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Abstract
Scattering theory is the basis for various seismic modeling and inversion methods.
Conventionally, the Born series suffers from an assumption of a weak scattering and may face a
convergence problem. We present an application of a modified Born series, referred to as the
convergent Born series (CBS), to frequency-domain seismic wave modeling. The
renormalization interpretation of the CBS from the renormalization group prospective is
described. Further, we present comparisons of frequency-domain wavefields using the reference
full integral equation method with that using the convergent Born series, proving that both of the
convergent Born series can converge absolutely in strongly scattering media. Another attractive
feature is that the Fast Fourier Transform is employed for efficient implementations of
matrix–vector multiplication, which is practical for large-scale seismic problems. By comparing it
with the full integral equation method, we have verified that the CBS can provide reliable and
accurate results in strongly scattering media.

Keywords: seismic modeling, integral equation, wave scattering, renormalization theory

1. Introduction

The integral equation (IE) method based scattering theory
(Aki & Richards 1980; Zhdanov 2002) is a powerful tool in
themodeling of wave propagation, which has a wide applica-
tion in data processing (Weglein et al. 1997, 2003),modeling
(Innanen 2009), and seismic inversion (Wu & Zheng 2014;
Snieder 1990; Berkhout 2012; Zhang & Weglein 2009;
Alkhalifah & Wu 2016; Alkhalifah 2016; Wu & Alkhalifah
2017; Huang et al. 2019). An attractive features of the IE
method is that only the anomalous volume (scattering vol-
ume) needs to be discretized, which leads to more efficient
computation (Malovichko et al. 2017). The implementation
of the IE method involves dividing the medium into back-
ground and anomalous parts (Zuberi & Alkhalifah 2014).

TheBorn series has an assumptionofweak scattering (Wu
& Toksoz 1987; Kouri & Vijay 2003). Convergence issues
may occur in strongly scattering areas, such as salt structures.
It is important for seismic imaging in such strong-contrast
regions to address the weak-scattering assumption. One im-
portant approach that addresses the divergence problem is
to renormalize the Born series using various renormalization
approaches (Eftekhar et al. 2018).

There are several approaches to develop a convergent scat-
tering series. There have been successful attempts to intro-
duce the DeWolf approximation (DeWolf 1971, 1985) into
seismic scattering series (Wu&Huang 1995).The renormal-
ized scattering series is derived by Jakobsen & Wu (2016)
using the T-matrix and De Wolf series. The T-matrix is a
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Figure 1. The two-layered and background models. The size of the model is 1280m× 1280m.

transition operator that includes all the effects of multiple
scattering. Renormalization group method has been applied
to seismic waveform inversion (Wu et al. 2015) and en-
velope inversion (Wu et al. 2016). Signicant progress has
been made by Yao et al. (2015) by dividing the renormal-
ized Lippmann–Schwinger equation into two sub-Volterra
type integral equations and introducingwavefield separation.
Recently, by employing the renormalization group (RG)
theory, we developed a renormalized version of the Born
series. Numerical tests showed that this solution can be
convergent for large-contrast media ( Jakobsen et al. 2018).
Our renormalization group approach is based on the use
of an auxillary set of scale-dependent scattering potentials,
which gradually evolves toward the real physical scattering
potential.

Another interesting convergent Born series (CBS) was
proposedbyOsnabrugge et al. (2016) to solve theHelmholtz
equation. The convergent Born series can guarantee conver-
gence by localizing the wavefields, in which the contracted
preconditioner must be specified. Actually, the CBS can
be understood as a kind of renormalized Born series based
on the RG theory. In the early 1970s, the renormalization
procedure was proposed by Gell-Mann & Low (1954) for
problems of infinity and divergence. From the early 1970s
(Wilson 1971), RG theory has been widely used to remove
divergence in quantumphysics, critical phenomena, dynami-
cal systems and statisticalmechanics, etc. Themajor purpose
of the RG theory is to obtain stable properties of physical
systems (Goldenfeld 1992). Based on the above fact, Chen
et al. (1994, 1996) applied the RG approach to deriving

global asymptotic solutions of differential equations. Since
then, the RG theory has been well developed and significant
progress in renormalizing perturbation series (Yakhot &
Orszag 1986; Pelissetto & Vicari 2002; Delamotte 2004;
Kirkinis 2008, 2012) has been made.

