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Abstract. Models that involve coupled dynamics in a mixed-dimensional geom-
etry are of increasing interest in several applications. Here, we describe the de-
velopment of a simulation model for flow in fractured porous media, where the
fractures and their intersections form a hierarchy of interacting subdomains. We
discuss the implementation of a simulation framework, with an emphasis on reuse
of existing discretization tools for mono-dimensional problems. The key ingredients
are the representation of the mixed-dimensional geometry as a graph, which allows
for convenient discretization and data storage, and a non-intrusive coupling of di-
mensions via boundary conditions and source terms. This approach is applicable
for a wide class of mixed-dimensional problems. We show simulation results for a
flow problem in a three-dimensional fracture geometry, applying both finite volume
and virtual finite element discretizations.

1 Introduction

Simulation models for real-life applications commonly must represent objects
with high aspect ratios embedded in the domains. This includes both objects
of co-dimension 1, exemplified by fractures in a porous rock, and co-dimension
2 models such as reinforced concrete and root systems. Although the embed-
ded objects occupy a small part of the simulation domain, they can have a
decisive impact on the system behavior, thus their representation in the sim-
ulation model is critical. The small object sizes, and in particular the high
aspect ratio, make an equi-dimensional representation computationally pro-
hibitively expensive. The standard simulation technique has therefore been to
apply homogenization to arrive at an, ideally, equivalent upscaled model. In
recent years, advances in computational power, modeling approaches and nu-
merical methods have made resolving the objects more feasible. This calls for
the development of new simulation tools for mixed-dimensional problems that
allow for a high degree of reuse of software designed for mono-dimensional
simulations.

Here, we explore the implementation of a simulation model based on a
newly developed modeling framework for flow and transport in fractured
porous media [2,1]. The model considers fractures as manifolds of co-dimension
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1 that are embedded in the simulation domain, and further allows for in-
tersections of fractures as objects of co-dimension 2 and 3. Central to our
implementation is the representation of the mixed-dimensional problem as a
graph, where the nodes represent mono-dimensional problems, and the edges
represent couplings between subdomains. Discretization internal to each sub-
domain is then a matter of iterating over the nodes of the graph, and apply
standard numerical methods by invoking, possibly legacy, mono-dimensional
discretizations. Discretization of mixed-dimensional dynamics, which is com-
monly not handled by existing software, is associated with the edges of the
graph. Depending on how the interactions are modeled, the implementation
of the subdomain couplings comes down to treatment of boundary conditions
and source terms, both of which are standard in most numerical tools.

Focusing on locally conservative methods, which are prevailing in porous
media applications, we consider both virtual element and finite volume ap-
proaches for flow, in addition to finite volume techniques for transport. The
simulation model discussed is implemented in the software framework PorePy [8],
and is available at www.github.com/pmgbergen/porepy.

2 Mixed-dimensional flow in fractured porous media

Let us consider a N -dimensional domain Ω ⊂ RN , typically N = 2 or 3, with
outer boundary ∂Ω. Ω represents the porous medium, which is composed of a
N -dimensional domain ΩN (the rock matrix) and lower-dimensional domains
ΩN−1, . . . , Ω0, representing fractures and possibly objects of lower dimen-
sions such as fracture intersections and intersections of fracture intersections.
We assume that Ωd−1 6⊂ Ωd for d = 0, . . . , N , and Ω = ∪dΩd. Let Γ denote
the set of internal boundaries between subdomains of different dimension. In
each dimension, we consider the flow of a single-phase incompressible fluid,
with governing equations stated on mixed form as

ud + K∇pd = 0, in Ωd, d > 0

∇ · ud − [[ud+1 · nd+1]] = fd, in Ωd, d ≤ N
ud · nd + κ(pd−1 − pd) = 0 on Γ.

(1)

The unknowns are the Darcy velocity u and the pressure p, and the data
are the permeability K, the effective normal permeability κ between the sub-
domains, and f is sources and sinks. We define uN+1 = 0. The coupling
between pairs of subdomains one dimension apart can be seen in the conser-
vation statement, where the divergence of the flux in the dimension under
consideration is balanced by source terms in the same dimension, and the
contribution from the higher dimension via the jump [[ud+1 · nd+1]], which
represent the net flux into the domain. From the higher dimension, this term
will appear as the leakage into lower dimensions, which may be interpreted as
an internal boundary. The last equation in (1) is a mixed-dimensional Darcy
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law with effective permeability κ, which models the flux between two sub-
domains separated by the interface Γ . On outer boundaries of each Ωd we
assign Dirichlet or Neumann conditions. For more details on the mathemat-
ical model, we refer to [9,5,7,11,3,2,12,4]. We also note that a similar model
can be used to express transport of a scalar in mixed-dimensional geometries,
see [6].

