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Notation

; the empty set
w.r.t with respect to
a.s. almost surely
a.e. almost everywhere with respect to the Lebesgue measure
i.i.d. independent and indentically distributed
� unspecified set
#A the number of elements of a set A
:= defined as
d
= equal in distribution
d→ convergence in distribution

Dom domain
Ran range
R the set of real numbers
R the extended set of real numbers R

⋃

{−∞,+∞}
t time.
T transpose
Aû the complement of the set A
C the set of complex numbers
|c| absolute value of c or, if c is complex, the modulus of c
z̄ The conjugate of the complex number z
× Cartesian product
Rd the d-dimensional space R×R× . . .×R

︸ ︷︷ ︸

d times
B(Rd) the Borel σ-algebra of Rd ,

i.e. the σ-algebra generated by the open sets of Rd

m(B) the Lebesgue measure of a set B.
m(dx) is written d x

⊗n
1A j product σ-algebra of the σ-algebrasA1 . . .An.

Rd
d-dimensional space R×R× . . .×R

︸ ︷︷ ︸

d times
card cardinality
〈a,b〉 scalar product of vectors a and b
0 (0,0, . . . , 0) generalized origo vector
bP Fourier transformation of the probability distribution P
f +(x) max(0, f (x))
f −(x) −min(0, f (x))

5



f (x)∼ g(x) limx→a
f (x)
g(x)

= 1 for some limit point a ∈ R.

In this thesis a will be∞ unless otherwise specified.

f (x) = O(g(x)) limx→a
| f (x)|
|g(x)|

<∞ for some limit point a ∈ R.

f (x) = o(g(x)) limx→a
| f (x)|
|g(x)|

= 0 for some limit point a ∈ R.

1A(x) indicator function:
= 1 if x ∈ A
= 0 otherwise

h ∈Rγ h is a regular varying function with index γ.
Cn Class of all functions whose partial derivatives of order ≤ n

all exist and are continuous.
sign(x) sign of x , i.e. +1 if x ≥ 0, −1 if x < 0.

C( f ) points where f is continuous
sup supremum, the least upper bound
inf infemum, the greatest lower bound
limx↓a g(x) limit of g(x), letting x decrease towards a
limx↑a g(x) limit of g(x), letting x increase towards a
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1
Introduction

1.1 Topics covered in the thesis

This thesis discusses Lévy processes and Lévy copulas. In connection with
Lévy processes we treat some of the theory behind infinitely divisible distributions,
acknowledging that the two classes are equivalent. Within the class of Lévy processes
we will mostly look at stable processes and compound Poisson processes.

1.1.1 Lévy processes

Origin of Lévy processes

The theory of Lévy processes dates back to the late 1920’s, after de Finetti first
introduced the class of infinitely divisible distributions. In 1934 those distributions
were shown by Paul Lévy to have characteristic functions of the form given by the
Lévy-Khintchine formula. Since then Lévy processes have become popular tools for
modelling in finance, insurance and physics.

1.1.2 Lévy copulas

Copulas are functions that can be regarded as (a) functions that join or “couple” a
multidimensional distribution to its one-dimensional margins or (b) as multivariate
distributions whose one-dimensional margins are uniform on the interval (0,1).
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In Tankov (2003b) Peter Tankov introduced Lévy copulas to model the dependen-
cies between components of a multidimensional spectrally positive Lévy process.
Lévy copulas for more general Lévy processes are discussed in
Cont and Tankov (2004). Lévy copulas have many similarities with other copula
functions, but have the domain [0,∞]d for d = 2,3, . . . rather than [0,1]d .

1.1.3 Stable processes

In this thesis we implement an algorithm given on page 202 in Cont and Tankov
(2004) for simulation of a two-dimensional Lévy process whose components are
stable processes with stable distributions. Stable distributions are characterized by:

• Having the stability property (see definition 3.3.2 on page 27).

• The fact that a distribution has a domain of attraction (defined in defini-
tion 2.1.6 on page 13) if and only if it is stable.

• Having infinite variance (except for the Gaussian distribution).

• Having an index α ∈ (0,2]. Thix index will be explained in section 3.3.2 on
page 27.

Stable processes are stochastic processes whose increments obey a stable dis-
tribution. For a stable process the stability property translates into the concept of
self-similarity (defined in definition 4.2.1 on page 39).

1.2 Compound Poisson processes

A favoured approach in insurance is to model a risk process as a compound Poisson
process, with positive jumps representing the insurance claims. Classical ruin theory
is based on the assumption that all the claims are independent and identically
distributed. The assumption of all claims being independent is dropped in Bregman
and Klüppelberg (2005). Discussed there are two dependent compound Poisson
processes X t and Yt with positive jumps and whose dependence is described by a
Clayton Lévy copula. The sum X t + Yt is identified as a compound Poisson process
with new Poisson intensity and claim distribution.

Several new ruin probability formulas are given in Bregman and Klüppelberg
(2005). In this thesis we will estimate the parameters for one of these formulas
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using the multivariate Danish fire insurance claims dataset provided by Alexander
McNeil and available from
http://www.ma.hw.ac.uk/~mcneil/data.html.

1.3 Applications of Lévy processes

1.3.1 Lévy processes in finance

As described in the introduction of Schoutens (2003), modelling financial mar-
kets with stochastic processes began in 1900 with Bachelier (1900). He modelled
the prices of stocks listed at the Paris Bourse as a Brownian motion. Also known
as a Wiener-process, Brownian motion is a stochastic process with independent,
stationary increments that obey a Gaussian distribution. 65 years later another,
more appropriate model was suggested in Samuelson (1965), where the logarithms
of the stock prices were modelled as a Wiener process. This model is known as
geometric Brownian motion. In Black and Scholes (1973) it was demonstrated how
to price European options based on the geometric Brownian model. This stock-price
model has been widely acclaimed and is now known as the Black-Scholes model. As
pointed out in chapter 1 in Cont and Tankov (2004) there are, however, a number
of flaws with the Black-Scholes model. Some of the most serious are the following:

• Continuity:
Brownian motion is inherently continuous, while compelling empirical evi-
dence has made it clear that the trajectories of log-prices have a large number
of discontinuities.

• Scale invariance:
The statistical properties of Brownian motion are the same at all time res-
olutions. On page 2 in Cont and Tankov (2004), the path of the log-price
of SLM1in the period 1993-1997 is compared with the path of a simulated
Brownian motion. While the Brownian path looks the same over a one-month
period as over three years or three months, the price behavior over this period
is clearly dominated by a large downward jump, which accounts for half of
the monthly return. On an intra-day scale the price moves essentially through
jumps, while the Brownian model retains the same continuous behavior as
over long horizons. As noted on page 4 in Cont and Tankov (2004), “Assuming
that prices move in a continuous manner amounts to neglecting the abrupt
movements in which most of the risk is concentrated.”

• Light tails:
High variability is a constantly observed feature of financial asset returns.
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The empirical distribution of returns decays slowly at infinity and very large
moves have a significant probability of occuring. As an example, six-standard
deviation market moves are commonly observed in all markets. As noted by
Cont and Tankov, the Gaussian distribution, in the other hand, is a light-tailed
distributiion, and in a Gaussian model a daily return of such magnitude occurs
on average less than once in a million years.

Many Lévy process models allow both discontinuities and heavy tails and have
therefore been suggested by several authors as candidates for option pricing models
(see chapter 4 in Cont and Tankov (2004)).

1.3.2 Applications of stable processes in physics

While stable process models remain controversial in finance (for two discussions on
the matter see section 7.3 in Cont and Tankov (2004) and section 17.7 in Uchaikin
and Zolotarev (1999)), they are routinely applied in several branches of physics.
Common textbook examples where “the basic physical mechanism inexorably leads
to a description in terms of an α-stable law with a particular α”
(Woyczyńscki (2001)) include the following (see Woyczyńscki (2001) ) :

Example 1.3.1: The first hitting time for the Brownian particle

Consider a Brownian particle moving in R whose trajectory X t , t ≥ 0, starts
at X0 = 0. The first time, Tb > 0, it hits the barrier located at x = b > 0 is a
random variable that can be defined by the formula

Tb = inf
�

t ≥ 0 : X t = b
	

.

It is shown in Woyczyńscki (2001) that Tb obeys the Lévy distribution defined
in equation 3.20 on page 33. This Lévy distribution is a stable distribution with
index α= 1/2.

2 The SLM corporation is listed at the New York Stock Exchange and is a member of Standard &
Poor’s S&P 500 index.
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Example 1.3.2: Particles emitted from a point source

Consider a source located at the point
�

0,η
�

in the R2 plane, emitting parti-
cles into the right half-space with random directions (angles), Θ, uniformly
distributed on the interval [−π/2,π/2]. The particles are detected by a flat
panel device represented by the vertical line x = τ at the distance τ from
the source. In Woyczyńscki (2001) the probability distribution function of the
random variable representing the position Y of particles on the detecting device
is shown to obey a one-dimensional Cauchy distribution, defined in equation 3.3
on page 24. Cauchy distributions of any dimension are stable distributions with
index α= 1.

Example 1.3.3: Stars, uniformly distributed in space

Consider a model of the universe in which the stars with masses M1 ≥ 0, i =
1,2, . . . located at positions Xi ∈ R3, i = 1,2, . . . , interact via the Newtonian
gravitational potential, exerting force

Gi = gMi
Xi
�

�Xi

�

�

3 ∈ R
3, i = 1,2, . . . ,

on a unit mass located at the origin (0, 0, 0). Here g is the universal gravita-
tional constant. Make the assumptions that

• The locations Xi , i = 1,2, . . . form a Poisson point process in R3 with
density ρ.

• The masses Mi , i = 1,2, . . . are i.i.d. variables.

Let GR be the total gravitational force on a unit mass located at the origin,
exerted by stars located inside a ball BR, centered at (0,0,0) and of radius R,
that is

GR =
∑

i:|X i |≤R

Gi

It is then shown in Woyczyńscki (2001) that the limit limR→∞GR obeys a
three-dimensional, spherically symmetric stable distribution with index
3
2
. In astrophysics this distribution is known as the Holtsmark distribution.

More examples of applications of stable distributions/stable processes are found
in chapter 10-17 in Uchaikin and Zolotarev (1999).
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2
Basic definitions and results

This chapter is a collection of definitions and results, mostly taken from chapters 1
and 2 in Sato (1999) and included here to be used as a reference.

2.1 Probability measure

Definition 2.1.1: Probability space

Let Ω be a set, F a σ-algebra of subsets in Ω, and P a measure on F . The
triplet (Ω,F ,P) is then called a measure space. If P(Ω) = 1 then (Ω,F ,P) is
called a probability space.

Given a probability space (Ω,F ,P), any set A ∈ F is called an event, and P[A]
is called the probability of the event A. The σ-algebra generated by the open sets
in Rd is called the Borel σ-algebra. A real valued function f (x) on Rd is called
measurable1 if it isB(Rd)-measurable. We shall say that F is a probability measure
on Rd if F is a probability measure on (Rd ,B(Rd)).

1

Let Ω and Θ be two abstract spaces ,M be a σ-algebra on Ω and N be a σ-algebra on Θ. A
function f : Ω→Θ is called measurable if for any set E ∈ N the set

�

ω : f (ω) ∈ E
	

is included
in the σ-algebraM .
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Definition 2.1.2: Random variable

Let (Ω,F ,P) be a probability space. A mapping X from Ω into Rd is called an
Rd -valued random variable (or random variable on Rd) if X is F -measurable.

Let B ∈B
�

Rd
�

. We write P (ω : X (ω) ∈ B) as P (X ∈ B). As a mapping of B this
is a probability measure onB(Rd), which we denote by PX and call the distribution
(or law) of X .

In general, probability measures onB(Rd) are called distributions on Rd . If two
random variables X , Y on Rd (not necessarily on the same probability space) have

an identical distribution, i.e. PX = PY , we write X
d
= Y .

Definition 2.1.3: Weak convergence

Let Fn and F be probability measures on Rd . The sequence {Fn} converges
weakly to F if

¦∫

Rd f (x)Fn(dx)
©

converges to
∫

Rd f (x)F(dx) for every function
f which is real-valued, continuous and bounded on Rd .

Definition 2.1.4: Convergence in distribution

Let
¦

�

Xn
�

n≥1

©

be a sequence of Rd -valued random variables. We say {Xn}

converges in distribution to X if P{Xn} converges weakly to PX . We write Xn
d→ X .

Definition 2.1.5: Random walk

Let {Zn : n = 1, 2, . . . , } be a sequence of independent and identically distributed
Rd -valued random varibles. Let S0 = 0, Sn =

∑n
j=1 Z j for n = 1,2, . . .. Then

{Sn : n= 0,1, . . . } is a random walk on Rd .

