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Abstract
Motivation: Traits are increasingly being used to quantify global biodiversity patterns, 
with trait databases growing in size and number, across diverse taxa. Despite grow‐
ing interest in a trait‐based approach to the biodiversity of the deep sea, where the 
impacts of human activities (including seabed mining) accelerate, there is no single re‐
pository for species traits for deep‐sea chemosynthesis‐based ecosystems, including 
hydrothermal vents. Using an international, collaborative approach, we have compiled 
the first global‐scale trait database for deep‐sea hydrothermal‐vent fauna – sFD‐
vent (sDiv‐funded trait database for the Functional Diversity of vents). We formed a 
funded working group to select traits appropriate to: (a) capture the performance of 
vent species and their influence on ecosystem processes, and (b) compare trait‐based 
diversity in different ecosystems. Forty contributors, representing expertise across 
most known hydrothermal‐vent systems and taxa, scored species traits using online 
collaborative tools and shared workspaces. Here, we characterise the sFDvent da‐
tabase, describe our approach, and evaluate its scope. Finally, we compare the sFD‐
vent database to similar databases from shallow‐marine and terrestrial ecosystems to 
highlight how the sFDvent database can inform cross‐ecosystem comparisons. We 
also make the sFDvent database publicly available online by assigning a persistent, 
unique DOI.
Main types of variable contained: Six hundred and forty‐six vent species names, 
associated location information (33 regions), and scores for 13 traits (in categories: 
community structure, generalist/specialist, geographic distribution, habitat use, life 
history, mobility, species associations, symbiont, and trophic structure). Contributor 
IDs, certainty scores, and references are also provided.
Spatial location and grain: Global coverage (grain size: ocean basin), spanning eight 
ocean basins, including vents on 12 mid‐ocean ridges and 6 back‐arc spreading 
centres.
Time period and grain: sFDvent includes information on deep‐sea vent species, and 
associated taxonomic updates, since they were first discovered in 1977. Time is not 
recorded. The database will be updated every 5 years.
Major taxa and level of measurement: Deep‐sea hydrothermal‐vent fauna with spe‐
cies‐level identification present or in progress.
Software format: .csv and MS Excel (.xlsx).

K E Y W O R D S

biodiversity, collaboration, conservation, cross‐ecosystem, database, deep sea, functional 
trait, global‐scale, hydrothermal vent, sFDvent
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1  | BACKGROUND

Traits provide a “common currency” that can be used across taxa 
and biogeographic regions to analyse global‐scale biodiversity pat‐
terns and to evaluate links between species and ecosystem pro‐
cesses (Stuart‐Smith et al., 2013; Violle, Reich, Pacala, Enquist, & 
Kattge, 2014). Taxonomic and phylogenetic information underpins 
traditional diversity metrics, such as species richness and phyloge‐
netic diversity, whereas traits enable us to compare fish, mammal, 
bird and other biodiversity, using a language common across phyla. 
Given increasing application of trait‐based approaches in biodiver‐
sity research (Petchey & Gaston, 2006), trait databases are grow‐
ing in number. For example, 25 databases have been published for 
terrestrial, freshwater and marine environments since 2000; of 
these, around 25 per cent were published in 2017 (see Supporting 
Information Appendix S2).

Some of the first and, now, largest trait databases focus on 
plants, where strong links exist between leaf traits (e.g., area, angle), 
plant growth, and primary production via photosynthesis (Kattge 
et al., 2011; Kühn, Durka, & Klotz, 2004). Similar relationships be‐
tween organisms, traits and energy sources were relatively recently 
discovered in deep‐sea hydrothermal‐vent fauna, when life was first 
discovered in deep‐sea vent environments 40 years ago [Corliss et 
al., 1979; photosynthesis was first discovered 200 years before this 
(Ingen‐Housz, 1779)]. Instead of exploiting photosynthetic path‐
ways, vent animals are strongly dependent on energy from reduced 
compounds in hydrothermal fluid through chemosynthetic microor‐
ganisms (Jannasch, 1985). Deep‐sea hydrothermal vents therefore 
offer a compelling system for applying trait‐based approaches (e.g., 
see Chapman, Tunnicliffe, & Bates, 2018). Moreover, the distribu‐
tion of hydrothermal‐vent communities has been shaped through 
geological and evolutionary time by the movement of tectonic plate 
boundaries (Ramirez‐Llodra, Shank, & German, 2007; Tunnicliffe, 
1988). Vent fauna therefore group into distinct biogeographic prov‐
inces (Bachraty, Legendre, & Desbruyères, 2009; Moalic et al., 2012; 
Rogers et al., 2012), which offer a pertinent framework upon which 
to compare taxon‐based biodiversity patterns to those derived from 
biological trait data.

