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Abstract—In this paper, we formulate a generic construction
of MRD codes that covers almost all the newly found MRD
codes. Among those MRD codes, we particularly investigate the
encoding and decoding of a family of nonlinear MRD codes
recently by Otal and Özbudak.

Index Terms—Rank metric, maximum rank distance codes,
Gabidulin codes, Dickson matrix

I. INTRODUCTION

Rank metric codes have gained steady attention due to their
applications in a variety of areas, such as space-time coding
[1], random network coding [2] and cryptography [3]. Many
important properties of rank metric codes were independently
established in the pioneering works [4], [5], [6], in which the
rank metric Singleton bound was established and the maximum
rank distance (MRD) codes that attain the bound with equality
were constructed. The Gabidulin codes, the rank analogues of
Reed-Solomon codes, are the most famous linear MRD codes
and the decoding of such codes have been extensively studied
(see, e.g, [5], [7], [8], [9], [10], [11]).

In the last few years, significant progresses have been
made in the construction of MRD codes that are inequivalent
to the Gabidulin codes and their generalized variants. The
first non-(generalized) Gabidulin MRD codes were introduced
independently by Sheekey in [12] and by Otal and Özbudak
in [13], where the latter presented a particular case of the
former. Sheekey in [12] defined the codes by adding an extra
monomial to the polynomial representation of the original
Gabidulin codes with certain restriction on its coefficient and
called them the twisted Gabidulin (TG) codes. Later, the
generalized twisted Gabidulin (GTG) codes were intensively
investigated in [14]; and it was further extended by Otal
and Özbudak in [15], [16], where they proposed additive
(but not linear) MRD codes and non-additive partition codes,
respectively. Very recently, a new family of MRD codes with
even length was proposed in [17].

In this paper we formulate the aforementioned MRD codes
into a generic construction based on an interesting result on
the rank of linearized polynomials. Furthermore, we discuss
the encoding process of the non-additive partition codes and
propose an interpolation-based approach to decoding these
nonlinear codes. We also show that the proposed algorithm
has complexity dominated by the modified Berlekamp-Massey
algorithm [8], [18].

II. PRELIMINARIES

Throughout this paper we denote by GF pqrq the finite field
with qr elements for a prime power q and an integer r ě 1.

A. Linearized Polynomial
A polynomial of the form Lpxq “

řn´1
i“0 lix

qi with coef-
ficients in an extension field GF pqnq of GF pqq is called a
q-polynomial over GF pqnq. When q is fixed or the context is
clear, it is also customary to speak of a linearized polynomial
as it satisfies the linearity property: Lpcx1 ` x2q “ cLpx1q `
Lpx2q for any c P GF pqq and any x1, x2 in an arbitrary
extension of GF pqnq. Let LnpGF pqnqq be the set of all the
following linearized polynomials

Lpxq “
n´1
ÿ

i“0

lix
qi P GF pqnqrxs{pxq

n

´ xq. (1)

Equipped with the addition and the composition of polynomi-
als, the set LnpGF pqnqq forms a GF pqq-algebra.

Definition 1: Given a linearized polynomial Lpxq “
řn´1
i“0 lix

qi over GF pqnq, the q-degree of Lpxq is given by
degqpLq “ maxt0 ď i ă n : li ‰ 0u, and the rank of Lpxq,
denoted by RankpLq, is defined as the dimension of the image
ImpLq “ tLpxq|x P GF pqnqu over GF pqq.

Some properties of linearized polynomials with a prescribed
rank and their associated Dickson matrices are characterized
in [19], [20].

Proposition 1: [19, Th. 2.4] Let Lpxq be a linearized
polynomial in LnpGF pqnqq with rank r. Then there exist
two groups of linearly independent vectors α1, ¨ ¨ ¨ , αr and
β1, ¨ ¨ ¨ , βr in GF pqnq such that

Lpxq “
r
ÿ

i“1

Trpαixqβi “
n´1
ÿ

i“0

˜

r
ÿ

j“1

βjα
qi

j

¸

xq
i

. (2)

From Proposition 1 we can derive an interesting property of
the Dickson matrix associated with linearized polynomials.

