
Parameterized k-Clustering: Tractability Island
Fedor V. Fomin
Department of Informatics, University of Bergen, Norway
Fedor.Fomin@uib.no

Petr A. Golovach
Department of Informatics, University of Bergen, Norway
Petr.Golovach@uib.no

Kirill Simonov
Department of Informatics, University of Bergen, Norway
Kirill.Simonov@uib.no

Abstract
In k-Clustering we are given a multiset of n vectors X ⊂ Zd and a nonnegative number D, and
we need to decide whether X can be partitioned into k clusters C1, . . . , Ck such that the cost

k∑
i=1

min
ci∈Rd

∑
x∈Ci

‖x− ci‖p
p ≤ D,

where ‖ · ‖p is the Minkowski (Lp) norm of order p. For p = 1, k-Clustering is the well-known
k-Median. For p = 2, the case of the Euclidean distance, k-Clustering is k-Means. We study
k-Clustering from the perspective of parameterized complexity. The problem is known to be
NP-hard for k = 2 and it is also NP-hard for d = 2. It is a long-standing open question, whether the
problem is fixed-parameter tractable (FPT) for the combined parameter d+k. In this paper, we focus
on the parameterization by D. We complement the known negative results by showing that for p = 0
and p =∞, k-Clustering is W[1]-hard when parameterized by D. Interestingly, the complexity
landscape of the problem appears to be more intricate than expected. We discover a tractability
island of k-Clustering: for every p ∈ (0, 1], k-Clustering is solvable in time 2O(D log D)(nd)O(1).

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases clustering, parameterized complexity, k-means, k-median

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.14

Related Version The full version of this paper is available at https://arxiv.org/abs/1902.08559.

Funding This work is supported by the Research Council of Norway via the project “MULTIVAL”.

© Fedor V. Fomin, Petr A. Golovach, Kirill Simonov;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 14; pp. 14:1–14:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Fedor.Fomin@uib.no
mailto:Petr.Golovach@uib.no
mailto:Kirill.Simonov@uib.no
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.14
https://arxiv.org/abs/1902.08559
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Parameterized k-Clustering: Tractability Island

1 Introduction

Recall that for p > 0, the Minkowski or Lp-norm of a vector x = (x[1], . . . , x[d]) ∈ Rd is
defined as

‖x‖p =
(d∑
i=1
|x[i]|p

)1/p
.

Respectively, we define the (Lp-norm) distance between two vectors x = (x[1], . . . , x[d]) and
y = (y[1], . . . , y[d]) as

distp(x, y) = ‖x− y‖pp =
d∑
i=1
|x[i]− y[i]|p.

We also consider distp for p = 0 and p = ∞. For p = 0, distp is L0 (or the Hamming)
distance, that is the number of different coordinates in x and y:

dist0(x, y) = |{i ∈ {1, . . . , d} | x[i] 6= y[i]}|.

For p =∞, distp is L∞-distance, which is defined as

dist∞(x, y) = max
i∈{1,...,d}

|x[i]− y[i]|.

The k-Clustering problem is defined as follows. For a given (multi) dataset of n vectors
(points) X ⊂ Zd, the task is to find a partition of X into k clusters C1, . . . , Ck minimizing
the cost

k∑
i=1

min
ci∈Rd

∑
x∈Ci

distp(x, ci),

intuitively, ci is a centroid of the cluster Ci.
In particular, for p = 1, distp is the L1-distance and the corresponding clustering problem

is known as k-Median. (Often in the literature, k-Median is also used for clustering
minimizing the sums of the Euclidean distances.) For p = 2, distp is the L2 (Euclidean)
distance, and then the clustering problem becomes k-Means.

Let us note that optimal clusterings for the same set of vectors can be drastically different
for various values of p, as shown in Figure 1. As we show in the paper, the complexity of
k-Clustering also strongly depends on the choice of p.

Figure 1 Optimal clusterings of the same set of vectors with different distances: dist1 in the left
subfigure, dist1/4 in the right subfigure. Shapes denote clusters, crosses denote cluster centroids.

k-Clustering, and especially k-Median and k-Means, are among the most prevalent
problems occurring in virtually every subarea of data science. We refer to the survey of Jain

F. V. Fomin, P. A. Golovach, K. Simonov 14:3

[22] for an extensive overview. While in practice the most common approaches to clustering
are based on different variations of Lloyd’s heuristic [25], the problem is interesting from
the theoretical perspective as well. In particular, there is a vast amount of literature on
approximation algorithms for k-Clustering whose behavior can be analyzed rigorously, see
e.g. [1, 2, 6, 8, 9, 16, 17, 20, 24, 13, 23, 10, 30].

When it comes to exact solutions, we observe the following phenomena. While heuristic
algorithms for k-Clustering work surprisingly well in practice, from the perspective
of the parameterized complexity, k-Clustering is intractable for all previously studied
parameterizations, see Table 1. The k-Clustering problem is naturally “multivariate”: in
addition to the input size n, there are also parameters like space dimension d, number of
clusters k or the cost of clustering D. The problem is known to be NP-complete for k = 2
[3, 15] and for d = 2 [28, 26]. By the classical work of Inaba et al. [21], in the case when
both d and k are constants, k-Clustering is solvable in polynomial time O(ndk+1). It
is a long-standing open problem whether k-Clustering is FPT parameterized by d + k.
Under ETH, the lower bound of nΩ(k), even when d = 4, was shown by Cohen-Addad et al.
in [11] for the settings where the set of potential candidate centers is explicitly given as input.
However the lower bound of Cohen-Addad et al. does not generalize to the settings of this
paper when any point in Euclidean space can serve as a center. For the special case, when
the input consists of binary vectors and the distance is Hamming, the problem is solvable in
time 2O(D logD)(nd)O(1) [18].

Our results and approaches. In this paper we investigate the dependence of the complexity
of k-Clustering from the cost of clustering D. It appears, that adding this new “dimension”
makes the complexity landscape of k-Clustering intricate and interesting. More precisely,
we consider the following problem.