The purpose of this paper is to extend the CBS of
Osnabrugge et al. (2016) to seismic scattering problems for
strongly scattering media and compare the CBS with the full
integral equation method. The convergent Born series is ob-
tained by localizing the Green’s function with a dampling
factor. From the technical point of view, the CBS removes
the divergence by localizing the wavefields and controlling
convergence using a preconditioner. Thus, the CBS can be
understood as a kind of renormalized Born series. After
presenting the convergent Born series, we analyze the the-
oretical background of the convergent Born series from the
renormalization group theory prospective and its nature of
localization. Then, we give numerical results of frequency-
domainwavefields. To quantatively compare the results from
the CBS and full integral equation methods, we present nu-
merical results for results of pressure wavefields in strongly
scattering media.

2. Integral equations for the seismic scattering problem

2.1. The Lippmann–Schwinger equation

The Helmholtz equation can be written as (Morse &
Feshback 1953):

∇2
𝜓 (r) + k2𝜓 (r) = −s(r), (1)
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Figure 2. Frequency-domain wavefields for the frequency of (a) 10Hz and (b) 15Hz for the two-layer model using the IE method.

with the wavenumber k and source signal s(r), where ∇ is
the second-order differentiation. Defining𝜓b(r) as the back-
ground field,

∇2
𝜓b (r) + k2b𝜓b (r) = −s(r), (2)

where kb is the backgroundwavenumber. The total wavefield
𝜓 (r) can expressed as

𝜓 (r) = 𝜓b (r) + 𝜓s (r), (3)

where ks is the scatteredwavenumber and ks = k− kb. Substi-
tuting equation (3) into (1), we have the following equation
for the scattered wavefields𝜓 s(r):

−∇2
𝜓s (r) − k2b𝜓s (r) = k2s (r) (𝜓b (r) + 𝜓s (r)) . (4)

From equations (2) and (4), we get the scattered wavefields
𝜓 s(r)

𝜓s (r) = k2b ∫D
Gb (r, r

′)𝜒 (r′)𝜓 (r′) d3r′ (5)

with

𝜒 (r′) =
k2 − k2b
k2b

, (6)

where the background Green’s function Gb can also be cal-
culated with analytical expressions for homogeneous media,
and the ray theory (Cerveny 2005; Huang & Greenhalgh
2019), Gaussian beam (Huang et al. 2016a, b, 2018; Huang
2018) or finite difference method (Carcione 2007) for in-
homogeneous media. Finally, we can get the Lippmann–
Schwinger equation:

𝜓 (r) = 𝜓b (r) + k2b ∫D
Gb (r, r

′)𝜒 (r′)𝜓 (r′) d3r′.

(7)

2.2. The conventional Born series

Equation (7) has the formal solution as

𝜓 (r, k) = 𝜓b (r, k)
(
1 − k2b ∫D

Gb (r, r
′, k)𝜒 (r′) d3r′

)−1

.

(8)
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Convergent Born series: real(G)
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Figure 3. Frequency-domain wavefields for the frequency of (a) 10Hz and (b) 15Hz for the two-layered model using the CBSmethod.