Proposition 2: [20, Th. 3] Let Lpxq be a linearized polyno-
mial in LnpGF pqnqq with rank r. Then its associated Dickson
matrix

D “
´

lq
j

i´jpmodnq

¯

nˆn
“

¨

˚

˚

˚

˚

˝

l0 lqn´1 ¨ ¨ ¨ lq
n´1

1

l1 lq0 ¨ ¨ ¨ lq
n´1

2
...

...
. . .

...
ln´1 lqn´2 ¨ ¨ ¨ lq

n´1

0

˛

‹

‹

‹

‹

‚

, (3)



where 0 ď i, j ă n, also has rank r. Moreover, any r ˆ r
sub-matrix of D that is formed by r consecutive rows and r
consecutive columns in D is nonsingular.

Proposition 2 can be easily proved by expressing the
Dickson matrix D in terms of the product of two Moore
matrices [21] generated from α1, ¨ ¨ ¨ , αr and β1, ¨ ¨ ¨ , βr,
respectively. The properties of the Dickson matrix character-
ized in Proposition 2 are critical for the interpolation-based
decoding algorithm in this paper.

B. Rank Metric Codes

Let n,m be two positive integers and GF pqqmˆn be the
set of m ˆ n matrices over GF pqq. The rank distance on
the GF pqqmˆn is defined by drpA ´ Bq “ RankpA ´ Bq for
A, B P GF pqqmˆn.

Definition 2: A rank metric code C is a subset of GF pqqmˆn

equipped with the rank distance, and its minimum rank dis-
tance is naturally defined as drpCq “ mintdrpA´ Bq |A,B P
C and A ‰ Bu.
Since the matrix transpose operation preserves the param-
eters of a rank metric code, it is commonly assumed that
n ď m without loss of generality. Assume β “ tβ1, ¨ ¨ ¨ , βmu
is a basis of GF pqmq over GF pqq. It induces a one-to-
one mapping φ : GF pqqmˆn Ñ GF pqmqn defined by
φpAq “ pβ1, ¨ ¨ ¨ , βmqA “ pa1, ¨ ¨ ¨ , anq. Hence a rank metric
code in matrix form can be converted to a code of length
n over GF pqmq whose rank metric distance is defined by
the corresponding rank distance on GF pqqmˆn. Hence a
rank metric code is usually also represented in the vectorial
form as a subset of GF pqmqn and the conventional notation
pn,M, dqqm is used to denote rank metric codes over GF pqmq
with length n, M codewords and minimum rank distance d.
It is well-known that a rank metric pn,M, dqqm code satisfies
a Singleton-like bound:

M ď qmintnpm´d`1q,mpn´d`1qu.

Rank metric codes that attain the Singleton-like bound by
equality are called maximum rank distance (MRD) codes.
MRD codes have a rich mathematical structure and have found
wide applications in space-time coding [1], random network
coding [22] and cryptography [3], [23].

C. Maximum Rank Distance Codes

In the sequel we shall assume n “ m and summarize
recently found MRD codes in terms of linearized polynomials.

Let α “ tα1, ¨ ¨ ¨ , αnu and β “ tβ1, ¨ ¨ ¨ , βnu be two
ordered bases of GF pqnq over GF pqq. Then for any linearized
polynomial f in LnpGF pqqnq, we have

fpxq “ fpx1α1 ` ¨ ¨ ¨ ` xnαnq

“ pfpα1q, ¨ ¨ ¨ , fpαnqqpx1, ¨ ¨ ¨ , xnq
T

“ pβ1, ¨ ¨ ¨ , βnq ¨ F ¨ px1, ¨ ¨ ¨ , xnq
T ,

where px1, ¨ ¨ ¨ , xnq P GF pqqn and F “
`

fpαjqβ
˘

1ďjďn
is

a matrix over GF pqq of which the j-th column is given by
the coordinates of fpαjq under the basis β, i.e., fpαjq “

pβ1, ¨ ¨ ¨ , βnqfpαjqβ . Observe that the matrix F is one-to-
one corresponding to f with respect to the bases α and
β, and its rank is equal to Rankpfq. Moreover, the algebra
GF pqqnˆn with matrix addition and multiplication has a one-
to-one correspondence to the algebra LnpGF pqqnq. With such
a correspondence, we will consider the algebra LnpGF pqqnq
as the ambient space instead of GF pqqnˆn in the following,
which seems more elegant to represent rank metric codes.

