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ABSTRACT 

The current gold standard for reconstructive bone surgery is based on autologous bone 

grafts. However, the risk of complications at both the donor and recipient sites is 

considerable. There is therefore a need to explore alternative methods of bone 

regeneration which will restore a defect to full functionality and meet esthetic demands. 

Nowhere is this a greater challenge than in reconstruction of defects in the orofacial 

region.    

Preliminary data, from limited in vitro and in vivo studies, indicate that bone marrow-

derived MSC have potential application in bone tissue regeneration. However, 

interpretation of these studies is complicated by lack of conformity with respect to cell 

type (expanded or native), culture medium, source of growth factors, expansion time, 

cell dose and other variables. Moreover, biopsies are required to confirm the osteogenic 

capacity of the implanted cells and this has not been done routinely. In most studies to 

date, follow-up has been limited to radiographs, which do not allow differentiation 

between bone tissue formed by the implanted cells and by the native cells from the 

border of the osseous defect. The question also remains as to whether the presence of 

any new bone should qualify as clinical success, or whether a successful outcome 

requires evidence of new bone formation at the center of the regenerated area. With 

respect to culture and expansion of MSC for bone tissue engineering, a further issue 

has arisen, namely the exclusion of animal-derived products from culture medium, 

requiring a human-derived source of growth factors to replace FBS.  

The work presented in this thesis was undertaken in order to develop and validate each 

step in a standardized protocol for expanding autologous MSC in vitro in a GMP-

compliant facility (Study II). The expanded MSC produced by this protocol were then 

applied in a phase I/II clinical trial of restoration of the mandibular alveolar ridge in 11 

patients. The surgery was carried out by one experienced oral surgeon (Study III). The 

same surgeon also undertook the post-operative follow-up, with standardized patient 

evaluations at each appointment.  
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Bone regeneration was confirmed in all 11 patients, as evidenced by radiographs and 

biopsies taken at installation of all 21 dental implants. All the implants osseo-

integrated. All patients considered the outcomes to be satisfactory, with minimum pain 

and no morbidity. 

In a retrospective study of 59 patients who had undergone advanced alveolar ridge 

reconstruction in accordance with the current gold standard procedure, using 

autologous bone grafts (Study I), patient satisfaction and OHRQoL among participants 

was favorable. Despite their overall satisfaction with the outcome, these patients 

reported significant pain and morbidity. Furthermore, procedures based on autologous 

grafts from the iliac crest require substantial resources including hospitalization and 

sick leave. 

The following conclusions are drawn from this series of studies. Firstly, a standard 

protocol has been established for GMP expansion of autologous human MSC, using 

PL as a source of growth factors instead of FBS. Secondly, fresh autologous MSC can 

be manufactured, expanded and applied in bone regeneration, despite considerable 

geographic distance between the cell production facility and the clinical center. 

Thirdly, this protocol was successfully applied for alveolar ridge bone regeneration in 

11 patients, with clinical outcomes comparable to those achieved using grafted 

autologous bone, recovered surgically from a second site. Although patient satisfaction 

with the new protocol was no different from the standard approach, those treated 

according to the new protocol reported low pain and morbidity. The results of the 

comprehensive trial confirm that bone marrow mesenchymal stem cells can 

successfully promote bone regeneration, with no unexpected adverse events and 

minimal pain. Hence, this novel augmentation procedure warrants further 

investigation. It has the potential to form the basis of a new therapeutic approach which 

may challenge the current gold standard. 
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1. INTRODUCTION 

Bone is the framework of our body, gives us a back bone which enables us to stand up 

straight, makes us able to move our muscles, serves as a reservoir for ions, contains the 

blood forming organ in its marrow, and protects vital organs such as heart and brain. 

The human skeleton is a work of art and the skull has a beautiful shape that I personally 

find inspiring. But the solidity of bone is, like civilization, not durable in the face of 

disease and trauma. It is therefore crucial that when there is loss or damage we find 

ways to re-establish normal form, including esthetics and function. This has been the 

ultimate goal of the research presented here from its inception. As with all grand goals, 

there have been many small steps along the way. This introduction will provide a 

background to the material and underlying skeleton supporting the research, which has 

been provided by a multidisciplinary team. 

Facial defects - congenital, traumatic or as a result of disease – tend to be  highly visible   

and can have a pronounced negative effect on quality of life (QoL), on the ability to 

speak and eat, on self-esteem and on social interactions (1). Reconstruction of such 

defects, to restore full function and meet high esthetic demands, is very challenging. In 

many cases, ideal reconstructive goals, such as a complete return to original form and 

function, are not completely achieved (1).  A critical-size defect of the cranial vault is 

likely to sustain less biomechanical force than a critical-size defect of the mandible. 

Although both the cranium and mandible have excellent blood supply, bacterial 

contamination is much more of an issue in the mandible. Hence, the 3- dimensional 

(3D) construct providing structural support for the reconstruction must meet the 

biomechanical demands and provide an appropriate environment for regeneration.  

The gold standard for reconstructive bone surgery today is autologous bone grafting, 

which fulfills basic criteria for an ideal implant: histocompatibility, non-immunogenic, 

osteogenic, osteoinductive and osteoconductive. There are, however, disadvantages 

associated with this procedure, both at the donor and recipient sites (2-5). See section 

1.3 and Table1. 
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1.1 Components of bone tissue 

The functional integrity of bone is maintained by three different committed cell types: 

osteoblasts, osteocytes and osteoclasts (6), embedded in a highly complex matrix 

comprising  a mineralized (hydroxyapatite) and a non-mineralized component. The 

non-mineralized, organic component contains collagens, glycoproteins, proteoglycans 

and sialoproteins, which have essential roles in control of growth and differentiation of 

osteoblasts, osteocytes and osteoclasts, and in bone remodeling (6-9). Bone 

development and bone regeneration are complex regulated processes involving a wide 

range of different growth and transcription factors, which coordinate the interaction of 

cells and matrix in response to external or internal stimuli (6, 10-13). Bone can be 

separated into the osteoblast lineage, i.e. the bone-forming axis (MSC, pre-osteoblasts, 

mature osteoblasts, bone-lining cells and osteocytes), and the osteoclast lineage, i.e. 

the bone-resorbing arm (macrophages, osteoclasts, and multinucleated giant cells, all 

derived from bone marrow hematopoietic stem cells) (6). Throughout life, bone is 

continuously shaped, reshaped and repaired to maintain its structural properties and its 

role in mineral homeostasis. This occurs through two separate mechanisms: bone 

resorption and bone formation, coordinated by osteoclasts and osteoblasts respectively 

(14). This process is called remodeling and achieves complete regeneration of the adult 

skeleton every 10 years. The purpose of this remodeling is not entirely clear, although 

in bones that are load bearing, it most likely serves to repair fatigue damage and to 

prevent excessive aging and its consequences (15).  

Bone resorption may also be associated with injury or lesions, followed in turn by bone 

regeneration/repair. Maintaining the balance depends on osteoblastic activity to form 

new bone, and on osteoclastic activity to remove excess bone. This balance is tightly 

controlled and any disruption may lead to bone disease, such as osteoporosis (16). 

The remodeling cycle is completed when an equal amount of resorbed bone has been 

replaced. Osteoclasts undergo apoptosis; the mature osteoblasts form bone-lining cells 

or differentiate into osteocytes. The balance is kept and maintained until the next time 

remodeling is initiated (14). 
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1.2 Bone regeneration and healing of bone grafts  

Bone regeneration is a highly efficient and tightly regulated process, the result of a 

continuous interplay between growth factors and cytokines for both initiation and 

regulation of the remodeling process (11, 12). 

The three factors essential  for bone formation and bone mineralization are multipotent 

precursor cells, an ample blood supply and mechanical support (12). After grafting,  

bone remodeling is dependent on re-establishing vascularization (17), to ensure 

transport of growth factors, hormones, cytokines and metabolites (18).  

Today, autologous bone grafting is the gold standard for osteogenic bone replacement 

in osseous defects (19-22). Bone is the most common tissue transplanted, second only 

to blood transfusion. In orthopedics, neurosurgery and dentistry, more than 500,000 

bone grafting procedures are undertaken annually in the United States and 2.2 million 

worldwide. (23, 24). 

Following transplantation, autologous bone grafts fill substance deficits and induce 

bone tissue formation at the defect site. Chips, larger pieces and even blocks several 

centimeters in size can be harvested. Depending on donor site, size, shape and quality 

these grafts exhibit some initial stability.  

However, clinical application of autologous bone transplants is limited by considerable 

donor site morbidity, which increases with the amount of bone harvested. Common 

complications of harvesting are bleeding, hematoma, infection, and chronic pain.  

Other disadvantages of  autologous bone grafting include insufficient amounts of graft 

material available, particularly in children and for revision of reconstructive 

procedures; the likelihood of significant postsurgical morbidity at the donor site (i.e. 

rib, fibula, iliac crest), such as infection, pain, hemorrhage, muscle weakness, and nerve 

injury; increased surgical time and blood loss; and additional cost (2, 3, 13). Studies of 

autologous grafts report considerable reduction in grafted bone after bone 

reconstruction, corresponding to 36%–44% after 1–5 years (25, 26).  Some studies have 
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reported reduction of bone volume, evaluated using CT scans, to be 47.5% within 6 

months of transplantation (27). 

Three critical factors are intimately involved in the physiology of graft incorporation 

and survival: osteogenesis, osteoinduction, and osteoconduction. Osteogenesis is the 

ability of a graft to synthesize new bone, either through cells within the donor graft or 

the recipient bone. A graft with higher osteogenic potential has the greatest potential 

to form new bone. This potential largely relies on the viability of cells, both the 

osteoprogenitor and the supportive cells, within the graft. Osteoinduction is the process 

of stimulating mesenchymal stem cells at the recipient or graft site to differentiate into 

osteoblasts. In osteoconduction, a scaffolding is provided to enhance migration of 

recipient site MSC, capillaries, and tissue to produce bone (13, 17, 28-31). 

Graft incorporation, or take, is a complex process, dependent on variables within the 

recipient site and the graft. The rate and degree of incorporation are largely dependent 

on the osteogenic, osteoinductive, and osteoconductive properties of the graft. The 

process of bone graft incorporation involves an initial hemorrhage and hematoma 

within and around the graft: this serves to nourish the graft until distinct capillaries and 

vasculature develop. There is an inflammatory response to the initial surgical 

intervention, resulting in ingrowth of granulation tissue into the graft. This 

revascularizes the tissue and transports osteoprogenitor cells into the graft. Once 

revascularization is complete, viable cells within the graft and the recipient 

osteoprogenitor cells begin to resorb the old bone and form new bone (13, 17, 32). The 

process of new bone formation and old bone resorption within bone grafts is called 

creeping substitution. After new bone is formed, it is mineralized and remodeled (29). 
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Table 1 Advantages and disadvantages of the most commonly used materials for bone 

grafting (33-36). 

Material Advantages Disadvantages 

Autograft 

 

Osteogenic  

Osteoconductive  

Osteoinductive 

No immunoreaction 

 

Increased patient morbidity: pain 

and infection at donor site, nerve 

damage  

Not a standardized product 

Two operation areas 

Longer operation time 

Lack of vascularization 

Limited quantity and availability 

Graft resorption 

Allograft  Osteoconductive 

Osteoinductive 

Ready availability 

Easy handling 

No donor site morbidity 

Lacks osteogenicity and 

vascularization  

Relatively higher rejection risk 

Risk of disease transmission 

High cost 

Limited mechanical properties 

 

Alloplastic 

Graft 

Osteoconductive 

Ready availability 

Easy handling 

No donor site morbidity 

Safe 

Modifiable in terms of resorption 

Lack of osteogenic properties 

Limited mechanical properties 

Long healing time 

High cost 

Xenograft Osteoconductive 

High availability 

No donor site morbidity 

Very little resorption 

Lack of osteogenic properties 

Risk of immunogenicity  

Very little resorption 

Limited mechanical properties 

Long healing time 

High cost 
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1.3 Tissue engineering and regenerative medicine 

The basic premise of tissue engineering or regenerative medicine is the provision of a 

new construct to replace lost tissue. Tissue engineering is an interdisciplinary, 

translational field which applies the principles of bioengineering to the development of 

biological substitutes which  restore, maintain, or improve tissue function (37). The 

traditional triad of tissue engineering attempts to replicate the intrinsic properties of 

autograft reconstructions (18, 38), i.e. adequate osteo-competent cell transfer, a 

structured scaffold to  maintain space and provide osteoconduction, and growth factors 

to  induce adjacent mesenchymal osteogenesis (19, 38, 39). A multidisciplinary 

approach combining bioscience, bioengineering, biomaterials science, and clinical 

science is thus evolving in the attempt to find workable constructs simulating the 

body’s ability to produce the desired regenerated tissue (40). 

1.3.1 Scaffolds  

Tissue in the craniomaxillofacial region is varied in composition and in its simplest 

form consists of a matrix and different cell types (37). The matrix represents a 3D 

structure, or scaffold, for cells,  providing a specific environment and architecture for 

a given functional purpose (41). The structure also serves as a reservoir for fluids, 

nutrients, cytokines, and growth factors. When these concepts are applied to tissue 

engineering to restore function or regenerate bone tissue in the craniofacial skeleton, 

the scaffold acts as a temporary matrix, or template, for cell proliferation, extracellular 

matrix deposition, bone regeneration, and remodeling until the mature bony tissue is 

regenerated (42). During this process, the scaffold also acts as a template for 

vascularization (43). 

An ideal scaffold for MSC transfer and tissue engineering is a bioresorbable, 

biocompatible, osteoinductive material which supports cellular attachment,  

proliferation, migration and differentiation (18, 38, 44-46). It should also have 

appropriate mechanical strength and timely degradation for  successful healing. The 

macro- and microstructure of the scaffolding also influences the outcome considerably. 

The scaffolding should have an outer shape appropriate for the size and geometry of 
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the defect and  an inner architecture ensuring an interconnected, open porous system 

which allows capillary ingrowth and sufficient nutrient and oxygen supply to the cells 

(18). The degradation characteristics, bioresorbability and integration into the host 

tissue greatly impact the clinical outcome. 

Bone tissue engineering is most commonly represented by the concept of the 

implantable construct, comprising a scaffold/matrix in combination with 

progenitor/stem cells and/or osteoconductive growth factors. The function of the 

scaffold is to support cell colonization, migration, growth and differentiation, and to 

guide the development of the new tissue and/or to act as a drug delivery device. The 

optimal scaffold should support new bone formation and early mineralization, while 

allowing for its own biodegradation once it has served its purpose. 

Among the different biomaterials being used as scaffolds, hydroxyapatite (HA) and 

other calcium phosphate-based ceramics show particular promise because of their 

osteoconductivity, biocompatibility, and ability to integrate with the host bone (38–

41). HA provides the best strength but can remain, unresorbed, within the defect for 

years. On the other hand, beta-tricalcium phosphate (βTCP) is more soluble than HA 

and degrades more rapidly; but used alone it is too fragile to sustain physiological 

loads. Combinations of HA and TCP,  biphasic calcium phosphate (BCP) ceramics 

have been evaluated as  controlled  biodegradable osteoconductive material, providing  

improved bone formation and bone bonding (19). 

Several clinical trials showed that CaP (calcium phosphate) scaffolds in combination 

with precultured MSC have substantial capacity to heal bone defects (47-49). 

Molecular screening of cell/CaP biomaterial interaction effects shows that Ca2+ might 

be responsible for inducing osteogenic differentiation in MSC, as demonstrated by 

increased expression of ALP and BMP2  (50). 

1.3.2 Cells 

MSC were first described in a series of studies by Friedenstein in the 1960’s (51). The 

cell was identified in bone marrow as able to adhere to the surface of a tissue culture 

plate in vitro and generate skeletal tissues, including bone and cartilage, following  
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heterotopic implantation in vivo (52-56). Cell populations with comparable properties 

were also found in many other tissues, such as adipose tissue (57, 58) and umbilical 

cord blood (59, 60). It has been reported that MSC from different sources exhibit   

functional differences, such as surface phenotype and differentiation potential (61, 62). 

MSC are multipotent and with appropriate induction signaling, MSC in culture can 

differentiate into bone, cartilage, adipose, and muscle lineage cells (63-65).  

In 2006, Yamanaka et al. showed that somatic cells such as fibroblasts could be 

reprogrammed to become pluripotent by the transfer of four genes via viral vectors, 

and called these cells induced pluripotent stem cells (iPSC) (66). Their potential is  

similar to that of embryonic stem cells, but circumvents the ethical concerns associated 

with embryonic stem cells (67). However, generation of iPSC has a low 

reprogramming efficiency and as it requires the introduction of exogenous transcription 

factors via viral vectors, there is a risk that the cells can form teratomas which are 

difficult to control. Thus, the safety of patient-derived iPSC is not firmly established 

(67, 68).  

In 2006, the International Society for Cellular Therapy (ISCT) proposed minimal 

criteria to define human MSC (69): (i) MSC are plastic-adherent when maintained in 

standard culture conditions, (ii) MSC express CD105, CD73 and CD90, and lack 

expression of CD45, CD34, CD14 or CD11b, CD79 or CD19, and HLA-DR surface 

molecules, (iii)  MSC can differentiate into osteoblasts, adipocytes, and chondrocytes 

in vitro.  

Some researchers have proposed that in vivo criteria should constitute the ‘gold 

standard’ for definition of MSC (70). It has been shown that bone marrow MSC, 

inserted onto a hydroxyapatite or related scaffold and subcutaneously implanted in rats, 

can form mineralized bone containing hematopoietic marrow (70). For many academic 

laboratories, this in vivo assay of bone differentiation remains the definitive standard 

(71, 72). 

In a recent systematic review and meta-analysis, it was reported that most of the 

available clinical data supporting  the efficacy of cell therapy in treating jaw bone 

defects are from studies using and transplanting the whole tissue fraction (e.g bone 
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marrow) (73). This has the advantage of minimum manipulation of cells and perhaps 

the cost. However, bone marrow fraction aspirates may contain other cells besides  

MSC, such as endothelial cells and hematopoietic stem cells (74).  Although MSC are 

present in multiple tissues, the overall quantity in the body is small,  accounting for 

only approximately 0.001-0.01% of mononuclear cells in the bone marrow (75, 76). 

Cell therapy protocols generally require hundreds of millions of MSC per treatment; 

therefore, cell expansion in vitro is necessary to obtain a sufficient number of cells for 

a clinical procedure (18, 77). The need for cell expansion has significant disadvantages. 

It takes weeks to expand the cells; there is a risk of infection/contamination during the 

process and only limited evidence for cell culture efficacy (73). 

1.3.3 Cell signals/growth factors 

In 1965, Urist discovered substances in the extracellular matrix of bone which stimulate 

the formation of new osseous tissue (78). A multitude of these factors regulate bone 

metabolism as well as cellular differentiation and proliferation and expression of 

extracellular matrix proteins. These growth factors (GF), e.g. transforming growth 

factor β (TGF- β), insulin-like growth factor (IGF), platelet-derived growth factor 

(PDGF), basic fibroblast growth factor (β FGF) and the bone morphogenetic proteins 

(BMP) are stored within the matrix and osteoid of the skeleton. During the constantly 

ongoing physiological process of bone turnover, osteoclast activity results in the 

release of these factors in their biologically active form. These GF then act upon 

progenitor/stem cells, osteoblasts and cells of other lineages such as endothelial and 

vascular cells to induce the regeneration of lost tissue in situ. Regeneration and 

degeneration of the tissue are closely interlinked, remain in balanced proportion to each 

other and are associated with a specific location (18, 37). Growth factors have been 

shown to play a key role in bone and cartilage formation, fracture healing, and the 

repair of other musculoskeletal tissues (34, 37).  

Because of their therapeutic potential, various proteins/growth factors are being 

explored in bone regeneration research. Although many studies show that such 

molecules can have a direct and crucial role, their exact molecular mechanisms have 

not been fully explained (79). Improved understanding of cross-activation and complex 
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signaling of these molecules will hopefully lead to the design of advanced bone-

substitute materials. More detailed knowledge about regulation of signaling 

mechanisms in different cell types and the molecular consequences of cell–biomaterial 

interactions will help to control the regeneration of bone defects (79). 

In most studies to date, MSC have been cultured and expanded in media containing 

fetal bovine serum (FBS), which provides  a source of bioactive molecules and growth 

factors  required for MSC attachment and proliferation (80). Although FBS is a well-

known supplement for MSC expansion, the major drawback is the possibility of 

triggering immunological responses in the recipient against xenogeneic antigens (81),  

the risk that animal-derived products may cause immune-reactions towards foreign 

factors, as well as cross-species pathogen infections (73, 82-84). For these reasons, 

FBS should be replaced as a growth supplement in cell culture media. Recent research 

has focused on substitution of FBS with  human platelet-derived products, e.g., platelet 

lysates, which can be produced from standard platelet transfusion units by lysis (73, 

80, 85, 86). Based on these studies, platelet-derived products have been proposed  as a 

viable alternative for the ex vivo culture of cells for human therapy (73, 80). 

1.4 Clinical bone regeneration trials  

1.4.1 Review of the state of the art 

The clinical studies discussed below used different approaches, including bone 

marrow, MSC and scaffolds, and osteoinductive factors (i.e. BMP) in treating a variety 

of conditions, including complex tibial fractures, tumors, osteonecrosis and bone 

regeneration. Most were limited, observational phase I-type studies, with no control 

groups and only short-term follow up (73). Despite their shortcomings, these studies   

provide valuable information about  the clinical application of autologous bone marrow 

and MSC: the procedure  is relatively safe and in the event of failure it does not preclude 

the use of other techniques (19). 

In the bone tissue engineering field, three strategies currently use the patient’s own 

bone marrow cells to engineer autologous osteogenic grafts. The first approach consists 

of aspirating the whole bone marrow fraction, followed by centrifugation (87) to 
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concentrate mononuclear cells, and then immediate implantation into the bone defect, 

with or without a synthetic bone substitute. In the second approach, the harvested cells 

are cultured for 2–3 weeks in a cell therapy facility in order to isolate and expand the 

MSC fraction. Several tens of millions of uncommitted MSC are then injected alone 

into a bone defect, or seeded onto a suitable scaffold. These hybrid MSC/biomaterial 

grafts or “constructs” have shown bone-inducing ability in preclinical and clinical 

models (48, 75). In the third strategy, bone marrow is harvested, the osteoprogenitor 

cells are isolated and expanded for several weeks, then seeded onto a scaffold and  

cultured for a further few weeks in the presence of osteogenic supplements,  to promote 

the formation of a bone-like layer of tissue on the implant (88, 89). This hybrid 

construct is finally transplanted into an orthotopic site to regenerate a bone defect. 

Thus, the latter two strategies require several weeks of culturing under strict aseptic 

conditions in a GMP-compliant facility. From a regulatory perspective, clinical 

application for bone tissue engineering is therefore very complicated (90).  

The use of osteoprogenitor cells from bone marrow expanded ex vivo was first reported 

in 2001 (91). Cell-based tissue-engineering was used to treat large bone defects in 3 

patients, with very good results. The same group later treated one more patient, and in 

2007 reported 6-7-year follow-up of these 4 patients (92). The patients had suffered 

comminuted and complicated fractures of the extremities, all of which were originally 

managed in a traditional manner, without success. They used 20 ml bone marrow 

aspirated from the iliac crest, from which nucleated cells were extracted and expanded 

for 3 weeks. Porous HA was customized to fit the defect and seeded with cells at a 

density of 2.0 × 107. The HA cylinders were positioned in the bone defects and external 

fixation was used in all cases. Consolidation between the implant and host bone was 

completed 5-7 months after surgery. In all patients at last follow-up, up to 7 years post-

surgery, there was good integration of the graft and full function of the affected limb. 

Lendeckel et al. were the next to report the use of cells to treat a bone defect. The case 

was a 7-year-old girl with bilateral calvarial defects after a fall and subsequent failed 

reconstruction (93). 15 mL cancellous bone from the ilium was milled, two resorbable 

microporous sheets molded to fit the defects were fitted over the defects filled with the 
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bone chips, and to enhance regeneration they excised 42.3 grams adipose tissue from 

the left gluteal area and processed it according to Zuk et al. (58). They applied 295 × 

106 cells to the defect and assumed that 2-3 % of the cells were stem cells. The patient 

healed uneventfully, CT scans 3 months postoperatively showed marked ossification 

in the defect areas, and the girl was able to stop wearing a protective helmet. There has 

been no report on long term follow up. 