This equation can be solved iteratively:

𝜓(rg , rs, k) = 𝜓b(rg , rs, kb)

+ k2b ∫D
Gb(rg , r

′)𝜒 (r′)𝜓b (r
′, rs) dr

′

+ k4b ∫D
dr′Gb(rg , r

′)𝜒 (r′)∫D
dr′′

×Gb (r
′, r′′)𝜒 (r′′)𝜓b (r

′′, rs) + ⋅ ⋅ ⋅ (9)

After taking the first-order term of the conventional Born se-
ries, we have the Born approximation:

𝜓(rg , rs, k) = 𝜓b(rg , rs, k)

+ k2b ∫D
Gb(rg , r

′, k)𝜒(r′)𝜓b(r
′, rs, k)dr

′
. (10)

TheBorn series is thebasis for seismic forward and inverse
problems. However, because the Born series assumes weak
scattering, it can only converge when the scattering potential
is weak (Kirkinis 2008;Wu et al. 2007). For real applications,

the strength of the contrast in themedium is relatively strong.
Divergence may occur in media with strong contrasts.

2.3. Convergent Born series

This section revisits the equations for the CBS (Osnabrugge
et al. 2016). Equations are presented for an arbitrary strong
medium. The convergent Born series refers to the situation
in which the value of the coefficient of each iteration term is
less than unity. The key point formodification of the conven-
tionalBorn series is to introduce adampingparameter 𝜖 anda
preconditioner 𝛾 . Here, we review the derivation of the CBS.
To this end, we start with the conventional Born series and
apply the preconditioner to both sides of the conventional
Born series. It should be noted that the damping parameter
𝜖, which is related to the attenuation of the wavefields in the
background medium, is also important for the convergence.

In operator form, the Born series (9) can be written as
follows:

𝜓 = G𝜒𝜓 + GS, (11)
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Resampled SEG/EAGE salt model
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Figure 4. (a) Resampled version of the SEG/EAGE salt model and (b) background model.

where S is the source term, which represents the source
wavelet in frequency-space domain, andG is the Green’s op-
erator, which represents the Green’s function Gb in equa-
tion (9). Note that S and 𝜓 are vectors, and G is dense op-
erator filled with various Green’s functions. 𝜒 is a diagonal
matrix. By applying a preconditioner 𝛾 to both sides of equa-
tion (11), Osnabrugge et al. (2016) obtained

𝛾𝜓 = 𝛾G𝜒𝜓 + 𝛾GS. (12)

Then, we reformulate equation (12) as

𝜓 = Λ𝜓 + 𝛾GS, (13)

with

Λ = 𝛾G𝜒 − 𝛾 + 1, (14)

where

𝛾 (r) = i
𝜖
𝜒 (r) . (15)

The combination of the parameters 𝛾 and 𝜖 can ensure that
the largest eigenvalue of Λ is smaller than unity. The details
of choice of parameter 𝜖 will be discussed in the section Im-
plementation. The modified Born series is explained by the
following renormalized Born series:

𝜓 =
(
1 + Λ + Λ2 + Λ3 +⋯

)
𝛾GS. (16)

The iteration form solution is𝜓 =Λ𝜓 + 𝛾GSwith the initial
solution𝜓b= 𝛾GS. The backgroundGreen’s function can be

written as (Osnabrugge et al. 2016)

Gb (k) =
1|k|2−k2b−i𝜖 , (17)

and in the real-space domain (Osnabrugge et al. 2016)

Gb =
e
i|r|√k2b+i𝜖

4𝜋|r| , (18)

where k is the wavenumber vector in the real medium.
Because of the introduction of the coefficient of each

iteration term Λ and preconditioner 𝛾 into the Born series,
the modified Born series is convergent. Mathematically,
Osnabrugge et al. (2016) demonstrated that the modified
Born series can converge by combining the two parameters
and given the suggestions of choice of the parameters in the
optimum scale.

Here, we aim to apply the CBS method to seismic wave
modeling problems and provide the renormalization in-
terpretation of the convergent Born series. Due the strong
contrast in the seismic problems, it is more challenging. We
perform numerical tests and investigate how to choose the
coefficient Λ and preconditioner 𝛾 for each iteration term,
and the dependence on the parameter 𝜖. We will look at how
the parameter 𝜖 changes for different models with different
strong scattering cases.
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Figure 5. Frequency-domain wavefields for the frequency of (a) 10Hz and (b) 15Hz for the SEG/EAGE salt model using the full integral equation
method.