For a linearized polynomial Lpxq P LnpGF pqqnq, the rank
nullity theorem implies

RankpLq “ RankpImpLqq “ n´ dimpKerpLqq,

where KerpLq “ tx P GF pqnq|Lpxq “ 0u. Hence the rank of
a linearized polynomial Lpxq satisfies

RankpLq “ n´ dimpKerpLqq ě n´ degqpLq

since the dimension of KerpLq is at most the q-degree of Lpxq.
This property naturally results in the famous Gabidulin codes
G over GF pqnq, which can be defined in terms of linearized
polynomial as follows

G “

#

k´1
ÿ

i“0

fix
qi | fi P GF pq

nq

+

. (4)

In recent years several new families of MRD codes were
constructed, which heavily depend on the following result on
the rank of certain linearized polynomials.

Lemma 1: Let s be a positive integer co-prime to n and
fpxq “ f0x ` f1x

qs ` ¨ ¨ ¨ ` fkx
qks

P LnpGF pqnqq with
fk ‰ 0. If the coefficients f0 and fk satisfy

Normqn{qpfkq ‰ p´1qnkNormqn{qpf0q, (5)

where Normqn{qpxq “ x
qn´1
q´1 , then Rankpfq ě n´ k ` 1.

Despite its simplicity, Lemma 1 turns out to be a powerful
tool to construct new families of MRD codes. Sheekey in
[12] first adopted it to construct the twisted Gabidulin (TG)
codes, which was further extended to the generalized twisted
Gabidulin (GTG) codes in [14]. It was also employed in
the construction of additive generalized twisted Gabidulin
(AGTG) codes in [15] and non-additive partition codes [16].

Here we give a generic construction of MRD codes
equipped with Lemma 1, which covers all the aforementioned
MRD codes. (It does not cover the further generalized twisted
Gabidulin codes discussed in [24] and the nonlinear MRD
codes proposed in [25].)

Theorem 1: Let n, k, s, h P Z` satisfying ps, nq “ 1 and
k ă n. Let Γ be a subset of GF pqnq2 such that

|Γ| “ qn and pb2 ´ b1q
qn´1
q´1 ‰ p´1qnkpa2 ´ a1q

qn´1
q´1 (6)

for any distinct elements pa1, b1q, pa2, b2q P Γ. Then the code

Hn,k,spΓq “

#

k
ÿ

i“0

fix
qsi : fi P GF pq

nq, pf0, fkq P Γ

+

(7)

is an MRD code of size qnk and rank distance n´ k ` 1.
Proof. From the definition in (7), the difference of any two dis-



tinct codes can be expressed as hpxq “
řk
i“0 h

qsi

i , where the

coefficients h0 and hk satisfy h
qn´1
q´1

k ‰ p´1qnkh
qn´1
q´1

0 . From
Lemma 1 and (6), it follows that the linearized polynomial
hpxq has rank at least n´ k` 1, which implies that the code
Hn,k,spΓq has minimum rank distance at least n´ k ` 1. On
the other hand, the code Hn,k,spΓq has cardinality qnk since
|Γ| “ qn. By the Singleton-like bound, the code Hn,k,spΓq
must have minimum rank distance n´ k ` 1. �

From the definition in (7), the MRD codes recently given
in the literature [12], [14], [15], [16], [17] can be summarized
as below:
‚ when Γ “ tpa, 0q : a P GF pqnqu, the codes Hn,k,spΓq

are the generalized Gabidulin codes [7] and they become
the original Gabidulin codes [5] when s “ 1;

