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Appendix 1 
 
Amino Acids  
 

 
 
 

ALA alanine 
ARG arginine 
ASN asparagine 
ASP aspartic acid 
CYS cysteine 
GLN glutamine 
GLU glutamic acid 
GLY glycine 
HIS histidine 
ILE isoleucine 
LEU leucine 
LYS lysine 
MET methionine 
PHE phenylalanine 
PRO proline 
SER serine 
THR threonine 
TRP tryptophan 
TYR tyrosine 
VAL valine 

 

Figure appendix.1 - Venn diagram showing all amino acids and 
its major grouping. 
 
This venn diagram is from Lamy et al. (2016), from the following url: 
https://www.researchgate.net/figure/Venn-diagram-showing-9-properti
es-of-the-20-amino-acids_fig2_307573998 

 
 
Positively charged amino acids:  
ARG, HIS, LYS 
 

Negatively charged amino acids:  
ASP, GLU 

Hydrophobic amino acids:  
CYS, ILE, LEU, MET, PHE, TRP, TYR 
 
Note: According to the Wimley and White’s (1996) hydrophobicity scale at membrane 
interfaces, the amino acid residues cysteine (CYS), isoleucine (ILE), leucine (LEU), 
methionine (MET), phenylalanine (PHE), tryptophan (TRP) and tyrosine (TYR) are the 
hydrophobic amino acids that are favourably inserted at the membrane interface. The scale 
is also used in the study from Fuglebakk and Reuter (2018) and I wanted to keep 
consistency with their study. 
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Chapter 1.1 
 
Introduction 
 

 
 

 iological membranes plays an active and essential role when it comes to the  
 organisation of life. They do define cells and organelles, and they contain and interact 

with a various types of proteins which again are part of numerous pathways (Luckey, 2014; 
Fuglebakk and Reuter, 2018). One type of such proteins are integral proteins, such as 
transmembrane proteins, which are well integrated into the membrane structure. Those 
transmembrane proteins span through the entire membrane bilayer and function often as 
gateways to permit the transport of particular substances through the membrane (Luckey, 
2014; Watson, Baker and Bell, 2014). Transmembrane proteins contain hydrophobic regions 
that are well defined, which identify their membrane interacting and embedded segments 
(Fuglebakk and Reuter, 2018). Another type of proteins we can find at membranes are 
peripheral proteins. They interact just temporarily with the membrane, bind typically via 
electrostatic interactions and are also able to insert hydrophobic amino acids into the 
membrane bilayer (Luckey, 2014). Peripheral proteins do often have a specific binding site 
for a lipid ligand on their membrane-binding domain (Lucky, 2014), which mainly are made of 
hydrophobic and positively charged amino acids (Johnson and Cornell, 1999).  
 
Fuglebakk and Reuter (2018) stated that interfacial binding sites of peripheral proteins are 
poorly characterized when it comes to amino acid composition and structural patterns. To 
approach this problem, they defined a model of ​hydrophobic protrusions​ and showed that 
their model of ​protruding, co-insertable hydrophobes​ can be used to distinguish surfaces of 
peripheral proteins from the non-binding surfaces of transmembrane proteins. Fuglebakk 
and Reuter (2018) showed also that their concept of the ​likely inserted hydrophobe ​coincides 
with the binding sites of known peripheral proteins, identifying membrane-binding amino 
acids. In the past, the study of membrane-binding interfaces at peripheral proteins mostly 
focused on electrostatic energetic models and binding sites of known peripheral proteins are 
also usually experimentally verified (Fuglebakk and Reuter, 2018). Fuglebakk and Reuter 
(2018) now presented a new approach to study binding sites of peripheral proteins, 
considering a general and computational model of protruding hydrophobes, which easily 
could be used to predict potential binding sites on peripheral proteins. 
 
In order to illustrate their protrusion definition, Fuglebakk and Reuter (2018) created some 
very interesting and inspiring visualizations using the VMD (Visual Molecular Dynamics) 
software (Humphrey, Dalke and Schulten, 1996). They show some peripheral proteins with 
their computed convex hull and their protrusions on a figure. But something that I really miss 
here at this point is a more interactive and dynamic visualization, which would make it 
possible to play with their protrusion definition and to visually study then the result on a 
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peripheral protein of my interest. Since Fuglebakk and Reuters (2018) protrusion model is 
still quite new, there are no useful tools to visualize the model without strong programming 
skills. But to spread the protrusion model to the field and even to people without decent 
programming skills, a quick and easy to use tool is mandatory. Otherwise, the opportunity of 
studying peripheral proteins visually with Fuglebakk and Reuters (2018) protrusion model 
would become highly dependent on people’s programming skills, which is not appropriate. 
Therefore, I specified the implementation of such a tool, which is interactive visualizing the 
protrusion model, as my first and major problem of my master thesis.  
 
The study of Fuglebakk and Reuter (2018) focused mainly on a model of protruding 
hydrophobes, as mentioned before. However they deliberately avoided other known and 
import factors such as electrostatics, conformational flexibility and relative hydrophobicity in 
their protrusion definition, as they themselves mentioned. The explanation they give was to 
not overcomplicate the model and being able to isolate major components involved in 
membrane binding, stepwise.  
 
Reading the study of Fuglebakk and Reuter (2018), one may get an impression that 
complex, complementary electrostatic models are overrepresented in the study of peripheral 
protein membrane binding. They stated that the importance of hydrophobes at binding sites 
may have been underrated, which is why they developed their protrusion model. But they 
also stated that considering electrostatic properties may improve their model. We know that 
complementary electrostatic interactions between peripheral proteins and the membrane 
play an important role. We do find anionic lipids in the membrane (Lucky, 2014) and we do 
find mostly hydrophobic and positively charged amino acids at known membrane-binding 
domains on peripheral proteins (Johnson and Cornell, 1999).  
 
I think that a solid computational model for binding site prediction on peripheral proteins 
should also consider electrostatic properties, based on the biological knowledge we have 
today. In order to investigate electrostatic properties at binding sites of peripheral proteins in 
a way that keeps consistency with Fuglebakk and Reuters (2018) previous study, we 
absolutely should have a look at the amino acids we can find around hydrophobic 
protrusions, if they are charged or not. I specified this to be my second, major problem of my 
master thesis. I mainly focused on characterizing the environment of hydrophobic 
protrusions in peripheral proteins and compared that to the reference dataset, using the 
same datasets as Fuglebakk and Reuter (2018) for that purpose. 
 
I started to approach my problems with a reproduction of Fuglebakk and Reuters (2018) 
findings, using my own implementation. Reproducing the results assure correctness of my 
understanding about the definition of protrusions in general and gives me a good start on the 
project. Next, I implemented a plugin for the popular molecular viewer UCSF Chimera 
(Pettersen ​et al.​, 2004), which computes and shows convex hulls and protrusions. The 
plugin makes the visual study of the protrusion model on a peripheral protein of interest very 
simple and interactive for everyone. The choice of using a popular and freely available 
software as UCSF Chimera was important. Finally, I extended the work of Fuglebakk and 
Reuter (2018), focusing on the neighborhood of hydrophobic protrusions and proposed a 
series of analysis and definitions to characterize the environment. I introduced some new 
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definitions such as ​the neighbourhood, the neighbourhoods hydrophobicity ​and​ the 
neighbourhoods charge​. Later on I also defined the ​exposed neighbourhood​, which excludes 
amino acids that may be positioned too deep into the protein structure and unlikely to be 
membrane-binding. I then applied my definitions to the datasets from Fuglebakk and Reuter 
(2018). The results show that all twenty amino acids are present in the neighbourhood of 
hydrophobic protrusions. A specific pattern or model at the mean amino acids composition is 
not found. However, we can see that the combination of hydrophobic and positively charged 
amino acids in a neighbourhood of a hydrophobic protrusion from the peripheral protein 
dataset becomes dominating compared to neighbourhoods from the reference dataset. An 
approach like this is also suitable, because I could maintain consistency with the study from 
Fuglebakk and Reuter (2018).  
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Chapter 2.1 
 
Biology 
 

 
 

 s proteins, mainly peripheral proteins, play a major role in my master thesis, I do like 
 to introduce the biological part with the central dogma of biology which is described by 

Watson, Baker and Bell (2014). The central dogma describes the three main levels of cell 
mechanisms that are involved to build proteins.  
 
A gene on the deoxyribonucleic acid (DNA) becomes transcripted to messenger ribonucleic 
acids (mRNA) and the resulting mRNA strands become translated to proteins. The study of 
structures and functions on these three levels in the central dogma are often described using 
the omics neologism, respectively ​genomics​ (DNA / Gene level)​, transcriptomics​ (RNA / 
Transcript level) and ​proteomics ​(protein level)​.​ It is important to understand on which level 
this thesis focused on, the proteomics, in order to understand the correct level of biological 
abstraction and where we are in dogma in general.  
 
It is the ribosome protein complex that performs the translation from a mRNA strand to a 
protein. Here, the ribosome protein complex reads the mRNA strand and matches transfer 
ribonucleic acids (tRNA) to mRNA nucleotide triplets (codons). The amino acid attached to 
the tRNA binds to the peptide chain, then the tRNA releases again. If the translations 
process finished, the polypeptide chain releases from the ribosome complex and is ready to 
be matured by post-traductional complexes in the cytoplasm or by other cells organelles like 
the golgi apparatus or the endoplasmic reticulum (Watson, Baker and Bell, 2014).  
 
As stated by Watson, Baker and Bell (2014), the structure of a protein can be described in 
four levels. The sequence of amino acids in the polypeptide chain is simply the primary 
structure. We can observe more or less local conformations of the chain to more complex 
three-dimensional structures, called the secondary structure. Typical secondary structure 
elements are alpha-helices and beta-sheets. The organisation of multiple alpha-helices and / 
or beta-sheets form the tertiary structure where the secondary structure elements are linked 
by ​e.g.​ loops and turns between secondary structures. Many proteins are also made of more 
than just one polypeptide chain. In these structures, the organisation of multiple tertiary 
structures forms a larger protein complex, which is called the quaternary structure of the 
protein.  
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2.1.1 Biological membranes, peripheral proteins and 
transmembrane proteins 
Some types of proteins are able to bind to biological membranes (Luckey, 2014; Watson, 
Baker and Bell, 2014). The data of this master thesis covers two types of proteins that are 
able to bind to the membrane, peripheral proteins and transmembrane proteins.  
 
Biological membranes consist primarily of two layers of lipids and other components ​e.g. 
different types of proteins, carbohydrates and cholesterol, as shown on the figure 2.1.1. This 
main membrane model is described as the fluid mosaic model by Singer and Nicolson 
(Luckey, 2014). Luckey (2014) describes that a lipid is made up of a hydrophilic head and a 
hydrophobic tail. Because of the hydrophobic characters of their tail, lipids spontaneously 
form bilayers. Their hydrophilic heads align and orient towards the aqueous environment and 
their tails are shielded from the solvent inside. The lipids are actually forming a hydrophobic 
barrier.  
 
There exists different types of lipids, which vary by their tail length, the number of double 
bonds, their saturation and by their headgroups. Some lipids can be anionic lipids, which 
means that their head is negatively charged.  
 
 

 

Figure 2.1.1 - The lipid bilayer and typical proteins in and around the bilayer. 
 
This figure is from the following URL (Libretexts, 2013): 
https://chem.libretexts.org/Bookshelves/Biological_Chemistry/Supplemental_Modules_(Bio
logical_Chemistry)/Lipids/Applications_of_Lipids/Lipid_Bilayer_Membranes  
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Transmembrane proteins, as the naming already indicates, are a type of integral proteins 
that are able to live in the membrane and they span through the entire bilayer (Luckey, 
2014). Those proteins can ​e.g.​ be anion channels and are highly integrated into the 
membrane structure, as stated by Luckey (2014). Furthermore, those transmembrane 
proteins consist of a hydrophobic part within the bilayer and one or more hydrophilic parts, 
outside of the membrane, either at one or both sites of the membranes bilayer.  
 
However, some proteins at the membrane can bind to and release from the membrane more 
easily than integral proteins (Luckey, 2014). They are called extrinsic proteins in the fluid 
mosaic model. Peripheral proteins are such types of proteins and they can bind the lipid 
headgroups surface at the surface of the membrane. Peripheral proteins can also insert one 
or a few amino acids into the hydrophobic part of the membrane. In contrast to 
transmembrane proteins, peripheral proteins are able to enter the membrane without 
damaging its structure. Peripheral proteins typically bind via electrostatic interactions to the 
membrane, but they often also insert hydrophobic amino acid residues into the membrane 
(Luckey, 2014).  
 
As a consequence so are known binding sites mainly made of hydrophobic and positively 
charged amino acids (Johnson and Cornell, 1999). There are some exceptions to the rule 
e.g.​ some proteins do have very few positively charged amino acids. Another example is the 
role of aromatic amino acids in bacterial phospholipases. They do not necessarily insert into 
the hydrophobic part of the lipid bilayer. However they interact with choline lipids and engage 
in very specific interactions (Grauffel ​et al.​, 2013). In general, typical membrane-binding 
domains such as C1, C2, FYVE and PH have a specific binding site that is usually for lipid 
ligand. This site is often supported by additional, less specific binding sites and these differ 
between different proteins (Luckey, 2014).  
 
