
royalsocietypublishing.org/journal/rsos
Research
Cite this article: Harvey AC et al. 2019 Inferring
Atlantic salmon post-smolt migration patterns

using genetic assignment. R. Soc. open sci. 6:
190426.

http://dx.doi.org/10.1098/rsos.190426
Received: 13 March 2019

Accepted: 20 August 2019
Subject Category:
Biology (whole organism)

Subject Areas:
ecology/genetics

Keywords:
aquaculture, management, genetics, salmon lice,

salmonid, migration
Author for correspondence:
A. C. Harvey

e-mail: alison.harvey@hi.no
© 2019 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
Electronic supplementary material is available

online at https://dx.doi.org/10.6084/m9.figshare.

c.4667408.
Inferring Atlantic salmon
post-smolt migration
patterns using genetic
assignment
A. C. Harvey1, M. Quintela1, K. A. Glover1,2, Ø. Karlsen1,

R. Nilsen3, Ø. Skaala1, H. Sægrov4, S. Kålås4, S. Knutar1

and V. Wennevik1

1Institute of Marine Research (IMR), Bergen, Norway
2Institute of Biology, University of Bergen, Bergen, Norway
3Institute of Marine Research (IMR), Tromsø, Norway
4Rådgivende Biologer AS, Bergen, Norway

ACH, 0000-0001-8422-8763

Understanding migratory patterns is important for predicting
and mitigating unwanted consequences of environmental
change or anthropogenic challenges on vulnerable species.
Wild Atlantic salmon undergo challenging migrations
between freshwater and marine environments, and the
numbers of salmon returning to their natal rivers to
reproduce have declined over several decades. Mortality from
sea lice linked to fish farms within their seaward migration
routes is proposed as a contributing factor to these declines.
Here, we used 31 microsatellite markers to establish a genetic
baseline for the main rivers in the Hardangerfjord, western
Norway. Mixed stock analysis was used to assign Atlantic
salmon post-smolts caught in trawls in 2013–2017 back to
regional reporting units. Analyses demonstrated that
individuals originating from rivers located in the inner region
of the fjord arrived at the outer fjord later than individuals
from middle and outer fjord rivers. Therefore, as post-smolts
originating from inner rivers also have to migrate longer
distances to exit the fjord, these data suggest that inner fjord
populations are more likely to be at risk of mortality through
aquaculture-produced sea lice, and other natural factors such
as predation, than middle or outer fjord populations with
earlier exit times and shorter journeys. These results will be
used to calibrate models estimating mortality from sea lice
on wild salmon for the regulation of the Norwegian
aquaculture industry.
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1. Introduction

Migratory species often travel large distances between habitats, usually between breeding and feeding
grounds. The success of these journeys may be closely linked to the fitness and abundance of
wild populations and is often associated with key environmental conditions or triggers for optimal
timing. Therefore, population viability may be negatively affected by environmental changes in the
migration route, for example, due to anthropogenic influence in habitats and ecosystems, or climate
change [1].

Studies investigating migration dynamics typically involve the use of mechanical or electronic
tagging. Mechanical tags rely on recapturing an individual and provide limited information on
migration between tagging and recapture locations, while electronic tags may send periodic
information wirelessly from the tag to a receiver [2]. Recent studies have also used population genetic
tools to investigate migration patterns in several migratory species [3,4], also coupled with tagging
[5,6]. While genetic differentiation is low in some species, for example in birds and bats [7,8], genetic
methods have been successful in differentiating between distinct populations of several fish species
[9–11], and thus display considerable potential for identification of migrating individuals to their
populations of origin.

When fish populations are segregated into reproductively isolated stocks, genetic markers can be
used to identify the different allelic frequencies among the different stocks [5]. Genetic stock
identification (GSI) estimates either the origin of the individual fish within a mixed sample, known as
individual assignment, or proportions of different stocks in a mixed sample, known as mixed stock
analysis (MSA), by comparing the individual genotypes in the mixed sample to a baseline with
known genotypes [6]. GSI is widely used to uncover the underlying contributions of different
populations to mixed-stock fisheries [12], and has been used to identify genetically distinct population
units in mixed marine fisheries [13,14], mixed salmonid fisheries [15–19], historical fisheries or on
oceanic feeding grounds [10,20,21] and even within rivers [22].

Atlantic salmon (Salmo salar) is an anadromous fish native to both sides of the North Atlantic and
displays a complex life-history that involves transitions between freshwater and marine environments,
as well as challenging long-distance migrations. Adults reproduce in freshwater, with juveniles
remaining in the river environment for up to eight years, before undergoing an adaptation to
saltwater known as smoltification [23]. The so-called smolts then migrate out of the river into the sea
to feed and mature [23]. Seaward migration represents a critical life-stage, and is characterized by
high mortality [23]. The initial timing of migration varies among river populations, possibly as a
response of adaptations to within-river and marine environmental conditions [24,25], and there is a
critical window of downstream migration which provides the best match between arrival time in the
sea and optimal environmental conditions that maximize survival and recruitment [25,26]. Therefore,
the duration and timing of smolt migration can have a significant effect on the marine survival of
salmon populations, with several elements of the immediate environment having a cumulative
negative influence on survival, such as predation, exposure to pathogens and parasites, varying food
availability and negative anthropogenic effects [23,25]. In recent years, the numbers of wild salmon
returning to rivers throughout much of its native range have declined [27]. In Norway, genetic
interactions from escaped farmed salmon [28] and sea lice linked to fish farms are the two most
significant challenges from aquaculture to wild populations [29].