Definition 2.1.6: Domain of attraction
Let Sn be a random walk and F be the common distribution. Then F is said

to belong to the domain of attraction of a probability measure R if there are
constants bn > 0 and constant vectors cn such that the series {bnSn + cn}
converges to R in distribution.

A random variable X on the probability space (Ω,F ,P) is said to have a property A
almost surely (abbreviated a.s.) if there is a measurable set Ω0 ∈ F with P[Ω0] = 1
such that, for every element ω ∈ Ω0, X (ω) has the property A.

13



If X = c a.s., where c is constant vector in a euclidean space, we say that the
distribution of X is trivial.

If X is a real-valued random variable and if
�

�

�

∫

Ω
X (ω)PX (dω)

�

�

� < ∞ , then the

integral is called the expectation of x and is denoted by E [X ] or EX . If in addition
X is a random variable on Rd , and f (x) is a bounded measurable function

on Rd , then

E[ f (X )] =
∫

Rd

f (x)PX (dx).

Definition 2.1.7: Independence

Let X j be an Rd j -valued random variable for j = 1, . . . , n. The family
{X1, . . . , Xn} is independent if, for every set B j ∈B(Rd j ), j = 1, . . . , n,

P
�

X1 ∈ B1, . . . , Xn ∈ Bn
�

= P
�

X1 ∈ B1
�

P
�

X2 ∈ B2
�

. . .P
�

Xn ∈ Bn
�

.

We say that X1, . . . , Xn are independent if the family {X1, . . . , Xn} is independent.
An infinite family of random variables is independent, if every finite subfamily of it
is independent.

Definition 2.1.8: Convolution

The convolution F of two distributions F1 and F2 on Rd , denoted by F = F1 ∗ F2,
is a distribution defined by

F(B) :=

∫ ∫

Rd×Rd

1B(x+ y)F1(dx)F2(dy). (2.1)

2.2 Probability density

2.2.1 Probability density

It can be shown (see chapter 1 in Sato (1999)) that if X1 and X2 are independent
random variables on Rd with distributions F1 and F2 respectively, then X1+ X2 has
the distribution F1 ∗ F2.

Definition 2.2.1: Probability density

A probability measure P on (Rn,B(Rn)) is said to have a probability density
(or just density) f if f is a non-negative measurable function on Rn such that
P(A) =

∫

A
f (x)dx 2 for all A∈B(Rn).
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If a probability measure on (Rn,B(Rn)) has a density, then this density is
uniquely determined up to a null-set, as stated in the following theorem:

Theorem 2.2.2

A non-negative Borel-measurable function f is the density of a probability
measure on (Rn,B(Rn)) if and only if it satisfies

∫

Rn f (x)dx = 1. In this case f
entirely determines the probability measure. That is, for any other non-negative
Borel measurable function f ′, if mn( f 6= f ′) = 0 then f ′ is also a density for the
same probability measure.
Conversely, a probability measure on (Rn,B(Rn)) determines its density
(when a density exists) up to a set of Lebesgue measure zero. That is, if f and
f ′ are two densities for this probability, then mn( f 6= f ′) = 0.

A proof is found in chapter 12 in Jacod and Protter (2004).

We shall sometimes denote as a random vector X =
�

X1, . . . , Xd
�T , where X ∈

Rd and each Xk, k = 1, . . . , d, is a R-valued random variable. We shall say that
PX, i.e. the distribution of X, is the joint distribution of (X1, . . . , Xd)T . Conversely,
PX1

, . . . ,PXd
will be referred to as the marginal probability distributions of PX.

Two families of random vectors {Xt} and {Ys} are said to be independent if,
for any choice of t1, . . . , tn and s1, . . . , sm, the random vectors (X t j

) j=1,...,n and
(Ysk
)k=1,...,m are independent.

2The Lebesgue measure m on (R,B(R)
⋃

{all subsets of nullsets})measures an interval as its length.
The Lebesgue measure mn is the completion of the n-fold product of m with itself on

⊗n
j=1B(R),

i.e. mn(A1 × ...× An) =
∏n

j=1 m(A j) for A j ∈ B(R).Since R is a separable space (see proposition
1.5 in Folland (1999)) we have that

⊗n
j=1B(R) =B(R

n) .
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Theorem 2.2.3

Let X= (Y, Z) be a random vector on R2 with a density f . Then

(a) Both the components Y and Z have densities on (R,B(R)), given by:

fY (y) =

∫

R
f (y, z)dz; fZ(z) =

∫

R
f (y, z)dy.

(b) Y and Z are independent if and only if

f (y, z) = fY (y) fZ(z)

for all (y, z) ∈ R2 \ E, where E is an m2-null set.

This theorem can be generalized to Rn, n= 3,4, . . . (see chapter 12 in
Jacod and Protter (2004)).

2.3 Stochastic process

2.3.1 Stochastic process on a euclidean space

Definition 2.3.1: Stochastic process

A family {X t : t ≥ 0} of probability distributions on Rd with parameter t ∈
[0,∞), defined on a common probability space, is called a stochastic process. It
is written as {X t}.

It can be shown (see chapter 1 in Sato (1999)) that, for any fixed
{0≤ t1 < t2 < tn},

P
�

X t1
∈ B1, . . . , X tn

∈ Bn

�

determines a probability measure onB((Rd)n). The family of probability measures
over all choices of n and t1, . . . , tn is called the system of finite-dimensional distribu-
tions of {X t}.
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Definition 2.3.2: Cylinder set and Kolmogorov σ-algebra

Let Ω = (Rd)[0,∞). Let ω be the collection of all functions ω = (ω(t))t∈[0,∞)
from [0,∞) into Rd . Define X t by X t(ω) =ω(t). A set

C = {ω : X t1
(ω) ∈ B1, X t2

(ω) ∈ B2, . . . , X tn
(ω) ∈ Bn}

for 0≤ t1 < · · ·< tn and B1, . . . , Bn ∈B(Rd) is called a cylinder set.
Let F be the σ-algebra generated by the cylinder sets. Then F is called the

Kolmogorov σ-algebra.

The following theorem by Kolmogorov ensures that a suitable “consistent” system
of finite-dimensional distributions will define a stochastic process.

Theorem 2.3.3: Kolmogorov’s extension theorem

Suppose that, for any choice of n and 0≤ t1 < · · ·< tn, a distribution Ft1,...,tn

is given. Suppose further that, if B1, . . . , Bn ∈B(Rd) and Bk = Rd , then

Ft1,...,tn

�

B1× ...× Bn
�

= Ft1,...,tk−1,tk+1,...tn
(B1× · · · × Bk−1× Bk+1 · · · × Bn).

Then there exists a unique probability measure P on F that has
¦

Ft1,...,tn

©

as its system of finite-dimensional distributions.
The theorem is stated on page 4 in Sato (1999). A proof can be found on page
489 in Billingsley (1986).

A stochastic process {Yt : t ≥ 0} on the probability space (Ω,F , P) is called a
modification of the stochastic process {X t : t ≥ 0} on the same probability space, if
P(X t = Yt) = 1 for t ∈ [0,∞).
Two stochastic processes {X t} and {Yt} are identical in law, written as

{X t}
d
= {Yt},

if the systems of their finite-dimensional distributions are identical. Considered as a
function of t, X (t,ω) is called a sample function, or sample path, of {X t}.

2.3.2 Càdlàg processes

When we get to chapter 4 we shall see that stochastic continuity and the càdlàg
property are two of the defining properties of a Lévy process. In this section we
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define these concepts and introduce a measure for the discontinuities (jumps) of
càdlàg processes (stochastic processes with the càdlàg property).

Definition 2.3.4: Stochastic continuity

A stochastic process {Xt : t ≥ 0} on a probability space (Rd ,F ,P) is said to be
stochastically continuous if, for every t ≥ 0 and every ε > 0,

lim
s→t
P(|Xs −Xt | ≥ ε) = 0. (2.2)

‘

Definition 2.3.5: Càdlàg

Let Xt be a stochastic process on the probability space (Rd ,F ,P). We say that
Xt has the càdlàg property if there exists Ω0 ∈ F with P(Ω0) = 1 such that, for
every ω ∈ Ω0, X t(ω) is right-continuous in t ≥ 0 and has left limits in
t > 0.

Definition 2.3.6: Jump times of a càdlàg process

Let X be a stochastic process with the càdlàg, property. For a given time t we
shall denote the left limit lims↑t Xs, by Xt− and the difference Xt −Xt− by ∆Xt .
For a given time interval (a, b) we shall call the set

�

t ∈ (a, b) :∆Xt 6= 0
	

the
jump times of {Xt : t ≥ 0} in (a, b).

For a càdlàg process {X t : t ≥ 0} on Rd we introduce a measure JX. For every
Borel measurable set A∈ Rd , JX([t1, t2]× A) counts the number of jump times of
Xt between t1 and t2 with jump sizes in A.

2.4 Characteristic functions

The principal analytical tool in this thesis is the Fourier transform, which in the
statistical community is known under the name characteristic function.

Definition 2.4.1: Characteristic function

The characteristic function of a probability measure F on Rd is defined as

bF(u) :=

∫

Rd

ei〈u,x〉F(dx).
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Definition 2.4.2

The characteristic function of the distribution PX of a random variable X on
Rd is defined as

bPX(u) :=

∫

Rd

ei〈u,x〉PX(dx) = E
�

ei〈u,X〉
�

. (2.3)

It follows immediately from definition 2.4.2 that if X is a random vector on Rd , a
is a real constant and b ∈ Rd is a constant vector, then

bPaX+b(u) = ei〈u,b〉
bPX(au). (2.4)

Theorem 2.4.3

The following theorem sums up some of the most important properties of
characteristic functions.
Let F and F1, F2, . . . , Fn be distributions on Rd .

(i) (Bochner’s theorem) Then bF(0) = 1 and |bF(u)| ≤ 1. Also bF(u) is uniformly
continuous nonnegative-definite in the sense that, for each n= 1,2, . . . ,

n
∑

j=1

n
∑

k=1

bF(u j − uk)z j z̄k ≥ 0 for all u1, . . .un ∈ Rd , z1, . . . zn ∈ C.

Conversely, if a complex-valued function ϕ(u) on Rd with ϕ(0) = 1 is
continuous at u= 0 and is nonnegative-definite, then ϕ(u) is the charac-
teristic function of a distribution on Rd .

(ii) IfcF1(u) =cF2(u) for all u ∈ Rd then F1 = F2.

(iii) If F = F1 ∗ F2, then bF(u) =cF1(u)cF2(u) for all u ∈ Rd .
If X1 and X2 are independent random vectors on Rd then

bPX1+X2
(u) = bPX1

(u)bPX2
(u) for all u ∈ Rd . (2.5)
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(iv) Let X= (X j , . . . ,Xn) be an Rnd -valued random vector, where
X1, . . . ,Xn are Rd -valued random vectors. Then X1, . . . ,Xn are independent
if and only if

bPX(u) = bPX1
(u1) . . .bPXn

(un) for all u= (u1, . . . ,un),

where u j ∈ Rd for j = 1, . . . , n.

(v) Let n be a positive integer. If F has a finite absolute moment of order n,
that is if

∫

|x|nF(dx)<∞, then bF(u) is a function of class Cn (continuous
n-th derivative) and, for any nonnegative integers n1, n2, . . . nd satisfying
n1+ · · ·+ nd ≤ n,

∫

xn1
1 . . . xnd

d F(dx) =

�

�

1

i

∂

∂ u1

�n1

...

�

1

i

∂

∂ ud

�nd

bF(u)

�

u=0

.

(vi) Let n be a positive even integer. If bF(u) is of class Cn in a neighborhood
of the origin, then F has finite absolute moment of order n.

(vii) (Inversion formula) Let −∞ < a j < b j < ∞ for j = 1, . . . , d and B =
[a1, b1]× ...× [ad , bd]. If B is an F -continuity set, 3then

F(B) = lim
c→∞
(2π)−d

∫

[−c,c]d
bF(u)

∫

B

e−i〈u,x〉 dxdu

(viii) If
∫ �

�
bF
�

�du < ∞, then F is absolutely continuous 4with respect to the
Lebesgue measure and has a bounded continuous density f (x), where

f (x) = (2π)−d

∫

Rd

e−i〈u,x〉
bF(u)du.

Proof: On page 10 in Sato (1999) there is a reference to where proofs can
be found.

3 We define the boundary of a set B ∈ Rd as the difference between the smallest closed set in Rd

containing B and the biggest open set in Rd contained in B. We say that B is a F -continuity set if
the boundary of B has F -measure 0.

4 Let P and Q be two finite measures on (Ω,F ). We say that Q is absolutely continuous with respect
to P if, for any A∈ F , P(A) = 0 implies Q(A) = 0.
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When F is a distribution on [0,∞), the Laplace transform of F is defined by

LF (u) =

∫

[0,∞)
e−ux F(dx) for u≥ 0. (2.6)

Proposition 2.4.4

Let F, F1, and F2 be distributions on [0,∞).

