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ABSTRACT Mitochondrial DNA (mtDNA) mutations cause severe congenital diseases but may also be associated with healthy aging.
mtDNA is stochastically replicated and degraded, and exists within organelles which undergo dynamic fusion and fission. The role of
the resulting mitochondrial networks in the time evolution of the cellular proportion of mutated mtDNA molecules (heteroplasmy), and
cell-to-cell variability in heteroplasmy (heteroplasmy variance), remains incompletely understood. Heteroplasmy variance is particularly
important since it modulates the number of pathological cells in a tissue. Here, we provide the first wide-reaching theoretical
framework which bridges mitochondrial network and genetic states. We show that, under a range of conditions, the (genetic) rate of
increase in heteroplasmy variance and de novo mutation are proportionally modulated by the (physical) fraction of unfused mitochon-
dria, independently of the absolute fission—fusion rate. In the context of selective fusion, we show that intermediate fusion:fission
ratios are optimal for the clearance of mtDNA mutants. Our findings imply that modulating network state, mitophagy rate, and copy
number to slow down heteroplasmy dynamics when mean heteroplasmy is low could have therapeutic advantages for mitochondrial

disease and healthy aging.
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ITOCHONDRIAL DNA (mtDNA) encodes elements of

the respiratory system vital for cellular function. Mu-
tation of mtDNA is one of several leading hypotheses for the
cause of normal aging (Lopez-Otin et al. 2013; Kauppila et al.
2017), as well as underlying a number of heritable mtDNA-
related diseases (Schon et al. 2012). Cells typically contain
hundreds, or thousands, of copies of mtDNA per cell: each
molecule encodes crucial components of the electron transport
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chain, which generates energy for the cell in the form of ATP.
Consequently, the mitochondrial phenotype of a single cell is
determined, in part, by its fluctuating population of mtDNA
molecules (Wallace and Chalkia 2013; Stewart and Chinnery
2015; Aryaman et al. 2019; Johnston 2019). The broad
biomedical implications of mtDNA mutation, combined with
the countable nature of mtDNAs and the stochastic nature of
their dynamics, offer the opportunity for mathematical under-
standing to provide important insights into human health and
disease (Aryaman et al. 2019).

An important observation in mitochondrial physiology is
the threshold effect, whereby cells may often tolerate rela-
tively high levels of mtDNA mutation until the fraction of
mutated mtDNAs (termed heteroplasmy) exceeds a certain
critical value where a pathological phenotype occurs
(Rossignol et al. 2003; Picard et al. 2014; Stewart and
Chinnery 2015; Aryaman et al. 2017). Fluctuations within
individual cells mean that the fraction of mutant mtDNAs
per cell is not constant within a tissue (Figure 1A), but fol-
lows a probability distribution which changes with time
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(Figure 1B). Here, motivated by a general picture of aging,
we will largely focus on the setting of nondividing cells,
which possess two mtDNA variants (although we will also
consider de novo mutation using simple statistical genetics
models). The variance of the distribution of heteroplasmies
gives the fraction of cells above a given pathological thresh-
old (Figure 1B). Therefore, heteroplasmy variance is related
to the number of dysfunctional cells above a phenotypic
threshold within a tissue, and both heteroplasmy mean and
variance are directly related to tissue physiology. Increases in
heteroplasmy variance also increase the number of cells be-
low a given threshold heteroplasmy, which can be advanta-
geous in, e.g., selecting low-heteroplasmy embryos in
preimplantation genetic diagnosis for treating mitochondrial
disease (Burgstaller et al. 2014b; Johnston et al. 2015).

Mitochondria exist within a network which dynamically
fuses and fragments. Although the function of mitochondrial
networks remains an open question (Hoitzing et al. 2015), it is
often thought that a combination of network dynamics and
mitochondrial autophagy (termed mitophagy) act in concert
to perform quality control on the mitochondrial population
(Twig et al. 2008; Aryaman et al. 2019; Johnston 2019).
Observations of pervasive intramitochondrial mtDNA muta-
tion (Morris et al. 2017) and universal heteroplasmy in hu-
mans (Payne et al. 2012) suggest that the power of this
quality control may be limited. It has also been suggested
that certain mtDNA mutations, such as deletions (Kowald
and Kirkwood 2013, 2014, 2018) and some point mutations
(Samuels et al. 2013; Yeet al. 2014; Liet al. 2015; Lieber et al.
2019), are under the influence of selective effects. However,
genetic models without selection have proven valuable in
explaining the heteroplasmy dynamics both of functional mu-
tations (Elson et al. 2001; Taylor et al. 2003; Wonnapinij et al.
2008) and polymorphisms without dramatic functional con-
sequences (Birky et al. 1983; Ye et al. 2014), and in common
cases where mean heteroplasmy shifts are small compared to
changes in variances [for instance, in germline development
(Johnston et al. 2015) and postmitotic tissues (Burgstaller
et al. 2014a)]. Mean changes seem more likely in high-
turnover tissues and when mtDNA variants are genetically
distant (Burgstaller et al. 2014a; Pan et al. 2019), suggesting
that neutral genetic theory may be useful in understanding the
dynamics of the set of functionally mild mutations which ac-
cumulate during aging. Furthermore, there currently exists
limited evidence for pronounced, universal, selective differ-
ences of mitochondrial variants in vivo (Stewart and Larsson
2014; Hoitzing 2017). Neutral genetic theory also provides a
valuable null model for understanding mitochondrial genetic
dynamics (Chinnery and Samuels 1999; Poovathingal et al.
2009; Johnston and Jones 2016), potentially allowing us to
better understand and quantify when selection is present.
There is thus a set of open questions about how the physical
dynamics of mitochondria affect the genetic populations of
mtDNA within and between cells under neutral dynamics.

A number of studies have attempted to understand the
impact of the mitochondrial network on mitochondrial
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dysfunction through computer simulation (reviewed in
Kowald and Klipp 2014). These studies have suggested
the following: that clearance of damaged mtDNA can be
assisted by high and functionally selective mitochondrial
fusion, or by intermediate fusion and selective mitophagy
(Mouli et al. 2009); that physical transport of mitochondria
can indirectly modulate mitochondrial health through mi-
tochondrial dynamics (Patel et al. 2013); that fission—fusion
dynamic rates modulate a trade-off between mutant prolif-
eration and removal (Tam et al. 2013, 2015); and that if
fission is damaging, decelerating fission—fusion cycles may
improve mitochondrial quality (Figge et al. 2012).