3. Interpretation of the convergent Born series

In this section, we discuss the convergent Born series from
the renormalization perspective.

3.1. Step-by-step local interaction

The modified version of the Born series developed by
Osnabrugge et al. (2016) is called the convergentBorn series.
In thismodifiedBorn series, a preconditioner𝛾 is introduced.
By combining the preconditioner 𝛾 and parameter 𝜖, the iter-
ation computation satisfies the convergence condition of the
Born series.

Actually, the concepts of the locality of wavefields explain
how step-by-step propagators prevent the CBS from diver-
gence. From equation (13), we can see that for the conven-
tional Born series, each term involves integrations over the
whole volume, which leads to the divergence problems of

strongly scattering medium. The CBS makes the total en-
ergy in the background medium localized and finite so the
volume integral in each term will not blow up. It compen-
sates the damped wavefield by introducing an imaginary part
with an opposite sign into the scattering potential V. This
means that in the latter procedure the wavefield will grow
when interacting with the scattering potential, and therefore
compensate the energy loss during propagation in the back-
groundmedium. In this way, those interactions always act lo-
cally, and thus can be regarded as short-range interactions.
The iterations will continue until the wavefields cover the
whole region with accepted accuracy. Physically, this can be
explained as the renormalization process. According to Wil-
son’s RG theory, one can first integrate out the local interac-
tions and then derive the effective action operator, and then
go to the next level to calculate the local interactions based on
the effective interaction operator. The RG procedure in CBS
is more like the mathematician’s renormalization procedure
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Figure 6. Frequency-domain wavefields with the frequency of 10Hz for the SEG/EAGE salt model using the BSmethodwith (a) 20, (b) 50, (c) 80 and
(d) 100 iterations.
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Figure 7. Frequency-domain wavefields with the frequency of 10Hz for the SEG/EAGE salt model using the CBS method with (a) 20, (b) 50, (c) 80
and (d) 100 iterations.
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Convergent Born series: real(G)

Convergent Born series: real(G)

Figure 8. Frequency-domain wavefields with the frequency of 15Hz for the SEG/EAGE salt model using the CBS method with (a) 20, (b) 50, (c) 80
and (d) 100 iterations.
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Figure 9. Convergence property of the CBS for the (a) 10Hz and (b) 15Hz simulations of the two-layer model.

(Chen et al. 1996) using RG theory as a floating initial condi-
tion. At each step, the calculated field is treated as a new ini-
tial wavefield for further propagation. This is different from
Wilson’s multi-scale RG procedure.

4. Implementation

In this section, we give the coordinate representation for the
CBS. The advantage of this representation is that it is easy
to relate two adjacent scattering potentials. Using the coor-
dinate representation, equation (13) can be rewritten as

𝜓 (r) = 𝛾 (r) G (r) S + Λ (r, r′)𝜓 (r). (19)

The entire model is discretized into Nx × Nz in the two-
dimensional case. Then, we have

𝜓m,n (r) = 𝛾 (r) Gm,n (r) S +
Nx∑
m=1

Nz∑
n=1

Λm,n (r, r
′)𝜓m,n (r),

(20)
where i= 1,…,Nx and j= 1,…,Nz.

It should be noted that, to compute the wavefields at
the receivers along the surface, we need to compute the
wavefields from the sources to any subsurface point and the
background Green’s functions from receivers to any subsur-
face point. For computing the wavefields at any subsurface
point, we need compute the wavefields in the background
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mediumand theGreen’s functions fromany subsurface point
to any subsurface point (the Green’s function from volume
to volume GVV). Then we need compute Λ, which is used
for the high-order terms of the CBS. The workflow for im-
plementing the renormalized Born series can be found in
Algorithm 1.