In the same year, Schimming and Schmelzeisen presented a clinical study in 27 

patients, using bone matrix derived from periosteal cells to augment the posterior 

maxilla (94), using a sinus lift procedure with simultaneous dental implant installation 

in 12 patients and a 2-stage procedure in 15 patients. The periosteal cells were treated 

with collagenase CLSII, and suspended in DMEM/Ham`s medium supplemented with 

10 % autologous serum; after 4 passages the cells were absorbed into Ethisorb fleece 

(Ethicon, Norderstedt, Germany) and cultured in medium supplemented with 

dexamethasone. One patient had an early infection and two implants and the grafted 

material were removed during the first postoperative week. In 8 cases, all treated by 

the two-step procedure, almost no bone formation occurred. The remaining 18 patients 

had excellent results after 3 months, and 9 of these were followed for more than 6 

months. 

In 2011, the 5-year follow-up was reported for the 10 patients who had undergone the 

one step procedure in the previous study (95). For the first year after augmentation 

there was a slight decrease in the height of the augmented bone, but the level remained 

stable for the next 4 years. No adverse events were reported, and the clinical results 

were good. 

In 2004, Warnke et al. published a frequently referenced report (96) of a case describing 

use of a titanium mesh scaffold, formed to model the mandibular defect in a 56 year- 

old male who had undergone mandibulectomy for cancer 8 years previously. The mesh 

was filled with BioOss blocks (Geistlich Pharma AG, Wolhusen, Switzerland) coated 

with 7 mg recombinant human BMP7 embedded in 1g bovine collagen type 1, and 20 

mL of unmanipulated bone marrow aspirated from the recipient´s right iliac crest. The 

mesh and its contents were implanted into the recipent´s latissimus dorsi rectus muscle, 
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and 7 weeks later the graft was transplanted, along with part of the muscle, artery and 

vein into the defect site via an extraoral approach. Four weeks post-transplantation the 

recipient had his first solid meal in 9 years. Some exposure of the titanium mesh 

occurred over time after implantation. Unfortunately, the patient died of cardiac arrest 

15 months postoperatively. The family refused permission for postmortem examination 

of the graft (97). Although not stem cell treatment per se, this approach is included here 

as it is often cited  and can be considered a step on the way to stem cell therapy. 

In 2004, Kitoh et al. reported preliminary results using marrow-derived MSC and 

platelet rich plasma (PRP) during distraction osteogenesis (98). The cells were 

extracted from bone marrow aspirates, cultured with osteogenic supplements, and 

injected together with autologous PRP into the distracted callus, first at the beginning 

of the lengthening period and then at start of the consolidation period. The results were 

promising.  In 2007 they reported on the results from 20 patients with limb lengthening 

procedures: 11 patients had BM MSC and PRP injected as reported earlier, and 9 served 

as a control group. An average of 3.2 × 107 cells was transplanted. The average healing 

index of the test group was significantly lower than that of the control group. It was 

concluded that transplantation of BM MSC and PRP shortened the treatment period 

and accelerated new bone regeneration (99).  

In 2005, Hernigou et al. (87) reported on 60 patients with tibial non-union. Bone 

marrow aspirated from both iliac crests was concentrated in a cell separator and 

injected into the area of non-union. Bone union was achieved in 53 patients. In the 

seven patients where union was not achieved, both the concentration and total number 

of progenitors (number obtained later, after injection) were significantly lower than 

those in the patients in whom bone union was achieved. It was concluded that efficacy 

of treatment was related to the number of progenitors in the patient’s bone marrow. 

In the same year,  Ueda and Yamada  in Japan presented a clinical study in 6 patients, 

using MSC, PRP and βTCP as grafting material in 3 sinuses and as 3 maxillary onlays 

(100). They extracted 10 ml of bone marrow from the iliac crest, expanded the cells for 

4 weeks in Dulbeccos Modified Eagles Medium (DMEM) enriched with 

dexamethasone, sodium beta-glycerophosphate and L-ascorbic acid 2-phosphate. For 
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the patients, they used 1.0 × 107 cells/ml, 10% calcium chloride and PRP mixed with 

βTCP. Dental implants were installed simultaneously. All 20 installed dental implants 

were stable 12 months post-loading, and the ridge had an average increase in height of 

7.3 mm. Their next report in 2006 was their first using their “injectable tissue 

engineered bone”(ITEB) on a 9 year old girl with a unilateral cleft palate (101). They 

extracted 10 mL bone marrow, isolated the MSC and expanded the cells in vitro for 4 

weeks. They did not report on characterization on the cells. The cells then underwent 

induction for 1 week with dexamethasone, and together with PRP, 5.0 × 107 MSC and 

0.3 ml of 10 % calcium chloride, forming a gel which was injected into the exposed 

alveolar cleft. The graft was covered with a titanium mesh and closed. The radiopacity 

increased over the next months, and after 9 months the canine and lateral incisor 

erupted. In 2008 the group reported on 14 patients treated with their ITEB, with the 

only change in material being a reduction to 1.0 × 107 cells/ml (102). This study 

comprised 6 sinus lifts and 8 onlay procedures. The mean age of the patients was 54.6 

years, and dental implants were installed simultaneously. They reported 100% success 

with dental implants, but after 4.8 months of healing, 2 of the 8 onlays did not have 

complete coverage of the dental implants. In the sinuses, the average increase in height 

was 8.7 mm, and the mean increase in alveolar ridge height was 5 mm. No adverse 

events were reported. 

This group has several reports using the same type of graft material. In 2008, they 

reported on 12 patients, mean age 54 years, who underwent maxillary sinus lifts, dental 

implants and ITEB. They used 5.0 × 106 cells, but the rest of the technique was 

unchanged (103). Here too they reported 100 % success, with a mean gain in bone 

height of 8.8 millimeters and no adverse events. 

In 2013, they reported the use of ITEB material to augment the mandibular left alveolar 

ridge in a 58-year-old male (104). The material was applied to the alveolar ridge and 

covered by a titanium lined membrane. At the second surgery 7 months later, there was 

enough bone for installation of dental implants. The authors reported a successful 

outcome at 2-year follow-up. The following year the research group reported the use 

of ITEB in 104 patients. They used a guided bone regeneration (GBR) technique in 36 

of the patients, sinus lift in 39, socket preservation in 12 and also used the material on 
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17 severe periodontitis cases. The mean patient age was 57.7 years. In this study the 

cells were characterized. They used 3.21 × 107 cells in GBR, 1.76 × 107 in sinus lifts, 

1.19 × 107 in socket preservation and 1.34 × 107 in periodontal patients. No adverse 

events were recorded, and they reported 100% survival of the dental implants, and in 

the periodontal cases a mean gain in clinical attachment level of 4.29 mm. They 

concluded that taken together, regenerative bone therapies using MSC transplantation 

are highly effective and reduce associated complications by accelerating new bone 

formation and maintaining good function. 

Dental pulp stem cells have  also been used to repair defects in the human mandible 

(105). A paper from 2009 reported 7 patients, in whom dental pulp cells from the 

maxillary third molars were harvested and expanded for 21 days in α MEM and FBS. 

Thereafter the mandibular third molars were extracted. A collagen sponge soaked with 

the cells was placed in the empty socket at one site, and a sponge without cells was 

used on the control side. After 3 months clinical attachment was higher at the test site 

than at the control site, and biopsies taken at this time showed more mature bone in the 

test site. In 2013, the group reported 3-year follow-up biopsies from the same patients 

(106). The patients did not report any adverse sequelae, and clinical parameters were 

normal at both test and control sites. The 3D reconstructions of two sub-volumes, 

showing bone volume density (ratio of bone volume (BV) to total volume (TV)), 

confirmed that a human mandible treated in vivo with stem cells derived from dental 

pulp was composed of  more compact bone than the control human mandible, with a 

higher BV/TV caused by its conformation (i.e., the presence of more than 20 lamellae) 

and an absence of marrow-containing lacunae typical of cancellous bone. 

In 2009, a research group published a pilot study in 2 cleft palate patients using calcium 

sulfate incorporating human demineralized bone matrix, mixed with autologous 

expanded MSC (107). The cells were expanded for 2 weeks in DMEM and autologous 

serum. The graft material comprised 5 × 105 cells. Evaluation after 4 months showed 

clinically satisfactory results, but less than 50% bone fill in the defects. The authors 

speculate that the use of human serum resulted in low bone filling, but it should be 

noted that the interval between augmentation and follow-up was quite small. 
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The same group reported on 4 cleft palate patients in 2011, using the same procedure 

for cell expansion and cell dose, but with the biomaterial changed to a synthetic mixture 

of 60% HA and 40% βTCP (108). Moreover, at surgery, they used platelet-derived 

growth factors and platelet-rich fibrin on the graft. Clinically, healing was uneventful, 

and x-rays showed a mean of 51.3% bone fill 3 months postoperatively. 

Mendonca and Juiz-Lopez treated 3 patients using 100 mL of bone marrow aspirate, 

cultured for 12 days in DMD supplemented with 10 % FBS and 10 % horse serum 

(109). The expanded cells were mixed with PRP and βTCP/HA. The average cell dose 

was 20.5 × 106 cell per mL. One patient had osteoradionecrosis, one had serious 

sequelae after trauma and one had severe bone loss in the mandible and maxilla. All 

grafts healed and the patients even recovered some sensation in nerves damaged earlier. 

No adverse events were reported.  

A group from South Korea reported in 2010 on the use of bone marrow stem cells in a 

young patient suffering from a large central hemangioma (110). During resection of 

the hemangioma a large part of the mandible was removed. This was freeze dried and 

stored for use later in reconstruction as a scaffold for the cell construct. Three mL of 

bone marrow were extracted and expanded with αMEM and FBS, dexamethasone was 

added and the cells were passaged twice in 6 weeks. The scaffold was seeded with 4.8 

× 107 cells for use. One year later the implanted mandible showed evidence of bone 

regeneration, but with mild asymmetry that was treated with distraction osteogenesis. 

For the distraction operation 4.8 × 107 cells per mL were injected at the operation site. 

Activation was initiated after 8 days, to 10 millimeters, and consolidated for 7 months. 

The distractor was then removed, and GBR with titanium mesh, autologous, 

differentiated MSC were applied and a dental implant was installed. The result was 

good, but with a very high burden of care for the patient. Furthermore, in this study, 

FBS, which is an animal derivative supplement was used during expansion of the cells. 

In 2010, Rickert et al. published the results of a prospective randomized clinical trial, 

of maxillary sinus grafts, with bovine bone mineral (BBM) combined with either 

autologous bone or autologous concentrated bone marrow in a split mouth design in 11 

patients (111). Second stage surgery with biopsies were taken at a mean of 15 weeks 
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after the augmentation procedure. The results showed that concentrated bone marrow 

was equivalent to autologous bone. 

The same group used BBM and bone marrow aspirate concentrate for sinus 

augmentation in a controlled, randomized trial where the control was BBM mixed with 

autologous bone (112). The results confirmed that concentrated bone marrow achieved 

bone formation equivalent to that achieved by autologous bone. 

A Danish group in 2012 published a randomized clinical study comparing cultured, 

autologous bone cells to deproteinized bovine bone mineral (DBBM), and autologous 

bone enhanced bone formation compared to DBBM and autologous bone alone (113). 

No futher benefit was shown for the use of bone-derived cells expanded in vitro. 

In a randomized, controlled trial for treating extraction sockets in 24 patients, Kaigler 

et al investigated  whether bone growth in response to approximately 1.5 × 107 cells, 

derived from bone marrow aspirate cultured for 12 days in vitro suspended on an 

absorbable gelatin sponge, was superior to that of  the sponge alone in fresh extraction 

sockets (114). There were no adverse study-related events. Half the patients underwent 

biopsy after 6 weeks, and the rest after 12 weeks. At 6 weeks there was slightly more 

new bone in the group receiving cells, but after 12 weeks the differences between 

treatment and control groups were not significant. Clinical analyses of treatment sites 

demonstrated that the cell therapy accelerated the regenerative response. Further, there 

was a significantly reduced need for secondary bone grafting procedures in the group 

which had received the cellular therapy.  

The following year the same group reported treatment of a large defect of the alveolar 

ridge in a trauma patient (115). βTCP served as the cell carrier and the same culture 

process was used as in the previous series, with a cell dose of 14.1 × 106, and a barrier 

membrane was placed over the graft. The site was reentered 4 months later, when 

CBCT showed an approximately 25% reduction of the graft over time. Two dental 

implants were installed, and biopsies showed highly vascularized, mineralized tissue, 

indicative of bone formation. 

In 2013, a group from Italy published two articles reporting on 8 patients with 

pseudarthrosis in the upper limb which had not healed using traditional therapy (116, 
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117). They harvested 60 mL of bone marrow from the patients’ bilateral iliac crests 

and cultured the cells in autologous serum for 10-18 days, supplemented with 

osteogenic medium for the last 4 days before harvest. The bone defect was entered, 

revised and a construct made of cells and biomaterial, with 4 different materials used 

in the 8 patients, and a fibrin clot from autologous serum was placed in the defect. All 

cases healed, and at 76-month follow-up no episodes of fracture, ectopic neoformation, 

infection or overgrowth had occurred.   

In 2017, Hernigou et al. published a study on allografts supercharged with bone-

marrow-derived MSC (118). They examined 20 patients who had received an 

acetabular graft 8-13 years earlier and were now to undergo femoral hip revision for 

reasons other than graft failure. Three types of graft were used: allografts initially 

loaded with bone marrow-derived MSC (BM MSC); dead, irradiated allografts; and 

autografts. They reported that the concentration of MSC in allografts previously loaded 

with BM MSC was greater than that in autografts. Few or no MSC were found in 

allografts without cells. New bone-formation analysis showed that allografts loaded 

with BM MSC produced more new bone (mean 35%; range 20-50%) than either 

uncharged allografts (9%; range 2-15%) or autografts (24%; range 12-32%). It was 

concluded that the results support the long-term benefit of supercharging bone 

allografts with autologous BM MSC. 

More recently, in 2018 the orthopedic group in our EU funded project (Reborne FP7 

EU project) published results for treatment of  non-union, using  autologous expanded 

bone marrow MSC combined with bone substitute biomaterials made of bicalcium 

phosphate. Of the 28 participants in the study, 26 healed. There were no adverse events 

related to the BM MSC (48). 

1.4.2 FBS vs PL as a source of growth factors for MSC expansion  

FBS is the most commonly used supplement for ex vivo expansion of MSC for bone 

tissue engineering applications. However, from a clinical standpoint, it is important to 

use animal or human-derived products derived according to current laboratory 

guidelines for good manufacturing practice (GMP) (73). The previously described 

strategies for use of MSC in regenerative therapy have involved the clinical use of 
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tissue fractions containing these cells (along with other supporting cells), for example, 

whole or concentrated bone marrow, usually acquired through a ‘‘chair-side’’ 

procedure outside of GMP, resulting in a wide variation in cell type and number used. 

The ex vivo expansion of MSC from harvested tissues, for example bone marrow or 

adipose tissues, under GMP-grade conditions before clinical application, will provide 

a relevant number of cells and allow their characterization. Traditionally, ex vivo 

expansion of MSC has been performed using basal culture media plus supplements to 

provide GF, proteins and enzymes to support cell growth (119).  The reason that FBS 

is often used in MSC culture is that  the fetal environment is rich in GF and poor in 

antibodies (80). However, for clinical use it is important that animal-derived products 

are replaced with human products. MSC can internalize xenogeneic proteins, and thus 

carry the risk of infection (through viral, prion or other agents) and immunoreaction. It 

has been reported that a single injection of 100 million MSC expanded in 20% FBS-

supplemented media is associated with 7-30 mg of bovine serum proteins (13). 

Moreover,  there are concerns about  FBS sample-to-sample consistency, and animal 

welfare concerns in terms of the ‘‘3 R’s’’ principle (replacement, reduction, 

refinement) (120, 121). 

Up to 2013, proposals submitted to the FDA for MSC-based products were increasing 

rapidly and were characterized by increased variability in donor and tissue sources, 

manufacturing processes, proposed functional mechanisms, and characterization 

methods. Although use of clinical-grade FBS may be permitted by regulatory health 

agencies in phase 1 clinical studies, with >80% of proposals submitted to the FDA for 

MSC-based products reporting expansion in FBS (122), according to GMP guidelines 

later phase trials involving larger patient groups require the use of culture conditions 

free of animal-derived products, (120). Such ‘‘xeno-free’’ or humanized alternatives to 

FBS broadly include three categories of products: (1) autologous or allogeneic human 

serum (HS), (2) pooled human platelet derivatives (HPD), and (3) chemically defined 

media (serum-free) (CDM) (19). Of particular interest are HPD, as platelets release a 

wide range of physiological GF and cytokines, which can significantly enhance cell 

growth and function (123). 
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1.4.3 Variability in clinical trial protocols is problematic  

The literature shows pronounced variations in clinical trials of MSC in bone 

augmentation. Many are based on small patient numbers. The multitude of protocols, 

the range of parameters and data in the current literature preclude any clear conclusion 

as to the most reliable model. It does, however, indicate the need for additional 

collaborative studies using consistent protocols and data analysis in advancing the 

science of bone reconstruction using MSC.  

1.5 Rationale  

The protocols for isolation and expansion of donor MSC vary widely between clinical 

trials, which may affect the efficacy of the therapy. This is perhaps the reason for the 

gap between preclinical and clinical findings (73). It is therefore important to develop 

international standards for MSC production which are evidence-based, regulatory 

authority-compliant, of good medical practice grade, cost effective, and clinically 

practical (80). Only once these standards are developed can this innovative approach 

become an established, reproducible and widely adopted treatment. The EU has 

acknowledged this need, and has funded several projects, among them VascuBone, 

FP7-EU project no. 242175 and Reborne, FP7-EU project no. 241879, in tissue 

engineering. The goal of Study II, was to establish a standardized protocol, and then to 

test the safety and efficacy of the cell product according to this protocol (Study III). 

Finally, Study I comprised a retrospective assessment of patients who had undergone 

advanced autologous alveolar bone augmentation from the anterior iliac crest, with 

reference to graft and implant survival and to patient-reported outcome measures 

(PROM), i.e. satisfaction and oral health-related quality of life (OHRQoL).    
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2. AIMS 

The application of stem cell therapy and tissue engineering strategies could provide a 

feasible alternative to autologous bone grafting, reducing the need for, and thereby the 

morbidity of, invasive bone harvesting. Therefore, the overall goal of this thesis is to 

introduce an alternative approach for regenerating human alveolar ridge bone by using 

autologous bone marrow-derived MSC and biomaterials. 

Specific Aims 

Study I: The aim of this retrospective study was to evaluate patient-reported outcome 

measures (PROMs), including overall satisfaction and oral health-related quality of life 

(OHRQoL); and to evaluate clinical outcomes, graft and implant survival, after 

advanced autologous alveolar ridge bone augmentation using bone harvested from the 

anterior iliac crest.  

Study II: The primary aim was to implement a previously established protocol for 

good manufacturing practice (GMP) compliant large-scale expansion of bone marrow 

derived MSC and determine the feasibility of producing clinical doses of 50 – 100 

million autologous MSC for alveolar ridge bone reconstruction prior to dental implant 

surgery, for patients in a clinical trial (Study III) using platelet lysate from human 

donors instead of FBS. The osteogenic potential of MSC expanded according to this 

specific protocol has previously been tested in vivo in preclinical models. A second aim 

of this study was to evaluate the feasibility of interaction between clinic and distant 

manufacturing center. 

Study III: The primary aim was to introduce and validate the protocol described in 

Study II, using autologous bone marrow-derived MSC and synthetic microporous 

biphasic calcium phosphate, in a standardized, minimally invasive surgical procedure; 

and to assess the clinical feasibility, safety and efficacy of this procedure. A second 

aim was to evaluate the outcome of  prosthetic rehabilitation, i.e. installation of dental 

implants in the augmented alveolar bone and screw-retention of  a fixed partial denture 

on the implants. 
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3. MATERIALS AND METHODS 

3.1 Study population and registration (study I)  

The 2002 – 2012 records of the Oral Maxillofacial Department of Haukeland 

University Hospital   were reviewed, in order to identify all patients with a treatment 

code indicating a bone graft. Those who had undergone autologous bone grafts from 

the iliac crest to the alveolar ridge were then identified. Each patient record was studied, 

and identical key features were noted. In all, 69 patients were identified as having 

undergone bone augmentation of a large area prior to restoration of the dentition with 

dental implants. All patients had undergone iliac crest grafting of the alveolar ridge at 

Haukeland University Hospital. At the time of the survey, seven patients had passed 

away, two had relocated (current addresses unknown), and one was in a psychiatric 

institution and unavailable for study. Thus, the final study sample comprised 59 

patients (29 females, 30 male).  

3.2 Medical records (study I) 

The records of the 69 patients were analysed with reference to: (a) site of graft; (b) 

survival of grafts, determined by success or otherwise in installing implants in the 

grafted site(s); (c) ‘implant survival’ as determined by the presence of functional 

implant-supported prostheses at the most recent follow-up. When available, the reasons 

for implant failure were also recorded.  

Questionnaire 

A self-administered questionnaire was mailed to all 59 available patients, together with 

an information leaflet about the survey, a return envelope with prepaid postage and an 

informed consent form. Reminder letters were sent after two and four weeks if 

necessary.  

The questionnaire contained 36 previously validated questions, which were categorized 

and related to: (1) demographic and lifestyle, (2) perceived general and oral health, (3) 

donor site and hospitalization, (4) implant and prosthesis and (5) OHRQoL (OHIP-14) 
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(see Table 1, Study 1). Responses to questions in categories 1–2 were recorded as 

‘yes/no’ or graded on a 3- to 5-point Likert scale (124). Category 3 included 

information on duration of hospitalization and sick leave. Category 4 included 

information on ‘graft survival’, i.e., whether implants (and prostheses) had been 

installed in the augmented site(s), and ‘implant survival’, i.e., post-surgical 

“loss/loosening” of any implants. OHRQoL was assessed using a Norwegian version 

of the OHIP-14 (125). These 14 questions addressed seven domains of OHRQoL and 

the responses were graded on a 5-point Likert scale ranging from “at no time” (0) to 

“all of the time” (4) (seeTable 1, study 1). 

Table 1, study I: Summary of questions  

Category 

Question  
Response  

1) Perceived health-

status 

 

General health “very good” to “bad” 

Oral health “very good” to “bad” 

Overall quality of life “excellent” to “bad” 

2) Lifestyle-related  

Smoking “yes”,” no” or 

“sometimes” 

Appetite “good” to “bad” 

3) Donor-site-related  

Pain “yes” and “no” 

Infection “yes” and “no” 

Presence of a scar “yes” and “no” 

Reduced sensitivity “no” to “total loss of 

sensitivity” 

Problems walking “no” to “a lot” 

Satisfaction “very satisfied” to 

“dissatisfied” 

4) Implant-related  

Intraoral pain “no” to “strong pain” 

Installation of implants 

and prosthetic 

“yes”, “no” or “just 

implants” 

Loss of implants “yes” and “no” 

Satisfaction with 

prosthesis 

“very satisfied” to 

“dissatisfied” 

5) OHIP-14 “at no time” to “all of the 

time” 

 



 41 

3.3 Bone marrow harvesting and shipping (studies II and III) 

Bone marrow (BM) aspirates were collected from 21 healthy volunteer donors 

recruited at the Cell Production Centre, The Institute for Clinical Transfusion medicine 

and Immunogenetics (IKT), University of Ulm, Germany to validate the expansion 

protocol and assess the influence of shipping BM and cells between the clinical and 

manufacturing centres when they are a considerable distance apart.   

For the clinical trial (Study III), the inclusion criteria are described in detail in Study 

III:  the main criterion was an alveolar ridge width of 4.5 mm or less. The patients were 

recruited at The Department of Clinical Dentistry, University of Bergen. All needed 

replacement of one or more mandibular posterior teeth, but required bone augmentation 

prior to dental implant installation. BM aspirates were harvested from 13 patients 

included in the study at The Section of Haematology, Haukeland University Hospital, 

Bergen, Norway.    

In an operating room, under local anaesthesia, 25 mL BM (target goal) was aspirated 

from the posterior iliac crest of each patient. The posterior iliac crest was aspirated 2-

3 times via a trocar introduced through cutaneous puncture. BM was harvested in 2-4 

mL aliquots into 20 mL syringes prefilled with heparin (Ratiopharm, Leopharma, 

Denmark). The harvest, in its primary packaging, was placed in an isothermal box 

labelled according to Directive 2004/23/EC and 2006/17/EC. The transport 

temperature was between 18°C +/- 3°C, with temperature traceability. Delivery to the 

manufacturing site in Ulm, Germany was ensured within 24 h by couriered 

transportation, using a qualified transport company. 

3.4 Isolation and expansion of MSC (studies II and III)  

MSC from the BM aspirates were isolated and expanded as previously described, using 

a two-step protocol, option 1 by Fekete et al. (126). In brief, BM aspirates were directly 

plated, without any further manipulation, in Eagle´s Minimal Essential Medium, alpha 

formulation (MEM medium) supplemented with 5% platelet lysate (PL, IKT Ulm) 

and 1 IU heparin/mL at day 0 and incubated at 5% CO2 atmosphere, 95% relative 
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humidity at 37°C. After staining with 7-amino-actinomycin D, the viability of the cells 

was evaluated by flow cytometry (FC500 flow cytometer; Beckman Coulter, USA). 

