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Abstract 
Gas, dust and hybrid explosions represent a serious hazard in the petroleum, process and mining 

industries, and inert substances are frequently employed as part of risk-reducing measures such 

as inerting, suppression, and partial inerting or suppression. Solid inert substances, such as 

sodium bicarbonate (SBC), are used in systems for suppression or isolation of explosions, 

especially in facilities that handle combustible dust. The minimum inerting concentration (MIC) 

specifies the amount of a solid suppressant required for extinguishing a flame in a given fuel-air 

mixture, regardless of the fuel concentration. Similarly, diluting the air to a level below the 

limiting oxygen concentration (LOC) with inert gases, such as nitrogen and carbon dioxide, is an 

effective means of preventing the formation of explosive atmospheres, and hence accidental 

explosions. Furthermore, partial inerting is an effective means of reducing the risk of accidental 

explosions in confined environments, and systems for chemical inhibition have recently been 

developed for mitigating the consequences of vapour cloud explosions (VCEs) in congested 

process plants. 

The present study aimed at investigating the mitigating effect of inert substances on the severity 

of fuel-air explosions, quantified by the explosion pressure Pm and the rate of pressure rise 

(dp/dt)m. In particular, it was of interest to compare the relative efficiency of partial inerting by 

gaseous or solid inert substances applied to gaseous and solid fuels, as well as hybrid mixtures. 

To this end, various amounts of the inert substances nitrogen (N2), carbon dioxide (CO2) and 

sodium bicarbonate (NaHCO3) were added to constant-volume fuel-air explosions with the fuels 

methane (CH4) and maize starch, as well as hybrid mixtures of methane and maize starch. The 

experiments were conducted in a 20-litre explosion vessel at the dust explosion laboratory at the 

Department of Physics and Technology (IFT) at the University of Bergen (UiB). Initially, turbulent 

mixtures were ignited using a 1 kJ chemical igniter, triggered at a fixed ignition delay time of 60 

milliseconds after the onset of dispersion. 

The results confirm observation from previous studies, demonstrating that relatively modest 

amounts of inert substances can reduce the rate of combustion in fuel-air explosions significantly. 

The addition of 100-200 g/m3 of the solid inert diluent SBC resulted in a 60-80 % reduction in the 

rate of pressure rise for methane, maize starch and hybrid (methane and maize starch) 

explosions. The results imply that partial inerting or suppression represent effective means of 

reducing the explosion risk, either as isolated measures or in combination with for instance 

deflagration venting. 

Further work should elaborate on the mitigating effect of different types of solid inert diluents 

on fuel-air explosions in confined and/or congested geometries, as well as the effect of the 

particle size of the solid suppressant. It is also relevant to explore the possibility of mitigating the 

consequences of explosions involving highly reactive fuels, such as hydrogen. This is particularly 

relevant for hydrogen systems located in relatively weak enclosures, such as containers, buildings 

or fuel cell rooms in trains, ships and planes. Deflagration venting is not very effective for highly 

reactive fuels, but a combination of partial suppression and venting may reduce the risk to an 

acceptable level. 
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1 Introduction 
Gas, dust and hybrid explosions represent a serious hazard in the petroleum, process and mining 

industries, such as oil platforms, refineries, chemical factories, the food and feed industry, tank 

facilities, coal mines, refuelling/bunkering facilities, etc. Accidental explosions can result in loss 

of life and property, as well as deterioration of the environment.  

Flammable gases and vapours are processed in various industries, from extraction and processing 

of natural gas to distribution and consumption of a wide range of gaseous products and fuels in 

industry and society at large. Approximately 70% of the dust encountered in the process 

industries are combustible and most of the reported dust explosions involved organic products 

from agricultural, food and pharmaceutical industries (CSB, 2006). Hybrid mixtures are typically 

encountered in facilities such as paint factories (pigments and solvents), mining (coal dust and 

methane gas), grain elevators (grain dust and fermentation gases), pharmaceutical industries 

(incipient and solvents), etc. (Addai et al., 2016). 

Throughout the history of the process industries, continuous efforts have been made to develop 

and improve measures to prevent and mitigate accidental explosions (Mannan, 2013; Khan & 

Abbasi, 1999; Eckhoff, 2016). This has resulted in a hierarchy of principles for risk reduction: 

1. Inherent safety ‒ the concept of inherent safety entails the four principles minimisation, 
substitution, moderation and simplification (Kletz, 1978). 

2. Preventive measures, including: 

a. Preventing the formation of explosive atmospheres 

b. Preventing or controlling ignition sources 

3. Mitigative measures, including: 

a. Passive mitigation, such as explosion venting devices and passive isolation/sectioning 

b. Active mitigation, such as suppression systems and active isolation/sectioning 

4. Procedural safety, such as hot work permits, mandatory use of personal protection 
equipment, etc. 

Safety engineers should seek to apply the principles for inherent safety first, and procedural 

safety is the last resort. Several strategies for controlling the hazard of fuel-air explosions entail 

the use of inert substances:  

• Inerting is the process of diluting air with a sufficient amount of an inert (gaseous) substance, 

such as nitrogen (N2) or carbon dioxide (CO2), to ensure that the concentration of oxygen in a 

potential combustible fuel-air mixture is sufficiently below the limiting oxygen concentration 

(LOC). As such, inerting can be an effective means of preventing the formation of explosive 

atmospheres in confined systems, and hence accidental explosions (Eckhoff, 2003; Razus et 

al., 2013). The value of the LOC depends on several factors, including the experimental 

apparatus, the ignition energy, the criteria for evaluating whether flame propagation takes 

place, and the inert substance, or diluent (Zlochower & Green, 2009; Babrauskas, 2003; 

Britton et al., 2016). The higher molar heat capacity of CO2, compared to N2, implies that CO2 

is more efficient for inerting flammable mixtures. The use of carbon dioxide is also preferred 

for situations where the inert gas should be heavier than air (Serafin & Damec, 2011). 
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• Partial inerting is similar to inerting, but the oxygen concentration is not reduced below the 

LOC. As such, an explosion can still take place, but the reduced oxygen content may reduce 

the explosion violence significantly (Hartmann, 1948; Eckhoff, 2003). The reduced oxygen 

content also increases the energy required for igniting the flammable mixture, and partial 

inerting can, for instance, be combined with deflagration venting of weak enclosures. 

•  Active suppression involves the protection of isolated process vessels, such as dust collectors, 

dryers, or conveyors, where the signal from a sensor triggers the release of a suppressant that 

extinguishes an explosion at a sufficiently early stage to mitigate the consequences to an 

acceptable level (Moore, 1984; Moore, 1996). The minimum inerting concentration (MIC) 

specifies the amount of a solid suppressant required for extinguishing a flame in a given fuel-

air mixture, regardless of the fuel concentration. Most systems for protection against dust 

explosion use sodium bicarbonate (NaHCO3) as the suppressant. 

• Active explosion isolation, or sectioning, by triggered extinguishing barriers can protect 

connected process vessels by preventing flame propagation between the units (Moore & 

Spring, 2004).  

• Partial suppression, or chemical inhibition, can be used for mitigating the consequences of 

vapour cloud explosions (VCEs) in congested process plants (Roser et al., 1963; Mitani, 1981; 

Eckhoff, 1983). Total and cooperation partners have demonstrated that flame inhibitors 

injected into flammable hydrocarbon-air clouds represents an effective means of mitigating 

the consequences of VCEs (Hoorelbeke & van Wingerden, 2009; van Wingerden et al., 2013; 

Roosendans & Hoorelbeke, 2019). 

The aim of the present study is to investigate the mitigating effect of inert substances on the 

severity of fuel-air explosions, quantified by the corrected explosion pressure Pm and the rate of 

pressure rise (dp/dt)m. In particular, the objective is to compare the relative efficiency of partial 

inerting/suppression by two gaseous inert diluents (nitrogen and carbon dioxide) and one solid 

inert diluent (sodium bicarbonate) applied to fuel-air mixtures with a gaseous fuel (methane), a 

solid fuel (maize starch), and hybrid mixtures of methane and maize starch. 

The study complements previous investigations on the effect of various gaseous or solid inert 

diluents on gaseous or solid fuels, where the results are limited to one type of diluents, or one 

type of fuels. The results can be directly applicable for the design and optimisation of risk-

reducing measures in industry and can also lead to a better understanding of the physical and 

chemical processes involved in premixed combustion processes that involve solid fuels and/or 

solid inert diluents. 
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2 Theoretical background 

2.1. Chemical explosions 

A chemical explosion entails the sudden release of chemical energy. According to Eckhoff (2003), 

an explosion entails “an exothermal chemical process that, when occurring at constant volume, 

gives rise to a sudden and significant pressure rise”. Fuel-air explosions involve the rapid 

combustion of either a homogeneous mixture of a gaseous fuel, a mechanical suspension of liquid 

fuel droplets or combustible solid particles, or a hybrid mixture of droplets or particles and 

vapour, in air. 

Figure 2.1 illustrates the explosion pentagon (Kauffman, 1982), which illustrates that a fuel-air 

explosion can take place if fuel and air mixed in an area with sufficient degree of confinement 

and/or congestion, and there is an ignition source present. Although the explosion pentagon is 

most often used in connection with dust explosions, it also applies o gas, mist and hybrid 

explosions, especially when congestion is included alongside confinement. 

 

Figure 2.1: The explosion pentagon. 

The fuel-air mixture must be within the flammable range, i.e. above the lower flammability limit 

(LFL) and above the upper flammability limit (UFL). The reactivity of the mixture depends on the 

type of fuel, as well as the equivalence ratio for a given fuel. In general, a more reactive mixture 

requires a lower degree of confident and/or congestion to generate a certain overpressure, 

compared to a less reactive mixture. The addition of an inert diluent to a flammable fuel-air 

mixture will typically reduce the reactivity, narrow down the flammable range, and increase the 

amount of energy required for igniting the mixture. 

2.1.1. Explosion severity parameters 

The present work will focus on explosion severity parameters that can be determined in constant-

volume explosion vessels (Bartknecht, 1981; Eckhoff, 2003; Cesana & Siwek, 2016): 

• The corrected explosion pressure Pm is the highest pressure measured for a random 

concentration in a constant volume explosion vessel, after correction for heat losses and the 

effect of the ignition source. This parameter indicates the energy content of the mixture, as 

well as the damage potential of a constant volume explosion. 

• The rate of pressure rise (dp/dt)m is the derivative in the inflection point of the pressure-time 

curves measured for a random concentration in a constant volume explosion vessel. This 

parameter indicates the reactivity of the mixture. 

Both Pm and (dp/dt)m are determined in the same tests, and are used in standards and guidelines 

for the design of explosion protection systems. Related parameters include: 
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• The maximum explosion pressure Pmax is the maximum value of the explosion pressures (Pm) 

measured over a wide range of fuel concentrations according to the standardised procedure 

described in the European standard EN 14034-1. 

• The maximum rate of pressure rise (dp/dt)max is the maximum value measured for the rate 

of pressure rise (dp/dt)m measured over a wide range of fuel concentrations according to the 

standardised procedure described in the European standard EN 14034-2.  

Since the rate of pressure rise depends on the volume V of the test vessel, it is customary to 

introduce a so-called deflagration index by normalising the experimental (dp/dt)max values with 

the cube root of the vessel volume: 

For dust (initially turbulent):                              KSt = V1/3 (dp/dt)max (2.1) 

For gas (initially quiescent):                                KG = V1/3 (dp/dt)max (2.2) 

The difference in test conditions implies that KSt values cannot be compared directly with KG 

values. To this end, the experiments in the present work will all be conducted under initially 

turbulent flow conditions, similar to those used for determining KSt values for dust. However, 

since the aim of the present work is not to determine standard values for Pmax, (dp/dt)max and KSt, 

the results will focus on the parameters Pm and (dp/dt)m obtained for the specified test conditions, 

including the effect of inert diluents and/or deviations from optimal fuel-air concentrations. 

It can be mentioned that the laminar burning velocity SL is a more fundamental parameter for 

quantifying the reactivity of flammable fuel-air mixtures (Konnov et al., 2018). However, it is not 

straightforward to determine unambiguous values for the laminar burning velocity in general, 

and especially not for flames in dust clouds and hybrid mixtures. The use of the (dp/dt)m 

parameter, determined for similar turbulent flow conditions using same ignition source, provide 

a measure of reactivity that is fairly consistent for the different types of fuel-air mixtures. 

Examples of other empirical parameters that can be used to characterise safety-related 

properties of gas, dust and hybrid mixtures include: 

• The lower flammability limit (LFL), also referred to as the lower explosion limit (LEL) or the 

minimum explosion concentration (MEC) ‒ the latter is mostly used for dust. 

• The upper flammability limit (UFL), also referred to as the upper explosion limit (UEL) ‒ this 

parameter is primarily relevant for gases and vapours. 

• The limiting oxygen concentration (LOC), also referred to as the minimum oxygen 

concentration (MOC), is used for gaseous inert diluents. Section 2.2 elaborates on LOC. 