Algorithm 1 Pseudo code for renormalized Born series
1: Initialisation: frequency, maximum iteration num-

berNmax and the parameter 𝜖
2: m = truemodel,m0 = backgroundmodel;
3: for n = 0 to n = Nmax do
4: 𝜒 = k2 − k20 − i𝜖

5: kb =
√

k20 + i𝜖
6: n = n + 1
7: if n == 0 then
8: G(b)

VV = Green(VV, kb)
9: G(b)

VS = Green(VS, kb)
10: G(b)

VR = Green(VR, kb)
11: 𝜓 (b) = GS
12: end
13: 𝛾 (r) = i

𝜖
𝜒 (r)

14: Λ = 𝛾GVV𝜒 − 𝛾 + 1
15: 𝜓 = Λ𝜓 + 𝛾GVSS
16: dr=Error (𝜓CBS,𝜓FullIntegral)
17: end for

5. Choice of parameter 𝝐 in the scale of seismic
modeling

An important issue for the CBS is to choose the parameter
𝜖. From the analysis in the above section, it can be found
that the stronger the scatters (large-contrast), the higher the
required parameter 𝜖. This is because to eliminate the di-
vergence the wavefields should be strongly localized. From
equation (19), one can see that the higher the parameter 𝜖,
the stronger the attenuation of the backgroundGreen’s func-
tions. Thismeans that there is a compromise between the de-
mand on the convergence of the CBS and the computational
cost. After conducting numerical tests, we find that the pa-
rameter 𝜖 should be chosen as follows:

𝜖 = 0.1 ×max|k2 − k2b| if f < 3, (21)

and

𝜖 = max|k2 − k2b| if f > 3. (22)

After investigating the convergence of the convergent
Born series, Fast-Fourier Transform (FFT) is used, which
can accelerate the computation in the implementation. Fol-
lowing Osnabrugge et al. (2016), we employ the FFT tech-
nique for an efficient matrix-free implementation. The FFT

method has been used for integral equation modeling (Liu
et al. 2001; Gao & Torres-Verdin 2006). The matrix–vector
multiplications can be expressed as

G𝜒 = −1 [ [G] [𝜒]], (23)

where  is the forward 2D FFT operator and −1 is the in-
verse 2DFFToperator. It should be noted that the product is
performed in the size of 2Nx× 2Nz. The computational com-
plexity isO[NxNzlog(NxNz)] and thememory complexity is
O[NxNz].

6. Synthetic results

6.1. Comparison of frequency-domain wavefields

In this section, we share the frequency-domain wave-
fields for different models, including two-layers and the
SEG/EAGE salt models as well as, compare the conver-
gence property of the CBS by calculating the normalized
errors and share the pressure response along receiver line
for different iterations. To demonstrate the accuracy of
the CBS, we compare it with the full integral equation
method (Jakobsen & Wu 2016). We have used homoge-
neous background media in the tests and the velocity is
2000m s−1.

We first compare the renormalized Born series against the
T-matrix method in an acoustic two-layer model (figure 1).
The model measures 1280m× 1280m with grid intervals
for the simulations of 10m× 10m.

Snapshots of frequency-domain wavefields computed
with the full integral equation method and the conver-
gent Born series are shown in figures 2 and 3, respec-
tively. In each figure, we show the wavefields of two
frequencies, 10Hz and 15Hz. From figures 2 and 3,
one can make the following observations: (1) the wave-
fields using all the methods display an obvious change
around the boundary; (2) the wavefields using the CBS
match well with those from the reference integral equation
method.