Samples were considered inadequate for further processing if the total white blood cell 

(WBC) count was less than 127.2 × 106 cells.  After 2-4 days, the supernatants were 

discarded and replaced by fresh MEM (Lonza, Basel, Switzerland) supplemented 

with 5% PL and 1 IU heparin/mL. Clonogenicity was assessed by counting colonies of 

more than 50 cells/colony and the medium was changed twice a week. The cells were 

processed and expanded under laminar hood flow, in grade A clean room conditions, 

for 14 days. The cells were then detached using trypsin (TrypZEAN; Lonza). The 

harvested passage 0 cells (MSC-P0) were counted and reseeded at a density of 4000 

MSC-P0/cm2 in αMEM supplemented with 8% human PL and 1 IU/ml heparin 

(Ratiopharm, Ulm, Germany) for 7 days. The cells were then detached and passage 1 

MSC were washed with phosphate buffered saline without Ca2+/Mg2+ (Lonza), and 

resuspended in a concentration of 20 × 106 MSCs/ml in clinical-grade physiological 

saline supplemented with 4–5% human serum albumin (CSL Behring, Munich, 

Germany).  

Five ml of cell suspension were drawn into one or two sterile syringes sealed with a 

Luer-Lock stopper and shipped by a certified shipping company (World Courier, 

Stuttgart, Germany) to the clinical unit at the Section of Oral and Maxillofacial 

Surgery, Department of Clinical Dentistry, University of Bergen, within 24 h of 

production. Appropriate quality controls of the advanced therapy medicinal product 

(ATMP) were conducted after each step of the culture procedure. Viability was tested 

using Trypan blue viability tests and and the number of cells was counted in an 

Automated Cell Counter (Countess™; Invitrogen, Life Technologies, USA). Cells 

were characterized for their stemness using a flow cytometer and performing multiple 

assays for adipogenic, chondrogenic and osteogenic differentiation. Details on 

manufacturing the MSC, including quality controls, are presented in Study II. 
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3.5 Patients and study design (Study III) 

Thirteen patients were recruited for the clinical trial. All gave written informed consent 

to participation. The patients were to be aged between 18 and 80 years and had to be 

healthy non-smokers, with no evidence of infectious diseases. They presented with one 

or more missing mandibular posterior teeth and an alveolar ridge width in the 

edentulous area of less than 4.5 mm. For patients who met the inclusion criteria, cone 

beam computer tomography (CBCT) (Morita 3D Accuitomo F17, Japan) and dental X-

ray scans were taken before and 4–6 months after grafting, to evaluate bone volume. 

The study design is described in detail in Study III. 

3.6 Clinical procedures (Study III) 

One hour before surgery, the surgical site in each patient was prepared and flaps were 

raised. The cortical bones were then perforated with a small round burr, to enhance 

blood flow and facilitate vascular ingrowth into the biomaterials (Fig. 1).  

 

Figure 1; The alveolar rigde was 

perforated, and tenting screws were 

plased to support the biomaterial and 

membrane. 

 

In parallel, the MSC delivered from the cell production center were mixed with 

particles of bicalcium phosphate (MBCP+™; Biomatlante, France), comprising 20% 

hydroxyapatite (HA) and 80% beta-tricalcium phosphate (β-TCP). Cells were allowed 

to attach to the biomaterial for 1 h in closed syringes (Fig.2). 

 

Figure 2; The syringes containing the 

MSC and biomaterial. 
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The mixture of MSC and granules in a dose of 20 × 106 cells/cm3 (75) were placed on 

the alveolar ridges under a titanium-reinforced PTFE membrane and muco-periosteal 

flaps (Fig. 3). Nonabsorbable sutures (4/0 Supramide; B. Braun Surgical SA, Spain) 

were used to close the wounds. 

 

Figure 3; MSC and biomaterial placed on the 

alveolar ridge, membrane secured ligually. 

 

 

Part of the mixture was used for bacteriological tests and cell attachment to BCP. 

Twelve days after surgery, the operation sites were clinically inspected and the sutures 

were removed.  

The patients were recalled after 1, 2, and 4 months, in accordance with the 

protocol.  CBCT scans were taken 4–6 months post-operatively, to determine whether 

the sites were ready for implant installation. At the time of implant installation, the 

augmented area was re-entered, if the width was 7 mm or more. Prior to implant 

installation, bone biopsies were taken and new bone formation was assessed by 

histology and micro-computed tomography (μ-CT) (Skyscan 1172; Bruker). Dental 

implants (Bone Level, Roxolid®, SLActive®; Institut Straumann AG, Basel, 

Switzerland) with a diameter of 4.1 mm and a length of 8–10 mm were then installed 

according to the manufacturer’s recommendations (Fig. 4). 

 

Figure 4; Dental implant placed after core 

biopsy. 
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Two months after implant installation, abutment surgery was done and a screw-

retained crown was mounted 2–4 weeks later (Fig. 5). The implant stability quotient 

(ISQ) was measured at each of these procedures using an Osstell® device (Osstell AB, 

Gothenburg, Sweden). 

  a    b    c 

  

 

Figure 5; (a) X-ray before abutment surgery, (b) Clinical picture after abutment 

installation, (c) Clinical picture after crown installation. 

3.7 Processing bone biopsies (Study III) 

Bone biopsy specimens were collected before implant installation, maintained in 10% 

buffered formalin and scanned with the high-resolution μ-CT SkyScan1172® 

(SkyScan, Kontich, Belgium). Images from the scanning of biopsies were 

reconstructed by the software NRecon® (SkyScan) to obtain 2D and 3D images. 

CTvox (version 3.2; SkyScan) was used to create 3D images for the biopsies. The 

histomorphometric parameters analyzed have been described previously (127). 

Fixed samples were decalcified in a solution (pH 7.4) containing 4.13% EDTA/0.2% 

PFA in PBS for 96 h at 50 °C, using an automated microwave decalcifying apparatus 

(KOS Histostation; Milestone Med. Corp., USA). Samples were dehydrated in an 

ascending series of ethanol, followed by butanol, in an automated dehydration station 

(MicromMicrotech, Lyon, France). The samples were embedded in paraffin 

(Histowax; Histolab, Gothenburg, Sweden). Thin histological sections (3 μm thick) 

were made using a standard microtome (Leica RM2255; Leica Biosystems, Nanterre, 

France). The sections were stained by the Masson trichrome technique. Slides were 

scanned (NanoZoomer; Hamamatsu, Photonics, Hamamatsu City, Shizuoka, Japan) 
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and observed virtually (NDP view; Hamamatsu). Histomorphometry of images was 

performed using ImageJ and the percentages of bone and bone marrow were calculated 

per area of explant. Four sections through each biopsy were analyzed and quantified. 

3.8 Ethics  

Study I 

The Norwegian Committee for Medical Research Ethics (‘REK’, Health Region West), 

acknowledged this study as a treatment quality control study. Written consent was 

obtained from all participants. 

Studies II and III 

For the validation study, BM aspirates were collected from healthy volunteer donors 

after obtaining written informed consent according to the Declaration of Helsinki and 

approval by the Ethics Committee of Ulm University (ethical approval numbers 21/10 

and 24/11).  

The clinical trial MAXILLO-1 (EudraCT, 2012-003139-50, ClinicalTrials.gov, NCT 

02751125, entitled “Jaw bone reconstruction using a combination of autologous MSC 

and biomaterial prior to dental implant placement”) was approved by the Norwegian 

Ethical Committee (2013/1284/REKvest) and by the Norwegian Medicines Agency 

(13/12062-15). The trial followed the European guidelines for Advanced Therapy 

Medicinal Products (ATMP). The participants received oral and written information 

and were recruited after signing written informed consent according to the Declaration 

of Helsinki and to REKvest guidelines and approval. The cell manufacturing centre at 

the Institute for Clinical Transfusion Medicine and Immunogenetics, University of Ulm 

(Ulm, Germany) is authorised to expand and produce BM MSC for clinical trials 

(authorization number DE_BW_01_MIA_2013_0040/DE_BW:91_IKT Ulm).  
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3.9 Statistical analysis  

Study I  

Data were anonymized and analysed using SPSS v 24 (SPSS Inc, Chicago, IL, USA). 

Descriptive analyses were applied. Statistical significance was set at 5%.   

Study II 

GraphPad Prism 7.01 Software for Windows was used for statistical analysis. Each 

dataset was tested for normal distribution of data using the D’Agostino & Pearson 

normality test. In the case of normal distribution, data were compared using the 

unpaired t test with Welch’s correction. For datasets which did not pass the D’Agostino 

& Pearson normality test, data were compared using the Mann-Whitney U test. The 

Kruskal-Wallis test was used for multiple-parameter analyses. Because of multiple 

testing of the datasets, differences were considered to be significant at p < 0.01. 

The correlation of  multiple parameters was assessed, computing Spearman correlation 

(r values) for every pair of the following datasets: time between end of aspiration and 

end of seeding (h), age (y), aspiration volume (mL), aspiration volume without heparin 

(mL), white blood cell count ([WBC]/mL), mononuclear cell count ([MNC]/mL), % 

MNC of WBC, % CD34+ cells in BM aspirate, harvest density of MSCP0 (cells/cm2), 

harvest density of MSCP1 (cells/ cm2), doubling time of MSCP0 (h), doubling time of 

MSCP1 (h), population doublings in P0, population doublings in P1, cumulative 

population doublings, CFU-F/106 BM-WBC, CFU-F/106 MSCP0, CFUF/ 106 MSCP1, 

MSCP0 harvested/mL BM aspirate seeded and MSCP1 harvested/mL BM aspirate 

seeded. Correlations with r 0.5 and p < 0.05 were considered to be significant with 5% 

PL and 1 IU heparin/mL. 

Study III  

Bone width and volume are shown as means and confidence intervals. Confidence 

intervals were based on formulae assuming normally distributed data. The p value 

was calculated from a one-sample t test, with 0 as the hypothesized difference. A p < 

0.05 was considered statistically significant. 
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4. SUMMARY OF MAIN RESULTS  

4.1 Results Study I 

The final sample consisted of 44 patients (24 women, 20 men), with a mean age of 61.2 

years ± 13.1, (range: 27–82 years) who responded and completed the questionnaire, 

giving a response rate of 74.6%. The mean interval between augmentation surgery and 

completion of the questionnaire was 7.8 years ± 2.65, (range 1.9–12 years).   

4.1.1 Health-related PROM 

General 

The majority of patients reported “good” or “very good” levels of general health 

(81.4%), oral health (83.7%) and overall quality of life (90.7%).  

Fewer than 5% reported “bad” levels for either of these variables. Most patients 

reported better general (86%) and oral health (78%) after treatment. Only two patients 

(4.7%) reported their oral health to be worse after treatment.  

Donor site and hospitalization related PROMs 

Most patients (85.4%) were satisfied with the hip surgery procedure. Pain at the donor 

site was reported by 38% of patients, lasting for an average of 18.1 ± 16.1 days and 

measuring 43.6 ± 27 on the VAS (0-100) scale.  

Only 2 patients (4.7%) reported post-operative infection at the donor site. Scar 

formation on skin (hip) was reported in 49 % of patients, with the majority esthetically 

acceptable (90.4%). Four (9.5%) and two (4.7%) patients respectively reported “a 

little” or “a lot” of reduced sensitivity at the donor site. Three patients (7.3%) reported 

problems walking (Table 2, Study I).  

The average period of hospitalization was 4.3 ± 3.5 days and sick leave 20.2 ± 18.5 

days.  
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Table 2, Study I: Patient reported outcomes  

 
Question  Response  Frequency  

Oral health Very good/good   81.8 % 

Quality of Life    

  

Very good/good  90.9 % 

General health     Very good/good 81.8 % 

Pain after hip operation    Excessive 35.0 % 

Satisfaction hip operation   

  

Very 85.7 % 

Post op infection in hip site  

  

No 95.3 % 

Visible scar on hip   

  

Yes 48.8 % 

Acceptable scar                Yes 20 of 21* 

Reduced sensibility on hip site   No 86.0 % 

Problem walking   

  

No 92.9 % 

Augmented bone block still present 

  

No 6.8 % 

New augmentation   

  

Yes 1 of 4* 

Oral pain after augmentation  

  

No/some 83.3 % 

Implant/teeth in augmented bone 

  

Yes 90.9 % 

Lost implants    

  

Yes 28.6 % 

Time lost after installation  

  

0-3 months 42.9 % 

 7-12 months    28.6 % 

New implants installed    Yes 8 of 11* 

Satisfaction with implant-retained teeth   Very satisfied/satisfied 90.5 % 

*Incomplete or missing data 

 

4.1.2 Implant/prosthesis-related PROM 

Most patients (n=40: 90.9%) reported proceeding with implants and prostheses at the 

augmentation site(s). This indicates a graft survival rate of 90.9% at patient level. Two 

patients had implants installed, but did not proceed with prosthetic rehabilitation. 

Implants could not be installed in 2 patients. However, 28.6 % of patients reported 

“loosening or loss” of implants in the post-operative period (one year), indicating an 

implant survival rate at patient level of 71.3%, and most patients (8 out of 11) received 

new implants.  
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No pain was reported in 39 patients following implant surgery (82.9 %) and a majority 

of patients (90.2%) were satisfied/very satisfied with the implant therapy overall, and 

in terms of overall satisfaction with their teeth (90.5%). 

The correlation analyses did not show significant correlation between the 

complications at the donor site and implant loss. 

4.1.3 OHRQoL 

The mean OHIP-14 score was 8.4 ± 9.7 (range 0 - 56) in 44 patients, 35 of whom scored 

14 or less. Nine patients scored a total sum of one (1) i.e. “hardly ever” impact on any 

single item and “at no time” on the remaining 13 items. The highest score (2.34) was 

for the functional limitation domain and the the lowest (0.61) was for the social 

disability domain. 

4.2 Results Study II  

4.2.1 Validation of the expansion protocol, table 3, study II         

 
Volunteer patients Maxillo 1 patients 

Cell density cells/cm2  49 961 ± 264 49 955 ± 65 

First culture step days  13.8 ± 0.1 14.0 ± 0.0  

Cell density at passage 0 

(MSC P0)  

25.7 x 103/cm2 ± 15.7 x 103/cm2 13.4 x 103/cm2 ± 7.0 x 103/cm2 

Population doubling time  25.4 ± 1.6 h 25.3 ± 2.5 h 

Second culture step  6.9 ± 0.2 days 7.0 ± 0.0 days 

Cell density at passage 1 

(MSC P1)  

49.1 x 103/cm2 ± 18.0 x 103/cm2 42.7 x 103/cm2 ± 9.4 x 103/cm2 

Population doubling time  51.7± 24.1 h 49.3 ± 4.4 h 

Cumulative number of 

population doublings 

16.6 ± 1 16.8± 1.5 

Overall harvest of the 

final product  

283.2 x 106 ± 187.3 x 106 273.7 x 106 ± 104.5 x 106 
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The robust protocol used in this study demonstrated a stable performance characteristic 

of expanded MSC, although there was variation in the starting materials. 

Manufacturing of the autologous clinical grade MSC was possible, requiring 21 days 

for each product. Transport of BM aspirates and MSC within 24 h was possible and 

did not affect the viability and quality of the cells. MSC fulfilled the quality criteria 

requested by the National Competent Authority. In one case, the cells developed a 

mosaic in chromosomal finding, showing no abnormality in differentiation capacity, 

growth behavior or surface marker expression during long-term culture. The proportion 

of cells with the mosaic decreased in long-term culture and cells stopped growth after 

38.4 population doublings. 

4.2.2 Donor characteristics 

Twenty-one BM aspirations were performed from volunteer normal donors for 

validation, and 13 aspirations from patients enrolled in the clinical trial.  

One BM from the validation was split and two BM aspirates from patients in the 

clinical trial (MAXILLO-1) had to be discarded due to lack of CFU-F in the aspirate 

and growth of the culture during the passage 0 growth phase. 

Although the group of volunteer healthy donors and the MAXILLO-1 patients differed 

significantly in age (P < 0.0001), aspirates did not differ significantly with respect to: 

 Aspiration volume (P = 0.2414).  

 Percentage of CD34+ cells in the aspirate (P= 0.0946). 

4.2.3 Quality controls 

All quality controls were carried out according to the Ph Eur for the corresponding 

method and all matrices have been validated for the tests applied. 
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4.2.4 Cell viability, table 4, study II 

 Volunteer patients Maxillo 1 patients 

BM aspirate (BM MNC) 94.6% ± 3.1% 92.5% ± 3.5% 

MSC P0 97.0% ± 3.2% 97.7% ± 1.7% 

MSC P1 94.5% ± 4.2% 97.9% ± 1.1% 

The was no significant difference in viability of cells from BM (P= 0.0767), of MSCP0 

cells BM (P= 0.8995) or MSCP1 BM (P= 0.0104) cells from volunteer healthy donors 

and MAXILLO-1 patients. The Kruskal-Wallis test revealed no significant difference 

in viability of MSCP0 and MSCP1 between the two groups of donors. 

4.2.5 Analysis of Starting Material 

Using flow cytometry, the content of the starting material (i.e, leukocytes vs 

hematopoietic progenitor/stem cells) was determined by expression of CD3, CD34, 

CD45 and MHC class II on MSCP0) and MSCP1 cells.  

In summary, parameters for identity and impurity were fulfilled for all expansions from 

both volunteer healthy donors and MAXILLO-1 patients with one exception: MSC P1 

expanded from volunteer healthy donor 7575 showed deviations for the parameters 

CD3 and CD105. The percentage of CD3+ cells was 23.5% (with an allowed threshold 

of ≤5%), and the expression of CD105+ cells was 88.97% (with an allowed threshold 

of ≥90%).  

Thus, only one preparation of 33 (i.e. 3%) did not fulfill the quality control release 

criteria for identity and impurity. 
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4.2.6 Clonogenicity (CFU-F), table 5, study II 

 

 Volunteer patients Maxillo 1 patients 

/106 seeded MSC P0 192 x 103 ± 72 x 103 colonies  171 x 103 ± 86 x 103 colonies 

/106 seeded MSC P1 210 x 103 ± 79 x 103 colonies 91 x 103 ± 40 x 103 colonies 

BM aspirates from volunteer healthy donors differed significantly in their CFU-F 

content (P= 0.0060) and MSCP1 showed significant difference in clonogenicity (P= 

0.0003).  

Interestingly, there was no difference in the clonogenic potential of MSCP0 from 

volunteer healthy donors and MAXILLO-1 patients (P= 0.3551). 

4.2.7 Differentiation capacity 

Adipogenic, chondrogenic and osteogenic differentiation capacity was shown for all 

expansions performed for validation runs and in the context of MAXILLO-1. All 

batches of MSC exhibited a multipotent capacity in the three lineages. 

4.2.8 Microbial, endotoxin and mycoplasma testing 

Microbial testing of the starting material (BM), of the cell culture supernatant at day 7, 

of MSCP0 and of MSCP1 was negative for all expansions. Endotoxin testing was 

performed for all expansions and mycoplasma testing was performed for expansions in 

the context of the clinical trial MAXILLO-1 and for 8 of the 22 cell expansions from 

volunteer healthy donors. For all tested product samples, anaerobic and aerobic cultures 

showed negative test results. No mycoplasma DNA was detectable and endotoxin 

levels were ≤1 IU/mL in all cases. 
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4.3 Results Study III 

4.3.1 Donor and Product characteristics 

13 patients aged 52–75 years (mean 65 years) were enrolled. For 11 of the 13 patients 

the expansions fulfilled the release criteria and cells could be delivered to the clinical 

unit in Bergen. Two expansions were stopped at passage 0 because there were 

insufficient bone marrow cells in the starting material to attempt expansion. 

The final cell product consisted of fresh autologous cells (MSC) expanded in vitro 

expressing the markers CD90, CD73, and CD105 and negative for CD14 and CD45, 

with a 90% viability rate. The product also showed strong expression of the markers 

CD49d, CD73, CD90, and CD105; moderate expression of CD14 and CD106; and low 

expression of CD19, CD34, and CD45.  

The viability of the cells on arrival was 87–90%, as demonstrated by a Trypan blue 

assay and cell counting. Mixing of cells and BCP granules was done under aseptic 

surgical conditions. The cells were mixed with BCP granules for 60 min.  

4.3.2 Patient outcomes  

Healing of the augmented area was uneventful in all 11 patients, without any local 

infection. No adverse events occurred during the trial period. New bone formation was 

restricted to the granules under the PTFE membrane, with no new bone observed on 

those granules outside the membrane. All patients had successful ridge augmentation 

and an adequate amount of bone for implant installation. In five patients the PTFE 

membrane became exposed and was removed uneventfully 7–8 weeks post 

augmentation. Casts of the alveolar ridge in each patient, X-ray scans, and clinical 

examinations (Fig. 6) demonstrated a significant increase of the total bone volume in 

all 11 patients after treatment. 
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Linear measurements of the width and height were performed from all CBCT scans in 

iView software (version 2.2.0.3. J; Morita MFG Corporation). Grafted bone could be 

distinguished from residual bone by density and structure on the scans taken 

immediately after the grafting procedure. (Fig.7). 

 

Figure 7; CBCT scans to 

distinguish grafted from  

residual bone.  

  

All patients had sufficient increase in alveolar width to accommodate dental implants. 

The average volume of bone increased by 887.23 ± 365.01 mm3 (Table 6) 

Table 6, Study III. Clinical outcomes: Demonstrates bone healing, increased bone width and 

volume. All patients received implants and prosthesis. 

 Patient no Age Sex Healing 

time weeks 

Increase in 

width mm 

Increase 

in volume 

mm3 

Implant 

placement 

Crown 

delivered 

Patient 

satisfied 

01 75 F 27 4.5 902.92 Y Y Y 

02 67 M 25 3.7 1047.15 Y Y Y 

03 55 F 26 3.9 1382.54 Y Y Y 

04 62 F 18 1.1 440.93 Y Y Y 

06 52 M 21 4.9 1469.53 Y Y Y 

07 left 69 M 31 4.6 432.7 Y Y Y 

07 right 69 M 31 4.9 1187.21 Y Y Y 

08 69 M 22 1.4 753.52 Y Y Y 

09 61 F 22 1.4 546.33 Y Y Y 

11 62 F 21 9.7 1188.47 Y Y Y 

12 left 65 F 20 2.7 954.98 Y Y Y 

12 right 65 F 20 3.4 418.36 Y Y Y 

13 left 69 F 22 3.7 553.56 Y Y Y 

13 right 69 F 22 6.8 1142.96 Y Y Y 
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The increases in both width and volume of the alveolar ridge were statistically 

significant. The mean increase in bone width (n = 14) was 4.05 mm (95% CI 2.74, 

5.36; P < 0.001) and the mean increase in volume (n = 14) was 887.23 mm3 (95% CI 

676, 1097.98; P < 0.001).  

Formation of mineralized tissues was evaluated by μ-CT and by histological analysis 

of the biopsies taken during implant installation. From the μ-CT scan datasets, 3D 

models were constructed for visualization. It was possible to identify accurately the 

newly formed bone from the BCP granules (based on histogram calculations) when the 

raw data-reconstructed cross-sections were turned into images. Histological analysis 

revealed that the BCP granules were well integrated, with deposition of newly formed 

bone tissue on the surface of the particles, with osteoblast lining cells and subsequent 

deposition of lamellar bone tissue. The BCP granules demonstrated continuous 

degradation and dissolution, with the presence of multinucleated cells, probably 

osteoclasts, as well as macrophage CD68+ cells on the surface of the particles.  

Table 6 shows the mean values for each analyzed variable, obtained by μ-CT analyses, 

in relation to the microstructural properties of the biopsies.  

4.3.3 Patient satisfaction 

All patients reported satisfaction with the esthetic and functional outcomes of the 

procedure. No adverse events were reported or observed. There were no postoperative 

infections in any of the transplants or at the donor site. One patient reported moderate 

levels of pain after augmentation and it became necessary to remove the exposed 

membrane. The other patients reported only minor postoperative pain. All patients were 

satisfied with the clinical outcome of the augmentation procedure and with their new 

teeth and said they would recommend this procedure to others with a similar clinical 

condition (unpublished data). Osstell values increased for all patients during the first 

12 months after installation of the dental implants. 
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5. DISCUSSION 

The human body has the capacity to regenerate certain tissues, such as the liver, which 

can regain function after significant loss. Unfortunately, this process of regeneration 

does not occur when bone is lost or resorbed. Therefore, regeneration requires bone 

grafting. With more than 2.2 million bone grafts performed worldwide each year (128), 

this places a large economic burden on the health care system. Other drawbacks to 

autologous bone grafts include their unpredictable resorption and the finite amount 

which can be removed for transplantation. Major goals for tissue engineering include 

decreasing the invasiveness of the procedures by eliminating the need for donor tissue 

harvest, improving graft outcomes, and making the outcome more predictable, with 

less alteration in size/dimension of the graft over time.  