• The minimum inerting concentration (MIC) is the minimum concentration of a solid 

suppressant required for preventing flame propagation in a fuel-air mixture. 

• The minimum ignition energy (MIE). 

• The minimum ignition temperature (MIT). 

The present work will primarily focus on the effect of inert diluents on the explosion severity 

parameters Pm and (dp/dt)m.  

2.1.2. Gas and vapour explosions 
Gas is defined as the state of matter characterized by complete molecular movement (Zabetakis, 

1965). Burning of combustible gases is well known from daily life. A gas explosion is an explosion 

resulting from mixing of flammable gas (typically from an accidental gas leak) with the 

surrounding air to form an explosive cloud. An explosion occurs if the fuel-air ratio is within the 
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explosible range and an ignition source is present. For example, the explosive range of methane 

is from 5 to 15 vol.% methane in air. 

Gas combustion is a homogenous process where the fuel and oxidiser are mixed on the molecular 

level. Several factors influence the development and consequences of fuel-air explosions, 

including the reactivity of the fuel and the degree of congestion and confinement (Maremonti et 

al., 1999).  

Confined gas explosions occur within process units or buildings, such as pipes, tanks, process 

equipment, sewage systems, closed rooms and underground installations. The unvented pressure 

rise in a confined explosion can in principle be estimated from the volume of the enclosure and 

the size and concentration of the flammable cloud. This class of explosions are most common and 

usually result in injury to the building inhabitants and extensive damage and there are two types 

involving explosive vapours and explosive dust. 

Unconfined gas explosions result from the release and dispersion of flammable gases or vapours 

into the atmosphere and its subsequent ignition of the flammable cloud (Bjerketvedt et al., 1997). 

The positive feedback loop involving the expansion of combustion products, turbulence 

generation in wakes behind obstacles, flame folding, and enhanced rate of turbulent combustion, 

can result in strong flame acceleration, pressure build-up and formation of blast waves. Large 

vapour cloud explosions (VCEs)can cause extensive damage and considerable losses. Many 

accidental explosions in industry take place in partly confined and congested geometries 

(Bjerketvedt et al., 1997). 

Gas or vapour explosions can be prevented or mitigated by measures such as prevention and 

control of combustible gases leakage, good ventilation to minimize the explosive atmosphere due 

to gas release, prevention and control of possible ignition sources and installation of blast and 

fire barriers (Bjerketvedt et al., 1997; Shao et al., 2013; Crowl & Louvar, 2001; Johnson & Vasey, 

1996). 

2.1.3. Dust explosions 
The phenomenon of dust explosion is quite simple and easy to envision in terms of daily life 

experience. Any solid material that can burn in air will do so with a violence and speed that 

increases with increasing degree of subdivision of the material (Eckhoff, 2003; Amyotte & Eckhoff, 

2010). In general, dust clouds will be easier to ignite and burn more violently the smaller the dust 

particles are, down to some limiting particle size that depends on the type of material. When a 

dust explosion takes place inside process equipment or workrooms, the pressure may rise rapidly, 

the process equipment or building may burst, and life, limb and property can be lost. A dust cloud 

ignited in an unconfined space will typically result in a flash fire.  

Figure 2.2 illustrates that a dust cloud is a mechanical suspension, a system of fine particles 

dispersed by turbulence (Skjold et al., 2006). The process of dispersing, or lifting, the dust 

particles from a heap or layer can be inherently complex, and without agitation the particles will 

settle out of suspension. The complex interactions between dust particles and turbulent flow 

structures in the dust cloud include collisions, agglomeration and local concentration gradients. 

The explosion pentagon in Figure 2.1 illustrates that a dust explosion can take place when a 

flammable dust cloud is present in a volume that is sufficiently confined or congested, and there 

is an ignition source present. 
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Figure 2.2: Dust clouds are mechanical suspensions, from Skjold et al. (2006) 

The lower flammability limit (LFL) represents the minimum concentration of dust that can 

propagate a self-sustained flame. In principle, there is also an upper flammability limit (UFL) for 

dust clouds, but this parameter is inherently difficult to measure (no standard test has been 

widely adopted) and has limited practical interest. The LFL of dust clouds depends on factors such 

as material, particle size distribution, temperature, volatile matter, oxygen and moisture content, 

the volume of the test vessel, the ignition source, the criteria for defining successful ignition, etc. 

(Cashdollar, 2000; Amyotte et al., 1991; Eckhoff, 2003). For example, the LFL increase with 

increasing particle size, until a size is reached that cannot be ignited. An increase in particle size 

leads to a reduction of the specific surface area of the particles, and hence a reduction in the 

effective surface area available for heat transfer, devolatilisation/pyrolysis and possible surface 

reactions. Moreover, the LFL decreases with an increase in initial temperature. One explanation 

can be that at higher temperatures, more volatile matter vaporises, and can contribute to the gas 

phase combustion. 

Materials that cause dust explosions 

As described by Eckhoff (2003), a dust explosion is caused by the rapid release of heat from 

chemical reactions: 

Fuel + oxidiser-------→ oxide + heat 

In some special cases, metal dust can also react exothermically with nitrogen or carbon dioxide, 

but most often oxidation by oxygen is the heat-generating process in dust explosions. This means 

that only materials that are not already stable oxides can give rise to dust explosions, including: 

• Natural organic materials, such as grain, wood, linen, sugar and starch. 

• Synthetic organic materials, such as plastics, organic pigments, pesticides and 

pharmaceuticals. 

• Coal and peat. 

• Metals, such as aluminium, magnesium, titanium, zinc and iron. 

Non-combustible dust are mostly materials that are already stable oxides, such as silicates, 

sulphates, nitrates, carbonates, phosphates, Portland cement, sand and limestone. 

Factors influencing the ignitability and explosibility of dust clouds 

Several factors influence the ignitability and explosibility of dust clouds: 
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• The chemical composition of the dust, including its moisture content. 

• The chemical composition and initial pressure and temperature of the gaseous oxidiser, 

including humidity. 

• The distribution of particle sizes and shapes in the dust, including the specific surface area of 

the dust in the fully dispersed state. 

• The possibility of significant radiative heat transfer during flame propagation (highly 

dependent on flame temperature, which in turn depends on particle chemistry). 

• The degree of dispersion, or agglomeration, of dust particles, determining the effective 

specific surface area available to the combustion process in the dust cloud in the actual 

industrial situation. 

• The dust concentration in the actual cloud. 

• The initial turbulence in the actual cloud. 

• The explosion-induced turbulence in the dust cloud (the location of the ignition source and 

internal congestion will typically be important parameters). 

• The possibility of flame front distortion by other mechanisms than turbulence. 

Prevention and mitigation of dust explosion in the process industries 

Table 2.1 summarises the primary means of preventing and mitigating dust explosions (Eckhoff, 

2003). The topic of this thesis is primarily relevant for partial inerting, and to some extent 

suppression. 

Table 2.1:  Means for preventing and mitigating dust explosions in the process industries, from Eckhoff 

(2003). 

Prevention 
Mitigation 

Preventing ignition sources Preventing explosible dust clouds 

Smouldering combustion in 
dust, dust flames Inerting by N2, CO2, and rare gases 

Partial inerting by inert 
gas 

Other types of open flames 
(e.g. hot work) Intrinsic inerting Isolation (sectioning) 

Hot surfaces Inerting by adding inert dust Venting 

Electric sparks and arcs, 
electrostatic discharges 

Dust concentration outside the 
explosible range 

Pressure-resistant 
construction 

Heat from mechanical impact 
(metal sparks and hot spots)  Automatic suppression 

  
Good housekeeping 

(dust removal, cleaning) 

2.1.4. Hybrid explosions 
Hybrid mixtures consist of at least two combustible substances in a different state of aggregation, 

e.g. dust and flammable gas or vapour. The ignition sensitivity and explosion severity of hybrid 

mixtures differ from that of the single components (Pilao et al., 2006; Bartknecht, 1981; 

Cashdollar, 1996; Siwek, 1996). In particular, the combination of a dust cloud and vapour that 

both are below the respective LFLs for the individual components can result in a flammable hybrid 

mixture (Eckhoff, 2003; Addai et al., 2014). The need for generating a mechanical suspension of 

particles implies that experimental methods and test parameters for hybrid dust-gas mixtures 

resemble the corresponding methods and parameters for dust explosions.  
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2.2. Inerting and suppression 

Inerting usually describes the process of adding an inert substance to a combustible mixture to 

reduce the concentration of oxygen below the limiting oxygen concentration (LOC) to prevent 

the formation of an explosive atmosphere (Barton, 2002). As such, inerting is only applicable for 

closed or highly confined systems. The term inerting is also used for describing the addition of 

sufficient amounts of an inert substance to combustible dust, to render a dust cloud non-

flammable. This approach is for instance used in coal mines.  

The limiting oxygen concentration (LOC), also known as the minimum oxygen concentration 

(MOC), is defined as the limiting concentration of oxygen below which combustion is not possible, 

independent of the concentration of the fuel (Zlochower & Green, 2009).  The value of the LOC 

depends on the type of inert substance, the volume of the test vessel, the ignition source, etc. 

The effect of increasing the concentration of the inert substance is a reduction in flame 

temperature until the flame cannot exist. Carbon dioxide is more effective as an inert substance 

compared to nitrogen because of higher heat capacity. 

 Explosion suppression is a well-established technology for protecting equipment in the process 

industries against the consequences of accidental dust explosions (Moore, 1984; Moore, 1996; 

Amyotte, 2006). Active suppression involves the protection of isolated process vessels, such as 

dust collectors, dryers or conveyors where the signal from a sensor triggers the release of a 

suppressant that extinguishes the explosion at a sufficiently early stage to mitigate the 

consequences to an acceptable level. Active explosion isolation by triggered extinguishing 

barriers can protect connected process vessels by preventing flame propagation between the 

units (Moore & Spring, 2004). Most systems for protection against dust explosion use sodium 

bicarbonate (NaHCO3) as the suppressant. Whether the term ‘inerting’ or ‘suppression’ is used 

depends on the context: ‘Inerting’ refers to the prevention of explosions, and the term 

‘suppression’ refers to the mitigation of the consequences of the explosions. The physical 

phenomena involved are essentially the same: to remove the heat necessary for sustained 

combustion and thus limit the generation of destructive overpressures in an enclosed volume. 

This distinction is clearly articulated by Eckhoff (2003) in the chapter on dust explosion research 

and development during the period 1990-2002, wherein he presents different sections entitled: 

inerting by adding non-combustible dust and automatic explosion suppression. 

Partial inerting is similar to inerting, but the oxygen concentration is not reduced below LOC. As 

such, an explosion can still take place, but the reduced oxygen content may reduce the explosion 

violence significantly (Hartmann, 1948; Eckhoff, 2003). The reduced oxygen content also 

increases the energy required for igniting the flammable mixture, and partial inerting can, for 

instance, be combined with deflagration venting of weak enclosures. 

Partial suppression or chemical inhibition can also be used for mitigating the consequences of 

vapour cloud explosions (VCEs) in congested process plants (Eckhoff, 1983). Recent work by Total 

and cooperation partners has demonstrated that flame inhibitors injected into flammable 

hydrocarbon-air clouds represents an effective means of mitigating the consequences of vapour 

cloud explosions (Hoorelbeke & van Wingerden, 2009; van Wingerden et al., 2013; Roosendans 

& Hoorelbeke, 2019). 
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2.2.1. Inerting by gaseous diluents 
Inerting entails the partial or complete substitution of the oxygen in the air (or any other reactive 

atmosphere) by an inert gas. Explosions can be eliminated if oxygen is excluded completely or if 

the oxygen content is reduced to a level below the limiting oxygen concentration (LOC) for the 

given combination of fuel and inert substance (Barton, 2002). This approach is only applicable to 

confined systems, where the addition of inert gases can be controlled. Asphyxiation represents a 

risk whenever there is a possibility of forming an inert atmosphere in places accessible to people. 

Typical inert gases used in process industries include nitrogen, carbon dioxide, argon, helium, flue 

gases and steam. The choice of inert gas depends on several factors like cost, availability, 

reliability of supply, the likelihood of contamination of gas/dust by inert gas constituents 

including moisture and the effectiveness of the diluent for reducing explosibility (Barton, 2002). 

Nitrogen and carbon dioxide are used as inert gases in this study.  

Figure 2.3 shows the inerting effectiveness of nitrogen on the maximum explosion pressure and 

the maximum rate of pressure rise of a brown coal sample. The figure indicates a LOC of 11 vol.% 

N2 (i.e. zero values of overpressure and rate of pressure rise). The steady reduction in explosion 

pressure, and especially the maximum rate of pressure rise, as the oxygen concentration is 

reduced from 21 vol.%, illustrates the potential for using partial inerting as a means of risk 

reduction. 

  

Figure 2.3: The inerting effectiveness of nitrogen on the maximum explosion pressure and maximum rate 

of pressure rise of a sample of brown coal, data from Wiemann, reported by Eckhoff (2003). 