Input: A multiset X of n vectors in Zd, a positive integer k, and a nonnegative
number D.

Task: Decide whether there is a partition of X into k clusters {Ci}k
i=1 and k

vectors {ci}k
i=1, called centroids, in Rd such that

k∑
i=1

∑
x∈Ci

dist(x, ci) ≤ D.

k-Clustering with distance dist

Let us remark that vector set X (like the column set of a matrix) can contain many
equal vectors. Also we consider the situation when vectors from X are integer vectors, while
centroid vectors are not necessarily from X. Moreover, coordinates of centroids can be reals.

Our main algorithmic result is the following theorem.

I Theorem 1. k-Clustering with distance distp is solvable in time 2O(D logD)(nd)O(1) for
every p ∈ (0, 1].

Thus k-Clustering when parameterized by D is fixed-parameter tractable (FPT) for
Minkowski distance distp of order 0 < p ≤ 1. In the first step of our algorithm we use color
coding to reduce solution of the problem to the Cluster Selection problem, which we
find interesting on its own. In Cluster Selection we have t groups of weighted vectors
and the task is to select exactly one vector from each group such that the weighted cost of
the composite cluster is at most D. More formally,

FSTTCS 2019

14:4 Parameterized k-Clustering: Tractability Island

Input: A set of m vectors X given together with a partition X = X1 ∪ · · · ∪Xt

into t disjoint sets, a weight function w : X → Z+, and a nonnegative
number D.

Task: Decide whether it is possible to select exactly one vector xi from each set
Xi such that the total cost of the composite cluster formed by x1, . . . , xt

is at most D:

min
c∈Rd

t∑
i=1

w(xi) · dist(xi, c) ≤ D.

Cluster Selection with distance dist

The Cluster Selection problem is closely related to variants of the well-known
Consensus Pattern problem. Namely, for the Hamming distance, the definition of
Cluster Selection nearly coincides with the Colored Consensus Strings with
Outliers problem studied in [7], only in the latter the alphabet is assumed to be of constant
size.

Informally (see Theorem 10 for the precise statement), our reduction shows that if the
distance norm satisfies some specific properties (which distp satisfies for all p) and if Cluster
Selection is FPT parameterized by D, then so is k-Clustering. Therefore, in order to
prove Theorem 1, all we need is to show that Cluster Selection is FPT parameterized by
D when p ∈ (0, 1]. This is the most difficult part of the proof. Here we invoke the theorem
of Marx [27] on the number of subhypergraphs in hypergraphs of bounded fractional edge
cover.

Superficially, the general idea of the proof of Theorem 1 is similar to the idea behind the
algorithm for Binary r-Means for L0 from [18]. In both cases, the classical color coding
technique of Alon et al. [4] is used as a preprocessing step. However, the further steps in [18]
strongly exploit the fact that the data is binary. As we will see in Theorem 2, the existence
of an FPT algorithm for k-Clustering in L0 is highly unlikely. Thus the reductions from
[18] cannot be applied in our case, and we need a new approach.

More precisely, for clustering in L0 we prove the following theorem.

I Theorem 2. With distance dist0, k-Clustering parameterized by d+D and Cluster
Selection parameterized by d+ t+D are W[1]-hard.

In particular, this means that up to a widely-believed assumption in complexity that
FPT 6= W[1], Theorem 2 rules out algorithms solving k-Clustering in time f(d,D) · nO(1)

and algorithms solving Cluster Selection in L0 in time g(t, d,D) ·nO(1) for any functions
f(d,D) and g(t, d,D). A similar hardness result holds for L∞.

I Theorem 3. With distance dist∞, k-Clustering parameterized by D and Cluster
Selection parameterized by t+D are W[1]-hard.

This naturally brings us to the question: What happens with k-Clustering for p ∈
(1,∞), especially for the Euclidean distance, that is p = 2. Unfortunately, we are not able to
answer this question when the parameter is D only. However, we can prove that

I Theorem 4. k-Clustering and Cluster Selection with distance dist2 are FPT when
parameterized by d+D.

Thus in particular, Theorem 4 implies that k-Clustering with distance dist2 is FPT
parameterized by d+D. On the other hand, we prove that

F. V. Fomin, P. A. Golovach, K. Simonov 14:5

I Theorem 5. Cluster Selection with distance distp is W[1]-hard for every p ∈ (1,∞)
when parameterized by t+D .

In particular, Theorem 5 yields that the approach we used to establish the tractability
(with parameter D) of k-Clustering for p = 1 will not work for p > 1.

We summarize our and previously known algorithmic and hardness results for the problems
k-Clustering and Cluster Selection with different distances in Table 1.

1 distp k-Clustering Cluster Selection

2 p = 0 W[1]-hard param. d + D [Thm 2]
NP-c for k = 2 [15] W[1]-hard param. d + t + D [Thm 2]

3 0 < p ≤ 1
2O(D log D)(nd)O(1) [Thm 1]

NP-c for k = 2 when p = 1 [15]
NP-c for d = 2 when p = 1 [28]

2O(D log D)(nd)O(1) [Thm 15]
W[1]-hard param. t + d

for p = 1 [Thm 19]

4 1 < p <∞
FPT param. d + D for p = 2 [Thm 4]

NP-c for k = 2 when p = 2 [3]
NP-c for d = 2 when p = 2 [26]

FPT param. d + D for p = 2 [Thm 4]
W[1]-hard param. t + D [Thm 5]

5 p =∞ W[1]-hard param. D [Thm 3]
NP-c for k = 2 [Thm 28] W[1]-hard param. t + D [Thm 3]

Table 1 Complexity of k-Clustering and Cluster Selection.

In the extended abstract, we provide a full proof of Theorems 1 and 15. Proofs of
Theorems 2, 3, 4, 5, 19 and 28 can be found in the full version of this paper [19].

The remaining part of this paper is organized as follows. Section 2 contains preliminaries.
In Section 3 we prove Theorem 10 which provides us with FPT Turing reduction from
k-Clustering to Cluster Selection. Theorem 10 appears to be a handy tool to establish
tractability of k-Clustering. In Section 4 we prove Theorem 1, the main algorithmic result
of this work, stating that when p ∈ (0, 1], k-Clustering and Cluster Selection admit
FPT algorithms with parameter D. We conclude with open problems in Section 5.