3 Discretization of mixed-dimensional problems

To device design principles for an implementation of the model (1), we first
observe that interaction between subdomains takes the form of boundary
conditions from lower to higher dimension and source terms. Moreover, this
should apply also for more general classes of models, including most, if not all,
that are built upon conservation principles [1]. Thus a versatile implemen-
tation should be based on independent discretizations on the subdomains,
together with appropriate coupling conditions. Below we describe how this
is naturally achieved by representing the computational grid as a graph, and
discretization as an iteration over its nodes and edges. This abstraction allows
for reuse of an existing code base, and if combined with a flexible interface
between the grids, it can be extended to heterogeneous discretizations and
multi-physics modeling.

In Subsection 3.1 we present the grid structure needed for the mixed-
dimensional description of (1), while in Subsection 3.2 we briefly introduce
the numerical discretizations.

3.1 Grid structure

For simplicity, we require that the computational mesh is fully conforming
to all objects Ωd in all dimensions. This condition can be relaxed, e.g. by
applying mortar discretizations in the transition between subdomains [2],
however, we will not pursue this herein.

To illustrate the mixed-dimensional grid structure, we consider the hier-
archy of grids depicted in Figure 1. The main domain is Ω = [−1, 1]3. Define
the fracture Ω2

1 = [−1, 1] × [−1, 1] × {0}, and similarly let Ω2
2 and Ω2

3 be
embedded in the xz− and yz−plane, respectively. The intersection between
pairs of fractures defines intersection lines Ω1

i , i = {1, 2, 3} along the coordi-
nate axes. Further, the intersection lines intersect to define Ω0 in the origin.
Finally, define Ω3 = Ω \

(⋃
d=0,1,2

⋃
iΩ

d
i

)
.

To apply a discretization scheme on this grid structure requires iterations
over all subdomains and their connections. This is readily implemented by
considering the subdomains as nodes in a graph, with the connections forming
edges, as illustrated in Figure 1. We define nodes(·) as a function such that
given a dimension d it returns the nodes in the graph of the same dimension.
Similarly, edges(·, ·) is a function that, given consecutive dimensions d and
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Fig. 1. Hierarchy of grids derived from the meeting of three 2D objects embedded
in 3D space. The mixed-dimensional grid is naturally represented as a graph, with
individual grids forming nodes.

3D

2D

1D

0D

Fig. 2. Structure of linear system resulting from a discretization of the mixed-
dimensional problem on the geometry shown in Figure 1. The diagonal blocks rep-
resent the discretization of each grid, while the off diagonal blocks represent the
interface condition between two grids. The top and bottom colors of each coupling
block correspond to the higher and lower dimensional grids, respectively.
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d−1, returns the edges in the graph associated with nodes of dimension d and
d−1. This abstraction is particularly suitable for existing software frameworks
that can handle grids of a single but flexible dimension. Discretization of a
mixed-dimensional problem can then be defined by two iterations; (i) an
iteration on the nodes of the graph to invoke the standard solver on each
subdomain, and (ii) an iteration on the edges of the graph to impose coupling
conditions on subdomain boundaries.

Given a suitable numerical scheme for the discretization of (1), the system
obtained from the first iteration gives the following block-diagonal matrix

diag(AN , AN−1, . . . , A1, 0),

where Ad is related to the set nodes(d) of nodes in the graph. The matrices
Ad are block diagonal, with one block for each node defining the mono-
dimensional discretization of each sub-grid. The interface conditions between
d and d− 1 can be written as[

Hd,d−1 Cd,d−1

Cd,d−1 Ld,d−1

]
.

Here, the matrix Hd,d−1 represent the discretization of the coupling condition
seen from the higher dimension, in terms of variables in the higher dimen-
sion. Similarly, Ld,d−1 discretizes the part of the coupling condition in the
lower dimension that is associated with lower dimensional variables. Finally,
Cd−1,d−1 gives the cross-couping terms. All three matrices have a block struc-
ture, with one block for each edge in edges(d, d− 1). For a three-dimensional
problem, the general structure of the global matrix is

A3 +H3,2 C3,2 0 0
C3,2 A2 + L3,2 +H2,1 C2,1 0

0 C2,1 A1 + L2,1 +H1,0 C1,0

0 0 C1,0 L1,0

 .
The matrix in Figure 2 illustrates the block structure associated with the
mesh of Figure 1.

3.2 Conservative discretizations

We consider two discretization schemes for the mixed-dimensional pressure
equation (1). The simplest option is a finite volume scheme built as a two-
point flux approximation (TPFA), which is standard in commercial porous
media simulators. This scheme is easy to implement, and, with the data struc-
tures outlined above, a simple extension to mixed-dimensional problems is
fairly straightforward; more complex approaches involving mortar variables
are currently under investigation. However, TPFA is consistent only for K-
orthogonal grids, and can be expected to suffer from poor accuracy for the
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Fig. 3. Top: representation of the considered geometry for the example. Centre:
pressure field for the TPFA (left) and VEM (right). Bottom: concentration at the
final time with the discharge computed by the TPFA and VEM. The flow is from
the right to the left. In all the figures a “Blue to Red Rainbow” colour map is used
in the range [0, 1].

complex grids needed to cover realistic fracture networks. Our second ap-
proach applies the dual form of the virtual element method [10], with the
extension to mixed-dimensional problems, as discussed in [6]. The virtual
element method puts almost no restrictions on the cell shape, and is thus
ideally suited for handling rough grids. This also makes it possible to merge
simplex cells into general polyhedral shapes, and thus reduce the number of
degrees of freedom. We do not consider non-simplex cells here, see [6] for
details.