The description of membrane binding sites as a collection of hydrophobic and positively 
charged amino acid residues is old and needs to be updated, heaving the complexity of 
protein-lipid interfaces uncovered the last five to ten years in mind. For these reasons, this 
study aims at mapping patterns in amino acid distributions at the membrane binding 
interface of peripheral proteins. From a biological point of view, looking for hydrophobicity 
and electrostatic properties in the peripherals protein structure makes sense in order to find 
potential membrane binding sites, based on the biological knowledge we have today.  
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Chapter 2.2 
 
A model for hydrophobic protrusions on peripheral 
membrane proteins, Fuglebakk and Reuter (2018) 
 

 
 

 he main reference for this study was the study from Fuglebakk and Reuter (2018) with  
 the title “A model for hydrophobic protrusions on peripheral membrane proteins”. They 

defined a general model of ​hydrophobic protrusions​ and showed that their model of 
protruding, co-insertable hydrophobes can be used to distinguish surfaces of peripheral 
membrane proteins from the surfaces of transmembrane proteins in their reference dataset. 
Fuglebakk and Reuter (2018) showed also that their concept of the ​likely inserted 
hydrophobe​ can be used to identify potential membrane-binding residues of peripheral 
proteins, as the likely inserted hydrophobe coincides with the binding sites of known 
peripheral proteins.  
 
In this section, I give an overview about Fuglebakk and Reuters (2018) most important key 
definitions and concepts. Note that I used the same datasets in my study as Fuglebakk and 
Reuter (2018), so the details about the datasets used are described in chapter ​3.1​.  
 
---- 
 
Convex hull 
Fuglebakk and Reuter (2018) computed a convex hull for a given protein. The convex hull of 
a set of points is the smallest convex polygon that encloses all points. The convex hull is 
computed on the set of all alpha carbon (C⍺) atoms and beta carbon (Cβ) atoms of the 
protein. Their convex hull is computed with the Scipy’s (Millman, Jarrod Millman and Aivazis, 
2011) implementation of the Qhull (Barber ​et al.​, 1996) algorithm.  
 
Local protein density 
Within a distance of ten angstroms (10 Å) from a beta carbon (Cβ) atom of interest, the local 
protein density is defined as the number of all neighbour alpha carbon (C⍺) atoms and beta 
carbon (Cβ) atoms.  
 
Low local protein density 
With the low local protein density, Fuglebakk and Reuter (2018) described a local protein 
density that is less than twenty-two.  
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Protrusion 
A protrusion describes amino acids that are protruding to the outside with respect to the rest 
of the protein. In order to become a protrusion, the amino acid’s beta carbon (Cβ) atom 
needs to be a vertex of the computed convex hull and needs to have a low local protein 
density.  
 
Hydrophobic protrusion 
When a hydrophobic amino acid becomes a protrusion, then it simply is a hydrophobic 
protrusion. Sometimes, Fuglebakk and Reuter (2018) also call such amino acids as ​the 
protruding hydrophobes​. They used the Wimley and Whites (1996) hydrophobicity scale at 
membrane interfaces as a reference in order to define which amino acids are treated as 
hydrophobic. As already stated in ​appendix 1​, the hydrophobic amino acids are cysteine 
(CYS), isoleucine (ILE), leucine (LEU), methionine (MET), phenylalanine (PHE), tryptophan 
(TRP) and tyrosine (TYR). Those are favourably inserted at the membrane interface. 
 
Co-insertable 
A co-insertable is a hydrophobic protrusion that does have other hydrophobic protrusions in 
its close neighbourhood. Here, the close neighbourhood means that two hydrophobic 
protrusions need to be a pair on the same convex hull edge in order to become 
co-insertables. 
 
The likely inserted hydrophobe 
Fuglebakk and Reuter (2018) defined the likely inserted hydrophobe as the protruding 
hydrophobe (hydrophobic protrusion) with the highest number of co-insertables and the 
lowest local protein density. A protein just has one likely inserted hydrophobe, unless the 
protein does not have any hydrophobic protrusions at all. If multiple protruding hydrophobes 
fulfill equality at both the highest number of co-insertables and the lowest local protein 
density, then the final likely inserted hydrophobe is chosen at random. 
 
---- 
 
Fuglebakk and Reuter (2018) showed clearly that hydrophobic protrusions are more 
common in peripheral proteins than in their reference dataset which consists of 
non-membrane binding protein surfaces. They also showed that protrusions in low density 
regions of peripheral proteins are more often hydrophobic amino acids compared to their 
reference data. The co-insertable feature distinguishes between peripheral proteins and the 
reference dataset quite well which means that hydrophobic protrusions on peripheral 
proteins tend to be more co-insertable than hydrophobic protrusions from the reference 
dataset. In addition Fuglebakk and Reuter (2018) showed that hydrophobic protrusions are 
more frequent on turns, bends and alpha helices in the peripheral protein dataset compared 
to the reference dataset. Finally they showed that the likely inserted hydrophobe coincides 
with the binding sites of known peripheral proteins and that large aliphatic and aromatic 
amino acids are overrepresented protrusions on peripheral proteins.  
 
The study of membrane-binding peripheral proteins mostly focused on electrostatic 
energetics and models in the past (Fuglebakk and Reuter, 2018). Based on Fuglebakk and 

15 



 

Reuter (2018) however, we are now able to approach the study of membrane-binding 
peripheral proteins considering a hydrophobic model. Their new approach may speed up the 
study of potential, membrane-binding peripheral proteins in the future. 
 
The following figure 2.1.2 illustrates the protrusion model, showing an example structure, its 
computed convex hull, protrusions and hydrophobic protrusions. 
 
 

 

Figure 2.1.2 - The model for hydrophobic protrusions. 
 
This figure shows a representation of the C2 domain of human phospholipase A2, with the pdb ID 
1RLW. The structure to the left on the figure shows the protein structure. You can see the 
computed convex hull of the structure to right on the figure. The protrusion model is applied to the 
protein and protrusions are highlighted as large, grey balls. Hydrophobes are highlighted orange. 
The figure is from Fuglebakk and Reuter (2018). 
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Chapter 3.1 
 
Datasets 
 

 
 

3.1.1 What data is used & where does the data come from? 
I used the datasets from Fuglebakk and Reuter (2018) for this master thesis. The data is 
separated in two main datasets, the peripheral protein dataset and the reference dataset. 
Both datasets come as comma-separated CSV files, containing PDB IDs that refer to 
proteins from the Orientation Of Proteins In Membrane (OPM) database (Lomize ​et al.​, 
2012; Fuglebakk and Reuter, 2018).  
 
Fuglebakk and Reuter (2018) did not provide any protein data bank (PDB) files with actual 
protein data but only the PDB IDs, so in theory I need to download the data from the OPM 
database myself based on the PDB IDs they provided. This can be done by a simple 
download script. Fortunately, the Reuter Group (​Reuter Group – CBU​, no date) where I am 
writing this master thesis had already a file server providing all necessary PDB files. In order 
to obtain my local copy of the data, I just needed to go over some folders and do a copy & 
paste of relevant PDB files.  
 
The peripheral protein dataset (S1 Dataset) contains 1012 peripheral proteins and all 
peripheral proteins in this dataset do have the OPM classification “Monotopic/peripheral”. 
Fuglebakk and Reuter (2018) have drawn attention to the possibility that the dataset may 
contain false positives, because the membrane binding is not asserted by experiment for all 
peripheral proteins. They also stated that OPM has strict criteria when it comes to include 
peripheral proteins into the database, so the possibility of false positives is considered as 
quite low.  
 
The “non-binding surfaces” dataset (S2 Dataset) contains 495 transmembrane proteins from 
the OPM database. As the naming already implies, this dataset consists of the solvent 
exposed regions of transmembrane proteins. These are regions that do not interact with the 
membrane somehow and this can be asserted with a high level of confidence. Fuglebakk 
and Reuter (2018) defined such regions as all amino acids whose alpha carbon (C⍺) atom 
coordinates are at least fifteen angstrom (15 Å) away from the hydrocarbon region of the 
membrane model. As these data are retrieved from OPM, the PDB file contain information 
about the position of the membrane, notably the ZHDC parameter in the OPM model which 
describes the hydrocarbon region (​OPM​, no date; Lomize ​et al.​, 2012). When computing the 
proteins convex hull, the whole transmembrane protein is considered. All other computations 
are restricted to the solvent exposed regions (Fuglebakk and Reuter, 2018). For simplicity, I 
will call this dataset the “reference dataset”.  
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3.1.2 The PDB file format & ATOM records 
As mentioned in the previous subchapter ​3.1.1​, the protein data comes as protein data bank 
files, PDB files for short. The PDB file format (Berman ​et al.​, 2000) has roots back to the 
1970s. PDB files are text files and one PDB file is representing a whole protein complex of 
interest. It can even contain multiple structures. I summarize its main features below. 
 
The protein structure is stored in many records, which are organized in sections (​Atomic 
Coordinate Entry Format Version 3.3​, no date). To get a general impression about the file 
structure and how complex PDB files can be, the following list below shows what sections 
and records can be found in common PDB files. A PDB file may not contain all sections or all 
records. Therefore, PDB files from different databases can differ a lot.  
  

● Title section​, a general section that contains key information about the pdb file, 
experiments and structures. Records you find here are HEADER, SOURCE, 
AUTHOR, OBSLTE, KEYWDS, REVDAT, TITLE, EXPDTA, SPRSDE, SPLT, 
NUMMDL, JRNL, CAVEAT, MDLTYO, REMARKS and COMPND. 
 

● Primary structure section​, which contains sequence information. Records you find 
here are DBREF, DBREF1/DBREF2, SEQADV, SEQRES and MODRES.  
 

● Heterogen section​, which contains descriptions for all non-standard residues. 
Records you find here are HET, HETNAM, HETSYN and FORMUL. 
 

● Secondary structure section​, which describes secondary protein structures like 
helices and sheets. Records you can find here are simply HELIX and SHEET.  
 

● Connectivity annotation section​, describes disulfide bonds or other linkages. 
Records you can find here are SSBOND, LINK and CISPEP. 
 

● Miscellaneous feature section​, which describes other molecule properties. Such 
properties does often not have a default record type and are also described in the 
title section with REMARKS records. The only default record here is the SITE record. 
 

● Crystallographic & coordinate transformation section​, which describes the 
resulting geometry of crystallographic experiments and coordinate system 
transformations. Records you can find here are CRST1, ORIGXn, SCALEn, MTRIXn. 
 

● Coordinate section​, which contains all atomic coordinates and types. Records you 
can find here are MODEL, ATOM, ANISOU, TER, HETATM and ENDMDL.  
 

● Connectivity section​, which specifies connectivity and relates the coordinate 
section to the connectivity annotation section. The record you can find here is simply 
called CONECT.  
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● Bookkeeping section​, that contains information about the file ​e.g.​ if the file contains 
multiple structures, how much lines some types of records may have for better 
parsing and a mark for the end of the PDB file. Records here are MASTER and END.  

 
The title section is interesting in the sense that you can get general information about the 
structure ​e.g.​ which technique was used to resolve the structure. The most interesting 
section for us is the coordinate section. It contains ATOM records, that describe all atoms for 
a given protein structure. An ATOM record contains the following columns. 
 

● “ATOM”, the record name 
● atom serial number 
● atom name 
● alternative location indicator 
● residue name 
● chain identifier  
● residue sequence number 
● iCode - code for insertion of residues 
● x,y,z coordinates in angstroms (Å) 
● occupancy 
● temperature factor 
● element symbol 
● charge on the atom 

  
 

 

Figure 3.1.1 - Example of an ATOM record table. 
This figure shows the head (first ten rows) of all alpha carbon (CA) and beta carbon (CB) atoms 
from the 1kcm peripheral protein structures ATOM record table. This structure does not have any 
alternative locations (alt_loc). Not all columns from the ATOM record table are shown, but the 
columns shown are the most relevant for this project. 

 
 
At ATOM records, the most interesting information for this project are the atom serial number 
& name, residue sequence number & name, the chain identifier and the x,y,z coordinates. 
Within a structure, we can use those particular columns to identify the atom on the structure 
and we know to which amino acid residue the atom belongs to. The coordinates are used in 
convex hull and distance computations.  

20 



 

PDB files from protein databases are obtained with methods such as X-ray crystallography, 
NMR spectroscopy and cryo-electron microscopy (​PDB101: Learn: Guide to Understanding 
PDB Data: Methods for Determining Structure​, no date; Berman ​et al.​, 2000). A protein 
structure can not be completely static when it becomes measured. An atom can be very 
agile and found to be on different locations as it moves while measuring. Here the 
occupancy column comes in. If the occupancy is one it means that in hundred percent of the 
cases the atom of interest is observed at its position. If an atom is observed at multiple 
locations, it will results in different ATOM records, a different mark on the alternative location 
and a different occupancy value. It is important to remember this when we read PDB files, 
because we may need to filter for the first alternative location with the highest occupancy, 
the most observed position.  
 
As mentioned before, PDB files can contain many structures. This is not the case for the 
given data from Fuglebakk and Reuter (2018). Here, one PDB is representing just one 
structure. Sometimes we find alternative locations for some atoms, but it is still representing 
the same protein. Investigating the data from Fuglebakk and Reuter (2018), the x-ray 
crystallography can lead to multiple, alternative locations often.  
 
For the reference data, the HETATM record from the coordinate section is also of interest. It 
contains dummy atoms marked with N and O and with the residue name DUM. These 
dummy atoms represent the membrane boundary planes as described by OPM (​OPM​, no 
date).  
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Chapter 3.2 
 
Software 
 

 
 

3.2.1 Programming language & environment 
I used Python 2.7.17 (Van Rossum, G. & Drake Jr, F.L., 1995) for this master project. Python 
is a very common and popular programming language for data scientists. The popularity is 
mainly based on its simplicity compared to other programming languages. Many open 
source packages are available and those are often well documented. Python is also popular 
because of its quite big community. You can search the internet for almost every problem 
you may encounter and find possible solutions and examples written in Python.  
 