Even a decade ago, there was evidence that MSC held great promise for bone tissue 

engineering and bone regeneration (129, 130). However, although there are clinical 

studies of MSC dating from the early 2000’s, there is a notable lack of conformity of 

studies. Cell preparations vary, from minimally manipulated whole tissue fractions (96) 

to ex vivo (88) conditioned cells (73). The origin of the cells also varies, e.g.  bone 

marrow (88), adipose tissue (89, 131, 132) and other sources (106). The state of the 

cells has ranged from progenitor (88) to pre-osteoblasts (98).  

Because of these variations, no direct comparison is made of the present results with 

those of other studies. However, it is of interest to consider the present research in the 

context of reports from other research groups also using cell-based tissue engineering 

to treat orofacial defects. It should be noted that most such reports comprise primarily 

clinical cases rather than trials. 

In 2008, Meijer et al., reported a clinical study of cell-based tissue engineering in the 

maxilla (88). In 6 patients with insufficient bone for dental implant installation, 9-15 

mL of bone marrow were extracted, and expanded in culture containing α-MEM, FBS, 

dexamethasone and antibiotics. Thus, although bone marrow cells were extracted from 

the patients, in contrast to the protocol described in Study II, osteogenic supplements 

were used for expansion, hence the cells after expansion should be considered pre-

osteoblasts rather than stem cells. In contrast, the cells produced in Study II maintained 
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their stemness with minimum manipulation during culture. The issue of using animal-

derived products such as FBS has been discussed previously. The cells were seeded on 

HA particles after replating 3 times, then grown together for 7 days supplemented with 

dexamethasone. The scaffold with cells was placed on the alveolar ridge and left to 

heal for 4 months. A biopsy was taken from the site of planned dental implantation, 

and the implant was installed. Of the 11 implants installed in the 6 patients, 10 healed 

uneventfully, and 1 failed. In 3 patients the biopsies showed bone formation: in 2 such 

cases bone formed on the scaffold material near the pre-existing bone of the defect. In 

only one biopsy was there an area of ‘de novo’ bone formation further than 7 mm from 

the pre-existing bone tissue. This was regarded as a strong indication of osteogenic 

bone formation by the implanted cells. It is difficult to draw any broad conclusions 

from the results, because of the pronounced inter-patient variation in the size and site 

of the bone defects. In contrast, the defect site in Study III, the mandibular ridge distal 

to the canine, was well-defined and standardized. 

Adipose tissue has also been used as a source of stem cells for bone-tissue engineering 

in the orofacial region (133). Adipose tissue offers the advantage of easy access and a 

plentiful source for harvesting cells. The first report of human trials using these cells 

was published in 2009 by a research group in Finland. This was a case report of 

maxillary reconstruction using 13 × 106 cells expanded from the patient’s adipose 

tissue (131). The cells were expanded for 14 days in DMEM and autologous serum. 

Prior to combining the cells with βTCP, they were incubated for 48 hours before 

surgery in basal media containing 12 mg of rhBMP-2. A preformed titanium case was 

filled with the cells and βTCP and inserted into the patient’s left rectus abdominus 

muscle and left for 9 months. The construct, together with part of the muscle and 

supplying blood vessels was then placed in the maxillary defect, and the vessels 

connected. After uneventful healing, dental implants were installed into the construct 

after 8 months, and progress was monitored for another 12 months. In 2013, the same 

group reported on 3 patients with mandibular defects, which were treated with adipose 

stem cells (ASC) and βTCP (89, 132). The cell dosage varied from 4.7 × 106 to 16 × 

106. Healing was uneventful and the large defects, ranging from 6-10 cm, were 

successfully bridged. Histological analysis of the recovered bone cores revealed signs 
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of bone formation and remodeling. The βTCP granules were interconnected by bridges 

of vital newly formed bone.  

In 2014, the same group also reported treatment of 13 cases of hard tissue cranio-

maxillofacial defects: 3 frontal sinuses, 5 cranium defects, 2 nasal septum defects and 

the 3 mandibular defects mentioned earlier (133). The cell dose varied from 2.8 × 105 

to 4.3 × 106 per ml. In the sinus defects the cells were combined with a bioactive glass 

scaffold.  βTCP was used in the remainder. Only the mandibular defects were treated 

with rhBMP2. The frontal sinus patients were asymptomatic during a follow-up period 

of up to 37 months. In the cranial defects group one patient had a recurrence of the 

original meningioma, one showed evidence of graft resorption after one year and was 

re-operated, and in a third patient the reconstruction resorbed almost completely. The 

mandibular cases have been discussed previously. In the nasal septum group (two 

patients) one was successful, but the other failed and this was attributed to the patient`s 

habitual nose picking.  

In 2017, the six-year follow-up results for the cranioplasty group were published. The 

outcomes were unsatisfactory: only 1 patient had not been re-operated and in this case, 

radiographs showed hypodensity at the borders of the graft (134). However, the cell 

culture procedures for stem cells derived from adipose tissue may require the addition 

of BMP-2 in order to direct the cells toward osteogenesis. In contrast, bone marrow 

cells have inherent osteogenic potential. Thus, although adipose tissue cells are good 

candidates for bone regeneration, their osteogenic potential is not as great as that of 

bone marrow cells (61, 62).  

In the context of such widely-ranging approaches to stem-cell based bone tissue 

regeneration of defects in the craniofacial region, Studies II and III clearly highlight 

the advantages of a standardized cell expansion protocol, which meets the regulatory 

requirements for Phase II or later trials, and a well-planned clinical design.  

In order to establish a control group for future clinical trials with MSC, our first 

requirement was to identify a group of patients who had been treated with the current 

gold standard for alveolar bone restoration, using autologous bone grafts, and to 

acquire data about patient satisfaction and quality of life after the procedure (Study I). 
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Data were acquired from 59 patients who had undergone reconstructive surgery and 

been followed for up to 12 years postoperatively. Although the majority of patients 

expressed satisfaction with the long-term outcome, in that after augmentation dental 

implants could be installed, this satisfaction was tempered somewhat because they 

experienced significant postoperative pain (38% of patients) and morbidity (an average 

of 4.3 days’ hospitalization and 20.2 days’ sick leave). As this was a retrospective 

study, the subjects included many who would have been ineligible for inclusion in 

Study III, because of poor overall oral health. Afterwards many admitted to being 

smokers. 

Different experimental biomaterials were tested in preparation for the planned clinical 

trial. However, in order to eliminate another unknown and also to facilitate the process 

of approval for the human trial it was realized that an FDA approved and commercially 

available product was needed as substrate for the cells. The adherence of MSC and 

commercially available biomaterials, and  the ideal mixing time for best adherence of 

the MSC to the biomaterial were  therefore evaluated in  preclinical trials (75). The 

bone-inducing potential of this combination was assessed; first ectopically under the 

skin of nude mice, and later as an implant in mice skulls (75). After this initial 

validation of the method, the surgical procedure and its efficacy were tested in a split 

mouth model in a minipig (135). The alveolar rigde of the animal were implanted with 

the BCP to be used in our planned clinical trial, or with MSC seeded onto BCP 

granules.  Bone regeneration was clearly demonstrated when MSC were combined with 

the biomaterial (Fig. 8). 

             a                   b 

 

Figure 8; (a) Control 

(BCP granules) and 

(b) test (BCP granules 

+ MSC)  
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Shipping of cells and viability were then validated in animals before transportation of 

human MSC for 24 hours was validated.  

After these preliminary investigations, it was then possible to proceed with Study II: 

developing a GMP protocol for harvest, isolation and expansion of autologous MSC. 

Although regulatory agencies permit the use of qualified lots of FBS in phase I clinical 

cell therapy clinical trials, for phase II or later trials this must be replaced with a non-

animal source of growth factors. EU regulations also require a reliable xeno-free 

product, both for human safety and animal welfare. Therefore, rather than switch 

sources after the phase I trial, we chose to validate a protocol in which human platelet 

lysate (PL) was the source of the growth factors that would be used for the phase I/II 

human trials. As the marrow aspirates were harvested in Bergen, Norway, shipped by 

qualified courier to Ulm, Germany for expansion in vitro, and then the expanded cells 

were returned to Bergen for clinical use, we also validated the viability and other 

important characteristics of the expanded MSC after transport. 

PL as a supplement for the culture medium was compared with FBS in a recently 

published systematic review and shown to be at least equally effective for expansion 

of MSC and osteogenic differentiation (80). The PL used in the trial was made from 

pooled validated platelet concentrates (PC) from qualified donors, past the mandated 

blood bank PC shelf life.  

It was reported that for isolation and expansion (single step protocol) or for culture with 

pre-expanded MSC (in our case comparable to the culture of passage 0 cells), there was 

no benefit in using a PL concentration >10% (126). For the pre-expanded cells in 

particular, 5% PL was not as supportive as 10%. Experiments extended the 

investigation to the whole expansion process (126) and involved testing several 

different protocols. The first tested was a single-step protocol which used 10% PL and 

cells were not passaged. However, a two-step protocol resulted in more reliable 

expansion data:  seeding a defined number of passage 0 MSC helped to eliminate 

effects due to variation in expansion capability of BM from different donors.  A two-

step protocol was therefore chosen for use in the clinical trial.  
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Study III presents the procedures and outcomes for the 11 patients in the phase I/II trial 

of expanded autologous MSC for alveolar bone regeneration and placement of dental 

implants. Bone biopsies were taken at the time of dental implant installation. Patients 

were evaluated at each post-surgical visit with a clinical examination, VAS scales for 

postoperative pain and complaints. The patients all reported satisfaction with the 

outcome, but unlike Study I, these patients reported minimal pain and morbidity.  

Methodological considerations may potentially confound interpretation of the results. 

The trial in Study III included biopsies, which were examined by both CT and 

histology. The bone cells were seen clearly dispersed in between the biomaterial. 

However, it is impossible to tell whether the new bone tissue is derived from the 

transplanted cells, from homing of new MSC to the area, or via osteogenesis. While 

labelling the cells might allow this distinction, it might alter their behavior in vivo.  

An important aspect of Study III is that it has a close-to-standardized defect, located in 

the posterior mandible, distal to the canine, and has a width less than 4.5 mm. Most 

trials involving bone transplants and cell therapy in the orofacial area do not utilize a 

standardized defect and this complicates comparison of treatment results. There are 

few randomized trials, and more reviews of the procedure than trials (136-138). 

In the Maxillo-1 patients, the membrane enclosing the cells and granules determined 

the area of regenerated bone, and there has been minimal resorption of the 

reconstructed ridge in patient follow-up over the last 3 years (unpublished data, 

manuscript in preparation). The non-resorbable membrane used in the study is 

microporous, and impervious to bacteria while still allowing diffusion of gas and small 

molecules, but may inhibit vascularization from the periosteum (128, 139). However, 

the importance of the membrane to bone regeneration is highlighted by the fact that 

new bone formation was seen only on the granules enclosed by the membrane, and not 

on those that fell outside. 

Although the maxillary sinus has been used to test a graft material, compared to the 

jaws it is not a very challenging test environment:  the sinuses are mostly sterile, the 

graft is not exposed to the forces of mastication and there is good blood supply. It has 

even been shown that by lifting Schneiderian membrane over a dental implant, new 
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bone will develop along the long axis of the implant (140, 141), as would happen with 

a sinus lift procedure. 

The results of the comprehensive clinical trial in human subjects in Study III confirm 

that MSC can successfully induce significant formation of new bone in a challenging 

environment, with no adverse events. Hence, this novel augmentation procedure 

warrants further investigation. It has the potential to form the basis of a valid treatment 

protocol, which may challenge the current gold standard.  
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6. CONCLUSIONS 

Study I: severely compromised patients who had undergone advanced reconstruction 

of alveolar ridges with iliac crest-derived grafts and implants reported favorable 

OHRQoL and satisfaction with the outcome. However, this treatment requires 

substantial resources including hospitalization and sick leave, and is associated with 

significant pain. Further, the findings of this study highlight the need for stringent 

patient selection criteria in order to minimize the risk of implant loss after regenerative 

bone procedures. 

Study II: Clinical use of freshly prepared MSC, manufactured according to a 

standardized and validated protocol, is feasible for bone regeneration, even with 

considerable distances requiring transport of material between the manufacturing 

center and clinical site. Individual variations in several BM parameters, such as CFU-

F, % CD34+ cells, MNC and WBC content may serve as a predictive tool for the yield 

of MSC and may help to avoid unnecessary costs for MSC manufacturing in cases of 

insufficient cell expansion. Replacing FBS, platelet lysate served as a reliable human-

derived source of growth factors. 

Study III: The results of this trial in human subjects confirm that MSC can successfully 

promote formation of new bone, with no untoward sequelae and minimal pain. Hence, 

this novel augmentation procedure warrants further investigation. It has the potential 

to form the basis of a new therapeutic approach which may challenge the current gold 

standard. 
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7. FUTURE PERSPECTIVES  

Future academic clinical perspectives 

The next clinical trial (Maxibone, H2020 EU project number 779322) will focus on 

improving the costs and decreasing the turnaround time for MSC expansion, in order 

to accommodate an increased number of patients. Culture time has been shown to 

influence the cell doubling time (126), cells that are cultured for long time may become 

tightly packed and their doubling time is then slowed, possibly attributable to contact 

inhibition. It will therefore be possible to shorten culture time for this trial to 15 days 

compared to 21 days in Study III, which will decrease the costs associated with cell 

culture (a protocol validated in the ongoing Maxibone project).  

In Study III, all surgical procedures were performed by the same surgeon to avoid 

interoperator variability. The surgical technique is challenging, using a PTFE 

membrane to expand the alveolar ridge up to 1 cm with enclosed cells and granules and 

allow tension-free wound closure. Calibration of other surgeons to do the validated 

procedure is therefore planned, both to increase the number of patients treated and to 

demonstrate that the procedure can be done by other surgeons. Calibration is always 

required to ensure uniformity of surgical approach so that surgical technique does not 

become a significant variable in the multicenter randomized controlled trial (142). 

Further, it will also be important to train other personnel involved in further care of 

these patients, e.g. dental technicians who fabricate the prostheses, dental hygienists, 

and prosthodontists, so that the implants are well-maintained.  

We chose the area distal to the mandibular canine, a challenging area to reconstruct, 

especially with granules and not a block. Having succeeded in this challenging 

environment, a future goal is to apply the method in an orthopedic trial involving mal-

unions in the tibia. We have done this once already in a compassionate setting, to treat 

a 3 cm defect in the left tibia. The patient was able to place 100% load on the leg at 2 

months postoperatively (manuscript in preparation). 
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Future perspectives for academic research 

Improved understanding of cross-activation and complex signaling of growth factors 

affecting bone and MSC growth and expansion will hopefully lead to the design of 

advanced bone-substitute materials. The development of biomaterials with easier 

handling is a future goal of our group. 3D printed scaffolds, with or without cells 

printed into the scaffold, as well as MSC-containing gels are already available but lack 

standardized, validated GMP protocols for clinical application. The ability to plan the 

reconstruction in 3D and print the graft to exact fit is also a future research goal for our 

group. 

Alternatives to autologous MSC will eventually need to be explored, such as the 

commercially available GMP-compliant allogeneic MSC or expanded MSC from 

banked cord blood. 
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Abstract

Background: The objective of this study was to assess patient-reported outcomes such as satisfaction and quality
of life after advanced alveolar bone augmentation with anterior iliac crest grafting and implant treatment in orally
compromised patients.

Methods: This cross-sectional retrospective cohort study included 59 patients (29 women and 30 men) with major
functional problems, who underwent advanced alveolar augmentation with autologous iliac bone grafts during a
10-year period (2002–2012).
The self-administered questionnaire included 36 validated questions related to (1) demographics, (2) perceived
general and oral health, (3) donor site and hospitalization, (4) status of implants and/or prosthesis, and (5) oral
health-related quality of life (OHRQoL).

Results: Questionnaires were completed by 44 patients: 24 women and 20 men (response rate, 74.6%). Most
patients reported good tolerance of the operative iliac bone harvesting (85%) and implant (90%) procedures. Post-
operative pain at the donor site was reported by 38%, lasting 18.1 ± 16.1 days. An average of 4.3 ± 3.5 days of
hospitalization and 20.2 ± 18.5 days of sick leave was reported. The overall satisfaction with prosthetic reconstruction
was 90.5%. OHRQoL was reported with a mean Oral Health Impact Profile-14 (OHIP-14) score of 8.4.

Conclusion: Favorable OHRQoL and satisfaction were reported after advanced reconstruction of alveolar ridges
with iliac crest-derived grafting and implants in severely compromised patients. However, this treatment requires
substantial resources including hospitalization and sick leave.

Keywords: Dental implants, Reconstruction, Quality of life, Bone graft, Iliac crest, Donor site morbidity, PROMs

Background
Insufficient alveolar bone volume, as a result of peri-
odontal disease, trauma, congenital anomalies and/or
resorption atrophy, often presents a clinical challenge
for optimal placement of dental implants for pros-
thetic rehabilitation. In such cases, augmentation of
alveolar bone, with either autologous bone, allogeneic,
xenogeneic, or alloplastic biomaterials, is a prerequis-
ite for placing implants in restoratively and esthetic-
ally acceptable positions.

Limited alveolar ridge defects are solved by local graft-
ing. In cases of larger defects and extreme resorption,
larger grafts are necessary. The most common donor site
for large autologous bone grafts is the iliac crest, due to
its accessibility, comparatively abundant bone volume,
and high bone quality [1].
Autologous bone is still considered as a “gold stand-

ard” for alveolar reconstruction, according to systematic
reviews [2–5]. Intra-oral donor sites, like mandibular
ramus and symphysis, allow harvesting of limited
volumes of autologous bone. The anterior iliac crest is
the preferred extra-oral donor site for alveolar augmen-
tation for larger bone volumes [1, 6, 7]. However, com-
plications are reported, including pain, gait disturbance,
hematomas, paranesthesia, and infections [8–15].
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Traditionally, objective clinical variables, like the
amount of bone gain (in millimeters) after augmentation,
are reported as outcome measures after surgical proce-
dures in clinical studies [16]. Patients’ experiences like
patient-reported outcome measures (PROMs) have been
increasingly used as a measure of treatment effect after
medical and dental therapies [17, 18]. Importantly, these
measures reflect the patients’ perceptions of the treatment
outcome in addition to conventional clinical measures.
Nowadays, Norwegian authorities address clinicians to in-
clude patients’ perspective in decisions regarding different
treatment modalities [19]. It has been suggested that
PROMs such as treatment satisfaction, perceived cost-
effectiveness, and quality of life (QoL) may be more im-
portant and relevant to patients’ daily lives than objective
clinical measures [16, 20]. Patient satisfaction is an im-
portant outcome measure, related to, although not syn-
onymous with QoL, as satisfaction tends to reflect the
process, rather than the outcome, of care [21]. Thus, an
increase in the use of PROMs has been highlighted in
dental implant research [22].
Health-related QoL (HRQoL) is a dynamic concept

referring to an individual’s subjective assessment and
perspective of current general health condition as well as
functional, social, and emotional well-being [23, 24].
Most people regard oral health as important for QoL,
and this is mediated through the concept of oral health-
related QoL (OHRQoL) [25]. In this regard, OHRQoL is
an important PROM in dental research, as oral health is
an integral part of general health and well-being [26].
Different instruments to assess OHRQoL may be

utilized to detect changes in physical, functional, and
psychosocial impacts of oral disorders and have been
validated for use in clinical studies [27–29]. The Oral
Health Impact Profile-14 (OHIP-14) questionnaire is a
widely used OHRQoL instrument [27]. It includes 14
questions covering seven domains of oral health and
attempts to assess their impact on patients’ OHRQoL
[30, 31]. OHIP-14 has previously been translated into
Norwegian and used in a large study (n = 3538) with a
calculated Norwegian national norm value [32]. Al-
though previous studies have reported PROMs in rela-
tion to bone grafting [9, 33–42], to our knowledge, only
one previous study has systematically assessed impact of
donor site harvesting on OHRQoL, where (a) a post-
operative lowering of OHRQoL was observed following
bone grafting from both intra-oral and extra-oral sites
and (b) iliac crest grafts compared to intraoral donor
sites had a negative impact on postoperative QoL [37].
Moreover, to our knowledge, only one study has previ-
ously assessed the cost-effectiveness of autologous iliac
crest grafting [43].
The aim of this study was to assess PROMs such as

satisfaction and OHRQoL after advanced reconstruction

of alveolar bone by anterior iliac crest-derived grafting
and implant treatment.

Methods
Study population
This cross-sectional retrospective cohort study was based
on records from all patients (n = 69) who underwent ad-
vanced alveolar augmentation with autologous iliac bone
grafts at the Department of Oral and Maxillofacial
Surgery, Haukeland University Hospital, Bergen, Norway,
over 10 years (2002–2012). These patients were orally
compromised with severe chewing problems as well as
speech difficulties and had previously undergone several
unsuccessful rehabilitation methods, prior to referral. At
the time of this survey, seven patients had passed away,
two had moved to unknown addresses, and one was hos-
pitalized in a psychiatric institution. Thus, the study sam-
ple included 59 patients: 29 women and 30 men.
The Norwegian Committee for Medical Research

Ethics (“REK,” Health Region West), acknowledged this
study as a treatment quality control study.

Treatment protocol—operative procedure
Bone graft surgeries were performed under general
anesthesia and sterile conditions. Cortico-cancellous
bone blocks were harvested from the anterior superior
iliac crest. Reconstructions in the maxilla (N = 57) or
mandible (N = 2) were performed in one operation by
two teams using an onlay bone graft fixated with titan-
ium micro-screws (1.5 mm Ø). The surgical procedure
was performed according to the protocol commonly
used at Haukeland University Hospital. In brief, the har-
vesting of autogenous bones from the anterior iliac
crests started with a skin incision following the skin lines
in a posterolateral direction starting from 3 to 4 cm
medial to the iliac crests. The superior surfaces of the
iliac crests are exposed after a sharp dissection through
the periosteum following the crests. The dissections are
performed with great attention to avoid laceration of the
fascia lata. Both cortical and spongious bone are har-
vested. The donor sites are closed in layers with special
attention to the first layer—the fascia lata. This layer is
sutured close to avoid marrowbone bleeding. Activated
vacuum drainages are positioned between the fascia lata
and the muscles until the patients are mobilized. The
skin incisions are closed with continuous intracutaneous
resorbable sutures. All patients included in the study
were hospitalized 2–3 days postoperatively. Patients re-
ceived phenoxymethylpenicillin (1 g × 3) or clindamycin
(300 mg × 3) for 5 days following the operation. Vacuum
drainage at the donor site was used until the patient was
mobilized the morning after surgery. Analgesics (para-
cetamol or non-steroid anti-inflammatory drugs) were
prescribed 7–10 days postoperatively.
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Implants were placed 4–6 months after the grafting
procedure. The implant installations were performed by
different oral surgeons (not in the hospital) and different
implant systems were used. The implants installed into
the augmented bone were allowed to heal for an add-
itional 4–6months before loading.

Data collection
Medical records
The records of the original 69 patients were examined
with regard to (1) grafting site (2), “graft-survival” deter-
mined by the ability to place implants in the grafted
site(s) and (3) “implant survival” determined by the pres-
ence of functional implant-supported prostheses at the
most recent follow-up. Reasons for implant failure were
recorded when available.

Questionnaire
A self-administered questionnaire (Additional file 1) was
sent by post to all 59 patients, together with an information
leaflet about the survey, a return envelope with prepaid
postage and an informed consent form. Reminder letters
were sent after 2 and 4 weeks if no response was received.
The questionnaire contained 36 previously validated

questions, which were categorized and related to (1)
demographic and lifestyle, (2) perceived general and oral
health, (3) donor site and hospitalization, (4) implant
and prosthesis, and (5) OHRQoL (OHIP-14) (Table 1).
Responses to questions in categories 1–2 were recorded
as “yes/no” or graded on a 3- to 5-point Likert scale
[44]. Category 3 included information on the duration of
hospitalization and sick leave. Category 4 included infor-
mation on “graft survival,” i.e., whether implants (and
prostheses) were delivered in the augmented site(s), and
“implant survival,” i.e., the presence or “loss/loosening”
of any implants after surgery. OHRQoL was assessed
using a Norwegian version of the OHIP-14 [32]. These
14 questions addressed seven domains of OHRQoL and
their responses were graded on a 5-point Likert scale
ranging from “at no time” (0) to “all of the time” (4)
(Table 1).

Statistical analysis
Data were anonymized and analyzed using SPSS v 24
(SPSS Inc., Chicago, IL, USA). Descriptive analyses were
applied. Statistical significance was set at 5% level.