(i) If LF1
(u) = LF2

(u) for all u≥ 0, then F1 = F2.

(ii) If F = F1 ∗ F2, then LF (u) = LF1
(u)LF2

(u).

Proof: For a proof see proposition 2.6 in Sato (1999).

Lemma 2.4.5

Suppose that φ(u) is a continuous function from Rd into C such that φ(0) = 1
and φ(u) 6= 0 for any u ∈ Rd . Then there is a unique continuous function f (u)
from Rd into C such that f (0) = 0 and e f (u) = φ(u). Also for any positive
integer n there is a unique continuous function gn(u) from Rd into C such that
gn(0) = 1 and

�

gn(u)
�n = φ(u). f and gn have the relation gn(u) = e f (u)/n.

Proof: For a proof see lemma 7.6 in Sato (1999).

We write f (u) = logφ(u) and gn(u) = [φ(u)]1/n. We call f and gn the distin-
guished logarithm and the distinguished nth root of φ, respectively. For all
r ≥ 0, [φ(u)]r = er f (u). We call er f (u) the distinguished rth power of φ. If

�

bFu
�r

is
the characteristic function of a probability measure, then we denote this probability
measure by F r .
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3
Infinitely divisible distributions

3.1 Definitions and basic examples

This chapter discusses a class of probability distributions known as infinitely divisible
distributions. We begin by presenting some general results about all distributions in
this class before we go on to discuss a sub-class known as α-stable distributions.

Definition 3.1.1

A probability measure F onB(Rd) is infinitely divisible if for any integer n≥ 2
there exist n i.i.d. non-trivial random variables Y(n)1 , . . .Y(n)n such that

Y(n)1 + · · ·+ Y(n)n has the distribution F .

Let us now consider an alternative definition of infinitely divisible distributions.
The following is shown in Cont and Tankov (2004) and uses the fact that the
distribution of sums of i.i.d. variables is given by the convolution of the distribution
of the summands. For any n ≥ 2 let Fn be the distribution of each of the above
Y(1)1 , . . . ,Y(n)n . Then the n-th convolution of Fn, namely Fn ∗ ... ∗ Fn n times, is equal
to F .

Therefore an infinitely divisible distribution can also be defined as a distribution
F for which, for any n≥ 2, there exists a probability measure Fn onB

�

Rd
�

such
that F is equal to the n-th convolution of Fn with itself:

F = F (n∗)n .
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Example 3.1.2

For d ≥ 2 let F be the nondegenerate 1Gaussian distribution on Rd with mean
vector µ and covariance matrix Q, where Q is a symmetric non-negative definite,
invertible matrix . Then F has the probability density

(2π)−d(detQ)−1/2e−〈x−µ,Q−1(x−µ)〉/2 (3.1)

for all x ∈ Rd . It can then be shown (see chapter 2 in Sato (1999)) that

bF(u) = exp
�

−
1

2
〈u,Qu〉+ i〈u,µ〉

�

, u ∈ Rd . (3.2)

By choosing Fn to be the Gaussian distribution on Rd with mean vector 1
n
µ

and covariance matrix 1
n
Q, we trivially get that the Gaussian distribution is

infinitely divisible.

The Gaussian distribution owes much of its importance in statistics to its large
domain of attraction, formalized in the Central Limit Theorem below.

Theorem 3.1.3: Central Limit Theorem

Let Sn be a random walk on Rd . Here each i.i.d. step

X j ,=
�

X (1)j , . . . , X (d)j

�T
has

(a) a finite mean vector µ and

(b) a finite covariance matrix Q =
�

qk,l

�

with k, l = 1, . . . , d.

Here qk,l = Cov
�

X (k)j , X (l)j

�

, where X (k)j and X (l)j are the k-th and l-th com-

ponents of the Rd -valued random variable X j . Then

�

Sn− nµ
p

n

�

d→ Z,

where Z is a d-dimensional Gaussian-distributed random vector with mean
vector 0 and covariance matrix Q.

Proof: A proof can be found on page 238 in Breiman (1968).

1A Gaussian distribution is called degenerate if the covariance matrix Q is singular, i.e.
detQ = 0.
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Example 3.1.4
Let F be the d-dimensional Cauchy distribution with parameters

γ ∈ Rd and c > 0. That is, let F have the density

Γ((d + 1)/2)π−(d+1)/2
�

(|x− γ|2) + c2
�−(d+1)/2

for x ∈ Rd . (3.3)

It can be shown (see page 11 in Sato (1999)) that the Cauchy distribution
has the characteristic function

bF(u) = e−c|u|+i〈γ,u〉. (3.4)

Let Fn be the d-dimensional Cauchy distribution with parameters
1
n
γ ∈ Rd and 1

n
c > 0. We then see that

�

cFn(u)
�n
= bF(u), so the Cauchy

distribution is infinitely divisible.

Example 3.1.5

A trivial example of a function that is not infinitely divisible is the uniform
distribution on (a, b), whose characteristic function is

eiub − eiua

iu
. (3.5)

3.2 The Lévy-Khintchine representation

3.2.1 The formula

The most useful analytical tool for studying infinitely divisible distributions is the
characteristic function. This is in large part due to a theorem that says that the
characteristic function of every infinitely divisible distribution is of a closed form
specified by the Lévy-Khintchine representation.

Theorem 3.2.1

Let D = {x : |x| ≤ 1}.
If F is an infinitely divisible distribution on Rd , then there exist Q,ν and γ

such that
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bF(u) = exp[− 1

2
〈u,Qu〉+ i〈γ,u〉

+

∫

Rd

�

ei〈u,x〉− 1− i〈u,x〉1D(x)
�

ν (dx)]. (3.6)

Here Q is a symmetric nonnegative-definite d × d matrix, ν is
on Rd \ {0} with

∫

min(1, |x|2)ν(dx)<∞ and γ a vector in Rd .

The three parameters Q, ν and γ are unique.

Proof: A proof of the one-dimensional case is found on page 192-194 in
Breiman (1968).

The triplet (Q,ν ,γ) is called the generating triplet of the infinitely divisible ran-
dom variable X .

If ν(B) = 0 for any Borel set B and γ= 0, then the Lévy-Khintchine representa-
tion gives the characteristic function of a centered d-variate
Gaussian distribution with covariance matrix Q (or the variance Q if d = 1). We
shall therefore refer to the parameter Q as the Gaussian coefficient. We shall refer to
ν as the Lévy measure.

3.2.2 Drift and center

As shown in Remark 8.4 in Sato (1999) , if
∫

|x|≤1
|x|ν(dx)<∞, then equation 3.6

can be written as

bF(u) = exp

�

−
1

2
〈u,Qu〉+ i〈γ0,u〉+

∫

Rd

�

ei〈u,x〉− 1
�

ν (dx)

�

.

where
γ0 ∈ Rd is defined as

γ0 := γ−
∫

Rd

x1|x|≤1ν(dx). (3.7)

For reasons that will become clear in section 4.2.2 we shall then call γ0 the drift
of P.

Similarly, if
∫

|x|>1
|x|ν(dx)<∞
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then equation 3.6 on the preceding page can be written as

bF(u) = exp

�

−
1

2
〈u,Qu〉+ i〈γ1,u〉+

∫

Rd

�

ei〈u,x〉− 1− i〈u,x〉
�

ν(dx)

�

, (3.8)

where γ1 ∈ Rd is defined as

γ1 := γ+

∫

Rd

x1|x|>1ν(dx). (3.9)

Let F j , with j ∈ 1, . . . , d, denote the marginal distributions on R of F .
It can then be shown (see Example 25.12 in Sato (1999)) that the condition

∫

|x|>1
|x| ν(dx) < ∞ is equivalent to

∫

Rd |x|F(dx) < ∞, and that for each j ∈

1, . . . , d the component γ( j)1 of γ1 is the expectation value of F j . We shall call γ1 the
center of F .

3.3 Stable distributions

In this section we will look at a family of infinitely divisible distributions known
as stable distributions, defined in chapter 2 in Samorodnitsky and Taqqu (1994) as
follows:

3.3.1 Stability and infinite divisibility

Definition 3.3.1

A random vector X on Rd is said to have a stable distribution if, for every a > 0
and every b > 0, there exist a positive number c and a vector d ∈ Rd such that

aX(1)+ bX(2)
d
= cX+ d, (3.10)

where X(1) and X(2) are any i.i.d. random vectors independent of X, but with
the same distribution as X.

If, for any a > 0 and any b > 0, equation 3.10 holds with d = 0, then X is
said to be strictly stable.
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X is called symmetric stable if it is stable and

F{X ∈ A}= F{−X ∈ A} (3.11)

for any Borel set A of Rd , where F is the distribution of X.

An alternative and equivalent definition of a stable distribution is the following
(see page 69 in Sato (1999)):

Definition 3.3.2

Let F be an infinitely divisible probability measure on B
�

Rd
�

. F is called
stable if, for any a > 0, there exist b > 0 and c ∈ Rd such that

[bF(u)]a = bF(bu)ei〈c,u〉. (3.12)

It is called strictly stable if, for any a > 0, there exists b > 0 such that

[bF(u)]a = bF(bu). (3.13)

F is called symmetric stable if F is stable, and for any Borel set B of Rd ,
F {−x : x ∈ B}= F {x : x ∈ B}.

Stable distributions are also characterized by the fact that a distribution posseses
a domain of attraction (see definition 2.1.6 on page 13) if and only if it is stable
(see theorem 1 XVII.5 in Feller (1971).

3.3.2 Index of stability

As stated in the theorem below, any linear combination of the components of a
stable distribution is stable.

Theorem 3.3.3

Let X = (X1, . . . , Xn)T be a non-trivial and stable (respectively, strictly stable,
symmetric stable) random vector in Rd . Then there is a constant α ∈ (0, 2] such
that, in equation 3.10 on the preceding page,
c = (aα+ bα)1/α. Moreover, any linear combination of the components of X of
the type

∑d
k=1 bkXk is a stable (respectively, strictly stable, symmetric stable)

random variable. A proof can be found on page 58 in
Samorodnitsky and Taqqu (1994).

As a corollary of theorem 1 in chapter VI.I in Feller (1971) and theorem 3.3.3
above we have the following:
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Corollary 3.3.4

Let X be a non-trivial random vector and X(1),X(2), . . . ,X(n) be any i.i.d random
vectors independent of X, but with the same distribution as X.

Then X is stable if and only if there exists an α ∈ (0,2] such that, for any
n≥ 2, there exists a displacement vector dn such that

X(1)+X(2)+ · · ·+X(n)
d
= n1/αX+ dn. (3.14)

The index α is called the index of stability, and a stable distribution with index of
stability α is called an α-stable distribution.

Similarly, theorem 13.11 and theorem 13.15 in Sato (1999) give that in equa-
tion 3.12 on the previous page

b = a
1
α . (3.15)

The α in equation 3.15 is the same as in equation 3.14.

Example 3.3.5: Gaussian distribution (revisited)

It follows from equation 3.2 on page 23 and equation 2.4 on page 19 that if
X is a d-dimensional centered and Gaussian distributed random vector ( mean
vector 0) with covariance matrix Q, and if X(1), . . . ,X(n) are n independent
copies of X (n a positive integer), then

bPX(1)+···+X(n)(u)

=E
�

ei〈u,X(1)+···+X(n)〉
�

=
�

E
�

ei〈u,X〉
��n

=
�

exp
1

2
〈u,Qu〉

�n

= exp
1

2

�

〈n1/2u, n1/2Qu〉
�

= bPX(n
1/2u) = bPn1/2X(u).

Since two distributions are equal when their characteristic functions are equal
we have that

X(1)+ · · ·+X(n)
d
= n1/2X.
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Therefore a centered Gaussian distribution is a strictly stable distribution
with index 2.

Now let us consider the general Gaussian distribution. Let Y(k) := X(k) +
µ where µ ∈ Rd . From the above the general Gaussian distribution can be
expressed as follows:

Y(1)+ · · ·+ Y(n)
d
= X(1)+ · · ·+X(n)+ nµ

d
= n1/2X+ nµ.

Therefore a general Gaussian distribution with mean µ is stable with index
α= 2 and displacement vector dn = nµ.

The following argument shows that all non-trivial stable distributions with
finite covariace matrices are Gaussian: Suppose that X is a stable random vector
with a finite covariance matrix V 6= 0. From the above (a) the sum of n ≥ 2
independent copies of X has a finite covariance matrix nV 6= 0 and
(b) n1/αX has the finite covariance matrix n2/αV 6= 0. Because of the stability
property of X we must have nV = n2/αV , which implies α = 2. It follows that a
non-deterministic stable random vector with finite covariance must have index
2. Because of the central limit theorem (theorem 3.1.3 on page 23) X must
be Gaussian distributed.Thus the Gaussian distribution is the only non-trivial
stable distribution with finite covariance matrix. On page 77 in Sato (1999) it
is also proven that if a stable distribution has index 2 then it is Gaussian.