Despite providing valuable insights, these previous at-
tempts to link mitochondrial genetics and network dynamics—
while important for breaking ground—have centered around
complex computer simulations, making it difficult to deduce
general laws and principles. Here, we address this lack of a
general theoretical framework linking mitochondrial dynam-
ics and genetics. We take a simpler approach in terms of our
model structure (Figure 1C), allowing us to derive explicit,
interpretable, mathematical formulas which provide intuitive
understanding, and give a direct account for the phenomena
which are observed in our model (Figure 1D). This simplified
approach ensures that our results hold for a range of variant
model structures. Simplified approaches using stochastic
modeling have shown success in understanding mitochondrial
physiology from a purely genetic perspective (Chinnery and
Samuels 1999; Capps et al. 2003; Johnston and Jones
2016). Our basic approach also differs from previous model-
ing attempts, since our model is neutral with respect to
genetics (no replicative advantage or selective mitophagy)
and the mitochondrial network (no selective fusion). Evi-
dence for negative selection of particular mtDNA mutations
has been observed in vivo (Ye et al. 2014; Morris et al.
2017); we therefore extend our analysis to explore selectiv-
ity in the context of mitochondrial quality control using our
simplified framework.

Here, we reveal the first general mathematical principle
linking (physical) network state and (genetic) heteroplasmy
statistics (Figure 1D). Our models potentially allow rich in-
teractions between mitochondrial genetic and network dy-
namics, yet we find that a simple link emerges. For a broad
range of situations, the expansion of mtDNA mutants is
strongly modulated by network state, such that the rate of
increase of heteroplasmy variance, and the rate of accumu-
lation of de novo mutation, is proportional to the fraction of
unfused mitochondria. We discover that this result stems
from the general notion that fusion shields mtDNAs from
turnover, since autophagy of large fragments of the mito-
chondrial network are unlikely, and consequently rescales
time. Importantly, we used our model for network dynamics
to show that heteroplasmy variance is independent of the
absolute magnitude of the fusion and fission rates due to a
separation of timescales between genetic and network
processes (in contrast to Tam et al. 2015). Surprisingly, we
find the dependence of heteroplasmy statistics upon network
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Figure 1 A simple model bridging mitochondrial networks and genetics yields a wide-reaching, analytically obtained description of heteroplasmy
variance dynamics. (A) A population of cells from a tissue exhibit intercellular heterogeneity in mitochondrial content: both mutant load (heteroplasmy)
and copy number. (B) Intercellular heterogeneity implies that heteroplasmy is described by a probability distribution. Cells above a threshold hetero-
plasmy (h*, black dashed line) are thought to exhibit a pathological phenotype. The low-variance distribution (black line) has fewer cells above a
pathological threshold heteroplasmy than the high-variance distribution (red line). Heteroplasmy is depicted as an approximately normal distribution, as
this is the regime in which our approximations below hold: i.e., when the probability of fixation is small. (C) The chemical reaction network we use to
model the dynamics of mitochondrial DNA (see main text for a detailed description). mtDNAs are assigned a genetic state of mutant (M) or wild type
(W), and a network state of singleton (i.e., unfused, S) or fused (F). (D) The central result of our work is, assuming that a cell at time t =0 is at its
(deterministic) steady state, heteroplasmy variance (V(h)) approximately increases with time (t), mitophagy rate (1), and the fraction of mitochondria
that are unfused (), and decreases with mtDNA copy number (n). Importantly, V(h) does not depend on the absolute magnitude of the fission—fusion
rates. Also see Table S1 for a summary of our key findings.

mtDNAs (in contrast to Mouli et al. 2009). When mitophagy
is selective, complete fragmentation of the network results in
the most effective elimination of mitochondrial mutants (in
contrast to Mouli et al. 2009). We also confirm that mitoph-
agy and mitochondrial DNA copy number affect the rate of
accumulation of de novo mutations (Johnston and Jones

state arises when the mitochondrial population size is con-
trolled through replication, and vanishes when it is con-
trolled through mitophagy, shedding new light on the
physiological importance of the mode of mtDNA control.
We show that when fusion is selective, intermediate fusion:
fission ratios are optimal for the clearance of mutated
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2016), see Supplemental Material, Table S1 for a summary of
our key findings. We suggest that pharmacological interven-
tions which promote fusion, slow mitophagy, and increase
copy number earlier in development may slow the rate of
accumulation of pathologically mutated cells, with implica-
tions for mitochondrial disease and aging.

Materials and Methods

Stochastic modeling of the coupling between genetic
and network dynamics of mtDNA populations

Our modeling approach takes a chemical master equation
perspective by combining a general model of neutral genetic
drift (for instance, see Chinnery and Samuels 1999 and
Johnston and Jones 2016) with a model of mitochondrial
network dynamics. We seek to understand the influence of
the mitochondrial network upon mitochondrial genetics. The
network state itself is influenced by several factors including
metabolic poise and the respiratory state of mitochondria
(Szabadkai et al. 2006; Hoitzing et al. 2015; Mishra and
Chan 2016), which we do not consider explicitly here. We
consider the existence of two mitochondrial alleles, wild-type
(W) and mutant (M), existing within a postmitotic cell with-
out cell division, with mtDNAs undergoing turnover [or
“relaxed replication” (Stewart and Chinnery 2015)]. mtDNAs
exist within mitochondria, which undergo fusion and
fission. We therefore assign mtDNAs a network state: fused
(F) or unfused (we term “singleton,” S). This representation
of the mitochondrial network allows us to include the effects
of the mitochondrial network in a simple way, without the
need to resort to a spatial model or consider the precise net-
work structure, allowing us to make analytic progress and
derive interpretable formulas in a more general range of
situations.

Our model can be decomposed into three notional blocks
(Figure 1C). First, the principal network processes denote
fusion and fission of mitochondria containing mtDNAs of
the same allele

Xs + Xg 5 Xp + Xp 1)
X + Xg > Xp + Xp 2)
X 5 xs, 3)

where X denotes either a wild-type (W) or a mutant (M)
mtDNA (therefore a set of chemical reactions analogous
to Equations 1-3 exist for both DNA species). y and S
are the stochastic rate constants for fusion and fission
respectively.

Second, mtDNAs are replicated and degraded through a set
of reactions termed genetic processes. A central assumption is
that all degradation of mtDNAs occur through mitophagy, and
that only small pieces of the mitochondrial network are
susceptible to mitophagy; for parsimony we take the limit
of only the singletons being susceptible to mitophagy:
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Xg 5 Xp + Xp )
Xr i’ Xp +Xp 5
Xs 5 @, ©)

where \ and u are the replication and mitophagy rates, re-
spectively, which are shared by both W and M resulting in a
so-called “neutral” genetic model. Equation 6 denotes re-
moval of the species from the system. The effect of allowing
nonzero degradation of fused species is discussed in the Sup-
plemental Material (see Equation S68 and Figure S3E). Rep-
lication of a singleton changes the network state of the
mtDNA into a fused species, since replication occurs within
the same membrane-bound organelle. An alternative model
of singletons which replicate into singletons, thereby associ-
ating mitochondrial replication with fission (Lewis et al
2016), leaves our central result (Figure 1D) unchanged
(see Equation S67). The system may be considered neutral
since both W and M possess the same replication and degra-
dation rates per molecule of mtDNA at any instance in time.