It was important to me to choose a programming language and go with it for the whole 
project. I know that Python 2.7 is outdated soon and that Python 3 becomes the new Python 
standard. But I have chosen Python 2.7 for this project anyway, because I wanted to develop 
a plugin for UCSF Chimera (Pettersen ​et al.​, 2004) to visualize protein convex hulls and 
protrusions. The popular molecular viewer UCSF Chimera is written in Python 2.7 and this 
was a strong argument for using version 2.7. At this point it is worth mentioning that parts of 
Fuglebakk and Reuters (2018) code also is written in Python 2.7. In other words, using 
Python 2.7 maximizes the compatibility to the software I will use and to prior work on this 
project.  
 
I considered other programming languages of course. My first and main programming 
language is Java. It presents many advantages for application development and web 
development. However a disadvantage with Java (Arnold, Gosling and Holmes, 2012) is that 
one needs to compile the code prior to running it. There are no interactive scripting 
possibilities like in ​e.g.​ R or Python. There are possibilities to trick this with smart 
compilations and real time use of parts of one’s application, but it would not be efficient for 
this project. One can achieve a lot with Java, but interactive shell scripting and data science 
is not efficient because of the nature of Java.  
 
R scripting (​R: The R Project for Statistical Computing​, no date) presents a lot of advantages 
and a lot of useful features such as the interactive scripting console that R offers data 
scientists and statisticians. Together with R-Studio (​RStudio | Open source & professional 
software for data science teams​, no date) the R programming language is a very suitable 
candidate for statistics and data analysis. A disadvantage with R is that relevant R packages 
often are outdated or badly documented, especially bioinformatic packages. Those 
packages are often difficult to install and do have a lot of dependencies. I also noticed that R 
does perform poorly when it comes to loops and complex implementations. One needs to 
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vectorize the implementation of algorithms and to use the built-in functions to archive high 
performance. Otherwise, one needs to implement an R package in C++, using ​e.g.​ the 
RCPP package (​Rcpp · Advanced R​, no date). This makes the implementation of complex 
computations difficult again, as we would need to operate with multiple programming 
languages to keep a decent runtime.  
 
Interestingly Python does have a better performance than R (Kan, 2018). Kan’s article on 
Towards Data Science​ (Kan, 2018) claims that the hype of R is over and that Python is one 
of the most popular programming languages among data scientists these days. Moreover, I 
wanted to learn a new programming language. Altogether Python was a natural choice for 
my master thesis’ project.  
 
My final setup is based on the package manager Anaconda 4.8.2 (​The World’s Most Popular 
Data Science Platform | Anaconda​, no date). I used Anaconda to set up multiple python 
environments for programming. By doing so I can avoid dependency problems of packages 
while programming. I used ​e.g.​ one environment for my UCSF Chimera plugin development 
and another environment for my data analysis.  
 
For the data analysis, I used Jupyter Lab 0.33.12 (​Project Jupyter​, no date). Jupyter Lab is a 
perfect tool that combines notes in plain text or markdown with interactive code blocks in a 
jupyter notebook file. It is perfect to write notes while doing analysis with python scripts and 
that is why I used this software. As mentioned before, I used UCSF Chimera (Pettersen ​et 
al.​, 2004) as the main molecular viewer in this project. To program the UCSF Chimera 
plugin, I used the PyCharm Community IDE (‘PyCharm’, no date).  
 
You can find all my code, all my jupyter notebooks and results in the projects repository. The 
version control of this repository is Git (​Git​, no date). This is the standard for version control 
with the universities GitLab server.  
 
The repository is located at the following link: 
https://git.app.uib.no/reuter-group/protrusions_msc_florian 
  

3.2.2 Python packages and additional packages / software 
In this section, I am giving an overview of all python packages I used. I provide a short 
description of what each package is and what I used it for. Every package is downloaded 
with the anaconda package manager (​The World’s Most Popular Data Science Platform | 
Anaconda​, no date).  
 
Before I start listing all the packages, I do like to mention that I ran into some package 
problems when I implemented my plugin for UCSF Chimera (Pettersen ​et al.​, 2004). I was 
not able to add the Scipy package to the UCSF Chimera software, so I needed alternatives 
for the computations of both the convex hull and the distances. I implemented a distance 
algorithm myself with Numpy but I decided to not implement Qhull (Barber ​et al.​, 1996) on 
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my own. For the Qhull implementation I used Jinxuan Wus implementation that I found on 
Github (jinxuan, no date). You can read more about my plugin in the chapter ​4.2​. 
 
Numpy 1.16.5​ (Oliphant, 2015) is a fundamental math library for scientific computing. It is a 
dependency for other packages, ​e.g.​ Pandas and SciPy. Numpy is my primary math and 
array library in this project. I mostly used it to find unique values in a list or for some powerful 
linear algebra operations with Numpy functions and arrays. 
 
Pandas 0.24.2​ (McKinney, 2010) is a fast and powerful library for data analysis. I mostly 
used Pandas to organize data in tables. Pandas provides a very fast query function that 
makes it possible to find data in tables with more than millions of rows within less than a 
second. Pandas is also based on Numpy and a table can easily be converted to a Numpy 
array with the to_numpy() function. Jupyter Lab (​Project Jupyter​, no date) can view Pandas 
tables in a good, visual way which is important when you want to look at some values in the 
data.  
 
Biopandas 0.2.4​ (Raschka, 2017) is a package that helps to import and work with biology 
data such as proteins, and the pdb file format in general. It converts any import to a pandas 
data table, ready to use for data scientists. It also provides some better export functionality 
and fetching from biology databases. I mainly used Biopandas to import pdb files directly into 
a Pandas table.  
 
Matplotlib 2.2.3​ (Hunter, 2007) is a library for plotting and that is what I used this package 
for. Most of my plots / figures are based on Matplotlib and got modified by this package. I 
also looked into ggplot2 as an alternative to Matplotlib (as I know ggplot2 from R), but I 
decided to stick with Matplotlib as this library is more commonly used and important for some 
other packages I used. 
 
Seaborn 0.9.0​ (Oberoi and Chauhan, 2019) is a data visualization library. It is based on 
Matplotlib and draws beautiful plots for any Pandas organized data of interest. I used 
Seaborn for my main plots / figures.  
 
Scipy 1.2.1​ (Millman, Jarrod Millman and Aivazis, 2011) is a data science library with a lot of 
mathematical, scientific, statistical and engineering algorithms. The core packages SciPy 
depends on are Numpy, Pandas, Matplotlib and some more. I mainly used Scipy because of 
its Qhull (Barber ​et al.​, 1996) algorithm that I used for protein convex hull computations. I 
also used Scipy for efficient and fast distance computations. 
 
TQDM 4.36.1​ (Costa-Luis and da Costa-Luis, 2019; Oberoi and Chauhan, 2019) is not just a 
progress bar, but it is the progress bar. In this master project, I really began loving TQDM. 
Almost every loop is created with TQDM, showing me always some statistics on how my 
loops performed. While running code, TQDM shows the iterations per seconds in realtime 
and predicts the remaining time needed to finish all iterations. Finally it shows how long it 
took. In most of the cases, it was just a visual gimmick, but sometimes it actually was very 
useful to get an idea about how good or bad my implementation was. It helped me to 
improve very slow parts.  
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FreeSasa 2.0.2​ (Mitternacht, 2016), a python module of FreeSasa, is used to compute 
accessible surface areas (SASA) in this project.  
 
MMTK 2.9.3​ (Hinsen, 2000), the Molecular Modeling ToolKit (MMTK) was used by 
Fuglebakk & Reuter (2018) to import pdb files in their code. I needed to install this package 
(and every dependency) in a separate anaconda environment. I mainly used this package to 
investigate differences when I reproduced Fuglebakk & Reuters (2018) results, see chapter 
4.1​. I used Biopandas in my setup instead, as Biopandas is more modern and works better 
together with all my other packages (Pandas, Scipy, Seaborn, etc).  
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Chapter 3.3 
 
Methods - Approaching the problem 
 

 
 

 his section gives you an overview about how I did approach the problem and the 
 computational strategy I have set up. Shortly summarized, I started by working on 

reproducing Fuglebakk and Reuters (2018) computations with my own implementation. 
Then, I implemented a convex hull plugin for UCSF Chimera, which also can show 
protrusions. Finally, I extended the work of Fuglebakk and Reuter (2018) by conducting new 
analyses of peripheral proteins and the reference dataset. In particular I focused on the 
neighborhood of protrusions and proposed a series of analysis and definitions to 
characterize the environment of the protrusions in peripheral membrane proteins. 
 
Step 1 
Because Fuglebakk and Reuter (2018) used the outdated MMTK package (Hinsen, 2000) in 
their implementation, I had to write my own code for the computation of protrusions and 
hydrophobic protrusions. I decided to use packages that are more common today and well 
maintained, so that my code is sustainable. Examples are Biopandas (Raschka, 2017) and 
Pandas (McKinney, 2010), which can be used with the newer Python 3. It was important that 
my implementation was able to reproduce Fuglebakk and Reuters (2018) results and this is 
presented in details in chapter ​4.1​. Implementing their definition of protrusions and 
hydrophobic protrusions on my own was also very useful to maximize my understanding 
about these definitions and their paper in general.  
 
The pseudocode on the next page (figure 3.3.1) shows the main steps of my 
implementation. The coordinates of all alpha carbon atoms (C⍺) and beta carbon atoms (Cβ) 
were extracted from the structures ATOM record table. Based on those coordinates, the 
structure's convex hull and a distance table were computed. Finally the algorithm iterates 
over all C⍺ and Cβ atoms from the table and checks if a particular atom fulfills the conditions 
to be defined as a protrusion. If an atom fulfills all criterias to be a protrusion or hydrophobic 
protrusion, then it becomes added to the corresponding list, which will be returned by the 
end of the function. 
 
My final implementation differs from this simple pseudocode of course. I added native arrays 
to be able to do some caching for parts of the ATOM record table. This gives faster loop 
computations as values just will be looked up by an index instead of querying them every 
iteration from the pandas table. I added some code lines to find co-insertables too. I also 
checked if the amino acid residues C⍺ atom coordinates are at least fifteen angstrom (15 Å) 
away from the hydrocarbon region of the membrane model for all proteins from the reference 
dataset.  
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function findProtrusions(table){ 

    distance = ​10​; density = ​22​; 
    coordinates = table[[​"x_coord"​, ​"y_coord"​, ​"z_coord"​]]; 
    convex_hull = computeConvexHull(coordinates); 

    distances = computeDistances(coordinates); 

  

    protrusions = []; 

    hydrophobicProtrusions = []; 

    ​for​ idx, atom ​in​ enumerate(table) { 
        ​if​(atom.name != ​"CB"​) ​continue​; 
        ​if​(atom ​not​ ​in​ convex_hull.vertices) ​continue​; 
  

        neighbourAtoms = distances.get(idx); 

        neighbourAtoms = neighbourAtoms[neighbourAtoms < distance]; 

        ​if​(length(neighbourAtoms) >= density) ​continue​; 
 

        protrusions.add(atom); 

        ​if​(isHydrophobic(atom)) hydrophobicProtrusions.add(atom) 
    } 

    ​return​ { protrusions, hydrophobicProtrusions }; 
} 

Figure 3.3.1 - Pseudocode for finding protrusions in protein structures. 
The density and distance values are given by Fuglebakk and Reuter (2018). The table argument is 
an ATOM record table and contains only all alpha carbon (CA) atoms and beta carbon (CB) atoms 
for a given protein structure (imported PDB file). The returned result contains all atoms that are 
protrusions and also those which are hydrophobic protrusions.  

 
I saved the result as CSV files which you can find in the projects repository. I found all 
protrusions, hydrophobic protrusions and co-insertables (see chapter ​2.2​ for the definition of 
a co-insertable) for every protein structure both from the peripheral protein dataset and the 
reference dataset.  
 
Not shown by the pseudocode (figure 3.3.1) is the import and filtering of the PDB files. I 
imported the PDB files using the Biopandas package and extracted the ATOM record table 
per file. I filter the ATOM record table such that there are only C⍺ and Cβ atoms left in the 
table, as the other atoms are not interesting for the project. I also filter for alternative 
locations, using the first alternative location with the highest occupancy.  
 
At the end I compare my results to the results from Fuglebakk and Reuter (2018). As I show 
in chapter ​4.1.1​, I got a very close but not a perfect match to their results. Therefore I 
decided to investigate if there was any difference when importing and filtering PDB files. 
That is why you can find both a Biopandas version and a MMTK version in the project's 
repository. I prefer Biopandas due because it imports straight to pandas tables. Fuglebakk 
and Reuter (2018) used the MMTK package as mentioned before. The different packages 
were not the reason for the differences in the result, as reported in chapter ​4.1.2​.  
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Step 2 
My next step was the visualizing of the protein convex hull and the protrusion definition. The 
study of proteins can be very abstract, so visualizing the problem can improve the 
understanding of the problem. A visualization can be used to do a visual analysis. It was 
important to me that I implemented a meaningful visualization that also can be used by other 
people later on. That is why I decided to implement a plugin for the popular molecular viewer 
UCSF Chimera (Pettersen ​et al.​, 2004). The plugin computes and visualizes the convex hull 
and protrusions for a given protein of interest. The plugin gives you also the possibility to 
play with some variables of the protrusion definition, such as different types of convex hulls, 
different density and distances.  
 
As mentioned before in the subchapter ​3.2.2​, I needed to adjust my algorithm from the first 
step, because I was not able to add the SciPy package (Millman, Jarrod Millman and 
Aivazis, 2011) to UCSF Chimera. I wanted to avoid a custom build of UCSF Chimera. The 
implementation differs from step one in the sense that I implemented my own distance 
computation algorithm with the Numpy package (Oliphant, 2015) and used Jinxuan Wus 
implementation (jinxuan, no date) of the Qhull algorithm (Barber ​et al.​, 1996).  
 