Example 3.3.6: Cauchy distribution (revisited)

From equation 3.4 on page 24 it follows that if X is a Cauchy distributed
random vector and X(1), . . . ,X(n) are independent copies of X, then

bPX(1)+···+X(n)(u)

= E
�

ei〈u,X(1)+···+X(n)〉
�

=
�

E
�

ei〈u,X〉
��n

=
�

e−c|u|+i〈γ,u〉
�n

= e−c|nu|+i〈γ,nu〉

= bPX(nu).

Combined with equation 2.4 on page 19 and item ii on page 19 we have that

X(1)+ · · ·+X(n)
d
= nX.
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Thus the Cauchy distribution is a stable distribution with index 1.

In the remaining discussion of stable distributions we shall assume that the random
variables involved are all non-trivial.

3.3.3 Stable linear combinations, unstable joint distribution

The converse of theorem 3.3.3 on page 27 is not true. There exist random vectors
that are not stable although any linear combination of their components is stable. An
example of such an non-stable random vector is given in chapter 2 in Samorodnitsky
and Taqqu (1994).

If some additional conditions are satisfied, however, stability of a random vector
can be inferred.

Theorem 3.3.7: Conditions for joint stability

(a) If all linear combinations Y =
∑d

k=1 bkX (k) have strictly stable distributions,
then X is a strictly stable random vector in Rd .

(b) If all linear combinations are symmetric stable, then X is a symmetric stable
random vector in Rd .

(c) If all linear combinations are stable with index of stability greater than or
equal to one, then X is a stable random vector in Rd .

(d) If all linear combinations are stable and X is infinitely divisible then X is
stable.

Proof: Proofs of the assertions above except the last one can be found on
page 59 in Samorodnitsky and Taqqu (1994). A reference to a proof of
item d is listed on page 65 in Samorodnitsky and Taqqu (1994).
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3.4 Characteristic function of a stable distribution

In this section we state some results for the characteristic function of an α-stable
random vector.

In addition to the Lévy-Khintchine -representation, another popular representa-
tion of the characteristic function of an α-stable distribution is by means of a finite
measure on a unit sphere Sd ∈ Rd . This representation stems from the following
theorem:

Theorem 3.4.1: Characteristic function of a stable distribution

F is an α-stable distribution on Rd with 0< α < 2 if and only if there exists a
finite non-zero measure Γ on Rd and a vector τ in Rd such that

(i) If α 6= 1

bF (u) = exp



−
∫

Sd

|〈u, s〉|α
�

1− i tan
πα

2
sign(〈u, s〉)

�

Γ(ds) + i〈u,τ〉



 .

(3.16)

If X is α-stable with α 6= 1 then X is strictly α-stable if and only if τ = 0.

(ii) If α= 1 then

bF (u) = exp



−
∫

Sd

|〈u, s〉|
�

1+ i
2

π
(〈u, s〉) ln |〈u, s〉|

�

Γ(ds) + i〈u,τ〉



 .

(3.17)

If F is 1-stable then F is strictly 1-stable if and only if
∫

Sd

skΓ(ds) = 0 for k = 1,2, . . . , d.

For both cases the following hold: (a) The measure Γ and the vector τ above
are unique. (b) F is a symmetric α-stable distribution on Rd if and only if Γ is a
symmetric measure, i.e. Γ(B) = Γ(−B) for all B ∈B(Rd), and τ = 0.
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Proof: This is a combination of theorem 2.3.1,theorem 2.4.1 and 2.4.3 in
Samorodnitsky and Taqqu (1994).

3.4.1 Simplified Lévy measure

Theorem 3.4.2

A probability measure F on Rd is α-stable with 0 < α < 2 if and only if it
is infinitely divisible with generating triplet (0,ν ,γ) and there exists a finite
measure λ on Sd , a unit sphere of Rd , such that

ν(B) =

∫

Sd

λ(dξ)

∫ ∞

0

1B(rξ)
dr

r1+α . (3.18)

Further, if α = 1, then F is strictly 1-stable if and only if either F is 1-stable,
ν 6= 0, and the measure λ in equation 3.18 satisfies

∫

Sd

ξλdξ= 0,

or Q = 0,ν = 0, and γ 6= 0.

Proof: For a proof of the first assertion in this theorem see page 78 in Sato
(1999). For a proof of the second (involving α= 1) see Remark 14.6 and
theorem 14.7 in Sato (1999).

In the one-dimensional case Sd = {−1, 1}, so equation 3.18 reduces to (see page
80 in Sato (1999))

ν(x) =
A

xα+1 1x>0+
B

|x |α+1 1x<0, (3.19)

where A and B are positive constants.

3.4.2 Probability densities of stable distributions

Before going on to Lévy processes in the next chapter, we remark the following. Ex-
cept for the Gaussian distribution and the Cauchy distribution there is unfortunately
only one known case where the probability density of a stable distribution can be
expressed analytically. That case is the Lévy distribution S 1

2

�

0,1,µ
�

(see chapter

3 in Cont and Tankov (2004)) which has index 1
2

and the following probability
density:

32



� σ

2π

�1/2 1

(x −µ)3/2
exp
�

−
σ

2(x −µ)

�

1x>µ. (3.20)

Furthermore it can be shown that the Lévy distribution above has the Lévy
measure ν(x) = σ

2
p
π

1
x3/2 1x>0.
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4
Lévy processes

4.1 Basic properties and one example

Definition 4.1.1

A stochastic process {Xt , t ≥ 0} on the probability space (Rd ,F ,P)
is a Lévy process if the following conditions are satisfied:

• For any choice of n≥ 1 and 0≤ to ≤ t1 · · · ≤ tn

the random vectors Xt0
,Xt1
−Xt0

, . . . ,Xtn
−Xtn−1

are independent
(independent increments property).

• X0 = 0 a.s.

• The distribution of Xs+t −Xs does not depend on s (stationary increments
property)

• Xt is stochastically continuous.
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• There exists Ω0 ∈ F with P(Ω0) = 1 such that, for every ω ∈ Ω0, X t(ω)
is right-continuous in t ≥ 0 and has left limits in
t > 0. (The “càdlàg” property.)

In the following the σ-algebra F will be onB(Rd) (the Borel sets in Rd).

4.1.1 Lévy processes are infinitely divisible

Looking at an arbitrary Lévy process (X,P) and using the decomposition

X1 = X1/n+ (X2/n−X1/n) · · ·+ (Xn/n−Xn−1/n),

we see that the distribution P(X1 ∈ �) is infinitely divisible. A similar decomposition
can be done (see Bertoin (1996)) to show that, for any rational number t ≥ 0, the
probability measure P(Xt ∈ �) is infinitely divisible as well, and

bPXt
(u) = E

�

ei〈u,Xt 〉
�

=
�

E
�

ei〈u,X1〉
��t
=
�

bPX1
(u)
�t

, where u ∈ Rd . (4.1)

4.1.2 Infinitely divisible distributions viewed as Lévy processes

Example 4.1.2
Poisson process:

Let c > 0. The Poisson distribution with mean c is defined by the probability
measure

F ({k}) =
ck

k!
e−c for k ∈ 0,1, 2, . . . ,

where F(B) = 0 for any B not containing a non-negative integer.
We have that

bF(u) = exp
¦

c(eiu− 1)
©

, where u ∈ R,

so the Poisson distribution is obviously infinitely divisible.

Definition 4.1.3

A stochastic process {X t : t ≥ 0} on R is a Poisson process if it is a Lévy
process and, for t > 0, X t has Poisson distribution with mean c t.

The sample paths of a Poisson process are characterized by the following
theorem (see page 308 in Breiman (1968)).
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Theorem 4.1.4

A stochastic process {X t : t ≥ 0} with stationary, independent increments
has a modification with all sample paths constant except for upward jumps
of length one if and only if there is a parameter c ≥ 0 such that bPX t

(u) =
exp
¦

c(eiu− 1)
©

for all u ∈ R.

From equation 4.1 on the preceding page and theorem 2.4.3 on page 19 we
have that such a stochastic process is a Poisson process.

In the proof of theorem 4.1.4 Breiman also shows that the waiting times
between the jumps of a Poisson process are exponentially distributed with
parameter c, i.e. are gamma distributed with parameters 1 and c.

Definition 4.1.5

A distribution F on Rd is compound Poisson if, for some c > 0 and for some
distribution ρ on Rd with ρ{0}= 0,

bF(u) = exp
�

c(bρ(u)− 1)
	

for all u ∈ Rd .

Here bρ(u) is the characteristic function of ρ.

Definition 4.1.6

Let c > 0 and let ρ be a distribution on Rd with ρ ({0}) = 0. A stochastic
process {Xt : t ≥ 0} on Rd is a compound Poisson process associated with c
and ρ if it is a Lévy processes and, for t > 0, the characteristic function of
the law of Xt has the following form:

bPXt
(u) = exp

�

tc(bρ (u)− 1)
�

for all u ∈ Rd . (4.2)

Here c and ρ are uniquely determined by Xt .
Any compound Poisson process can be constructed from a Poisson process

and a random walk in the following way:
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Theorem 4.1.7

Let {Nt : t ≥ 0} be a Poisson process with parameter c > 0 and let
�

Sn : n ∈ 0,1, . . . ,
	

be a random walk on Rd with a common probabil-
ity space (Ω,F , P). Assume that

�

Nt
	

and that
�

Sn
	

are independent and
P[S1 = 0] = 0. Define

Xt(ω) = SNt (ω)(ω).

Then {Xt : t ≥ 0} is a compound Poisson process satisfying equation 4.2
on the preceding page, with ρ being the distribution of S1.

Proof: A proof can be found on page 18 in Sato (1999)

Compound Poisson distributions play a special role in the theory of infinitely
divisible distributions, in part because of the following theorem:

Theorem 4.1.8

Every infinitely divisible distribution is the limit of a sequence of compound
Poisson distributions.

Proof: For a proof see corollary 8.8 in Sato (1999).

Because of theorem 4.1.8 it is always possible to approach a given infinitely
divisible law using a sequence of compound Poisson distributions. Using this idea it
is shown in Bertoin (1996) that every infinitely divisible distribution can be viewed
as the distribution of a Lévy process evaluated at t = 1. This result, combined with
the above decomposition of Lévy processes, implies that the classes of infinitely
divisible distributions and Lévy processes are equivalent.

Theorem 4.1.9: Infinitely divisible distributions as Lévy processes

Let there be given the following: γ ∈ Rd , a positive nonnegative-definite d-
dimensional matrix Q , and a measure ν on Rd \ {0} such that
∫ �

min(1, |x|2)
�

ν(dx)<∞.
For every u ∈ Rd let

φ(u) = i〈γ, u〉 −
1

2
〈u,Qu〉+

∫

Rd

�

ei〈u,x〉− 1− i〈u,x〉1|x|≤1

�

ν(dx) (4.3)

and let bP(u) = etφ(u).
Then there exists a a unique probability measure P on Rd under which the

stochastic process Xt is a Lévy process with characteristic function bP(u). For a
proof see page 13 in Bertoin (1996).
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The function φ(u) is called the characteristic exponent of Xt .
In the context of Lévy processes we have (see chapter 3 in Cont and Tankov

(2004)) that, for a measurable set A∈ Rd , the Lévy measure ν(A) can be interpreted
as the expected number, per unit time, of jumps whose size belongs to the set A.
I.e.,

ν(A) = E
�

#
�

t ∈ [0,1] :∆Xt ∈ A
	�

.

4.1.3 Vector space property

We refer to the following result from page 65 in Sato (1999). It shows that a linear
transformation of a Lévy process is again a Lévy process.

Proposition 4.1.10

Let Xt be a Lévy process on Rd with generating triplet (Q,ν ,γ) and let U be
an n× d matrix. Then Yt = UXt is a Lévy process on Rd . Its generating triplet
�

QY,νY,γY
�

is given as follows:

QY = UQU T (4.4)

νY = [ν U−1]Rd\{0} (4.5)

γY = Uγ+

∫

Uy
�

1E(Uy)− 1D(y)
�

ν(dx), (4.6)

where
�

ν U−1
�

(B) = ν ({x : Ux ∈ B}), for any B ∈B(Rd),
D =

¦

x ∈ Rd : |x| ≤ 1
©

, and E =
¦

y ∈ Rd : |y| ≤ 1
©

.

4.2 Subclasses of Lévy processes

In this section we will take a closer look at stable Lévy processes and Lévy processes
of finite variation.

4.2.1 Stable processes

We shall say that a Lévy process Xt is a stable, strictly stable or symmetric stable
process if the distribution of Xt at t = 1 is respectively stable, strictly stable or
symmetric stable.