2 Preliminaries and notation

Cluster notation. By a cluster we always mean a multiset of vectors in Zd. For distance
dist, the cost of a given cluster C is the total distance from all vectors in the cluster to the
optimally selected cluster centroid, minc∈Rd

∑
x∈C dist(x, c). An optimal cluster centroid

for a given cluster C is any c ∈ Rd minimizing
∑
x∈C dist(x, c). For most of the considered

distances, we argue that an optimal cluster centroid could always be chosen among selected
family of vectors (e.g. integral). Whenever we show this, we only consider optimal cluster
centroids of the stated form afterwards.

Complexity. A parameterized problem is a language Q ⊆ Σ∗×N where Σ∗ is the set of strings
over a finite alphabet Σ. Respectively, an input of Q is a pair (I, k) where I ⊆ Σ∗ and k ∈ N; k
is the parameter of the problem. A parameterized problemQ is fixed-parameter tractable (FPT)
if it can be decided whether (I, k) ∈ Q in time f(k) · |I|O(1) for some function f that depends
of the parameter k only. Respectively, the parameterized complexity class FPT is composed
by fixed-parameter tractable problems. The W-hierarchy is a collection of computational
complexity classes: we omit the technical definitions here. The following relation is known
amongst the classes in the W-hierarchy: FPT = W[0] ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ W[P]. It is
widely believed that FPT 6= W[1], and hence if a problem is hard for the class W[i] (for any

FSTTCS 2019

14:6 Parameterized k-Clustering: Tractability Island

i ≥ 1) then it is considered to be fixed-parameter intractable. We refer to books [12, 14] for
the detailed introduction to parameterized complexity.

Real computations. As is usual in computational geometry, we express the running time of
algorithms in terms of number of operations over the reals. This is natural since to compute
Lp-distances we have to deal with numbers of form xp where x is an integer and p is any
real number. However, in special cases the bounds hold even for more restrictive models,
e.g. when p = 1 or p = 2 the algorithms operate only on integers of polynomially bounded
length.

3 From k-Clustering to Cluster Selection

In this section we present a general scheme for obtaining an FPT algorithm parameterized
by D, which is later applied to various distances.

First, we formalize the following intuition: there is no reason to assign equal vectors to
different clusters.

I Definition 6 (Initial cluster and regular partition). For a multiset of vectors X, an inclusion-
wise maximal multiset I ⊂ X such that all vectors in I are equal is called an initial cluster.

We say that a clustering {C1, . . . , Ck} of X is regular if for every initial cluster I there
is a i ∈ {1, . . . , k} such that I ⊂ Ci.

Now we prove that it suffices to look only for regular solutions.

I Proposition 7. Let (X, k,D) be a yes-instance to k-Clustering. Then there exists a
solution of (X, k,D) which is a regular clustering.

Proof. Let us assume that the instance (X, k,D) has a solution. There are k clusters {Ci}ki=1
and k vectors {ci}ki=1 in Rd such that

∑k
i=1
∑
x∈Ci

dist(x, ci) ≤ D. Note that for every x ∈ Cj ,
dist(x, cj) ≥ min1≤i≤k dist(x, ci). So if we consider a new clustering {C ′1, . . . , C ′k} with the
same centroids, where C ′j are all vectors from X for which cj is the closest centroid, the total
distance does not increase. If we also break ties in favor of the lower index, then for any
initial cluster I the same centroid ci will be the closest, and all vectors from I will end up in
C ′i, so {C ′1, . . . , C ′k} is a regular clustering. J

From now on, we consider only regular solutions.

I Definition 8 (Simple and composite clusters). We say that a cluster C is simple if it is an
initial cluster. Otherwise, the cluster is composite.

Next we state a property of k-Clustering with a particular distance, which is required
for the algorithm. Intuitively, each unique vector adds at least some constant to the cluster
cost. In the subsequent sections we show that the property holds for all distances in our
consideration.

I Definition 9 (α-property). We say that a distance has the α-property for some α > 0 if for
any s the cost of any composite cluster which consists of s initial clusters is at least α(s− 1).

The Cluster Selection problem defined in the introduction is a key subroutine in our
algorithm. In some cases the problem is solvable trivially, but it presents the main challenge
for our main algorithmic result with the L1 distance. The intuition to the weight function in

F. V. Fomin, P. A. Golovach, K. Simonov 14:7

the definition of Cluster Selection is that it represents sizes of initial clusters, that is,
how many equal vectors are there.

We also need a procedure to enumerate all possible optimal cluster costs which are less
than D. It may not be straightforward since not all distances in our consideration are integer.
So we assume that the set of all possible optimal cluster costs which are less than D is also
given in the input. Now we are ready to state the result formally.

I Theorem 10. Assume that the α-property holds, Cluster Selection is solvable in time
Φ(m, d, t,D), where Φ is a non-decreasing function of its arguments, and we are given the set
D of all possible optimal cluster costs which are at most D. Then k-Clustering is solvable
in time

2O(D logD)(nd)O(1)|D|Φ(n, d, 2D/α,D).

Proof. By the α-property, in any solution there are at most D/α composite clusters, since
each contains at least two initial clusters. Moreover, there are at most 2D/α initial clusters
in all composite clusters.

Thus by Proposition 7, solving k-Clustering is equivalent to selecting at most T :=
d2D/αe initial clusters and grouping them into composite clusters such that the total cost
of these clusters is at most D. We design an algorithm which, taking as a subroutine an
algorithm for Cluster Selection, solves k-Clustering. An example is shown in Figure 2.

To perform the selection and grouping, our algorithm uses the color coding technique of
Alon, Yuster, and Zwick from [4]. Consider the input as a family of initial clusters I. We
color initial clusters from I independently and uniformly at random by T colors 1, 2, . . . , T .
Consider any solution, and the particular set of at most T initial clusters which are included
into composite clusters in this solution. These initial clusters are colored by distinct colors
with probability at least T !