For the rendering of the convex hull the built-in engine from UCSF Chimera is used. The 
documentation of UCSF Chimera (​Chimera Programmer’s Guide​, no date) gives a good 
overview about how to generate surface models and how to work with the engine.  
 
But I needed to do some backward engineering in order to implement the graphical user 
interface (GUI) for my plugin. UCSF Chimera uses the tkinter module (​24.1. Tkinter — 
Python interface to Tcl/Tk — Python 2.7.18 documentation​, no date) for GUI elements, 
which is part of the python programming language. I looked into the source of several other 
plugins and how they work in order to figure out how I wanted to implement my GUI.  
 
My final plugin implementation is made up of the following files. I call it the convex hull 
plugin, which also can show and mark protrusions.  
 

● ChimeraExtension.py​, which contains general information about the extension / 
plugin and which is initialising the plugin.  
 

● __init__.py​, which contains all necessary functions for the plugin to work. Here, I do 
all computations, update the GUI and update the viewport.  

 
● convexhull3d.py​, which is the Qhull implementation from Jinxuan Wu.  

 
● gui.py​, which contains the tkinter implementation of the GUI for the plugin and which 

calls different functions from the __init__.py based on the given user input. 
 
You can find these files in the projects repository. The installation of the plugin is simple. You 
just need to copy the files mentioned above into a new folder, which you place inside the 
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UCSF Chimera’s share folder. The plugin is so available in the Tools menu, at Higher-Order 
Structure. I present my plugin in details in section ​4.2​.  
 
 
Step 3 
Finally, I moved on to my own study and analysis. As mentioned before I extended the work 
of Fuglebakk and Reuter (2018). Characterizing the environment of hydrophobic protrusions 
in peripheral proteins compared to the reference dataset was what I focused on in particular. 
Here, I began with the simplest neighbourhood definition I could come up with and added 
complexity as I moved on. First I looked into the neighbourhood of hydrophobic protrusions 
in general. Then, I looked only into the solvent neighbourhood of hydrophobic protrusions. 
Later on I compared the exposed neighbourhood of co-insertables to the neighbourhood of 
protruding, but non-protrusion hydrophobes. The resulting definitions and results are 
presented in chapter ​4.3​.  
 
To avoid computing the same results very often, it was important to save results while I 
moved on. Recomputing important and time consuming features should not be necessary to 
do very often. To keep it simple, I decided to compute my neighbourhood feature / definition 
and the relative solvent accessibility (Tien ​et al.​, 2013) for every residue from both datasets. 
This gave me about millions of lines with data which I saved in corresponding csv files. The 
computation of those features took about two hours for both datasets. I have now the 
advantage that I still had the possibility to look into these features for other amino acids, that 
not was interesting to look at in the first place, without recomputing. The second and more 
important advantage was that I just needed to read and search the data tables for my final 
analysis, which made the computation of minor features on the fly easily.  
 
I worked with three feature tables for each dataset in my final analysis, the computed 
protrusion table, the computed relative solvent accessibility table and the computed 
neighbourhood table. I combined the tables as necessary. If I wanted to know ​e.g.​ the 
solvent neighbourhood of all protrusions from a protein of interest, I simply looked up all 
protrusions in the protrusion table for the given protein, then I looked up the neighbourhood 
of those protrusions in the neighbourhood table and finally looked into the relative solvent 
accessibility table how solvent the neighbours are, subsetting only the solvent 
neighbourhood of interest. Using the query function of the Pandas package (McKinney, 
2010), this is done in less than a second for a protein of interest.  
 
The computed tables are of course added to the projects repository.  
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Chapter 4 
Results  
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Chapter 4.1 
 
Finding protrusions & reproducing Fuglebakk and 
Reuters results 
 

 
 

 
 y first steps in this master project was about to reproduce the results of protrusions  
 and hydrophobic protrusions from Fuglebakk and Reuter (2018). In order to reproduce 

the results I used my own implementation for all needed definitions from their paper. This 
gives us of course an outside point of view, which is important to remember later when 
comparing and evaluating the reproduced results. Reproducing the results assure 
correctness of my understanding about the definition of protrusions in general and gives me 
a good, rock solid starting point for my later study. 
 

4.1.1 Reproducing protrusions & hydrophobic protrusions 
Let us jump right on it with the following figure 4.1.1, where I compare the number of 
protrusions I found per peripheral protein with the number of protrusions Fuglebakk and 
Reuter (2018) found for the same peripheral proteins. 
 

 

Figure 4.1.1 - The number of protrusions per protein in peripheral protein data. 
This figure compares the number of protrusions for each peripheral protein that Fuglebakk and 
Reuter (2018) found (x-axis) with the number of protrusions I found (y-axis). The computed R​2 ​ value 
is 0.9996.  
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The figure 4.1.1 from the previous page shows clearly that I got reproduced Fuglebakk and 
Reuters (2018) results for the peripheral protein data. However, we see also that not every 
point lies on the diagonal line. The resulting R​2​ value is very close to one but not exactly one. 
I am underestimating Fuglebakk and Reuters (2018) results very slightly with one or two 
protrusions on 37 of 1012 peripheral proteins. I will explain this difference later in the 
subchapter ​4.1.2​. 
 
The figure 4.1.2 below shows the same type of comparison for protrusions found in the 
reference dataset. We can see here again that not all points lie exactly on the diagonal line. 
 

 

Figure 4.1.2 - Number of protrusions for each protein in the reference dataset. 
This figure compares the number of protrusions for each reference protein that Fuglebakk and 
Reuter (2018) found (x-axis) with the number of protrusions per reference protein I found (y-axis). 
The computed R​2​ value is 0.9946.  

 
The R​2​ value is very close to one again and I could reproduce many reference proteins with 
the correct number of protrusions. On reference data, however, I am both underestimating 
and overestimating Fulgebakk and Reuters (2018) results. I underestimated 53 of 495 
reference proteins and overestimated 95 of 495 reference proteins. Both the 
underestimations and the overestimations are close to the diagonal line and we do not see 
very large outsiders. The differences are one or two protrusions in most of the cases. I 
conclude at this point that I reproduced the number of protrusions per reference protein from 
the reference dataset quite well. As mentioned before, I will explain the differences later in 
the subchapter ​4.1.2​. 
 
Fuglebakk and Reuter (2018) provided enough information about every protrusion they 
found, such that I was able to evaluate if I found the same protrusions on the same proteins. 
When I overestimated reference proteins, then there are protrusions I found that are not 
confirmed by Fuglebakk & Reuter (2018). Except from those overestimated protrusions, all 
other protrusions I found are exactly the same protrusions on the same proteins as in 
Fuglebakk and Reuters (2018) results. When I underestimated a peripheral protein or 
reference protein, then there are one or more protrusions by Fuglebakk and Reuter (2018) 
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that I was not able to find or confirm to be protrusions. Those are very interesting to look at 
in general, if there is some obvious differences and why or why not those should become 
protrusions or not. But more on that in the next subchapter ​4.1.2​. 
 
Let us continue with a look at the distribution of hydrophobic protrusions. Hydrophobic 
protrusions are one of the core definitions in the paper from Fuglebakk and Reuter (2018) 
and important to reproduce for this study. The figure 4.1.3 shows my reproduced distribution 
for peripheral proteins.  
 
 

 

Figure 4.1.3 - Distribution of hydrophobic protrusions in peripheral protein dataset. 
I show here a comparison between calculations of protrusions done with my implementation 
(orange bars) and the one published by Fuglebakk and Reuter (blue bars). The computed R​2 ​ value 
is 0.9986. 

 
I also reproduced the distribution of hydrophobic protrusions for the reference data, have a 
look at the figure 4.1.4 below. 
 

 

Figure 4.1.4 - ​Distribution of hydrophobic protrusions in reference dataset. 
I show here a comparison between calculations of protrusions done with my implementation 
(orange bars) and the one published by Fuglebakk and Reuter (blue bars). The computed R​2 ​ value 
is 0.9946. 

33 



 

 
 
We can clearly observe from both the figure 4.1.3 and the figure 4.1.4 that I reproduced the 
distribution of hydrophobic protrusions correctly for both datasets. The R​2​ values confirm that 
too, as the values are very close to one. What we do not see so clearly on these figures, 
however, are the small differences between my computations and the computations from 
Fuglebakk and Reuter (2018). The R​2​ values are just close but not equal to one here as well. 
We have already seen those differences on the figures 4.1.1 and 4.1.2 and the differences 
still exist on this subset of protrusions.  
 
We observe from the figure 4.1.4 that over fifty percent of all reference proteins do not 
contain any hydrophobic protrusion. The figure 4.1.3 shows that just a bit over five percent of 
all peripheral proteins do not contain any hydrophobic protrusion. The hydrophobic 
protrusion criteria is already separating the datasets a lot. The peripheral protein data 
contains 2992 hydrophobic protrusions, whereas the reference data only contains 568 
hydrophobic protrusions. The difference in size is important to notice for further studies on 
hydrophobic protrusions with these datasets, because the reference data should not become 
too small later.  
 

4.1.2 Investigating the differences 
I mentioned in the introduction of chapter ​4.1​ that we do have an outside point of view, 
because I used my own implementation in order to reproduce Fuglebakk and Reuters (2018) 
results. It is important to understand why there are differences in order to be sure about the 
correctness of my results.  
 
I am underestimating and overestimating Fuglebakk and Reuters (2018) results, as shown in 
the previous subchapter ​4.1.1​. This means that I found more protrusions (overestimating) or 
fewer protrusions (underestimating) than Fuglebakk and Reuter (2018) for some proteins in 
both datasets. My implementation differs from their implementation and that could be the 
reason for the differences we can observe.  
 
The very first thing I decided to investigate was the different packages that are importing all 
the PDB files from both datasets. I used the Biopandas package (Raschka, 2017). 
Fuglebakk and Reuter (2018) used the MMTK package (Hinsen, 2000). But the imports and 
the filtering are identical and I still got the same differences using the old MMTK package. In 
order to check why this difference happens, I looked into the definition of protrusions and its 
criterias.  
 
I looked first into the density criteria. Within a distance of ten angstrom (10 Å), the number of 
alpha carbon (C⍺) atoms and beta carbon (Cβ) atoms defines the density around a 
protrusion (Fuglebakk and Reuter, 2018). This density has to be less than twenty-two atoms 
(Fuglebakk and Reuter, 2018). In order to become a protrusion, the amino acids need to 
fulfill the density criteria from their Cβ atom (Fuglebakk and Reuter, 2018).  
 

34 



 

Fuglebakk and Reuter (2018) provided a column in their results, called neighbours. This 
column shows the number of C⍺ and Cβ atoms they found around amino acids. I used the 
values from this column and compared the values to my number of neighbours I found per 
amino acid per protein. In my results I got the same number of neighbour atoms as 
Fuglebakk and Reuter (2018) for all residues. The distance criteria and the density criteria is 
not the reason for the differences. 
 
In my next step I looked into the convex hull criteria. The convex hull is computed among all 
C⍺ and Cβ atom coordinates from a protein and the amino acids Cβ atom has to be a vertex 
of the computed convex hull in order to become a protrusion (Fuglebakk and Reuter, 2018). 
Fuglebakk and Reuter (2018) also provided a column for this criteria in their results, if a Cβ 
atom is a convex hull vertex or not. I made a corresponding column in my results and 
compared those to the results from Fuglebakk and Reuter (2018).  
 
It turned out that the computed convex hull is the reason for the differences. My convex hull 
differs slightly on some peripheral proteins and reference proteins. The reason for 
underestimation are some Cβ atoms that not became part of the convex hull in my 
computations. The reason for overestimation is similar as some Cβ atoms became part of 
the convex hull in my computations but not in the computation from Fuglebakk and Reuter 
(2018).  
 

 

Figure 4.1.5 - Visualizing structure 3j2s with missing protrusion. 
The plot shows the structure 3j2s, which I underestimated in my computations. The structure is 
shown from two different perspectives. The computed convex hull is blue and the atoms of the 
missing protrusion residue are marked as red balls. The missing protrusion is ALA-2184 on chain B.  

 
I visualized an example with UCSF Chimera (Pettersen ​et al.​, 2004) and my own convex hull 
plugin I created for UCSF Chimera. You can read more about protrusion visualization and 
my plugin in the next chapter ​4.2​. The figure 4.1.5 above shows the peripheral protein 3j2s. I 
underestimated the structure by one protrusion. My computed convex hull is shown in blue 

35 



 

and the missing protrusion residue ALA-2184 is marked in red. We can clearly observe that 
the missing protrusion is quite a bit inside of the computed convex hull. I can also imagine 
that the missing protrusion can be part of the convex hull. My convex hull looks more general 
and not close enough to the structure in order to fit Fuglebakk and Reuters (2018) 
computations for this peripheral protein.  
 
After visualizing other proteins with differences from both the peripheral protein dataset and 
the reference dataset, the structure 3j2s seems to be more or less representative enough. 
We can conclude that the reason for the differences is caused by different convex hull 
computations and we got an impression how that can look like.  
 
One possible reason could be the convex hull algorithm itself. Fuglebakk and Reuter (2018) 
used Scipy’s (Millman, Jarrod Millman and Aivazis, 2011) implementation of Qhull (Barber ​et 
al.​, 1996) and so did I. But I used a newer version of the software. Minor changes to the 
software among versions may explain different results. However, my convex hull plugin for 
UCSF Chimera uses Jinxuan Wus implementation (jinxuan, no date) of the Qhull algorithm 
(Barber ​et al.​, 1996). I noticed no differences between my results using Scipy’s and Jinxuan 
Wus implementation of the Qhull algorithm.  
 