If X is a symmetric stable process it follows from equation 3.11 on page 27 that

{Xt : t ≥ 0} d
= {−Xt : t ≥ 0}.

38



Definition 4.2.1

Let {Xt : t ≥ 0} be a stochastic process on Rd . It is called self-similar if , for any
a > 0, there exists a b > 0 such that

{Xat}
d
= {bXt}. (4.7)

Xt is called broad-sense similar if for any a > 0 there exist b > 0 and a
function c(t) from [0,∞) to Rd such that

Xat
d
= bXt + c(t). (4.8)

The following reasoning shows that this self-similar property is shared by all
strictly stable stochastic processes.

From definition 3.3.2 on page 27 and equation 3.15 on page 28 it follows that if
Xt is a strictly α-stable process, then for any constant a > 0,

�

bPXt
(u)
�a
= bPXt

(a1/αu). (4.9)

From equation 4.9 , equation 4.1 on page 35 and equation 2.4 on page 19 it
follows that for any k, t > 0

bPk−1/αXkt
(u)

= bPXkt
(k−1/αu)

=
�

bPXt
(k−1/αu)

�k

= bPXt
(k−1/αuk1/α)

= bPXt
(u).

From the uniqueness item ii on page 19 it follows that Xkt has the same law as
Xt , i.e. Xt is a self-similar stochastic process.

A similar calculation with a stable process using equation 2.4 on page 19 shows
that stable processes possess the broad-sense similar property. The converse is also
true, as stated in the following proposition.

Proposition 4.2.2

A Lévy-process on Rd is self-similar or broad-sense similar if it is respectively
strictly stable or stable.

39



Proof: A proof is given on page 71 in Sato (1999).

The following theorem further elucidates the relation between stable and strictly
stable processes:

Theorem 4.2.3

(i) If {Xt : t ≥ 0} is α-stable with 0 < α < 1 or 1 < α ≤ 2, then for some
k ∈ Rd , {Xt − tk} is strictly α-stable.

(ii) If {Xt : t ≥ 0} is 1-stable, then for any choice of a function k(t), {Xt−k(t)}
is not strictly 1-stable.

Proof: A proof can be found on page 82 in Sato (1999).

Due to theorem theorem 4.2.3 we shall henceforth refer to α-stable processes
with α 6= 1 which are not strictly stable processes, as α-stable processes with drift.
In particular we shall call a strictly 2-stable process a Wiener process and a 2-stable
process that is not strictly stable a Wiener process with drift.

4.2.2 Path properties of Lévy processes

A function f : [0,∞)→ Rd is said to be piecewise constant if there exist 0 = t0 <

t1 < · · ·< tn =∞ or 0= t0 < t1 < · · ·< lim j→∞ t j =∞, such that f (t) is constant
on each interval [t j−1, t j).

We say that a Lévy process is a zero process if it has the value 0 with probability
one for every t ≥ 0.

For Lévy processes with piecewise constant trajectories we have the following
result:

Theorem 4.2.4

A Lévy process has piecewise constant trajectories a.s. if and only if it is a
compound Poisson process or a zero process. A proof can be found on page 136
in Sato (1999).

Given a function f : R→ Rd we define the total variation function T f ([a, b]) of
f on [a, b] as

T f ([a, b]) := sup

(

n
∑

1

| f (t j)− f (t j−1)| : n ∈ 1,2, . . . , a = t0 < · · ·< tn = b

)

.
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We say that f is of finite variation on [a, b] if T f ([a, b])<∞.
We say that a Lévy process is of finite variation if, as functions of t, its trajectory

is a.s. of finite variation on every compact interval.
For Lévy processes of finite variation the following can be showed to be true:

Proposition 4.2.5

A Lévy process is of finite variation if and only if its Gaussian coefficient Q = 0
and

∫

Rd (min(1, |x|))ν(dx)<∞.

As a corollary of proposition 4.2.5 we have the so-called Lévy-Itô decomposition.
In the case of finite variation the Lévy-Khintchine formula (equation 4.3 on page 37)
can be simplified as stated below.

Corollary 4.2.6

Let Xt be a Lévy process of finite variation with its generating triplet given by
(0,ν ,γ) and let JX have the same definition as in definition 2.3.6 on page 18.
Then Xt can be expressed as a linear drift term plus the sum of its jumps
between 0 and t:

Xt = γ0 t +

∫

[0,t]×Rd

xJX(ds× dx) = γ0 t +
∑

s∈[0,t]

∆Xs,

where γ0 is the drift defined in equation 3.7 on page 25 as

γ0 := γ−
∫

Rd

x1|x|≤1ν(dx). (4.10)

The characteristic function of Xt can be expressed as:

E
�

ei〈u,Xt 〉
�

= exp t

¨

i〈γ0,u〉+
∫

Rd

(ei〈u,x〉− 1)ν(dx)

«

. (4.11)

A proof of proposition 4.2.5 and corrolary 4.2.6 can be found on the pages 86-87
in Cont and Tankov (2004).

A Lévy process {Xt : t ≥ 0} is called a compound Poisson process if X1 (the
distribution of Xt at t = 1) is compound Poisson distributed.

It can be shown (see page 16 in Bertoin (1996)) that a Lévy process with finite
variation is a compound Poisson process if and only if its drift coefficient γ0γ0γ0 is zero
and its Lévy measure ν is a finite measure.
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4.3 Subordination

For a one-dimensional Lévy process X t we have the following equivalences :

Proposition 4.3.1

(i) X t ≥ 0 a.s. for some t > 0.

(ii) X t ≥ 0 a.s. for every t > 0.

(iii) X t is nondecreasing a.s. as a function of t.

(iv) The generating triplet of X t satisfies Q = 0,ν((−∞, 0]) = 0,
∫∞

0
min(x ,1)ν(d x) < ∞ and γ0 ≥ 0, where γ0 is the drift defined in

equation 4.10 on the previous page.

(A proof can be found on page 88 in Cont and Tankov (2004).)

A Lévy process that satisfies one of the equivalent conditions above is called a
subordinator.

Since a subordinator St is a non-negative random variable for all t it is convenient
to describe St using the Laplace transform rather than the Fourier transform. If St

has the generating triplet
�

Q,ν ,γ0
�

then its moment generating function E
�

euSt
�

for u is of the form

E
�

euSt
�

= et l(u) for all u≤ 0, where l(u) = γ0u+

∫ ∞

0

(eux − 1)ν(dx). (4.12)

We shall call l(u) the Laplace exponent of S.
A subordinator can be used to build a new Lévy process by “time-changing”

another. Subordination or “time-changing” a Lévy process with a subordinator is a
powerful technique which is very popular in financial modelling (see section 4.4
in Cont and Tankov (2004)). As shown in the theorem below the subordinated
stochastic process YX t

is again a Lévy process.

Theorem 4.3.2

Subordination of a Lévy processes:
Given a probability space (Ω,F ,P). Let (Xt)t≥0 be a Lévy process on Rd with
characteristic exponent φ (see equation 4.3 on page 37) and triplet (Q,ν ,γ).
Let (St)t≥0 be a subordinator with Laplace exponent l(u) and triplet (0,ρ,γ0).
Then the process (Yt)t≥0 defined for each ω ∈ Ω by Y(t,ω) = X(S(t,ω),ω) is
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a Lévy process. Its characteristic function is

E
�

ei〈u,Yt 〉
�

= et l(φ(u)). (4.13)

In the above the characteristic exponent of Yt is obtained by composition
of the Laplace exponent of St with the characteristic exponent of Xt . The
generating triplet (QY,νY,γY) is then given by the following:

QY = γ0Q,

νY(B) = γ0ν(B) +

∫ ∞

0

pX
s (B)ρ(ds), for allB(Rd),

γY = γ0γ+

∫ ∞

0

ρ(ds)

∫

|x|≤1

xpX
s (dx),

where pX
t is the probability distribution of Xt .

A proof can be found on the pages 108-109 in Cont and Tankov (2004).
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5
Modeling the dependence structure of

multivariate Lévy processes

As described in the introduction of Nelsen (1998), from one point of view, “copulas
are functions that join or couple multivariate distributions to their one-dimensional
marginal distribution functions. Alternatively, copulas are multivariate distribution
functions whose one-dimensional margins are uniform on the interval (0, 1).” They
are ”of interest to statisticians for two main reasons. Firstly, as a way of studying
scale-free measures of dependence; and secondly, as a starting point for constructing
families of bivariate distribution, sometimes with a view to simulation,” (pages
1-2 in Nelsen (1998)). Moreover, copulas have grown in popularity in recent years
since copulas can handle various non-linear as well as linear forms of dependency
between random variables.

In section 5.1 on the next page we first give a description of the notion of copulas.
In section 5.2 on page 49 we explain how Lévy copulas extend the notion of copulas
to Lévy processes by linking different Lévy measures together. This is analogous to
the way that copulas link probability measures.

In the rest of the chapter we develop the theory of Lévy copulas, first for Lévy
processes with positive jumps (section 5.3 on page 51) and finally for general
Lévy processes (section 5.4 on page 55). We will apply this theory to implement
a simulation algorithm of a stable process in chapter 6 and to estimate a ruin
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probability in chapter 7. Below 1 is a graphical depiction of some of the concepts
involved.

Figure 5.1: Graphical illustration of relation between copulas and Lévy copulas.

5.1 Copulas

5.1.1 About the notation

In this chapter we will follow the notation suggested by Cont and Tankov in Cont
and Tankov (2004). We therefore start by giving definitions of d-boxes, quasi-
inverse, pseudo-inverse, increasing function, F-volume, d-increasing functions, and
margins.

We write the set of non-negative real numbers as R+.
We let the symbol R := R

⋃

{−∞,∞} denote the extended set of real numbers.

We let [a,b ] denote a closed d-box of Rd
:

[a,b ] := [a1, b1]× . . .×[ad , bd]

such that ak < bk for all k = 1,2, . . . , d.
The vertices of a d-box are the points c1,c2, . . . ,c j , . . . ,c2d where each c j has d

vector components. Each vector component is equal to either ak or bk for some
k ∈ 1, . . . , d.

1Figure 5.1 is taken from Packham (2006).
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Definition 5.1.1

A one-dimensional abstract distribution function is a function F with domain R
such that

(1) F is non-decreasing and

(2) F(−∞) = 0 and F(∞) = 1.

Definition 5.1.2

Let F be a a one-dimensional abstract distribution function. Then a quasi-inverse
of F is any function F (−1) with domain [0,1] such that

(1) If u ∈ Ran F , then F (−1)(u) is any number x in R such that F(x) = u.

(2) If u is not in Ran F , then

F (−1)(u) = inf{x : F(x)≥ u}= sup{x : F(x)≤ u}.

We define the pseudo-inverse as follows:

Definition 5.1.3

Let φ : [0,1]→ [0,∞] be a continuous, strictly decreasing function such that
φ(1) = 0. The pseudo-inverse of φ is the function φ[−1] with Domφ[−1] =
[0,∞] and Ranφ[−1] = [0, 1] given by

φ[−1](u) =

(

φ−1(u), 0≤ u≤ φ(0),
0, φ(0)< u≤∞.

(5.1)

Note that φ[−1] is continuous and nonincreasing on [0,∞], and strictly
decreasing on [0,φ(0)]. If φ(0) =∞, then φ[−1] = φ−1.

Definition 5.1.4: F -volume

Let S1 . . . Sn be nonempty subsets of of R. Let F be a real-valued function of
n variables such that Dom F = S1× . . .×Sn for every n-box B = [a,b ] whose
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vertices are in Dom F . Then the F-volume is defined by

VF (B) :=
∑

j=12n

sign(c j)F(c j). (5.2)

Here the sum is taken over all vertices c1, . . .c2n of B, and sign(ck) is as
follows:

sign(c j) :=

(

1 if c(k)j = ak for an even number of k’s

−1 otherwise.

In the 2-dimensional case the F -volume of
a rectangle B = [x1, x2]× [y1, y2]⊂ S1× S2, reduces to

VF (B) = F(x2, y2)− F(x2, y1)− F(x1, y2) + F(x1, y1). (5.3)

Definition 5.1.5: n-increasing function, grounded function and margins

• A real-valued function F of n variables is called
n-increasing if VF (B)≥ 0 for all n-boxes whose vertices lie in Dom F .

• Suppose that the domain of F is S1×· · ·×Sn, where each Sk has a smallest
element ak. Consider the set of vertices c for the n-box defined by Dom F .
Let W be the subset of these vertices where, for at least one value of k, a
vector component ck takes its value from the corresponding least value ak

of the interval Sk. If, for all the vertices in W , F(c) = 0, then the function
F is said to be grounded.