Norway is currently the world’s largest producer of farmed salmon, which are reared in sea-cages
located in sheltered coastal areas, resulting in a significant increase in the number of hosts available to
sea lice, and in particular, the salmon louse (Lepeophtherius salmonis) [30]. This has led to an increase
in the abundance of sea lice in coastal areas, with a corresponding increase in lice levels observed on
wild salmonids in aquaculture-intensive areas [29,31–33]. Recently (2017), the Norwegian government
introduced new regulations for future expansion of the salmonid aquaculture industry [34]. Industry
growth is dependent on the estimated additional mortality of wild salmonids that is directly
attributable to sea lice within the 13 production zones along the Norwegian coastline [35,36]. Each
zone is classified as either ‘green’, ‘orange’ or ‘red’ depending on the estimates of sea-lice-induced
mortality, where green zones may expand production, production is frozen at the current level in
orange zones, and reduced in red zones [34]. The mortality estimates are calculated by combining a
hydrodynamic model which estimates larval dispersion, and a smolt migration model which estimates
the infection pressure on virtual smolts moving through the fjord out to sea [37]. The models are
calibrated using data collected from field surveillance of lice levels on wild salmonids consisting of
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monitoring lice levels on fish in sentinel cages [36,38], post-smolts caught in coastal bag nets [35], and
migrating post-smolts caught by trawling within the fjords [37].

Although currently untested, genetic methods to identify post-smolts caught in the coastal field
surveillance trawls back to their rivers or regions of origin could provide more information on spatio-
temporal migration patterns during the early marine phase. Such investigations, however, require fine-
scale genetic baselines of the contributing populations. Datasets have been established for Atlantic
salmon populations covering rivers in their western Atlantic range [10,39] and areas in the eastern
Atlantic [18,20,40–42]. Here, we developed a genetic baseline representing all the significant Atlantic
salmon populations in the Hardangerfjord, a farming intense region in western Norway where sea-
lice-induced mortality has been reported to be high [43], to identify the river or region of origin of
post-smolts caught in the annual sea lice trawl surveys in the period 2013–2017. The dataset from the
present study will be used as further calibration in the virtual smolt migration model, which is
discussed elsewhere [37]. In the present study, our overall aim was to investigate the potential of
identifying post-smolts back to river or region of origin using MSA, and thereafter, to investigate
spatial and temporal patterns of post-smolt migration in this fjord.
c.open
sci.6:190426
2. Methods
2.1. Sample collection and sampling

2.1.1. Sampling fish in rivers (establishing the genetic baseline)

The samples of fish from rivers, which represent the genetic baseline samples, originated from four main
sources: (i) scale or tissue samples that were donated by anglers or by other research institutions or
environmental consultancies, (ii) existing genetic data from previously genotyped river samples
from other studies conducted by the Institute of Marine Research (IMR) [42], (iii) tissue samples
collected previously for other analyses by IMR, and (iv) samples collected by electrofishing during the
summer of 2017 and the winter of 2018. The baseline consisted of 1364 individuals from 14 rivers
covering a period from 2011 to 2018 (table 1 and figure 1). The River Guddalselva, located within
Hardangerfjord, was not included in the baseline, as until very recently it did not contain a native
population of Atlantic salmon and was only used in other comparative studies which were based on
the differences between farmed and wild salmonids [44,45]. Two rivers, Oselva and Tysseelva, which
do not belong to Hardangerfjord but are in the vicinity (figure 1), were incorporated to the baseline
as outliers for control. It is assumed that since these rivers are not located within Hardangerfjord,
they should not appear in the assigned trawl samples.

2.1.2. Sampling post-smolts in the sea (trawl samples)

Post-smolts were collected in the late spring and early summer from 2013 to 2017 by trawling in the
Hardangerfjord for up to four continuous weeks per year (table 1 and figure 1). Captured post-smolts
were sedated, examined for sea lice, measured (wet weight, total and fork length), killed using an
overdose of Benzocain anaesthetic or a blow to the head and then frozen for subsequent analysis. The
number of post-smolts included in the genetic MSA per year ranged from 60 (2013) to 245 (2017). The
2014 trawl samples were not included in further analyses due to low numbers (table 1).

2.2. Genotyping
DNA analysis of all samples was conducted at IMR in Bergen during the period 1 May 2017–1 March
2018. DNA was extracted from either fin clips or scales in 96-well plates using the Qiagen DNeasy 96
Blood & Tissue Kit with two negative controls. In total, 31 microsatellite markers were amplified in
five PCR multiplexes (microsatellite information (electronic supplementary material, table S1) and
amplification protocols (electronic supplementary material, table S2) are found in electronic
supplementary material, file 1). PCR products were resolved on an ABI 3730 Genetic Analyser and
sized using a 500LIZ size standard (Applied Biosystems). GeneMapper v. 5.0 was used to score alleles
manually. A second laboratory technician quality checked each individual sample to ensure scoring
accuracy before exporting the data for statistical analysis. Individuals with more than 30% missing
alleles were removed from the dataset.
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Figure 1. Map of Hardangerfjord indicating the rivers included in the genetic baseline. The rivers contained within the regional
reporting assignment units of inner, middle, outer and outlier regions are denoted within the legend.
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2.3. Statistical analysis

2.3.1. Baseline genetic structure and assessment

Standard methods were used to characterize the genetic baseline (electronic supplementary material,
file 1). In brief, the total number of alleles and allelic richness of each river were calculated, and
pairwise FST was compared among rivers and for temporal samples within rivers that were more than
three years apart. STRUCTURE [46] and principal component analysis (PCA) using GenoDive
v. 2.0b23 [47] were used to further elucidate population genetic structure. Assignment analyses were
carried out at the river level and to regional reporting units (see below).