Given a flux field, the extension of the tracer advection problem using a
first-order upwind scheme is equivalent to the procedure above.

4 Example simulation

In this part we present an example to assess the above models and numerical
schemes. The source code of the example is available online in the PorePy
repository. We consider a 3D fracture network with heterogeneous perme-
abilities in the fractures and on their intersections exploiting the mixed-
dimensional structure of the model. The domain is Ω = [0, 2]× [0, 1]× [0, 1]
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and the geometry of the network, containing 7 fractures, is depicted at the top
of Figure 3. The permeability in the rock matrix is set to the identity matrix.
The fracture marked with a red color in the figure is high permeable with
permeability equal to 104, while the other fractures behave as barriers having
permeabilities equal to 10−4. The fracture aperture is constant and equal to
10−2 for all fractures. All 1D intersections inherit the highest permeability
of the intersecting fractures. Thus, the ones involving the highly permeable
fracture are permeable, and the others behave as impermeable paths. The
grid is composed by 23325 tetrahedra for the 3d rock matrix, 2624 triangles
for the fractures, and 48 segments for the fracture intersections.

We impose a pressure gradient by setting the pressure on the left boundary
to 0 and the right boundary to 1. The other boundaries are given a zero flux
condition. We compute the pressure field and the discharge (flux) using the
TPFA and VEM on the same grid. The discharge is a face variable, obtained
by back-calculation from the pressures in the TPFA method and directly
computed for the VEM. The computed solution is represented in the middle
row of Figure 3. The low permeable fractures at the right end of the domain
do not affect the pressure field much, as the conductive fracture makes a high
permeable connection between the right and the center part of the domain.
However, at the left part the low permeable fractures force a pressure gradient
between the small gap between two of the fractures (orange and green). The
solutions obtained from both methods are in good agreement.

Once the discharge is computed we consider a pure transport problem,
where the advective field is given by the discharge. We inject a tracer with
concentration 1 on the right part of the domain with outflow on the left part.
The tracer thus follows the discharge, flowing in the high permeable fracture
first and then propagating in the rock matrix, avoiding the low permeable
fractures in the left part of the domain. An implicit Euler scheme is applied
for the time discretization with time step equal to 0.01. The final time of the
simulation is 3. As in the case of the pressures, the tracer solutions for the
discharge computed by the TPFA or by the VEM are in agreement.

5 Concluding remarks

We have discussed the design of simulation tools for mixed-dimensional equa-
tions, in the setting of flow in fractured porous media. We presented a data
hierarchy where the mixed-dimensional structure is a graph, with each node
representing a standard mono-dimensional domain. This allows for exten-
sive reuse of existing code designed for mono-dimensional problems, and also
facilitates simple implementation of new discretization schemes. Numerical
examples of flow and transport in a three-dimensional fractured medium il-
lustrate the capabilities of a simulation tool based on this approach.



8 Keilegavlen et al.

Acknowledgments

We acknowledge financial support from the Research Council of Norway,
project no. 244129/E20 and 250223.

References

1. W. M. Boon, J. M. Nordbotten, and J. E. Vatne, Mixed-dimensional
elliptic partial differential equations, arXiv:1710.00556, 2017.

2. W. M. Boon, J. M. Nordbotten, and I. Yotov, Robust discretization of
flow in fractured porous media, Tech. report, arXiv:1601.06977v2, 2017.

3. K. Brenner, J. Hennicker, R. Masson, and P. Samier, Gradient dis-
cretization of hybrid-dimensional Darcy flow in fractured porous media with
discontinuous pressures at matrix-fracture interfaces, IMA Journal of Numeri-
cal Analysis (2016).

4. F. A. Chave, D. Di Pietro, and L. Formaggia, A hybrid high-order method
for Darcy flows in fractured porous media, Tech. report, HAL archives:hal-
01482925 2017.

5. C. D’Angelo and A. Scotti, A mixed finite element method for Darcy flow in
fractured porous media with non-matching grids, ESAIM:M2NA 46:02 (2012),
465–489.

6. A. Fumagalli and E. Keilegavlen, Dual virtual element methods for discrete
fracture matrix models, Tech. report, arXiv:1711.01818, 2017.

7. A. Fumagalli and A. Scotti, An Efficient XFEM Approximation of Darcy
Flows in Arbitrarily Fractured Porous Media, Oil and Gas Sciences and Tech-
nologies - Revue d’IFP Energies Nouvelles 69:4 (2014), 555–564.

8. E. Keilegavlen, A. Fumagalli, R. Berge, I. Stefansson, and I. Berre,
Porepy: An open source simulation tool for flow and transport in deformable
fractured rocks, Tech. report, arXiv:1712.00460, 2017.
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