• If each Sk is nonempty and has a greatest element bk, then
(one-dimensional) abstract margins of F are functions Fk with
Dom Fk = Sk, defined by Fk(x) = F(b1, . . . , bk−1, x , bk+1, . . . , bn) for all x
in Sk.
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Definition 5.1.6

An n-dimensional copula is a function C : [0,1]→ [0,1] such that

(1) C is grounded and n-increasing, and

(2) for all k = 1,2, . . . , n, C has abstract margins Ck, which satisfy Ck(u) = u
for all u ∈ [0,1].

We now introduce an n-dimensional abstract distribution function.

Definition 5.1.7

An n-dimensional abstract distribution function is a function
F : Rd → [0,1] which is grounded, n-increasing and satisfies
F(∞,∞, . . . ,∞) = 1.

Theorem 5.1.8: Sklar’s theorem

Let F be a n-dimensional abstract distribution function with margins
F1, . . . , Fn. Then there exists an n-dimensional copula C such that for all x ∈ Rn,

F(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)). (5.4)

If F1, . . . , Fn are all continuous then C is unique. Otherwise C is uniquely de-
termined on Ran F1×· · ·×Ran Fn. Conversely, if C is an n-copula and F1, . . . , Fn

are one-dimensional abstract distribution functions, then the function F defined
by equation 5.4 is a n-dimensional abstract distribution function with abstract
margins F1, . . . , Fn.

Proof: A proof of the two-dimensional case is found on page 18 in Nelsen
(1998). A reference to a proof of the general n-dimensional case is given
on page 41 in Nelsen (1998).

The class of Archimedean 2-copulas is constructed by means of the following
theorem:

Theorem 5.1.9

Let φ : [0,1]→ [0,∞] be a continuous, strictly decreasing function such that
φ(1) = 0, and let φ[−1] be the pseudo-inverse of φ defined by
equation 5.1 on page 46. Let the function C : [0,1]× [0,1]→ [0,1] be given
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by

C(u, v) = φ[−1](φ(u) +φ(v)). (5.5)

Then C is a 2-copula if and only if φ is convex.

Proof: A proof can be found on page 91 in Nelsen (1998).

If we take φ(r) =
�

r−θ − 1
�− 1

θ θ we get the Clayton family of copulas,

Cθ (x , y) =
�

x−θ + y−θ − 1
�− 1

θ θ > 0. (5.6)

5.2 Using the Lévy measure to model dependence
structure

Since the law of a Lévy process {Xt : t ≥ 0} is completely determined by the law of
Xs for a fixed time t = r, r > 0, the dependence structure of a two-dimensional
Lévy process (X t , Yt) can be parameterized by the copula Cr of X r and Yr for some
r > 0. In Cont and Tankov (2004) the following drawbacks in this approach are
noted:

• Copulas may be time-dependent.

“The copula Cr may depend on r (an example is given in Tankov (2003a)).
Cs for some s 6= r cannot in general be computed from Cr because Cs also
depends on the marginal distributions at time r and at time s.”

• Copulas are invariant for strictly increasing transformations.

On page 22 in Nelsen (1998) the following theorem is stated and proved:

Theorem 5.2.1
Let X and Y be continuous random variables with copula CX Y .
If α (X ) and β (Y ) are strictly increasing on Ran X and Ran Y
respectively, then Cα(X )β(Y ) = CX Y . Thus CX Y is invariant under
strictly increasing transformations of X and Y .

As noted on page 143 in Cont and Tankov (2004), the property of infinite
divisibility of a random variable is destroyed under strictly increasing trans-
formations . We therefore have that “For given infinitely divisible marginal
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laws PX t and PYt , it is not clear which copulas Ct will yield a two-dimensional
infinitely divisible law.” (page 143 in Cont and Tankov (2004)).

Instead of using copulas, Cont and Tankov want to model dependence between
two Lévy processes X t and Yt in a way that, in their words, “preserves the Lévy
property and reflects the dynamic structure of Lévy processes”.

To clarify this point they provide the example below:

Example 5.2.2: Dynamic complete dependence for Lévy processes

Let X t be a pure jump Lévy process. Let Yt be a Lévy process, constructed from
the jumps of X t : Yt =

∑

s≤t∆X 3
s . From the dynamic point of view X t and Yt are

completely dependent in the following way: The trajectory of one of them can
be reconstructered from the trajectory of the other. However, the copula of X t

and Yt is not that of complete dependence, because Yt is not a deterministic
function of X t .

Cont and Tankov use the above example to argue that the important dependence
concept for Lévy processes is “the dependence of jumps that should be studied using
the Lévy measure”, since “knowledge of the jump dependence (. . . ) allows (one) to
characterize the dynamic structure of a Lévy process (. . . ) which is very important
for risk management and other financial applications”.

We cite two results from Cont and Tankov (2004) that, in their words, “show how
independence of Lévy processes can be expressed in terms of the Lévy measure.”

First, as a consequence of proposition 4.1.10 on page 38, we have that the abstract
margins of a Lévy measure can be computed in the same way as the margins of a
probability measure on Rd , as in the following proposition:

Proposition 5.2.3: Abstract margins of Lévy measure

Let Xt = (X t , Yt) be a two-dimensional Lévy process with generating triplet
(Q,ν ,γ). Then the component X t of Xt has generating triplet
�

QX ,νX ,γX
�

where

QX =Q11

ν(B) = ν(B× (−∞,∞)), for all B ∈B(R)

γX = γ1+

∫

R2

x
�

1x2≤1− 1x2+y2≤1

�

ν(d x × d y).

As a second result, to express that components of Lévy processes are independent,
we have the following:
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Proposition 5.2.4: Independence of Lévy processes

Let (X t , Yt) be a Lévy process with a Lévy measure and without a Gaussian
coefficient (the positive nonnegative-definite matrix Q in
theorem 4.1.9 on page 37). The components of the Lévy process are independent
if and only if the support of its measure ν is contained in the set {(x , y) : x y =
0}. That is, if and only if the components never jump together. With this
restriction

ν(A) = νX (AX ) + νY (AY ),

where AX = {x : (x ,0) ∈ A}, AY = {y : (0, y) ∈ A}, and νX and νY are Lévy
measures of X t and Yt .

Proof: A proof can be found on page 144 in Cont and Tankov (2004).

5.3 Lévy copulas for Lévy processes with positive
jumps

Definition 5.3.1

A d-dimensional abstract tail integral is a function U : [0,∞]d → [0,∞] such
that

(1) (−1)d U is a d-increasing function.

(2) U is equal to zero if one of its arguments is equal to∞,
U is finite everywhere except at zero,
and U(0, . . . , 0) =∞.

The margins of a Lévy measure are defined similarly to the margins of a
distribution function:

U
�

0, . . . , xk, 0 . . . , 0
�

= Uk(xk).
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For every Lévy measure ν on (0,∞]× (0,∞] one can define its tail integral as
follows:

U(x1, x2) = 0 if x1 =∞ or x2 =∞.
(5.7)

U(x1, x2) = ν
��

x1,∞
�

×
�

x2,∞
��

for
�

x1, x2
�

∈ [0,∞)× [0,∞) \ {(0,0)}.
(5.8)

U(0,0) =∞. (5.9)

Now let us consider going the other way. That means using an abstract tail
integral, as defined in definition 5.3.1 on the preceding page, to define a Lévy
measure. We know from theorem 4.1.9 on page 37, that any Lévy measure must
satisfy the following integrability requirement:

∫

[0,1]×[0,1]
|x|2 ν (dx) =

∫

[0,1]×[0,1]
|x|2 ν (dU)<∞. (5.10)

The exact requirements for a two-dimensional tail integral to define a Lévy
measure are specified in the lemma below, taken from chapter 5 in Cont and Tankov
(2004).

Lemma 5.3.2

Let U be a two-dimensional tail integral with margins U1 and U2. U defines
a Lévy measure on [0,∞) × [0,∞) \ (0, 0) (i.e. the integrability condition
equation 5.10 is satisfied) if and only if the following condition is met: The
margins of U correspond to Lévy measures on [0,∞). That is, for k = 1, 2,

∫ 1

0

x2 dUk(x)<∞.

Proof: A proof is on page 147 in Cont and Tankov (2004).

Definition 5.3.3

An n-dimensional positive Lévy copula is an n-increasing grounded function
F : [0,∞]n→ [0,∞], with margins Fk for k = 1, . . . .n, which satisfy Fk(u) = u
for all u ∈ [0,∞].
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The following is the general theorem equivalent to Sklar’s theorem for copulas
(theorem 5.1.8 on page 48):

Theorem 5.3.4

Let U be the tail integral of an n-dimensional Lévy process with positive jumps
and let U1, . . . , Un be the tail integrals of its components. Then there exists an
n-dimensional positive Lévy copula F such that, for all vectors (x1, . . . , xn) in
Rn
+,

U(x1, x2, . . . , xn) = F(U1(x1), . . . , Un(xn)).

If the U1, . . . Un are continuous then F is unique, otherwise it is unique on
Ran U1× · · · ×Ran Un.
Conversely, if F is an n-dimensional positive Lévy copula and U1, . . . , Un are tail
integrals on (0,∞), then the function U defined above is the tail integral of an
n-dimensional Lévy process with positive jumps having marginal tail integrals
U1, . . . , Un.

Proof: A proof of the two-dimensional case is found on page 148 in
Cont and Tankov (2004). A general guideline on how to prove the n-
dimensional case is given on page 155 in Cont and Tankov (2004).

Proposition 5.3.5

Let C be a 2-copula (not a Lévy copula). Let f (x) be an increasing convex
function from [0,1] to [0,∞]. Then

F(x , y) = f (C( f −1(x), f −1(y)))

defines a two-dimensional positive Lévy copula.

Proof: A proof of the above result is given on page 153 in Cont and Tankov
(2004).

Proposition 5.3.6

Let φ be a strictly decreasing function from [0,∞] to [0,∞] such that φ(0) =
∞ and φ(∞) = 0. Let the quasi-inverse φ(−1) have derivatives up to the order

n on (0,∞) with alternating signs. That is (−1)k dkφ(−1)(r)
drk > 0. Then

F(x1, . . . , xn) = φ
(−1)(φ(x1) + . . .φ(xn))

defines an n-dimensional positive Lévy copula.
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Proof: A proof of the two-dimensional case is given on page 153 in Cont and
Tankov (2004).

A general guideline on how to prove the n-dimensional case is given on
page 155 in Cont and Tankov (2004).

For example, with φ(u) = u−θ for θ > 0 we get a family of positive Lévy copulas
of the form

Fθ (u, v) = (u−θ + v−θ )−1/θ . (5.11)

We shall refer to this as the family of positive Clayton Lévy copulas, since it
resembles the Clayton copulas defined in equation 5.6 on page 49. The limiting
case θ → ∞ corresponds to complete dependence and θ → 0 corresponds to
independence.

Positive Lévy copulas also have a probabilistic interpretation, as stated in the
following results from Cont and Tankov (2004):

Lemma 5.3.7

Let F be a two-dimensional positive Lévy copula. Then for almost all x ∈ [0,∞],
the function

Fx(y) =
∂

∂ x
F(x , y)

exists and is continuous for all y ∈ [0,∞]. Moreover, it is a distribution
function of a positive random variable, that is, it is increasing and satisfies
Fx(0) = 0 and Fx(∞) = 1.

Proof: A proof of the above result is given on page 154 in Cont and Tankov
(2004).

Theorem 5.3.8

Let (X t , Yt) be a two-dimensional Lévy process with positive jumps, having
marginal tail integrals U1, U2 and Lévy copula F . Let ∆X t and ∆Yt be the jump
sizes of the two components at time t. Then, if U1 has a non-zero density at x ,
FU1(x) is the distribution function of U2(∆Yt) conditionally on ∆X t = x:

FU1(x)(y) = P
�

U2(∆Yt)≤ y|∆X t = x
	

.

Proof: A reference to a proof is given on page 155 in Cont and Tankov
(2004).
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5.4 Lévy 2-copulas for general Lévy processes

Definition 5.4.1

A function F : R2→ R is called a general Lévy 2-copula if

• F is 2-increasing,

• F(0, x) = F(x , 0) = 0 for all x ,

• F(x ,∞)− F(x ,−∞) = F(∞, x)− F(−∞, x) = x .

An example of a general Lévy 2-copula is given below

Example 5.4.2: General Clayton Lévy 2-copula

Fθ (u, v) =







(|u|−θ + |v|−θ )−1/θ1x y≥0 for θ > 0.

−
�

|u|−θ + |v|−θ
�−1/θ

1x y≤0 for θ < 0.

Here θ →−∞ corresponds to complete negative dependence, θ → 0 corre-
sponds to independence, and θ →∞ corresponds to complete positive depen-
dence.

A tail integral of a general Lévy measure on R is defined as follows:

Definition 5.4.3

Let ν be a Lévy measure on R. The tail integral of ν is a function U : R \ {0} →
[−∞,∞] defined by

U(x) = ν([x ,∞]) for x ∈ (0,∞).
U(x) =−ν((−∞,−x]) for x ∈ (−∞, 0).