The assignment accuracy of the baseline was assessed using the Leave One Out test in ONCOR [48].
The test removes one fish sequentially from a baseline population and then estimates their origin using
the rest of the baseline. Following on these results, the rivers were grouped into regional reporting units.
The regional grouping consisted of four units (inner, middle, outer and outlier fjord populations, table 1
and figure 1) based primarily on the geography of the fjord system. The accuracy of the baseline based on
regional reporting units was also assessed using the Leave One Out test as above and by MSA. The MSA
was carried out by 100% simulations and realistic fishery simulations using the Anderson method [49] in
ONCOR [48]. The 100% simulations involved simulating random samples of each baseline population
and assigning them back to the full baseline. The simulations were based on 1000 simulations of 200
fish per baseline population and simulated reference sample sizes that were the same as the dataset.
The realistic fishery simulations involved randomly selecting fish from each baseline population and
assigning them back to the truncated baseline. The realistic fishery simulations were based on 1000
simulations of 200 fish per baseline population and performed using two mixtures: one with equal
proportions of fish from each regional reporting unit and one with proportions based on the
estimated smolt production predicted per river that was previously calculated as part of an
assessment of the ecological status of rivers within the Hardangerfjord in 2008 (Outlier: 0, Inner: 0.36,
Middle: 0.35; Outer: 0.29) [50–52]. Mixture proportions were calculated using a maximum-likelihood
method where the genotype frequencies were calculated using the method of Rannala & Mountain
[53]. Confidence intervals (CI) were calculated using 1000 bootstraps.

2.3.2. Assigning the post-smolts

A MSA in ONCOR was used to estimate the mixed stock composition of the post-smolt trawl catches
based on assignment to regional reporting units. Mixture proportions were calculated using
conditional maximum likelihood [54], and bootstrapping of 1000 iterations was performed to estimate
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Figure 2. Bar plot clusters of the STRUCTURE outputs for the full baseline (14 rivers) K = 6 (a), and for the baseline with the outlier
populations (Oselva and Tysseelva) removed where K = 5 (b). Populations are grouped into the regional assignment units.
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3. Results
3.1. Baseline genetic structure and assessment
Significant genetic differentiation was observed between all rivers, as revealed by pairwise FST (electronic
supplementary material, table S3). The River Omvikelva was the only river in the baseline with temporal
samples separated by more than 3 years. These displayed very small but significant genetic differences
(FST= 0.005, p < 0.000).

When examining the STRUCTURE results, for the baseline containing all 14 populations, Evanno’s
test [55] and StructureSelector [56] indicated that ΔK was highest when K = 6 (figure 2a) while the
highest ΔK for the truncated baseline (12 populations—removing the rivers Tysseelva and Oselva,
which are geographical outliers) was given as K = 5 (figure 2b). For both analyses (including either 14
populations or 12 populations after the outlier rivers were removed), the inner rivers clustered
together, in agreement with the geographical approach for regional assignment. The rivers designated
to the middle and outer regions clustered more distinctly as separate river populations; however, it
was decided to base the assignment on geographical regions as described above. The PCA analysis
identified genetic structure that to a large degree overlapped with the clustering analysis provided
above by STRUCTURE (electronic supplementary material, figure S1).

The Leave One Out test applied to examine accuracy of assignment within the genetic baseline found
that on average 53.1% of fish were correctly assigned back to their river of origin (electronic
supplementary material, table S4). In most cases, mis-assignment occurred between rivers located near
to each other, further supporting the use of regional assignment units over individual rivers. When
using regional reporting units (i.e. inner, middle and outer fjord), self-assignment accuracy improved
to 72.1% on average (table 2). The MSA found the assignment accuracy for the regional baseline to be
robust. In the 100% simulations, the CI ranges of the estimated proportions contained the actual
proportions used in the simulations for all regional reporting units apart from the outer region
(electronic supplementary material, figure S2). In the realistic MSA simulations, the CI ranges of the
estimated proportions contained the real fishery proportions used in the simulations for all regional
reporting units (electronic supplementary material, figure S2).

3.2. Assigning the post-smolts to regional units
The weekly MSA for each year exhibited a general temporal trend of higher estimated proportions of fish
from rivers located in the outer and middle regions of the fjord being present in the trawl catches in the
earlier weeks than fish from the inner region (figure 3). In the later weeks of each year, the proportions of
fish from rivers located in the inner region of the fjord increased compared to the outer and middle



Table 2. Proportion of the baseline samples that were assigned to each regional assignment unit by the Leave One Out test in
ONCOR. The diagonal (in italics) represents the proportion of individuals that were correctly self-assigned to each region.

outlier inner middle outer

outlier 0.74 0.06 0.09 0.11

inner 0.02 0.80 0.11 0.07

middle 0.04 0.15 0.67 0.13

outer 0.05 0.12 0.16 0.68
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regions (figure 3). These trends were evident in all trawl years. Figures from 2013, 2015 and 2016 are
presented in electronic supplementary material, figures S3–S5).
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4. Discussion
To our knowledge, this is the first study to infer fjord migration timing of wild Atlantic salmon post-
smolts using genetic methods. Our results showed that, on average, post-smolts originating from
rivers located in the outer and middle regions of the fjord migrate out of the fjord before post-smolts
originating from rivers located in the inner region of the fjord. We demonstrate that genetic methods
can, therefore, be used to infer spatial and temporal patterns of post-smolt migration in the coastal
marine environment.

4.1. Genetic assignment success
Among the baseline rivers, there was some evidence of hierarchical genetic structuring (figure 2;
electronic supplementary material, figure S1). Furthermore, assignment accuracy to geographical
region was substantially higher than to individual river of origin as mis-assignments tended to favour
geographically close rivers. Assignment to regional reporting units provided a trade-off between
accuracy and precision in order to identify the temporal and spatial migratory patterns of the fish.

The Hardangerfjord is Norway’s most aquaculture-intensive coastal region, andmultiple rivers within
the Hardangerfjord have been admixed with escaped farmed salmon [57–60]. In turn, this has caused a
reduction in population genetic differentiation with time due to a homogenizing effect [57,58]. Our
baseline samples were sourced from recent years to control for any potential long-term changes in
population genetic structure among rivers resulting from introgression of farmed salmon or any other
stochastic challenges. The use of additional markers and incorporating non-genetic river-specific
information in future assignment studies may also improve the assignment accuracy of the baseline.