TT ≥ e−T . Now we construct an algorithm for finding a colorful
solution.

We consider all possible ways to split colors between clusters (some colors may be unused).
Hence we consider all possible families P = {P1, . . . , Ph} of pairwise disjoint non-empty
subsets of {c ∈ {1, . . . , T} : there exists J ∈ I colored by c}. Each family P corresponds
to a partition of the set of colors {1, . . . , T} if we add one fictitious subset for colors which
are not used in the composite clusters. The total number of partitions does not exceed
TT = 2O(D logD).

When partition P is fixed, we form clusters by solving instances of Cluster Selection:
For each i ∈ {1, . . . , h}, we take initial clusters colored by elements of Pi, bundle together
those with the same color, and pass the resulting family to Cluster Selection. First note
that there cannot be P ∈ P of size at most one, since then Cluster Selection has to make
a simple cluster while we assume that all clusters obtained from P are composite. Second,
the total number of clusters has to be k, the number of clusters is |I| −

∑
P∈P |P |+ |P|. For

each P we check that both conditions hold, and if not, we discard the choice of P and move
to the next one, before calling the Cluster Selection subroutine.

Next, we formalize how we call the Cluster Selection subroutine. We fix the set of
colors Pi = {c1, . . . , ct}, then take the sets Ij = {J ∈ I : J is colored by cj} for j ∈ {1, . . . , t}.
We turn each set of initial clusters Ij into a set of weighted vectors Xj naturally: For each
J ∈ Ij , we put one vector x ∈ J into Xj , and w(x) := |J |. The family of sets of vectors X1,
. . . , Xt and the weight function w are the input for Cluster Selection. Then we search
for the minimum cluster cost bound di ≤ D from D, for which the instance (X1, . . . , Xt, di)

FSTTCS 2019

14:8 Parameterized k-Clustering: Tractability Island

A random coloring

Cluster Selection on and

Cluster Selection on , and

The resulting clustering

Figure 2 An illustration to the algorithm in Theorem 10. We start with a particular random
coloring and a particular partition of colors P = {P1, P2}, where P1 = { , } and P2 = { , , }.
We make two calls to Cluster Selection with respect to P1 and P2 and construct the resulting
clustering. In the example, all input vectors are distinct.

of Cluster Selection is a yes-instance, running each time the algorithm for Cluster
Selection.

If for some i setting di to D leads to a no-instance, or if
∑h
i=1 di > D, then we discard the

choice of the partition P and move to the next one. Otherwise, we report that k-Clustering
has a solution and stop. Next, we prove that in this case the solution indeed exists.

We reconstruct the solution to k-Clustering as follows: For each i ∈ {1, . . . , h}
the corresponding to Pi = {c1, . . . , ct} instance of Cluster Selection has a solution
{x1, . . . , xt}. For each j ∈ {1, . . . , t}, consider the corresponding initial cluster Jj consisting
of w(xj) vectors equal to xj . For each i ∈ {1, . . . , h} we obtain a composite cluster ∪tj=1Jj ,
all other clusters are simple. So the total cost is

∑h
i=1 di, which is at most D. Thus, if the

algorithm finds a solution, then (X, d,D) is a yes-instance.

In the opposite direction. If there is a solution to k-Clustering, then there is a regular
solution, and with probability at least e−T initial clusters which are parts of composite clusters
in this solution are colored by distinct colors. Then, there is a partition P = {P1, . . . , Ph}
which corresponds to this solution. This partition is obtained as follows: put into P1 colors
from the first composite cluster, into P2 from the second and so on. At some point our
algorithm checks the partition P , and as it finds the optimal cost value for each cluster, then
it is at most the cost of the corresponding cluster of the solution from which we started.

To analyze the running time, we consider 2O(D logD) partitions P, for each P we |P| =

F. V. Fomin, P. A. Golovach, K. Simonov 14:9

O(D) times search for optimal di. And for each of |D| possible values 1 of di we make one
call to the Cluster Selection algorithm, which takes time at most Φ(n, d, T,D).

To amplify the error probability to be at least 1/e, we do N = deT e iterations of the
algorithm, each time with a new random coloring. As each iteration succeeds with probability
at least e−T , the probability of not finding a colorful solution after N iterations is at most
(1− e−T)eT ≤ e−1 < 1. So the total running time is 2O(D logD) · (nd)O(1)|D|Φ(n, d, 2D/α,D).

The algorithm could be derandomized by the standard derandomization technique using
perfect hash families [4, 29]. So k-Clustering is solvable in the same deterministic time. J

4 Algorithms and complexity for distances with p ∈ (0, 1]

The main motivation for the results in this section is the study of k-Clustering with the
L1 distance, the case widely known as k-Medians. However, our main algorithmic result
also extends to distances of order p ∈ (0, 1) since in some sense they behave similarly to the
L1 distance.

4.1 FPT algorithm when parameterized by D

In this subsection, we prove Theorem 1: when p ∈ (0, 1], k-Clustering admits an FPT
algorithm with parameter D. First we state basic geometrical observations for cases p = 1
and p ∈ (0, 1), Then we propose a general algorithm for Cluster Selection which relies
only on these properties. Finally, we show how Theorem 10 could be applied.

The next two claims deal with the structure of optimal cluster centroids. We state and
prove them in the case of weighted vectors where each vector has a positive integer weight
given by a weight function w. The unweighted case is just a special case when the weight of
each vector is one. The proofs of the claims are straightforward and are available in the full
version of this paper.

First, we show that coordinates of cluster centroids could always be selected among the
values present in the input, which helps greatly in enumerating cluster centroids that may
be optimal.

B Claim 11. Assume p ∈ (0, 1], let C = {x1, . . . , xt} be a cluster and w : {x1, · · · , xt} → Z+
be a weight function. There is an optimal (subject to the weighted distance w(xi) ·distp(xi, c))
centroid c of C such that for each i ∈ {1, . . . , d}, the i-th coordinate c[i] of the centroid
is from the values present in the input in this coordinate, that is c[i] ∈ {x1[i], . . . , xt[i]}.
Moreover, for p = 1 we may assume that the optimal value is a weighted median of the values
present in the i-th coordinate.