Finally, mtDNAs of different genotypes may interact
through fusion via a set of reactions we term network
Cross-processes:

WF+M51>WF + MFp (7
My + Ws 5 My + Wy ©)
Wg + Mg l’WF + Mp. )]

Any fusion or fission event which does not involve the gen-
eration or removal of a singleton leaves our system un-
changed; we term such events as nonidentity-changing
processes, which can be ignored in our system (see Rate
renormalization in the Supplemental Material for a discus-
sion of rate renormalization). We have neglected de novo
mutation in the model description above (although we will
consider de novo mutation using a modified infinite sites
Moran model below).

We found that treating A as a constant led to instability in
total copy number (see Constant rates yield unstable copy
numbers for a model describing mtDNA genetic and network
dynamics in the Supplemental Material), which is not credi-
ble. We therefore favored a state-dependent replication rate
such that copy number is controlled to a particular value, as
has been done by previous authors (Chinnery and Samuels
1999; Capps et al. 2003; Johnston and Jones 2016). Allowing
lower-case variables to denote the copy number of their re-
spective molecular species, we will focus on a linear replica-
tion rate of the form (Hoitzing 2017; Hoitzing et al. 2019):

A =A(wr,mr) = u +b(k — (wr +8mr)), (10)

where wr = w; + wy is the total wild-type copy number, and
similarly for mr. The lower-case variables w;, wy, m,, and my
denote the copy numbers of the corresponding chemical spe-
cies (Ws, Wg, Ms, and MF). b is a parameter which determines



the strength with which total copy number is controlled to a
target copy number, and « is a parameter which is indicative
of (but not equivalent to) the steady-state copy number. &
indicates the relative contribution of mutant mtDNAs to
the control strength and is linked to the “maintenance of
wild-type” hypothesis (Durham et al. 2007; Stewart and
Chinnery 2015). When 0=§6<1, and both mutant and
wild-type species are present, mutants have a lower contri-
bution to the birth rate than wild types. When wild types are
absent, the population size will be larger than when there
are no mutants: hence mutants have a higher carrying ca-
pacity in this regime. We have modeled the mitophagy rate
as constant per mtDNA. We do, however, explore relaxing
this constraint below by allowing mitophagy to be a function
of state, and also affect mutants differentially under quality
control. A may be rewritten as A = k; + kowy + kgmy for
constants k;, and so only consists of three independent pa-
rameters. However we will retain A in the form of Equation
10 since the parameters u, b, k, and & have the distinct
physiological meanings described above (Hoitzing 2017;
Hoitzing et al. 2019). Furthermore, A may in general also
depend on other cellular features such as mitochondrial re-
active oxygen species. Here, we seek to explain mitochon-
drial behavior under a simple set of governing principles,
but our approach can naturally be combined with a descrip-
tion of these additional factors to build a more comprehen-
sive model. Analogs of this model (without a network) have
been applied to mitochondrial systems (Chinnery and
Samuels 1999; Capps et al. 2003). Overall, our simple
model consists of 4 species (Ws, Wg, Mg, Mp), 6 independent
parameters, and 15 reactions, and captures the central
property that mitochondria fragment before degradation
(Twig et al. 2008).

Throughout this work, we define heteroplasmy as the
mutant-allele fraction per cell of a mitochondrially encoded
variant (Wonnapinij et al. 2008; Samuels et al. 2010;
Aryaman et al. 2019):

h(x) = (ms +my) [ (ws +wp + mg +my), (11)
where x = (ws, wr, m,, my) is the state of the system (not to be
confused with mitochondrial “respiratory states”). Hence, a
heteroplasmy of h =1 denotes a cell with 100% mutant
mtDNA (i.e., a homoplasmic cell in the mutant allele). Argu-
ably, mutant-allele fraction would be a more precise descrip-
tion of Equation 11 but we retain the use of heteroplasmy for
consistency. To convert to a definition of heteroplasmy which
is maximal when the mutant allele fraction is 50%, one may
simply use the conversion 0.5 — |h(x) — 0.5].

Statistical analysis

In Figure S3B and Figure S4, A-1, we compare Equation 13
and Equation S72 to stochastic simulations for various
parameterizations and replication/degradation rates. To
quantify the accuracy of these equations in predicting
V(h,t), we define the following error metric e

— (12)
Et(V h’ t Sim)

€ —

where V(h, t) is the time derivative of heteroplasmy variance
with subscripts denoting theory (Th) and simulation (Sim).
An expectation over time (E;) is taken for the stochastic sim-
ulations, whereas V (h, t) is a scalar quantity for Equation 13
and Equation S72.

Data availability

Code for simulations and analysis can be accessed at https://
GitHub.com/ImperialCollegeLondon/MitoNetworksGenetics.
Supplemental material available at FigShare: https://doi.org/
10.25386/genetics.8343830.

Results

Mitochondrial network state rescales the linear increase
of heteroplasmy variance over time, independently of
fission—fusion rate magnitudes

We first performed a deterministic analysis of the system
presented in Equations 1-10 by converting the reactions into
an analogous set of four coupled ordinary differential equa-
tions (see Equations S29-S32) and choosing a biologically
motivated approximate parameterization (which we will
term the “nominal” parameterization, see Choice of nominal
parametrization in the Supplemental Material and Table S2).
Figure 2, A and B, show that copy numbers of each individual
species change in time such that the state approaches a line of
steady states (Equations S34-S36), as seen in other neutral
genetic models (Capps et al. 2003; Hoitzing 2017). Upon
reaching this line, total copy number remains constant (Fig-
ure S2A) and the state of the system ceases to change with
time. This is a consequence of performing a deterministic
analysis, which neglects stochastic effects, and our choice
of replication rate in Equation 10 which decreases with total
copy number when wr + 8mr > k, and vice versa, guiding the
total population to a fixed total copy number. Varying the
fission (B) and fusion (y) rates revealed a negative linear
relationship between the steady-state fraction of singletons
and copy number (Figure S2B).

