in the Hp,-transfer function from Eq. 2.1. In Fig. 3.7 the hydrophone is
placed at z-position zg. The measurements are conducted for each frequency in the
range 350kHz — 1 MHz with Af; = 1kHz. The signal is radiated as a sine wave
lasting 130 us. The measurement takes in total about an hour to conduct.
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3.2.2 On-Axis Transmission Measurement
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PC DPO 3012 3940 HVA-10M-60-F
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FIGURE 3.8: Illustration of on-axis transmission measurement,
p(xo, 22, f). View from the side.

In this measurement the transmitted pressure p(x, z2, f) is measured. With the steel
plate placed at zp and the hydrophone 100 mm behind the 6.05 mm thick steel plate
at position z,. This is the second measurement used in the H,, transfer function Eq.
2.1. This measurement along with the on-axis free field measurement of Sect. 3.2.1
are consistent with setups from [11, 24, 26] and results are compared with [11] in Ch.
5. The measurement is conducted for each frequency in the range 350 kHz — 1 MHz

with a frequency step of Af = 1kHz.
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3.2.3 Transverse Free Field Measurement
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FIGURE 3.9: Illustration of transverse free field measurement,
p(x,zo, f). View from top.

Fig. 3.9 shows an illustration of the transverse free field measurement, note this is
from the top with the x-axis as the vertical axis. The transducer is also moved closer
to one side of the tank in order to get a more expansive measurement, this means the
origin is moved along the x-axis. This measurement is one part of the measurement
for the transmission coefficient by measuring p(x, zo, f). Here the hydrophone tra-
verses along the x-axis in the positive direction with a step interval Ax = 1mm. The
hydrophone starts at x,,;;, = —10mm and moves to X,,x = 320mm with Ax = 1mm
and a total length of 331 mm. The hydrophone starts at x,, in order to ensure the
middle of the main lobe is measured. p(x, zo, f) is measured at each x-position. The
transverse movement is controlled by the Micos LMS-100 which is operated by a
Matlab script which was written during this thesis for this purpose. The frequency
range is still 350kHz — 1MHz but with a Af = 5kHz, a larger Af is chosen in this
measurement because of time constraints. After each frequency has been measured
at a x-position the script moves the hydrophone Ax. As mentioned in Sect. 3.1.2 the
horizontal angle tolerance of the hydrophone is £3°. The angle between the trans-
ducer and hydrophone is denoted B. The maximum value of B is at x = 320mm with
an angle of B = 50°. At this angle the measurement will be affected. With these pa-
rameters this measurement takes about 8 days. The water height in the y-direction
is filled to 51cm £ 1cm, but as the measurement takes about 8 days up to 1cm water
can evaporate over the course of the measurement.
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3.2.4 Transverse Transmission Measurement
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FIGURE 3.10: Ilustration of transverse transmission measurement,
p(x,zy, f). View from side.

Fig. 3.10 shows an illustration of the transverse transmission measurement. The
plate is placed at position zy with the hydrophone at position z;. The transmitted
pressure, p(x,zy, f), is measured for the same frequencies and x-positions as in the
free field transverse measurement of Sect. 3.2.3. This measurement along with the
transverse free field measurement of Sect. 3.2.3 are used for the purpose of trans-
formation the spatial-domain to the wavenumber-domain. The measurement takes
about 8 days to finish as well.

3.2.5 Symmetrical Transverse Measurement

A second version of the transverse measurement has also been used to measure both
sides of the beam. In this setup the transducer has the same position as in 3.2.1. The
hydrophone starts at position x,,;, = —210 mm and traverses to X, = 210 mm. with
a step of Ax = 5mm. This is done at both z = zg and z = z;. These measurements
are used in a comparison with a simulation done by Aanes shown in Fig. 5.81.

3.2.6 Transverse Measurement Numbering

The transverse measurements of Sects. 3.2.3 and 3.2.4 were first conducted only for
the frequency f = 455kHz in order to test the setup. This measurement is used
further in Ch. 5 and is referred to as measurement 1. The measurements of Sects.
3.2.3 and 3.2.4 over the entire frequency range is referred to as measurement 2. The
symmetrical transverse measurement of Sect. 3.2.5 is referred to as measurement 3.
The differing parameters are listed in Table. 3.1
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TABLE 3.1: Transverse measurements
Measurement | Frequency Range [kHz] | Af | xyin[mm] | Ax [mm] | Xypax[mm]
1 455 -10 1 320
2 350 to 1000 1 -10 1 320
3 350 to 1000 5 -210 5 210

3.3 Methods Used in Measurements

In this section the techniques used to measure the pressure field will be discussed.