Trait‐oriented analyses of global‐scale biodiversity patterns can 
also inform conservation and management plans (Mouillot, Graham, 
Villeger, Mason, & Bellwood, 2013; Stuart‐Smith et al., 2015). At 
vents, this is increasingly important, as commercial‐scale mining – 
the first large‐scale, direct human impact on these remote ecosys‐
tems – will begin before 2020 (Van Dover et al., 2017, 2018). Despite 
the potential for a trait‐based approach to progress ecological un‐
derstanding and to inform deep‐sea mining policies and strategies 
for vent conservation, it was not possible to pursue this approach 
on large scales before now, due to a lack of suitable trait data for 
vent species.

Here, we describe, and make publicly available, a global‐scale trait 
database for deep‐sea hydrothermal‐vent species – sFDvent (sDiv‐
funded trait database for the Functional Diversity of vents). We: (a) 
characterize the database; (b) describe the international, collaborative 

compilation process, and highlight the importance of a working group 
and web‐based document‐sharing tools in our workflow; and (c) pro‐
vide summary statistics and usage guidelines for the recommended 
first version of the database. Through sFDvent, we aim: to promote 
the use of a trait‐based approach in conjunction with taxonomic and 
phylogenetic methods when analysing deep‐sea biodiversity patterns; 
to encourage international collaboration and knowledge sharing in the 
deep‐sea chemosynthesis‐based‐ecosystem research community; 
and to facilitate macroecological analyses including vent fauna.

2  | METHODS

2.1 | An international, collaborative approach to 
trait data collection

A working‐group meeting at the German Centre for Integrative 
Biodiversity Research (iDiv) facilitated the design of the sFDvent da‐
tabase populated by an international group of expert collaborators 
(detailed in Supporting Information Figure S1 A.1 and Appendix S3). 
We selected traits using a three‐step process: (a) creating a “wishlist” 
of traits that could inform understanding of the performance of a 
species in its ecosystem, as well as its influence on ecosystem func‐
tion (Figure 1); (b) reducing this trait list to those that could be scored 
for the majority of vent species across the globe; and (c) checking the 
traits selected in step (b) against similar traits in established trait da‐
tabases (e.g., Faulwetter et al., 2017; Madin et al., 2016; Stuart‐Smith 
et al., 2013) to ensure cross‐ecosystem compatibility in terminology 
and definitions.

The working‐group meeting was also a platform for data‐collection 
design. We used data compendia such as the Ocean Biogeographic 
Information System (OBIS, 2017), the World Register of Marine 
Species (WoRMS) (Horton et al., 2017), ChEssBase (Baker, Ramirez‐
Llodra, & Perry, 2010), and Desbruyères, Segonzac, and Bright  
(2006) to populate species trait scores as a starting point for further 
contributions from the wider deep‐sea research community. Data 
collection was carried out using the Google Sheets platform, given 
its in‐built capacity for version control and collaboration on shared 
documents stored online. Each contributor initially received a per‐
sonal data collection sheet, so entries could be tracked and credited 
appropriately. These sheets were designed to be as user‐friendly as 
possible while also expediting processing. For example, fixed, drop‐
down scoring options were provided: (a) for ease of entry for con‐
tributors, and (b) to ensure inconsistencies in spelling, grammar, and 
other symbols did not affect compilation or processing for database 
end‐users. A unique contributor ID (email) column was provided, to 
ensure each contribution could be tracked and credited after com‐
pilation and processing. Example data sheets were tested before  
distribution to collaborators.

The sFDvent project aimed to engage as many members of the 
deep‐sea research community as possible. Thus, several calls for 
contributors were made following the working‐group meeting, in‐
cluding direct emails, mailing lists (INDEEP, 2018), the Deep‐Sea Life 
newsletter (Baker, Pattenden, & Ramirez‐Llodra, 2017) and a poster 
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presentation at an international conference (Chapman et al., 2017). 
Forty contributors from 29 institutions in 13 countries contributed 
expert knowledge to the database.

2.2 | Data compilation, processing, quality 
control and analysis

Quality assurance measures were implemented to minimize er‐
rors in the database, including: an online video tutorial (Supporting 
Information Video S4.1, Appendix S4) demonstrating how to input 
data; a glossary (Supporting Information Table S4.1, Appendix S4), 
to ensure all contributors had a good understanding of each of the 
traits and scoring options (modalities); a certainty score column, per 
trait, ranging from 0 (used when unknown, to show a cell was empty 
due to lack of knowledge) to 3 (high certainty); and a reference 
column per trait (permitting “expert opinion” in place of a literary 
source where appropriate).