We may also simulate the system in Equations 1-9 sto-
chastically, using the stochastic simulation algorithm
(Gillespie 1976), which showed that mean copy number is
slightly perturbed from the deterministic prediction due to
the influence of variance upon the mean (Grima et al. 2011,
Hoitzing 2017) (Figure 2C). The stationarity of total copy
number is a consequence of using 8 =1 for our nominal
parameterization (i.e., the line of steady states is also a line
of constant copy number). Choosing 6 # 1 results in a differ-
ence in carrying capacities between the two species and non-
stationarity of mean total copy number, as trajectories spread
along the line of steady states to different total copy numbers.
Copy number variance initially increases since trajectories
are all initialized at the same state, but plateaus because
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Figure 2 General mathematical principles linking heteroplasmy variance to network dynamics. (A) Wild-type and mutant copy numbers and (B) fused
and unfused copy numbers both move toward a line of steady states under a deterministic model, as indicated by arrows. In stochastic simulation, (C)
mean copy number is initially slightly perturbed from the deterministic treatment of the system and then remains constant, while (D) mean heteroplasmy
remains invariant with time (see Equation S61). (E-H) We show that Equation 13 holds across many cellular circumstances: lines give analytic results,
points are from stochastic simulation. Heteroplasmy variance behavior is successfully predicted for varying (E) mitophagy rate, (F) steady-state copy
number, (G) mutation sensing, and (H) fusion rate. In H, fusion and fission rates are redefined as y— y,MR and B — B,M, where M and R denote the
relative magnitude and ratio of the network rates, and y,, 8q denote the nominal parameterizations of the fusion and fission rates, respectively (see
Table S2). Figure S3D shows a sweep of M over the same logarithmic range when R = 1. See Figure S4, A-l, and Table S3 for parameter sweeps
numerically demonstrating the generality of the result for different mtDNA control modes.

trajectories are constrained in their copy number to remain
near the attracting line of steady states (Figure S3A). Mean
heteroplasmy remains constant through time under this
model (Figure 2D; see Birky et al. 1983). This is unsurprising
since each species possesses the same replication and degra-
dation rate, so neither species is preferred.

From stochastic simulations we observed that, for suffi-
ciently short times, heteroplasmy variance increases approx-
imately linearly through time for a range of parameterizations
(Figure 2, E-H), which is in agreement with recent single-cell
oocyte measurements in mice (Burgstaller et al. 2018). Pre-
vious work has also shown a linear increase in heteroplasmy
variance through time for purely genetic models of mtDNA
dynamics (see Johnston and Jones 2016). We sought to un-
derstand the influence of mitochondrial network dynamics
upon the rate of increase of heteroplasmy variance.

To this end, we analytically explored the influence of
mitochondrial dynamics on mtDNA variability. Assuming that
the state of the system above is initialized at its deterministic
steady state (x(t = 0) = X;5), we took the limit of large
mtDNA copy numbers (mtCNs), fast fission—fusion dynamics,
and applied a second-order truncation of the Kramers-Moyal
expansion (Gardiner 1985) to the chemical master equation
describing the dynamics of the system (see Supplemental
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Material). This yielded a stochastic differential equation for
heteroplasmy, via Itd’s formula (Jacobs 2010). Upon forcing
the state variables onto the steady-state line (Constable et al.
2016), we derived Equation S63, which may be approxi-
mated for sufficiently short times as

V(h) ~ £(0 225 h(x)(1 - h(x))

n(x) (13

X=Xss

Here, V(h) is the variance of heteroplasmy, u is the mitoph-
agy rate, n(x) is the total copy number, and f;(x) is the frac-
tion of unfused (singleton) mtDNAs, and is thus a measure of
the fragmentation of the mitochondrial network. xy is the
(deterministic) steady state of the system. Equation 13 dem-
onstrates that mtDNA heteroplasmy variance increases ap-
proximately linearly with time (t) at a rate scaled by the
fraction of unfused mitochondria, mitophagy rate, and in-
verse population size. We find that Equation 13 closely
matches heteroplasmy variance dynamics from stochastic
simulation, for sufficiently short times after initialization,
for a variety of parameterizations of the system (Figure 2,
E-H, and Figure S5).

To our knowledge, Equation 13 reflects the first analytical
principle linking mitochondrial dynamics and the cellular



population genetics of mtDNA variance. Its simple form al-
lows several intuitive interpretations. As time progresses,
replication and degradation of both species occurs, allowing
the ratio of species to fluctuate; hence we expect V(h) to
increase with time according to random genetic drift (Figure
2, E-H). The rate of occurrence of replication/degradation
events is set by the mitophagy rate u, since degradation
events are balanced by replication rates to maintain popula-
tion size; hence, random genetic drift occurs more quickly if
there is a larger turnover in the population (Figure 2E). We
expect V(h) to increase more slowly in large population sizes,
since the birth of, e.g., one mutant in a large population in-
duces a small change in heteroplasmy (Figure 2F). The factor
of h(1 —h) encodes the state dependence of heteroplasmy
variance, exemplified by the observation that if a cell is ini-
tialized at h = 0 or h = 1, heteroplasmy must remain at its
initial value (since the model above does not consider de novo
mutation, see below) and so heteroplasmy variance is zero.
Furthermore, the rate of increase of heteroplasmy variance is
maximal when a cell’s initial value of heteroplasmy is 0.5. In
Figure 2G, we show that Equation 13 is able to recapitulate
the rate of heteroplasmy variance increase across different
values of 8, which are hypothesized to correspond to different
replicative sensing strengths of different mitochondrial mu-
tations (Hoitzing 2017). We also show in Figure S3, B and C,
that Equation 13 is robust to the choice of feedback control
strength b in Equation 10. n(x), f(x), and h(x) in Equation 13
are not independent degrees of freedom in this model: they
are functions of the state vector x, where x is determined by
the parameterization and initial conditions of the model.
Hence, the parameter sweeps in Figure 2, E-H, and Figure
S3, B and C, also implicitly vary over these functions of state
by varying the steady state Xg.

In Equation 6, we have made the important assumption
that only unfused mitochondria can be degraded via mitoph-
agy, as seen by Twig et al. (2008), hence the total propensity
of mtDNA turnover is limited by the number of mtDNAs
which are actually susceptible to mitophagy. Strikingly, we
find that the dynamics of heteroplasmy variance are indepen-
dent of the absolute rate of fusion and fission, only depending
on the fraction of unfused mtDNAs at any particular point
in time (see Figure 2H and Figure S3D). This observation,
which contrasts with the model of Tam et al. (2013, 2015)
(see Discussion), arises from the observation that mitochon-
drial network dynamics are much faster than replication and
degradation of mtDNA, by around a factor of 8/u =~ 10° (see
Table S2), resulting in the existence of a separation of time-
scales between network and genetic processes. In the deriva-
tion of Equation 13, we have assumed that fission-fusion
rates are infinite, which simplifies V(h) into a form which is
independent of the magnitude of the fission—fusion rate. A
parameter sweep of the magnitude and ratio of the fission—
fusion rates reveals that, if the fusion and fission rates are
sufficiently small, Equation 13 breaks down and V(h) gains
dependence upon the magnitude of these rates (see Figure
S4A). This regime only appears, however, for network rates

which are ~100-times smaller than the biologically moti-
vated nominal parameterization shown in Figure 2, A-D,
where the fission—fusion rate becomes comparable to the
mitophagy rate. Since fission—fusion takes place on a faster
timescale than mtDNA turnover, we may neglect this region
of parameter space as being implausible.