Results
The final sample consisted of 44 patients that responded
and completed the questionnaire, giving a response rate
of 74.6%: 24 women and 20 men, mean age of 61.2 years
± 13.1 (range 27–82 years). The mean time from aug-
mentation surgery until completing the questionnaire
was 7.8 years ± 2.65 (range 1.9–12 years).

Summary of demographic and lifestyle-related data is
presented (Table 2).

Descriptive findings
Health-related PROMs
Most patients reported “good” or “very good” levels of
general health (81.4%), oral health (83.7%), and overall
quality of life (90.7%). Less than 5% reported “bad” levels
for either of these variables. Most patients reported bet-
ter general (86%) and oral health (78%) after treatment.
Only two patients (4.7%) reported their oral health to be
worse after treatment.

Donor site- and hospitalization-related PROMs
Most patients (85.4%) were satisfied with the hip surgery
procedure. Pain at the donor site was reported by 38% of
patients, lasting for an average of 18.1 ± 16.1 days and
measuring 43.6 ± 27 on the VAS (0–100) scale. Only two
patients (4.7%) reported post-operative infection at the
donor site. Scar formation on skin (hip) was reported in
49% of patients, by majority esthetically acceptable
(90.4%). Four (9.5%) and two (4.7%) patients reported “a
little” or “a lot” of reduced sensitivity at the donor site,
respectively. Three patients (7.3%) reported problems in

Table 1 Summary of questions

Category Response

Question

(1) Perceived health-status

General health “Very good” to “bad”

Oral health “Very good” to “bad”

Overall quality of life “Excellent” to “bad”

(2) Lifestyle-related

Smoking “Yes,” “no,” or “sometimes”

Appetite “Good” to “bad”

(3) Donor site-related

Pain “Yes” and “no”

Infection “Yes” and “no”

Presence of a scar “Yes” and “no”

Reduced sensitivity “No” to “total loss of
sensitivity”

Problems walking “No” to “a lot”

Satisfaction “Very satisfied” to “dissatisfied”

(4) Implant-related

Intraoral pain “No” to “strong pain”

Installation of implants and
prosthetic

“Yes”, “no” or “just implants”

Loss of implants “Yes” and “no”

Satisfaction with prosthesis “Very satisfied” to “dissatisfied”

(5) OHIP-14 “At no time” to “all of the
time”
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walking (Table 3). The average time of hospitalization
was 4.3 ± 3.5 days and sick leave 20.2 ± 18.5 days.

Implant-/prostheses-related PROMs
Most patients (n = 40, 90.9%) reported to have implants
placed and received prostheses in the augmentation
site(s). This was interpreted as graft survival, indicating a
graft survival rate of 90.9% on the patient level. Two
patients received implants, although without further
prosthetic rehabilitation. Implants could not be installed
in two patients. However, 29.3% of patients reported
“loosening or loss” of implants in the post-operative
period (1 year), indicating an implant survival rate on
the patient level of 70.7%, and most patients (8 out of
11) received new implants.
No pain was reported in 39 patients (82.9%) following

implant surgery and a majority of patients (90.2%) were

satisfied/very satisfied with the implant therapy overall
and in terms of overall satisfaction with teeth (90.5%).
The correlation analyses performed did not show a

significant correlation between the complications at the
donor site and implant loss (Table 4).

OHRQoL
The mean OHIP-14 score (Table 5) was 8.4 ± 9.7 (range 0–
56) in 44 patients of whom 35 patients scored 14 or less. Nine
patients scored a total sum of 1 [1], i.e. “hardly ever” impact
on any single item and “at no time” on the remaining 13
items. The functional limitation domain had the highest score
(2.34) and the social disability domain the lowest score (0.61).

Discussion
An important finding in this study is that a majority of pa-
tients were very satisfied after iliac crest-derived alveolar bone
grafting and implant therapy. Although 90% of the patients
in our study had successful bone grafting, only 70.1% re-
ported implant survival together with prosthetic rehabilitation
after 1 year. These figures are lower than those reported in
previous studies [2, 3, 9]. A review by Chiapasco et al. showed
that the mean graft failure in 16 studies was 1.6% and partial
loss of graft of 3.3% [45]. The same review showed that the
overall survival rate of dental implants in transplanted bone
was 87%. However, it must be kept in mind that the patients
in our study were orally compromised and very challenging
to reconstruct. Moreover, the patients in our study did not
report on the number of implants lost, and we do not have
reliable records of the exact number of implants each patient
had got installed. This could indicate differences in survival
on implant or patient levels—a variable of clinical importance
as the number of lost implants may be higher.
Another important finding is that patients reported to tol-

erate the augmentation procedure well; 85% of patients were
satisfied with the hip operation (performed under general
anesthesia), comparable to a previous report [46]. However,
40% of the patients reported pain for 18 ± 16 days after aug-
mentation, which is in accordance with other studies [37, 46]
and which should be considered during the treatment plan-
ning of patients scheduled to received iliac crest-derived
bone grafts [33]. Two patients reported infection at the
donor site. All operations were performed by a strict sterile
regime and protocol at the university hospital.
The level of OHRQoL reported by the patients was favor-

able with an OHIP-14 value of 8.4. In a previous study, Dahl
et al. reported an OHIP-14 score of 4.1 in the Norwegian
adult population (2441 patients), with 35% of the sample
reporting “no oral health problems” [32]. If the study sample
in the study of Dahl et al. is considered to be representative
of the general population, patients in our study reported
poorer OHRQoL than the general population. Thus, even
though the participants in this study report good oral health
and better than before operation on the single questions, they

Table 2 Patients’ demographic and lifestyle-related data

Variable Frequency

N or Mean ± SD %

Patients

Female 24 54.5

Male 20 45.5

Age (years) 61.16 ± 13.10

Age at operation 53.73 ± 13.07

Time from augmentation to
completing questionnaire (months)

93.55 ± 31.75

Civil status

Married 30 68.2

Single 11 25.0

Widow(er) 3 6.8

Housing

Alone 12 27.3

With another person 23 52.3

> two persons 9 20.5

Education

Up to primary 7 11.3

Up to secondary 23 53.5

“Artium” 1 2.3

High school 9 20.9

University 3 7.0

Smoking

Yes 8 19.0

No 33 78.6

Sometimes 1 2.4

Cigarettes/day 13.65 ± 7.22

Years of smoking 26.52 ± 11.63

Gjerde et al. International Journal of Implant Dentistry             (2020) 6:4 Page 4 of 7



still report having problems related to their oral condition.
This is to be expected as the patients in our study were orally
compromised before augmentation with almost no alveolar
ridge to retain or support a prosthetic construction. Since the

patients had extensive alveolar bone loss rendering them or-
ally handicapped, any improvement in function would be
likely to have a positive impact on satisfacation and OHR-
QoL. However, it is difficult to relate their reported level of

Table 3 Patient-reported outcomes

Question Response Frequency

Oral health Very good/good 81.8%

Quality of Life Very good/good 90.9%

General health Very good/good 81.8%

Pain after hip operation Excessive 35.0%

Satisfaction hip operation Very 85.7%

Post op infection in hip site No 95.3%

Visible scar on hip Yes 48.8%

Acceptable scar Yes 20 of 21a

Reduced sensibility on hip site No 86.0%

Problem walking No 92.9%

Augmented bone block still present No 6.8%

New augmentation Yes 1 of 4a

Oral pain after augmentation No/some 83.3%

Implant/teeth in augmented bone Yes 90.9%

Lost implants Yes 28.6%

Time lost after installation 0–3 months 42.9%

7–12months 28.6%

New implants installed Yes 8 of 11a

Satisfaction with implant-retained teeth Very satisfied/satisfied 90.5%
aIncomplete or missing data

Table 4 Correlation analyses

Outcome variables Correlations Spearman’s rho P value

OHRQoL Oral health compared 0.596 < 0.0001

General health now 0.369 0.014

General health compared 0.412 0.005

Implants placed/teeth installed 0.317 0.036

Lost implants − 0.372 0.015

Smoking − 0.334 0.005

Speaking 0.572 < 0.0001

Chewing 0.375 0.014

Implants placed General health − 0.314 0.038

Oral pain post op 0.334 0.031

Oral health 0.305 0.044

General health compared 0.314 0.038

Satisfaction hip operation − 0.439 0.004

OHRQoL 0.317 0.036

Lost implants General health − 0.328 0.034

QoL − 0.342 0.027

OHRQoL − 0.372 0.015

Satisfied teeth − 0.328 0.034
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OHRQoL to the augmentation and implant installation per
se, as this was performed up to 12 years prior to complet-
ing the questionnaire (mean 7 years and 10months). So,
patients’ present oral situation with fixed teeth could/may
alter the “reference” for the patients regarding OHRQoL.
However, we cannot reliably ascribe the level of OHRQoL
to the treatment performed years ago, since we have no
such data either before or soon after the prosthetic re-
habilitation, and therefore, cannot estimate the influence
the effect of response shift on the study outcomes. Previ-
ous reports show a significant influence of implant-
retained prosthetic treatment on OHRQoL, but these re-
ports are based on before-and-after registrations [47].
Patients in our study reported satisfaction with the

augmentation and implant installation, and as these pa-
tients were orally compromised before the operation,
their satisfaction with getting fixed teeth most likely im-
proved their perceived oral health condition. This might
also, in part, explain why they reported good OHRQoL.
Thus, our findings indicate that a majority of patients
tolerate the augmentation and implantation procedures
very well and with minor long-term sequelae.
The treatment protocol described in this study, i.e., ad-

vanced bone reconstructions under general anesthetics,
hospitalization, and sick leave, is considered expensive in a
public health services. In the present study, an average of 4.3
days of hospitalization and 20.2 days of sick leave was re-
ported, which is costly for the health service and inconveni-
ent for the patient [33, 43]. When comparing iliac bone graft
as a treatment to bone substitutes, a previous study clearly
demonstrated that iliac bone graft procedure demands more
resources and more than three times the costs of bone sub-
stitutes [43]. Although the patients reported good satisfaction
and OHRQoL after iliac bone grafting, this treatment is de-
manding for patients as well as health services, indicating the
need for alternative treatment modalities [37, 43, 46].

Conclusions
Favorable OHRQoL and satisfaction were reported after
advanced reconstruction with iliac crest-derived grafts
and implant treatment in orally compromised patients.

However, this treatment requires substantial resources
including hospitalization and sick leave.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s40729-019-0200-8.

Additional file 1. A self-administered questionnaire.
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Abstract

Background: Many data are available on expansion protocols for mesenchymal stromal cells (MSCs) for both experimental set-

tings and manufacturing for clinical trials. However, there is a lack of information on translation of established protocols for

Good Manufacturing Practice (GMP) from validation to manufacturing for clinical application. We present the validation and

translation of a standardized pre-clinical protocol for isolation and expansion of MSCs for a clinical trial for reconstitution of

alveolar bone. Methods: Key parameters of 22 large-scale expansions of MSCs from bone marrow (BM) for validation were

compared with 11 expansions manufactured for the clinical trial “Jaw bone reconstruction using a combination of autologous

mesenchymal stromal cells and biomaterial prior to dental implant placement (MAXILLO1)” aimed at reconstruction of alve-

olar bone. Results: Despite variations of the starting material, the robust protocol led to stable performance characteristics of

expanded MSCs. Manufacturing of the autologous advanced therapy medicinal product MAXILLO-1-MSC was possible,

requiring 21 days for each product. Transport of BM aspirates and MSCs within 24 h was guaranteed. MSCs fulfilled quality

criteria requested by the national competent authority. In one case, the delivered MSCs developed a mosaic in chromosomal

finding, showing no abnormality in differentiation capacity, growth behavior or surface marker expression during long-term

culture. The proportion of cells with the mosaic decreased in long-term culture and cells stopped growth after 38.4 population

doublings. Conclusions: Clinical use of freshly prepared MSCs, manufactured according to a standardized and validated proto-

col, is feasible for bone regeneration, even if there was a long local distance between manufacturing center and clinical site. Sev-

eral parameters, such as colony forming units fibroblasts (CFU-F), percentage of CD34+ cells, cell count of mononuclear cells

(MNCs) and white blood cells (WBCs), of the BM may serve as a predictive tool for the yield of MSCs and may help to avoid

unnecessary costs for MSCmanufacturing due to insufficient cell expansion rates.

Key Words: advanced therapy medicinal products, cell production, Good Manufacturing Practice, karyotyping, mesenchymal

stromal cells, quality control, translational medicine

Background

Mesenchymal stromal cells (MSCs) are well known for

their immunomodulatory [1,2] and regenerative

potential and have shown their applicability as a prom-

ising therapy for tissue regeneration, e.g., liver repair

[3], osteoarthritis [4] and bone regeneration [5]. With
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more than one million procedures each year in Europe

[6], bone is the most transplanted tissue in humans

after blood. Bone losses of traumatic (e.g., non-union

fractures) or pathological origin (e.g., tumors or jaw-

bone cysts) are generally filled with an autologous bone

graft or autologous bone marrow. Autologous bone

transplantation is the gold standard therapy for bone

reconstitution in oral and maxofacial surgery [7]. For

this treatment, a piece of autologous bone is removed,

commonly from the crista iliaca, causing a second bone

defect in the patient with possible side effects like pain

or nerve damage at the site of bone harvesting [8]. In

addition, autologous bone therapy may fail, due to pre-

term transplant resorption [9,10]. MSCs have been

shown to be present in almost every tissue [11]. Due to

their limited number in tissues, MSCs have to be iso-

lated from the original tissue and expanded ex vivo in

clean rooms (class A in B) [12�14].

Different protocols for Good Manufacturing Prac-

tice (GMP)-compliant isolation and expansion of MSCs

have been described previously [15�21], but there is a

lack of information on the suitability of pre-clinical pro-

tocols for experimental settings and animal models and

their translation for GMP-compliant manufacturing of

MSCs for clinical trials. We present the validation and

translation of a standardized pre-clinical protocol [12]

for isolation and expansion of MSCs for a clinical trial

for reconstitution of alveolar bone (Jaw bone reconstitu-

tion using a combination of autologous mesenchymal

stem cells and biomaterial prior to dental implant place-

ment; MAXILLO-1 [EudraCT number 2012-003139-

30; ClinicalTrials.gov identifier NCT02751125]) as an

example for translation of manufacturing protocols for

clinical trials in other indications.

Expanded MSCs for clinical applications are

classified as an advanced therapy medicinal product

(ATMP) according to the European Medicines

Agency (EMA) regulation number 1394/2007 of the

European Commission (EC) [22].

In this study, we describe the translation of a previ-

ously established protocol for GMP-compliant large-

scale expansion of bone marrow (BM)-derived MSCs

[12] to produce clinical doses of 50�100 million

MSCs for jawbone reconstruction prior to dental

implant surgery for 11 patients participating in the clin-

ical trial MAXILLO-1. The MSCs expanded accord-

ing to the GMP-compliant protocol used in this study

have previously been tested for their osteogenic in vivo

bone formation potential in pre-clinical models

[23,24]. In these models, MSCs were immobilized

on a macro-microporous biodegradable, resorbable

biphasic calcium phosphate.

Minimal criteria for MSCs as defined by the Inter-

national Society for Cellular Therapy (ISCT) [25,26]

or modifications of these criteria [12�14,27,28] are

required to define identity and describe impurities of

the ATMP. Release parameters for the ATMP may

vary and include microbial, endotoxin and myco-

plasma testing, tests for viability, clonogenicity, identity

and purity and functional tests, depending on the type

of clinical trial and the demands from national compe-

tent authorities.

For most clinical trials usingMSCs, the manufactur-

ing centers and clinical centers are two individual institu-

tions at distinct locations. In this study, a bi-directional

transportation lasting 18�24 h was necessary to trans-

port BM aspirate from the clinical site to the

manufacturing center and to transport the ATMP back

to the clinical site. Part of this study was to analyze feasi-

bility of interaction between a clinical partner and a

manufacturing center over a long distance. Freezing

ATMP has been shown to be quite inefficient because

the recovery rate and clonogenicity [29] are reduced by

cryopreservation and the clinical center additionally has

to manipulate the MSCs, which may alter the intended

clinical dose. It is also not clear if and how quickly

MSCs recover their full therapeutic activity after thaw-

ing. In principle, cryopreservation of MSCs is possible

with loss of viability and clonogenicity, depending on

the freezing protocol [30]. Several publications showed

maintenance of cell viability, surface marker expression,

plasticity [31] and function of MSCs (e.g., in a retinal

ischemia/perfusion model) [32]. Viability of (adipose-

derived)MSCs after cryopreservation in animal-free for-

mulations may, however, be less than 72% and reduced

by more than 20% [29] as compared with pre-freezing

viability with a recovery of down to 62%. The viability

rate is similar to the one observed for pre-clinical studies

at 8˚C § 3˚C for transportation of MSCs expanded

according to the protocol used in this study [12,24].

Effects of changes on gene expression profiles by

freezing and thawing are still unclear [33]. The

occurrence of cryopreservation-induced apoptosis

[34] and of freeze/thaw and osmotic stress [35] can

be avoided when using non-cryopreserved cells. As

summarized by Galipeau [36], clinical trials with

human MSCs almost always use cryopreserved

cells, whereas in the pre-clinical animal models,

live, log phase of growth MSCs are used almost uni-

versally. It was important for this study to use non-

cryopreserved MSCs showing the full potential of

bone formation when stored and transported at 4˚C

within 24 h including transportation. When using

freshly produced, unfrozen MSCs for therapy, opti-

mization of transportation conditions is crucial.

Therefore, the clinical site often is close to the

manufacturing site. In this study we also showed

that there is no necessity of a local association of

manufacturer and operator when MSCs are shipped

at 4˚C at conditions previously established in a pre-

clinical setting keeping the bone formation potential

of the shipped cells [23,24].
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Methods

Ethical approval and participating manufacturing and

clinical centers

BM (validation runs) was collected from volunteer

healthy donors after written informed consent was

obtained according to the Declaration of Helsinki and

approval by the Ethics Committee of Ulm University

(ethical approval numbers 21/10 and 24/11). The clini-

cal trial MAXILLO-1 (Jaw bone reconstruction using a

combination of autologous MSCs and biomaterial

prior to dental implant placement) was approved by

the Norwegian ethical committee (2013/1284/

REKvest) and by the Norwegian Medicines Agency

(13/12062-15). The clinical trial followed the Euro-

pean guidelines for advanced therapeutic medicinal

products. The EudraCT number of the trial was 2012-

003139-50 and the trial was incorporated in the data-

base ClinicalTrials.gov with the identifier NCT

02751125. The Institute for Clinical Transfusion med-

icine and Immunogenetics Ulm (Ulm, Germany,

authorization number DE_BW_01_MIA_2013_0040/

DE_BW:91_IKT Ulm) received BM aspirates from

the Section for Haematology, Department of Clinical

Science, University of Bergen at the Department of

Medicine, Haukeland University Hospital, Bergen,

Norway, and delivered the ATMP to the Institute of

Clinical Dentistry, University of Bergen, Norway.

Donor screening

BM donors were screened as described in the bio-

medical research protocol for the prospective inter-

ventional phase 1 clinical trial MAXILLO-1. In

summary, donors were between 18 and 80 years

(both genders), with lateral (width 5 mm or less) or

vertical bone loss (focusing lateral bone loss) of the

mandible behind the canine tooth and endented (at

least one missing tooth) for more than 6 months in

the region requiring reconstitution, and in good gen-

eral health presenting with normal blood cell counts

and renal and hepatic function within normal limits.

Isolation and shipping of BM

Aspiration of 25 mL (target) BM was performed in an

operating room from the iliac crest after local anesthesia.

By a cutaneous point of puncture, two to three points of

puncture of the posterior iliac spine were made with a

trocar. BM was harvested by fraction of

2-4 mL in 20-mL syringes, prefilled with heparin (ratio-

pharm). The harvest, in its primary packaging, was laid

out in an isothermal box labeled according to Directive

2004/23/EC [37] and 2006/17/EC [38]. The transport

temperature was between 18˚C and 24˚C, with temper-

ature traceability. Delivery to the manufacturing centers

was ensured within 24 h by accompanied transportation

using a qualified transportation company.

GMP-compliant isolation and expansion of MSCs

Isolation and expansion ofMSCs from the BM aspirates

was performed as previously described as two-step

protocol, option 1 (TSP1) by Fekete et al. [12]. The dif-

ferent steps of the manufacturing process, the corre-

sponding test parameters and the responsibilities are

summarized in Supplementary Table 1. Disposables,

reagents and excipients are listed in Supplementary

Table 2 and Supplementary Table 3. In brief, BM was

directly seeded without any further manipulation in

Minimal Essential Medium Eagle, alpha formulation

(alpha-MEM medium) supplemented with 5% platelet

lysate (PL) and 1 IU heparin/mL at a concentration of

50 000 BM white blood cells per cm2 in one to eight 2-

chamber CellStacks (Corning) at day 0 and incubated

at 5% CO2 atmosphere, 95% relative humidity at 37˚C.

After 2�4 days, the supernatant was discarded and

replaced by fresh alpha-MEM (Lonza) supplemented

with 5% PL (IKT Ulm) and 1 IU heparin/mL. Twice a

week, the supernatant was replaced by alpha-MEM sup-

plemented with 5% PL and 1 IU heparin/mL. At day

+14, the cells were rinsed with Dulbeccos Phosphate

Buffered Saline (DPBS, Lonza) and detached and

MSCs of passage (P) 0 (MSCP0) were harvested using

TrypZean (Lonza). Harvested cells were re-seeded at

the concentration of 4£ 103 MSCP0 per cm2 in alpha-

MEM medium supplemented with 8% PL and 1 IU

heparin/mL in one to seven 2-chamber CellStacks.

Twice a week, the supernatant was replaced by alpha-

MEM supplemented with 8% PL and 1 IU heparin/

mL. At day 21, the cells were rinsed with DPBS and

harvested using TrypZean. Cells were resuspended in a

5% albumin solution (CSL Behring) to obtain the final

product MAXILLO-1 on which quality controls were

applied. Cells were packaged and labeled for the ship-

ment to the clinical center at the University of Bergen.

All the materials and reagents used for the production

were selected due to their suitability during the valida-

tion process to ascertain their compliance to be used in

the manufacturing process. Specifications of the final

product were as described in Supplementary Table 4.

Clonogenicity (colony forming units fibroblasts; CFU-F)

BM aspirate was seeded in duplicates in T25 flasks

(Nunc Thermo Scientific) at the same cell density as

the main culture using the same culturing conditions.

For MSC of passage 0 (MSCP0), MSC of passage 1

(MSCP1) duplicates of 200 and 400 cells per T25

flask were seeded at the same culturing conditions as

the main culture. After 10 days, the medium was dis-

carded and cells were Giemsa-stained (Sigma) on
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T25 flasks. Clonogenicity was assessed by counting

colonies consisting of more than 50 cells/colony.

Differentiation capacity

Differentiation of MSCP1 was performed as described

previously in detail [12,13,39�41], using the commer-

cially available kits for adipogenic (Lonza), chondro-

genic (Miltenyi Biotech) and osteogenic (Miltenyi

Biotech) differentiation.

Quality controls: microbial testing, mycoplasma screening,

endotoxin testing, karyotyping and flow cytometry

Microbial testing was performed after matrix valida-

tion according to chapter 2.6.27 of the European Phar-

macopoeia (Ph Eur) 8.0 [42] using the BacT/ALERT

iAST aerobic and BacT/ALERT iNST anaerobic cul-

ture bottles (Supplementary Table 2) in a BacT/

ALERT 3D system (BioMerieux). Samples were

shipped to an accredited contract laboratory, the

Institute for Transfusion Medicine and Immunology,

Mannheim, Germany, for mycoplasma testing using

polymerase chain reaction (PCR) as previously

described [43] after matrix validation according to

chapter 2.6.7/2.6.21 of the Ph Eur 8.0 [42] and to

Labor L+S AG, Bad Bocklet-Groenbrach, Germany

for endotoxin testing by Limulus amebocyte lysate

(LAL) test after matrix validation according to chap-

ter 2.6.14 of the Ph Eur 8.0 [42].

For karyotyping, 100£ 103�200£ 103 MSCP0

were seeded in 42 mL in a T175 flask (Nunc Thermo

Scientific) for 2�4 days until the cells reached

approximately 50% confluence. Colchizin (1.63 mL

of a 20 mg/mL solution from Eurobio) was added

and incubated at 5% CO2 atmosphere, 95% relative

humidity at 37˚C for at least 2 h. Cells were rinsed

once with 50 mL of DPBS, harvested by TrypZEAN

treatment, collected in 10 mL of complete medium

and transported within 2 h to the accredited contract

laboratory, the Institute for Human Genetics, Uni-

versity Hospital Ulm (Ulm, Germany), for karyotyp-

ing according to the national guidelines [44,45] and

the guidelines of the European Cytogeneticists Asso-

coation (E.C.A.) Permanent Working Group for

Cytogenetics and Society [46,47].