Traits scored using expert opinion are often considered to be 
lower in certainty and/or quality than those scored using published 
sources. We included traits scored based on expert opinion in sFD‐
vent because of the value of undocumented expert knowledge of 
deep‐sea species and habitats. The current state of knowledge is not 
always captured in publications or cruise reports for vent species, 
as remotely operated vehicles can be used to make observations for 
many hours that do not form part of a formal study. During these 
hours, scientists gain insights into the behaviour, feeding ecology, 
size, mobility, and other traits of deep‐sea fauna, which would not 
be captured if sFDvent required all trait scores to be supported in 
published resources. The decision to include expert‐contributed 

scores in sFDvent makes the certainty data provided with the data‐
base particularly useful, as it acts as an indicator of the confidence 
an expert (or group of experts) has in a given score (e.g., according 
to the number of observations or laboratory measurements). Traits 
scored using available literature were also peer‐reviewed by experts 
as part of the database review process.

sFDvent contributions were compiled and processed accord‐
ing to strict, documented criteria, which are described in detail in 
Supporting Information Appendix S4 and files referenced therein. 
A summary of the traits, modalities (or scoring options), and asso‐
ciated rationale for raw and recommended data files is provided in 
Table 1. Finally, summary statistics were computed and a coverage 
map created (Figure 2) using the recommended dataset (Supporting 
Information Table S4.2) to facilitate gap analysis and comparison 
with other well‐known trait databases. sFDvent will be updated in 
future according to the processes outlined in Supporting Information 
Appendix S5 and Figure S1 A.2.

3  | RESULTS

3.1 | Data description

The clean, “ready‐to‐use” sFDvent trait dataset (Supporting 
Information Table S4.2) includes traits scored with the most cover‐
age and certainty, comprising 646 records across 13 traits with 55 
modalities (Table 1). Six of these traits are ordinal, three are binary, 
and four are qualitative, categorical traits (Table 1). The structure of 
the sFDvent database is outlined in Supporting Information Figure 
S1 A.3. The traits in sFDvent were scored at species‐level for adult 

F I G U R E  1   Deep‐sea hydrothermal‐vent species traits included in the sFDvent database, adapted from the Litchman, Ohman, and 
Kiørboe (2008) framework (see also Brun et al., 2017). Here, ecological functions and processes potentially influenced by a trait are shown 
on the x axis, and trait categories are given on the y axis (see Supporting Information Table S4.1 for a glossary of trait definitions)
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TA B L E  1   Species traits included in the sFDvent database, with further detail on category, type, and modalities. The “Rationale” column is 
provided to outline the reasons for including each trait in the database (e.g., why it might be ecologically important for the performance of a 
vent species and/or its influence on ecosystem processes). The glossary in Supporting Information Table S4.1 provides definitions for each 
of the trait modalities

Trait category Trait Modalities Trait type Rationale

Mobility Relative Adult 
Mobility

1, 2, 3, 4 Ordinal The mobility of a species affects access to food, vent fluid 
(and the microbes within it), and also its ability to escape 
predation and/or relocate if, for example, vent fluid supplies 
shut down or competition becomes too strong.

Geographic 
Distribution

Depth Range (m) Maximum and minimum 
depth ranges, from a 
choice of 11 (from 0 m 
to > 5,000 m in 500 m 
increments)

Ordinal Depth range captures information on relative geographic 
range size and also facilitates the assessment of trait–en‐
vironment relationships in the vertical dimension of space. 
Thus, this trait can be included with the others, or used 
as an environmental variable, depending on the research 
question.

Generalist/ 
Specialist

Chemosynthesis‐
obligate

Vent, Other chem‐
osynthesis‐based 
ecosystem(s) (CBE), No

Categorical, 
ordinal

As highlighted in the category, this trait captures informa‐
tion on specialist/generalist adaptations that a species may 
have to thrive in given environments and is therefore also 
an important indicator of vulnerability to disturbance or 
environmental change. For instance, a species dependent on 
vent environments may be more prone to extinction given 
deep‐sea mining impacts or the shutdown of vent fluid sup‐
ply than a species that can also live in other chemosynthe‐
sis‐based ecosystems.

Life History Estimated 
Maximum Body 
Size (mm)

0.01, 0.1, 1, 10, 100, 
1,000

Ordinal Body size is known to influence the contribution of a species 
to ecosystem functioning, as well as its own fitness within 
a system. This trait captures information on reproduction, 
life history, fitness, and resilience to change, as well as its 
energy demand.

Habitat Use Zonation from a 
Vent

High, Medium, Low 
(Periphery)

Categorical, 
ordinal

This trait is specific to vent species, but could be adapted for 
other environments (e.g., to capture the “halo” zonation at 
seeps and wood falls). It captures the dependence of a spe‐
cies on vent fluid and the microbes it contains, as well as the 
thermal tolerance of a species (which can be a physiological 
indicator and thus related to fitness and energy demand).

  Substratum Hard, Soft Binary This trait captures species‐association information, assuming 
substratum preference can be indicative of shared niche 
space. The preferred substratum of a species may also be 
an indicator of resilience, as hard and soft substrata may be 
affected by different impact types and intensities during 
deep‐sea mining, for example. This trait also facilitates 
prediction using trait information, as hard and soft sub‐
strata are often mapped during geological and geophysical 
surveys.