Figure 4 shows the resampled SEG/EAGE salt model for
this example.Themodel grid is 10m× 10m.Themodel rep-
resents a uniform mesh of 128× 128 nodes. We have per-
formed simulationsof frequency-domainwavefields inwhich
the frequencies of 10Hz and 15Hz are used. Figure 5 shows
the wavefields for 10Hz and 15Hz obtained by the refer-
ence integral equation method with 100 iterations. Figure 6
shows thewavefield snapshots for 10Hzobtainedby the con-
ventional Born series (BS) method with 20, 50, 80 and 100
iterations. Figures 7 and 8 show the wavefields at frequen-
cies 10Hz and 15Hz, respectively, obtained by the CBS
method with 20, 50 ,80 and 100 iterations. From figures
5, 7 and 8, one can observe that the results from the CBS
method have a good match with the results from full integral
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Figure 10. Convergence property of the CBS for (a) 10Hz and (b) 15Hz simulations of the SEG/EAGE salt model.

equation approach. All computations were performed on an
Intel i7-7700. The CPU of the computer is 3.60GHz with
RAM 64GB. The computational times of the full integral
equation and CBS for 100 iterations are 859 s and 492 s,
respectively.

6.2. Convergence property of the CBS

To investigate the convergence property of the CBS, we cal-
culate the normalized error. Figures 9 and 10 show the results
for the two-layered and the SEG/EAGE salt models, respec-
tively . The figures show that the CBS has a similar conver-
gence property in different models and frequencies, but the

error decreases in a different way. With the same iterations,
the error in the two-layeredmodel is smaller than those of the
SEG/EAGE salt model. From the figures, one can observe
that after around 100 iterations the error of the CBS is very
small. This suggests that the CBS can give a goodmatch with
the reference solution.

6.3. Frequency-domain wavefields with FFT

Because we use FFT in the implementation, some periodic
boundary condition problems may occur (Osnabrugge et al.
2016). To prevent the reflection from the boundaries, we
use an absorbing boundary condition in the implementation
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Figure 11. Frequency-domain wavefields for 10-Hz simulation of SEG/EAGEmodel using the CBS with FFT.

of the CBS. The absorbing boundary condition has been
used in the context of wave modeling by different authors.
More specifically, for the CBS, we use a width of absorbing
boundary layer with grids of 40× 40. Figure 11 shows the
frequency-domain wavefields of 10Hz using the CBS with
FFT. We have estimated the computational cost. The com-
putational times of the reference integral equation method
is 492 s. The computational time of the CBS with FFT
is 100 s.

6.4. Anomalous pressure response along receiver line

Wenow consider the same simulation as the SEG/EAGE salt
models but for the synthetic pressure response along the re-
ceiver line. This example is designed to test the accuracy of
the numerical scheme. Figure 12 shows the results for a two-
layered model, in which the frequencies of 10Hz and 15Hz
are used. Figures 13 and 14 show the pressure response in a
salt model using the BSmethod with the frequency of 10Hz
for different iterations. Figures 15 and 16 show the pressure
using the CBS method with the frequency of 10Hz for the
salt model. Figures 17 and 18 show the pressure using the
CBSmethod with the frequency of 15Hz for the salt model.
For all the tests, the point source is placed at the same posi-
tion. A receiver line is located at the surface. From figures 13
and 14, one can observe that the results from the BSmethod
do not agree with the pressure wavefields from the full inte-
gral equation method. From figures 15–18, we observe that
the pressure response using the CBS works very well com-
pared with the result using the reference integral equation
method.

7. Discussion

Before we discuss the convergence, computational com-
plexity and potential application of the CBS, we would

like to clarify that we have presented the theory and
performed the numerical tests in the frequency do-
main because scattering theory is naturally formulated
in the frequency domain and we do not have to gener-
ate time-domain waveforms to perform inversion in the
frequency domain. The main reason for using a homo-
geneous reference medium is that we want to use FFT,
which depends on the fact that the Greens function for
a homogeneous medium is directly related to the differ-
ence between x and x′. Another point is that the con-
trast is frequency-dependent. In our tests, we used dif-
ferent frequencies and investigated different choices of
parameter 𝜖.