3.3.1 Placement and Alignment of the Transducer and Hydrophone

The placement of the transducer is set in the z and y-direction. The transducer can
only be manually moved in the x — direction, but can be remotely rotated around
the y-axis (See Fig. 3.6). For the on-axis measurements of Sects. 3.2.1, and 3.2.2 and
the symmetrical measurement of Sect. 3.2.5, the transducer is placed at a marked
location for the center of the tank. For the transverse measurements of Sects. 3.2.3
and 3.2.4 the transducer is placed at a marked location 110 mm in the negative x-
direction. The hydrophone can move in the x, z and y directions. Along the z-axis the
hydrophone is placed at either zg or z,. This is achieved by measuring the distance
manually with two reference rods with lengths 270 mm and 100 mm. The 270 mm
rod is used to measure the zg position and the 100 mm rod for the z, position. There
is some uncertainty in the z-position as this placement using the reference rod is
subject to human error. The exact uncertainty is hard to assert, but some deviation
is expected.

3.3.2 Incident Angle of Transducer

To ensure that the incident angle 6 is set to zero the hydrophone is placed at z =
100mm from the transducer. Through the use of the Micos LMS-100 and Parker
404XE T07 motor-stages the peak pressure is found. Then the hydrophone is moved
200mm along the z-axis away from the transducer. The incident angle 6 of the trans-
ducer is then adjusted so that the pressure is at the maximum again. This process
is repeated until no adjustment of the transducer is needed between the two hy-
drophone positions.

3.3.3 Measuring Pressure

The oscilloscope uses an 8-bit resolution. The signal has a length of 130us and the
measurement is averaged over 256 bursts. The pressure p(x, z, t) is measured over a
4000ps window and is sampled as the voltage output of the hydrophone, V(x,z,t).
As mentioned in Sect. 3.1.3 the oscilloscope is triggered by the signal generator, the
time delay from when the oscilloscope begins sampling to when the signal is radi-
ated is 1600us. 100 000 samples are taken over the 4000us interval, this amounts to
a sample frequency of 25 MHZ and a At = 4 - 1078 5. The samples 1 of the measure-
ment are stored in array. The time-stamp t; of each sample 7 is stored in a second
array. The oscilloscope samples the voltage over the hydrophone and this stored as
the voltage value V (x, z, t). This representation of the pressure as the voltage output
of the hydrophone is used throughout this thesis. The script used for the measure-
ment can be seen in Appendix A.
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3.3.4 Parameters and Variables Used in Experiments

In the following table the parameters and variable used in the measurements are

presented.

TABLE 3.2: Parameters and variables of measurements

Parameter or Variable | Value or measured value Description
f 350kHz —1 MHz Frequency
Af 1kHz Frequency step for
on-axis measurements
Af 5kHz Frequency step for
traversing measurements
x Horizontal position
Xo 0mm Middle of transducer
Xmin —10mm Start x-position for
transverse measurements
Xmax 320 mm End x-position for
transverse measurements
Ax 1mm Step interval along
x-axis for traversing hydrophone
Z 270 mm Free field measurement
position on z-axis
27 376.5mm Transmission measurement
position on z-axis
p(xo,zo, f) V(xo,z0, f) On-axis free field pressure
p(xo,22, f) V(xo,22, f) On-axis transmitted pressure
p(x,zo, f) V(x,zo, f) Free field pressure at
position (x, zo)
p(x,z2, f) V(x,z2, f) Transmitted pressure
at position (x, zp)
0 0° Incident angle of transducer
from the z-axis
B Angle between transducer
and hydrophone
toin —1600us Start of sampling
trax 2400us End of sampling
At 4-107% Temporal sampling step
Signal length 130us Length av radiated signal
Sample window 4000 ps Length of sample interval
Time-stamp t; Time of measurement
of each sample
Samples, n 100000 Samples taken
over sample window
Sampling frequency 25 MHz Frequency of sampling
over sampling window
Average 256 Number of measurements averaged over
Burst rate 50 Hz Time between bursts in Hz
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3.4 Post-Processing of Data

In this section a summation of the methods used to post-process the gathered data
through the measurement setups. This includes selection of post-processing win-
dow and mathematical operations applied to the data.