According to Chan et al (2015), Benedetto et al. (2009) studied the role of CO2 as inert gas on the 

flammability of CH4/O2/N2/CO2 mixtures and has found that the main effect of CO2 was not on the 

kinetics or diffusive transport fluxes, but largely thermal i.e. the presence of CO2 increased the 

specific heat of the mixture, lowering the flame temperature and combustion rate. Hu et al. 

(2014) have attributed the decreasing trend of flame speed (with increasing CO2 level) to the 

dilution, transport, thermal and kinetic effects. 

Gant et al. (2011) undertook an experimental study in a 20-litre explosion vessel to examine the 

effect of CO2 as inert gas on the ignition of methane-air mixture. Increasing the CO2 concentration 

resulted in a decrease in both Pm and (dp/dt)m. In particular, the maximum rate of pressure rise 

was greatly reduced in all tests where CO2 was present. 

Wu et al. (2010) investigated the flammability and explosion characteristics of methane-air 

mixture with various concentrations of three different inert gases (CO2, N2 & Ar) in a 20-litre 
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apparatus. The results confirm that carbon dioxide (CO2) is more efficient for inerting, compared 

to nitrogen (N2) and argon (Ar). The ranking of inerting efficiency was as follows: CO2>N2>Ar. 

Razus et al. (2016) conducted a similar study for four inert gases (He, Ar, N2 & CO2) in two spherical 

vessels of different volumes using methane concentrations in the range 6-12 vol.% and inert 

concentrations in the range  5-40 vol.%. The ranking of inerting efficiency was as follows: 

CO2>N2>Ar>He. 

2.2.2. Suppression by solid diluents  

Explosible gas or dust can be made non-explosible by diluting them with inert dust such as calcium 

sulphate, limestone, sodium bicarbonate, common salt, various silicates or stone dust. Such 

materials may act as a heat sink or otherwise interfere with flame propagation. In most cases at 

least 60% diluent dust is required, and the diluent dust must be intimately mixed with the 

explosible dust (Barton, 2002). The quantity of diluent dust required can be determined using the 

explosibility tests. Except coal mines, where rock dust (e.g. limestone or dolomite) is extensively 

applied as a preventive measure, diluent dust inerting is rarely used because of the large 

quantities needed and potential contamination of products. 

According to Chan et al. (2015), Zahedi et al. (2014) reported that for any diluent, the effect of its 

addition could be either dilution, transport and thermal diffusion, chemical inhibition or 

combinations thereof: 

• Dilution effect: In the presence of the diluent, the concentrations of the fuel and oxidant are 

reduced, leading to a lower net reaction rate and thus lower flame speed. 

• Transport and thermal effects: when a diluent is added, the mass/thermal diffusivities and 

the specific heat capacity of the mixture change, affecting the burning velocity. 

• Chemical inhibition: The diluent takes active part in the chemical reactions, altering the 

reaction kinetics and consequently the burning velocity. 

Over the last decade, Total has developed systems for partial suppression of VCEs that utilise 

chemical inhibition of combustion reactions (WIPO, 2010; WIPO, 2018; Hoorelbeke, 2011; 

Roosendans, 2018; Roosendans & Hoorelbeke, 2019). Figure 2.4 illustrates the effect of inhibition 

by various amounts of potassium carbonate on the peak vented explosion pressures measured in 

a 50-m3 congested module for different hydrocarbon fuels (van Wingerden & Hoorelbeke, 2011). 

Babushok et al. (2017) develop a detailed gas-phase kinetic model of the influence of potassium-

containing compounds on hydrocarbon-air flames. The mechanism included 85 reactions and 

twelve potassium-containing species. Simulations of laminar burning velocity using the proposed 

mechanism agreed reasonably well with available experimental data, indicating short 

evaporation times of the inhibitor particles in the flame reaction zone.  
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Figure 2.4: The effect of inhibition by potassium carbonate for five hydrocarbon fuels. 

Amyotte et al. (1991a; 2003) investigated the inerting effect of dolomite and petroleum coke on 

coal dust explosions in a Siwek 20-litre vessel. Both studies showed a significant decrease in the 

maximum rate of pressure rise when petroleum coke and dolomite were added to the coal dust. 

The low volatile content of petroleum coke exerts an ‘inerting -like’ influence when mixed with 

coal dust.  

Chatrathi & Going (2000) and Dastidar et al. (1999) investigated the LOC of aluminium, 

anthraquinone and polyethylene by the inert diluents mono-ammonium phosphate (NH4H2PO4 

or MAP) and sodium bicarbonate (NaHCO3 or SBC) in the 1-m3 explosion chamber at Fike, using 

two 5 kJ igniters as the ignition source. The results showed that limestone was the lease effective 

inhibitor and MAP was most effective. This was likely a combined effect of the inability of 

limestone to decompose in the rapidly advancing flame front and the chemical inhibition 

properties of MAP and SBC. The results also indicated that the effect of the inert diluent depends 

on the composition of the explosible dust. 

Dastidar et al. (2002) also undertook an experimental study of the effect of ignition energy and 

vessel volume on the inerting level. Results obtained in a 20-litre Siwek vessel were compared 

with the data from the 1-m3 Fike vessel (Dastidar et al., 1999). A reduction in the ignition energy 

in the 20-litre vessel from 5 to 1 kJ lowered the LOC from 1500 to 500 g/m3.      

Amyotte et al. (1991a) reported that for mixtures of fuel dust and inert substance, the co-

presence of a flammable gas leads to an increase in the inerting level. The magnitude of this 

increase in inerting level can be significant. The author conducted a series of tests in a 26-litre 

chamber where the inerting level for one of the coal dust examined was raised from 84 wt.% 

dolomite to 89 wt.% dolomite when 2 vol.% of methane was added to the oxidizing atmosphere. 

Concerning the coal mining industry, the results reflect the inefficiency of rock dust as protection 

against methane explosions. Considering that it is essentially gas flame propagation in gaseous 

volatiles that must be arrested during a coal dust explosion, the results also help to explain why 

large amounts of rock dust are required even in the absence of methane. On a general note, these 

data demonstrate that inerting levels based on the presence of explosible dust alone can be 

entirely inadequate when applied to hybrid mixtures of solid and gaseous fuels. 

Omar et al. (2018) reported that the higher effectiveness per mass basis of sodium bicarbonate 

(NaHCO3) compared to other inhibitors motivates for the choice of NaHCO3 as solid inert in case 

of methane-air explosions. This efficiency is attributed to the chemical nature of flame 

interaction. Sodium bicarbonate particles undergo thermal decomposition when exposed to 
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flame temperature. As a result, a gaseous agent NaOH is liberated and acts as a scavenger for 

radical species reducing the heat release, and hence the flame speed. 

Tamanini et al. (2000) investigated the performance characteristics of two solid inert powders 

namely sodium bicarbonate (SBC) and mono-ammonium phosphate (MAP) and water as inerting 

agents in a 2.5 m3 test vessel with 10 vol.% methane-air mixture (near-stoichiometric), both under 

initially quiescent and turbulent conditions. Tests with the two powder agents (SBC & MAP) at a 

concentration of 1200 g/m3 resulted in similarly successful suppression of quiescent mixtures, 

with small increase in final overpressure. Successful suppression was also obtained with turbulent 

mixtures, although with greater overpressure than for quiescent mixtures.  

As noted by Eckhoff (2003), suppression is more applicable than inerting in the process industries. 
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3 Experimental apparatus and procedure 
This chapter describes the experimental set-up and test procedures. The experimental results are 

presented and discussed in chapters 4 and 5, respectively. All experiments were conducted in the 

dust explosion laboratory at the Department of Physics and Technology (IFT), UiB. 

3.1. Experimental apparatus 

All the explosion experiments were performed in a 20-litre vessel of the type developed by the 

US Bureau of Mines (USBM) but equipped with the dispersion, control and data acquisition 

systems developed by Kühner for the standard 20-litre Siwek sphere (Skjold, 2003). Figure 3.1 

shows the explosion vessel and Figure 3.2: The 20-litre explosion vessel and associated systems 

shows the 20-litre explosion vessel and associated systems inside a ventilated laboratory hood. 

The auxiliary systems include a vacuum pump for evacuating the explosion chamber, the supply 

of compressed air (20 bar overpressure) from a 50-litre bottle for the 0.6-litre  dust reservoir, two 

piezoelectric pressure sensors (Kistler 701A) and charge amplifiers (Kistler 5041) for recording the 

pressure-time histories (part of the KSEP 332 control and measurement system from Kühner), 

and a computer running the KSEP software from Kühner. Dust from the pressurized dust reservoir 

is dispersed into the explosion vessel through a standard rebound nozzle (Figure 3.3). The outlet 

valve that separates the dust reservoir and the vessel is pneumatically opened and closed by an 

auxiliary piston. All tests used the same ignition source: a 1 kJ chemical igniter placed in the centre 

of the explosion vessel, pointing downwards and triggered at a fixed ignition delay time tv=60 ms 

after the onset of dispersion. Figure 3.4 and Figure 3.5 shows the heater and scale for drying and 

weighing dust samples, respectively. 

 

Figure 3.1: 20-litre explosion vessel 



14 

 

 

Figure 3.2: The 20-litre explosion vessel and associated systems  

 

 

Figure 3.3: Rebound nozzle 

 

      

Figure 3.4: A 1 kJ chemical igniter (left) and the igniter fixed in the centre of the vessel (right). 
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Figure 3.5: The oven (left) and scale (right) used for drying and weighing dust samples. 

3.2. Experimental procedure 

3.2.1. Materials 
The combustible dust used in the present study was maize starch (Meritena A), dried at 50 oC for 

at least 24 hours and later stored in an autoclave with moisture-absorbing material. The 

flammable gas was methane and the hybrid mixtures consisted of various proportions of maize 

starch and methane. The inert substances used in the tests were gaseous nitrogen and carbon 

dioxide, and solid sodium bicarbonate of the type used in explosion suppression systems. Table 

3.1 summarises the material properties of the compressed gases used in the present study. 

Table 3.1: Material properties of the gases used in the present work  

Gas Quality Purity (%) 

Nitrogen 5.0 ULTRA 99.999  

Carbon dioxide 5.0 ULTRA 99.999 

 Methane 2.5 99.5 

Figure 3.6 and Figure 3.7 shows the particle size distributions for maize starch of type Meritena 

A and sodium bicarbonate, respectively. The particle size distributions were measured with a 

Malvern Mastersizer 3000 at the Earth Surface Sediment Laboratory (EARTHLAB) at the 

Department of Earth Science, University of Bergen. The dust samples were dispersed in air using 

the ‘AERO S’ module. Each plot shows the results from ten samples, as well as average values. 

Figure 3.8 and Table 3.2 summarise the average particle distributions and characteristic measures 

for particle size for the dust (i.e. the 10, 50 and 90 percentiles Dv10, Dv50 and Dv90 from the 

cumulative volume distribution). 

Table 3.2: Characteristic measures of particle size for the dust used in the present work 

Percentile 
Maize starch (Meritena A) Sodium bicarbonate (SBC) 

Average (m) St.dev. (m) Average (m) St.dev. (m) 

Dv10 7.6 0.49 4.9 0.19 

Dv50 13.7 0.26 22.5 0.43 

Dv90 24.4 0.67 58.1  1.24 
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Figure 3.6: Volume density (left) and cumulative volume for Meritena A (right). 

 

 

 Figure 3.7: Volume density (left) and cumulative volume for SBC (right). 

 

 

 Figure 3.8: Average volume density and cumulative volume for Meritena A and SBC. 

 

Table 3.3 summarised selected physical and chemical properties of the inert diluents used in the 

present study. 
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Table 3.3: Selected properties of the inert diluents used in the present study. 

Property Nitrogen Carbon dioxide Sodium bicarbonate (SBC) 

State at ambient 
conditions 

Gas Gas Solid (crystalline powder) 

Flammability Non-combustible Non-combustible Non-combustible 

Chemical formula N2 CO2 NaHCO3 

Molecular structure N=N O=C=O Salt: Na+ HCO3
‒ 

Molecular weight 28.02 g/mol 44.01 g/mol 84.006 g/mol 

Detectability by senses 
Colourless and 

odourless 

Colourless, sharp, 
acidic odour at high 

concentrations. 

Colourless and  
odourless 

Taste Tasteless Tasteless Slightly alkaline (bitter) taste 

Density 
1.25 kg/m3 

@20°C, 1 atm. 
1.836 kg/m3 

@20°C, 1 atm. 
2200 kg/m3 

Molar heat capacity a,  

constant pressure (cP, m)  

29.12 J/(mol K) 

@25oC, 1 atm. 

36.94 J/(mol K)  

@25oC, 1 atm.  

87.7 J/(mol K) 

@25oC  

Molar heat capacity a,  

constant volume (cV, m)  

20.80 J/(mol K) 

@25oC, 1 atm.  

28.48 J/(mol K) 

@25oC, 1 atm.  
- 

Specific heat capacity b, 
constant pressure (cP)  

1.040 kJ/(kg K) 

@20oC, 1 atm.  

0.844 kJ/(kg K) 

@20oC, 1 atm.  

1.043 kJ/(kg K) 

  

Specific heat capacity b, 
constant volume (cV)  

0.743 kJ/(kg K) 

@20oC, 1 atm.  