Equation 13 can be viewed as describing the “quasi-sta-
tionary state” where the probability of extinction of either
allele is negligible (Johnston and Jones 2016). On longer
timescales, or if mtDNA half-life is short (Poovathingal
et al. 2012), the probability of fixation becomes appreciable.
In this case, Equation 13 overestimates V(h) as heteroplasmy
variance gradually becomes sublinear with time (see Figure
S5, C and D). This is evident through inspection of Equation
S63, which shows that cellular trajectories which reach h = 0
or h = 1 cease to diffuse in heteroplasmy space, and so het-
eroplasmy variance cannot increase indefinitely. Conse-
quently, the depiction of heteroplasmy variance in Figure 1,
B and D, as being approximately normally distributed corre-
sponds to the regime in which our approximation holds, and
is a valid subset of the behaviors displayed by heteroplasmy
dynamics under more sophisticated models [e.g., the Kimura
distribution (Kimura 1955; Wonnapinij et al. 2008)]. Further
analytical developments may be possible to take into account
extinction (e.g., see Wonnapinij et al. 2008 and Assaf and
Meerson 2010). However, the linear regime for heteroplasmy
variance has been observed to be a substantial component of
mtDNA dynamics in, e.g., mouse oocytes (Burgstaller et al.
2018).

The influence of mitochondrial dynamics upon
heteroplasmy variance under different models of
genetic mtDNA control

To demonstrate the generality of this result, we explored
several alternative forms of cellular mtDNA control
(Johnston and Jones 2016). We found that when copy num-
ber is controlled through the replication rate function [i.e.,
A = A(x), u = constant], when the fusion and fission rates
were high and the fixation probability [P(h = 0) or P(h = 1)]
was negligible, Equation 13 accurately described V(h) across
all of the replication rates investigated (see Figure S4, A-F).
The same mathematical argument to show Equation 13 for
the replication rate in Equation 10 may be applied to these
alternative replication rates where a closed-form solution for
the deterministic steady state may be written down (see
Deriving an ODE description of the mitochondrial network sys-
tem in the Supplemental Material). Interestingly, when copy
number is controlled through the degradation rate [i.e.,
A = constant, u= u(x)], heteroplasmy variance loses its de-
pendence upon network state entirely and the f; term is lost
from Equation 13 (see Equation S72 and Figure S4, G-1). A
similar mathematical argument was applied to reveal how
this dependence is lost (see Proof of heteroplasmy relation
for linear feedback control in the Supplemental Material).

To provide an intuitive account for why control in the
replication rate vs. control in the degradation rate determines
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Figure 3 Rate of de novo mutation accumulation is sensitive to the network state/mitophagy rate and copy number for a time-rescaled infinite sites
Moran model. (A) An infinite sites Moran model where Q mutations occur per Moran step (see Equation 14). (B-D) Influence of our proposed
intervention strategies. (B) Mean number of distinct mutations increases with the fraction of unfused mitochondria. This corresponds to a simple
rescaling of time, so all but one of the parameterizations are shown in gray. (C) The mean number of mutations per mtDNA also increases with the
fraction of unfused mitochondria. Inset shows that the mean number of mutations per mtDNA is independent of the number of mtDNAs per cell; values
of n are the same as in D. (D) Mean number of mutations per cell increases according to the population size of mtDNAs. Standard error in the mean is

too small to visualize, so error bars are neglected, given 103 realizations.

whether or not heteroplasmy variance has network depen-
dence, we investigated a time-rescaled form of the Moran
process (see A modified Moran process may account for the
alternative forms of heteroplasmy variance dynamics under dif-
ferent models of genetic mtDNA control in the Supplemental
Material). The Moran process is structurally much simpler
than the model presented above, to the point of being un-
realistic, in that the mitochondrial population size is con-
strained to be constant between consecutive time steps.
Despite this, the modified Moran process proved to be in-
sightful. We find that, when copy number is controlled
through the replication rate, the absence of death in the fused
subpopulation means the timescale of the system (being the
time to the next death event) is proportional to f;. In contrast,
when copy number is controlled through the degradation
rate, the presence of a constant birth rate in the entire pop-
ulation means the timescale of the system (being the time to
the next birth event) is independent of f; (see Equation S84
and surrounding discussion).

Control strategies against mutant expansions

In this study, we have argued that the rate of increase of
heteroplasmy variance, and therefore the rate of accumula-
tion of pathologically mutated cells within a tissue, increases
with mitophagy rate (u), decreases with total mtCN per cell
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(n), and increases with the fraction of unfused mitochondria
(termed singletons, f;), see Equation 13. Below, we explore
how biological modulation of these variables influences the
accumulation of mutations. We use this new insight to pro-
pose three classes of strategy to control mutation accumula-
tion and hence address associated issues in aging and disease,
and discuss these strategies through the lens of existing bi-
ological literature.

Targeting network state against mutant expansions: To
explore the role of the mitochondrial network in the accumu-
lation of de novo mutations, we invoked an infinite sites
Moran model (Kimura 1969) (see Figure 3A). Single cells
were modeled over time as having a fixed mitochondrial copy
number (n), and at each time step one mtDNA is randomly
chosen for duplication and one (which can be the same) for
removal. The individual replicated incurs Q de novo muta-
tions, where Q is binomially distributed according to

Q ~ Binomial(LypNa, 1), a4)

where Binomial (N, p) is a binomial random variable with N
trials and probability p of success. Lympna = 16569 is the
length of mtDNA in base pairs and = 5.6 X 1077 is the
mutation rate per base pair per doubling (Zheng et al.
2006); hence each base pair is idealized to have an equal



probability of mutation upon replication. In Equation S83 we
argue that when population size is controlled in the replica-
tion rate, the interevent rate (I') of the Moran process is
effectively rescaled by the fraction of unfused mitochondria,
i.e., I' = unf;, which we apply here.

Figure 3B shows that in the infinite sites model, the con-
sequence of Equation S83 is that the rate of accumulation of
mutations per cell reduces as the mitochondrial network
becomes more fused, as does the mean number of mutations
per mtDNA (Figure 3C). These observations are intuitive:
since fusion serves to shield the population from mitophagy,
mtDNA turnover slows down, and therefore there are fewer
opportunities for replication errors to occur per unit time.
Different values of f; in Figure 3, B and C, therefore corre-
spond to a rescaling of time, i.e., stretching of the time axis.
The absolute number of mutations predicted in Figure 3B
may overestimate the true number of mutations per cell
(and of course depends on our choice of mutation rate), since
a subset of mutations will experience either positive or neg-
ative selection. However, quantification of the number of
distinct mitochondrial mutants in single cells remains under-
explored, as most mutations will have a variant allele fraction
close to 0 or 100% (Birky et al. 1983), which are challenging
to measure, especially through bulk sequencing.