The rivers Oselva and Tysseelva were genetically distinct to the rivers inside the Hardangerfjord and
were estimated to contribute little to the MSA. This result was intuitive, as they are located outside the
fjord, and were only included in the baseline to investigate the accuracy of assignments. It was therefore
not expected that any of the post-smolts would originate from either Oselva or Tysseelva. However, in
2016, the MSA estimated a very small proportion of fish belonging to the outlier region. In 2016,
trawling occasionally occurred between Stord island and the mainland, therefore it is possible that
fish from the River Oselva, which is the second-largest population in the region, occasionally use this
channel to migrate to sea.

4.2. Spatio-temporal patterns of post-smolt migration
The present study illustrates how genetic tools may be used to infer patterns of migration in salmon
post-smolts in coastal regions. In turn, this has provided new information on the migratory dynamics
of salmon from the different rivers. The majority of previous knowledge pertaining to migration
routes stems from telemetry studies (but see [5,6]). Such studies are often limited by low sample sizes
and high costs, and it is rarely feasible to tag fish from all contributing rivers simultaneously. Also,
the tagging procedure may have an effect on the behaviour of the tagged fish [2,61].

Across all years of the present study, higher proportions of salmon originating from rivers in the inner
region of the fjord were found in later trawl catches, strongly suggesting that the majority of these fish
arrive at the outer fjord later than salmon originating from rivers in the middle and outer regions
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(figure 3). Our results are in agreement with Vollset et al. [62], who used mark-recapture data to estimate
arrival times to the outer fjord of post-smolts from several rivers on the west coast of Norway. They
found that post-smolts from rivers with longer migration distances (inner rivers) would exit the fjord
three to four weeks after post-smolts from outer rivers. Differences in fjord exit times may have large
population-level implications if fish arrive out of sync with the optimal survival conditions, for
example during periods with a high frequency of predators or periods of low food availability [63].
Several studies suggest that populations with longer fjord migrations may be more exposed to
mortality-inducing factors within a fjord [62,64,65]. Migration periods that coincide with periods of
increased sea lice prevalence, for example through spring and summer [66], may cause high mortality
for a particular migration cohort or population. Our data indicate that post-smolts originating from
rivers located in the inner region of the fjord face a longer migration and arrive at the outer fjord later
than post-smolts originating from rivers located in the middle or outer regions of the fjord. Thus,
these populations may experience a higher and longer exposure and infestation pressure from sea lice
and other factors affecting marine mortality than the outer populations.

The current regulation of the growth of the aquaculture industry in Norway depends on the
estimated mortality of wild post-smolts from sea lice originating from fish farms [36,67]. These
estimates are based on models, one of which estimates the spatio-temporal overlap between sea lice
and post-smolts in the fjords. Our results highlight the need to incorporate temporal and spatial
migration patterns among rivers and regions within a fjord system into these models. The
Hardangerfjord is Norway’s most aquaculture-intense coastal region, and high infestations of lice on
seaward migrating salmon post-smolts has resulted in the additional sea-lice-mediated mortality
within this region (production zone 3) being estimated as above 30% (high) in the Norwegian sea lice
monitoring programme [43]. Models predicting the overlap between post-smolts and sea lice should
take regional differences in infection pressure into account when estimating the additional mortality
from sea lice within the Hardangerfjord and other fjord systems with similar geography.

Ethics. Permission for the trawling activities within the Hardangerfjord were granted by The Norwegian Environment
Agency (Miljødirektoratet) in accordance with the Act on Salmon Fish and Inland Fish of 15 May 1992 (No. 47 §13,
cf. Nature Diversity Act, §18) for each year: 2013 (2013/5291 ART-FF-SJ); 2014 (2014/4225), 2015 (2015/2742); 2016
(2016/3535); and 2017 (2017/33890). Permission for the electrofishing activities within the rivers in Hardangerfjord
was granted by Fylkesmannen i Hordaland in accordance with the Act on Salmon Fish and Inland Fish of 15 May



royalsocietypublishing.org/journal/rsos
R.Soc.

9
1992 (No. 47 §13, cf. Nature Diversity Act, §18) for 2017 and 2018 (2016/2105 443.1). In addition, the welfare and use of
animals was performed in strict accordance with the Norwegian Animal Welfare Act of 19 June 2009, enforced on the
1 January 2010. All personnel involved had undergone training approved by the Norwegian Food Safety Authority.
Data accessibility. The dataset supporting this article has been uploaded as part of the electronic supplementary material.
Authors’ contributions. A.C.H. participated in field data collection, carried out the molecular work, participated in data
analysis and drafted the manuscript, M.Q. participated in data analysis, K.A.G. conceived and designed the study
and participated in data analysis, Ø.K. conceived and designed the study and coordinated the field data collection,
R.N. coordinated and participated in field data collection, Ø.S. coordinated field data collection, H.S. participated
in data analysis, S.K. participated in field data collection and carried out the molecular work, V.W. conceived and
designed the study, participated in data analysis. All authors contributed critically to the drafts and gave final
approval for publication.
Competing interests. The authors have no competing interests to declare.
Funding. This project is funded by the Norwegian Ministry of Trade, Industry and Fisheries.
Acknowledgements. We thank everyone who contributed to the project, including those who collected the trawl samples
(coordinated by Ø.K.), contributed baseline samples (Rådgivende Biologer AS & the Institute of Marine Research
(IMR)), helped to sample the fish and contributed to the genotyping in the laboratory. We also thank Eric Verspoor
and John Gilbey for their helpful insights into the data analyses.
open
sci.6:
References
190426
1. Robinson RA et al. 2009 Travelling through a
warming world: climate change and migratory
species. Endangered Species Res. 7, 87–99.
(doi:10.3354/esr00095)

2. Thorstad EB, Rikardsen AH, Alp A, Økland F.
2013 The use of electronic tags in fish research
– an overview of fish telemetry methods.
Turkish J. Fisheries Aquat. Sci. 13, 881–896.
(doi:10.4194/1303-2712-v13_5_13)