0.655 kJ/(kg K) 

@20oC, 1 atm.  
- 

Reactivity Inert Inert  
Inert, starts to decompose at 

temperatures > 80 °C: 
2 NaHCO3 → Na2CO3+CO2+H2O 

 

3.2.2. General test procedure  
For each test, the general procedure was more or less the same. The required amount of inert 

solid suppressant (SBC) and/or combustible dust was added to the 0.6-litre dust reservoir, and 

the reservoir was pressurised to 20 bar overpressure with compressed air from a 50-litre bottle. 

The vacuum pump evacuated the 20-litre explosion vessel to the desired pressure, typically 0.40 

bar absolute for regular dust explosion tests, and down to 0.1 bar absolute for tests with gaseous 

fuel and/or an inert diluent (e.g. 10 vol.% methane and 20 vol.% inert gas, either N2 or CO2). The 

gaseous fuel and/or inert diluent were added to the 20-litre explosion vessel prior to injection of 

air from the 0.6-litre reservoir. 

All mixing of flammable and inert gases was done by admission of gas controlled by partial 

pressure, followed by turbulent mixing when air or dust-air was injected into the vessel. The 

limitation of 0.40 ‒ 0.10 = 0.30 bar pressure range for the mixing of gases by partial pressure 

implied that not more than 30 vol.% gas (inert and fuel) could be added. Figure 3.9 illustrates that 

this implies that it was not possible to determine LOC values for methane and maize starch with 

this experimental setup. The green triangles (Zlochower & Green, 2007: LOC 10.7-12.0 vol.% O2) 

and circles (Krause et al., 2016: LOC 8.0-11.0 vol.% O2) indicate published LOC values for methane 
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and starch diluted with nitrogen, respectively. The variations in the published results reflect the 

use of explosion vessels with different volume, different ignition sources, etc. 

 

Figure 3.9: Oxygen content in diluted air and represented LOC values for methane and starch.  

An inherent limitation for the experiments was the cost of the chemical igniters, and the fact that 

the spark/ark generator at the dust explosion laboratory was not operational during the project 

period. This limited the number of repetitions, as well as the number and range of parameters 

that could be investigated. 

The following sections outline the experimental procedure for the various types of tests. Chapter 

4 includes tables that summarise the results from each test.  

3.2.3. Test procedure for dust explosions 
The general procedure for tests with combustible dust entailed: 

• Installing the chemical igniter and evacuating the vessel to 0.40 bar absolute. 

• Adding the desired amount of dust to the reservoir and pressurising the reservoir to 21 

bar absolute. 

• Starting the test sequence in the KSEP 6 software. This implied that the dust is injected 

into the vessel, the ignition source is activated 60 ms after the onset of injection, and the 

pressure is measured and recorded. 

• After each test, the vessel depressurised, opened and cleaned. 

The corrected explosion pressure Pm and the rate of pressure rise (dp/dt)m  were determined 

for a range of nominal dust concentrations: 125, 250, 500, 750 and 1000 g/m3. 

3.2.4. Test procedure for gas explosions 
The test procedure for gas-air explosions resembles the procedure for dust explosions, but the 

vessel was evacuated to a lower pressure, e.g. 0.30 bar absolute for a test with 10 vol.% methane, 

the methane was admitted to reach an initial pressure of 0.40 bar absolute, and the test was 

initiated as described above. The fact that air was injected into the vessel in the same way as for 

dust explosions implies that it is not possible to determine KG values from the results. The 

corrected explosion pressure Pm and the rate of pressure rise (dp/dt)m were determined for a 

range of methane concentrations: 5.0, 7.5, 10.0, 12.5 and 15.0 vol.%.    
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3.2.5. Test procedure for hybrid explosions 
The test procedure for hybrid explosions was similar to the procedure described for dust 

explosions, except that gaseous fuel was added to the vessel in the same way as for gas-air 

explosions described above. The corrected explosion pressure Pm and the rate of pressure rise 

(dp/dt)m were determined for three sets of nominal dust concentrations and methane 

concentrations: (125 g/m3 and 7.5 vol.%), (250 g/m3 and 5.0 vol.%), (375 g/m3 and 2.5 vol.%).   

3.2.6. Test procedure for tests involving inert gases 
For tests with inert gases, either nitrogen (N2) or carbon dioxide (CO2), the test procedure was 

similar as described for tests with dust-air, methane-air or hybrid mixtures above, but the vessel 

was evacuated to a sufficiently low pressure to allow for the admission of either 10 or 20 vol.% 

inert gas, in addition to methane for tests with gaseous fuel.  

3.2.7. Test procedure for tests involving solid suppressant 
For tests with inert dust, the required amount of sodium bicarbonate (NaHCO3) was added to the 

dust reservoir, in the same way as for combustible dust described above.  
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4 Experimental results 
This chapter summarises the experimental results. 

4.1. Dust explosions 

This section summarises the results from tests with maize starch dispersed in air, with or without 

inert gases or inert dust.  

4.1.1. Maize dust explosions in air 
Table 4.1 and Figure 4.1 summarise the results from the tests with maize starch dispersed in air. 

4.1.2. Influence of nitrogen on dust explosions 
Tables 4.2-4.4 and Figures 4.2-4.4 summarise the results from tests with maize dust dispersed in 

air diluted with 10 or 20 vol.% nitrogen. 

4.1.3. Influence of carbon dioxide on dust explosions 
Tables 4.5-4.7 and Figures 4.5-4.7 summarise the results from tests with maize dust dispersed in 

air diluted with 10 or 20 vol.% carbon dioxide. 

4.1.4. Influence of sodium bicarbonate on dust explosions 
Tables 4.8-4.10 and Figures 4.8-4.10 summarise the results from tests with maize dust and 

sodium bicarbonate (NaHCO3) dispersed in air.  

  

Table 4.1: Summary of results for maize dust dispersed in air. 

Maize dust with air Pm [bar] (dp/dt)m [bar/s] 

IE Dust concentration(g/m3) Series I Series II Average Series I Series II Average 

1 kJ 125 2.6 0.2 1.4 24 10 17 

1 kJ 250 5.0 5.6 5.3 124 205 165 

1 kJ 500 7.9 7.4 7.7 469 345 407 

1 kJ 750 8.4 8.6 8.5 536 534 535 

1 kJ 1000 8.4 8.4 8.4 531 454 493 
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Figure 4.1: Maximum explosion pressure (above) and maximum rate of pressure rise (below) for maize dust 

dispersed in air. The dotted line represents the average value of the two series. 

 

 

 

 

0

1

2

3

4

5

6

7

8

9

0 125 250 375 500 625 750 875 1000

P
m

[b
ar

] 

Dust concentration (g/m3)

Maize dust with air

0

100

200

300

400

500

600

0 125 250 375 500 625 750 875 1000

(d
p

/d
t)

m
[b

ar
/s

]

Dust concentration (g/m3)

Maize dust with air



22 

 

Table 4.2: Summary of results for maize dust dispersed in air diluted by 10 vol.% nitrogen, including average 

values for the two series. 

Maize dust 

with 10 vol.% N2 in air Pm [bar]  (dp/dt)m [bar/s] 

IE 
Dust concentration 

(g/m3) Series I Series II Average Series I Series II Average 

1 kJ 125 1.5 1.5 1.5 11 15 13 

1 kJ 250 6.4 5.7 6.1 244 173 209 

1 kJ 500 7.8 7.5 7.7 380 368 374 

1 kJ 750 7.4 7.5 7.5 346 327 337 

1 kJ 1000 7.2 7.1 7.2 291 328 310 
 

 

Table 4.3: Summary of results for maize dust dispersed in air diluted by 20 vol.% nitrogen, including average 

values for the two series. 

 
Maize dust 

with 20 vol.% N2 in air Pm [bar]  (dp/dt)m [bar/s] 

IE 
Dust concentration 

(g/m3) Series I Series II Average Series I Series II Average 

1 kJ 125 0.2 0.1 0.2 8 12 10 

1 kJ 250 5.3 4.7 5.0 121 69 95 

1 kJ 500 7.2 7.0 7.1 305 246 276 

1 kJ 750 7.2 7.1 7.2 309 290 300 

1 kJ 1000 6.6 6.1 6.4 238 176 207 

 

 

Table 4.4: Overall average results for maize dust dispersed in air, including tests with air diluted by 10 and 

20 vol.% of nitrogen. 

Maize dust with 
10 & 20 vol.% N2 in air Pm [bar] (dp/dt)m [bar/s] 

IE 
Dust concentration 

(g/m3) 
Dust 

with air 
with  

10% N2 
with  

20% N2 
Dust  

with air 
With 

 10% N2 
with  

20% N2 

1 kJ 125 1.4 1.5 0.2 17 13 10 

1 kJ 250 5.3 6.1 5.0 165 209 95 

1 kJ 500 7.7 7.7 7.1 407 374 276 

1 kJ 750 8.5 7.5 7.2 535 337 300 

1 kJ 1000 8.4 7.2 6.4 493 310 207 
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Figure 4.2: Maximum explosion pressure (above) and maximum rate of pressure rise (below) for maize dust 

dispersed in air diluted by 10 vol.% nitrogen. The dotted line represents the average value of the two series. 
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Figure 4.3: Maximum explosion pressure (above) and maximum rate of pressure rise (below) for maize dust 

dispersed in air diluted by 20 vol.% nitrogen. The dotted line represents the average value of the two series.  
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Figure 4.4: Average values for the maximum explosion pressure (above) and maximum rate of pressure rise 

(below) for maize dust dispersed in air, air diluted by 10 and 20 vol.% nitrogen. 
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Table 4.5: Summary of results for maize dust dispersed in air diluted by 10 vol.% carbon dioxide, including 

average values for the two series. 

 Maize dust 
with 10 vol.% CO2 in air Pm [bar]  (dp/dt)m [bar/s] 

IE 
Dust concentration 

(g/m3) Series I Series II Average Series I Series II Average 

1 kJ 125 0.1 0 0.1 0 0 0 

1 kJ 250 4.7 4.7 4.7 83 77 80 

1 kJ 500 7 6.8 6.9 249 229 239 

1 kJ 750 7.2 7.3 7.3 267 293 280 

1 kJ 1000 6.8 6.8 6.8 269 205 237 
  

 

Table 4.6: Summary of results for maize dust dispersed in air diluted by 20 vol.% carbon dioxide, including 

average values for the two series. 

 Maize dust 
with 20 vol.% CO2 in air Pm [bar]  (dp/dt)m [bar/s] 

IE 
Dust concentration 

(g/m3) Series I Series II Average Series I Series II Average 

1 kJ 125 0 0 0 0 0 0 

1 kJ 250 3.3 3.7 3.5 27 33 30 

1 kJ 500 5.8 6 5.9 106 136 121 

1 kJ 750 6.2 6.3 6.3 143 180 162 

1 kJ 1000 5.7 5.8 5.8 110 111 111 
  

 

Table 4.7: Overall average results for maize dust dispersed in air, including tests with air diluted by 10 and 

20 vol.% of carbon dioxide. 

 Maize dust 
with 10 & 20 vol.% CO2 in 

air Pm [bar]  (dp/dt)m [bar/s] 

IE 
Dust concentration 

(g/m3) 
Dust  

with air 
with  

10% CO2 
with  

20% CO2 
Dust  

with air 
with  

10% CO2 
with  

20% CO2 

1 kJ 125 1.4 0.1 0 17 0 0 

1 kJ 250 5.3 4.7 3.5 165 80 30 

1 kJ 500 7.7 6.9 5.9 407 239 121 

1 kJ 750 8.5 7.3 6.3 535 280 162 

1 kJ 1000 8.4 6.8 5.8 493 237 111 
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Figure 4.5: Maximum explosion pressure (above) and maximum rate of pressure rise (below) for maize 

dust dispersed in air diluted by 10 vol.% carbon dioxide. The dotted line represents the average value of 

the two series.  
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Figure 4.6: Maximum explosion pressure (above) and maximum rate of pressure rise (below) for maize 

dust dispersed in air diluted by 20 vol.% carbon dioxide. The dotted line represents the average value of 

the two series.  
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Figure 4.7: Average values for the maximum explosion pressure (above) and maximum rate of pressure 

rise (below) for maize dust dispersed in air, air diluted by 10 and 20 vol.% carbon dioxide. 
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Table 4.8: Summary of results for 500 g/m3 of maize dust and various amounts of sodium bicarbonate 

dispersed in air. 

NaHCO3 with 500 g/m3  

maize dust & air Pm [bar]  (dp/dt)m [bar/s] 

IE 
NaHCO3 concentration 

(g/m3) Series I Series II Average Series I Series II Average 

1 kJ 0 7.9 7.4 7.7 469 345 407 

1 kJ 50 8.4 8.0 8.2 230 206 218 

1 kJ 100 7.9 - 7.9 182 - 182 

1 kJ 125 7.9 6.8 7.4 184 106 145 

1 kJ 250 7.2 6.4 6.8 146 89 118 

1 kJ 375 5.3 6.3 5.8 57 85 71 

1 kJ 500 5.9 4.2 5.1 67 24 46 

1 kJ 625 5.5 4.6 5.1 33 31 32 

1 kJ 750 0.3 0.3 0.3 8 13 11 
  

Table 4.9: Summary of results for various amounts of maize dust and 125 g/m3 sodium bicarbonate 

dispersed in air.  