There is also the possibility to use the Qhull algorithm with several, additional arguments 
(Barber ​et al.​, 1996). I tried different combinations of arguments for a tighter convex hull, but 
I was not able to reproduce Fuglebakk and Reuters (2018) results at a hundred percent 
match. I got the best match when not using any additional arguments at all, as shown in 
subchapter ​4.1.1​. That of course does not exclude the possibility that Fuglebakk and Reuter 
(2018) used some additional, unknown arguments. 
 
One last possibility that I want to come up with is the protein data. There is a possibility that 
the proteins in the database changed such that atoms got different coordinates. This could 
result in different convex hulls too. Fuglebakk and Reuter (2018) provided for all protrusions 
the coordinates of the corresponding C⍺ atom in their data. I checked all C⍺ atom 
coordinates for each protein against my data and the coordinates of any C⍺ atom are the 
same. This excludes not any other atom coordinate changes, but if there are changes, the 
changes will not be found without validating against Fuglebakk and Reuters (2018) original 
files they used.  
 
At the end of this chapter, I summarize that I got reproduced Fuglebakk and Reuters (2018) 
results quite good from my outside point of view. As shown in the subchapter ​4.1.1​, I 
matched the number of protrusions and the distributions of hydrophobic protrusions quite 
well for both datasets. The consistency is good in general. I consider this reproduction as 
good enough to assure correctness of my understanding about the definition of protrusions 
and that I am able to apply the definition the correct way.  
 
The differences between my results and Fuglebakk and Reuters (2018) results, as shown in 
chapter ​4.1.1​, can be explained with slightly different convex hull computations. The reason 
for that stays unknown by now but newer software versions and changes of proteins in the 
database could be possible explanations.   
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Chapter 4.2 
 
Visualizing protein protrusions with UCSF Chimera 
 

 
 
 

 s mentioned many times before, I implemented a convex hull plugin / extension for the 
 popular molecular viewer UCSF Chimera (Pettersen ​et al.​, 2004). The convex hull 

plugin is not only computing and showing the convex hull in real time, but also gives you the 
possibility to show protrusions and to play with some of the variables / arguments used in the 
computations. It is now possible to study peripheral proteins and the definition of protrusions 
in a more interactive, visual way.  
 
The installation process is already mentioned in section ​3.3.1​, step 2. The plugin contains 
the following four files, which you place inside a folder within UCSF Chimeras share folder. 
You can find these files in the projects repository.  
 

● ChimeraExtension.py​, which contains general information about the extension / 
plugin and which is initialising the plugin.  
 

● __init__.py​, which contains all necessary functions for the plugin to work. Here, I do 
all computations, update the GUI and update the viewport.  

 
● convexhull3d.py​, which is the Qhull implementation from Jinxuan Wu.  

 
● gui.py​, which contains the tkinter implementation of the GUI for the plugin and which 

calls different functions from the __init__.py based on the given user input. 
 
Then, starting USCF Chimera, the plugin will be recognized and accessible from the Tools 
menu, at the submenu Higher-Order Structure.  
 

4.2.1 Overview of the convex hull plugin 
Starting the convex hull plugin will open up an additional window with the plugins graphical 
user interface (GUI). If you already loaded a protein into UCSF Chimera, then it will be 
recognized by the plugin. A convex hull will be computed and shown immediately. If there 
are multiple protein structures present, the plugin takes the first structure by default. If you 
want to change the current protein structure to work with, simply select the molecule / protein 
of interest from the first drop down menu of the selection part.  
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Figure 4.2.1 - Screenshot of UCSF Chimera and the convex hull plugin 
The convex hull is applied to the peripheral protein 1kcm with the plugins default arguments.  

 
The GUI is divided into three sections, the selection, the look & feel and the protrusion 
section. In the first section it is possible to modify the atom selection, which the convex hull 
computations are based on. Fuglebakk and Reuter (2018) computed the convex hull among 
all alpha carbon atoms (C⍺) and beta carbon atoms (Cβ) of the protein and this is of course 
possible with my plugin too. In addition it is possible to compute a convex hull based on just 
C⍺ atoms or Cβ atoms.  
 
One can also restrict the selection to a group of amino acid residues of interest. By doing so 
it is possible to compute a convex hull only among all hydrophobic, aromatic, positively 
charged or negatively charged amino acids of the structure. If the amino acid type selection 
is none, then all amino acids regardless of their type will be considered for the convex hull 
computation.  
 
Finally, you may want to restrict the selection only to your own viewport selection in order to 
compute a special convex hull. In this case, simply do your viewport selection and check the 
“only among viewport selection” checkbox. If necessary, one can also combine certain types 
of selections, ​e.g.​ all aromatic amino acids among the viewport selection. Any changes 
becomes visible in real time for the user.  
 
The look & feel part gives the user the possibility to change the color of the convex hull with 
a color picker. It also gives the user the possibility to show the atoms that became the 
convex hull vertices. The convex hull vertex color can be changed as well if shown. In order 
come by different structures and their size, the user can use a slider to adjust the vertex size 
if needed. This will affect all visible atoms, which gives the user a uniform look of the protein. 
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The last part of the GUI is about the protrusion definition. The user has the ability to 
colorized all convex hull vertices that are protrusions or hydrophobic protrusions. The user 
can also change the color of protrusion atoms of course. The GUI provides two sliders, 
which the user may use to play with the protrusion criterias. The user can adjust both the 
distance and the max number of neighbour C⍺ and Cβ atoms. Every change the user takes 
here will be visible immediately as well. 
 
I provide a detailed screenshot of the convex hull window below, figure 4.2.2, which shows 
the defaults right after I opened the window. I also provide another screenshot, figure 4.2.3, 
which shows the plugin in a use case scenario. Here, some of the options are modified and 
all computed protrusions are visible and colorized for the structure 1kcm.  
 
 

 

Figure 4.2.2 - Screenshot of the convex hull plugin window only 
The figure shows only the convex hull plugin window for a detailed look at the options. The default 
values are applied to the peripheral protein 1kcm (see figure 4.2.1).  
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Figure 4.2.3 - Screenshot of UCSF Chimera and the convex hull plugin showing protrusions 
The convex hull is applied to the peripheral protein 1kcm. Some arguments of the convex hull and 
the protrusion definition has been customized. The convex hull vertices are visible with the colors of 
choice. In this case convex vertices are grey, protrusions are green and hydrophobic protrusions 
are orange. 

 
Finally, the user simply clicks on the “Generate” button in order to keep and finalize the 
current convex hull and protrusion visualization. The plugin window can so be closed. If the 
user closes the plugin window without clicking the generate button, the temporary convex 
hull will be removed again.  
 

4.2.2 About performance 
I mentioned in the previous section that changes in the graphical user interface (GUI) made 
by the user become visible immediately in real time. The performance is fast enough and not 
an issue at all if you run my convex hull plugin on most low spec laptops for most, small 
proteins. In detail, it is actually the distance computation and then the rendering of the 
convex hull that takes most of the computation time. 
 
However, some changes can take two seconds, three seconds or even longer to compute if 
the protein is very large and with a lot of atoms. In such cases I remove all GUI elements 
and show a loading screen instead. As soon as the computation is done, the GUI elements 
becomes visible again. I implemented this loading screen to prevent the user from doing 
more user inputs while the computation of the last input is running.  
 
On Apple computers, the GUI just freezes for user inputs. Just freezing the GUI is very 
common from other USCF Chimera plugins unfortunately. Users of USCF Chimera are 
familiar with such type of experience. I did not find out why my loading screen is not shown 
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on Apple computers, as I not had access to a mac and was not able to investigate the 
problem. But I noticed that my tutor has not experienced any loading screen running the 
plugin on a Mac computer.  
 

4.2.3 License  
As I implemented a plugin for a existing software, it is also important to reflect both about the 
license of the software and the license I can provide for my plugin. UCSF Chimera declares 
in its license that it can freely be installed and used for academic, non-profit, or 
government-sponsored research purposes (​UCSF Chimera Non-Commercial Software 
License Agreement​, no date). However, a commercial use of the software is not permitted 
and needs separate licenses.  
 
Further on UCSF Chimera writes in their license: 
“​Licensee agrees that it will use the Software, and any modifications, improvements, or 
derivatives to the Software that the Licensee may create (collectively, "Improvements") 
solely for internal, non-commercial purposes and shall not distribute or transfer the Software 
or Improvements to any person or third parties (...)  
The term "non-commercial," as used in this License, means academic or other scholarly 
research which (a) is not undertaken for profit, or (b) is not intended to produce works, 
services, or data for commercial use, or (c) is neither conducted, nor funded, by a person or 
an entity engaged in the commercial use, application or exploitation of works similar to the 
Software.​” (​UCSF Chimera Non-Commercial Software License Agreement​, no date) 
 
As I understood the license of UCSF Chimera, I am able to distribute my work as long as it is 
non-profit and / or part of academic work. I decided that my plugin should be open source 
and everyone is free to copy, modify or share my plugin work for non-commercial use within 
the UCSF Chimera non-commercial software license.  
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Chapter 4.3 
 
The neighbourhood of exposed hydrophobes and 
hydrophobic protrusions 
 

 
 
 

 hat types of amino acids can we find around hydrophobic protrusions? I really like the 
 simplicity of this question. We may get useful information about potential membrane 

binding sites of peripheral proteins. Why? 
 
We know that biology can be very complex and so is peripheral protein binding to the 
membrane. Fuglebakk and Reuter (2018) showed that a model of protruding, co-insertable 
hydrophobes can be used to distinguish surfaces of peripheral membrane proteins from the 
surfaces of transmembrane proteins in a reference dataset. They also showed that 
hydrophobic protrusions can be used to identify potential membrane-binding residues of 
peripheral proteins. In order to identify membrane-binding residues they proposed  the 
concept of the ​likely inserted hydrophobe​, which is defined as the protruding hydrophobe 
with the lowest local protein density and the highest number of other protruding hydrophobes 
in its close neighbourhood. Then they showed that the likely inserted hydrophobe coincides 
with the binding sites of known peripheral proteins (Fuglebakk and Reuter, 2018).  
 
But known binding domains from peripheral proteins are made up by more than just one 
binding site (Luckey, 2014). Luckey (2014) described typical membrane-binding domains 
such as C1, C2, FYVE and PH. She described that each domain type has a specific binding 
site that is usually for a lipid ligand, but she also described that a specific binding site is often 
supported by additional, less specific binding sites. Known binding sites are mainly made of 
hydrophobic amino acids and positive charged amino acids (Luckey, 2014). Fuglebakk and 
Reuter (2018), however, considered only the other hydrophobic protrusions (co-insertables) 
in their model. Therefore, a look at what kind of residues we can find around hydrophobic 
protrusions is now necessary. It will inform about the general protein surface composition 
around hydrophobic protrusions, that may bind more likely to membranes. 
 

4.3.1 The neighbourhood 
In order to rigorously analyse the protein surface around hydrophobic protrusions, I find it 
important to clearly define the neighbourhood of hydrophobic protrusions. The choice of the 
distance criteria is critical. We need to archive a neighbourhood that is representative 
enough. At this point it is useful to remember the definition of hydrophobic protrusions. 
Among other properties, Fuglebakk and Reuter (2018) used a distance criteria and a density 
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criteria in their definition. They used a distance of ten angstrom (10 Å) and within this 
distance the number of alpha carbon (C⍺) atoms and beta carbon (Cβ) atoms defines the 
density around a hydrophobic protrusion. We can adopt and extend this concept to define 
the neighbourhood of hydrophobic protrusions as the amino acids to which those C⍺ and Cβ 
atoms belong to. This definition has the advantage of being consistent with the previous 
study from Fuglebakk and Reuter (2018). 
 
  

Definition 4.3.1 - The neighbourhood of a hydrophobic protrusion 

 
The neighbourhood of a hydrophobic protrusion is defined as the amino acids whose C⍺ 
and Cβ atoms are found within a distance of 10 Å of the protrusion, but the hydrophobic 

protrusion residue itself is excluded. 
 

 

 

Figure 4.3.1 - The neighbourhood of hydrophobic protrusions.  
I first computed all hydrophobic protrusions. Then I computed the corresponding neighbourhood for 
each of them. I merged all neighbourhoods together in one large data table and finally normalized 
to the relative frequencies of unique amino acid residues. The first (upper) part of this figure shows 
the relative frequencies for both the peripheral protein dataset (blue bars) and the reference dataset 
(orange bars). The second (lower) part of this figure shows the difference of the relative frequencies 
between the two datasets in percent points (pp). Here, a positive value means that there is a higher 
relative frequency for a particular amino acid in the peripheral protein dataset.  

 
 
Using my definition of the neighbourhood, the figure 4.3.1 on the previous page shows how 
common the twenty types of amino acids are in neighbourhoods of hydrophobic protrusions. 
First of all it is interesting to see that all twenty residues are indeed present on the figure. No 
single amino acid type is predominant.  
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We can ​e.g.​ see that histidine (HIS), methionine (MET) and tryptophan (TRP) are not very 
common neighbours of hydrophobic protrusions in general. Glycine (GLY), lysine (LYS) and 
serine (SER) seem to be more common neighbours. The figure shows clearly some major 
differences between datasets too. Cysteine (CYS) and leucine (LEU) are more present in 
neighbourhoods of hydrophobic protrusions from the peripheral protein dataset, whereas in 
the reference dataset, glutamic acid (GLU) and arginine (ARG) are more common 
neighbours than in the peripheral protein dataset. We also observe that there is almost no 
difference between datasets when we look at lysine (LYS) and threonine (THR).  
 