3. Beacham TD, Beamish RJ, Candy JR, Wallace C,
Tucker S, Moss JH, Trudel M. 2014 Stock-specific
migration pathways of juvenile sockeye salmon
in British Columbia waters and in the Gulf of
Alaska. Trans. Am. Fish. Soc. 143, 1386–1403.
(doi:10.1080/00028487.2014.935476)

4. Tucker S, Trudel M, Welch DW, Candy JR, Morris
JFT, Thiess ME, Wallace C, Beacham TD. 2012
Annual coastal migration of juvenile Chinook
salmon: static stock-specific patterns in a high
dynamic ocean. Marine Ecol. Prog. 499,
245–262. (doi:10.3354/meps09528)

5. Östergren J, Nilsson J, Lundqvist H. 2012
Linking genetic assignment tests with telemetry
enhances understanding of spawning migration
and homing in sea trout Salmo trutta L.
Hydrobiologia 691, 123–134. (doi:10.1007/
s10750-012-1063-7)

6. Whitlock R, Mäntyniemi S, Palm S, Koljonen M-
L, Dannewitz J, Östergren J. 2018 Integrating
genetic analysis of mixed populations with a
spatially explicit population dynamics model.
Methods Ecol. Evol. 9, 1017–1035. (doi:10.1111/
2041-210x.12946)

7. Bryja J, Kaňuch P, Fornůsková A, Bartonička T,
Řehák Z. 2009 Low population genetic
structuring of two cryptic bat species suggests
their migratory behaviour in continental Europe.
Biol. J. Linnean Soc. 96, 103–114. (doi:10.1111/
j.1095-8312.2008.01093.x)

8. Hellgren O, Bensch S, Hobson KA, Lindström Å.
2008 Population structure and migratory
directions of Scandinavian bluethroats Luscinia
svecica – a molecular, morphological and stable
isotope analysis. Ecography 31, 95–103. (doi:10.
1111/j.2007.0906-7590.05258.x)
9. Beacham TD, Wallace C, MacConnachie C, Jonsen
K, McIntosh B, Candy JR, Withler RE. 2017
Population and individual identification of
Chinook salmon in British Columbia through
parentage-based tagging and genetic stock
identification with single nucleotide
polymorphisms. Can. J. Fish. Aquat. Sci. 75,
1096–1105. (doi:10.1139/cjfas-2017-0168)

10. Bradbury IR et al. 2016 Genetic mixed-stock
analysis disentangles spatial and temporal
variation in composition of the West Greenland
Atlantic salmon fishery. ICES J. Marine Sci. 73,
2311–2321. (doi:10.1093/icesjms/fsw072)

11. Vähä JP et al. 2014 Genetic structure of Atlantic
salmon in the Barents region and genetic stock
identification of coastal fishery catches from
Norway and Russia. Finnmark, Norway:
Fylkesmannen i Finnmark.

12. Carvalho GR, Hauser L. 1994 Molecular genetics
and the stock concept in fisheries. Rev. Fish Biol.
Fish. 4, 326–350. (doi:10.1007/BF00042908)

13. Johansen T, Westgaard JI, Seliussen BB,
Nedreaas K, Dahle G, Glover KA, Kvalsund R,
Aglen A. 2017 ‘Real-time’ genetic monitoring of
a commercial fishery on the doorstep of an MPA
reveals unique insights into the interactions
between coastal and migratory forms of the
Atlantic cod. ICES J. Mar. Sci. 75, 1093–1104.
(doi:10.1093/icesjms/fsx224)

14. Dahle G, Johansen T, Westgaard JI, Aglen A,
Glover KA. 2018 Genetic management of mixed-
stock fisheries ‘real-time’: the case of the largest
remaining cod fishery operating in the Atlantic
in 2007–2017. Fish. Res. 205, 77–85. (doi:10.
1016/j.fishres.2018.04.006)

15. Beacham TD, Candy JR, Wallace C, Wetklo M,
Deng L, MacConnachie C. 2012 Microsatellite
mixed-stock identification of Coho salmon in
British Columbia. Mar. Coast. Fish. Dyn. Manage.
Ecosyst. Sci. 4, 85–100. (doi:10.1080/19425120.
2012.661393)

16. Swatdipong A, Vasemagi A, Niva T, Koljonen
ML, Primmer CR. 2013 Genetic mixed-stock
analysis of lake-run brown trout Salmo trutta
fishery catches in the Inari Basin, northern
Finland: implications for conservation and
management. J. Fish Biol. 83, 598–617. (doi:10.
1111/jfb.12199)

17. Koljonen ML, Gross R, Koskiniemi J. 2014 Wild
Estonian and Russian sea trout (Salmo trutta) in
Finnish coastal sea trout catches: results of
genetic mixed-stock analysis. Hereditas 151,
177–195. (doi:10.1111/hrd2.00070)

18. Ozerov M et al. 2017 Comprehensive
microsatellite baseline for genetic stock
identification of Atlantic salmon (Salmo salar L.)
in northermost Europe. ICES J. Mar. Sci. 74,
2159–2169. (doi:10.1093/icesjms/fsx041)

19. Prodöhl P et al. 2017 Population genetics and
genetic stock identification of anadromous Salmo
trutta from the Irish Sea and adjacent areas using
microsatellite loci. In Sea trout: science and
management (ed. G Harris), pp. 69–95. Leicester,
UK: Troubador Publishing Ltd.