Flow cytometry was performed as previously

described [12,13,28]. Approximately 1£ 106�4£ 106

MSCP0 or MSCP1 were stained per assay. In brief,

cells were washed in DPBS and resuspended in 100mL
of DPBS. Cells were stained with a combination of

either immunoglobulin (Ig)G-fluorescein isothiocya-

nate (FITC) (20 mL, clone X40), IgG-phycoerythrin

(PE) (20 mL, clone X40) and IgG-peridinin chloro-

phyll protein (PerCP) (20 mL, clone X40), or CD90-

FITC (1 mL, clone 5E10), CD34-PE (20 mL, clone

8G12) and CD45-PerCP (20 mL, clone 2D1), or

CD105-FITC (10 mL, clone SN6), CD73-PE (20 mL,
clone AD2) and CD3-PE (20 mL, clone SK7), or

major histocompatibility complex class II (MHC cII)

human leucocyte antigen (HLA)-DQ,DP-DR-FITC

(20 mL, clone T€u39) and major histocompatibility

complex class I (MHC cI) HLA-A,B,C-PE (20 mL,
clone G46-2.6), respectively. Antibodies were pur-

chased from BD Bioscience, except CD105 (Bio-Rad

AbD Serotec GmbH). After 15 to 20 min of staining

at ambient temperature, cells were washed in DPBS

and the fluorescence intensity of 50 000 cells was

acquired using a FACScan with CellQuest 3.3 software

(BD Biosciences).

Shipping of the ATMP

The transportation of freshly detached MSCs at

5˚C § 3˚C was performed with temperature trace-

ability. Delivery to the clinical center in Bergen was

ensured within 24 h using a qualified transporter

(World Courier [Deutschland] GmbH). Stability of

the ATMP in 5% saline solution has previously

been demonstrated [24].

Statistical analysis

Statistical analysis was performed using GraphPad

Prism 7.01 Software for Windows. D’Agostino &

Pearson normality test was performed for each dataset

to test for normal distribution of data. In case of nor-

mal distribution, data were compared using the

unpaired t test with Welch’s correction; for datasets

not passing the D’Agostino & Pearson normality test,

data were compared using the Mann-Whitney U test.

Kruskal-Wallis test was used for multiple-parameter

analyses. Differences were considered as significant

for P< 0.01 because of multiple testing of the dataset.

The correlation between multiple parameters was

assessed, computing Spearman correlation (r values)

for every pair of the following datasets: time between

end of aspiration and end of seeding (h), age (y), aspi-

ration volume (mL), aspiration volume without hepa-

rin (mL), white blood cell count ([WBC]/mL),
mononuclear cell count ([MNC]/mL), % MNC of

WBC, % CD34+ in BM aspirate, harvest density of

MSCP0 (cells/cm2), harvest density of MSCP1 (cells/

cm2), doubling time of MSCP0 (h), doubling time of

MSCP1 (h), population doublings in P0, population

doublings in P1, cumulative population doublings,

CFU-F/106 BM-WBC, CFU-F/106 MSCP0, CFU-

F/106 MSCP1, MSCP0 harvested/mL BM aspirate

seeded and MSCP1 harvested/mL BM aspirate

seeded. Correlations with r � 0.5 and P < 0.05 were

considered as significant.
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Results

Donor characteristics

Overall, 13 aspirations were performed in the context

of the clinical trial MAXILLO-1 and 21 aspirations of

BM were performed for validation. Production of two

of the 13 aspirates for clinical trial MAXILLO-1 was

stopped at passage 0 for patients 1-05 and 1-10

because the overall harvest of 0.9£ 106 and 1.2£ 106

cells in passage 0 was not sufficient to start passage 1.

In accordance with this, no CFU-F/106 BM-WBCs

were detected (data not shown). One BM from the

validation was split (identification [ID] 7585) and two

BM aspirates from patients within MAXILLO-1 had

to be discarded (ID 1-05 and 1-10) due to lack of

CFU-F in the aspirate and growth of the culture dur-

ing the passage 0 growth phase (data not shown).

Information on shipping and donor characteristics are

presented in Supplementary Table 5 and Supplemen-

tary Figure 1 and summarized in Table 1.

The group of volunteer healthy donors and

MAXILLO-1 patients differed significantly in age (P

< 0.0001). Significant differences were also observed

for clonogenicity of the BM aspirate (CFU-F/106

BM-WBC; P= 0.0060), time between end of aspira-

tion and beginning of seeding, WBC/mL BM aspi-

rate (P < 0.0001) and MNC/mL BM aspirate (P <

0.0001), whereas aspiration volume (P= 0.2414)

and the percentage of CD34 cells in the aspirate

(P= 0.0946) did not significantly differ.

MSC isolation and expansion for validation

Detailed information on data for the expansions per-

formed is shown in Table 2, Figure 1, Supplemen-

tary Table 6 and Supplementary Table 7.

Validation

For validation, BM-WBCs were seeded on 4307 §
2911 cm2 culture surface at a cell density of 49 961

§ 264 cells/cm2. The first culture step was 13.8 §
0.1 days and resulted in a density of passage 0 MSC

(MSCP0) of 25.7£ 103/cm2 § 15.7£ 103/cm2. This

corresponds with 13.1 § 0.8 population doublings

with a doubling time of 25.4 § 1.6 h. In the second

culture step, 4008 § 2 MSCP0/cm2 were seeded on

5753 § 3481 cm2 and cultured for an additional 6.9

§ 0.2 days. This culture resulted in a cell density of

passage 1 MSC (MSCP1) of 49.1£ 103/cm2 §
18.0£ 103/cm2. This corresponds with 3.5 § 0.7

population doublings with a doubling time of 51.7 §
24.1 h. The cumulative number of population

doublings was 16.6 § 1.

The overall harvest of the final product was

283.2£ 106 § 187.3£ 106. The calculated yield was

17.5£ 103 § 14.8£ 103 MSCP0/mL BM aspirate

and 230.6£ 103 § 245.3£ 103 MSCP1/mL BM

aspirate. This theoretically would have allowed a

total harvest of 4540.2£ 106 § 5227.9£ 109

MSCP1 from as little as 23.6 § 8.2 mL of BM aspi-

rate within 20.8 § 0.3 days, based on the assump-

tion that all BM-WBCs of the BM aspirate were

seeded in passage 0 and the total harvest of passage 0

was reseeded for passage 1.

MAXILLO-1 patients

From the MAXILLO-1 patients’ BM aspirates, BM

WBCs were seeded on 5493 § 2743 cm2 culture sur-

face at a density of 49 955§ 65 cells/cm2. The first cul-

ture step was 14.0 § 0.0 days and resulted in a density

of passage 0 MSC (MSCP0) of 13.4£ 103/cm2 §
7.0£ 103/cm2. This corresponds with 13.4 § 1.4

Table 1. Information on BM aspirates from validation runs (A) and manufacturing for the clinical trial MAXILLO-1 (B): age, volume of

BM aspirate, WBC count/mL BM aspirate and number of CFU-F of BM aspirate per million BMWBCs.

(A) Validation runs

N= 22 Donor age Volume of aspirate (mL) Cell count WBC x 106/mL BM aspirate CFU-F of BM/106 WBCs

Mean 26 23.6 30.7 236

SD 7 8.2 15.7 160

Minimum 21 9.3 9.4 9

Maximum 49 42.5 62.4 453

(B) MAXILLO-1 patients

N = 11 Patient age Volume of aspirate (mL) Cell count WBC x 106/mL BM aspirate CFU-F of BM/106 WBCs

Mean 63 21.4 16.9 31

SD 6 2.0 8.5 22

Minimum 51 19.0 6.5 2

Maximum 72 26.0 37.2 73

SD, standard deviation.
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population doublings with a doubling time of 25.3 §
2.5 h. In the second culture step, 3882 § 374 MSCP0/

cm2 were seeded on 6467§ 2132 cm2 and cultured for

an additional 7.0 § 0.0 days. This culture resulted in a

density of passage 1 MSC (MSCP1) of 42.7£ 103/cm2

§ 9.4£ 103/cm2. This corresponds with 3.4§ 0.3 pop-

ulation doublings with a doubling time of 49.3 § 4.4 h.

The cumulative number of population doublings was

16.8§ 1.5.

The overall harvest of the final product was

273.7£ 106 § 104.5£ 106. Thus, the clinical dose

of 2 x [50£ 106] MSCs could be produced in all

cases except for patient 1-07. For this patient, a sin-

gle dose of 50£ 106 MSC was produced, fulfilling

the specifications (Supplementary Table 4).

The calculated yield was 5.3£ 103 § 5.0£ 103

MSCP0/mL BM aspirate and 63.2£ 103 §
69.1£ 103 MSCP1/mL BM aspirate. This theoreti-

cally would have allowed a total harvest of

1424.9£ 106 § 1653.5£ 106 MSCP1 and produc-

tion of a minimum of two to a maximum of 118

doses of 50£ 106 MSCP1 from as little as 21.4 §
2.0 mL of BM aspirate within 21.0 § 0.0 days when

seeding all BM aspirate for passage 0 and all MSCP0

for generation of the ATMP.

Statistical analysis

When isolating and expanding MSCs, no significant

differences of clinical relevant parameters between

the group of volunteer healthy donors and MAX-

ILLO-1 were observed for the parameters harvest

density (MSCs/cm2) of MSCP1 (P = 0.19463), yield

(MSCs harvested/mL BM aspirate seeded) of passage

0 (P= 0.0153) and passage 1 (P= 0.2134), popula-

tion doublings in passage 0 (P= 0.5247), in passage

1 (P = 0.7485) and cumulative population doublings

(P= 0.6553), doubling time during passage 0

(P= 0.3551) and passage 1 (P= 0.2484). There was

a significant difference in harvest density (MSCs/

cm2) of MSCP0 (P = 0.0048). This difference,

which disappears during further passaging, is

reflected by different CFU-F counts in the BM aspi-

rates and may be caused by differences in the trans-

portation time and age of donors in the group of

volunteer healthy donors and MAXILLO-1 patients.

Quality controls

All quality controls were carried out according to the

Ph Eur (Supplementary Table 8) for the correspond-

ing method and all matrices have been validated for

the tests applied.

Viability

Percentage of viable cells was 94.6% § 3.1% in the

BM aspirate (BM-MNC), 97.0% § 3.2% for MSCP0

and 94.5% § 4.2% for MSCP1 for validation runs

(Table 3, Figure 2A and Supplementary Table 9).

ForMAXILLO-1 patients, the percentage of viable

cells was 92.5% § 3.5% in the starting material (BM-

MNC), 97.7% § 1.7% for harvested MSCP0 and

97.9% § 1.1%, for the ATMP MAXILLO-1 MSCs.

Table 2. Key information of expansion process for MSCs from validation runs (A) and manufacturing for the clinical trial MAXILLO-1 (B):

doubling time in passage 0, passage 1 and number of population doublings in passage 0 and passage 1 and number of cumulative population

doublings in passage 0 and passage 1, achieved overall harvest of the final product (MSC of passage 1), and calculated yield (MSC/mL BM

aspirate) of MSCs for passage 0 and passage 1.

(A) MSCs from validation runs

Doubling time

Number of

population doublings

Overall harvest

(cells x 106)

Calculated yield

(MSC x 103/mL BM

aspirate) for

Hypothetical maximum

harvest (cells x 106)

P0 (h) P1 (h) P0 P1 Cumulative (P0 and P1) P0 P1

Mean 25.4 51.7 13.1 3.5 16.6 283.2 17.5 230.6 4540.2

SD 1.6 24.1 0.8 0.7 1.1 187.3 14.8 246.3 5227.9

Minimum 21.8 38.7 11.7 1.2 14.4 11.9 0.5 6.6 13.6

Maximum 28.4 155.4 15.2 4.3 19.1 740.8 54.6 1012.1 20141.3

(B) MAXILLO-1 MSCs

Mean 25.3 49.3 13.4 3.4 16.8 273.7 5.3 63.2 1424.9

SD 2.5 4.4 1.4 0.3 1.5 104.5 5.0 69.1 1653.5

Minimum 20.5 44.1 11.1 2.9 14.5 53.3 0.5 5.3 103.8

Maximum 30.3 57.1 16.4 3.8 20.2 412.0 18.3 243.5 5905.4

The hypothetical maximum harvest indicates the maximum harvest that could have been achieved in case all aspirated BM was used for the

MSC isolation and expansion process.

P0, passage 0; P1, passage 1.
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No significant difference in viability of cells from BM

(P=0.0767), of MSCP0 cells BM (P=0.8995) or

MSCP1 BM (P=0.0104) cells from volunteer healthy

donors and MAXILLO-1 patients was seen. The

Kruskal-Wallis test failed to reveal significant differ-

ence in viability of MSCP0 and MSCP1 between the

two groups of donors.

Impurities and identity

The content of impurities of the starting material (i.

e,. leukocytes or hematopoietic stem cells was

determined by expression of CD3, CD34, CD45

and MHC cII on MSCP0; Table 4, Figure 2B and

Supplementary Table 10) and MSCP1 (Table 4,

Figure 2B and Supplementary Table 11) cells using

flow cytometry. In summary, parameters for iden-

tity and impurity were fulfilled for all expansions

from both volunteer healthy donors and MAX-

ILLO-1 patients with one exception: MSCP1

expanded from volunteer healthy donor 7575

showed deviations for the parameters CD3 and

CD105. The percentage of CD3+ cells was 23.5%

(with an allowed threshold of �5%), and the

expression of CD105+ cells was 88.97% (with an

allowed threshold of �90%). Thus, only one prepa-

ration of 33 (i.e., 3%) did not fulfill the release

quality control criteria for identity and impurity.

Clonogenicity (CFU-F)

Expanded MSCs showed a clonogenicity of

192£ 103 § 72£ 103 colonies/106 seeded MSCP0

and of 210£ 103 § 79£ 103 colonies/106 seeded

MSCP1 for cells from volunteer healthy donors

and of 171£ 103 § 86£ 103 colonies/106 seeded

MSCP0 and of 91£ 103 § 40£ 103 colonies/106

seeded MSCP1 for cells from MAXILLO-1

patients. BM aspirates from volunteer healthy

donors differed significantly in their CFU-F

content (P = 0.0060) and MSCP1 showed

significant difference in clonogenicity (P = 0.0003;

Figure 1. Key parameters of cell expansion. (A) MSC harvesting density (cells harvested/cm2), (B) yield per mL BM aspirate seeded (MSCs/

mL BMaspirate) and (C) doubling times (doubling time [h]), are shown for passage 0 and passage 1 for expansions used for the validation

process and for the clinical trial MAXILLO-1. (D) Number of population doublings for MSCP0 and MSCP1 and the cumulative number

of populations doublings is shown for expansions used for the validation process and for the clinical trial MacilloCT-1. Grey bars show

mean and standard deviation. MSCP0, passage 0 MSC; MSCP1, passage 1 MSC; val, data for validation runs; Maxillo or Max, data for

clinical trial MAXILLO-1.
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Figure 2C). Interestingly, MSCP0 from volunteer

healthy donors and MAXILLO-1 patients did not

differ in their clonogenic potential (P = 0.3551).

Differentiation capacity

Adipogenic, chondrogenic and osteogenic differentia-

tion capacity was shown for all expansions performed

for validation runs and in the context of MAXILLO-1.

Representative photographs are shown in Supplemen-

tary Figure 2. All batches of MSCs exhibited a multi-

potent capacity in the three lineages.

Microbial, endotoxin and mycoplasma testing

Microbial testing of the starting material (BM), of the

cell culture supernatant at day 7, of MSCP0 and of

MSCP1 was negative for all expansions (Supplemen-

tary Table 12). Endotoxin testing was performed for all

expansion and mycoplasma testing was performed for

expansions in the context of the clinical trial MAX-

ILLO-1 and for 8 of the 22 cell expansions from volun-

teer healthy donors. For all tested products samples,

anaerobic and aerobic cultures showed a negative test

result. NomycoplasmaDNAwas detectable and endo-

toxin levels were�1 IU/mL in all cases.

Karyotyping

Karyotyping was set up for all 33 expansions. In one

case (ID 1-07), only an insufficient number of

metaphases could be achieved (Supplementary Table

13). A chromosomal change in only one metaphase

could be detected for validation run ID 7537, 7543,

7562 and 7574. From the occurrence of such abnor-

malities no conclusion can be made on the culture.

In one case (ID 1-04), four different chromo-

somal changes of the active substance were observed

after release of the ATMP. The karyotype was as fol-

lows: 46,XX[29]; 46,XX,t(3;5;13)(p1?3;q33;p1)[6];

46,X,?inv(X)(p22q1?1[3]; and 46,X,+8[1]; 47,XX,

+21[1]. Two of the four changes occurred in more

than one metaphase. To exclude chromosomal insta-

bility, immortalization and any effect on growth reg-

ulation, long-term cultures were set up.

Long-term culture of MSCs from patient 1-04

Cells were cultured in accordance with the expansion

protocol for 5�19 days and passaged as indicated in

Supplementary Table 14A. This process was contin-

ued until cells stopped growth. At each passage, the

number of population doublings, doubling time and

viability were determined. Karyotping of cells from

passage 1, 2, 4, 7 and 9 was performed. In addition,

identity of the cells by flow cytometry (Supplemen-

tary Table 14B) and adipogenic, chondrogenic and

osteogenic differentiation capacity (Supplementary

Figure 3) was assessed for cells of passage 4 and 7.

During long-term culture, cells with the chromo-

somal finding 46,X,?inv(X)(p22q1?1[3], 46,X,+8[1]

and 47,XX,+21[1] disappeared after one additional

passage, whereas cells with the karyotype 46,XX,t

(3;5;13)(p1?3;q33;p1) persisted until passage 7 (i.e.,

34.9 cumulative population doublings of the CFU-F

from BM) but the relative proportion of cells with this

marker decreased from 15% (passage 1) to 3% (passage

7). Cells seeded after nine passages stopped growth.

The culture was maintained for 98 days. During this

time, 38.4 population doublings occurred and the dou-

bling time increased from 26.4 h (passage 0) to 340.9 h

(passage 9). Viability was always >80% and flow

cytometry analysis showed that <5% of cells were posi-

tive for CD3, CD45, CD34 and MHC cI and >90%

of cells were positive for CD73, CD90 and CD105

(Supplementary Table 14B). All these were release cri-

teria for clinically applicable MSCs in MAXILLO-1.

Interestingly, expression of MHC cI decreased to

75.75% for passage 7 cells. Patient 1-04 was screened a

second time about half a year later with patient ID 1-11

[48] and cells were produced for transplantation of

MSCs to the opposite mandibular site before dental

implantation. For this second expansion, karyotyping

was without findings. Overall, there was no evidence for

expansion of the clone with the cytogenetic marker and

no evidence for autonomous proliferation with appear-

ance of phenotypically abnormal cells.

Table 3. Percentage of viable cells in the starting material, for har-

vested passage 0 MSCs (% viable cells after harvest of P0) harvested

passage 1 MSCs (% viable cells after harvest of P1) from validation

runs (A) andmanufacturing for the clinical trial MAXILLO-1 (B).

(A) MSCs from validation runs

% of viable

cells

In BM

aspirate

After harvest

of P0

After harvest

of P1

Mean 94.6 97.0 94.5

SD 3.1 3.2 4.2

Minimum 87.0 86.2 84.7

Maximum 98.2 100.0 99.6

Threshold for

release

ND �80 �80

(B) MAXILLO-1 MSCs

Mean 92.5 97.7 97.9

SD 3.5 1.7 1.1

Minimum 86.9 94.4 93.3

Maximum 97.7 99.8 99.4

Threshold for

release

ND �80 �80

Thresholds for release of the ATMPMAXILLO-1 are indicated at

the bottom of the table.

ND, not defined (declaration parameter only).
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Statistical correlations

Statistical correlations were calculated based on all 33

expansions (both from volunteer healthy donors and

MAXILLO-1 patients). Spearman correlation matrix

for multiple-parameter analysis is shown in Supple-

mentary Table S15A, and the corresponding P value

matrix is shown in Supplementary Table 15B.

As expected, a high correlation between BM-

WBC count and BM-MNC count (r= 0.8436; P <

0.0001) and between the percentage of CD34+ cells

and BM-WBC (r= 0.5938; P= 0.0005) count and

BM-MNC count (r= 0.6351; P= 0.0002) was

observed because one of the inclusion criteria for

treatment of MAXILLO-1 patients was the absence

of hematopoietic disorders.

Effects of the parameters “age” and “transportation

time” cannot be deciphered because transportation

time for BM aspirates from elder donors (mainly

MAXILLO-1 patients) was significantly higher (see

donor characteristics) than transportation time for aspi-

rates from younger patients (volunteer healthy donors).

According to this, the correlation of age and transporta-

tion time was r=0.7719 (P < 0.0001). Both age and

transportation time show negative correlation with

WBC count, MNC count, percentage of CD34+ cells

in the BM aspirate, harvest density of MSCP0 (but not

MSCP1), CFU-F from BM aspirate and MSCP1 (but

not from MSCP0) and the yield of both MSCP0 and

MSCP1 harvested per microliter BM aspirate seeded

(for r and P values refer to Supplementary Table 15).

The percentage of CD34+ cells in BM aspirates

correlated with the number of CFU-F from the BM

aspirate (r=0.6288; P< 0.0002) and also with the har-

vesting density of MSCP0 (r=0.6586; P=0.0001). In

accordance with this, the number of CFU-F from the

BM aspirate correlated positively with the harvesting

density of MSCP0 (r=0.8016; P< 0.0001).

A positive correlation between WBC count in the

BM aspirates and MSCP0 cells (r=0.8522; P <

0.0001) and MSCP1 cells (r=0.7721; P < 0.0001)

harvested per microliter BM aspirate as well as between

MNC count in the BM aspirates and MSCP0 cells

(r=0.7865; P< 0.0001) andMSCP1 cells (r=0.7064;

Figure 2. Key parameters of quality controls. (A) Percentage of viable WBCs in the BM aspirate and of viable MSCP0 and MSCP1, (B)

results of flow cytometry analysis for identity (CD73, CD90, CD105 and MHC cI) and impurities (CD3, CD34, CD45 and MHC cII) of

MSCP0 and MSCP1 and (C) number of colony-forming units fibroblasts per 106 cells (CFU-F/106 cells) for MNCs from BM aspirates,

MSCP0 and MSCP1 are shown for expansions used for the validation process and for the clinical trial, respectively. Grey bars show mean

and standard deviation.
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P < 0.0001) harvested per microliter BM aspirate and

between the percentage of CD34+ cells in the BM aspi-

rates and MSCP0 cells (r=0.7195; P < 0.0001) and

MSCP1 cells (r=0.6163; P < 0.0001) harvested per

microliter BM aspirate was observed. The harvesting

density of MSCP0 correlated positively with the clono-

genicity of MSCP1 (r=0.5035; P=0.0143). For the

passage 1 culture step, there was a positive correlation

between harvesting density and number of population

doublings (r=0.9771; P < 0.0001) and, in accordance

with this, a negative correlation between harvesting den-

sity and doubling time (r= -0.9721; P < 0.0001). For

further correlations refer to Supplementary Table 15.

Discussion

Production of cells

In this study, we have presented validation data of a

GMP-compliant protocol for MSC isolation and

expansion and have proven the feasibility of this proto-

col to manufactureMSCs for a clinical trial. Pre-clinical

studies (e.g., in the context of bone formation [15,49]

or osteoarthritis [4]) using non-cryopreserved MSCs

from BM or adipose tissue have been performed previ-

ously, but to our knowledge a systematic comparison of

data on growth behavior, yield and quality controls rele-

vant for release of the cell product (i.e., the manufac-

tured ATMP) obtained in the validation process and in

manufacturing of the clinical product has not been per-

formed before.

In this study we also have shown that the produc-

tion of clinical doses of MSCs for the clinical trial

MAXILLO-1 was possible from a remote production

site. Transport of BM aspirate from Bergen (Norway)

to Ulm (Germany) was possible within 24 h by using a

conventional courier service. The shelf life of 24 h for

freshly produced, non-cryopreserved, clinical-grade

MSCs was sufficient for release of the product and

transportation from the manufacturing site in Ulm,

Germany to the clinical site in Bergen, Norway, where

the product was implanted the day after. Before start-

ing the production of 11 clinical doses for jaw augmen-

tation, the production process was validated using 22

expansions from BM aspirates of 21 volunteer healthy

donors. The availability of volunteer healthy BM

donors is limited and, because the age of patients

treated within MAXILLO-1 was not predictable prior

to the recruitment of patients for the clinical trial, the

group of volunteer healthy donors and MAXILLO-1

patients could not be matched for parameters like gen-

der, age, body mass index or smoker status. Volunteer

healthy donors had an average age of 26 years, and

MAXILLO-1 patients had an average age of 62 years.