We now have a general impression about amino acid residues in neighbourhoods of 
hydrophobic protrusions. Let us move on by looking at neighbourhoods from a more 
functional point of view. Instead of looking at residue type frequencies, it would be more 
interesting to look at biochemical and biophysical properties. The number of residues in a 
neighbourhood having a certain property, divided by the total number of residues in the 
neighbourhood, should inform about the properties of the neighbourhood of hydrophobic 
protrusions. The neighbourhood’s hydrophobicity and charge are in particularly highly 
interesting to look at.  
 
 

Definition 4.3.2 - The neighbourhoods hydrophobicity and charge 

The hydrophobicity of a neighbourhood is computed as the number of hydrophobic 
amino acids in the neighbourhood divided by the total number of residues in that 

neighbourhood. Hydrophobic residues are cysteine (CYS), isoleucine (ILE), leucine 
(LEU), methionine (MET), phenylalanine (PHE), tryptophan (TRP) and tyrosine (TYR), 

according to the Wimley and White ​(1996)​ hydrophobicity scale at membrane interfaces. 

The positive charge of a neighbourhood is computed as the number of positively 
charged amino acids in the neighbourhood divided by the total number of residues in 

that neighbourhood. Positive charged residues are arginine (ARG), histidine (HIS) and 
lysine (LYS). 

The negative charge of a neighbourhood is computed as the number of negatively 
charged amino acids in the neighbourhood divided by the total number of residues in 

that neighbourhood. Negative charged residues are aspartic acid (ASP) and  
glutamic acid (GLU). 

 
 
The hydrophobicity of the neighbourhood seems reasonable and almost obvious because of 
the membrane biology, the peripheral proteins biology and the definition of a hydrophobic 
protrusion. An idea is that a hydrophobic residue may prefer other hydrophobic residues 
around. A single hydrophobic residue may not be a stable binding site, having Fuglebakk 
and Reuters (2018) definition of co-insertables in mind. Anyway, only looking for other 
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hydrophobic protrusions (co-insertables) may not be enough. Looking for more 
hydrophobicity in the neighbourhood as well is absolutely the way to go. 
 
The electrostatic properties might play a important role when peripheral proteins bind to the 
membrane (Luckey, 2014). We know that some amino acids are charged. We know that 
binding sites of peripheral proteins can be made of positively charged amino acids (Johnson 
and Cornell, 1999). We also know that lipids can be charged too (Luckey, 2014). That 
knowledge gives me enough reasons to look into both the positive charge and the negative 
charge of a protrusion’s neighbourhood. 
 
 

 

Figure 4.3.2 - The neighbourhood's hydrophobicity and charge.  
The first (upper) part shows the computed hydrophobicity and charge as a boxplot. The second 
(lower) part of this figure shows the corresponding violinplot to get an idea about the distributions. 
The peripheral protein dataset is represented in blue and the reference dataset is represented in 
orange.  

 
 
Using my definition 4.3.2, the figure 4.3.2 shows the computed hydrophobicity and charge 
for all computed neighbourhoods. The figure contains both a boxplot and a corresponding 
violinplot for hydrophobicity and charge of the hydrophobic protrusion neighbourhood . The 
boxplot gives us useful information about how the properties are spread out in the 
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neighbourhood of hydrophobic protrusions. The boxplot can still be misleading as the 
boxplot is not affected by the distribution of the properties. That is the reason why I also 
show a violinplot that shows us the corresponding density functions for all properties of 
interest. We can now see the spread, the confidence intervals, outsiders, medians and the 
density function (frequency) for a property of interest. 
 
We can clearly see that most neighbourhoods of hydrophobic protrusions do have some 
significant hydrophobicity. The hydrophobicity of neighbourhoods from the datasets lies 
mainly between ten and forty percent. We can also see that neighbourhoods from the 
peripheral protein data are roughly ten percent points more hydrophobic and slightly more 
spread than neighbourhoods from the reference data. The distributions on the violinplot 
confirms that there are significantly fewer hydrophobic neighbours in neighbourhoods from 
the reference data than in neighbourhoods from the peripheral protein data. It is also worth 
to notice that the zeroness for the hydrophobicity of neighbourhoods from the reference data 
is greater than the zeroness of neighbourhoods from the peripheral protein data. Many 
hydrophobic protrusions from the reference data have no hydrophobic neighbour at all. 
 
The figure 4.3.2 shows also that neighbourhoods can have a charge. Neighbourhoods with 
their origin from the reference data are slightly more charged than neighbourhoods from the 
peripheral protein data. The distributions on the violinplot for both the positive charge and 
the negative charge shows large peaks at zero for neighbourhoods from both datasets. A 
large number of neighbourhoods are not positive or negative, or neither positive nor 
negative. The positive charge of a neighbourhood seems to be more common than the 
negative charge, especially for neighbourhoods from the reference data.  
 
That being said it is relevant to combine hydrophobicity with charge in order to understand 
how these properties interact with each other. I took every neighbourhood with a non-zero 
hydrophobicity and found how many positive and negative amino acids they contain. By 
doing so we can evaluate which neighbourhoods are charged and which are neutral. 
Neighborhoods with more positives than negatives gives positively charged neighbourhoods 
and vice-versa. Neighborhoods with equal numbers of positives and negatives are neutral.  
 
On the next page, the following table 4.3.1 shows the resulting neighbourhood frequencies, 
combining hydrophobicity and charge. We can observe that neighbourhoods with non-zero 
hydrophobicity are more frequently positively charged than negatively charged.   
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Class / Combination / Condition Periph. protein data 
neighbourhoods 

Reference data 
neighbourhoods 

Hydrophobicity ⋂ (Positives > Negatives) 43.05% 35.21% 

Hydrophobicity ⋂ (Positives < Negatives) 23.33% 27.29% 

Hydrophobicity ⋂ (Positives == Negatives > 0) 15.88% 15.85% 

Hydrophobicity ⋂ (Positives == Negatives == 0) 9.96% 5.28% 

Other (with no hydrophobicity) 7.78% 16.37% 

Table 4.3.1 - Charge properties of neighbourhoods with non-zero hydrophobicity 
The table shows how frequent neighbourhoods with a non-zero hydrophobicity are charged or 
neutral. The table also contains the percentage of other neighbourhoods with no hydrophobicity. 

 
Over sixty percent of all hydrophobic neighbourhoods are charged in both datasets. More 
than forty percent of all neighbourhoods from peripheral protein data with a non-zero 
hydrophobicity do have more positive charged amino acids than negative ones. The number 
of negatively charged neighbourhoods in peripheral protein data is slightly less than in the 
reference data. There is no large difference between data sets in the frequency of neutral 
neighborhoods. We also see that the number of neutral neighbourhoods is higher in the 
peripheral protein data than in the reference data. 
 
It is interesting to see from the previous figure 4.3.2 that neighbourhoods of hydrophobic 
protrusions from the reference data are more positively charged than neighbourhoods from 
the peripheral protein data. However, when we are combining hydrophobicity and charge, 
we see clearly that neighbourhoods from the peripheral protein data are about seven percent 
points more positively charged among hydrophobic neighbourhoods. The slightly higher 
positively charge of neighbourhoods from the reference data comes from non-hydrophobic 
neighbourhoods.  
 
To summarise this subchapter we can remember that all twenty residues can be present in 
neighbourhoods of hydrophobic protrusions. Histidine (HIS), methionine (MET) and 
tryptophan (TRP) are not very common neighbours of hydrophobic protrusions in general but 
glycine (GLY), lysine (LYS) and serine (SER) seem to be more common. Cysteine (CYS) 
and leucine (LEU) are more present in neighbourhoods of hydrophobic protrusions in 
peripheral protein data than in the reference dataset. In the reference dataset, glutamic acid 
(GLU) and arginine (ARG) are more common neighbours than in the peripheral proteins.  
 
In peripheral proteins we observe that 92.22% of all hydrophobic protrusions have one or 
more hydrophobic neighbours. Their neighbourhoods are also positively charged (more or 
less) in over forty percent of the cases. In the reference dataset we observe that 
hydrophobic protrusions have less hydrophobes in their neighbourhoods and their 
neighbourhoods tend to be more charged in general.  
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The core of biological membranes is hydrophobic while their surface is negatively charged 
as lipids can have neutral or negatively charged heads (Luckey, 2014). Taking this as a 
foundation it absolutely makes sense that neighbourhoods of hydrophobic protrusions on 
peripheral proteins try to fulfill compatible properties in being hydrophobe (to be able to enter 
the membrane) and positive charged (to be attracted from negative charged lipids in the 
membrane). But we see the same trends of properties on hydrophobic protrusions in the 
reference data too. However, hydrophobicity and the positive charge in a combination seems 
to be more distinct in neighbourhoods of hydrophobic protrusions from protein peripheral 
data than in neighbourhoods from the reference data. 
 

4.3.2 The exposed neighbourhood 
We have until now defined the neighbourhood of a hydrophobic protrusion as every amino 
acid within a distance of 10 Å from the protrusion, as described in chapter ​4.3.1​. This 
definition may include residues that are not exposed on the surface of the protein. Such 
residues are unlikely to play a role in protein membrane binding, because their position is too 
deep in the protein structure and not accessible by the membrane lipids. To refine our first 
analysis, we now turn to analyse only the surface-exposed amino acids in neighborhoods of 
hydrophobic protrusions. Computing the relative solvent accessibility (RSA) for a given 
residue to define its level of surface-exposure is a common approach in protein analysis 
(Tien ​et al.​, 2013).  
 
To compute the RSA, the amino acids solvent accessibility surface area (SASA) needs to be 
normalized by a reference value (Tien ​et al.​, 2013). Without going into too much details at 
this point, Tien et al (2013) published a table showing theoretical, maximum possible solvent 
accessible surface area (maxSASA) for every of the twenty amino acids. The theoretical 
maxSASA values in this table have been obtained from computationally built Gly-X-Gly 
tripeptides, where X is the amino acid residue of interest (Tien ​et al.​, 2013). They also 
compared their maxSASA values to the earlier methods from Miller et al. (1987) and  
Rose et al. (1985). Summarized, the RSA is computed as the residues SASA divided by the 
maxSASA of that type of residue (Tien ​et al.​, 2013). I computed the residues SASA with 
Mitternachts (2016) FreeSASA software.  
 
It is important that we define a level of surface exposure and a meaningful threshold for the 
RSA value at this point. A threshold of twenty percent is used in Chen and Zhous (2005) 
publication about the prediction of solvent accessibility. Based on that, I decided that a 
residue is exposed if the RSA is equal to or greater than twenty percent. Twenty percent is a 
good threshold, because we want to include residues that are just little exposed. In protein 
membrane binding, the binding site of peripheral proteins enters the membrane (Luckey, 
2014), which indicates that also little exposed residues could be included in potential binding 
sites.  
 
Let us extend my neighbourhood definition from the previous chapter ​4.3.1​ with the RSA 
criteria and let us make the same analysis as in chapter ​4.3.1​ for the exposed 
neighbourhoods of hydrophobic protrusions. 
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Definition 4.3.3 - The definition of a exposed residue and the exposed neighbourhood 

An amino acid residue is exposed if the computed relative 
solvent accessibility (RSA) for that residue is equal to or larger than 20%. 

The exposed neighbourhood of a hydrophobic protrusion is defined as all exposed 
amino acids whose C⍺ and Cβ atoms are found within a distance of 10 Å of the 

protrusion. The hydrophobic protrusion residue itself is excluded. 

 

 

Figure 4.3.3 - The exposed neighbourhood of hydrophobic protrusions.  
I first computed all hydrophobic protrusions. Then I computed the corresponding neighbourhood for 
each of them. I computed the RSA for each amino acid residue in all neighbourhoods, then I filtered 
out residues with RSA below twenty percent. I merged all exposed neighbourhoods together in one 
large data table and finally normalized to the relative frequencies of unique amino acid residues. 
The first (upper) part of this figure shows the relative frequencies for both the peripheral protein 
dataset (blue bars) and the reference dataset (orange bars). The second (lower) part of this figure 
shows the difference of the relative frequencies between the two datasets in percent points (pp). 
Here, a positive value means that there is a higher relative frequency for a particular amino acid in 
the peripheral protein dataset.  

 
 
We observe from the figure 4.3.3 that all twenty residues are present in the exposed 
neighbourhood of hydrophobic protrusions as well. Compared to the figure 4.3.1 from the 
previous subchapter ​4.3.1​, we can see some differences. In order to  highlight all changes, I 
made the following figure 4.3.4.  
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Figure 4.3.4 - Changes from the whole neighbourhood to the exposed neighbourhood  
This figure shows the changes of the barplot from figure 4.3.1 (The neighbourhood of hydrophobic 
protrusions) to the figure 4.3.3 (The exposed neighbourhood of hydrophobic protrusions) in percent 
points (pp). Changes for the peripheral protein dataset are represented as blue bars and changes 
for the reference dataset are represented as orange bars. 

 
 
Both comparing the figure 4.3.3 with the figure 4.3.1 and the look at the figure 4.3.4 shows 
that ​e.g.​ arginine (ARG), glutamic acid (GLU) and lysine (LYS) are more common 
neighbours in the exposed neighbourhood than in the overall neighbourhood. The presence 
of lysine (LYS) in the exposed neighbourhood increased with over two percent points for the 
peripheral protein data (figure 4.3.4) and reaches over eight percent for both datasets (figure 
4.3.3). We can also observe that ​e.g.​ alanine (ALA), cysteine (CYS) and valine (VAL) are 
less common neighbours in the exposed neighbourhood than in the overall neighbourhood. 
The presence of cysteine (CYS) decreased with three percent points in the exposed 
neighbourhood for the peripheral protein data (figure 4.3.4) and its presence is below two 
percent for both datasets now (figure 4.3.3).  
 