20. Ensing D, Crozier WW, Boylan P, O’Maoiléidigh N,
McGinnity P. 2013 An analysis of genetic stock
identification on a small geographical scale using
microsatellite markers, and its application in the
management of a mixed-stock fishery for Atlantic
salmon Salmo salar in Ireland. J. Fish Biol. 82,
2080–2094. (doi:10.1111/jfb.12139)

21. Gilbey J, Wennevik V, Bradburry IR, Fiske P,
Hansen LP, Jacobsen JA, Potter T. 2017 Genetic
stock identification of Atlantic salmon caught in
the Faroese fishery. Fish. Res. 187, 110–119.
(doi:10.1016/j.fishres.2016.11.020)

22. Vähä JP, Erkinaro J, Falkegård M, Orell P,
Niemela E. 2017 Genetic stock identification of
Atlantic salmon and its evaluation in a large
population complex. Can. J. Fish. Aquat. Sci. 74,
327–338. (doi:10.1139/cjfas-2015-0606)

23. Thorstad EB, Whoriskey F, Uglem I, Moore A,
Rikardsen AH, Finstad B. 2012 A critical life stage
of the Atlantic salmon Salmo salar: behaviour
and survival during the smolt and initial post-
smolt migration. J. Fish Biol. 81, 500–542.
(doi:10.1111/j.1095-8649.2012.03370.x)

24. Thorstad EB, Whoriskey F, Rikardsen AH, Aarestrup
K. 2011 Aquatic nomads: the lIfe and migrations of
the Atlantic salmon. In Atlantic salmon ecology

http://dx.doi.org/10.3354/esr00095
http://dx.doi.org/10.4194/1303-2712-v13_5_13
http://dx.doi.org/10.1080/00028487.2014.935476
http://dx.doi.org/10.3354/meps09528
http://dx.doi.org/10.1007/s10750-012-1063-7
http://dx.doi.org/10.1007/s10750-012-1063-7
http://dx.doi.org/10.1111/2041-210x.12946
http://dx.doi.org/10.1111/2041-210x.12946
http://dx.doi.org/10.1111/j.1095-8312.2008.01093.x
http://dx.doi.org/10.1111/j.1095-8312.2008.01093.x
http://dx.doi.org/10.1111/j.2007.0906-7590.05258.x
http://dx.doi.org/10.1111/j.2007.0906-7590.05258.x
http://dx.doi.org/10.1139/cjfas-2017-0168
http://dx.doi.org/10.1093/icesjms/fsw072
http://dx.doi.org/10.1007/BF00042908
http://dx.doi.org/10.1093/icesjms/fsx224
http://dx.doi.org/10.1016/j.fishres.2018.04.006
http://dx.doi.org/10.1016/j.fishres.2018.04.006
http://dx.doi.org/10.1080/19425120.2012.661393
http://dx.doi.org/10.1080/19425120.2012.661393
http://dx.doi.org/10.1111/jfb.12199
http://dx.doi.org/10.1111/jfb.12199
http://dx.doi.org/10.1111/hrd2.00070
http://dx.doi.org/10.1093/icesjms/fsx041
http://dx.doi.org/10.1111/jfb.12139
http://dx.doi.org/10.1016/j.fishres.2016.11.020
http://dx.doi.org/10.1139/cjfas-2015-0606
http://dx.doi.org/10.1111/j.1095-8649.2012.03370.x


royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:190426
10
(eds Ø Aas, S Einum, A Klemetsen, J Skurdal), pp.

1–32. West Sussex, UK: Wiley-Blackwell.
25. Otero J et al. 2014 Basin-scale phenology and

effects of climate variability on global timing of
initial seaward migration of Atlantic salmon
(Salmo salar). Glob. Change Biol. 20, 61–75.
(doi:10.1111/gcb.12363)

26. McCormick SD, Hansen LP, Quinn TP, Saunders
RL. 1998 Movement, migration, and smolting of
Atlantic salmon (Salmo salar). Can. J. Fish.
Aquat. Sci. 55, 77–92. (doi:10.1139/d98-011)

27. ICES. 2017 Report of the Working Group on
North Atlantic Salmon (WGNAS). Copenhagen,
Denmark: Internation Council for the Exploration
of the Sea.

28. Glover KA et al. 2017 Half a century of genetic
interaction between farmed and wild Atlantic
salmon: status of knowledge and unanswered
questions. Fish Fish. 18, 890–927. (doi:10.1111/
faf.12214)

29. Forseth T et al. 2017 The major threats to
Atlantic salmon in Norway. ICES J. Mar. Sci. 74,
1496–1513. (doi:10.1093/icesjms/fsx020)

30. Heuch PA, Bjørn PA, Finstad B, Holst JC, Asplin
L, Nilsen F. 2005 A review of the Norwegian
‘National Action Plan Against Salmon Lice on
Salmonids’: the effect on wild salmonids.
Aquaculture 246, 79–92. (doi:10.1016/j.
aquaculture.2004.12.027)

31. Thorstad EB et al. 2015 Effects of salmon lice
Lepeoptheirus salmonis on wild sea trout Salmo
trutta—a literature review. Aquaculture Environ.
Interact. 7, 91–113. (doi:10.3354/aei00142)

32. Serra-Llinares RM, Bjørn PA, Finstad B, Nilsen R,
Harbitz A, Berg M, Asplin L. 2014 Salmon lice
infection on wild salmonids in marine protected
areas: an evaluation of the Norwegian ‘National
Salmon Fjords’. Aquaculture Environ. Interact. 5,
1–16. (doi:10.3354/aei00090)

33. Heuch PA, Mo TA. 2001 A model of salmon
louse production in Norway: effects of
increasing salmon production and public
management measures. Dis. Aquat. Organ. 45,
145–152. (doi:10.3354/dao045145)

34. Anon. 2015 Forutsigbar og miljømessig
bærekraftig vekst i norsk lakse- og ørretoppdrett.
St. Meld. 16 (2014–2015). White Paper.