In particular, by Claim 11 we may assume that the coordinates of optimal cluster centroids
are integers. Then, the α-property holds with α = 1 since at most one of the initial clusters
could have distance zero to the cluster centroid, and all others have distance at least one
since the cluster centroid is integral. Namely, let x be a vector in the cluster, and c be the
cluster centroid, if x 6= c, then there is a coordinate j where x and c differ, and since they
are both integral, |x[j]− c[j]| ≥ 1, and

distp(x, c) =
d∑
i=1
|x[i]− c[i]|p ≥ |x[j]− c[j]|p ≥ 1p = 1.

1 We could also binary search for the optimal di ∈ D instead, thus replacing |D| by log |D| in the running
time. However, for all choices of D we consider this does not make a difference.

FSTTCS 2019

14:10 Parameterized k-Clustering: Tractability Island

In what follows, the expression half of vectors by weight means that the total weight of
the corresponding set of vectors is at least half of the total weight of C.

B Claim 12. If at least half of the vectors by weight in the cluster C have the same value z
in some coordinate i, then the optimal cluster centroid is also equal to z in this coordinate.

In order to apply Theorem 10, we need an FPT algorithm for Cluster Selection.
Before obtaining it, we state some properties of hypergraphs, which we need for the algorithm.

A hypergraph G is a set of vertices V (G) and a collection of hyperedges E(G), each
hyperedge is a subset of V (G). If G and H are hypergraphs, we say that H appears at
V ′ ⊂ V (G) as a subhypergraph if there is a bijection π : V (H)→ V ′ with a property that for
any E ∈ E(H) there is E′ ∈ E(G) such that π(E) = E′ ∩ V ′, the action of π is extended to
subsets of V (H) in a natural way.

A fractional edge cover of a hypergraph H is an assignment ψ : E(H)→ [0, 1] such that
for every v ∈ V (H),

∑
E∈E(H):v∈E ψ(E) ≥ 1. The fractional cover number ρ∗(H) is the

minimum of
∑
E∈E(H) ψ(E) taken over all fractional edge covers ψ.

We need the following result of Marx [27] about finding occurences of one hypergraph in
another.

I Lemma 13 ([27]). Let H be a hypergraph with fractional cover number ρ∗(H), and let G be
a hypergraph where each hyperedge has size at most `. There is an algorithm that enumerates
in time |V (H)|O(|V (H)|) · `|V (H)|ρ∗(H)+1 · |E(G)|ρ∗(H)+1 · |V (G)|2 every subset V ′ ⊂ V (G)
where H appears in G as a subhypergraph.

Also, the following version of the Chernoff Bound will be of use.

I Proposition 14 ([5]). Let X1, X2, . . . , Xn be independent 0-1 random variables. Denote
X =

∑n
i=1Xi and µ = E[X]. Then for 0 < β ≤ 1,

P [X ≤ (1− β)µ] ≤ exp(−β2µ/2),
P [X ≥ (1 + β)µ] ≤ exp(−β2µ/3).

We are ready to proceed with the proof that Cluster Selection with p ∈ (0, 1] is FPT
when parameterized by D.

I Theorem 15. For every p ∈ (0, 1], Cluster Selection with distance distp is solvable in
time 2O(D logD)(md)O(1).

Proof. First we check if any of the given vectors could be the centroid of the resulting
composite cluster. When the centroid is fixed, we find the optimal solution in polynomial
time by just selecting the cheapest vector with respect to this centroid from each set. If at
some point we find a suitable centroid, then we return that the solution exists. If not, we
may assume that the centroid is not equal to any of the given vectors. As a consequence,
any vector x selected into the solution cluster contributes at least w(x) to the total distance,
since the centroid must be integral by Claim 11. So we may now consider only vectors of
weight at most D and, moreover, the total weight of the resulting cluster is at most D.

Consider a resulting cluster C with the centroid c. There is some x1 in C from X1, and
distp(x1, c) ≤ D. So if we try all possible x1 from X1 (there are at most m of them), any
feasible centroid is at distance at most D from at least one of them. Since x1 and c are integral,
they could be different in at most D coordinates, as distp(x1, c) =

∑d
i=1 |x1[i]− c[i]|p ≤ D.

We try all possible x1 ∈ X1. After x1 is fixed, we enumerate all subsets P of coordinates
{1, . . . , d} where x1 and c could differ, we show how to do it efficiently afterwards. When the

F. V. Fomin, P. A. Golovach, K. Simonov 14:11

subset of coordinates P is fixed, we consider all possible centroids, which are integral, equal to
x1 in all coordinates except P , and differ from x1 by at most D1/p in each of coordinates from
P . If |x1[i∗]− c[i∗]| > D1/p for some coordinate i∗, then distp(x1, c) =

∑d
i=1 |x1[i]− c[i]|p ≥

|x1[i∗]− c[i∗]|p > D, so c can not be a centroid. With restrictions stated above, there are at
most 2O(D logD) possible centroids.

It remains to show that we could enumerate all possible coordinate subsets efficiently. We
reduce this task to the task of finding a specific subhypergraph and then apply Lemma 13.

B Claim 16. There are 2O(D logD) coordinate subsets where x1 and an optimal cluster
centroid c could differ. There exists an algorithm which enumerates all of them in time
2O(D logD)(md)O(1).

Proof. Let G be a hypergraph with V (G) = {1, . . . , d}, one vertex for each coordinate, and
for each vector x in ∪tj=1Xj we take w(x) multiple hyperedges Ex which contains exactly
the coordinates where x and x1 differ. We add an edge only if there are at most D such
coordinates, otherwise x can not be in the same cluster as x1. So hyperdeges in G are of size
at most D. Since we consider only vectors of weight at most D, |E(G)| ≤ Dm.