‚ when Γ “ tpa, ηaq
h

q : a P GF pqnqu for certain η
with Normqn{qpηq ‰ p´1qnk, the codes Hn,k,spΓq are
the GTG codes discussed in [14] and they become the
TG codes introduced by Sheekey [12] when s “ 1;

‚ when Γ “ tpa, ηaq
h
0 q : a P GF pqnqu, where q “ qu0

with u ą 1 and Normqn{q0pηq ‰ p´1qnku, the codes
Hn,k,spΓq are the AGTG codes introduced in [15];

‚ when Γ “ tpa, 0q, p0, bq : a, b P GF pqnq, Normqn{qpaq P
I,Normqn{qpbq R p´1qnkIu for some subset I Ď GF pqq,
the codes Hn,k,spΓq are the non-additive partition codes
proposed in [16];

‚ when n “ 2m, Γ “ tpa, γbq : a, b P GF pqmq, and
Normqn{qpγq is a non-square in GF pqq, the codes are
the ones proposed in [17] very recently.

In the above list, the first two classes of MRD codes are linear,
the third class are additive but generally not linear over GF pqq
and the last class are non-additive over GF pqq. It is easily seen
that the linearity or additivity property of the code Hn,k,spΓq
over GF pqq is completely dependent on the property of the set
Γ over GF pqq. Hence finding sets Γ satisfying (6) is critical
for constructing MRD codes from Lemma 1. From the third
and fourth classes of MRD codes we see that f0 and fk are
not necessarily closely dependent.

III. ENCODING AND DECODING OF MRD CODES

In this section we will discuss the encoding and decoding
of the MRD codes Hn,k,spΓq in Theorem 1. Throughout what
follows we will denote ris :“ qsi, 0 ď i ă n, for simplicity.

A. Encoding

With the codes Hn,k,spΓq, the encoding of a message
pf0, f1, ¨ ¨ ¨ , fk´1q can be interpreted as the evaluation of the
linearized polynomial fpxq “ f̂0x `

řk´1
i“1 fix

ris ` f̂kx
rks at

linearly independent points a1, ¨ ¨ ¨ , an in GF pqnq, where the
coefficients f̂0, f̂k are determined by the set Γ and the given
coordinate f0.

For the MRD codes summarized in the previous section, we
describe the derivation of the tuple pf̂0, f̂kq as follows:
‚ the GTG and AGTG codes: the coefficients pf̂0, f̂kq “
pf0, ηf

qh0
0 q with q0 “ q for the GTG codes [14] and q0 ă

q for the AGTG codes [15];

‚ the non-additive partition codes: this case sets the co-
efficients pf̂0, f̂kq “ pf0, 0q if Normqn{qpf0q P I and
pf̂0, f̂kq “ p0, p´1qkf0q otherwise. Assigning pf̂0, f̂kq in
this way guarantees that any message pf0, f1, ¨ ¨ ¨ , fk´1q

is properly encoded as a codeword in Hn,k,spΓq.
Let M be the n ˆ n Moore matrix generated by elements

a1, ¨ ¨ ¨ , an in GF pqnq, namely, M “

´

a
ris
j`1

¯

nˆn
, where 0 ď

i, j ă n. Then the encoding of the MRD codes Hn,k,spΓq can
be expressed as

pf0, ¨ ¨ ¨ , fk´1q ÞÑ pc1, ¨ ¨ ¨ , cnq “ pf̂0, f1, ¨ ¨ ¨ , fk´1, f̂kq ¨M1,

where M1 is the pk` 1q ˆ n matrix formed by the first k` 1
rows of M. To make it consistent with the subsequent decoding
algorithm, we rewritten the encoding process as

pf0, ¨ ¨ ¨ , fk´1q ÞÑ c “ pc1, ¨ ¨ ¨ , cnq “ f̂ ¨M, (8)

where f̂ is an n-dimensional vector over GF pqnq given by
f̂ “ pf̂0, f1, ¨ ¨ ¨ , fk´1, f̂k, 0, ¨ ¨ ¨ , 0q.