Maize dust & air 
with 125 g/m3 NaHCO3 Pm [bar]  (dp/dt)m [bar/s] 

IE 
Dust concentration 

(g/m3) Series I Series II Average Series I Series II Average 

1 kJ 125 0 0 0 0 0 0 

1 kJ 250 3.0 0.2 1.6 16 11 14 

1 kJ 375 6.2 6.2 6.2 78 105 92 

1 kJ 500 7.9 6.8 7.4 184 106 145 

1 kJ 625 7.8 7.7 7.8 146 155 151 

1 kJ 750 7.7 7.7 7.7 155 162 159 
 

Table 4.10: Overall average results for various amounts of maize dust and 125 g/m3 of sodium bicarbonate 

dispersed in air. 

Maize dust & air  
with 125 g/m3 NaHCO3 Pm [bar]  (dp/dt)m [bar/s] 

IE Dust concentration(g/m3) Dust with air with NaHCO3 Dust with air with NaHCO3 

1 kJ 125 1.4 0 17 0 

1 kJ 250 5.3 1.6 165 14 

1 kJ 375 7.4 6.2 242 92 

1 kJ 500 7.7 7.4 407 145 

1 kJ 625 8.6 7.8 521 151 

1 kJ 750 8.5 7.7 535 159 
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Figure 4.8: Maximum explosion pressure (above) and maximum rate of pressure rise (below) for 500 g/m3 

of maize dust and various amounts of sodium bicarbonate dispersed in air. The dotted line represents the 

average value of the two series.  
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Figure 4.9: Maximum explosion pressure (above) and maximum rate of pressure rise (below) for various 

amounts of maize dust with 125 g/m3 of sodium bicarbonate dispersed in air. The dotted line represents the 

average value of the two series.  
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Figure 4.10: Average values for the maximum explosion pressure (above) and maximum rate of pressure 

rise (below) for various amounts of maize dust and 125 g/m3 of sodium bicarbonate dispersed in air. 
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4.2. Gas explosions 

This section summarises the results from tests with methane-air mixtures, with or without inert 

gases or inert dust.  

4.2.1. Methane explosions in air 
Table 4.11 and Figure 4.11 summarise the results from the tests with methane dispersed in air. 

4.2.2. Influence of nitrogen on gas explosions 
Tables 4.12-4.14 and Figures 4.12-4.14 summarise the results from tests with methane-air 

mixtures diluted with 10 or 20 vol.% nitrogen. 

4.2.3. Influence of carbon dioxide on gas explosions 
Tables 4.15-4.17 and Figures 4.15-4.17 summarise the results from tests with methane-air 

mixtures diluted with 10 or 20 vol.% carbon dioxide. 

4.2.4. Influence of sodium bicarbonate on gas explosions 
Tables 4.18-4.20 and Figures 4.18-4.20 summarise the results from tests with methane-air 

mixtures and dispersed sodium bicarbonate (NaHCO3). 

 

Table 4.11: Summary of results for methane gas dispersed in air. 

Methane with air Pm [bar] (dp/dt)m [bar/s] 

IE Methane% in air Series I Series II Average Series I Series II Average 

1 kJ 2.5 0 - 0 0 - 0 

1 kJ 5 4.7 4.6 4.7 96 115 106 

1 kJ 7.5 6.8 6.8 6.8 873 672 773 

1 kJ 10 8.3 8.2 8.3 1393 1201 1297 

1 kJ 12.5 7.9 7.6 7.8 720 509 615 

1 kJ 15 7.0 6.7 6.9 279 166 223 
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Figure 4.11: Maximum explosion pressure (above) and maximum rate of pressure rise (below) for methane 

dispersed in air. The dotted line represents the average value of the two series. 
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Table 4.12: Summary of results for methane dispersed in air diluted by 10 vol.% nitrogen, including average 

values for the two series. 

Methane with 10 vol.%  
N2 in air Pm [bar] (dp/dt)m [bar/s] 

IE Methane% in air Series I Series II Average Series I Series II Average 

1 kJ 5 4.7 0.1 2.4 119 17 68 

1 kJ 7.5 7.0 6.9 7.0 718 910 814 

1 kJ 10 7.3 7.5 7.4 672 630 651 

1 kJ 12.5 5.6 5.3 5.5 83 46 65 

1 kJ 15 5.7 0.2 3.0 85 10 48 
  

 

Table 4.13: Summary of results for methane dispersed in air diluted by 20 vol.% nitrogen, including average 

values for the two series. 

 Methane with 20 vol.%  
N2 in air Pm [bar] (dp/dt)m [bar/s] 

IE Methane% in air Series I Series II Average Series I Series II Average 

1 kJ 5 0.1 0.2 0.2 15 12 14 

1 kJ 7.5 6.8 6.7 6.8 808 593 701 

1 kJ 10 5.3 6.0 5.7 42 129 86 
  

 

Table 4.14: Overall average results for methane dispersed in air, including tests with air diluted by 10 and 

20 vol.% of nitrogen.  

Methane with 
10 & 20 vol.% N2 

in air Pm [bar] (dp/dt)m [bar/s] 

IE 
Methane% 

in air 
Methane 
with air 

with 
10% N2 

With 
20% N2 

Methane 
with air 

with 
10% N2 

with 
20% N2 

1 kJ 5 4.7 2.4 0.2 106 68 14 

1 kJ 7.5 6.8 7.0 6.8 773 814 701 

1 kJ 10 8.3 7.4 5.7 1297 651 86 

1 kJ 12.5 7.8 5.5 - 615 65 - 

 1 kJ 15 6.9 3.0 - 223 48 - 
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Figure 4.12: Maximum explosion pressure (above) and maximum rate of pressure rise (below) for methane 

dispersed in air diluted by 10 vol.% nitrogen. The dotted line represents the average value of the two series.   
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Figure 4.13: Maximum explosion pressure (above) and maximum rate of pressure rise (below) for methane 

dispersed in air diluted by 20 vol.% nitrogen. The dotted line represents the average value of the two series.  
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Figure 4.14: Average values for the maximum explosion pressure (above) and maximum rate of pressure 

rise (below) for methane dispersed in air, air diluted by 10 and 20 vol.% nitrogen.  
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Table 4.15: Summary of results for methane dispersed in air diluted by 10 vol.% carbon dioxide, including 

average values for the two series. 

 Methane with 10 vol.%  
CO2 in air Pm [bar] (dp/dt)m [bar/s] 

IE Methane% in air Series I Series II Average Series I Series II Average 

1 kJ 5 0.1 0.4 0.3 9 9 9 

1 kJ 7.5 6.7 6.4 6.6 594 598 596 

1 kJ 10 6.6 6.7 6.7 429 405 417 

1 kJ 12.5 7.2 7.2 7.2 408 520 464 

1 kJ 15 6.2 6.4 6.3 96 184 140 
 

 

 

Table 4.16: Summary of results for methane dispersed in air diluted by 20 vol.% carbon dioxide, including 

average values for the two series. 

 Methane with 20 vol.%  
CO2 in air Pm [bar] (dp/dt)m [bar/s] 

IE Methane% in air Series I Series II Average Series I Series II Average 

1 kJ 5 0.1 - 0.1 0 - 0 

1 kJ 7.5 5.4 5.1 5.3 134 113 124 

1 kJ 10 0.1 0.1 0.1 0 0 0 

 

 

 

Table 4.17: Overall average results for methane dispersed in air, including tests with air diluted by 10 and 

20 vol.% of carbon dioxide.  

Methane with 
 10 & 20 vol.% CO2  

in air Pm [bar]  (dp/dt)m [bar/s] 

IE 
Methane%  

in air 
Methane  
with air 

With 
 10% CO2 

with  
20% CO2 

Methane  
with air 

with  
10% CO2 

with  
20% CO2 

1 kJ 5 4.7 0.3 0.1 106 9 0 

1 kJ 7.5 6.8 6.6 5.3 773 596 124 

1 kJ 10 8.3 6.7 0.1 1297 417 0 

1 kJ 12.5 7.8 7.2 - 615 464 - 

1 kJ 15 6.9 6.3 - 223 140 - 
 

 

 



41 

 

  

  

Figure 4.15: Maximum explosion pressure (above) and maximum rate of pressure rise (below) for methane 

dispersed in air diluted by 10 vol.% carbon dioxide. The dotted line represents the average value of the two 

series.  
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Figure 4.16: Maximum explosion pressure (above) and maximum rate of pressure rise (below) for methane 

dispersed in air diluted by 20 vol.% carbon dioxide. The dotted line represents the average value of the two 

series.  
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Figure 4.17:  Average values for the maximum explosion pressure (above) and maximum rate of pressure 

rise (below) for methane dispersed in air, air diluted by 10 and 20 vol.% carbon dioxide.  
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Table 4.18: Summary of results for 10 vol.% of methane and various amounts of sodium bicarbonate 

dispersed in air. 

 NaHCO3 with  
10 vol.% methane in air Pm [bar]  (dp/dt)m [bar/s] 

IE 
NaHCO3  

concentration (g/m3) Series I Series II Average Series I Series II Average 

1 kJ 0 8.3 8.2 8.3 1393 1201 1297 

1 kJ 25 7.6 - 7.6 659 - 659 

1 kJ 50 7.4 7.3 7.4 553 416 485 

1 kJ 75 7.2 - 7.2 382 - 382 

1 kJ 100 7.0 - 7.0 327 - 327 

1 kJ 125 7.0 6.9 7.0 264 320 292 

1 kJ 250 6.4 6.5 6.5 232 213 223 

1 kJ 375 6.1 6.0 6.1 167 156 162 

1 kJ 500 5.7 6.1 5.9 89 120 105 

1 kJ 625 5.3 5.6 5.5 78 100 89 

1 kJ 750 5.1 5.5 5.3 69 107 88 

1 kJ 875 0 0.1 0.1 0 0 0 

1 kJ 1000 0 -  0 0 - 0 
 

Table 4.19: Summary of results for various amounts of methane with 125 g/m3 of sodium bicarbonate 

dispersed in air. 

 Methane with  
125 g/m3 NaHCO3 Pm [bar]  (dp/dt)m [bar/s] 

IE Methane% in air Series I Series II Average Series I Series II Average 

1 kJ 5 0.1 0 0.1 0 0 0 

1 kJ 7.5 5.3 5.2 5.3 110 90 100 

1 kJ 10 7.0 6.9 7.0 264 320 292 

1 kJ 12.5 6.2 6.1 6.2 193 236 215 

1 kJ 15 5.7 5.5 5.6 171 150 161 
 

Table 4.20: Overall average results for various amounts of methane and 125 g/m3 of sodium bicarbonate 

dispersed in air. 

 Methane, air  
with 125 g/m3 NaHCO3 Pm [bar]  (dp/dt)m [bar/s] 

IE Methane% in air 
Methane  
with air 

with   
125 g/m3 NaHCO3 

Methane 
 with air 

with  
 125 g/m3 NaHCO3 

1 kJ 5 4.7 0.1 106 0 

1 kJ 7.5 6.8 5.3 773 100 

1 kJ 10 8.3 7.0 1297 292 

1 kJ 12.5 7.8 6.2 615 193 

1 kJ 15 6.9 5.7 223 171 
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Figure 4.18: Maximum explosion pressure (above) and maximum rate of pressure rise (below) for 10 vol.% 

of methane and various amounts of sodium bicarbonate dispersed in air. The dotted line represents the 

average value of the two series.  
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Figure 4.19: Maximum explosion pressure (above) and maximum rate of pressure rise (below) for various 

amounts of methane with 125 g/m3 of sodium bicarbonate dispersed in air. The dotted line represents the 

average value of the two series.  
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Figure 4.20: Average values for the maximum explosion pressure (above) and maximum rate of pressure 

rise (below) for various amounts of methane and with 125 g/m3 of sodium bicarbonate dispersed in air. 
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4.3. Hybrid explosions 

This section summarises the results from tests with hybrid mixtures, with or without inert gases 

or inert dust.  

4.3.1. Hybrid methane-maize dust explosions in air 
Table 4.21 and Figure 4.21 summarise the results from the tests with hybrid mixtures in air. 

4.3.2. Influence of nitrogen on hybrid explosions 
Tables 4.22-4.24 and Figures 4.22-4.24 summarise the results from tests with hybrid mixtures 

diluted with 10 or 20 vol.% nitrogen. 

4.3.3. Influence of carbon dioxide on hybrid explosions 
Tables 4.25-4.29 and Figures 4.25-4.27 summarise the results from tests with hybrid mixtures 

diluted with 10 or 20 vol.% carbon dioxide. 

4.3.4. Influence of sodium bicarbonate on hybrid explosions 
Tables 4.30-4.31 and Figures 4.28-4.29 summarise the results from tests with hybrid mixtures 

and 125 g/m3 dispersed sodium bicarbonate (NaHCO3).  