U(∞) = U(−∞) = 0.

Having introduced Lévy 2-copulas for general Lévy processes, Cont and Tankov
(on page 157 in Cont and Tankov (2004)) go on to show that sufficiently smooth
general Lévy copulas can be used to construct two-dimensional Lévy densities from
one-dimensional ones.
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Proposition 5.4.4

Let F be a two-dimensional Lévy copula, continuous on [−∞,∞]2, such that
∂ 2F(u, v)
∂ u∂ v

exists on (−∞,∞)2 and let U1 and U2 be one-dimensional tail inte-

grals with densities ν1 and ν2. Then

∂ 2F(u, v)
∂ u∂ v

�

�

�

�

�

u=U1(x),v=U2(y)

ν1(x)ν2(y)

is the Lévy density of a Lévy measure, with marginal Lévy densities ν1 and ν2.

Proof: This result is stated on page 157 in Cont and Tankov (2004).

To construct Lévy copulas with both positive and negative jumps Cont and Tankov
suggest treating each corner of the Lévy measure separately, as in the definition
cited below from Cont and Tankov (2004).

Definition 5.4.5

A method for constructing general tail integrals:

Consider the 1-dimensional case. Let ν be a Lévy measure on R. This measure
has two tail integrals, U+ : [0,∞] → [0,∞] for the positive part and U− :
[−∞, 0]→ [−∞, 0] for the negative part, defined as follows:

U+(x) = ν([x ,∞)) for x ∈ (0,∞), U+(0) =∞, U+(∞) = 0;

U−(x) = ν((−∞, x]) for x ∈ (−∞, 0), U−(0) =−∞, U+(−∞) = 0.

Now consider the 2-dimensional case. Let ν be a Lévy measure on R2 with
marginal tail integrals U+1 , U−1 , U+2 and U−2 . This measure has four tail integrals:
U++, U+−, U−+ and U−−, where each tail integral is defined on its respective
quadrant, including the coordinate axis, as follows:

U++(x , y) = ν([x ,∞)× [y,∞)), if x ∈ (0,∞) and y ∈ (0,∞)
U+−(x , y) =−ν([x ,∞)× (−∞, y]), if x ∈ (0,∞) and y ∈ (−∞, 0)

U−+(x , y) =−ν((−∞, x])× [y,∞)), if x ∈ (−∞, 0) and y ∈ (0,∞)
U−−(x , y) = ν((−∞, x])× (−∞, y]), if x ∈ (−∞, 0) and y ∈ (−∞, 0).
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If x or y is equal to +∞ or −∞, the corresponding tail integral is zero. If x
or y is equal to zero, the tail integrals satisfy the following “margin” conditions:

U++(x , 0)− U+−(x , 0) = U+1 (x)

U−+(x , 0)− U−−(x , 0) = U−1 (x)

U++(0, y)− U−+(0, y) = U+2 (y)

U+−(0, y)− U−−(0, y) = U−2 (y)

With the two-dimensional Lévy measure taken separately for each quadrant, a
theorem analogous to theorem 5.1.8 on page 48 can be stated for general Lévy
measures, as follows:

Theorem 5.4.6

Let ν be a Lévy measure on R2 with marginal tail integrals
U+1 , U−1 , U+2 , and U−2 . Then there exists a Lévy copula F such that
U++, U+−, U−+ and U−− are tail integrals of ν , as follows:

U++(x , y) = F(U+1 (x), U+2 (y)) if x ≥ 0 and y ≥ 0.

U+−(x , y) = F(U+1 (x), U−2 (y)) if x ≥ 0 and y ≤ 0.

U−+(x , y) = F(U−1 (x), U+2 (y)) if x ≤ 0 and y ≥ 0.

U−−(x , y) = F(U−1 (x), U−2 (y)) if x ≤ 0 and y ≤ 0.

If the marginal tail integrals are absolutely continuous 2 and ν does not change
the coordinate axes, the Lévy copula is unique. Conversely, if F is a Lévy copula
and U+1 , U−1 , U+2 , U−2 are tail integrals of one-dimensional Lévy measures, then
the above formulas define a set of tail integrals of a two-dimensional
Lévy measure.

Proof: A proof is given on page 158 in Cont and Tankov (2004).

As a technique to construct general Lévy copulas, Cont and Tankov suggest
getting them “from positive ones by gluing them together”, which

2A function F : R→ R is called absolutely continuous if for every ε > 0 there exists δ > 0 such that
for any finite set of disjoint intervals (a1, b1), (a2, b2) . . . (aN , bN ),

∑N
j=1(b j − a j)< δ implies that

∑N
j=1 |F(b j)− F(a j)|< ε.

57



“amounts to specifying the dependence of different signs separately”
Cont and Tankov (2004).

By this procedure, letting F++, F−−, F−+, F+− be positive Lévy copulas, it can be
shown that (see page 160 in Cont and Tankov (2004))

F(x , y) = F++(c1|x |, c2|y|)1x≥0,y≥0+ F−−(c3|x |, c4|y|)1x≤0,y≤0 (5.12)

− F+−((1− c1)|x |, (1− c4)|y|)1x≥0,y≤0− F−+((1− c3)|x |, (1− c2)|y|)1x≤0,y≥0

defines a Lévy copula if c1, . . . , c4 are constants between 0 and 1.
In Cont and Tankov (2004) Lévy copulas constructed as defined by equation 5.12

are referred to as constant proportion Lévy copulas.
For completeness we also mention the definition of a general n-dimensional Lévy

copula, as follows:

Definition 5.4.7

An n-dimensional Lévy copula is a function F : Rn→ R with the following three
properties:

• F is n-increasing,

• F is equal to zero if at least one of its arguments is zero and,

• F(x ,∞, . . . ,∞)− F(x ,−∞, . . . ,−∞) = x ,
F(∞, x ,∞, . . . ,∞)− F(−∞, x ,−∞, . . . ,−∞) = x , etc.

Using a special type of interval,

I (x) =

(

[x ,∞), if x > 0

(−∞, x], if x < 0,

tail integrals U1, . . . , Un of the Lévy measure can be computed everywhere except
on the axes, as follows:

ν(I (x1)×, . . . ,×I (xn))

= (−1)sign(x1)... sign(xn)F(U sign(x1)
1 (x1), . . . , U sign(xn)

n (xn)).
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Here xk ∈ R \ {0}.
As pointed out in Cont and Tankov (2004), constructing constant proportion Lévy

copulas in higher dimensions is not very practical. In the general case 2n positive
Lévy copulas and a large number of constants must be specified. In such cases Cont
and Tankov suggest using simplified constructions, such as the one in example 5.4.2
on page 55.

59



6
Simulation and estimation of

multi-dimensional Lévy processes

6.1 Simulation of multidimensional subordinators

As shown in chapter 6 in Cont and Tankov (2004), when the dependence of
components of a multidimensional Lévy process is specified via a Lévy copula, series
representations of the Lévy process can be constructed using the theorem below
and the probabilistic interpretation of Lévy copulas.

Theorem 6.1.1

• Let
�

Vi
	

i≥1 be an i.i.d. sequence of random elements in a measurable
space S. Assume that {Vi}i≥1 is independent of the sequence

�

Γi
	

i≥1 of
jumping times of a standard Poisson process.

• Let
�

Ui
	

i≥1 be a sequence of independent random variables, uniformly
distributed on [0,1] and independent of

�

Vi
	

i≥1 and
�

Γi
	

i≥1. The Ui ’s
have the interpretation jump times.

• Let P be a probability measure on Rd and

H : (0,∞)× S→ Rd
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be a P-measureable function.

• Let σ and ν be measures on Rd defined by

σ(r, B) := P(H(r, Vi) ∈ B), for r > 0 and B ∈B(Rd),

ν(B) :=

∫ ∞

0

σ(r, B)dr.

• Let

A(s) =

∫ s

0

∫

|x |≤1

xσ(r, dx)dr, s ≥ 0.

• Let ν be a Lévy measure on Rd , that is let
∫

Rd

�

max(|x |2, 1)
�

ν(dx)<∞.

(i) Uniform convergence to Lévy process 1:
If the limit γ= lims→∞ A(s) exists in Rd , then the series
∑∞

i=1 H(Γi , Vi)1Ui≤t converges almost surely and uniformly on
t ∈ [0,1] to a Lévy process Xt with generating triplet (0,γ,ν). Here Xt

has the characteristic function

Eexp
�

i〈u,Xt〉
�

= exp

¨

t

�

i〈u,γ〉+
∫

Rd

�

ei〈u,x〉− 1− i〈u,x〉1|x|≤1

�

ν(dx)

�«

.

(ii) Uniform convergence to Lévy process 2:
If ν is a Lévy measure on Rd and for each v ∈ S the function

r 7→ |H(r, v)| is nonincreasing as a function of r,

then as N →∞
∑N

i=1

�

H
�

Γi , Vi
�

1Ui≤t − tci

�

converges almost surely and
uniformly on t ∈ [0, 1] to a Lévy process with characteristic triplet (0,0,ν).
Here the ci are deterministic constant vectors given by ci = A(i)−A(i−1).

Proof: This theorem is found on page 195 in Cont and Tankov (2004).

Theorem 6.1.2: Series representation of two-dimensional subordinator

Let (Zt) be a two-dimensional Lévy process with positive jumps, marginal tail
integrals Ui and U2, and Lévy copula F(x , y). If F is continuous on [0,∞]2

then the process Z is representable in law, on the time interval [0,1], as
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�

Zs, 0≤ s ≤ 1
	 d
=
¦

Z̃s, 0≤ s ≤ 1
©

where

Z̃ (1)s =
∞
∑

i=1

U (−1)
1

�

Γ(1)i

�

1[0,s]
�

Vi
�

Z̃ (2)s =
∞
∑

i=1

U (−1)
2

�

Γ(2)i

�

1[0,s]
�

Vi
�

. (6.1)

Here

• The (Vi) are independent and uniformly distributed on [0, 1].

•
�

Γ(1)i

�

is an independent sequence of jump times for a standard Poisson
process.

• For every i, Γ(2)i conditionally on Γ(1)i is independent of all other variables.

• Viewed as a function of y , Γ(2)i has the distribution function
∂
∂ x

F(x , y)
�

�

�

x=Γ(1)i

.

• All the series in 6.1 converge almost surely and uniformly on s ∈ [0,1].

This theorem is stated on page 200 in Cont and Tankov (2004). It depends
on proposition 6.3 in Cont and Tankov (2004).

The results given above and the probabilistic interpretation of positive Lévy
copulas make it possible (see remark 6.7 in Cont and Tankov (2004)) to simulate a
two-dimensional Lévy process Xt =

�

X t , Yt
�

. The dependence structure of X t and
Yt is specified by a positive Lévy copula F .

The simulating algorithm Xt , found on page 202 in Cont and Tankov (2004),
is based on enumerating the jumps of X t in descending order and simulating the
jumps in Yt conditionally on the size of the jumps in the first component. Let U1 be
the tail integral of X t and U2 be the tail integral of Yt .

62



Algorithm 1: Simulation of a two-dimensional subordinator
with dependent components by series representations

Fix a number τ∗ dsepending on the required precision and computational
capacity. This number is equal to the average number of terms in the series
and determines the truncation level: Jumps in X t smaller than U (−1)

1 (τ∗) are
truncated.

• Initialize k = 0, Γ(1)0 = 0.

• REPEAT WHILE Γ(1)k < τ
∗

• Set k = k+ 1

• Simulate Tk: standard exponential

• Set Γ(1)k = Γ
(1)
k−1+ Tk Obtaining the transformed jump in the first compo-

nent

• Simulate Γ(2)k from distribution function F1(y) =
∂ F(x ,y)
∂ x

�

�

�

x=Γ(1)k

(obtaining the transformed jump in the second component)

• Simulate Vk : uniformly distributed variable on [0, 1] (obtaining the time
when the jump occurs)

The trajectory is then given by

X t =
k
∑

i=1

1Vi≤t U
(−1)
1

�

Γ(1)i

�

,

Yt =
k
∑

i=1

1Vi≤t U
(−1)
2

�

Γ(2)i

�

.
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Example 6.1.3: Linking via a positive Clayton Lévy copula

If X t and Yt are linked with a positive Clayton Lévy copula Cθ , that is, a
positive Lévy copula of the form

Cθ (x , y) =
�

x−θ + y−θ − 1
�

for θ > 0, (6.2)

then the conditional distribution function F of Γ(2)k given Γ(1)k takes the form

F(Γ(2)k |Γ
(1)
k ) =

∂ Cθ (Γ
(1)
k ,Γ(2)k )

∂ Γ(2)k

=







1+

 

Γ(1)k

Γ(2)k

!θ







−1−1/θ

. (6.3)

Since F(Γ(2)k |Γ
(1)
k ) is uniformly distributed on [0, 1], Cont and Tankov suggest

simulating this distribution by inverting equation 6.3.
This produces the following inverse:

F−1(Wk|Γ
(1)
k ) = Γ

(1)
k

�

W
− θ

1+θ
k − 1

�−1/θ

.