B. Interpolation-based Decoding

Many decoding algorithms for the (generalized) Gabidulin
codes were proposed [5], [8], [9], [10]. In these algorithms,
the linearity property plays an important role in establishing
the key equation in the decoding procedure. However, the key
equation cannot be similarly obtained for non-linear MRD
codes Hn,k,spΓq. Therefore, we adopt an interpolation-based
approach to decoding these codes.

For an error vector e “ pe1, ¨ ¨ ¨ , enq over GF pqnq, suppose
gpxq “

řn´1
i“0 gix

ris is the interpolation polynomial at the
points pa1, e1q, ¨ ¨ ¨ , pan, enq, i.e.,

gpaiq “ ei “ ri ` ci, i “ 1, ¨ ¨ ¨ , n. (9)

We call the polynomial gpxq the error interpolation polyno-
mial in this paper. It’s clear that an error vector can be uniquely
derived from its corresponding error interpolation polynomial.

Let g “ pg0, ¨ ¨ ¨ , gn´1q. From (8) and (9) it follows that

r “ c` e “ p̂f` gq ¨M.

Letting r̂ “ pr̂0, ¨ ¨ ¨ , r̂n´1q “ r ¨M´1, we obtain

pgk`1, ¨ ¨ ¨ , gn´1q “ pr̂k`1, ¨ ¨ ¨ , r̂n´1q (10)

and
g0 “ r̂0 ´ f̂0, gk “ r̂k ´ f̂k. (11)

Suppose the error vector e has rank t ď tn´k2 u. Since g “
e ¨ M´1, the polynomial gpxq “

řn´1
i“0 gix

ris has rank t. By
Proposition 2, its associated Dickson matrix

G “
´

g
rjs
i´j pmod nq

¯

nˆn
“

¨

˚

˚

˚

˚

˝

g0 g
r1s
n´1 ¨ ¨ ¨ g

rn´1s
1

g1 g
r1s
0 ¨ ¨ ¨ g

rn´1s
2

...
...

. . .
...

gn´1 g
r1s
n´2 ¨ ¨ ¨ g

rn´1s
0

˛

‹

‹

‹

‹

‚

has rank t; and any tˆ t matrix formed by t successive rows
and columns in G is nonsingular.



Let G “
`

G0, G1, ¨ ¨ ¨ , Gn´1

˘

, where Gi is the i-th column
of G. Then G0 can be expressed as a linear combination of
G1, ¨ ¨ ¨ , Gt, namely,

G0 “ λ1G1 ` λ2G2 ` ¨ ¨ ¨ ` λtGt,

where λ1, ¨ ¨ ¨ , λt are elements in GF pqnq. This yields the
recursive equations

gi “ λ1g
r1s
i´1 ` λ2g

r2s
i´2 ` ¨ ¨ ¨ ` λtg

rts
i´t, 0 ď i ă n. (12)

Recall that the elements gk`1, ¨ ¨ ¨ , gn´1 are known from (10).
Hence we obtain the following linear equations with known
coefficients and variables λ1, ¨ ¨ ¨ , λt:

gi “ λ1g
r1s
i´1`λ2g

r2s
i´2`¨ ¨ ¨`λtg

rts
i´t, k`t`1 ď i ă n. (13)

The above recurrence can be seen as a feedback-shift register
with tap weights, and the solution λ1, ¨ ¨ ¨ , λt can be efficiently
found with a generalized version of the modified Berlekamp-
Massey (BM) algorithm introduced in [8], [18].

In the following we shall reconstruct gpxq by combining
(13) together with (11) and the relation between f̂0 and f̂k.
The general strategy of the reconstruction process is in the
following two steps:

Step 1. uniquely determine λ1, ¨ ¨ ¨ , λt from (13), (11);
Step 2. recursively compute g0, g1, ¨ ¨ ¨ , gk by (12).