  Habitat 
Complexity

Does not add, Mat 
forming (< 10 cm), Bed 
forming (> 10 cm), Dense 
bush forming, Open 
bush forming, Burrow 
forming

Categorical This trait is a shape indicator, providing insight into the 
structures and habitat complexity added by a species, and, 
thus, whether a species might be considered an ecosystem 
engineer or a foundation species. In adding habitat com‐
plexity, a vent species can alter fluid dynamics and access 
to nutritional resources and therefore influences ecosystem 
function, energy available to other species, and its own 
fitness.

  How often 
found in groups 
or clusters? 
(Gregariousness)

Never (Solitary), 
Sometimes, Always

Categorical, 
ordinal

Gregariousness captures information on the potential of a 
species to influence other processes, as it might be assumed 
that gregarious species limit space available to other species 
and are likely to be more common than solitary species. 
Conversely, gregarious species may depend on others for 
nutritional and/or reproductive purposes and thus be more 
vulnerable than species that can thrive alone if population 
sizes are reduced by disturbance or environmental change.

(Continues)
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fauna, rather than individual‐level or for different life stages, given 
the variability in effort associated with measurements, observations, 
and descriptions of vent species (Tunnicliffe, 1990). In total, 646 taxa 
from 345 genera, 181 families, and 12 phyla have trait data with as‐
sociated, expert‐provided location information (Table 2, Supporting 
Information Figure S1 A.4). Arthropoda is the best‐scored phylum, 
with 216 records, whilst Acanthocephala has the lowest num‐
ber of records of the phyla in the dataset (one record; Supporting 
Information Figure S1 A.4). The best‐populated ocean basin is the 
North Pacific (east and west), with 332 taxa with associated trait 
data (Figure 2), whilst the Mediterranean Sea has the fewest trait 
records – two (Figure 2).

“Chemosynthesis‐obligate”, “Relative Adult Mobility”, and “Estimated 
Maximum Body Size” traits are scored for more than 99% of taxa; 
“Depth Range” and “Nutritional Source” traits have greater than 90% 

coverage (Supporting Information Figure S1 A.4). The remaining traits 
are scored for at least 69% of taxa. “Estimated Maximum Body Size” is 
one of the best‐scored traits and also has the highest average certainty 
(2.8 of a possible score of 3). Average certainty across all traits is, how‐
ever, greater than 2.5, apart from Gregariousness, “Nutritional Source” 
and “Trophic Mode” (averaging 2.4; Table 2). For a trait‐by‐trait summary 
of results, see Supporting Information Appendix S6.

3.2 | Comparison with other datasets

The sFDvent dataset has fewer traits and records than many trait 
databases focusing on shallow‐marine, freshwater, and terrestrial 
taxa (Table 3). Nonetheless, sFDvent has more traits than the car‐
abids.org (Homburg, Homburg, Schäfer, Schuldt, & Assmann, 2013) 
and stream invertebrates (Schäfer et al., 2011) databases, and more 

Trait category Trait Modalities Trait type Rationale

Trophic 
Structure

Trophic Mode Carnivore ‐ scavenger, 
Carnivore ‐ other, 
Detritivore, Bacterivore, 
Omnivore

Categorical The trophic mode of a species affects its energy demand, 
as well as the amount of food it makes available to others 
during the feeding process. This trait is also an indicator of 
resilience, as more generalist feeders (such as detritivores 
and omnivores) are less likely to be affected by competition 
for food and/or changes to food supplies and quantities. 
Contrarily, carnivores depend on the presence of prey to 
survive and are potentially more vulnerable to environmen‐
tal change affecting prey populations.

  Nutritional 
Source

Sediment or rock surface, 
Water column, Fauna, 
Symbiont

Categorical This trait captures similar information to trophic mode, but 
also reflects the dependence of a species on a particular 
feature of the local environment. For example, a species 
dependent on nutritional sources in the water column might 
be more at risk if mining creates sediment plumes in the 
water column that clog the organism’s feeding apparatus. 
On the other hand, if a species can supplement its chemos‐
ynthetic energy source with a water column supply when 
vent fluid dynamics change, it may survive better in an area 
where food supply is greater (e.g., in the water column of an 
area of high primary productivity). Thus, the importance of 
and rationale behind use of this trait, as with all traits in this 
table, will depend on the research question.

Symbiont Position of 
Symbiont

Endosymbiont, 
Episymbiont, None

Categorical Species with symbionts are maximizing their access to 
chemosynthetic energy sources. On the other hand, those 
without symbionts might be more flexible, able to thrive in 
other ecosystems, and less vulnerable to vent fluid changes 
and/or shutdown. The type of symbiont is also important, as 
this captures the dependency of a species on a specific type 
of bacteria. For example, an endosymbiont host must be 
adapted to enable the bacteria to survive internally, while 
a species dependent on episymbiotic bacteria can harvest 
these from the surrounding environment.

Species 
Associations

Foundation 
Species

Yes, No Binary A foundation species facilitates other species and contributes 
to community structure, thereby playing a fundamental role 
in ecosystem function.