 

 

Table 4.21: Summary of results for hybrid mixtures dispersed in air. 

Hybrid methane-maize with air Pm [bar] (dp/dt)m [bar/s] 

IE 
Methane% 

 in air 
Dust concentration 

(g/m3)  I II Average I II Average 

1 kJ 10 0 8.3 8.2 8.3 1393 1201 1297 

1 kJ 7.5 125 8.2 8.2 8.2 1121 1076 1099 

1 kJ 5 250 8.1 8.8 8.5 805 1131 968 

1 kJ 2.5 375 8.3 8.3 8.3 613 570 592 

1 kJ 0 500 7.9 7.4 7.7 469 345 407 
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Figure 4.21: Maximum explosion pressure (above) and maximum rate of pressure rise (below) for hybrid 

mixtures dispersed in air. The dotted line represents the average value of the two series. 
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Table 4.22: Summary of results for hybrid mixtures dispersed in air diluted by 10 vol.% nitrogen, including 

average values for the two series.  

Hybrid methane-maize with 10 vol.%  
N2 in air Pm [bar] (dp/dt)m [bar/s] 

IE 
Methane% 

 in air 
Dust concentration 

(g/m3)  I  II Average  I  II Average 

1 kJ 10 0 7.2 7.1 7.2 503 614 559 

1 kJ 7.5 125 7.5 7.4 7.5 800 783 792 

1 kJ 5 250 7.7 7.6 7.7 622 663 643 

1 kJ 2.5 375 7.4 7.4 7.4 396 600 498 

1 kJ 0 500 7.8 7.5 7.7 380 368 374 
 

 

Table 4.23: Summary of results for hybrid mixtures dispersed in air diluted by 20 vol.% nitrogen, including 

average values for the two series.  

 
Hybrid methane-maize with 20 vol.%  

N2 in air Pm [bar]  (dp/dt)m [bar/s] 

IE 
Methane% 

 in air 
Dust concentration 

(g/m3)  I  II Average  I  II Average 

1 kJ 10 0 5.2 5.5 5.4 219 141 180 

1 kJ 7.5 125 6.4 7.0 6.7 270 316 293 

1 kJ 5 250 7.3 6.8 7.1 412 474 443 

1 kJ 2.5 375 7.4 8.1 7.8 346 602 474 

1 kJ 0 500 7.2 7.0 7.1 305 246 276 
  

 

Table 4.24: Overall average results for hybrid mixtures dispersed in air, including tests with air diluted by 

10 and 20 vol.% of nitrogen.  

 Hybrid (methane-maize-air) with 
10 and 20 vol.% N2 in air Pm [bar]  (dp/dt)m [bar/s] 

IE 
Methane%  

in air 

Dust  
concentration 

(g/m3) 
Hybrid  
with air 

with  
10% N2 

with  
20% N2 

Hybrid  
with air 

with  
10% N2 

With 
 20% N2 

1 kJ 10 0 8.3 7.2 5.4 1297 559 180 

1 kJ 7.5 125 8.2 7.5 6.7 1099 792 293 

1 kJ 5 250 8.5 7.7 7.1 968 643 443 

1 kJ 2.5 375 8.3 7.4 7.8 592 498 474 

1 kJ 0 500 7.7 7.7 7.1 407 374 276 
 

 



51 

 

 

  

Figure 4.22: Maximum explosion pressure (above) and maximum rate of pressure rise (below) for hybrid 

mixtures dispersed in air diluted by 10 vol.% nitrogen. The dotted line represents the average value of the 

two series.  
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Figure 4.23: Maximum explosion pressure (above) and maximum rate of pressure rise (below) for hybrid 

mixtures dispersed in air diluted by 20 vol.% nitrogen. The dotted line represents the average value of the 

two series.  
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Figure 4.24: Average values for the maximum explosion pressure (above) and maximum rate of pressure 

rise (below) for hybrid mixtures dispersed in air, air diluted by 10 and 20 vol.% nitrogen.  

0

1

2

3

4

5

6

7

8

9

0 125 250 375 500

P
m

[b
ar

] 

Dust concentration (g/m3)

Hybrid with air

with 10% Nitrogen

with 20% Nitrogen

Methane% in air

10 7.5 5 2.5 0

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

0 125 250 375 500

(d
p

/d
t)

m
[b

ar
/s

]

Dust concentration (g/m3)

Hybrid with air

with 10% Nitrogen

with 20% Nitrogen

Methane% in air

10 7.5 5 2.5 0



54 

 

Table 4.25: Summary of results for hybrid mixtures dispersed in air diluted by 10 vol.% carbon dioxide, 

including average values for the two series.  

  
Hybrid methane-maize with 10 vol.%  

CO2 in air Pm [bar]  (dp/dt)m [bar/s] 

IE 
Methane% 

 in air 
Dust concentration 

(g/m3)  I  II Average  I II Average 

1 kJ 10 0 6.7 6.2 6.5 410 231 321 

1 kJ 7.5 125 7.2 7.2 7.2 782 793 788 

1 kJ 5 250 7.4 7.1 7.3 560 475 518 

1 kJ 2.5 375 7.6 7.2 7.4 594 342 468 

1 kJ 0 500 7.0 6.8 6.9 249 229 239 
  

 

Table 4.26: Summary of results for hybrid mixtures dispersed in air diluted by 20 vol.% carbon dioxide, 

including average values for the two series.  

  
Hybrid methane-maize with 20 vol.%  

CO2 in air Pm [bar]  (dp/dt)m [bar/s] 

IE 
Methane% 

 in air 
Dust concentration 

(g/m3)  I  II Average  I  II Average 

2 kJ 10 0 0.3 0.1 0.2 22 15 19 

2 kJ 8 100 4.8 6.4 5.6 58 225 142 

2 kJ 7.5 125 5.1 5.1 5.1 58 95 77 

1 kJ 6 200 5.8 6.1 6.0 172 181 177 

1 kJ 5 250 5.9 5.9 5.9 148 116 132 

1 kJ 2.5 375 6.3 6.1 6.2 184 129 157 

1 kJ 0 500 5.8 6.0 5.9 106 136 121 
  

 

Table 4.27: Overall average results for hybrid mixtures dispersed in air, including tests with air diluted by 

10 and 20 vol.% of carbon dioxide.  

 Hybrid methane-maize 
with 10 & 20 vol.% CO2 in air  Pm [bar]  (dp/dt)m [bar/s] 

Methane% 
 in air 

Dust concentration 
(g/m3) 

Hybrid 
 with air 

with  
10% CO2 

with  
20% CO2 

Hybrid  
with air 

with  
10% CO2 

with  
20% CO2 

10 0 8.3 6.5 0.2 1297 321 19 

7.5 125 8.2 7.2 5.1 1099 788 77 

5 250 8.5 7.3 5.9 968 518 132 

2.5 375 8.3 7.4 6.2 592 468 157 

0 500 7.7 6.9 5.9 407 239 121 
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Table 4.28: Comparison of average results for hybrid mixtures dispersed in air, including tests with air 

diluted by 10 vol.% of nitrogen and carbon dioxide.  

  Hybrid methane-maize 
with 10 vol.% N2 & CO2 in air  Pm [bar] (dp/dt)m [bar/s] 

Methane%  
in air 

Dust concentration 
(g/m3) 

Hybrid 
 with air 

with  
10% N2 

with  
10% CO2 

Hybrid  
with air 

With 
 10% N2 

with  
10% CO2 

10 0 8.3 7.2 6.5 1297 559 321 

7.5 125 8.2 7.5 7.2 1099 792 788 

5 250 8.5 7.7 7.3 968 643 518 

2.5 375 8.3 7.4 7.4 592 498 468 

0 500 7.7 7.7 6.9 407 374 239 
 

Table 4.29: Comparison of average results for hybrid mixtures dispersed in air, including tests with air 

diluted by 20 vol.% of nitrogen and carbon dioxide.  

 Hybrid methane-maize  
with 20 vol.% N2 & CO2 in air Pm [bar]  (dp/dt)m [bar/s] 

Methane% 
 in air 

Dust concentration 
(g/m3) 

Hybrid  
with air 

with  
20% N2 

with  
20% CO2 

Hybrid  
with air 

with  
20% N2 

With 
 20% CO2 

10 0 8.3 5.4 0.2 1297 180 19 

7.5 125 8.2 6.7 5.1 1099 293 77 

5 250 8.5 7.1 5.9 968 443 132 

2.5 375 8.3 7.8 6.2 592 474 157 

0 500 7.7 7.1 5.9 407 276 121 
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Figure 4.25: Maximum explosion pressure (above) and maximum rate of pressure rise (below) for hybrid 

mixtures dispersed in air diluted by 10 vol.% carbon dioxide. The dotted line represents the average value 

of the two series.  
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Figure 4.26: Maximum explosion pressure (above) and maximum rate of pressure rise (below) for hybrid 

mixtures dispersed in air diluted by 20 vol.% carbon dioxide. The dotted line represents the average value 

of the two series.  
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Figure 4.27: Average values for the maximum explosion pressure (above) and maximum rate of pressure 

rise (below) for hybrid mixtures dispersed in air, air diluted by 10 and 20 vol.% carbon dioxide.  
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Table 4.30: Summary of results for hybrid mixtures and 125 g/m3 of sodium bicarbonate dispersed in air. 

  
Hybrid methane-maize dust-air 

with 125 g/m3 NaHCO3 Pm [bar]  (dp/dt)m [bar/s] 

IE 
Methane% 

 in air 
Dust concentration 

(g/m3)  I  II Average I II Average 

1 kJ 10 0 7.0 6.9 7.0 264 320 292 

1 kJ 7.5 125 7.1 7.2 7.2 243 275 259 

1 kJ 5 250 7.3 7.4 7.4 241 244 243 

1 kJ 2.5 375 7.2 7.5 7.4 156 213 185 

1 kJ 0 500 7.9 6.8 7.4 184 106 145 
  

Table 4.31: Overall average results for hybrid mixtures and 125 g/m3 of sodium bicarbonate dispersed in 

air.  

 
Hybrid methane-maize dust-air  

with 125 g/m3 NaHCO3 Pm [bar]  (dp/dt)m [bar/s] 

IE 
Methane% 

 in air 
Dust concentration 

(g/m3) 
Hybrid  
with air 

with  
NaHCO3 

Hybrid 
 with air 

with  
NaHCO3 

1 kJ 10 0 8.3 7.0 1297 292 

1 kJ 7.5 125 8.2 7.2 1099 259 

1 kJ 5 250 8.5 7.4 968 243 

1 kJ 2.5 375 8.3 7.4 592 185 

1 kJ 0 500 7.7 7.4 407 145 
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Figure 4.28: Maximum explosion pressure (above) and maximum rate of pressure rise (below) for hybrid 

mixtures with 125 g/m3 of sodium bicarbonate dispersed in air. The dotted line represents the average value 

of the two series.  
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Figure 4.29: Average values for the maximum explosion pressure (above) and maximum rate of pressure 

rise (below) for hybrid mixtures and with 125 g/m3 of sodium bicarbonate dispersed in air.  
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5 Discussion 
This chapter discusses the results presented in Chapter 4. The analysis includes a comparison with 

results from previous work and a systematic comparison of the effect of different inert diluents 

on the explosion severity parameters corrected explosion pressure Pm and rate of pressure rise 

(dp/dt)m for the dust, gas and hybrid explosions investigated. 

 The primary objective of the present study was to study the relative effect of different inert 

diluents on various flammable mixtures. Due to the limited number of chemical igniters available, 

the use of only one 1 kJ igniter per test, and the limited number of tests that could be performed 

with the igniters available, the results are not suitable for deriving ‘standard’ values for safety-

related parameters such as the lower flammability limit (LFL), Pmax or KSt. Furthermore, as outlined 

in Section 3.2.2, Figure 3.9 that illustrates that the inherent limitations of the experimental 

procedure did not allow for the determination of the limiting oxygen concentration (LOC). To this 

end, the discussion will focus on the effect of different inert diluents towards partial inerting of 

various flammable mixtures.  

5.1. Dust explosions 

Section 4.1 summarised the results from the experiments with maize starch in the 20-litre vessel, 

including the inerting effect of nitrogen, carbon dioxide and sodium bicarbonate. All tests were 

ignited by a single 1 kJ chemical igniter at a fixed ignition delay time of 60 milliseconds relative to 

the onset of injection of dust and air from the 0.6-litre reservoir.    

Figure 4.1 summarises the results for dust explosions with maize starch without inert diluents. 