In addition, mean time between end of aspiration and

beginning of seeding was 6.7 h for volunteer healthy

donors and 22.3 h for MAXILLO-1 patients. The high

correlation for the parameters “donor age” and “time

between end of aspiration and beginning of seeding” is

caused by the experimental setting of this study,

because transportation time for BM aspirates from

elder donors (mainly MAXILLO-1 patients) was sig-

nificantly higher than transportation time for aspirates

from younger patients (volunteer healthy donors).

Therefore, it is not possible to decipher the reason for

significant differences of the two groups in clonogenic-

ity of the BM aspirate (CFU-F/106 BM-WBC), in

WBC/mL BM and in MNC/mL BM. Interestingly,

the percentage of CD34+ cells in the aspirates did not

significantly differ. The percentage of CD34+ cells in

BM aspirates correlated with the number of CFU-F

from the BM aspirate. However, Kurt Yuksel et al.

[50] showed no correlation between the clonogenic

potential of stromal cells (CFU-F) and hematopoietic

cells (colony foming units granulocyte-macrophage;

CFU-GM) for patients with hematologic malignancies,

patients with a diagnosis of BM failure and patients

without hematologic disease. Both, CD34+ cells in

BM aspirates as well as CFU-F from the BM aspirate

correlated with the harvesting density of MSCP0.

Obviously, a high percentage of CD34-positive cells

and/or high CFU-F count and/or high cell count of

MNCs and/or WBCs in the BM aspirate also positively

correlate with the yield of not only MSCP0, but also

MSCP1. Because BM cell count and also the percent-

age of CD34+ cells can easily be assessed at the day of

BM harvest, it may be possible to predict whether a

determined cell target of MSCP1 can be achieved from

each individual aspirate. Analysis of a higher number

than 33 large-scale expansions and analysis of an inde-

pendent set of expansions is necessary to calculate the

positive predictive value and the validity of the above-

mentioned assumption. Starting from only 23 mL of

BM aspirate, a total harvest of 13.6£ 106 � 20

141.3£ 106 to MSCP1 within 21 days would have

been possible when using the whole BM aspirate for

cell expansion. This range of the hypothetical overall

yield shows the necessity to screen for early available,

reliable prediction parameters for calculation of the

expectable yield. In the setting of large-scale

manufacturing for clinical use, an appropriate cell

number for seeding passage 0 has to be used, sufficient

to guarantee the target dose of the respective clinical

protocol, but not causing an “overproduction,” taking

account of economic issues.

Because published expansion protocols show a high

variability, we compared the doubling times in this

study with the doubling times from publications using

a similar expansion protocol [51,52]. We obtained

mean doubling times of about 25 h for cells in passage

0 and of about 39 and 44 h for passage 1 (Table 2).

These doubling times are comparable to the ones
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published by Schallmoser et al. [52] (doubling time: 25

to 34 h, and calculated from available data: 10.5 popu-

lation doublings in 11�15 days) and by Schallmoser et

al. [51] (doubling time: 36 to 89 h, and calculated

from available data: 2.7�6.7 population doublings in

10 days; doubling time: 36 for comparable seeding

density to the protocol in this study).

It is also important to mention that the harvesting

density of MSCP0 correlated positively with the clono-

genicity of MSCP1, indicating that a higher harvesting

density in passage 0 might have a beneficial effect on

clonogenicity of cells applied to the patient. For long-

term cultures for up to 39 population doublings, repli-

cative aging, induction of alkaline phosphatase, bone

sialoprotein, osteocalcin and collagen 1 have been

described [53]. It has been shown that donor age and

the number of cumulative population doublings impact

the quality of MSCs in long-term cultures [54,55].

Beane et al. [54] showed lower cell yields and impaired

adipogenesis with age in rabbits. Long-term cultured

BM-derived MSCs exhibited slower population dou-

blings, increased senescence and inferior chondrogenic

differentiation potential. It has previously been shown

that CFU-F content [29] and bone morphogenetic

protein 7 (BMP7) [32] secretion increased after cryo-

preservation. Comparisons of the CFU-F content after

different handling or harvest procedures of the tissue

[56,57], from different tissue sites [56] or from donors

with different malignancies [50] have been published,

but to our knowledge nothing is known so far about

the impact of seeding density of MSCs on their clono-

genicity or capacity to form CFU-F in the straight fol-

lowing passages. We did not observe any significant

correlation of harvesting density for passage 0 and the

clonogenicity of the harvested cells from this passage,

whereas Bartmann et al. [51] used a similar xenogenic-

free expansion system for MSCs and observed an

inverse correlation of seeding density toMSC prolifera-

tion and CFU-F frequency of the same passage.

Quality controls and release of cells

All cell productions performed for the clinical trial

MAXILLO-1 fulfilled the release criteria accepted by

the Norwegian Medicines Agency (NoMA) for this

ATMP (Supplementary Table 4). During the valida-

tion process, cell marker surface expression of MSCP1

expanded from volunteer healthy donor 7575 showed

deviations for the parameters CD3 and CD105. Over-

all, only one single expansion of 33 (i.e., 3%) failed to

pass quality controls for identity and impurities.

Bone augmentation capacity of manufactured cells

MSCs isolated and expanded to the described protocol

showed in vivo bone formation potential. Seven MSC

preparations manufactured in the context of validation

were successfully used in combination with a biphasic

calcium phosphate biomaterial (BCP+) to induce

ectopic bone formation and bone regeneration of

induced critical size defects of the calvaria in immuno-

compromised mice [23]. Bone formation was observed

and human cells were detected in the freshly formed

bone. MSCs for the clinical trial MAXILLO-1 were

implanted into patients with severely atrophied mandib-

ular bone and successful augmentation of alveolar bone

was observed in all study participants and shown by his-

tology and X-ray microtomography (mCT) images [48].

Karyotyping

We observed chromosomal abnormalities in 5 expan-

sions (Supplementary Table 13). These findings

occurred in 4 of 22 (i.e., 18%) and in 1 of 11 (i.e.,

9%) MSCP1 obtained from volunteer healthy donors

and MAXILLO-1 patients, respectively. However,

because only one metaphase was affected, this obser-

vation was considered as irrelevant; from the occur-

rence of such abnormalities no conclusion can be

made [44�47,58,59]. Only in two cases (donor 7574

and patient 1-04), a specific finding occurred with

higher frequency. Long-term cultures were set up for

MSCP1 from patient 1-04 with a total culture time of

105 days to exclude chromosomal instability, immor-

talization and any effect on growth regulation. Cells

with the specific chromosomal finding 46,XX,t

(3;5;13)(p1?3;q33;p1) persisted until the culture

stopped growth. The percentage of affected cells

decreased from 15% to 3%. The release criteria for

identity, impurity and viability were fulfilled and adi-

pogenic, chondrogenic and osteogenic differentiation

potential of cells were fulfilled also for cells harvested

from long-term culture passage 4 and passage 7. Dur-

ing the long-term culture, doubling time constantly

increased until cells showed progressive growth arrest

after 38.4 population doublings.

The MSCP1 with a positive finding in karyotyping

were applied to the patient because results from karyo-

typing were available only after implantation. Notewor-

thy, the same patient was screened and included a

second time for MAXILLO-1. Different individual

patient IDs (1-04 and 1-11) were given for the two

independent treatments on the left and right mandibu-

lar side. MSCP1 cells obtained in the second produc-

tion process showed a normal female karyotype. No

phenotypical abnormalities or changes in differentiation

capacity were seen at any time point analyzed, neither

for ID 1-04 nor for ID 1-11. In long-term culture, cells

rather underwent senescent. This is in line with the clin-

ical observations on patients who received the MAX-

ILLO-1 MSCs and had an uneventful clinical course

up to now (last follow-up May 2017) [48]. Overall,
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laboratory analysis and clinical observations of patient

1-04 did not reveal evidence for unlimited proliferation

of the clonal population with a cytogenetic marker.

The presence of cells with atypical findings in

karyotyping has previously been described for

MSCs in the context of clinical trials to prevent

acute graft-versus-host disease or to treat irradia-

tion-induced lesions [60]. In five of 20 (i.e., 25%)

cases, chromosomal abnormalities occurred and

7�75% of the cells were affected by aneuploidies,

independent from the culture protocol. These fre-

quencies are in accordance with our observations.

In all cases with chromosomal changes reported by

Tarte et al. [60], human telomerase reverse tran-

scriptase (hTERT) activity was not detectable using

quantitative PCR. A recent publication reports an

increase of hTERT activity and a high spontaneous

malignant transformation of BM-derived MSCs in

long-term cultures [61]. Transformation of MSCs

occurred in 45.8% of long-term cultures and MSCs

showed loss of expression of typical MSC markers

like CD73 and CD90, down-regulated expression

of CD105 and limited differentiation potential. We

did not observe these alterations in surface marker

expression and differentiation capacity, even in the

long-term cultures of MSCs from patient 1-04.

This difference may also be caused by different cul-

ture conditions. Røsland et al. [61] cultured cells in

medium supplemented with fetal calf serum. In our

study, cells were grown in a xenogenic free system

using human platelet lysate as a source for growth

factors. This difference may contribute to suppres-

sion of transformation and favor senescence. Never-

theless, the significance of karyotyping as quality

control parameter thus remains questionable.

Quantitative analysis of hTERT may be the quality

parameter of choice.

Conclusions

In this study, we have shown that there is no need of

close proximity between manufacturing facility for

MSCs and the clinical center where the cells are

applied, even if cryopreservation has to be avoided and

freshly produced cells have to be shipped on wet ice.

We demonstrated that several parameters, like CFU-F,

percentage of CD34+ cells, cell count of MNCs and

WBCs of the BM, may serve as predictive tools for the

yield of MSCs and thus may help to develop strategies

to avoid unnecessary costs for production of MSCs

due to insufficient cell expansion rates. Further investi-

gations may be necessary to interpret the physiological

and clinical impacts of the positive correlation between

harvesting density of MSCs from early passages with

low numbers of population doublings and the clonoge-

nicity in the straight following passages.
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Abstract

Background: Autologous grafting, despite some disadvantages, is still considered the gold standard for
reconstruction of maxillofacial bone defects. The aim of this study was to evaluate bone regeneration using bone
marrow-derived mesenchymal stromal cells (MSCs) in a clinical trial, a less invasive approach than autologous bone
grafting. This comprehensive clinical trial included subjects with severe mandibular ridge resorption.

Methods: The study included 11 subjects aged 52–79 years with severe mandibular ridge resorption. Bone marrow
cells were aspirated from the posterior iliac crest and plastic adherent cells were expanded in culture medium
containing human platelet lysate. The MSCs and biphasic calcium phosphate granules as scaffolds were inserted
subperiosteally onto the resorbed alveolar ridge. After 4–6 months of healing, new bone formation was assessed
clinically and radiographically, as were safety and feasibility. Bone at the implant site was biopsied for micro-
computed topography and histological analyses and dental implants were placed in the newly regenerated bone.
Functional outcomes and patient satisfaction were assessed after 12 months.

Results: The bone marrow cells, expanded in vitro and inserted into the defect together with biphasic calcium
phosphate granules, induced significant new bone formation. The regenerated bone volume was adequate for
dental implant installation. Healing was uneventful, without adverse events. The patients were satisfied with the
esthetic and functional outcomes. No side effects were observed.

Conclusions: The results of this comprehensive clinical trial in human subjects confirm that MSCs can successfully
induce significant formation of new bone, with no untoward sequelae. Hence, this novel augmentation procedure
warrants further investigation and may form the basis of a valid treatment protocol, challenging the current gold
standard.

Trial registration: EudraCT, 2012-003139-50. Registered on 21 August 2013. ClinicalTrials.gov, NCT 02751125.
Registered on 26 April 2016.

Keywords: Bone tissue engineering, Biphasic calcium phosphate, Dental implants, Alveolar ridge augmentation,
Mesenchymal stem cells, Bone regeneration

* Correspondence: cecilie.gjerde@uib.no; kamal.mustafa@uib.no
1Institute of Clinical Dentistry, University of Bergen, Bergen, Norway
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Gjerde et al. Stem Cell Research & Therapy  (2018) 9:213 
https://doi.org/10.1186/s13287-018-0951-9



Background
Bone is among the most frequently transplanted tissues,
with about 2.2 million procedures annually worldwide
[1]. In bone reconstruction procedures, surgeons harvest
autologous bone from the patient and transplant this
bone graft to the defect. This is currently regarded as
the gold standard in bone regeneration, using the
patient’s own cells and growth factors and providing
scaffolding for bone regeneration [2]. However, the pro-
cedure has several major disadvantages: harvesting re-
quires a second surgical site and provides only limited
bone stock; the two-stage procedure increases surgery
time; and patients often suffer pain and nerve damage at
the harvest site. Moreover, autologous bone has an
unpredictable resorption rate [3–5]. These factors all
increase treatment costs and patient discomfort.
In the maxillofacial region, reconstruction may be ne-

cessary to treat congenital malformations, severe facial
trauma, or resection of tumors [6, 7]. Bone defects also
occur in the maxilla and mandible, often after tooth loss,
which results in atrophy of hard and soft alveolar tissue,
and reduction of both horizontal and vertical dimen-
sions [2]. In clinical practice, patients often present with
severe alveolar ridge resorption, leaving insufficient bone
volume for optimal installation of dental implants. Vari-
ous surgical procedures have been developed to enlarge
the alveolar crest [8].
Because of the disadvantages inherent in autologous

grafting, alternative methods for bone regeneration have
been proposed, including bone substitutes of animal, hu-
man, or synthetic origin [9–12]. There are, however,
documented cases of infection associated with bone sub-
stitute materials. Furthermore, the risks of bacterial con-
tamination and immune rejection of the graft must be
considered [9]. While these procedures can be used to
reconstruct small bone defects, they are less effective in
larger defects [3, 12, 13]. Thus, there is currently an un-
met clinical need for effective, safe interventions which
do not expose the patient to the risk of donor site mor-
bidity [14–18].
Multipotent stromal cells or mesenchymal stem cells

(MSCs) are the cells most extensively investigated and
applied [19–30]. These cells are nonhematopoietic and
of mesodermal derivation, capable of self-renewal and
multilineage differentiation (e.g., into osteoblasts, adipo-
cytes, and chondrocytes). MSCs are found throughout
the body and numerous extraction protocols have been
established for different tissues (e.g., umbilical cord, adi-
pose tissue, skeletal muscle, deciduous teeth, and other
tissue) [20, 21, 23, 24, 31, 32]. For more than 40 years,
bone marrow-derived stem cells have been the most
frequent sources for cell therapy. These cells can be iso-
lated from bone marrow and from bone chips (cortical
or trabecular bone). If seeded onto or cultivated on

calcium phosphate ceramic matrices in vitro, these cells
can induce bone formation in vivo [14, 33–35]. For
many years, biphasic calcium phosphate (BCP) has been
used alone or in combination with autologous bone
chips to reconstruct the floor of the maxillary sinus and
to fill extraction sockets [36, 37].
Recent preclinical studies have shown that BCP cer-

amics consisting of 20% hydroxyapatite (HA) and 80%
beta tricalcium phosphate (β-TCP) are appropriate
matrices for MSC culture in vitro and bone formation in
vivo [38, 39]. In the present clinical study, the maxillo-
facial region was selected as an appropriate site for
evaluating the safety and feasibility of using MSCs and
BCP as a new therapeutic approach to regenerate alveo-
lar bone defects. There were several reasons for this
selection. Firstly, repair of facial bone defects is a major
clinical challenge [40]. Currently, therapeutic options for
repairing large, critical-sized defects are limited to auto-
grafts, allografts, or transplanting vascularized bone and
soft tissue from autologous secondary sites [40]. Sec-
ondly, while a functional dentition is part of the normal
facial anatomy, loss of teeth initiates a process of con-
tinuous resorption of the alveolar ridge. This is acceler-
ated by denture wear and often results in pronounced
loss of bone volume and reduction in the strength of re-
sidual bone in the edentulous area. Thirdly, reconstruc-
tion of the severely atrophic mandible to restore oral
function remains a difficult surgical and prosthetic chal-
lenge because of the minimal residual bony volume and
the progressive nature of the resorption process [41–43].
Although only a small proportion of edentulous people
need bone augmentation for implant installation, for the
patients who do, the procedure is essential for restor-
ation of oral function and treatment options are limited
[10]. Finally, the implant installation procedure makes it
ethically acceptable to biopsy the implant site to inspect
the quality of newly formed bone.
The present clinical trial in humans introduced a

novel bone augmentation protocol. The primary aim
was to introduce and validate the protocol, which
uses bone marrow-derived MSCs for the clinical trial
and synthetic BCP in a standardized, minimally inva-
sive surgical procedure, and to assess the feasibility,
safety, and efficacy of this new procedure. The autolo-
gous cells were harvested and cultured for 3 weeks
before being implanted into the defect sites. The sec-
ondary outcome was to install dental implants in the
augmented alveolar bone and screw-retain a fixed
partial denture on the implants.

Methods
Ethical approval
This study conforms with the Declaration of Helsinki,
and was approved by the Norwegian ethical committee
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(2013/1284/REK Vest, University of Bergen) and by the
Norwegian Medicines Agency (13/12062-15; EudraCT
2012-003139-50). The clinical trial followed the European
guidelines for advanced therapeutic medicinal products
(ClinicalTrials.gov, NCT 02751125; https://clinicaltrials.-
gov/ct2/show/NCT02751125).
Two experienced clinicians informed the patients

about the study. After signing the consent form, the
patients underwent clinical examination, including
clinical photographs and dental impressions, and
provided a medical history. If the patient met the in-
clusion criteria, cone beam computer tomography
(CBCT) (Morita 3D Accuitomo F17, Japan) and den-
tal X-ray scans were taken.

Study design and participants
Thirteen patients were recruited for this clinical study at
the Section of Oral and Maxillofacial Surgery, Department
of Clinical Dentistry, University of Bergen, Norway. To
be eligible, the patients had to be healthy nonsmokers,
with blood tests showing no evidence of infectious dis-
eases, aged between 18 and 80 years, missing one or
more teeth in the mandibular posterior region, and
have an alveolar ridge width in the edentulous area less
than 4.5 mm. All participants provided written in-
formed consent before any study-related intervention.
The study design and time points for each intervention
are presented in Table 1.

Inclusion criteria

� Patients presenting with a subjective indication for a
fixed implant-retained prosthesis in the mandibular
posterior region (i.e., distal to the canine).

� Extensive lateral bone loss of the edentulous alveolar
ridge.

� Edentulous alveolar ridge width less than 4.5 mm.
� Edentulous for more than 6 months in the region

requiring reconstruction.
� At least one missing tooth to be replaced in the

edentulous area.
� Absence of clinical signs of infection in the region

requiring reconstruction.
� Absence of any major oral pathology.
� Age 18 years and older.
� In good health.

Exclusion criteria

� Evidence of infection with HIV, or hepatitis B or C,
or any contagious disease (specifically, serologically
negative for anti-HIV 1–2 Ab, anti-HCV Ab, HBs
Ag, anti-HBc syphilis, and negative (not detected by
PCR) in HIV NAT, HCV NAT, or HBV NAT).

� Smoker.
� Pregnant or breastfeeding.
� Untreated infections.
� History of malignancy.

Table 1 Study design and time schedule for the intervention

Intervention Day –21 (pre inclusion
visit or earlier)

Day 0 (inclusion visit) Days 12–14 Month 1 Month 6 Month 9 Month 18

Verification of the selection criteria,
information given to the patient,
patient records and informed
consent obtained

X

Panoramic X-ray scans X X X X

Loco-regional clinical examination X X X X X X X

Impression of both dental arches X X

Facial and oral cavity photographs X X

Dental radiographs X X X X

VAS score for pain X X X X X

Questionnaire on use of painkillers X X X X X

Bone marrow harvest X

Grafting procedure X

CBCT scan X X X X

Implant placement, bone biopsy X

Resonance frequency Analysis (ISQ RFA) X X X

Implant loading (prosthesis) X

Adverse events, clinical examination X X X X X X

VAS visual analog scale, CBCT cone beam computer tomography, ISQ implant stability quotient, RFA resonance frequency analysis
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� History of or scheduled cervico-facial radiation therapy.
� Chronic treatment with steroids,

immunomodulatory drugs, or bisphosphonates.

Cell production
In 13 participants, bone marrow aspirates were harvested
from the posterior iliac crest under local anesthesia at The
Adult Clinical Trial Unit at Haukeland University Hos-
pital, Bergen, Norway using a trocar to make two or three
cutaneous punctures. Each bone marrow sample was har-
vested in fractions of 2–4 ml in 20-ml syringes prefilled
with 1000 IU of heparin (Leo Pharma A/S, Denmark) and
sealed with a Luer lock stopper (Omnifix 20 ml Luer Lock
Solo; B. Braun Melsungen AG, Melsungen, Germany). A
total of 15–20 ml of bone marrow aspirate from each
patient was transported at 21 ± 3 °C with temperature
recording and monitoring to provide traceability, and dis-
patched by a special courier service to the cell manufac-
turing center at the Institute for Clinical Transfusion
Medicine and Immunogenetics (IKT), Ulm, Germany.
This center has a production license for MSCs from BM as-
pirates (production license DE_BW_01_MIA_2013_0040/
DE_BW_01_IKT Ulm), using Good Manufacturing Prac-
tices (GMP), according to defined standard operating proce-
dures and in compliance with the established quality
management system. The advanced therapy medicinal prod-
uct MSCs were manufactured at IKT Ulm as previously
described by Fekete et al. [44].
On arrival in Ulm, BM aspirates from the syringes were

pooled and a cell count of the bone marrow was performed
using an automated hematology analyzer (Sysmex
KX-21 N; Sysmex Deutschland GmbH, Norderstedt,
Germany) before any manipulation. Viability was evaluated
by flow cytometry following 7-amino-actinomycin D stain-
ing (FC500 flow cytometer; Beckman Coulter, USA). If the
total white blood cell (WBC) count was less than 127.2 ×
106 cells, the sample was considered inadequate for pro-
cessing. Viability of MSCs (passage 0 and passage 1) was
evaluated by Trypan blue staining (Sigma, Taufkirchen,
Germany). All manipulations were conducted under lam-
inar hood flow in grade A clean room conditions. The
expansion was carried out as previously described [44]. In
brief, the cell expansion started with 15–20 ml of bone
marrow aspirate; the cells were seeded on one to eight
2-chamber CellSTACKs (Corning/Fisher Scientific,
Schwerte, Germany) at a density of 50,000 WBCs/cm2

in Minimal Essential Medium alpha modification
(αMEM) (Lonza, Basel, Switzerland), supplemented
with 5% human platelet lysate (PL; IKT Ulm) and
1 IU/ml heparin (Ratiopharm, Ulm, Germany) for
14 days. The cells were then detached using trypsin
(TrypZEAN; Lonza). The harvested passage 0 cells
(MSC-P0) were counted and reseeded on one to seven
2-chamber CellSTACKs at a density of 4000 MSC-P0/cm2

in αMEM supplemented with 8% human platelet lysate
and 1 IU/ml heparin (Ratiopharm) for 7 days. The cells
were detached and passage 1 MSCs were washed with
phosphate buffered saline without Ca2+/Mg2+ (Lonza),
resuspended in a concentration of 20 × 106 MSCs/ml in
clinical-grade physiological saline (Kochsalz 0.9%
INJ.-FL.(injection fluid), 50 ml; B. Braun Melsungen AG)
supplemented with 4–5% human serum albumin (CSL
Behring, Munich, Germany). Doses of 5 ml were drawn
into one or two sterile syringes sealed with a Luer lock
stopper. Transport was undertaken by a certified shipping
company (World Courier, Stuttgart, Germany) as an ac-
companied transport to the clinical unit at the Depart-
ment of Oral and Maxillofacial Surgery, Institute of
Clinical Dentistry, University of Bergen, within 24 h of
production. Appropriate quality controls of the cell ther-
apy product were conducted after each step of the culture
procedure. Viability and the number of cells were con-
ducted using a Trypan blue viability test and a Countess
Automated Cell Counter (Countess™; Invitrogen, Life
Technologies, USA) respectively. Details on manufactur-
ing the MSCs including quality controls are presented in a
separate manuscript (Rojewski et al., submitted).