Community 
Structure

Abundance High, Low Binary This trait captures a relative, most commonly observed 
state of abundance for a species. A species can be low in 
occupancy (i.e. not found at many vents) but high in abun‐
dance. Abundance is therefore used as an indicator of rarity, 
resilience and performance.

TA B L E  1   (Continued)
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taxonomic entries than the amphibian (Trochet et al., 2014), rep‐
tile (Grimm, Prieto Ramírez, Moulherat, Reynaud, & Henle, 2014), 
stream invertebrate (Schäfer et al., 2011), and chironomid (Serra, 
Cobo, Graça, Dolédec, & Feio, 2016) databases (Table 3). Traits 
limited in other databases [e.g., reproductive traits (Brun, Payne, & 

Kiørboe, 2017)] also have low coverage and/or certainty in the raw 
sFDvent data, and we have excluded these from the recommended 
dataset (Supporting Information Table S4.2). However, body sizes 
are well scored, as in other databases [e.g., marine copepods (Brun 
et al., 2017)]. Furthermore, the sFDvent database encompasses 

F I G U R E  2   Data coverage map, showing the locations associated with taxa with trait information in the sFDvent database. Regions have 
been labelled according to the InterRidge Vents Database (Beaulieu, 2015). Labels shortened for display purposes are: Aleutian= Aleutian 
Arc; CIR = Central Indian Ridge; Costa Rica = Costa Rica Forearc; ESR = East Scotia Ridge; Galápagos = Galápagos Rift and Galápagos 
Spreading Centre; GoC = Gulf of California; JdF Ridge = Juan de Fuca Ridge; LAA = Lesser Antilles Arc; MCR = Mid Cayman Rise; N. EPR 
= North East Pacific Rise; N. Fiji Basin = North Fiji Basin; NH Arc = New Hebrides Arc; N. MAR = North Mid‐Atlantic Ridge; PAR = Pacific‐
Antarctic Ridge; S. EPR = South East Pacific Rise; S. MAR = South Mid‐Atlantic Ridge; SWIR = South West Indian Ridge; and T‐F Arc = Tabar‐
Feni Arc. Point size is relative to the number of database records associated with each region (e.g., see legend). The bathymetric basemap 
(“World Ocean Basemap”) is courtesy of ESRI (2012). Geographic map projection with coordinate system world geodetic system 1984

TA B L E  2   Trait data coverage for the first clean, recommended version of the sFDvent database. The modal (most frequently recorded) 
trait value and mean certainty score associated with each trait are also provided

Trait Number of records
Percentage of records 
with trait scores Modal trait value

Mean certainty 
score

Relative Adult Mobility 645 99.8 3 2.6

Depth Range (m) Min: 588
Max: 587

Min: 91
Max: 90.9

Min: 2,000–2,500
Max: 2,500–3,000

2.7

Chemosynthesis‐obligate 646 100 Vent 2.6

Estimated Maximum Body 
Size (mm)

643 99.5 100 2.8

Zonation from a Vent 507 78.5 Medium 2.6

Substratum 527 81.6 Hard 2.6

Habitat Complexity 497 76.9 Does not add 2.6

How often found in groups or 
clusters? (Gregariousness)

450 69.7 Never (Solitary) 2.4

Trophic Mode 515 79.7 Bacterivore 2.4

Nutritional Source 582 90.1 Sediment or rock surface 2.4

Position of Symbiont 477 73.8 None 2.6

Foundation Species 523 81 No 2.8

Abundance 470 72.8 High 2.6
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similar biological parameters to all of the trait databases described 
in Table 3, differing in terminology (trait names and modalities) 
rather than conceptual basis (e.g., see Table 4). For example, feeding, 

survival, growth, reproduction, and community assembly processes 
can be assessed using the traits in this database (Figure 1) and in da‐
tabases focussing on other ecosystems and/or fauna (Table 4).

TA B L E  3   A comparative review of animal trait databases

Database Geographic scope Environment Number of records Number of taxa

Number of traits (or 
categories, as specified 
below) Reference

sFDvent Global Marine 646 646 species 13 This paper

Coral Trait 
Database1

Global Marine 68,496 1,548 species 158 Madin et al. 
(2016)

Marine Species 
Traits2

Global Marine NA – tags for 
species in other 
databases

NA as pro‐
duced to link 
with other 
databases (e.g., 
WoRMS)

10 priority, 138 biological 
descriptors, 293 ecologi‐
cal descriptors

Marine Species 
Traits edito‐
rial board 
(2018)

Database for 
life history 
traits for 
European 
amphibians3

Europe Terrestrial/ 
freshwater

86 86 species 14 morphological, 17 life 
history, 7 movement, 2 
spatial distribution, and 
habitat preferences and 
threats

Trochet et al. 
(2014)

Reptile Trait 
Database4

Europe Terrestrial 122 122 species 18 (with some repeated for 
different life stages)