We remember from the figure 4.3.1, that cysteine (CYS) and glutamic acid (GLU) are those 
amino acids with the largest differences between datasets in whole neighbourhoods. The 
large difference of cysteine (CYS) between datasets is not that strong anymore in the 
exposed neighbourhood (figure 4.3.3). Leucine (LEU) takes over this part as a more 
common amino acid and with the second highest difference between datasets, being more 
present in the peripheral protein data. The difference of glutamic acid (GLU) increased on 
the other hand. Glutamic acid (GLU) seems to be a very common neighbour in the exposed 
neighbourhood, especially for exposed neighbourhoods from the reference data where 
glutamic acid (GLU) makes up roughly ten percent of all neighbours.  
 
 

50 



 

 

Figure 4.3.5 - The exposed neighbourhoods hydrophobicity and charge.  
The first (upper) part shows the computed hydrophobicity and charge as a boxplot. The second 
(lower) part of this figure shows the corresponding violinplot to get an idea about the distributions. 
The peripheral protein dataset is represented in blue and the reference dataset is represented in 
orange. 

 

Class / Combination / Condition Periph. protein data 
neighbourhoods 

Reference data 
neighbourhoods 

Hydrophobicity ⋂ (Positives > Negatives) 36.13% 28.35% 

Hydrophobicity ⋂ (Positives < Negatives) 17.18% 22.01% 

Hydrophobicity ⋂ (Positives == Negatives > 0) 10.59% 7.57% 

Hydrophobicity ⋂ (Positives == Negatives == 0) 12.90% 7.57% 

Other (with no hydrophobicity) 23.20% 34.14% 

Table 4.3.2 - Charge properties of exposed neighbourhoods with non-zero hydrophobicity  
The table shows how frequent neighbourhoods with a non-zero hydrophobicity are charged or 
neutral. The table also contains the percentage of other neighbourhoods with no hydrophobicity. 

 
 
Let us have a look at the hydrophobicity and charge of the exposed neighbourhoods. We 
compare the figure 4.3.5 with the figure 4.3.2 from the previous subchapter ​4.3.1​.  
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The hydrophobicity decreased. The violinplot on figure 4.3.5 shows that the peak at zero is 
the largest peak of the whole distribution for both datasets. Compared to the violinplot on 
figure 4.3.2, we can see that there are fewer hydrophobes in the exposed neighbourhood. 
This trend is also visible if we compare the boxplots of those figures. The hydrophobicity for 
whole neighbourhoods from the peripheral protein data is between ca. twenty and forty 
percent for fifty percent of the data (figure 4.3.2). We can see that the hydrophobicity for 
exposed neighbourhoods from the peripheral protein data got reduced with roughly ten 
percent points. Fifty percent of data lies between ten and thirty percent (figure 4.3.5). We 
can observe a similar decrease of the hydrophobicity for exposed neighbourhoods from the 
reference data. Here, the hydrophobicity of fifty percent of the data is roughly between ten 
and thirty percent for whole neighbourhoods (figure 4.3.2). It decreased, got more spread 
and lies between zero and twenty-five percent for exposed neighbourhoods (figure 4.3.5).  
 
The spread of the positive charge increased very slightly for the exposed neighbourhood. 
We can clearly see on the violinplot from figure 4.3.5 that the peaks at zero for the positive 
charge are larger than the same peaks on the violinplot from figure 4.3.2. That indicates less 
positive charged neighbours in general. However, the upper quartile of the corresponding 
boxplot reaches almost thirty percent (figure 4.3.5) and the median also increased a little bit 
for the exposed neighbourhood. There are fewer positive charged neighbours in the exposed 
neighbourhood, but if a neighbourhood is positively charged, then the charge is slightly 
higher compared to the whole neighbourhood.  
 
The distributions of the negative charge for both datasets changed too and the negative 
charge decreased a lot for exposed neighbourhoods from the peripheral data (figure 4.3.5). 
We can see a large peak at zero on the violinplot and also that the median is zero. The 
negative charge for exposed neighbourhoods from the reference data, however, changed 
not that much. Here, we can see some minor changes such as less total spread but higher 
spread for seventy-five percent of the data and a slightly higher median value.  
 
Summarized, we can see that there are fewer hydrophobes and fewer charged amino acids 
in the exposed neighbourhood. Yet hydrophobes are still more present in exposed 
neighbourhoods from peripheral protein data than in exposed neighbourhoods from the 
reference data. However, we see less differences among properties between datasets on 
the exposed neighbourhood than on the overall neighbourhood.  
 
Combining hydrophobicity with charge for the exposed neighbourhood results in the table 
4.3.2. In exposed neighbourhoods with hydrophobicity greater than zero, the positive charge 
seems still to dominate. Compared to the table 4.3.1 from the previous subchapter, we can 
see that the hydrophobicity for exposed neighbourhoods decreased with roughly seven 
percent points for both datasets. We also see that hydrophobic, exposed and negative 
charged neighbourhoods decreased with six percent points for the peripheral protein data 
and five percent points for the reference data. The hydrophobic and neutral charged 
neighbourhoods with both positive charged and negative charged amino acids decreased 
too with about five percent points, but those with no positive charged nor negative charged 
amino acids increased with three percent points on both datasets.  
 

52 



 

We take with us that all twenty resides can be present in exposed neighbourhoods of 
hydrophobic protrusions as well. There was not so large differences to the overall 
neighbourhood from chapter 4.3.1 but arginine (ARG), glutamic acid (GLU) and lysine (LYS) 
are more frequent in the exposed neighbourhood. Alanine (ALA), cysteine (CYS) and valine 
(VAL) are less frequent compared to the overall neighbourhood. Cysteine (CYS) is not a 
very common neighbour in the exposed neighbourhood anymore and its presence 
decreased a lot for the peripheral protein dataset compared with other changes. The 
difference of cysteine (CYS) between datasets is not that big in the exposed neighbourhood 
as in the overall neighbourhood. On the other hand, not only the presence but also the 
difference of glutamic acid (GLU) between datasets increased.  
 
Exposed neighbourhoods of hydrophobic protrusions have significantly fewer hydrophobes 
compared to whole neighbourhoods, but we can still see that hydrophobicity is dominating. 
We can also see that the exposed neighbourhood is less charged in general. Regardless of 
that we can still see that the positivity is dominating among exposed neighbourhoods with 
non-zero hydrophobicity. We can still see that hydrophobicity and the positive charge in a 
combination seems to be more distinct in exposed neighbourhoods of hydrophobic 
protrusions from protein peripheral data than in exposed neighbourhoods from the reference 
data. 
 

4.3.3 Exposed neighbourhood of co-insertables vs. exposed 
neighbourhood of non-protrusion, exposed hydrophobes  
Fuglebakk and Reuter (2018) showed that the definition of the likely inserted hydrophobe 
coincides with the binding sites of known peripheral proteins. They found first all hydrophobic 
protrusions that do have other hydrophobic protrusions in its close neighbourhood and they 
call those the co-insertables. Then the co-insertable with the highest number of other 
hydrophobic protrusions in its close neighbourhood and with the lowest local protein density 
becomes the proteins likely inserted hydrophobe.  
 
We can make use of that knowledge and refine our previous analysis by restricting to 
co-insertables only. This increases the probability to study only neighbourhoods containing 
potential membrane binding amino acids. However, this leads to a problem with our 
datasets, because the co-insertable feature is separating the peripheral protein dataset from 
the reference dataset quite good, as shown by Fuglebakk and Reuter (2018). We find 836 
co-insertables in the peripheral protein dataset, whereas we only find 53 co-insertables in 
the reference dataset. At this point, I decided to compare against the neighbourhood of 
non-protrusion but still exposed hydrophobes from the reference dataset instead, which are 
11.936 neighbourhoods. This covers the reference dataset quite a lot of course. Here, we 
run into that we will find neighbourhoods which share common neighbour amino acids many 
times. This can result in more similar neighbourhoods, especially for co-insertables too 
because of its natural proximity to each other. I think this is important to have in mind later 
on when analysing the results. 
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Figure 4.3.6 - The exposed neighbourhood of co-insertables vs. non-protrusion but exposed 
hydrophobes.  
The first (upper) part of this figure shows the relative frequencies for both the exposed 
neighbourhood of co-insertables from the peripheral protein dataset (blue bars) and the exposed 
neighbourhood of non-protrusion but exposed hydrophobes from the reference dataset (orange 
bars). The second (lower) part of this figure shows the difference of the relative frequencies 
between the two datasets in percent points (pp). Here, a positive value means that there is a higher 
relative frequency for a particular amino acid in the peripheral protein dataset.  

 

 

Figure 4.3.7 - Changes from the whole neighbourhood to the exposed neighbourhood of 
co-insertables and non-protrusion but exposed hydrophobes. 
This figure shows the changes of the barplot from figure 4.3.1 (The neighbourhood of hydrophobic 
protrusions) to the figure 4.3.6 (The exposed neighbourhood of co-insertables & non-protrusion 
hydrophobes) in percent points (pp). Changes for the data from the peripheral protein dataset are 
represented as blue bars and changes for the data from the reference dataset are represented as 
orange bars.  
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We can observe from both the figure 4.3.6 and 4.3.7 that there are major differences 
compared to the overall neighbourhood from the section ​4.3.1​.  
 
In the exposed neighbourhood of co-insertables from the peripheral protein dataset, leucine 
(LEU), lysine (LYS) and Serine (SER) are the three most common amino acids. Compared 
to the overall neighbourhood of all hydrophobic protrusions, all three amino acids became 
more common. Leucine (LEU) increased with over two percent points. On the other hand we 
do find significantly less cysteine (CYS) and alanine (ALA) in the exposed neighbourhood of 
co-insertables, which got reduced with over two percent points and one point five percent 
points respectively, compared to the overall neighbourhood. In the exposed neighbourhood 
of non-protrusion but still exposed hydrophobes from the reference dataset we find lysine 
(LYS), glutamic acid (GLU) and aspartic acid (ASP) to be the most common amino acids. 
Those amino acids became also more present compared to the overall neighbourhood of 
hydrophobic protrusions.  
 
As the second part of the figure 4.3.6 shows, the exposed neighbourhood of co-insertables 
from the peripheral protein dataset differs from the exposed neighbourhood of 
non-protrusion but still exposed hydrophobes in the way that leucine (LEU), phenylalanine 
(PHE) and cysteine (CYS) are more present in the former, whereas glutamic acid (GLU) and 
aspartic acid (ASP) are more present in the latter. The difference of both leucine (LEU) and 
glutamic acid (GLU) is around five percent points between datasets.  
 
Comparing the figure 4.3.7 to the figure 4.3.4 from the previous section ​4.3.2​ is quite 
interesting. The figure 4.3.4 shows the changes from the overall neighbourhood to the 
exposed neighbourhood of hydrophobic protrusions for both datasets. We saw that the 
changes were going in the same direction for both datasets, more or less. On the figure 
4.3.7 however, we can observe that the changes are going more aggressively the opposite 
way, based on the datasets. If a type of amino acid increased on one dataset, we see that 
the same type of amino acid decreased for the other dataset in many cases. We do not see 
this for all types of amino acids though, some major exceptions are cysteine (CYS), lysine 
(LYS) and valine (VAL).  
 
The figure 4.3.8 on the next page shows the hydrophobicity and charge for both the exposed 
neighbourhood for co-insertables from the peripheral protein dataset and the exposed 
neighbourhood for non-protrusion, exposed hydrophobes from the reference dataset. As 
having a hydrophobic protrusion in the close neighbourhood is part of the definition of a 
co-insertable, we see no co-insertable with a non-hydrophobic neighbourhood.  
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Figure 4.3.8 - Hydrophobicity and charge for the exposed neighbourhood of co-insertables 
and non-protrusion hydrophobes 
The first (upper) part shows the computed hydrophobicity and charge as a boxplot. The second 
(lower) part of this figure shows the corresponding violinplot to get an idea about the distributions. 
The co-insertables from the peripheral protein dataset are represented in blue and the 
non-protrusion hydrophobes from the reference dataset are represented in orange. 

 

Class / Combination / Condition Periph. protein data 
neighbourhoods 
(co-insertables) 

Reference data 
neighbourhoods 
(non-protr. hydr.) 

Hydrophobicity ⋂ (Positives > Negatives) 50.84% 25.45% 

Hydrophobicity ⋂ (Positives < Negatives) 17.58% 22.12% 

Hydrophobicity ⋂ (Positives == Negatives > 0) 13.64% 12.83% 

Hydrophobicity ⋂ (Positives == Negatives == 0) 17.94% 6.02% 

Other (with no hydrophobicity) 0.00% 33.58% 

Table 4.3.3 - Charge properties of exposed neighbourhoods of co-insertables and 
non-protrusion hydrophobes with non-zero hydrophobicity  
The table shows how frequent neighbourhoods with a non-zero hydrophobicity are charged or 
neutral. The table also contains the percentage of other neighbourhoods with no hydrophobicity. 
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The figure 4.3.8 shows that the exposed neighbourhoods hydrophobicity stays roughly 
between ten and seventy-five percent for co-insertables from the peripheral protein dataset. 
Here, the common relative number of hydrophobic neighbours is between twenty and forty 
percent as shown by the corresponding boxplot. Compared to the figure 4.3.2 which shows 
the same properties for the overall neighbourhood of hydrophobic protrusions and to the 
figure 4.3.5 which shows the same properties for the exposed neighbourhood of hydrophobic 
protrusions, the hydrophobicity increased for the exposed neighbourhood of co-insertables.  
 