Clinical procedures
All procedures were carried out under local anesthesia
by an experienced surgeon (CG). CBCT scans were
taken for each patient using a CBCT scanner (Morita 3D
Accuitomo F17, Japan) to evaluate the bone volume
before (T0) and 4–6 months after grafting (T1). One
hour preoperatively, the patients received 1 g amoxicillin
orally (or 300 mg clindamycin if allergic to penicillin).
The site was surgically prepared under local anesthesia
(Xylocain/adrenalin 2%; Astra Zenical AS, Sweden). A
flap was raised and the cortical bone was then perforated
with a small round burr, to enhance blood flow and facili-
tate vascular ingrowth into the biomaterials (Fig. 2A).
Titanium-reinforced, nonresorbable polytetrafluoroethyl-
ene (PTFE) (Cytoplast; Osteogenics Biomedical, Lub-
bock, TX, USA) membranes were then fixed to the
underlying bone by micro-screws and mini-screws (Biomet,
Jacksonville, FL, USA) to provide a “tenting” effect [45–47].
For each patient, 5 cm3 of BCP (MBCP+™; Bioma-

tlante, France), comprising 20% HA and 80% β-TCP in
the form of granules 0.5–1 mm in size and packed in
two syringes, were used and mixed with 100 million
MSCs at the time of surgery. During this step, MSCs
attached to the BCP granules in the syringes within a
contact time of 60 min. The final number of cells mixed
with BCP was in a dose of 20 × 106 cells/1 cm3 [39]. When
the graft was ready to be inserted, the BCP granules loaded
with MSCs were withdrawn from the syringe and immedi-
ately inserted into the implant site (Fig.2B). Part of the mix-
ture was preserved for additional analyses, particularly
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bacteriological tests and cell attachment on BCP. For cell
attachment, the fluorescent dye DAPI (Sigma-Aldrich),
which binds selectively to DNA and forms strongly
fluorescent DNA–DAPI complexes, was used. The
cell-seeded material was introduced into the pocket
formed by the bony ridge and the regenerative mem-
brane and then covered by the membrane and
muco-periosteal flaps (Fig. 2C). Finally, the flaps were
sutured to the vestibular mucosa using nonabsorbable
sutures (4/0 Supramide; B. Braun Surgical SA, Spain).
The patients were instructed to eat only soft food for

the next 10–14 days, and to rinse daily with chlorhexi-
dine. The antibiotics were continued for 7 days. If neces-
sary, pain was managed by oral administration of
paracetamol (1 g tablets) or codeine phosphate sesquihy-
drate (30 mg) four times per day.
The operation site was examined clinically and the su-

tures were removed 12 days after surgery. CBCT scans
were taken of the augmented area (T1). The patients
were recalled for clinical examination after 1, 2, and 4
months (Fig. 2D). CBCT scans were taken 4–6 months
postoperatively to determine whether the sites were
ready for implant installation.
At the time of implant installation the augmented area

was reentered if the width was 7 mm or more (Fig. 2E). Prior
to implant installation, bone biopsies were taken under local
anesthesia: new bone formation was assessed by histology
and micro-computed tomography (μ-CT) (Skyscan 1172;
Bruker) at 40 kV and 2.4-μm voxel size. Dental implants
(Bone Level, Roxolid®, SLActive®; Institut Straumann AG, Ba-
sel, Switzerland) with a diameter of 4.1 mm and a length of
8–10 mm were then installed according to the manufac-
turer’s recommendations (Fig. 2F). Abutment surgery
was done 2 months after implant installation (Fig.
2G) and a screw-retained crown was mounted 2–
4 weeks later (Fig. 2H). The implant stability quotient
(ISQ) was measured at each of these procedures using
an Ostell® device (Ostell AB, Gothenburg, Sweden).

Bone volume measurements and CBCT analyses
CBCT scans (Morita 3D Accuitomo F17, Japan) were
taken before grafting (T0) and 6 months after grafting
(T1), at 85 kVp, 9.5 mA with a field of view (FOV) of
6 cm × 6 cm (diameter × height), scanning time of
17.5 s, and a voxel size of 0.125 mm.

Reconstruction of 3-dimensional models
The DICOM files of the images were then imported to
Mimics program 19.0 (Materialize NV, Leuven, Belgium).
The threshold of each case was selected manually, based
on subjective evaluation of the apparent display of the
residual jaw bone and the graft, this defined the boundary
of the region of interest (ROI) of each case. The mask of
the ROI at T0 was achieved and visualized in axial,

sagittal, and coronal views. The 2D masks were then
transformed into 3D models using the so-called “calculate
3D” function. The volume in cubic millimeters of the graft
models was acquired automatically with a display of a
color-coded 3D model.
The superimposition of the images at T0 and T1 was

applied to the Standard Tessellation Language (STL)
registration method [48]. Once the models were opti-
mally superimposed, 3D models were reconstructed
from the same region in the T0 and T1 images, specify-
ing the augmented bone volumes (ROI).

Processing bone biopsies
Micro-computed topography analyses
The bone biopsy specimens were maintained in 10%
buffered formalin. Selected bone biopsies were scanned
with the high-resolution μ-CT SkyScan1172® (SkyScan,
Kontich, Belgium) with the following technical parame-
ters: 100 mA and 100 kV power intensity, copper–alu-
mina filter and 360° rotation, and pixel size or resolution
for acquisition and image reconstruction of 2.7 μm. Im-
ages from the scanning of biopsies were reconstructed
by the software NRecon® (SkyScan) to obtain 2D and 3D
images. CTvox (version 3.2; SkyScan) was employed to
create 3D images for the biopsies. The analyzed histo-
morphometric parameters have been described previously
[49]: bone volume (BV); tissue volume (TV); bone volu-
metric fraction (BV/TV); trabecular thickness (Tb.Th), the
mean thickness of the trabeculae in the volume of interest
(VOI); trabecular separation (Tb.Sp), the mean separation
of the trabeculae in the VOI; structural model index
(SMI), which gives information about the preponderance
of trabecular morphology; degree of anisotropy (DA),
which is the presence or absence of aligned trabeculae in a
particular direction (1 is considered isotropic, > 1 is
considered anisotropic); and fractal dimension (FD), which
indicates the complexity of the specimen surface.

Histological analyses
Fixed samples were decalcified in a pH 7.4 solution con-
taining 4.13% EDTA/0.2% PFA in PBS for 96 h at 50 °C,
using an automated microwave decalcifying apparatus
(KOS Histostation; Milestone Med. Corp., USA). Sam-
ples were dehydrated in an ascending series of ethanol
followed by butanol in an automated dehydration station
(MicromMicrotech, Lyon, France). The samples were
embedded in paraffin (Histowax; Histolab, Gothenburg,
Sweden). Thin histological sections (3 μm thick) were
made using a standard microtome (Leica RM2255;
Leica Biosystems, Nanterre, France). The sections were
stained by the Masson trichrome technique, which
colors cell nuclei blue/black with hematoxylin, colors
cytoplasm, muscle, and erythrocytes red using fuchsine,
and colors collagen green using light green solution.
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Slides were scanned (NanoZoomer; Hamamatsu, Photonics,
Hamamatsu City, Shizuoka, Japan) and observed virtually
(NDP view; Hamamatsu). Histomorphometry of images was
performed using ImageJ and the percentages of bone and
bone marrow were calculated per area of explants. Four
sections through each biopsy were analyzed and quantified.

Statistical analysis
Bone width and volume are presented as means and
confidence intervals. Confidence intervals were based on
formulas assuming normal distributed data. The p value
was calculated from a one-sample t test, with 0 as the
hypothesized difference. p < 0.05 was considered statisti-
cally significant.

Outcomes
The primary outcomes of the trial were safety and feasi-
bility of the procedure, assessed 12 months after recon-
struction. In order to evaluate safety, a system was
established for reporting adverse events. With guidance
from the European Medicines Agency, these events were
further classified into serious adverse events or serious
adverse reactions. Adverse events, local (e.g., infection or
hematomas) or systemic (e.g., fever or allergic reaction),
were to be managed according to the Guidelines for
Good Clinical Practice from the International Confer-
ence on Harmonization and the German Verordnung
über klinische Versuche mit Heilmitteln. The feasibility
of the procedure was evaluated on the basis of two
factors: surgical manipulation of the graft and the ability
to install the implants as planned.
Secondary outcomes were osseointegration of the den-

tal implant and function of the prosthetic restoration.

Results
The final cell product consisted of fresh autologous cells
(MSCs) expanded in vitro expressing the markers CD90,
CD73, and CD105 and negative for CD14 and CD45,
with a 90% viability rate. The product also showed
strong expression of markers CD49d, CD73, CD90, and
CD105; moderate expression of CD14 and CD106; and
low expression of CD19, CD34, and CD45.
The viability of the cells on arrival in the operating

theater was 87–90% as demonstrated using Trypan blue
assay and cell counting. The mixing was undertaken in
theater by the surgeon, under aseptic surgical condi-
tions (Fig. 1A, B). Cells were mixed and attached well to
the BCP granules within 60 min (Fig. 1C, D).
Between June 2014 and December 2015, 13 patients

aged 52–75 years (mean 65 years) were enrolled. For 11
of the 13 patients the expansions fulfilled the release
criteria and cells could be delivered to the Department
of Oral and Maxillofacial Surgery in Bergen. Two expan-
sions were stopped at passage 0 because there were
insufficient bone marrow cells in the starting material
for expansion (Patients 5 and 10, Table 2).
All 11 patients had uneventful healing of the augmented

area, without any local infection.
No adverse events occurred during the trial period.

Moreover, the soft tissues covering the augmented bone
showed an increased area of keratinized gingiva, provid-
ing a healthy soft tissue profile (Fig. 2d). Finally, the
amount of new bone was strongly influenced by the pos-
ition of the membrane.
All 11 patients had successful ridge augmentation and

an adequate amount of bone for dental implant installa-
tion (Table 3). In five patients the PTFE membrane

Fig. 1 Cell attachment assay. A Syringes containing BCP granules (a) and MSCs (b). B Mixture of BCP and MSCs. C, D Cell attachment to
biomaterial determined using DAPI staining after arrival at operating theater
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became exposed and was removed uneventfully 7–8 weeks
post augmentation.
Casts of the alveolar ridge in each patient, X-ray scans,

and clinical examinations demonstrated a significant in-
crease of the total bone volume in all 11 patients after
treatment (Fig. 3a, b).
Linear measurements of the width and height were per-

formed from all CBCT scans in iView software (version
2.2.0.3. J; Morita MFG Corporation). Grafted bone could
easily be distinguished from residual bone by density and
structure on the scans taken immediately after the grafting
procedure. As these measurements are known to be oper-
ator dependent, the measurements were all done by one
specialist in oral radiology (SS) [50, 51]. All patients had
sufficient increase in alveolar width to have dental im-
plants installed (Fig. 4 and Table 3). The average volume
of bone increased by 887.23 ± 365.01 mm3 (Table 3). Both
the increase in width of the alveolar ridge and the increase
in volume of the alveolar ridge were statistically signifi-
cant. The mean increase in bone width (n = 14) was
4.05 mm (95% CI 2.74, 5.36; p < 0.001) and the mean in-
crease in volume (n = 14) was 887.23 mm3 (95% CI 676,
1097.98; p < 0.001).
Formation of mineralized tissues was evaluated by μ-CT

and histology from the biopsies taken during implant instal-
lation. From the μ-CT scan datasets, 3D models were built
for visualization (Fig. 5A). It was possible to identify

Table 2 Expansion of cells derived from bone marrow of 13
patients

Patient
number

BMSCs/μl BM
number of MNCs

BMSCs/μl BM
aspirate in passage 1

Overall harvest after
culture passage 1

1 3.46E + 03 2.98E + 04 3.06E + 08

2 1.13E + 04 1.52E + 05 4.12E + 08

3 3.59E + 03 2.89E + 04 2.46E + 08

4 1.83E + 04 2.44E + 05 4.05E + 08

5 5.74E + 01 -a -a

6 4.77E + 03 6.27E + 04 4.02E + 08

7 5.03E + 02 5.27E + 03 5.33E + 07

8 1.61E + 03 2.26E + 04 2.86E + 08

9 1,64E + 03 1.67E + 04 1.55E + 08

10 -b -a -a

11 6.54E + 03 7.67E + 04 2.42E + 08

12 2.70E + 03 2.85E + 04 2.69E + 08

13 3.63E + 03 2.79E + 04 2.34E + 08

Mean 4.84E + 03 6.32E + 04 2.74E + 08

SD 4.98E + 03 6.91E + 04 1.04E + 08

BMSC bone marrow-derived mesenchymal stromal cell, BM bone marrow, MNC
mononuclear cell, SD standard deviation
aNo colony-forming unit fibroblast CFU-F growth
bInsufficient cell count

Fig. 2 Clinical procedure. a Narrow alveolar ridge before augmentation (arrow). b Mixture of BCP and MSCs placed on alveolar ridge. c
Membrane placed over transplanted graft. d Soft tissue healing after 5 months. e New alveolar ridge after 5 months of healing. f Core biopsy
taken and dental implant installed on newly formed bone. g Eight months post augmentation and 2 months after implant installation. h Implant-
supported crown in occlusion
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accurately the newly formed bone from the BCP granules
(based on histogram calculations) when the raw data-re-
constructed cross-sections were turned into images.
Histological analysis revealed that BCP granules were

well integrated with deposition of newly formed bone tis-
sue on the surface of the particles with osteoblast lining
cells and subsequent deposition of lamellar bone tissue
(Fig. 5B). The BCP granules demonstrated continuous
degradation and dissolution, with the presence of multinu-
cleated cells, probably osteoclasts, as well as macrophage
CD68+ cells on the surface of the particles.
Table 4 presents the mean values for each analyzed

variable obtained by μ-CT analyses in relation to the
microstructural properties of the biopsies.

All patients were satisfied with the esthetic and
functional outcomes and no adverse events were re-
ported or observed. There were no postoperative in-
fections in any of the transplants or at the donor site.
One patient reported moderate levels of pain after
augmentation and after the exposed membrane had to
be removed. The other patients reported only minor
pain postoperatively. All patients were satisfied with
the clinical outcome of the augmentation procedure
and with their new teeth. All patients said they would
recommend this procedure to others with a similar
clinical condition. Ostell values increased for all pa-
tients during the first 12 months after installation of
the dental implants (Fig. 6).

Table 3 Clinical outcomes: demonstrates bone healing, increased bone width and volume

Patient number Age (years) Sex Healing
time (weeks)

Increase in
width (mm)

Increase in
volume (mm3)

Implant
placement

Crown
delivered

Patient
satisfied

1 75 F 27 4.5 902.92 Yes Yes Yes

2 67 M 25 3.7 1047.15 Yes Yes Yes

3 55 F 26 3.9 1382.54 Yes Yes Yes

4 62 F 18 1.1 440.93 Yes Yes Yes

6 52 M 21 4.9 1469.53 Yes Yes Yes

7 left 69 M 31 4.6 432.7 Yes Yes Yes

7 right 69 M 31 4.9 1187.21 Yes Yes Yes

8 69 M 22 1.4 753.52 Yes Yes Yes

9 61 F 22 1.4 546.33 Yes Yes Yes

11 62 F 21 9.7 1188.47 Yes Yes Yes

12 left 65 F 20 2.7 954.98 Yes Yes Yes

12 right 65 F 20 3.4 418.36 Yes Yes Yes

13 left 69 F 22 3.7 553.56 Yes Yes Yes

13 right 69 F 22 6.8 1142.96 Yes Yes Yes

All patients received implants and prostheses
F female, M male

Fig. 3 Cast of alveolar ridge. Before (a) and after (b) augmentation illustrating amount of bone reconstructed. Arrows indicate the width of the alveolar ridge
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Discussion
Successful augmentation of alveolar bone was observed
in all study participants in this clinical trial of a novel
protocol using bone marrow-derived MSCs. The site se-
lected for bone augmentation was the posterior man-
dibular ridge. This is one of the most challenging sites
for reconstruction, because of the relatively limited
blood supply [52, 53], nonsterile environment [54], and
oral functions such as chewing, speaking, and swallow-
ing, which interfere with the stability of the graft.
Despite these obstacles and the use of granules as scaf-
folding, we succeeded in inducing the formation of
significant new bone and increasing the volume of the
alveolar ridge.
Horizontal bone augmentation of the alveolar ridge is

considered to be predictable, whereas vertical augmenta-
tion is not [55, 56]. Major drawbacks in relation to the
bone graft treatment are donor side morbidity, limited
amount of bone to be harvested, and unpredictable re-
sorption of the graft [7, 57–62]. Using the stem cell/bio-
material approach in the present trial promoted both
horizontal and vertical augmentation [56]. The donor site
morbidity reported by the patients was minimal. The nov-
elty of this approach was related to the development of an
appropriate protocol to produce clinical-grade cells that

could be used successfully for bone regeneration. The
MSCs were expanded using no osteogenic factors,
and no osteogenic factors were used in the clinical
procedure [63–65], as growth factors may have differ-
ent effects on different tissue [66] and also increase
the cost of producing the cells.
In preclinical studies, MSCs were expanded and pro-

duced by the manufacturing center according to the
protocol used in this clinical trial. Cells were shipped
within 24 h and applied fresh in different animal models
to demonstrate the formation of new bone in combin-
ation with the BCP biomaterial [39, 67]: the biomaterial
alone fails to bridge bone defects in critical size calvarial
defects in nude mice while full bridging was achieved
with MSC/BCP combinations [39]. However, formation
of bone seems to be dependent on a critical number of
cells or a critical cell-to-biomaterial ratio. The number
of cells and the cell-to-biomaterial BCP ratio used in this
clinical study were adapted from the preclinical findings,
where 20 × 106 MSCs were mixed with 1 cm3 BCP [39].
We believe that the intrinsic capacity of MSCs to form
bone makes the trial reproducible and safer, because the
cells were not manipulated. However, a positive effect on
osteogenic “predifferentiation” of MSCs using PL as a
supplement during the isolation and expansion phases

Fig. 4 CBCT measurements. Overlapping of bone outline contours of superimposed models at T0 (before grafting, green) (a) and T1 (6 months
after grafting, red) (b), achieved and viewed in axial (c), sagittal (d), and coronal (e) images of ridge before and after reconstruction
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cannot be excluded, although this has been a some-
what controversial topic [68, 69]. In this clinical
trial, PL was produced from up to 80 individual do-
nors: as shown in a recent study, this minimizes var-
iations in the content of growth factors, chemokines,

and cytokines [44] and ensures stable conditions for
the ex-vivo expansion of MSCs.
Two of the patients had insufficient cell expansion in

vitro, perhaps due to the variable content of MSCs
(CFU-F) in bone marrow aspirates from different

Table 4 Mean values for each analyzed variable in relation to microstructural properties of the biopsies

Patient TV (mm3) BV (mm3) BV/TV (%) Th.Tb (mm) Tb.Sp (mm) SMI DA FD

1 5.187 1.2 23.131 0.023 0.131 0.542 1.153 2.63

2 5.436 0.961 17.677 0.046 0.251 0.277 1.29 2.485

3 4.717 0.495 10.501 0.004 0.359 0.742 1.367 2.256

4 5.333 0.963 18.055 0.039 0.288 0.354 1.256 2.467

5 5.358 0.791 14.762 0.033 0.279 0.529 1.107 2.422

7 4.933 0.741 15.022 0.031 0.239 0.215 1.410 2.46

8 5.546 0.881 15.891 0.045 0.255 0.812 1.549 2.46

9 4.413 0.568 12.867 0.032 0.25 0.437 1.333 2.390

11 5.064 1.106 21.844 0.051 0.180 0.740 1.144 2.542

12 5.488 0.567 10.317 0.037 0.246 0.609 1.333 2.433

In Patient 13, the biopsy disintegrated during transport and could not be measured. However, all dental implants have osseointegrated and are still in successful
clinical function
TV tissue volume, BV bone volume, BV/TV bone volumetric fraction, Tb.Sp trabecular separation, Th.Tb Trabercular thickness, SMI structural model index, DA degree
of anisotropy, FD fractal dimension

Fig. 5 μ-CT and histological analyses. A μ-CT images of biopsies from Patients 1–10. B Histology of core biopsies from patients. Note abundant
lamellar bone with entrapped osteocytes in extracellular matrix at high magnification around remaining BCP particles (*). a, c Hematoxylin and
eosin staining, b, d Masson trichrome staining. Magnification ×1.25 and ×10
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individuals [65]. This variability may be a limiting step in
the procedure, but may be overcome by increasing the
number of cells harvested or by developing methods for
identifying the relevant cells prior to initiating culture.
There are few published papers on mandibular and

maxillary defect reconstruction using bone marrow or
adipose-derived stem cells [33, 70–77], many of which
are case reports [70, 74, 75, 77]. The published studies
vary in cell source, defect site, scaffold material, cell
number, use of growth factors, and membrane or hard-
ware [33, 70, 74–79]. However, the present data gener-
ated by treating 11 cases differ from these earlier reports
as no growth factor or stimulants were used on the cells
prior to implantation. Furthermore, the posterior man-
dibular region (i.e., distal to the canine) in all patients
was selected as an inclusion criterion, as the bone heal-
ing is dependent on the location of the defected bone.
Although the membrane was the determinant of aug-
mentation volume, it complicated the surgical procedure
and postoperative healing procedure. The high-density
membrane is microporous, impervious to bacteria while
still allowing diffusion of gases and small molecules, but
probably inhibits vascularization from the periosteum,
limiting the blood supply to the graft. The granules that
remained outside the compartment made by the mem-
brane did not induce bone formation, indicating the im-
portance of using an appropriate membrane. Further
supporting the importance of the membrane in bone
formation, a study by Meijer et al. [76] using no mem-
brane and grafts of bone marrow MSCs grown for 7 days
in osteogenic medium and loaded with ceramic bone
substitutes did not succeed in inducing bone formation.
In a randomized, controlled trial reported recently,

osseous defects generated after tooth extraction were

treated successfully with bone marrow-derived cells
loaded on gelatin sponge. They showed accelerated heal-
ing after 6 weeks, but no significant difference after
12 weeks compared to no cells applied to the defect
[33]. However, it is well known that extraction sockets
heal without intervention [58, 80].
In the present study, the volumetric measurement on

CBCT images was a visual protocol for assessing the
outcome of grafting. The volumetric changes to the bone
were achieved at T0 and T1. The objective measurement
on CBCT images was performed to confirm the clinic-
ally observed volumetric changes in the graft [81–83].
This methodology has also been used in follow-up after
grafting procedures in alveolar cleft patients [84–86].
Further, the biopsy specimens taken 4–6 months after
augmentation showed significant new bone formation,
with abundant blood supply and without inflammatory
cells. The BCP scaffold was still visible in the histological
samples as the reported resorption time is up to 2 years
[38]. The scaffold material provides the extracellular
microenvironment for support and stimulation of the
cells, and also acts as the delivery system for the cells
[18]. Although no direct evidence is provided relative to
the source of the cells that produced the regenerated tis-
sue (i.e., labeling of the cells), the assumption can be
made that the transplanted cells at least partly contrib-
uted to bone regeneration, because the bone core speci-
men was taken from the central region of the defect and
graft site.
Normally, there is a gradual resorption of keratinized

mucosa simultaneously with bone resorption and this re-
sorbed keratinized mucosa is known to not regenerate
[87, 88]. The presence of keratinized mucosa of at least
1–2 mm around an implant is beneficial in decreasing

Fig. 6 Ostell measurements. Implant installation (T0), at loading (T1), and at 18 months follow-up (T2). Data presented as mean ± SD showing
increased implant stability after loading
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plaque accumulation, tissue inflammation, and attach-
ment loss [87, 89]. In our patients, an unexpected bene-
fit of the augmentation procedure was an increase in the
width of keratinized mucosa (Fig. 2d, g). It therefore ap-
pears that the cells used to regenerate bone also have a
positive effect on neighboring soft tissues and contribute
to wound healing, even when covered by a membrane.
MSCs have demonstrated a beneficial effect on wound
healing [90, 91]. This observation warrants further inves-
tigation. However, MSCs have demonstrated a beneficial
effect on wound healing, which appears to be mediated
by paracrine signaling [91]. The role of paracrine factors
produced by stem cells in tissue regeneration and heal-
ing has been investigated and reports showed that angio-
genesis and osteogenesis were promoted in response to
the paracrine effect of stem cells [65, 90]. This paracrine
effect is exerted through cytokines and chemokines such
as insulin-like growth factor (IGF)-1, vascular endothe-
lial growth factor (VEGF), and transforming growth
factor (TGF)-β1. These growth factors were found to en-
hance cell proliferation, mobilization, angiogenesis, and
expression of osteogenic markers such as alkaline phos-
phatase, collagen type I, and Runx2 genes [92]. Further-
more, these factors recruit endogenous stem cells to the
grafted site [90, 92].
Because of the small cohort and follow-up time (now

up to 3 years), the promising results of this study should
be interpreted with caution. In order to validate this
treatment protocol for application in a standard clinical
setting, further study is warranted, with a larger study
cohort and a longer follow-up period. Nevertheless, the
results of this study are promising and could lead to the
development of new strategies for regenerative medicine
and therapeutic interventions, and thus have a direct
and positive impact on large groups of patients.

Conclusions
The results of this novel clinical study in human subjects
show that clinical reconstruction of the alveolar ridge
using autologous MSCs and BCP is feasible, safe, and
predictable. All sites were successfully augmented; all
dental implants osseointegrated and were restored with
screw-retained dental crowns as planned. Hence, this
novel augmentation procedure warrants further investi-
gation and may form the basis of a valid treatment
protocol, challenging the current gold standard.
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