A study by Chen et al. (2010) observed the effect of de-
letion of two proteins which are involved in mitochondrial
fusion (Mfn1 and Mfn2) in mouse skeletal muscle. Although
knock-out studies present difficulties in extending their in-
sights into the physiological case, the authors observed that
fragmentation of the mitochondrial network induced severe
depletion of mtCN (which we also observed in Figure S2B).
Furthermore, the authors observed that the number of mu-
tations per base pair increased upon fragmentation, which
we also observed in the infinite sites model where fragmen-
tation effectively results in a faster turnover of mtDNA
(Figure 3C).

Our models predict that promoting mitochondrial fusion
has a twofold effect: first, it slows the increase of heteroplasmy
variance (see Equation 13 and Figure 2H); second, it reduces
the rate of accumulation of distinct mutations (see Figure 3, B
and C). These two effects are both a consequence of mito-
chondrial fusion rescaling the time to the next turnover
event, and therefore the rate of random genetic drift. As a
consequence, this simple model suggests that promoting fu-
sion earlier in development (assuming mean heteroplasmy is
low) could slow down the accumulation and spread of mito-
chondrial mutations, and perhaps slow aging.

If we assume that fusion is selective in favor of wild-type
mtDNAs, which appears to be the case at least for some mutations
under therapeutic conditions (Suen et al. 2010; Kandul et al.
2016), we predict that a balance between fusion and fission is
the most effective means of removing mutant mtDNAs (see
below), perhaps explaining why mitochondrial networks are
often observed to exist as balanced between mitochondrial fu-
sion and fission (Sukhorukov et al. 2012; Zamponi et al. 2018).
In contrast, if selective mitophagy pathways are induced then

promoting fragmentation is predicted to accelerate the clear-
ance of mutants (see below).

Targeting mitophagy rate against mutant expansions:
Alterations in the mitophagy rate u have a comparable effect
to changes in f; in terms of reducing the rate of heteroplasmy
variance (see Equation 13) and the rate of de novo mutation
(Figure 3, B and C) since they both serve to rescale time. Our
theory therefore suggests that inhibition of basal mitophagy
may be able to slow down the rate of random genetic drift,
and perhaps healthy aging, by locking in low levels of heter-
oplasmy. Indeed, it has been shown that mouse oocytes
(Boudoures et al. 2017) as well as mouse hematopoietic stem
cells (de Almeida et al. 2017) have comparatively low levels
of mitophagy, which is consistent with the idea that these
pluripotent cells attempt to minimize genetic drift by slowing
down mtDNA turnover. A previous modeling study has also
shown that mutation frequency increases with mitochondrial
turnover (Poovathingal et al. 2009).

Alternatively, it has also been shown that the presence of
heteroplasmy, in genotypes which are healthy when present at
100%, can induce fitness disadvantages (Acton et al. 2007,
Sharpley et al. 2012; Bagwan et al. 2018). In cases where
heteroplasmy itself is disadvantageous, especially in later life
where such mutations may have already accumulated, accel-
erating heteroplasmy variance increase to achieve fixation of
a species could be advantageous. However, this will not avoid
cell-to-cell variability, and the physiological consequences for
tissues of such mosaicism is unclear.

Targeting copy number against mutant expansions: To
investigate the role of mtCN on the accumulation of de novo
mutations, we set f; = 1 such that I' = un (i.e., a standard
Moran process). We found that varying mtCN did not affect
the mean number of mutations per molecule of mtDNA (Fig-
ure 3C, inset). However, as the population size becomes
larger, the total number of distinct mutations increases ac-
cordingly (Figure 3D). In contrast to our predictions, a recent
study by Wachsmuth et al. (2016) found a negative correla-
tion between mtCN and the number of distinct mutations in
skeletal muscle. However, Wachsmuth et al. (2016) also
found a correlation between the number of distinct mutations
and age, in agreement with our model. Furthermore, the
authors used partial regression to find that age was more
explanatory than mtCN in explaining the number of distinct
mutations, suggesting age as a confounding variable to the
influence of copy number. Our work shows that, in addition
to age and mtCN, turnover rate and network state also influ-
ence the proliferation of mtDNA mutations. Therefore, one
would ideally account for these four variables jointly, to fully
constrain our model.

A study of single neurons in the substantia nigra of healthy
human individuals found that mtCN increased with age (Délle
et al. 2016). Furthermore, mice engineered to accumu-
late mtDNA deletions through faulty mtDNA replication
(Trifunovic et al. 2004) display compensatory increases in
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mtCN (Perier et al. 2013), which potentially explains the
ability of these animals to resist neurodegeneration. It is pos-
sible that the observed increase in mtCN in these two studies
is an adaptive response to slow down random genetic drift
(see Equation 13). In contrast, mtCN reduces with age in
skeletal muscle (Wachsmuth et al. 2016), as well as in a
number of other tissues such as pancreatic islets (Cree et al.
2008) and peripheral blood cells (Mengel-From et al. 2014).
Given the beneficial effects of increased mtCN in neurons,
long-term increases in mtCN could delay other age-related
pathological phenotypes.

Optimal mitochondrial network configurations for
mitochondrial quality control

While the above models of mtDNA dynamics are neutral (i.e.,
m and w share the same replication and degradation rates), it
is often proposed that damaged mitochondria may experi-
ence a higher rate of degradation (Kim et al. 2007; Narendra
et al. 2008). There are two principal ways in which selection
may occur on mutant species. First, mutant mitochondria may
be excluded preferentially from the mitochondrial network in
a background of unbiased mitophagy. If this is the case, mu-
tants would be unprotected from mitophagy for longer periods
of time than wild types, and therefore be at greater hazard of
degradation. We can alter the fusion rate (y) in the mutant
analogs of Equations 1 and 2 and Equations 7-9 by writing
'y—>'y/(1+ef) (15)
for all fusion reactions involving one or more mutant mito-
chondria where € > 0. The second potential selective mech-
anism we consider is selective mitophagy. In this case, the
degradation rate of mutant mitochondria is larger than wild
types, i.e., we modify the mutant degradation reaction to

n(l+en)
¢ ——

(16)

for €,; > 0.

In these two settings, we explore how varying the fusion
rate for a given selectivity (¢; and ey) affects the extent of
reduction in mean heteroplasmy. Figure 4A shows that, in
the context of selective fusion (¢ >0) and nonselective
mitophagy (e, = 0), the optimal strategy for clearance of
mutants is to have an intermediate fusion:fission ratio.
This was observed for all fusion selectivities investigated
(see Figure S7). Intuitively, if the mitochondrial network is
completely fused then, due to mitophagy only acting upon
smaller mitochondrial units, mitophagy cannot occur, so
mtDNA turnover ceases and heteroplasmy remains at its ini-
tial value. In contrast, if the mitochondrial network com-
pletely fissions, there is no mitochondrial network to allow
the existence of a quality control mechanism: both mutants
and wild types possess the same probability per unit time of
degradation, so mean heteroplasmy does not change. Since
both extremes result in no clearance of mutants, the optimal
strategy must be to have an intermediate fusion:fission ratio.