For a solution, let xj be the vector selected from the corresponding Xj , for j ∈ {1, . . . , t},
C = {x1, . . . , xt} be the solution cluster and c be the centroid. All vectors in C are identical
in all coordinates except at most D, since if there are different values in at least D + 1
coordinates, the cost is at least D + 1. Denote this subset of coordinates as Q, c could also
differ from x1 only at Q. Denote the subset of coordinates where c differs from x1 as P ,
P ⊂ Q and so |P | ≤ D. The solution (C, c) induces a subhypergraph H of G in the following
way. Leave only hyperedges corresponding to the vectors in C, and restrict them to vertices
in P . There are at most D vertices and at most D hyperedges in H, since the total weight is
at most D. An example of the correspondence between input vectors and hypergraphs is
given in Figure 3.

D = 2
v 1 2 3 4 5
x1 0 2 1 3 2
x2 0 1 1 3 1
x3 1 2 1 3 1
x4 0 2 2 3 2
x5 0 2 2 3 1

c 0 2 2 3 2

1

2

3

45

x2

x3
x5

x4

Figure 3 An illustration of the hypergraph construction in Claim 16. On the left, the vector
x1 and other input vectors x2, . . . , x5 are given. On the right, the corresponding hypergraph G.
The solution is in red: on the left, the resulting cluster {x1, x4, x5} is of cost 2; on the right, the
corresponding subhypergraph is H. Note that in H the hyperedge x5 is restricted to the only vertex
3, so its size is one.

The next claim shows that the fractional cover number of H is bounded by a constant.

B Claim 17. Each vertex in H is covered by at least half of the hyperedges of H, and
ρ∗(H) ≤ 2.

Proof. Consider a vertex p ∈ P , and assume that less than half of the hyperedges cover p.
It means that in the p-th coordinate the centroid c differs from x1, but less than half of the
vectors in C by weight differ from x1 in this coordinate. This contradicts Claim 12.

FSTTCS 2019

14:12 Parameterized k-Clustering: Tractability Island

So each vertex is covered by at least half of the hyperedges, and setting ψ ≡ 2
|E(H)| leads

to ρ∗(H) ≤ 2. J

In order to enumerate all possible subsets of coordinates P , we try all hypergraphs H
with at most D vertices and at most D hyperedges, and if each vertex is covered by at least
half of the hyperedges, we find all places where H appears in G by Lemma 13. The last step
is done in 2O(D logD) · (md)O(1) time. However, the number of possible H could be up to
2Ω(D2). The following claim, which is analogous to Proposition 6.3 in [27], shows that we
could consider only hypergraphs with a logarithmic number of hyperedges.

B Claim 18. If D ≥ 2, it is possible to delete all except at most 160 lnD hyperedges from
H so that in the resulting hypergraph H∗ each vertex is covered by at least 1/4 of the
hyperedges, and ρ∗(H∗) ≤ 4.

Proof. Denote s = |E(H)|, construct a new hypergraph H∗ on the same vertex set V (H)
by independently selecting each hyperedge of H with probability (120 lnD)/s. Applying
Proposition 14 with β = 1/3, probability of selecting more than 160 lnD hyperedges is
at most exp((−120 lnD)/27) < 1/D2. By Claim 17, each vertex v of H is covered by at
least s/2 hyperedges, and the expected number of hyperedges covering v in H∗ is at least
60 lnD. By Proposition 14 with β = 1/3, the probability that v is covered by less than
40 lnD hyperedges in H∗ is at most exp(−60 lnD/18) ≤ 1/D3. By the union bound, with
probability at least 1− 1/D2 −D · 1/D3 > 0 we select at most 160 lnD hyperedges and each
vertex is covered by at least 40 lnD hyperedges. So the claim holds, and ρ∗(H∗) ≤ 4 by
setting ψ ≡ 4

|E(H∗)| . J

Thus, if there is a subhypergraph H in G corresponding to a solution, then there is also
a subhypergraph H∗ in G appearing at the same subset of V (G) with at most 160 lnD
hyperedges and where each vertex is covered by at least 1/4 of the hyperedges. Since we
only need to enumerate possible coordinate subsets, in our algorithm we try all hypergraphs
of this form and apply Lemma 13 for each of them. Since there are at most 2O(D logD)

hypergraphs with at most 160 lnD hyperedges and since the fractional cover number is still
bounded by a constant, the total running time is 2O(D logD) · (md)O(1), as desired. J

With Claim 16 proven, the proof of the theorem is complete. J

Combining Theorem 10 and Theorem 15, we obtain an FPT algorithm for k-Clustering.
This proves Theorem 1, which we recall here.

I Theorem 1. k-Clustering with distance distp is solvable in time 2O(D logD)(nd)O(1) for
every p ∈ (0, 1].

Proof. We have an algorithm for Cluster Selection whose running time is specified by
Theorem 15. By Claim 11, the α-property holds. The only missing part is to describe the
way of producing the set D of all possible cluster costs which are at most D.

In the case p = 1 all distances are integral so we can take D = {0, . . . , D}.
For the general case, let B = {ap : a ∈ {1, . . . , dD1/pe}}. Consider a cluster C =

{x1, . . . , xt} and the corresponding optimal cluster centroid c. For any xj ∈ C, distp(xj , c) =∑d
i=1 |xj [i]−c[i]|p is a combination of elements of B with nonnegative integer coefficients. This

is because xj and c are integral and the cluster cost is at most D, hence |xj [i]− c[i]| ≤ D1/p

for each i ∈ {1, . . . , d}. Since weights are also integral, the whole cluster cost is a combination
of distances between cluster vectors and the centroid with nonnegative integer coefficients,

F. V. Fomin, P. A. Golovach, K. Simonov 14:13

and so also a combination of elements of B with nonnegative integer coefficients. This means
that we can take

D =
{∑
b∈B

ab · b : ab ∈ Z, ab ≥ 0,
∑
b∈B

ab ≤ D

}
,

the sum of coefficients ab is at most D since all elements of B are at least 1. The size of D is
at most |B|D = 2O(D logD). J

Note that another widely studied version of k-Clustering is where centroids ci could
be selected only among the set of given vectors. Naturally, our algorithm also works in this
setting since the set of possible centroids is only restricted further.