3.4.1 Selection of Post-Processing Window for On-Axis Measurement
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FIGURE 3.11: Example of selected post-processing window for
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FIGURE 3.12: Example of selected post-processing window for
V(O, 27, t)

The post-processing window is the selected interval of samples that will be used for
processing. This includes the fast Fourier transform (fft), used in Matlab. The 130us
long signal is located somewhere in the 4000 us long window. A post-processing
window is selected manually by going into the waveform and designating a start
sample, 1, x, and end sample m x. Here z, x denotes the position of the hydrophone.
For the on-axis measurement they are denoted 1, y,, My, x, 1z,x, and mz, x,. The
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number of samples in the post-processing window is 5000. This selection is seen in
Figs. 3.11 and 3.12, where the interval between sample 7, and sample m, , is the
designated post-processing window for the zp and z; measurements. The designa-
tion is done for the frequency 455kHz because of its vicinity to a leaky Lamb mode
in the transmission measurement. The vicinity to a leaky Lamb mode is favourable
as the signal is strongest here, and easiest to have clear signal. This post-processing
window is then used for all the other frequencies measured.

3.4.2 Selection of Post-Processing Window for Transverse Measurements
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FIGURE 3.14: Calculated steady state region for
V(100mm, z3, t)

In order to select a post-processing window for the transverse measurements a dif-
ferent approach than the one for the on-axis measurement is needed. Because the
hydrophone moves further away from the transducer the signal position within the
sample window changes. Therefore a calculation is implemented, using the sound
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velocity and the Pythagorean theorem, to account for the shift in position. At posi-
tion z¢ the fluid velocity of water is used cy. At position z; an approximate velocity
cq is used. This velocity is an average of the velocity the sound travels from the trans-
ducer to position (xg, z2), this is found using an average time of arrival (TOA) of the
zp measurements and is set to ¢, = 1515m/s. A post-processing window is selected
as seen in previous section, in Figs. 3.11 and 3.12, for the measurement at x = 0,
where sample 7, ,, and sample m, ,, are designated, containing 5000 samples. Af-
terwards a post-processing window is calculated for each previous and subsequent
x positions, n;,_g, 15, —s... 1z 320. This is done for both zp and z,. In Figs. 3.13 and 3.14
the calculated post-processing windows are shown at position x = 100mm for the z
and z, measurements respectively.

3.4.3 Temporal DFT - Voltage Spectrum

The sampled voltage from each measurement are given as a function of time, V(x, z, t).
For any further use they are needed as a function of frequency V(x,z, f). Here the
temporal DFT from Eq. 2.61 is utilized. Matlab has a built in version of this DFT
called Fast Fourier Transform (fft) this function is utilized on the post-processing
windows discussed in Sect. 3.4.1 and 3.4.2. Each individual post-processing win-
dow is transformed. Once a post-processing window has been transformed to the
frequency domain the maximum voltage from that measurement is stored as a com-
plex number, comprised of the amplitude and phase, in a x by f array for further
processing. This is done for position zp and z,, resulting in two arrays. The resulting
voltage spectra are denoted V(x, z, f). A distinction between the the post-processing
windows for the on-axis and transverse measurements is made because of charac-
teristics of the signals. The on-axis 1, and m,  are adjusted by a Matlab script in
order for the post-processing window to start and end at peaks of the signal. This
script does however not work on the transverse measurements because of the dis-
tortion of the signal further out along the x-axis. The post-processing window is
therefore used from the exact n,, and m;, values, meaning there occurs sampling
effects because the selection of 1., and m,, is somewhat arbitrary. This could pos-
sibly have been remedied but because of circumstances discussed in 6 this was not
accomplished.

3.4.4 Accounting for Phase

As explained in Sect. 3.4.2 the post-processing window for the transverse measure-
ment is determined by manually asserting the window and then using an approxi-
mation to assert it in subsequent x-positions. To account for the discrepancy in phase
a baseline time is used. The measurement is triggered by the signal generator so this
time stamp is used as a reference for the phase. This is employed using equation

V(x,z, f) = max(V(x, z,f))eil(v(xfz'f))’i”t”. (3.1)

Where t, is the time stamp of the first sample, 7, x, of the post-processing window.
The maximum amplitude of V(x,z, f) is multiplied by the phase of the fft and the
phase at t,,. This is done for each cell in the x by f array. Through this the discrepancy
between the post-processing windows can be accounted for.