Grimm et al. 
(2014)

carabids.org5 Global Terrestrial > 10,000 > 10,000 
species

12 Homburg et al. 
(2013)

Trait database 
of stream 
invertebrates6

SE Australia Freshwater 172 172 (family 
level)

9 Schäfer et al. 
(2011)

European 
Chironomidae 
genera7

Europe Freshwater ~ 164 genera and 
~ 439 species

~ 439 species 37 Serra et al. 
(2016)

The Global Ants 
Database8

Global Terrestrial 3,991 individuals, 
8,973 species/
morphospecies, 
4,482 assemblages

8,973 species/
morphospecies

23 Parr et al. 
(2017)

BIOTIC – 
Biological 
Traits 
Information 
Catalogue9

Global Marine 
(benthic)

831 831 species/
genera

42 MarLIN (2006)

Fish Traits 
Database10

U.S.A. Freshwater 809 809 species > 100 Frimpong and 
Angermeier 
(2011)

A trait database 
for marine 
copepods11

Global Marine 9,306 9,306 taxa 14 Brun et al. 
(2017)

Polytraits12 Mediterranean 
lagoons but 
expanding

Freshwater/
marine

27,198 952 species 47 Faulwetter et 
al. (2017)

freshwater‐
ecology.info 
database13

Europe Freshwater 21,167 21,167 taxa 106 biological/ ecological 
parameters

Schmidt‐
Kloiber and 
Hering (2015)

Freshwater 
Biological 
Traits 
Database14

North America Freshwater 11,912 3,957 taxa ~ 160 U.S. EPA 
(2012)

Note: Superscript numbers are used to identify trait database sources, as provided in Supporting Information Table S7.1, and “NA” is used to abbrevi‐
ate “not applicable”. Note that the summary information for each of these databases (e.g., number of records, species, and traits) is accurate as of 20 
November 2017.
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TA B L E  4   A proposed “common terminology” for faunal trait databases to ensure their comparability across ecosystems, based on a 
comparative review presented in Table 3 and Supporting Information Table S7.1

Ecological 
process/function

Cross‐system compat‐
ible trait example

Similar trait(s) in 
sFDvent database

Similar trait(s) in 
other databases

Potential scoring mechanism to enable 
scoring in less well‐studied ecosystems

Growth and 
reproduction

Estimated maximum 
body size (adult and 
offspring separately)

Estimated Maximum 
Body Size (mm)

Body size2, 10, 11, 12, 
maximal body size 
(mm)5, 14, approxi‐
mate size class13

Binned size classes to enable entry of 
rounded estimates.

  Body shape (adult and 
offspring separately)

Foundation Species 
(as body shape af‐
fects the ability of a 
species to provide a 
foundation)

Body shape14, growth 
form(s)9, 13, shape 
factor13

Fixed options from a range of trait data‐
bases, to capture shape more broadly than 
per taxonomic group.

  Reproduction strategy Reproductive Type* Reproduction/repro‐
ductive type6, 7, 9, 13, 
mode of repro‐
duction12, sexual 
system1

Options covering how many times an 
animal reproduces per lifetime, whether 
it requires a partner for reproduction, 
and whether reproduction can take place 
more than once per year.

  Development 
mechanism

Larval Development* Developmental 
mechanism9, 12, lar‐
val development12

Simple scoring options to capture extent to 
which offspring are dependent on parents 
or their resources for development.

Feeding Primary diet (adult and 
offspring separately, 
and then also second‐
ary diet)

Nutritional Source Diet2, 8, food source6, 
food13, feeding 
diet13

To enable cross‐system comparisons, this 
would need to be broad. For example, 
“plant‐based”, “animal‐based”, “detritus‐
based” or “other”, would capture major 
groups, including omnivory importance.

  Primary feeding mode 
(adult and offspring 
separately, and then 
also secondary feeding 
mode)

Trophic Mode Feeding mode11, feed 
mode 14, charac‐
teristic feeding 
method9, feeding 
habits7, trophic 
level5

This could be used to capture the source of 
food and the energy required to find food. 
For example, broad options could be: 
“scavenging”, “hunting”, and “dependent 
on other fauna”.

  Food active or passive Nutritional Source 
(e.g., carnivorous 
species eating fauna 
would have “active” 
food and species 
depending on the 
water column would 
have “passive”)

Food active or 
passive3, hunting 
abilities5

This is a simplistic trait that could be used 
in place of “primary feeding mode”.

Survival Relative mobility 
(adult and offspring 
separately)

Relative Adult 
Mobility

Mobility2, 9, mode of 
displacement3, loco‐
motion4, swimming 
ability14

This can be an indicator of mobility on an 
ordinal scale (e.g., from sessile to free‐
moving and fast).

  Temperature preference 
indicator

Zonation from Vent Temperature prefer‐
ences7, thermal 
indicator14, thermal 
preference14

Temperature ranges could be selected 
that are appropriate on a global scale. 
Alternatively, bands applicable to ter‐
restrial, marine, and freshwater systems 
could be established (e.g., tropical, polar, 
temperate, extreme heat, extreme cold).