Also note that Claim 11 and Claim 12 do not hold in the case p > 1, and our algorithm
relies heavily on the structure provided by them. Therefore, it does not seem that the
algorithm could be extended to the case p > 1.

5 Conclusion and open problems

In this paper, we presented an FPT algorithm for k-Clustering with p ∈ (0, 1] parameterized
by D. However, for the case p ∈ (1,∞) we were able only to show the W[1]-hardness of
Cluster Selection. While intractability of Cluster Selection does not exclude that
k-Clustering could be FPT with p ∈ (1,∞), it indicates that the proof of this (if it is true
at all) would require an approach completely different from ours. Thus an interesting and
very concrete open question concerns the parameterized complexity of k-Clustering with
p ∈ (1,∞) and parameter D.

Another open question is about the fine-grained complexity of k-Clustering when
parameterized by k + d. For several distances, we know XP-algorithms: an O(ndk+1)
algorithm by Inaba et. al. [21] for p = 2, as well as trivial algorithms for p ∈ [0, 1]. For the
case when the possible cluster centroids are given in the input, the matching lower bound is
shown in [11]. However, we are not aware of a lower bound complementing the algorithmic
results in the case when any point in Euclidean space can serve as a centroid.

References
1 Marcel R. Ackermann, Johannes Blömer, and Christian Sohler. Clustering for metric and

nonmetric distance measures. ACM Trans. Algorithms, 6(4):59:1–59:26, 2010. URL: https:
//doi.org/10.1145/1824777.1824779, doi:10.1145/1824777.1824779.

2 Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. Approximating extent
measures of points. J. ACM, 51(4):606–635, 2004. URL: http://doi.acm.org/10.1145/
1008731.1008736, doi:10.1145/1008731.1008736.

3 Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. NP-hardness of Euclidean
sum-of-squares clustering. Machine Learning, 75(2):245–248, May 2009. URL: https://doi.
org/10.1007/s10994-009-5103-0, doi:10.1007/s10994-009-5103-0.

4 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995. URL:
https://doi.org/10.1145/210332.210337, doi:10.1145/210332.210337.

5 D. Angluin and L.G. Valiant. Fast probabilistic algorithms for hamiltonian circuits and
matchings. J. Computer and System Sciences, 18(2):155 – 193, 1979. URL: http://
www.sciencedirect.com/science/article/pii/002200007990045X, doi:https://doi.org/
10.1016/0022-0000(79)90045-X.

FSTTCS 2019

https://doi.org/10.1145/1824777.1824779
https://doi.org/10.1145/1824777.1824779
http://dx.doi.org/10.1145/1824777.1824779
http://doi.acm.org/10.1145/1008731.1008736
http://doi.acm.org/10.1145/1008731.1008736
http://dx.doi.org/10.1145/1008731.1008736
https://doi.org/10.1007/s10994-009-5103-0
https://doi.org/10.1007/s10994-009-5103-0
http://dx.doi.org/10.1007/s10994-009-5103-0
https://doi.org/10.1145/210332.210337
http://dx.doi.org/10.1145/210332.210337
http://www.sciencedirect.com/science/article/pii/002200007990045X
http://www.sciencedirect.com/science/article/pii/002200007990045X
http://dx.doi.org/https://doi.org/10.1016/0022-0000(79)90045-X
http://dx.doi.org/https://doi.org/10.1016/0022-0000(79)90045-X

14:14 Parameterized k-Clustering: Tractability Island

6 Mihai Badoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-sets. In
Proceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC), pages
250–257. ACM, 2002. URL: http://doi.acm.org/10.1145/509907.509947, doi:10.1145/
509907.509947.

7 Christina Boucher, Christine Lo, and Daniel Lokshantov. Consensus patterns (probably) has
no eptas. In Nikhil Bansal and Irene Finocchi, editors, Algorithms - ESA 2015, pages 239–250,
Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

8 Christos Boutsidis, Anastasios Zouzias, Michael W. Mahoney, and Petros Drineas. Randomized
dimensionality reduction for k-means clustering. IEEE Trans. Information Theory, 61(2):1045–
1062, 2015. URL: https://doi.org/10.1109/TIT.2014.2375327, doi:10.1109/TIT.2014.
2375327.

9 Michael B Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu.
Dimensionality reduction for k-means clustering and low rank approximation. In Proceedings
of the 47tg annual ACM symposium on Theory of Computing (STOC), pages 163–172. ACM,
2015.

10 Vincent Cohen-Addad. A fast approximation scheme for low-dimensional k-means. In
Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
430–440. SIAM, 2018. URL: http://dl.acm.org/citation.cfm?id=3174304.3175298.

11 Vincent Cohen-Addad, Arnaud de Mesmay, Eva Rotenberg, and Alan Roytman. The bane
of low-dimensionality clustering. In Proceedings of the 28th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 441–456. SIAM, 2018. URL: http://dl.acm.org/
citation.cfm?id=3174304.3175300.

12 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
URL: https://doi.org/10.1007/978-3-319-21275-3, doi:10.1007/978-3-319-21275-3.

13 W. Fernandez de la Vega, Marek Karpinski, Claire Kenyon, and Yuval Rabani. Approximation
schemes for clustering problems. In Proceedings of the 35th Annual ACM Symposium on
Theory of Computing (STOC), pages 50–58. ACM, 2003. URL: http://doi.acm.org/10.
1145/780542.780550, doi:10.1145/780542.780550.

14 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer, 2013. URL: https://doi.org/10.1007/978-1-4471-5559-1,
doi:10.1007/978-1-4471-5559-1.

15 Uriel Feige. NP-hardness of hypercube 2-segmentation. CoRR, abs/1411.0821, 2014. URL:
http://arxiv.org/abs/1411.0821, arXiv:1411.0821.

16 Dan Feldman and Michael Langberg. A unified framework for approximating and clustering
data. In Proceedings of the 43rd Annual ACM Symposium on Theory of Computing (STOC),
pages 569–578. ACM, 2011. URL: http://doi.acm.org/10.1145/1993636.1993712, doi:
10.1145/1993636.1993712.