1438 J. Aryaman et al.

In contrast, in Figure 4B, in the context of nonselective
fusion (s = 0) and selective mitophagy (e, > 0), the optimal
strategy for clearance of mutants is to completely fission the
mitochondrial network. Intuitively, if mitophagy is selective,
then the more mtDNAs which exist in fragmented organelles,
the greater the number of mtDNAs which are susceptible to
selective mitophagy, the greater the total rate of selective
mitophagy, and the faster the clearance of mutants.

Discussion

In this work, we sought to unify our understanding of three
aspects of mitochondrial physiology—the mitochondrial net-
work state, mitophagy, and copy number—with genetic dy-
namics. The principal virtue of our modeling approach is its
simplified nature, which makes general, analytic, quantita-
tive insights available for the first time. In using parsimonious
models, we are able to make the first analytic link between
the mitochondrial network state and heteroplasmy dynam-
ics. This is in contrast to other computational studies in the
field, whose structural complexity makes analytic progress
difficult and accounting for their predicted phenomena cor-
respondingly more challenging.

Our bottom-up modeling approach allows for potentially
complex interactions between the physical (network) and
genetic mitochondrial states of the cell, yet a simple connec-
tion emerged from our analysis. We found, for a wide class of
models of postmitotic cells, that the rate of linear increase of
heteroplasmy variance is modulated in proportion to the
fraction of unfused mitochondria (see Equation 13). The gen-
eral notion that mitochondrial fusion shields mtDNAs from
turnover, and consequently serves to rescale time, emerges
from our analysis. This rescaling of time only holds when
mitochondrial copy numbers are controlled through a state-
dependent replication rate, and vanishes if copy numbers are
controlled through a state-dependent mitophagy rate. We
have presented the case of copy-number control in the repli-
cation rate as being a more intuitive model than control in the
degradation rate. The former has the interpretation of bio-
genesis being varied to maintain a constant population size,
with all mtDNAs possessing a characteristic lifetime. The lat-
ter has the interpretation of all mtDNA molecules being rep-
licated with a constant probability per unit time, regardless of
how large or small the population size is, and changes in
mitophagy acting to regulate population size. Such a control
strategy seems wasteful in the case of stochastic fluctuations
resulting in a population size which is too large, and poten-
tially slow if fluctuations result in a population size which is
too small. Furthermore, control in the replication rate means
that the mitochondrial network state may act as an additional
axis for the cell to control heteroplasmy variance (Figure 2)
and the rate of accumulation of de novo mutations (Figure 3,
B and C). Single-mtDNA tracking through confocal micros-
copy in conjunction with mild mtDNA depletion could shed
light on whether the probability of degradation per unit time
per mtDNA varies when mtCN is perturbed, and therefore
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(see Figure S7). (B) For selective mitophagy (see Equation 16), when mitophagy selectivity e, > 0, a lower mean heteroplasmy is achieved and the lower
the fusion rate (until mean heteroplasmy = 0 is achieved). Hence, complete fission is the optimal strategy for selective mitophagy.

provide evidence for or against these two possible control
strategies.

Our observations provide a substantial change in our un-
derstanding of mitochondrial genetics, as it suggests that the
mitochondrial network state, in addition to mitochondrial
turnover and copy number, must be accounted for to predict
the rate of spread of mitochondrial mutations in a cellular
population. Crucially, through building a model that incorpo-
rates mitochondrial dynamics, we find that the dynamics of
heteroplasmy variance is independent of the absolute rate
of fission—fusion events, since network dynamics occur
~103-times faster than mitochondrial turnover, inducing a
separation of timescales. The independence of the absolute
rate of network dynamics makes way for the possibility of
gaining information about heteroplasmy dynamics via the
mitochondrial network, without the need to quantify abso-
lute fission—fusion rates (for instance through confocal mi-
crographs to quantify the fraction of unfused mitochondria).
By linking with classical statistical genetics, we find that the
mitochondrial network also modulates the rate of accumula-
tion of de novo mutations, also due to the fraction of unfused
mitochondria serving to rescale time. We find that, in the
context of mitochondrial quality control through selective
fusion, an intermediate fusion:fission ratio is optimal due to
the finite selectivity of fusion. This latter observation perhaps
provides an indication for the reason why we observe mito-
chondrial networks in an intermediate fusion state under
physiological conditions (Sukhorukov et al. 2012; Zamponi
et al. 2018).

We have, broadly speaking, considered neutral models of
mtDNA genetic dynamics. It is, however, typically suggested
that increasing the rate of mitophagy promotes mtDNA quality
control and therefore shrinks the distribution of heteroplas-
mies toward 0% mutant (see Equations 15 and 16). If mitoph-
agy is able to change mean heteroplasmy, then a neutral

genetic model appears to be inappropriate, as mutants expe-
rience a higher rate of degradation. Biological examples
of non-neutral behavior include the observation that the
PINK1/Parkin pathway can select against deleterious mtDNA
mutations in vitro (Suen et al. 2010) and in vivo (Kandul et al.
2016), as has repression of the mTOR pathway via treatment
with rapamycin (Dai et al. 2013; Kandul et al. 2016). However,
the necessity of performing a genetic/pharmacological inter-
vention to clear mutations via this pathway suggests that the
ability of tissues to selectively remove mitochondrial mutants
under physiological conditions is weak. Consequently, neutral
models such as our own are useful in understanding how the
distribution of heteroplasmy evolves through time under phys-
iological conditions. Indeed, it has been recently shown that
mitophagy is basal (McWilliams et al. 2016) and can proceed
independently of PINK1 in vivo (McWilliams et al. 2018), per-
haps suggesting that mitophagy has nonselective aspects—
although this is yet to be verified conclusively.

We have paid particular attention to the case of postmitotic
tissues, since these tissues are important for understanding
the role of mitochondrial mutations in healthy aging
(Khrapko and Vijg 2009; Kauppila et al. 2017). A typical rate
of increase of heteroplasmy variance predicted by Equa-
tion 13 given our nominal parameterization (Table S2)
isV'(h)/t =V(h)/(E(h)(1 —E(h))t) =2uf;/n ~ 2.3 X 107>
day~! (f; = 0.5,n = 1000). This value accounts for the ac-
cumulation of heteroplasmy variance which is attributable to
turnover of the mitochondrial population in a postmitotic
cell. However, in the most general case, cell division is also
able to induce substantial heteroplasmy variance. For exam-
ple, V'(h)/t has been measured in model organism germlines
to be ~9 X 10~* day~! in Drosophila (Solignac et al. 1987;
Johnston and Jones 2016), 9 X 10™* day~! in NZB/BALB
mice (Wai et al. 2008; Wonnapinij et al. 2008; Johnston
and Jones 2016), and 2 X 10~4 day ! in single Lehsten (LE)

Mitochondrial Networks and Genetics 1439



and Hohenberg (HB) mouse oocytes (Burgstaller et al. 2018).
We see that these rates of increase in heteroplasmy variance
are approximately an order of magnitude larger than predic-
tions from our model of purely quiescent turnover, given our
nominal parameterization. While larger mitophagy rates
may also potentially induce larger values for V'(h)/t (see
Poovathingal et al. 2012, and Figure S5C, corrsponding to
V'(h)/t ~ 3.5x107* day™!) it is clear that partitioning
noise [or “vegetative segregation” (Stewart and Chinnery
2015)] is also an important source of variance in hetero-
plasmy dynamics (Johnston et al. 2015). Quantification of
heteroplasmy variance in quiescent tissues remains an under-
explored area, despite its importance in understanding
healthy aging (Kauppila et al. 2017; Aryaman et al. 2019).