The maximum average values for Pm and (dp/dt)m of 8.5 bar and 535 bar/s occur for a nominal 

dust concentration of 750 g/m3. The maximum rate of pressure rise indicates a KSt value of 145 

bar m/s in a 20-litre vessel, which is reasonably consistent with results reported by other 

researchers. The maize starch used in the present work originated from the same batch of 

Meritena A used by Eckhoff et al. (1987) and Skjold et al. (2006). The results reported by Skjold 

et al. (2006) for dust explosion experiments in the 20-litre USBM vessel at UiB indicated a 

maximum explosion pressure of 8.6-8.7 bar, and KSt values of about 150 and 160 bar m/s for 

ignition with a 6 J arc discharge and two 5 kJ chemical igniters, respectively. Similar to the present 

study, the maximum values for both Pmax and (dp/dt)max were found for nominal dust 

concentrations in the range 750-800 g/m3. An increased number of repeated tests in the present 

study would likely have resulted in a somewhat higher estimate for Pmax and KSt, but further 

testing was prohibited by the limited number of chemical igniters available. 

Skjold et al. (2006) reported standard percentile readings from the particle size distribution for 

Meritena A of 6, 13 and 20 m for the 10, 50 and 90 percentiles, respectively, measured with a 

Malvern Mastersizer X and dispersion in water. These results are reasonably consistent with the 

results summarised in Table 3.2 (Dv10 = 7.6 m, Dv50 = 13.7 m, Dv90 = 24.4 m). The particle 

size measurements in the present study involved dispersion in air, since SBC is soluble in water, 

which is likely to be somewhat less effective compared to dispersion in water. 
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Table 5.1 summarises literature values for the LFL of maize starch from Addai et al. (2016).  

Table 5.1: Comparison between experimental data for the LFL of four types of dust, from Addai et al. 

(2016) 

Dust LFL  
(g/m3) 

Addai et al. 
(2016) 

Shevchuk et al. 
(1979) 

Schonewald 
(1971) 

Buksowicz et al. 
(1983) 

Starch 150 84.6 77.8 133.9 

Lycopodium 100 51.0 41.4 62.2 

Toner 60 42.5 32.7 47.9 

HDPE 120 41.4 24.3 33.8 

  

5.1.1. Inerting effect of nitrogen and carbon dioxide 
Figure 4.4 summarises the effect of inerting maize starch explosions with 10 or 20 vol.% nitrogen. 

The apparent increase in both Pm and (dp/dt)m observed for a nominal dust concentration of 250 

g/m3 when 10 vol.% nitrogen is added to the air is presumably a result of the limited effect of 

modest amounts of inert diluents for lean mixtures (excess oxygen still available), combined with 

the relatively low molar heat capacity of nitrogen and significant spread in the results for 

repeated tests. The results for higher dust concentrations show a consistent mitigative effect of 

adding increasing amounts of inert diluent. The effect of partial inerting is especially pronounced 

for (dp/dt)m at higher fuel concentrations. Figure 4.7 shows the corresponding results for carbon 

dioxide, where the mitigating effect of the inert diluent is consistent through the range of fuel 

concentrations investigated.    

Figure 5.1 and Figure 5.2 summarise the results for nitrogen and carbon dioxide for normalised 

explosion pressures and normalised rates of pressure rise. The measured values of Pm and 

(dp/dt)m are normalised by the maximum values measured for dust-air mixtures without inert 

diluents, for all dust concentrations investigated (i.e. 8.50 bar and 535 bar/s, respectively). Apart 

from the results for 10 vol.% nitrogen and 250 g/m3 maize starch mentioned above, the results 

are reasonably consistent. Increasing amounts of inert diluents result in lower values of both Pm 

and (dp/dt)m, and carbon dioxide is more efficient for inerting, compared to nitrogen, because of 

the higher molecular weight and higher molar heat capacity resulting from the three-atomic 

molecule.  
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Figure 5.1: The effect of dilution by 10 and 20 vol.% nitrogen (green) or 10 and 20 vol.% carbon dioxide 

(blue) on the normalised average explosion pressure (above) and normalised average rate of pressure rise 

(below) for fuel-air explosions with increasing amounts of maize starch. 
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Figure 5.2: Normalised average explosion pressure (left) and normalised average rate of pressure rise (right) 

for maize-air explosions diluted with 10 and 20 vol.% nitrogen (green) and carbon dioxide (blue).  

5.1.2. Inerting effect of sodium bicarbonate 
Figure 4.10 summarises the effect of inerting maize starch explosions with 125 g/m3 sodium 

bicarbonate. The effect is most pronounced for the rate of pressure rise, and especially at higher 

dust concentrations. Figure 5.3 shows results for the normalised explosion pressure and the 

normalised rate of pressure rise for fuel-air mixtures of 500 g/m3 maize starch and 10 vol.% 

methane, for increasing amounts of sodium bicarbonate. The measured values of Pm and (dp/dt)m 

are normalised by the maximum values measured for dust-air and methane-air mixtures without 

inert diluents, for all fuel concentrations investigated (i.e. 8.50 bar and 535 bar/s for maize starch 

and 8.3 bar and 1297 bar/s for methane, respectively). Note that the normalised values for 500 

g/m3 maize starch are less than unity because the highest values for Pm and (dp/dt)m were 

obtained for a nominal concentration of 750 g/m3 maize starch in air. The results for the 

normalised explosion pressure and the normalised rate of pressure rise indicate that the 

inhibiting/inerting effect of sodium bicarbonate is similar for methane and maize starch. This 

result will depend on the particle size distribution for both the solid fuel and the solid inert 

diluent, since the time required for heating and volatising/decomposing the solid particles will 

depend on particle size. 
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Figure 5.3: Normalised average explosion pressure (above) and normalised average rate of pressure rise 

(below) for fuel-air explosions with 10 vol.% methane (blue) and 500 g/m3 maize starch (red) diluted by 

increasing amounts of sodium bicarbonate. 
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For low concentrations of sodium bicarbonate (50-100 g/m3), the explosion pressures for 500 

g/m3 maize starch are somewhat higher than for the tests without inert diluent. This effect can 

be attributed to the decomposition of inert particles. Dastidar et al. (1999) introduced the term 

Suppressant Enhanced Explosion Parameter (SEEP) for this phenomenon. Figure 5.4 illustrates 

the SEEP phenomenon for tests conducted in the 1-m3 vessel with aluminium as fuel and different 

amounts of sodium bicarbonate (SBC).  

 
Figure 5.4: Explosion overpressure plotted against aluminium concentration for different amounts of SBC in 

the mixture, from Dastidar et al. (1999). 

Figure 5.3 indicated that about 800 g/m3 of sodium bicarbonate is required for preventing flame 

propagation in dust clouds with 500 g/m3 maize starch dispersed in air. This result is reasonably 

consistent with the results from Dastidar et al. (2002) summarised in Figure 5.5, where the 

amount of sodium bicarbonate required for preventing flame propagation in clouds of maize 

starch is somewhere between 500 and 1000 g/m3. Figure 5.5 illustrates that the results from this 

type of experiments depend on parameters such as the size of the explosion vessel, the ignition 

source used, and the particle size distributions for the inert diluent and fuel. Figure 5.5 also 

illustrates that decreasing the ignition energy in the 20-litre vessel from 5 kJ to 1 kJ lowered the 

minimum inerting concentration (MIC) from 1500 to 500 g/m3. 

 
Figure 5.5: Inerting requirements of maize starch inerted with sodium bicarbonate (SBC) in different 

explosion vessels with various chemical igniters as ignition source, from Dastidar et al. (2002). 
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5.2. Gas explosions 

Section 4.2 summarised the results from the experiments with methane in the 20-litre vessel, 

including the inerting effect of nitrogen, carbon dioxide and sodium bicarbonate. All tests were 

ignited by a single 1 kJ chemical igniter at a fixed ignition delay time of 60 milliseconds relative to 

the onset of injection of air from the 0.6-litre reservoir. 

Table 5.2 summarised experimentally determined LFL values from a study by Addai et al. (2016), 

indicating a lower flammability limit in the range of 4.7 to 5.2 vol.% methane in air. Figure 5.6 

summarises the results from an experimental study by Vanderstraeten et al. (1997), as well as 

selected values from other researchers. This study concluded that LFL and UFL for methane-air 

mixtures at ambient temperature and pressure are 4.6 ± 0.3 vol.% and 15.8 ± 0.4 vol.%, 

respectively. The possibility of igniting mixtures at concentrations below 5.0 vol.% methane in air, 

combined with the inherent uncertainty in the experimental approach used in the present study 

(i.e. injection of 60 vol.% of the air present at the time of ignition, and highly turbulent flow 

conditions), may explain the relatively high explosion pressure recorded for the 5.0 vol.% mixture. 

It is also possible that the relatively strong ignition source (1 kJ) may have influenced the results 

in the present study, but a relatively weak ignition source should normally not have this strong 

effect on the flammability limits for a gaseous fuel such as methane.  

Table 5.2: Experimental data for the LEL of three gases, from Addai et al. (2016). 

Gas LEL (vol.%) 
Addai et al.  

(2016) 
Spakowski  

(1952) 
Zabetakis 

(1965) 
Shebeko et al. 

(2002) 

Methane 5.0 4.9 5.2 4.7 

Acetone 2.5 2.5 2.7 2.1 

Isopropanol 2.1 2.4 2.5 1.8 

According to Vanderstraeten et al. (1997), the UEL for methane increases at elevated initial 

pressures, and one might speculate whether incomplete mixing during the injection process 

resulted in a flammable pocket of gas that could be ignited by the chemical igniter. Further 

experiments with rich mixtures and relatively strong ignition sources might explain the 

observation. However, this result has limited influence on the overall conclusions from the thesis. 

 

Figure 5.6: LEL, UEL and maximum explosion pressure ratios for methane-air mixtures ignited at ambient 

pressure and temperature, from Vanderstraeten.et al. (1997). 
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The peak values of 8.3 bar and 1297 bar/s for Pm and (dp/dt)m, respectively, occur for the 10 vol.% 

mixture, i.e. close to the stoichiometric concentration of 9.5 vol.% methane in air (Zanganeh et 

al. 2016; Vanderstraeten et al. 1997). The sharp peak in the values for (dp/dt)m at 10 vol.% is a 

result of the limited number of tests that could be performed with the available igniters. 

Additional experiments, both near the flammability limits and near the optimum concentration, 

should be included in further studies. 

5.2.1. Inerting effect of nitrogen and carbon dioxide 
Figure 4.14 and Figure 4.17 summarise the effect of inerting methane-air explosions with 10 and 

20 vol.% nitrogen and carbon dioxide, respectively. Figure 5.7 summarises the corresponding 

results for the normalised explosion pressure and the normalised rate of pressure rise. All results 

are normalised by the peak values of 8.3 bar and 1297 bar/s for Pm and (dp/dt)m, respectively (i.e. 

the average values found for 10 vol.% methane in air). The results for gaseous mixtures resemble 

the results presented in Figure 5.2 for maize starch. As expected, the mitigating effect of carbon 

dioxide is consistently more pronounced than the effect of nitrogen. The gaseous inert diluents, 

and especially nitrogen, have limited effect on the results for 7.5 vol.% methane in air. For 10 

vol.% nitrogen there is a small increase in both Pm and (dp/dt)m for this mixture, relative to 

combustion in air, but this can probably be explained by the significant variation in the results 

between repeated tests. The results obtained for carbon dioxide are in reasonable agreement 

with data from Gant et al. (2011). 

    

Figure 5.7: Normalised average explosion pressure (left) and normalised average rate of pressure rise (right) 

for fuel-air explosions with 7.5, 10.0 and 12.5 vol.% methane in air, diluted by 10 or 20 vol.% nitrogen (green) 

and carbon dioxide (blue). 

5.2.2. Inerting effect of sodium bicarbonate 
Figure 4.20 summarises the effect on Pm and (dp/dt)m from adding 125 g/m3 sodium bicarbonate 

to methane-air mixtures. The effect of the inert diluent is most pronounced for (dp/dt)m in the 

concentration range 7.5-12.5 vol.% methane in air. Figure 5.3 shows results for the normalised 

explosion pressure and the normalised rate of pressure rise for fuel-air mixtures of 500 g/m3 

maize starch and 10 vol.% methane, for increasing amounts of sodium bicarbonate. As mentioned 

in Section 5.1.2, the effect of adding increasing amounts of sodium bicarbonate is similar for the 

maize starch and methane explosions. A gradual increase in the amount of SBC results in a near-

linear reduction in the normalised explosion pressure, up to the point where the flame is 

quenched. However, the addition of SBC results in an exponential decrease in the normalised rate 

of pressure rise. The strong effect of relatively small amounts of solid suppressant on the rate of 
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pressure rise is particularly relevant for risk-reducing measures such as partial inerting and partial 

suppression. 

The results in Figure 5.3 indicate a minimum inerting concentration (MIC) of about 875 g/m3 

NaHCO3 for 10 vol.% methane in air. This value is somewhat lower than the MIC of 975 g/m3 

NaHCO3 for 10 vol.% methane in air reported by Tamanini et al. (2000). Tamanini and co-workers 

used the 20-litre spherical vessel at Factory Mutual Research Corporation (FMRC), with a single 5 

kJ chemical igniter and ignition delay time 30 ms. The sodium bicarbonate was of type Ansul Plus 

50C, but no particle size measures were provided. The limited number of tests that could be 

performed in the present study, both concerning the number of repetitions (maximum two) and 

the number of concentrations that could be tested, implies an inherent uncertainty in the 

estimation of limiting values such as MIC, LOC, LFL and UFL. Furthermore, factor such as vessel 

size, ignition source, turbulence level and the particle size distribution of the inert particles will 

influence the results. 