We see less hydrophobic neighbours in the exposed neighbourhood of non-protrusion but 
exposed hydrophobes from the reference dataset. Roughly seventy-five percent of those 
exposed neighbourhoods contain not more than twenty percent hydrophobic amino acids. 
We observe from the corresponding violinplot that there are again a lot neighbourhoods 
which does not contain any hydrophobic amino acid.  
 
Comparing the figure 4.3.8 to the figures 4.3.5 from the previous section about the exposed 
neighbourhood of hydrophobic protrusions, we can see some spread variation and more 
outsiders for the positively charged amino acids and the negatively charged amino acids 
within the exposed neighbourhood. Overall the violinplot for the positively charge of 
neighbourhoods did not change a lot. But we can see that the exposed neighbourhood of 
non-protrusion but exposed hydrophobes from the reference dataset are more negative 
charged than the exposed neighbourhood of hydrophobic protrusions from the reference 
dataset. Here, notice that peak at zero on the corresponding violinplot is smaller on the 
figure 4.3.8 than on the figure 4.3.5 compared to the rest of the distribution.  
 
Having a look at the table 4.3.3, the neighbourhoods hydrophobicity in combination with the 
neighbourhoods positive charge is dominating for the exposed neighbourhoods of 
co-insertables. Here, over fifty percent of the those neighbourhoods are both hydrophobic 
and positive charged. This is not the case for the neighbourhood of non-protrusion but still 
exposed hydrophobes, where this feature combination only stays at about twenty-five 
percent. Combining hydrophobicity and the negative charge gives almost the same results 
as from the previous sections table 4.3.2 for the neighbourhoods of interest from both 
datasets. However, we see that the hydrophobic but neutral charged neighbourhoods 
increased.  
 
We can take with us from this section, that not only the neighbourhoods hydrophobicity but 
also the neighbourhoods positive charge can play a role in the exposed neighbourhood of 
co-insertable from the peripheral protein dataset. We see also that we do not find this feature 
combination with such a dominance for the exposed neighbourhood of non-protrusion but 
still exposed hydrophobes from the reference dataset. While the combination of being 
hydrophobe and positively charged increased for the exposed neighbourhood of 
co-insertables from the peripheral protein dataset, the overall negatively charge for 
non-protrusion, exposed hydrophobes from the reference dataset increased too. Otherwise 
we see still all twenty amino acids present and some major frequency changes compared to 
the previous result sections. This time, both leucine (LEU) and glutamic acid (GLU) are the 
amino acids with the largest differences in percent points between datasets. Both amino 
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acids were already mentioned in the previous sections and stay interesting for further 
studies.  
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Chapter 5 
Discussion 
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Chapter 5.1 
 
Discussing the results 
 

 
 

 he first major problem of my master thesis was about to program a useful tool that is  
 visualizing Fuglebakk and Reuters (2018) protrusion model. I am able to present my 

convex hull plugin for the popular molecular viewer UCSF Chimera (Pettersen ​et al.​, 2004) 
as a result and solution for this problem. The plugin, which is described in more details in 
chapter ​4.2​, is easy to install in general and easy to use for everyone who is familiar with the 
UCSF Chimera software. The plugin computes a convex hull and shows all protrusions for a 
protein of interest. It also gives the possibility to play with variables of Fuglebakk and 
Reuters (2018) protrusion model, showing the computed results instantly on the protein 
structure in realtime to the user. 
 
The result in form of a plugin means that it now is significantly easier and more interactive to 
apply the protrusion model. Even non-informaticians can now visualize and study Fuglebakk 
and Reuters (2018) protrusion model, without the need to program the protrusion definition 
or a visualization themselves. Said that, it is obvious that the result matters, because the 
plugin offers an enormous time advantage in finding protrusions on a protein of interest 
compared to the need to first create a custom implementation previously. As the plugin also 
gives the possibility to change variables of the protrusion definition and change the look & 
feel, it is now easier to do a custom visual analysis and good looking screenshots as well.  
 
But there are also important limitations to mention. The plugin can just show the proteins 
convex hull, protrusions and hydrophobic protrusions. However, the user can not use the 
plugin to highlight hydrophobic co-insertables or the likely inserted hydrophobe. The user 
can archive this by investigating hydrophobic protrusions the plugin found, using some of the 
built-in functions and tools of UCSF Chimera, and applying all required and missing 
definition themselves. But this is a very advanced use of the software, which maybe not 
everyone is willing or able to do. This limitation is the reason why I named it for the convex 
hull plugin, because the name indicates what the plugin mainly does and what the user can 
expect. It computes convex hulls and highlights amino acids on the convex hull with a low 
local protein density. As mentioned already in section ​4.2.2​, there is also a performance 
limitation. The plugin computes and shows the user’s input in realtime. If the protein complex 
of interest is a very large one, then the computation time increases and the plugin may not 
respond in realtime anymore; showing a loading screen. However, and fortunately, this is not 
the case for most peripheral proteins, which the user can compute without any performance 
issues on low spec laptops. Another limitation may also be the license of the plugin and 
UCSF Chimera duo to the need of being used non-profit or part of academic work.  
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The second major aim of my master thesis was to characterize the environment of 
hydrophobic protrusions, finding amino acids patterns at membrane-binding interfaces of 
peripheral proteins. I calculated the amino acid composition around hydrophobic protrusions 
and whether amino acids with electrostatic properties could be found there. I can present as 
a result that I have introduced some new definitions such as ​the neighbourhood, the 
neighbourhoods hydrophobicity ​and​ the neighbourhoods charge​, which I of course applied to 
the datasets from Fuglebakk and Reuter (2018). Later on I also refined those definitions to 
only be applied to surface-exposed amino acids, defining the ​exposed neighbourhood​ and 
excluding amino acids which may be positioned too deep into the protein structure.  
 
The analysis shown in chapter ​4.3​ suggests that all twenty amino acids are more or less 
present in neighbourhoods of hydrophobic protrusions and that no particular amino acid is 
very dominating. We also got an impression about which amino acids differ the most 
between the datasets of peripheral proteins and the reference dataset. It is important to 
notice that the amino acid frequencies shown at figure 4.3.1, 4.3.3 and 4.3.6 are only 
representing a mean occurrence of amino acids found in all neighbourhoods. The results do 
not reveal a clear pattern or model for amino acid frequencies in the neighbourhood of 
hydrophobic protrusions, which would cause the datasets to differ a lot. But we can see 
some interesting trends developing from the overall neighbourhood to the exposed 
neighbourhood of co-insertables from the peripheral protein dataset, as ​e.g.​ the increase of 
leucine (LEU) or the decrease of cysteine (CYS). This results matters, because we now 
know that we have to look at neighbourhoods more individually and from a more functional 
point of view; seeking for biochemical or biophysical properties. 
 
If we consider neighbourhoods individually and if we look for the neighbourhoods 
hydrophobicity and charge, then the results demonstrate clearly that hydrophobic 
neighbourhoods of hydrophobic protrusions from the peripheral protein dataset contain more 
positively charged amino acids than hydrophobic neighbourhoods from the reference 
dataset. The combination of hydrophobic and positively charged amino acids in a 
neighbourhood becomes even more dominating for exposed neighbourhoods of 
co-insertables compared to exposed neighbourhoods of non-protrusion hydrophobes. This is 
an interesting pattern we found, but the finding goes in a direction that was expected due to 
the previous biological knowledge. Known binding sites of membrane-binding peripheral 
proteins are mainly made of hydrophobic and positively charged amino acids (Johnson and 
Cornell, 1999; Luckey, 2014) and the results clearly tend to fulfill that. 
 
The results matter in the sense that we indeed can use a computational model to approach 
the study of potential membrane-binding sites of peripheral proteins successfully, based on 
the model from Fuglebakk and Reuter (2018). We see that their model can be improved if 
exposed, positively charged neighbours are also taken into account. My neighbourhood 
definition played an important role to characterize the environment around hydrophobic 
protrusions and my definition could also be used to search for other biochemical and 
biophysical features in the future. Said that, it is also important to notice some limitations. 
The maybe most important limitation to mention is that I only looked into the neighbourhood 
of co-insertables. One may want to extend my work by also looking at neighbourhoods of the 
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likely inserted hydrophobes. My neighbourhood definition is dependent on Fuglebakk and 
Reuters (2018) distance criteria, which also is an important limitation. Another limitation is 
the data. The datasets are quite small, which made it challenging to compare features and 
find differences. The peripheral protein dataset does not contain any information about the 
real, experimentally verified binding sites, which makes the development of a good predictive 
model difficult.  
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Chapter 5.2 
 
What practical actions or scientific studies should 
follow? 
 

 
 

 hinking more biology at this point, no hydrophobicity in the neighbourhood may result  
 in more unstable, lonely hydrophobes that are not likely to be membrane-binding. 

Fuglebakk and Reuters (2018) definition of co-insertables ensures that there exists at least 
one hydrophobic neighbour in the close neighbourhood. Also hydrophobes which do have a 
negatively charged neighbourhood may not be membrane-binding either, because of the 
anionic lipids in the membrane. Excluding those co-insertables with negatively charged 
neighbourhoods and focusing on co-insertables with a positively charged or neutral 
neighbourhood can give interesting adjustments to the study from Fuglebakk and Reuter 
(2018) for further studies. It would be interesting to see if co-insertables with a positively 
charged neighbourhood coincides more often with known binding sites. This leads me also 
to the idea of “super co-insertables”, which do have both hydrophobic and positively charged 
amino acids in their neighbourhoods. Further studies could define such super co-insertables 
more in detail and show if and how much they would improve the model.  
 
Another study I can think of would be about the combination of different protrusions models. 
Fuglebakk and Reuter (2018) defined hydrophobic protrusions in their model. It would be 
interesting if we also look at ​e.g.​ positively charged protrusions. In the positive model, also 
the convex hull may become computed just among positives. We can then combine the 
models and look if some protrusions are near each other and look if this would coincide with 
known binding sites.  
 
It would be interesting to enrich the dataset if possible. The dataset could be enriched with 
sequence data, having the possibility to understand where in the peptide-chain of a 
peripheral protein potential binding sites exists. This may also increase the understanding of 
protein folding of peripheral proteins. If the folding of a binding site already can be predicted 
based on sequence data, then the computational model would become very strong I think.  
 
A very smart thought may be to use the current dataset from a new perspective. If we know 
the binding sites of a peripheral protein, then the rest of the surface could be treated as a 
non-binding reference surface to compare to.  
 
I implemented a plugin for the popular molecular viewer UCSF Chimera. But the plugin is still 
not perfect and does have some missing features such as the ability to highlight the most 
likely hydrophobe. A practical action would be to continue developing on my plugin. There 
are also other popular molecular viewers out there. Programming tools that bring the 
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protrusion model from Fuglebakk and Reuter (2018) to life would also be interesting 
programming projects. For example a webtool would be very interesting, such that everyone 
can visualize convex hulls and protrusions in their web browser. 
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Chapter 5.3 
 
Why was machine learning not yet an appropriate 
solution?  
 

  
 

 hen you read the analysis part of my master thesis, you may wonder why I did not  
 approach the datasets with a machine learning method. Predicting parts of the data, 

especially protrusions, amino acid compositions or binding sites based on neighbourhoods, 
could be very interesting to do. We also see that machine learning methods do have some 
sort of a hype these days, because they can be very nice, high level predictors. For the 
following paragraphs, I used Mitchell (1997), Zvelebil and Baum (2008) and Luckey (2014) 
more freely as my references.  
 
I think that considering machine learning methods in data analysis should always be done, 
as there are a lot of advantages if you can describe your data with good, predictive models. 
But machine learning methods are not always the appropriate solution. Sometimes, a simple 
frequency analysis or other traditional, statistical analysis can give us more knowledge than 
a bad performing machine learning model.  
 
When you want to do machine learning, then you need data. You need a lot of data. Most 
machine learning algorithms may predict quite well on just a little data, but then the 
correctness of the model must always be criticised. You may run into problems such as 
overfitting your data, which means that you perform quite good on your data but very bad on 
unseen data. If your dataset is too small, it is very complicated to show how your model 
performs to unseen data, as you may use most of your data to train your model. You also 
encounter problems using common learning methods ​e.g.​ using cross validation the proper 
way, because splitting a too small dataset can give you unwanted effects.  
 
Other problems you may have are the biological nature of data. Biological data can be very 
noisy. The reason for noise can be complex, either it is the noisy nature itself, the noisy way 
the data was collected or both. If you have too little data, the risk of making a model that 
predicts just the noise is very high. The quality of the data is therefore very important to 
consider as well when doing a machine learning approach. 
 
The datasets from Fuglebakk and Reuter (2018) are quite small compared to other big data 
used in machine learning approaches. We also encounter the problem that Fuglebakk and 
Reuter (2018) already separated the peripheral protein dataset from the reference dataset 
with their definition of hydrophobic protrusions and co-insertables relatively good. When we 
now begin to analyse the data more, I noticed that we are just analysing an even smaller 
subset of the data in most of the cases. A machine learning approach is therefore not 
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appropriate as the original dataset already was small and even got reduced too much. The 
risk of overfitting is too high and the model may predict too bad in general, maybe a model 
would just predict noise.  
 
It is also important to notice that we want to study membrane binding of peripheral proteins. I 
do not see why predicting protrusions or neighbourhoods in general could help us to improve 
the understanding at this point of the study, at least not with so little data. Focusing on 
biochemical or biophysical properties, extending the already existing and working model 
from Fuglebakk and Reuter (2018) seems more appropriate at the current state of the art. 
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