The application of the BS to seismic forwardmodeling re-
quires small contrasts to achieve convergence. Here, by ap-
plying a preconditioner to the both sides of the BS and in-
troducing the parameter 𝜖 to the background Green’s func-
tion, the convergence of the BS is guaranteed. Figures 19
and 20 show the difference of frequency-domain wavefields
for SEG/EAGE salt model using full integral equation and
CBS methods. Osnabrugge et al. (2016) have already pro-
vided a general proof of convergence,wehaveusednumerical
examples to verify that the general proof holds for our spe-
cificmodels. However, for the case where the contrast is very
large, e.g. salt areas, more iterations are needed to achieve
convergence. This is also related to the choice of the param-
eter 𝜖. The stronger the scatters (large-contrast), the higher
the needed parameter 𝜖.

Compared to the conventional BS there is no additional
computational cost for each term in the real-space imple-
mentation. It should be noted that the accuracy of the
wavefields depend on the number of iteration. This is differ-
ent from the full IE method. One important thing we would
like to mention is that, due to the FFT implementation for
the CBS, the computational cost is reduced significantly.
The computational complexity for such an implementation
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Figure 12. Comparison of pressure records for the two-layer model using the CBS and full integral equationmethods with the frequencies of (a) 10Hz
and (b) 15Hz, respectively.

is O[NxNzlog(NxNz)] and the memory complexity is
O[NxNz]. Thus, the method can be in principle extended to
the 3-D case.

We have presented and tested a new forward scattering
series for seismic modeling. The method is suitable for

numerical simulation of strongly scattering medium. The
scattering series can be used for direct inverse scattering
problems. Future research can look into the application of
the CBS to the elastic case as well as in seismic inversion.
The CBS in this paper can be considered as a stepping
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Figure 13. Comparison of pressure records for the SEG/EAGE salt model using the BS and full integral equationmethods with the frequency of 10Hz
with a) 20, b) 50 iterations.

stone to developing modifications for one-way propagators.
Also, it can be used to establish the Frechet derivatives for
multi-scattering full waveform inversion (Alkhalifah & Wu
2016).

8. Conclusions

Seismic scattering theory is an effective method for seis-
mic wave modeling and is the basis of seismic inversion.
However, the Born series assumes weak scattering, which
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Figure 14. Comparison of pressure records for the SEG/EAGE salt model using the BS and full integral equationmethods with the frequency of 10Hz
with (a) 80 and (b) 100 iterations.

renders the modeling and the inversion divergent for strong
scattering media. We have presented the application of
the so-called convergent Born series to seismic modeling
problems. Numerical examples are presented, showing that,
because of the introduction of a preconditioner into the
traditional Born series, the Born series can be convergent for

arbitrarily strong contrastmedium.Compared to the integral
equation method, the computational cost of the convergent
Born series is cheaper, especially in the Fast Fourier Trans-
form implementation. This method should be suitable
for applications to inverse scattering and full waveform
inversion.
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Figure 15. Comparison of pressure records for the SEG/EAGE salt model using the CBS and full integral equation methods with the frequency of
10Hz with (a) 20 and (b) 50 iterations.
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Figure 16. Comparison of pressure records for the SEG/EAGE salt model using the CBS and full integral equation methods with the frequency of
10Hz with (a) 80, (b) 100 iterations.
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Figure 17. Comparison of pressure records for the SEG/EAGE salt model using the CBS and full integral equation methods with the frequency of
15Hz with (a) 20, (b) 50 iterations.
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Figure 18. Comparison of pressure records for the SEG/EAGE salt model using the CBS and full integral equation methods with the frequency of
15Hz with (a) 80 and (b) 100 iterations.
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Figure 19. Difference of wavefields of real (a) and imaginary (b) parts using the CBS and full integral equation methods with the frequency of 10Hz.
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Figure 20. Difference of wavefields of real (a) and imaginary (b) parts using the CBS and full integral equation methods with the frequency of 15Hz.
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