5.3. Hybrid explosions 

Figure 4.21 shows a near-linear change in both Pm and (dp/dt)m when the concentration of 

methane is reduced from 10 to 0 vol.%, in steps of 2.5 vol.% methane, and the nominal 

concentration of maize starch is increased from 0 to 500 g/m3 in steps of 125 g/m3.  Figure 5.8 

compares the results obtained for the hybrid mixtures the individual values of Pm and (dp/dt)m 

obtained for the individual components, i.e. maize starch without methane, and methane without 

maize starch, for the fuel concentrations indicated on the respective axes. The combined effect 

of both fuels is most pronounced for the intermediate values, i.e. 5.0 vol.% methane and 250 

g/m3 maize starch in air. Although the explosion pressure of almost 5 bar indicated for 5.0 vol.% 

methane in air, i.e. close to LFL (see Section 5.2), indicate that the actual gas concentration may 

be somewhat higher, it is clear that both fuels take part in the combustion reactions.  

 

Figure 5.8: Corrected explosion pressure (left) and rate of pressure rise (right) for hybrid mixtures (red), 

methane only (blue), maize dust only (yellow). 

5.3.1. Inerting effect of gaseous and solid inert diluents 
Figure 5.9 summarises the results for the normalised explosion pressure and the normalised rate 

of pressure rise for hybrid mixtures with inert diluents. Since the normalised values of Pm and 

(dp/dt)m for dust clouds (Section 5.1) and gaseous mixtures (Section 5.2) were normalised with 
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the maximum values observed for the individual fuels (i.e. 8.3 bar and 1297 bar/s for methane, 

and 8.50 bar and 535 bar/s for maize starch, respectively), the results for hybrid mixtures were 

normalised with values determined by linear interpolation between the values for the respective 

fuels. This explains how some normalised values can exceed 1.0. Also, the values for 500 g/m3 

maize starch and no methane in Figure 5.9 is less than 1.0, because the maximum values of Pm 

and (dp/dt)m used for normalising were obtained for 750 g/m3 maize starch in air. Figure 5.10 

shows the effect of normalising Pm and (dp/dt)m by the maximum values obtained for 500 g/m3 

maize starch in air.  

The results summarised in Figure 5.9 and Figure 5.10 are consistent with the results obtained for 

the individual fuels. Increasing the amount of gaseous inert diluent results in lower values of both 

Pm and (dp/dt)m, and carbon dioxide have a stronger mitigating effect than nitrogen. It is not 

straightforward to compare the inerting effect of gaseous and solid inert diluents. Table 5.3 

summarises the approximate mass of nitrogen and carbon dioxide present in the mixtures. 

Although mixtures with 10 vol.% inert diluents include approximately the same mass of inert 

substance as the suspension with 125 g/m3 sodium bicarbonate, the addition of gaseous diluents 

implies the combined effect of inert material and reduced oxygen content. The combined effect 

of added mass, reduced oxygen content and the higher molar heat capacity of CO2 compared to 

N2 explains the strong effect of 20 vol.% carbon dioxide on both Pm and (dp/dt)m. However, for all 

tests with added maize starch, the mitigating effect of 125 g/m3 sodium bicarbonate is stronger 

that the mitigating effect of vol.% nitrogen (i.e. about 360 g/m3 nitrogen in air diluted to about 

17 vol.% oxygen). This illustrates the significant potential for risk reduction by partial suppression 

using solid inhibitors such as SBC. 

Table 5.3: Mass (g/m3) of gaseous inert diluents in gaseous mixtures at 20 oC and atmospheric pressure. 

Diluent 100 vol.% 10 vol.% 20 vol.% 

Nitrogen 1150 115 230 

Carbon dioxide 1807 181 361 

Figure 5.11 and Figure 5.12 summarise the results for Pm and (dp/dt)m with 10 and 20 vol.% 

nitrogen added to hybrid mixtures. Figure 5.13 and Figure 5.14 summarise the corresponding 

results for hybrid mixtures with 10 and 20 vol.% carbon dioxide. The plots include results for 

maize starch without methane (yellow points) and methane without maize starch (blue points), 

highlighting the combined effect of both fuels in the hybrid mixture (red points). 
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Figure 5.9: Normalised average explosion pressure (above) and normalised average rates of pressure rise 

(below) for hybrid explosions in air, and explosions in air diluted with 10 or 20 vol.% nitrogen (green),  10 or 

20 vol.% carbon dioxide (blue) and 125 g/m3 sodium bicarbonate (red). Values normalised for 10 vol.% 

methane and 750 g/m3 maize starch in air (i.e. the maximum values obtained for all maize starch 

concentrations tested). 

  



73 

 

 

 

Figure 5.10: Normalised average explosion pressures (above) and normalised average rates of pressure rise 

(below) for hybrid explosions in air, and explosions in air diluted with 10 or 20 vol.% nitrogen (green),  10 or 

20 vol.% carbon dioxide (blue) and 125 g/m3 sodium bicarbonate (red). Values normalised for 10 vol.% 

methane and 500 g/m3 maize starch in air (i.e. the maximum values obtained for 500 g/m3 maize starch in 

air). 
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Figure 5.11: Corrected explosion pressure (left) and rate of pressure rise (right) for methane, maize starch 

and hybrid explosions in air diluted with 10 vol.% nitrogen in a 20-litre vessel. 

 

 

 

 Figure 5.12: Corrected explosion pressure (left) and rate of pressure rise (right) for methane, maize starch 

and hybrid explosions in air diluted with 20 vol.% nitrogen in a 20-litre vessel. 
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 Figure 5.13: Corrected explosion pressure (left) and rate of pressure rise (right) for methane, maize starch 

and hybrid explosions in air diluted with 10 vol.% carbon dioxide in a 20-litre vessel.  

 

 

 

 Figure 5.14: Corrected explosion pressure (left) and rate of pressure rise (right) for methane, maize starch 

and hybrid explosions in air diluted with 20 vol.% carbon dioxide in a 20-litre vessel. 
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5.4. Overall results for gaseous and solid inert diluents 

This section elaborates on the overall results on the effect of gaseous and solid inert diluents on 

the normalised explosion pressure and the normalised rate of pressure rise for dust, gas and 

hybrid explosions.  

To compare the effect of gaseous and solid diluents, it is convenient to plot the results discussed 

in sections 5.1 and 5.2 as a function of the total mass of gaseous and solid inert substances added 

to the vessel. However, direct comparison is still not straightforward, since the addition of 

gaseous diluents, fuel and inert, reduce the oxygen content of the air. Furthermore, pure air 

consists of approximately 21 vol.% oxygen and 79 vol.% nitrogen, which implies that there always 

will be a significant fraction of inert material present.  

Figure 5.15 summarises the mitigating effect of various gaseous and solid inert diluents on the 

normalised explosion pressure and the normalised rate of pressure rise for explosions with 125, 

250, 500, 750 and 1000 g/m3 maize starch in air. In general, carbon dioxide has a stronger 

mitigation effect than nitrogen for most dust concentrations. It is not clear what causes the 

apparent increase in both pressure and rate of pressure rise for 250 g/m3 maize starch in air. 

There is also a small increase in pressure for 125 g/m3. However, there is a significant spread in 

the results from individual tests, and additional repeated tests would likely have resulted in more 

consistent results. Further work with a significant increase in the number of tests, using a low-

energy (and low-cost) ignition source such as an electric spark, may produce more consistent 

results. Since the addition of sodium bicarbonate (SBC) does not influence the oxygen content in 

air, a significantly higher mass of inert substance must be added to prevent flame propagation. 

However, the addition of relatively small amounts of SBC is very effective for reducing the rate of 

pressure rise.  

Figure 5.16 summarises the mitigating effect of various gaseous and solid inert diluents on the 

normalised explosion pressure and the normalised rate of pressure rise for explosions with 7.5, 

10.0 and 12.5 vol.% methane in air. For mitigating the normalised explosion pressure, the gaseous 

diluents are more efficient than the solid suppressant. This can be explained by the reduction in 

oxygen content (Figure 3.9), which eventually prevents flame propagation. As noted in Section 

5.2, nitrogen is not very effective for mitigating Pm and (dp/dt)m for lean mixtures (e.g. 7.5 vol.% 

methane in air), but very effective for rich mixtures (e.g. 12.5 vol.% methane in air). This is 

reasonable since the oxygen concentration in air will be diluted by both gaseous fuel and gaseous 

inert (Figure 3.9). The presence of the gaseous fuel implies that gaseous fuel-air mixtures are 

more sensitive to the addition of gaseous inert diluents, which probably explains the strong 

mitigating effect of nitrogen for Pm and (dp/dt)m in Figure 5.16. Table 3.3 shows that nitrogen has 

a higher specific heat capacity than carbon dioxide. Similar to the results for maize starch in Figure 

5.15, the addition of relatively small amounts of SBC is very effective for reducing the rate of 

pressure rise.  

The results summarised in Figure 5.15 and Figure 5.16, as well as Figure 5.9 and Figure 5.10 for 

hybrid mixtures, show that the inhibiting effect of adding modest amounts of SBC to the more 

reactive methane, maize starch and hybrid fuel-air mixtures is comparable, or even stronger, 

compared to the mitigating effect of adding the same mass of nitrogen or carbon dioxide to the 

same mixtures. As mentioned in Section 2.2.2, a theoretical analysis by Omar et al. (2018) 

suggests that the mitigating effect of SBC can be attributed to the thermal decomposition of the 

particles, combined with the effect of the gaseous species NaOH on the chemical kinetics in the 

flame.  
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Figure 5.15: Normalised average explosion pressure (above) and normalised average rate of pressure rise 

(below) for dust explosions with maize starch diluted by nitrogen (green), carbon dioxide (blue) and sodium 

bicarbonate (red) as a function of the mass of inert substances added to the air inside the 20-litre vessel. 



78 

 

 

 

Figure 5.16: Normalised average explosion pressure (above) and normalised average rate of pressure rise 

(below) for methane-air explosions diluted by nitrogen (green), carbon dioxide (blue) and sodium 

bicarbonate (red) as a function of the mass of inert substances added to the air inside the 20-litre vessel. 
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6 Conclusions 
The present study aimed to investigate the mitigating effect of inert substances on the severity 

of fuel-air explosions, quantified by the corrected explosion pressure Pm and the rate of pressure 

rise (dp/dt)m. Initially, turbulent mixtures of methane (CH4) and/or maize starch (Meritena A) in 

air, with or without added inert substances, were investigated in a 20-litre explosion vessel. 

Compressed air, with or without dust particles, either fuel or suppressant, were injected into the 

explosion vessel from a 0.6-litre reservoir, and the turbulent mixture was ignited using a 1 kJ 

chemical igniter triggered at a fixed ignition delay time of 60 milliseconds after the onset of 

dispersion. Various amounts of the inert substances nitrogen (N2), carbon dioxide (CO2) and 

sodium bicarbonate (NaHCO3) could be added to the fuel-air mixtures prior to ignition. The results 

and discussion support the following conclusions: 

• The present study confirms observation from previous studies, demonstrating that relatively 

modest amounts of inert substances can significantly reduce the rate of combustion in fuel-

air explosions, quantified by the rate of pressure rise. 

• The values estimated for the minimum inerting concentration (MIC) of sodium bicarbonate 

for maize starch and methane are in reasonable agreement with data from Dastidar et al. 

(2002) and Tamanini et al. (2000), respectively. 

• The addition of 100-200 g/m3 of the solid inert diluent sodium bicarbonate resulted in a 60-

80 % reduction in the rate of pressure rise for methane, maize starch and hybrid 

methane/maize starch explosions at close to optimal conditions, i.e. the concentrations that 

produce the highest values of Pm and (dp/dt)m. 

• The results indicate that partial inerting or suppression, either as isolated measures or in 

combination with other preventive or mitigating measures (e.g. deflagration venting or forced 

ventilation), represent an effective means of reducing the risk of accidental explosions. 

The number of chemical igniters available determined the number of tests that could be 

performed. This inherent limitation, combined with the significant spread in some of the 

experimental results, implies that there is significant uncertainty associated with some of the 

results. However, the overall results summarised above are consistent, and not particularly 

sensitive to the inherent uncertainties associated with the experimental approach. 

Further work can elaborate on the mitigating effect of different types of solid inert diluents on 

fuel-air explosions in confined and/or congested geometries, as well as the effect of the particle 

size of the solid suppressant (Hoorelbeke & van Wingerden, 2009; Roosendans & Hoorelbeke, 

2019). 

It is also relevant to explore the possibility of mitigating the consequences of explosions involving 

highly reactive fuels, such as hydrogen. This is particularly relevant for hydrogen systems located 

in relatively weak enclosures, such as containers, buildings or fuel cell rooms in trains, ships and 

planes. Deflagration venting is not very effective for highly reactive hydrogen-air mixtures, but a 

combination of partial suppression and venting may reduce the risk to an acceptable level. 
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