Community 
structure and 
dynamics

Habitat type Tectonic Setting*, 
Host Rock*

Habitat type1, 12, 
habitat3, 4, 13, habitat 
preference5, 10, gen‐
eral/gross habitat7

If this is to be cross‐ecosystem comparable, 
this would likely need converting to scores 
such as: “rock‐based”, “plant‐based”, etc.

  Preferred substratum Substratum Substrate prefer‐
ences7, substratum2, 

9, substratum/ 
substrate type1, 12

This, like habitat, would need to be 
categorized broadly, with scores such 
as: “sediment”, “rock”, “water”, “air” and 
“plant‐origin”.

(Continues)
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4  | DISCUSSION

sFDvent is a global‐scale trait database for deep‐sea hydrother‐
mal‐vent species, compiled using literary sources, existing taxo‐
nomic databases [ChEssBase (Baker et al., 2010), WoRMS (Horton 
et al., 2017) and Desbruyères, Segonzac, and Bright (2006)], and 
pooled expert knowledge based on research‐cruise observations 
since 1977, with pioneer scientists in this field contributing. The 
first version (sFDvent v.1), released here (Supporting Information 
Table S4.2), contains data for 646 taxa across 13 traits. In captur‐
ing species records (required to assign traits) up to the year 2017, 
we also update the last species compilation from 2009 (Bachraty 
et al., 2009) from 592 species to 740 (including species removed 
from the recommended dataset due to lacking trait scores, or 
646 species with higher taxonomic certainty). The database has 
a global span and broad taxonomic coverage for use in macroe‐
cological trait‐based studies of vent biodiversity and in research 
incorporating taxonomic‐, phylogenetic‐, and trait‐based diversity 
indices.

Body size, for example, is a trait identified to play a funda‐
mental role in ecosystem functioning, ecological processes, and 
shaping biodiversity (Mindel, Webb, Neat, & Blanchard, 2015); 
this trait (“Estimated Maximum Body Size”) has been scored for all 

but three taxa in sFDvent. Also scored with high coverage is mo‐
bility – identified in marine ecosystems as important for dispersal 
potential (Costello et al., 2015) and, thus, population dynamics, as 
well as ability to escape in the event of a disturbance. Scores for 
“Relative Adult Mobility” are provided for more than 99% of taxa 
in sFDvent and can now be used in diversity‐oriented studies as 
well as those investigating reproduction in vent fauna and its in‐
fluence on vent biogeography (Mullineaux & France, 1995; Yahagi, 
Watanabe, Kojima, & Kano, 2017). Similarly, due to complete cov‐
erage, “Chemosynthesis‐obligate” can be used to ascertain ende‐
mism levels in taxonomic, geographic, and other groups, which 
may be particularly important when considering the impacts of 
mining on vent ecosystems, given the close relationships between 
endemism and resilience (Vasconcelos, Batista, & Henriques, 
2017).

The sFDvent database also has an important role in its capacity 
to highlight knowledge gaps and research biases. For instance, miss‐
ing and/or low certainty scores in “Gregariousness”, “Trophic Mode” 
and “Nutritional Source” traits highlight a need for observational and 
behavioural studies. These traits would improve our understanding 
of community structure and dynamics, as well as macroecological‐
scale variability in vent food webs. In addition, despite literary focus 
on vent annelids and molluscs (Supporting Information Appendix S2), 

Ecological 
process/function

Cross‐system compat‐
ible trait example

Similar trait(s) in 
sFDvent database

Similar trait(s) in 
other databases

Potential scoring mechanism to enable 
scoring in less well‐studied ecosystems

  Gregariousness How often found in 
groups or clusters?

(Gregariousness)

Sociability9, 12, coloni‐
ality1, occurrence in 
large quantities13

This can be simply broken down to: “always 
found with others”, “sometimes found 
with others” and “never found with 
others”.

  Dependency Chemosynthesis‐ob‐
ligate, Position of 
Symbiont

Dependency9 Symbiotic relationship types present across 
all ecosystems would need to be included 
as scoring options (e.g., mutualistic, 
parasitic).

  Migration Dispersal Mechanism* Migration13, type of 
migration7, migra‐
tion pattern9

This could be scaled as follows, for exam‐
ple: “across ocean basins/continents”, 
“across ecoregions”, “across smaller areas”, 
“no migration”.

  Ecosystem engineer Habitat Complexity Ecosystem 
engineering12

This can be a “yes/no” score, depending on 
whether a species modifies the habitat 
around them or creates habitat for other 
fauna by being present.

  Average associated 
depth / altitude (m)

Depth Range (m) Water depth1, depth2, 
depth prefer‐
ences7, altitudinal 
preference(s)7, 13

500–1,000 m intervals can be established 
from the deepest ocean basin to the 
highest mountain, to capture depths and 
altitudes in a comparable way (e.g., with 
ranges below sea level expressed with a 
minus sign).