35. Myksvoll MS et al. 2018 Evaluation of a national
operational salmon lice monitoring system—
from physics to fish. PLoS ONE 13, 1–25.
(doi:10.1371/journal.pone.0201338)

36. Kristoffersen AB, Qviller L, Helgesen KO, Vollset
KW, Viljugrein H, Jansen PA. 2017 Quantitative
risk assessment of salmon louse-induced
mortality of seaward-migrating post-smolt
Atlantic salmon. Epidemics 23, 19–33. (doi:10.
1016/j.epidem.2017.11.001)

37. Johnsen IA, Harvey AC, Sævik PN, Sandvik AD,
Ugedal O, Ådlandsvik B, Wennevik V, Glover KA,
Karlsen Ø. In preparation. Salmon lice
(Lepeoptherius salmonis) induced mortality of
Atlantic salmon (Salmo salar) during post-smolt
migration in Norway.

38. Sandvik AD, Bjørn PA, Ådlandsvik B, Asplin L,
Skarðhamar J, Johnsen IA, Myksvoll MS, Skogen
MD. 2016 Toward a model-based prediction
system for salmon lice infestation pressure.
Aquaculture Environ. Interact. 8, 527–542.
(doi:10.3354/aei00193)
39. Bradbury IR et al. 2016 Genetic mixed stock
analysis of an interceptory Atlantic salmon
fishery in the Northwest Atlantic. Fish. Res. 174,
234–244. (doi:10.1016/j.fishres.2015.10.009)

40. Gilbey J et al. 2016 Accuracy of assignment of
Atlantic salmon (Salmo salar L.) to rivers and
regions in Scotland and Northeast England
based on single nucleotide polymorphism (SNP)
markers. PLoS ONE 11, 1–23. (doi:10.1371/
journal.pone.0164327)

41. Gilbey J. et al. 2017 A microsatellite baseline for
genetic stock identification of European Atlantic
salmon (Salmo salar L). ICES J. Mar. Sci. 75,
662–674. (doi:10.1093/icesjms/fsx184)

42. Wennevik V, Quintela M, Skaala Ø, Verspoor E,
Prusov S. 2019 Population genetic analysis
reveals a geographically limited transition zone
between two genetically distinct Atlantic
salmon lineages in Norway. Ecol. Evol. 9,
6901–6921. (doi:10.1002/ece3.5258)

43. Nilsen R et al. 2017 Lakselusinfestasjon på vill
laksefisk langs norskekysten i 2017. Bergen,
Norway: Havforskningsinstituttet.

44. Skaala Ø, Glover KA, Barlaup BT, Svåsand T,
Besnier F, Hansen MM, Borgstrom R. 2012
Performance of farmed, hybrid, and wild
Atlantic salmon (Salmo salar) families in a
natural river environment. Can. J. Fish. Aquat.
Sci. 69, 1994–2006. (doi:10.1139/f2012-118)

45. Skaala Ø, Besnier F, Borgstrøm R, Barlaup BT,
Sørvik AGE, Normann E, Østenbø BI, Hansen MM,
Glover KA. 2019 An extensive common-garden
study with domesticated and wild Atlantic salmon
in the wild reveals impact on smolt production and
shifts in fitness traits. Evol. Appl. 12, 1001–1016.
(doi:10.1111/eva.12777)

46. Pritchard JK, Stephens M, Donnelly P. 2000
Inference of population structure using
multilocus genotype data. Genetics 155,
945–959.

47. Meirmans PG, Van Tienderen PH. 2004
Genotype and Genodive: two programs for the
analysis of genetic diversity of asexual
organisms. Mole. Ecol. Notes 4, 782–794.
(doi:10.1111/j.1471-8286.2004.00770.x)

48. Kalinowski ST, Manlove KR, Taper ML. 2007
ONCOR: a computer program for genetic stock
identification. Bozeman, MT: Department of
Ecology, Montana State Unversity.

49. Anderson EC, Waples RS, Kalinowski ST. 2008 An
improved method for estimating the accuracy of
genetic stock identification. Can. J. Fish. Aquat.
Sci. 65, 1475–1486. (doi:10.1139/F08-049)

50. Johnsen GH, Sægrov H, Urdal K, Kålås S. 2008
Hardangerfjorden. Økologisk status 2007 og
veien videre. Bergen, Norway: Rådgivende
Biologer AS.

51. Urdal K, Kålås S, Sægrov H. 2009
Ungfiskundersøkingar i Etnevassdraget i Hordaland
hausten 2008. Bergen, Norway: Rådgivende
Biologer AS.

52. Kålås S, Sægrov H. 2008 Fiskeundersøking etter
fiskedød i Vatnaelva i Ådlandsvassdraget, Stord
kommune: Rådgivende Biologer AS. Report No.:
1119.

53. Rannala B, Mountain JL. 1997 Detecting
immigration by using multilocus genotypes.
Proc. Natl Acad. Sci. USA. 94, 536–539. (doi:10.
1073/pnas.94.17.9197)
54. Millar RB. 1987 Maximum likelihood estimation
of mixed stock fishery composition. Can. J. Fish.
Aquat. Sci. 44, 583–590. (doi:10.1139/f87-071)

55. Evanno G, Regnaut S, Goudet J. 2005 Detecting the
number of clusters of individuals using the
software structure: a simulation study. Mol. Ecol.
14, 2611–2620. (doi:10.1111/j.1365-294X.2005.
02553.x)

56. Li Y-L, Liu J-X. 2017 STRUCTURESELECTOR: a
web-based software to select and visualise the
optimal number of clusters using multiple
methods. Mol. Ecol. Res. 18, 176–177. (doi:10.
1111/1755-0998.12719)

57. Skaala Ø, Wennevik V, Glover KA. 2006 Evidence
of temporal genetic change in wild Atlantic
salmon, Salmo salar L., populations affected by
farm escapees. ICES J. Mar. Sci. 63, 1224–1233.
(doi:10.1016/j.icesjms.2006.04.005)

58. Glover KA, Quintela M, Wennevik V, Besnier F,
Sorvik AG, Skaala O. 2012 Three decades of
farmed escapees in the wild: a spatio-temporal
analysis of Atlantic salmon population genetic
structure throughout Norway. PLoS ONE 7,
e43129. (doi:10.1371/journal.pone.0043129)