17 Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data:
Constant-size coresets for k-means, PCA and projective clustering. In Proceedings of the 23rd
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1434–1453. SIAM, 2013.
URL: http://dx.doi.org/10.1137/1.9781611973105, doi:10.1137/1.9781611973105.

18 Fedor V. Fomin, Petr A. Golovach, and Fahad Panolan. Parameterized low-rank binary matrix
approximation. In Proceedings of the 45th International Colloquium on Automata, Languages,
and Programming (ICALP), volume 107 of LIPIcs, pages 53:1–53:16. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.ICALP.2018.53,
doi:10.4230/LIPIcs.ICALP.2018.53.

19 Fedor V. Fomin, Petr A. Golovach, and Kirill Simonov. Parameterized k-clustering: The
distance matters!, 2019. arXiv:1902.08559.

20 Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering.
In Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC), pages
291–300. ACM, 2004.

http://doi.acm.org/10.1145/509907.509947
http://dx.doi.org/10.1145/509907.509947
http://dx.doi.org/10.1145/509907.509947
https://doi.org/10.1109/TIT.2014.2375327
http://dx.doi.org/10.1109/TIT.2014.2375327
http://dx.doi.org/10.1109/TIT.2014.2375327
http://dl.acm.org/citation.cfm?id=3174304.3175298
http://dl.acm.org/citation.cfm?id=3174304.3175300
http://dl.acm.org/citation.cfm?id=3174304.3175300
https://doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/978-3-319-21275-3
http://doi.acm.org/10.1145/780542.780550
http://doi.acm.org/10.1145/780542.780550
http://dx.doi.org/10.1145/780542.780550
https://doi.org/10.1007/978-1-4471-5559-1
http://dx.doi.org/10.1007/978-1-4471-5559-1
http://arxiv.org/abs/1411.0821
http://arxiv.org/abs/1411.0821
http://doi.acm.org/10.1145/1993636.1993712
http://dx.doi.org/10.1145/1993636.1993712
http://dx.doi.org/10.1145/1993636.1993712
http://dx.doi.org/10.1137/1.9781611973105
http://dx.doi.org/10.1137/1.9781611973105
https://doi.org/10.4230/LIPIcs.ICALP.2018.53
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.53
http://arxiv.org/abs/1902.08559

F. V. Fomin, P. A. Golovach, K. Simonov 14:15

21 Mary Inaba, Naoki Katoh, and Hiroshi Imai. Applications of weighted Voronoi diagrams and
randomization to variance-based k-clustering. In Proceedings of the 10th annual Symposium
on Computational Geometry (SoCG), pages 332–339. ACM, 1994.

22 Anil K Jain. Data clustering: 50 years beyond k-means. Pattern recognition letters, 31(8):651–
666, 2010.

23 Stavros G. Kolliopoulos and Satish Rao. A nearly linear-time approximation scheme for
the Euclidean k-median problem. SIAM J. Computing, 37(3):757–782, June 2007. URL:
http://dx.doi.org/10.1137/S0097539702404055, doi:10.1137/S0097539702404055.

24 Amit Kumar, Yogish Sabharwal, and Sandeep Sen. Linear-time approximation schemes
for clustering problems in any dimensions. J. ACM, 57(2):5:1–5:32, 2010. URL: http:
//doi.acm.org/10.1145/1667053.1667054, doi:10.1145/1667053.1667054.

25 Stuart P. Lloyd. Least squares quantization in PCM. IEEE Trans. Information Theory,
28(2):129–136, 1982. URL: https://doi.org/10.1109/TIT.1982.1056489, doi:10.1109/TIT.
1982.1056489.

26 Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The planar k-means problem
is NP-hard. In Proceedings of the 3rd International Workshop on Algorithms and Computation
(WALCOM), Lecture Notes in Comput. Sci., pages 274–285. Springer, 2009. URL: http:
//dx.doi.org/10.1007/978-3-642-00202-1_24, doi:10.1007/978-3-642-00202-1_24.

27 Dániel Marx. Closest substring problems with small distances. SIAM J. Comput., 38(4):1382–
1410, 2008. URL: https://doi.org/10.1137/060673898, doi:10.1137/060673898.

28 N. Megiddo and K. Supowit. On the complexity of some common geometric location problems.
SIAM J. Computing, 13(1):182–196, 1984. URL: https://doi.org/10.1137/0213014, doi:
10.1137/0213014.

29 Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters and near-optimal
derandomization. In Proceedings of the 36th Annual Symposium on Foundations of Computer
Science (FOCS), pages 182–191. IEEE, 1995.

30 Christian Sohler and David P. Woodruff. Strong coresets for k-median and subspace
approximation: Goodbye dimension. In Proceedings of the 59th Annual Symposium on
Foundations of Computer Science (FOCS), pages 802–813. IEEE, 2018. URL: https:
//doi.org/10.1109/FOCS.2018.00081.

FSTTCS 2019

http://dx.doi.org/10.1137/S0097539702404055
http://dx.doi.org/10.1137/S0097539702404055
http://doi.acm.org/10.1145/1667053.1667054
http://doi.acm.org/10.1145/1667053.1667054
http://dx.doi.org/10.1145/1667053.1667054
https://doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1007/978-3-642-00202-1_24
http://dx.doi.org/10.1007/978-3-642-00202-1_24
http://dx.doi.org/10.1007/978-3-642-00202-1_24
https://doi.org/10.1137/060673898
http://dx.doi.org/10.1137/060673898
https://doi.org/10.1137/0213014
http://dx.doi.org/10.1137/0213014
http://dx.doi.org/10.1137/0213014
https://doi.org/10.1109/FOCS.2018.00081
https://doi.org/10.1109/FOCS.2018.00081

	Introduction
	Preliminaries and notation
	From k-Clustering to Cluster Selection
	Algorithms and complexity for distances with p (0, 1]
	FPT algorithm when parameterized by D

	Conclusion and open problems