As the error vector e has rank t ď tn´k2 u, i.e., 2t` k ď n,
we divide the discussion into two cases.

Case I). 2t` k ă n

In this case, one has n ´ k ´ t ´ 1 ě t. Hence the
pn ´ k ´ t ´ 1q ˆ t coefficient matrix in (13) has rank t
and there exists a unique solution λ1, ¨ ¨ ¨ , λt to (13). Once
λ1, ¨ ¨ ¨ , λt are determined in Step 1, the remaining coefficients
g0, g1, ¨ ¨ ¨ , gk´1 can be easily computed according to (12)
recursively.

Case II). 2t` k “ n

In this case, one obtains n´k´t´1 “ t´1 linear equations
in (13). The pt´1qˆt coefficient matrix in (13) has rank t´1.
Hence the elements λ1, ¨ ¨ ¨ , λt cannot be uniquely determined
by (13).

As a matter of fact, given the code Hn,k,spΓq the process of
determining λ1, ¨ ¨ ¨ , λt heavily depends on the set Γ. Below
we discuss the known MRD codes Hn,k,spΓq:

‚ when Γ “ tpa, ηaq
h
0 q : γ P GF pqnqu, where q “ qu0 , one

obtains pf̂0, f̂kq “ pf0, ηf
qh0
0 q. Then (11) gives an equality

ηg
qh0
0 ` gk “ ηr̂

qh0
0 ` r̂k. This equality together with those

in (13) also gives a unique solution λ1, ¨ ¨ ¨ , λt. This case
was recently discussed in [26], [20] for u “ 1 and in [27]
for u ą 1;

‚ when Γ “ tpa, 0q, p0, bq : Normqn{qpaq P I,
Normqn{qpbq P GF pqqzp´1qnkI, a, b P GF pqnqu for
some subset I Ď GF pqq, this corresponds to the non-
additive partition code given in [16]. We shall intensively
investigate this case in the sequel.

For the non-additive partition code in [16], from the encoding
process we have

pf̂0, f̂kq “

#

pf0, 0q, if Normqn{qpf0q P I,

p0, p´1qkf0q, if Normqn{qpf0q R I.

Hence we need to investigate these two possible cases at first
and then check which of them satisfies the corresponding
condition.

We start with the case that pf̂0, f̂kq “ pf0, 0q. In this case
(11) implies gk “ r̂k. That is to say, we get n ´ k ´ t “ t
linear equations in variables λ1, ¨ ¨ ¨ , λt as follows:

gi “ λ1g
r1s
i´1 ` λ2g

r2s
i´2 ` ¨ ¨ ¨ ` λtg

rts
i´t, k` t ď i ă n. (14)

Since the coefficient matrix has rank t, the above system has a
unique solution λ1, ¨ ¨ ¨ , λt. With this solution, one can obtain
g0 from the equality

g0 “ λ1g
r1s
n´1 ` λ2g

r2s
n´2 ` ¨ ¨ ¨ ` λtg

rts
n´t

and needs to check whether Normqn{qpr̂0 ´ g0q P I or not.
If it is true, then the assumption pf̂0, f̂kq “ pf0, 0q is correct
and one can use λ1, ¨ ¨ ¨ , λt to further calculate the remaining
coefficients g1, ¨ ¨ ¨ , gk recursively from (12); otherwise, one
needs to proceed with the second case.

In the second case, one obtains g0 “ r̂0 from the assumption
pf̂0, f̂kq “ p0, p´1qkf0q. Similarly, one derive n ´ k ´ t “ t
linear equations in variables λ1, ¨ ¨ ¨ , λt as follows:

gi “ λ1g
r1s
i´1 ` λ2g

r2s
i´2 ` ¨ ¨ ¨ ` λtg

rts
i´t, k` t ă i ď n. (15)

This system also has a unique solution λ1, ¨ ¨ ¨ , λt since the
coefficient matrix has rank t. Furthermore, the coefficient gk
can be similarly derived from the equality

gk`t “ λ1g
r1s
k`t´1 ` λ2g

r2s
k`t´2 ` ¨ ¨ ¨ ` λtg

rts
k .