59. Glover KA, Pertoldi C, Besnier F, Wennevik V,
Kent M, Skaala O. 2013 Atlantic salmon
populations invaded by farmed escapees:
quantifying genetic introgression with a
Bayesian approach and SNPs. BMC Genet. 14,
74. (doi:10.1186/1471-2156-14-74)

60. Karlsson S, Diserud OH, Fiske P, Hindar K. 2016
Widespread genetic introgression of escaped
farmed Atlantic salmon in wild salmon
populations. ICES J. Mar. Sci. 73, 2488–2498.
(doi:10.1093/icesjms/fsw121)

61. Thorstad EB, Kerwath SE, Attwood CG, Økland F,
Wilke CG, Cowley PD, Næsje TF. 2009 Long-term
effects of two sizes of surgically implanted
acoustic transmitters on a predatory marine fish
(Pomatomus saltatrix). Mar. Freshwater Res. 60,
183–186. (doi:10.1071/MF08191)

62. Vollset KW, Barlaup BT, Mahlum S, Bjørn PA,
Skilbrei OT. 2016 Estimating the temporal overlap
between post-smolt migration of Altantic salmon
and salmon lice infestation pressure from fish
farms. Aquaculture Environ. Interact. 8, 511–525.
(doi:10.3354/aei00195)

63. Beaugrand G, Reid PC. 2012 Relationships
between North Atlantic salmon, plankton, and
hydroclimatic change in the Northeast Atlantic.
ICES J. Mar. Sci. 69, 1549–1562. (doi:10.1093/
icesjms/fss153)

64. Vollset KW, Skoglund H, Barlaup BT, Pulg U,
Gabrielsen SE, Wiers T, Skår B, Lehmann GB.
2014 Can the river location within a fjord
explain the density of Atlantic salmon and sea
trout? Mar. Biol. Res. 10, 268–278. (doi:10.
1080/17451000.2013.810761)

65. Halttunen E et al. 2018 Migration of Atlantic
salmon post-smolts in a fjord with a high
infestation pressure of salmon lice. Mar. Ecol. Prog.
Ser. 592, 243–256. (doi:10.3354/meps12403)

66. Boxaspen K. 2006 A review of the biology and
genetics of sea lice. ICES J. Mar. Sci. 63,
1304–1316. (doi:10.1016/j.icesjms.2006.04.017)

67. Anon. 2017 Forskrift om produksjonsområder for
akvakultur av matfisk i sjø av laks, ørret
og regnbueørret ( produksjonsområdeforskriften).
Oslo, Norway: Nærings-og fiskeridepartementet.

http://dx.doi.org/10.1111/gcb.12363
http://dx.doi.org/10.1139/d98-011
http://dx.doi.org/10.1111/faf.12214
http://dx.doi.org/10.1111/faf.12214
http://dx.doi.org/10.1093/icesjms/fsx020
http://dx.doi.org/10.1016/j.aquaculture.2004.12.027
http://dx.doi.org/10.1016/j.aquaculture.2004.12.027
http://dx.doi.org/10.3354/aei00142
http://dx.doi.org/10.3354/aei00090
http://dx.doi.org/10.3354/dao045145
http://dx.doi.org/10.1371/journal.pone.0201338
http://dx.doi.org/10.1016/j.epidem.2017.11.001
http://dx.doi.org/10.1016/j.epidem.2017.11.001
http://dx.doi.org/10.3354/aei00193
http://dx.doi.org/10.1016/j.fishres.2015.10.009
http://dx.doi.org/10.1371/journal.pone.0164327
http://dx.doi.org/10.1371/journal.pone.0164327
http://dx.doi.org/10.1093/icesjms/fsx184
http://dx.doi.org/10.1002/ece3.5258
http://dx.doi.org/10.1139/f2012-118
http://dx.doi.org/10.1111/eva.12777
http://dx.doi.org/10.1111/j.1471-8286.2004.00770.x
http://dx.doi.org/10.1139/F08-049
http://dx.doi.org/10.1073/pnas.94.17.9197
http://dx.doi.org/10.1073/pnas.94.17.9197
http://dx.doi.org/10.1139/f87-071
http://dx.doi.org/10.1111/j.1365-294X.2005.02553.x
http://dx.doi.org/10.1111/j.1365-294X.2005.02553.x
http://dx.doi.org/10.1111/1755-0998.12719
http://dx.doi.org/10.1111/1755-0998.12719
http://dx.doi.org/10.1016/j.icesjms.2006.04.005
http://dx.doi.org/10.1371/journal.pone.0043129
http://dx.doi.org/10.1186/1471-2156-14-74
http://dx.doi.org/10.1093/icesjms/fsw121
http://dx.doi.org/10.1071/MF08191
http://dx.doi.org/10.3354/aei00195
http://dx.doi.org/10.1093/icesjms/fss153
http://dx.doi.org/10.1093/icesjms/fss153
http://dx.doi.org/10.1080/17451000.2013.810761
http://dx.doi.org/10.1080/17451000.2013.810761
http://dx.doi.org/10.3354/meps12403
http://dx.doi.org/10.1016/j.icesjms.2006.04.017

	Inferring Atlantic salmon post-smolt migration patterns using genetic assignment
	Introduction
	Methods
	Sample collection and sampling
	Sampling fish in rivers (establishing the genetic baseline)
	Sampling post-smolts in the sea (trawl samples)

	Genotyping
	Statistical analysis
	Baseline genetic structure and assessment
	Assigning the post-smolts


	Results
	Baseline genetic structure and assessment
	Assigning the post-smolts to regional units

	Discussion
	Genetic assignment success
	Spatio-temporal patterns of post-smolt migration
	Ethics
	Data accessibility
	Authors' contributions
	Competing interests
	Funding

	Acknowledgements
	References