3.4. Post-Processing of Data 31

3.4.5 Pressure-to-Pressure Transfer Function

The Hj, transfer function is described by Eq. 2.1. The pressure is represented by the
voltage output of hydrophone, V(x, z, f). Therefore the equation is given as

V(x,z, f)
V(xo0,20, f)

Here V(x,zy, f) represents the transmitted pressure. This is either obtained from the
on-axis transmission measurement of Sect. 3.2.2, or the transmission measurement
from measurement 3 of Sect. 3.2.5. These results are Fourier transformed from the
temporal to the frequency domain before utilized. V(xo,zo, f) is the on axis free
field voltage. This is either obtained from the on-axis free field measurement of Sect.
3.2.1, or the xp-position of the free field measurement from measurement 3 of Sect.
3.2.5. These results are also Fourier transformed from the temporal to the frequency
domain before utilized. The calculation is performed for each frequency. This means
for the on-axis results that each cell from the zy-array corresponding to a frequency
is divided by the corresponding cell in the zp-array. For the symmetrical transverse
measurement each row in the z;-array for a given frequency is divided by the xo-
value at that given frequency from the zp-array.

Hypp(x,22, f) = (3.2)

3.4.6 Resolution and Extent

The four parameters that are crucial for the Hankel transform from Eq. 2.62 are Ax,
Xmax, ANy and hy yqr. The term resolution refers to the step interval in a domain and
the term extent refers to the maximum value in a domain. The relation is given as
[32]

27T
~ = AxAhy (3.3)

Where N is the number of spatial samples, Ax is the spatial resolution and Ah, is
the horizontal wavenumber resolution. Assuming the pressure maximum for the
transverse measurement is at x = 0 the extent of x is x,,,x = 320mm and a spatial
resolution of Ax = 1mm. This results in an extent in the wavenumber domain of
hy max = 6283.2 rad /m and wavenumber resolution of Ah, = 19.6 rad /m.

3.4.7 Hankel Transformation - Voltage Wavenumber Spectrum

The next part of the post processing is to transform the arrays discussed in Sect.
3.4.3 from the spatial domain, x-domain, to the wavenumber domain, /,-domain.
To do this the Hankel transformation is utilized. Before the Hankel transformation
is utilized some characteristics of the voltage spectrum are needed. The x-value of
the maximum measured voltage for f = 455 kHz is found. This x-value is manually
assigned as x for all V(x, z, f), making x,,,x dependant on xg. The Hankel transform
is given in Eq. 2.62. The pressure spectrum is however represented as a voltage
spectrum, giving the Hankel transformation as

V(s 2, f) = % /O “V(x,z, £)Jo(nx)hedhs. (3.4)

Where V(x,z, f) is the complex valued pressure spectrum component found from
Sect. 3.4.3 with the phase adjustment of Sect. 3.4.4. To solve this integral a trape-
zoidal numerical integration method is utilized. The limits of which are from xj to
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Xmax- Vm(hy,z, f) is then calculated for each horizontal wavenumber at frequency
f. The values of hy are given in Sect. 3.4.6, if it is assumed the voltage maximum is
measured at x = 0. Each frequency row of the x by f array is transformed resulting
in the a new array for the voltage wavenumber spectrum, h, by f. This is done for
the zg and z, positions, resulting in two new arrays. Each cell in the arrays corre-
sponding to a value of V(hy, zo, f) or Va(hy, 22, f) depending on the array. The
cells containing the amplitude and phase.

3.4.8 Calculating the Transmission Coefficient

Using Eq. 2.60 the transmission coefficient can be calculated from the the measured
wavenumber pressure spectra, Vi (hy, zo, f) and Var(hy, z2, f). The transmission co-
efficient in Eq. 2.60 is defined for functions of pressure, but as the measured pressure
is given as voltage the equation for the transmission coefficient is defined as

Vm(hy, 2o,
Tm(he, d, f) = ha(ftx -~ f)_ —. (3.5)
VM(hX/ Z()/f)eZ f/Z(Zz 20=d)
Each cell from the z; array is divided by plane-wave propagation term and the corre-
sponding cell from the zg array. The corresponding cell being the cell with the same

hy and f values. The calculation giving the transmission coefficient Ty (hy, d, f).

3.4.9 Post-Processing Parameters and Variables

In Tbl. 3.3 the different variables and parameters of the post-processing methods
are collected. The implementation of the post-processing methods can be seen in
Appendix. B and Appendix. D.

TABLE 3.3: Parameters and variables of measurements

Parameter or Variable | Value Description
Mz x First selected sample of post-processing window
where z, x denote position of hydrophone
My x Last selected sample of post-processing window
where z, x are the position of the hydrophone
n 5000 number of temporal samples
Ccr 1485m/s Fluid velocity
Ca 1515m/s Average velocity of transmitted beam
V(x,z,t) Sampled voltage in interval
ty Time-stamps of first selected and calculated samples
X0 Position of maximum voltage
Xmax Spatial extent
Ax Spatial step interval, wavenumber