For the obtained gk, whether the condition Normqn{qpr̂k ´
gkq R p´1qnskI is satisfied must be checked. If the condition is
satisfied, then the coefficient gk is correct and one can continue
to compute the coefficients g0, ¨ ¨ ¨ , gk´1 recursively according
to (12); otherwise the decoding fails.

From the above analysis, we summarize the decoding of the
non-additive partition MRD codes in Algorithm 1, where the
notation Hn,k,spIq is used to specify the subset I used.

Remark 1: It is worth remarking that the traditional syn-
drome decoding approach for Gabidulin codes [5], [10] cannot
be applied to the TG codes, GTG codes [14], the AGTG
codes [28] and the nonlinear partition codes [28] due to
the difficulty of representing the generator and parity-check
matrices. Such an issue is properly addressed by the inter-
polation approach. It can be seen that Algorithm 1 heavily
depends the interpolation approach and the modified BM
algorithm introduced in [8], [18]. Regarding the complexity of
Algorithm 1, the interpolation step in Line 1 can be completed
in sub-quadratic multiplications in GF pqnq [29]; Line 3 has
quadratic complexity in GF pqnq. When the error vector has
rank t “ pn ´ kq{2, Lines 4 - 17 requires Optq operations



Algorithm 1: Decoding of the partition codes
Hn,k,spIq

Input: A received word r with t ď tn´k2 u errors, and
linearly independent evaluation points
a1, ¨ ¨ ¨ , an

Output: The correct codeword c or “Decoding
Failure”

1 Calculate r̂ “ pr̂0, ¨ ¨ ¨ , r̂n´1q “ r ¨M´1;
2 Set pgk`1, ¨ ¨ ¨ , gn´1q “ pr̂k`1, ¨ ¨ ¨ , r̂n´1q;
3 Apply the modified Berlekamp-Massey Alg. to find the

smallest integer t and pλ1, ¨ ¨ ¨ , λtq satisfying (13);
4 if Line 3 outputs an integer t “ n´k

2 then
5 Set gk “ r̂k;
6 Update the coefficients pλ1, ¨ ¨ ¨ , λtq according to

(14) and the modified Berlekamp-Massey Alg.;
7 Calculate g0 “ λ1g

r1s
n´1 ` λ2g

r2s
n´2 ` ¨ ¨ ¨ ` λtg

rts
n´t;

8 if Normqn{qpr̂0 ´ g0q R I then
9 Set g0 “ r̂0;

10 Update the coefficients pλ1, ¨ ¨ ¨ , λtq according
to (15) and the modified Berlekamp-Massey
Alg.;

11 Get gk from gk`t “
řt´1
j“1 λjg

rjs
k`t´j ` λtg

rts
k ;

12 if p´1qnskNormqn{qpr̂k ´ gkq P I then
13 Return “Decoding Failure”
14 end
15 end
16 end
17 for i P t0, ¨ ¨ ¨ , ku do
18 Calculate gi “ λ1g

r1s
i´1 ` λ2g

r2s
i´2 ` ¨ ¨ ¨ ` λtg

rts
i´t

19 end
20 if g0, ¨ ¨ ¨ , gn´1 is successfully determined then
21 Return the codeword c “ r´ g ¨M
22 else
23 Return “Decoding Failure”
24 end

in GF pqnq. Hence, Algorithm 1 has quadratic complexity
in GF pqnq, which is dominated by the modified Berlekamp-
Massey algorithm [8], [18].

IV. CONCLUSION

In this paper we summarized recently found MRD codes
in a generic construction and investigated the encoding and
decoding of a large family of nonlinear MRD codes by Otal
and Özbudak. The decoding algorithm adopted an interpola-
tion approach and was shown to have its complexity dominated
by the modified Berlekamp-Massey algorithm.
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