Our findings reveal some apparent differences with pre-
vious studies which link mitochondrial genetics with network
dynamics (see Table S4). First, Tam et al. (2013, 2015) found
that slower fission—fusion dynamics resulted in larger in-
creases in heteroplasmy variance with time, in contrast to
Equation 13 which only depends on fragmentation state
and not absolute network rates. The simulation approach of
Tam et al. (2013, 2015) allowed for mitophagy to act on
whole mitochondria, where mitochondria consist of multiple
mtDNAs. Faster fission—fusion dynamics tended to form het-
eroplasmic mitochondria, whereas slower dynamics formed
homoplasmic mitochondria. It is intuitive that mitophagy of a
homoplasmic mitochondrion induces a larger shift in hetero-
plasmy than mitophagy of a single mtDNA, hence slower
network dynamics form more homoplasmic mitochondria.
However, this apparent difference with our findings can nat-
urally be resolved if we consider the regions in parameter
space where the fission-fusion rate is much larger than the
mitophagy rate, as is empirically observed to be the case
(Cagalinec et al. 2013; Burgstaller et al. 2014a). If the fission—
fusion rates are sufficiently large to ensure heteroplasmic
mitochondria, then further increasing the fission—fusion rate
is unlikely to have an impact on heteroplasmy dynamics.
Hence, this finding is potentially compatible with our study,
although future experimental studies investigating intrami-
tochondrial heteroplasmy would help constrain these mod-
els. Tam et al. (2015) also found that fast fission—fusion rates
could induce an increase in mean heteroplasmy, in contrast to
Figure 2D which shows that mean heteroplasmy is constant
with time. We may speculate that the key difference between
our treatment and that of Tam et al. (2013, 2015) is the in-
clusion of cellular subcompartments which induces spatial
effects which we do not consider here. The uncertainty in
accounting for the phenomena observed in such complex
models highlights the virtues of a simplified approach which
may yield interpretable laws and principles through analytic
treatment.

The study of Mouli et al. (2009) suggested that, in the
context of selective fusion, higher fusion rates are optimal.
This initially seems to contrast with our finding which states
that intermediate fusion rates are optimal for the clearance of
mutants (Figure 4A). However, the high fusion rates in that
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study do not correspond directly to the highly fused state in
our study. Fission automatically follows fusion in Mouli et al.
(2009), ensuring at least partial fragmentation, and the high
fusion rates for which they identify optimal clearing are an
order of magnitude lower than the highest fusion rate they
consider. In the case of complete fusion, mitophagy cannot
occur in the model of Mouli et al. (2009), so there is no
mechanism to remove dysfunctional mitochondria. It is per-
haps more accurate to interpret the observations of Mouli
et al. (2009) as implying that selective fusion shifts the opti-
mal fusion rate higher, when compared to the case of selec-
tive mitophagy alone. Therefore, the study of Mouli et al.
(2009) is compatible with Figure 4A. Furthermore, Mouli
et al. (2009) also found that when fusion is nonselective
and mitophagy is selective, intermediate fusion rates are op-
timal, whereas Figure 4B shows that complete fragmentation
is optimal for clearance of mutants. Optimality of intermedi-
ate fusion in the context of selective mitophagy in the model
of Mouli et al. (2009) likely stems from two aspects of their
model: (1) mitochondria consist of several units which may
or may not be functional, and (2) the sigmoidal relationship
between number of functional units per mitochondrion and
mitochondrial “activity” (the metric by which optimality is
measured). Points (1) and (2) imply that small numbers of
dysfunctional mitochondrial units have very little impact on
mitochondrial activity, so fusion may boost total mitochon-
drial activity in the context of small amounts of mutation. So
while Figure 4B remains plausible in light of the study of
Mouli et al. (2009) if reduction of mean heteroplasmy is
the objective of the cell, it is also plausible that nonlinearities
in mitochondrial output under cellular fusion (Hoitzing et al.
2015) result in intermediate fusion being optimal in terms of
energy output in the context of nonselective fusion and se-
lective mitophagy. Future experimental studies quantifying
the importance of selective mitophagy under physiological
conditions would be beneficial for understanding hetero-
plasmy variance dynamics. The ubiquity of heteroplasmy
(Payne et al. 2012; Ye et al. 2014; Morris et al. 2017) suggests
that a neutral-drift approach to mitochondrial genetics may
be justified, which contrasts with the studies of Tam et al.
(2013, 2015) and Mouli et al. (2009) which focus purely on
the selective effects of mitochondrial networks.

To fully test our model, further single-cell longitudinal
studies are required. For instance, the study by Burgstaller
et al. (2018) found a linear increase in heteroplasmy variance
through time in single oocytes. Our work here has shown that
measurement of the network state, as well as turnover and
copy number, are required to account for the rate of increase
in heteroplasmy variance. Joint longitudinal measurements
of f;, u, and n, with heteroplasmy quantification, would allow
verification of Equation 13 and aid in determining the extent
to which neutral genetic models are explanatory. This could
be achieved, for instance, using the mito-QC mouse
(McWilliams et al. 2016) which allows visualization of
mitophagy and mitochondrial architecture in vivo. Measure-
ment of f;, w, and n, followed by, e.g., destructive, single-cell,



whole-genome sequencing of mtDNA would allow validation
of how u, n, and f; influence V(h) and the rate of de novo
mutation (see Figure 3). One difficulty is sequencing errors
induced through, e.g., PCR, which hampers our ability to
accurately measure mtDNA mutation within highly hetero-
geneous samples (Woods et al. 2018). Morris et al. (2017)
have suggested that single cells are highly heterogeneous in
mtDNA mutation, with each mitochondrion possessing 3.9
single-nucleotide variants on average. Error-correction strat-
egies during sequencing may pave the way toward high-
accuracy mtDNA sequencing (Salk et al. 2018; Woods
et al. 2018), and allow us to better constrain models of
heteroplasmy dynamics.
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