Note: Italicized items are either: (a) not ecological traits (e.g., location information), or (b) similar in what they capture but more context‐dependent 
than other traits compared. Superscript numbers are used to identify trait database sources, as provided in Supporting Information Table S7.1. Traits 
with an asterisk were removed from the recommended sFDvent dataset (Supporting Information Table S4.2) but are present in the raw dataset 
(Supporting Information Table S4.3).

TA B L E  4   (Continued)
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arthropods are the best‐scored fauna in the database. Meanwhile, as 
one might expect given publication and sampling bias (Supporting 
Information Appendix S2), the North Pacific has the highest number 
of scored taxa, emphasizing a need to score traits in less well‐sam‐
pled regions. Furthermore, despite the fundamental importance of 
reproductive traits in ecology (Mullineaux et al., 2018), trait scor‐
ing for “Reproductive Type”, “Larval Development” and “Dispersal 
Mechanism” did not have sufficient coverage to be included in sF‐
Dvent v.1. This is, however, now already being addressed by collab‐
orators, further emphasizing the importance of building databases 
like sFDvent for: highlighting gaps and biases that need to be filled 
and resolved; generating new directions for research agendas; and 
promoting collaborative approaches for gap filling across a research 
community.

In considering the compatibility of sFDvent traits with those 
in established databases for other environments and taxonomic 
groups, we have identified similarities and differences in data 
availability across ecosystems (Table 4, Supporting Information 
Appendix S7). For example, reproductive and behavioural traits are 
poorly scored relative to other traits in many trait databases, while 
body size, and other more readily measurable traits, are well scored 
(Brun et al., 2017; Madin et al., 2016; Parr et al., 2017). Highly scored 
traits will facilitate cross‐ecosystem analyses. Nevertheless, our 
traits were designed for highly specialized fauna in remote, deep‐
sea environments. Therefore, to conduct a comparative analysis 
across different trait databases, we would need to “translate” the 
trait terminology used (Table 4). Thus, we echo calls for common 
terminology across systems (Costello et al., 2015) to advance trait‐
based approaches for macroecological biodiversity studies. While 
important goals for ecological understanding can be met using spe‐
cies‐ and ecosystem‐specific traits (e.g., mapping global biodiversity 
patterns), a common language linking databases and systems would 
enable us to investigate truly global‐scale patterns, as well as human 
impacts upon these systems [Convention on Biological Diversity 
(CBD), 1992].

Comparing sFDvent to other databases also highlights our 
unique approach to data collection. Other databases have tended 
to focus on literary sources of information [including other data‐
bases; e.g., MarLIN (2006)], whereas sFDvent was predominantly 
filled using expert knowledge, and sFDvent entries scored using the 
literature were peer‐reviewed by experts. A major finding of the 
sFDvent project is that there is a lag, wherein published information 
remains behind the current knowledge of experts. Furthermore, 
publications tend to focus on species in a given location and, when 
used to score species traits, might not represent the most common 
trait score for a species more generally. Many deep‐sea species are 
observed using remotely operated vehicles but remain unsampled, 
with traits unmeasured and undocumented. Despite this, scientists 
participating in research cruises accumulate a wealth of knowl‐
edge through observations of these “unrecorded” species. This 
emphasizes the importance of including collective expert opinions, 

in combination with published information, in trait databases. We 
expect that terrestrial, freshwater, and marine ecologists, too, gain 
insights as to the common traits of species – undocumented in offi‐
cial publications, but recorded in field notebooks, photographs, and 
recalled observations. A trait‐based approach enables researchers 
to capture these “hidden” data sources, although we advise remain‐
ing cautious by capturing relative certainty in conjunction with ex‐
pert‐derived scores.

Moreover, pooling expert opinion on species‐trait scores cap‐
tured the current state of knowledge in a relatively quick timeframe 
(1 year as opposed to 10 or more for other databases; Supporting 
Information Figure S1 A.1), where knowledge from observations 
made during research cruises, and unpublished data, could be incor‐
porated and credited using contributor ID metadata. Thus, we sug‐
gest that using a working‐group approach and online collaboration 
tools to produce a shared data source, designed, tested and agreed 
upon by experts who have contributed to, and will benefit from, the 
data, is a means to produce a quality product. We expect that sF‐
Dvent will form a baseline single repository for expert knowledge 
on deep‐sea hydrothermal‐vent species, with ongoing community 
input. In addition to promoting international collaboration in its 
design and population, the database showcases the benefits of a 
working‐group approach and knowledge sharing among members of 
the chemosynthesis‐based‐ecosystem research community. Experts 
across the globe can use sFDvent to reduce uncertainty when de‐
veloping conservation and management plans for deep‐sea hydro‐
thermal vents – previously untouched, but now under threat from 
human exploitation.
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