The two-dimensional subordinator then has the representation

Xs =
∞
∑

i=1

U (−1)
1

�

Γ(1)i

�

1[0,s](Vi)

Ys =
∞
∑

i=1

U (−1)
2

�

F−1(Wi|Γ
(1)
i )
�

1[0,s](Vi),

where (Wi) and (Vi) are independent sequences of independent random
variables, uniformly distributed on [0, 1], and (Γ(1)i ) is an independent sequence
of jump times of a standard Poisson process.

6.2 Implementations of algorithm 1

The source code for two implementations of algorithm 1 with marginal positive
1/2-stable processes, the files “Levy.R” and “GPD.R”, can be downloaded from
http://www.student.uib.no/~mhu080/master.
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6.2.1 1/2 stable processes

Recall that the Lévy distribution (i.e. a positive stable distribution with index 1
2
) has

a Lévy density of the form ν(x) = σ
2
p
π

1
x3/2 1x>0.

The general one-dimensional tail integral is defined as

U(x) :=

(

∞ x = 0

ν([x ,∞)), x > 0).

Working out the implied integration we have the following:

U(x) =







∞ forx = 0

2
�

σ
2
p
π

�

x−1/2 for x > 0.

The quasi-inverse is thus

U (−1)(y) =







2
�

σ
2
p
π

�

y







2

=
σ2

π

1

y2 for 0< y <∞.

In the code we have assumed parameter values µ = 0 and σ = 1 in the Lévy
distribution (see equation 3.20 on page 33) for both marginals.

If figure 6.1 on the following page below are some simulated trajectories for 4
different values of the Clayton Lévy copula.

6.2.2 Compound Poisson marginals

In another implementation of of algorithm 1 the marginal subordinators are two
equal compound Poisson processes, where the jump distribution is a generalized
Pareto distribution.

The distribution function of the three-parameter generalized Pareto distribution
is as follows (see page 162 in Embrechts et al. (1999)):

Gξ;τ;β(x) =







1−
�

1+ ξ
β
(x −τ)

�−1/ξ
if ξ 6= 0,

1− e−
(x−τ)
β if ξ= 0,

(6.4)

where β > 0 and
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Figure 6.1: 4 simulations of a two-dimensional Lévy process Xt =
�

X t , Yt
�

. The
components X t and Yt are both 1

2
-stable processes with positive jumps

and are linked together with a positive Clayton Lévy copula. In the
upper left corner the value of the parameter θ for the Clayton Lévy
copula is set to 0.3, which corresponds to a weak dependence. In the
upper right corner and lower left corner the dependence is stronger and
the components tend to jump simultaneously, but with different jump
sizes. In the bottom right corner θ is set to 10, which corresponds to a
very strong dependence. Here the components almost follow each other.
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x ∈

(

[τ,∞) if ξ≥ 0,

[τ,τ− β/ξ] if ξ < 0.

The parameter ξ is called the shape parameter, the parameter τ is called the
threshold, and the parameter β is called the scale parameter.

A one-dimensional compound Poisson process X t with intensity parameter λ
and jump probability measure F has a characteristic function of the form (see
proposition 3.4 in Cont and Tankov (2004))

bPX t
(u) = exp

¨

tλ

∫ ∞

−∞
(eiux − 1)dF(x)

«

.

By comparison with the Lévy-Khintchine formula we see that the Lévy measure
here is ν(A) = λF(A).

The tail integral for the positive random variable X is thus

U(x) =

(

∞ x = 0

λF̄(x) x > 0, where F̄(x) = P (X > x).
(6.5)

In the particular case that the jump distribution is the generalized Pareto distri-
bution (GPD) with ξ > 0, defined in equation 6.4 on page 65 above, has ξ > 0, we
get the following for the tail integral of X :

U(x) =











∞ if x = 0

λ if 0< x < τ

λ
�

1+ ξ
β
(x −τ)

�−1/ξ
if x > τ.

(6.6)

Now we want to get U (−1)(τ∗):

U (−1)(y) := sup{x : U(x)≥ y}.

By solving the inequality

λ

�

1+
ξ

β
(x −τ)

�−1/ξ

≥ Γ

we have
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U−1(Γ) =







0 if Γ> λ

τ+ β
ξ

h

�

λ
Γ

�ξ
− 1
i

if Γ≤ λ.

Below are the trajectories of some simulations of compound Poisson processes
with generalized Pareto distributed jumps, with parameters ξ= 0.618, β = 1 and
different values for the Clayton Lévy copula parameter θ .
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Figure 6.2: Simulation of compound Poisson processes linked with positive Clayton
Lévy copulas. In the upper left corner the Clayton Lévy copula parameter
θ is set to 0.3, which corresponds to a very weak dependence. The other
three corners correspond to increasing dependence. Compared with the
simulated trajectories in figure 6.1 on page 66 we see that there are
fewer jumps. In particular there are no small jumps.
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6.3 Simulation of general stable processes linked with
Lévy copulas

Let F++, F−−, F+−, F−− be positive Lévy copulas and U++, U+−, U−+, U−− be tail
integrals on R2, as in definition 5.4.5 on page 56.

It is then shown on page 160 of Cont and Tankov (2004) that
if c1, c2, . . . c4 are constants between 0 and 1, a Lévy copula can be defined as

follows:

F(x , y) = F++
�

c1|x |, c2|y|
�

1x≥0,y≥0+ F−−
�

c3|x |, c4|y|
�

1x≤0,y≤0

− F+−
�

(1− c1)|x |, (1− c4)|y|
�

1x≥0,y≤0− F−+
�

(1− c3)|x |, (1− c2)|y|
�

1x≥0,y≤0.
(6.7)

With fixed marginal Lévy measures ν1 and ν2, the upper right-hand tail integral
is

U++(x , y) = F++
�

c1U+1 (x), c2U+2 (y)
�

.

Thus the upper right-hand quadrant corresponds to a Lévy process with pos-
itive jumps, Lévy copula F++, and marginal Lévy measures c1ν1(dx)1x>0 and
c2ν(dy)1y>0.

Treating the other quadrants in the same manner, Cont and Tankov conclude
that a Lévy process with Lévy copula of the form of equation 6.7 is a sum of four
independent parts, corresponding to the four quadrants of the Lévy measure. For
the first independent part, corresponding to the upper right-hand quadrant and
with linking via the positive Lévy copula F++:

• The 1st component jumps upward and has Lévy measure c1ν1(dx)1x>0.

• The 2nd component jumps upward and has Lévy measure c2ν2(dy)1y>0.

For the third independent part, corresponding to the lower right-hand quadrant,
and with linking via the positive Lévy copula F+−:

• The 1st component jumps upward and has Lévy measure (1− c1)ν(dx)1x>0.

• The 2nd component jumps downward and has Lévy measure
(1− c4)ν(dx)1x<0.

The other independent parts of the Lévy process can be characterized in the
same way. For example, an α-stable process with α < 2 has a Lévy measure of the
following form:
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ν(x) =
A

xα+1 1x>0+
B

|x |α+1 1x<0.

Therefore it is clear that Lévy copulas of all α-stable procesess with α < 2 can be
represented in the form of equation 6.7 on the preceding page. That equation can
thus be used to model bivariate Lévy processes with stable margins.

We have used this approach to implement a simulation algorithm for a truncated
bivariate Lévy process, with α-stable margins linked via a Clayton Lévy copula in
each quadrant. The blue component is marginally α-stable with index 1.75 and
the red component is marginally α-stable with index 1.9. The other specifications
are c1 = c2 = c4 = c4 = 0.5 and AX = BX = AY = BY = 1. The blue component
is truncated at 0.0025 (no jumps of the blue component smaller than 0.0025 are
being plotted).

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

Stable Lévy processes linked with 4 postive
Clayton Lévy copulas ,one in each of the quadrants.

Jumps smaller than Uinverse(tau) are truncated
theta++ is, 3.5, theta−− is, 6.5, theta+− is, 0.4

theta−+ is, 0.5, tau is, 10000

time

s
a
m

p
le

 p
a
th

s

0.0 0.2 0.4 0.6 0.8 1.0

−
1
0

−
8

−
6

−
4

−
2

0
2

Stable Lévy processes linked with 4 postive
Clayton Lévy copulas ,one in each of the quadrants.

Jumps smaller than Uinverse(tau) are truncated
theta++ is, 0.4, theta−− is, 0.5, theta+− is, 3.5

theta−+ is, 6.5, tau is, 10000

time

s
a
m

p
le

 p
a
th

s

Figure 6.3: Two simulations of a Lévy process on R2 with stable marginals. The
components are linked together with 4 Clayton Lévy copulas, one in
each quadrant. In the figure to the left the components are positively
correlated and tend to have jumps of the same sign. In the figure to the
right the components are negatively correlated and tend to have jumps
of opposite signs.
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6.4 Estimation of a positive Lévy copula

Let X t and Yt be two compound Poisson subordinators, each having a known
intensity parameter and each having a known jump distribution on [0,∞).

Let
�

x1, y1
�

, . . . ,
�

xn1
, yn1

�

be pairs of observed simultaneous jumps of X t and
Yt .

Let x∗1, . . . , x∗n2
be the observed jumps of X t not corresponding to any observed

jumps of Yt . Similarly, let y∗1 , . . . , y∗n3
be the observed jumps of Yt not corresponding

to any observed jumps of X t .
Recall that in the simulation algorithm 1 the trajectory was given by

X t =
k
∑

i=1

1Vi≤t U
(−1)
1

�

Γ(1)i

�

(6.8)

Yt =
k
∑

i=1

1Vi≤t U
(−1)
2

�

Γ(2)i

�

, (6.9)

(6.10)

where U (−1)
1 and U (−1)

2 were the quasi-inverses of the tail integrals. We estimate

the Γ( j)i ’s j = 1,2 below.
We make the assumption that the observations were made with the parameters

of X t and Yt all known. In particular, X t is assumed to have a known intensity
parameter λX and Yt is assumed to have a known intensity parameter λY . , k = 1, 2

Under this assumption we try to restore the latent variables Γ( j)i ’s, from equa-
tions 6.8 to 6.9 by making the following transformations:

Γ(1)1 = U1
�

x1
�

, . . . ,Γ(1)n1
= U1

�

xn1

�

,

Γ(2)1 = U2
�

y1
�

, . . . ,Γ(2)n1
= U2

�

yn1

�

,

Γ(∗1)1 = U1

�

x∗1
�

, . . . ,Γ(∗1)n2
= U1

�

x∗n2

�

and Γ(∗2)1 = U2

�

y∗1
�

, . . . ,Γ(∗1)n3
= U2

�

x∗n3

�

.

In algorithm 1, with dependence given by a Clayton Lévy copula Γ(2)i conditioned

on Γ(1)i , the following distribution function was simulated:
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FΓ(2)i |Γ
(1)
i =γ1

(γ2) =

¨

1+
�

γ1

γ2

�θ
«−1−1/θ

. (6.11)

(See equation 6.3 on page 64.)
The idea is to estimate the value of the Clayton Lévy copula using the method

of maximum likelihood on this distribution function and using the restored latent
variables Γ( j)i ’s. By differentiating this distribution function we obtain the following
probability density:

fΓ(2)i |Γ
(1)
i =γ1

(γ2) = (1+ θ)

�

1+
�

γ1

γ2

�θ
�−(2+1/θ)��

γ1

γ2

�θ

γ−1
2

�

. (6.12)

In the case of simultaneous jumps we use this density as the likelihood.

Recall that the tail integral is

U(x) =

(

∞ x = 0

λF̄(x) x > 0.
(6.13)

For the case that X t has an observed jump x∗i while Yt does not have a jump
we therefore have the following probability:

P
�

Γ(2)i ∈
n

γ2 : U (−1)
2 (γ2) = 0

o
�

�

�Γ(∗1)i = U1(x
∗
i )
�

(6.14)

= P
�

Γ(2)i > λY |Γ
(∗1)
i = U1(x

∗
i )
�

(6.15)

= 1−






1+

 

Γ(∗1)i

λY

!θ






−1−1/θ

. (6.16)

Correspondingly, when Yt has an observed jump y∗i while X t does not have a
jump, we interchange X t and Yt and have the probability

1−






1+

 

Γ(∗2)i

λX

!θ






−1−1/θ

. (6.17)
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Using equation 6.12 on the preceding page, equation 6.14 on the facing page
and equation 6.17 on the preceding page we obtain the following log-likelihood
function:

l
�

θ |x1, . . . , xn1
, y1, . . . , yn1

, x∗1, . . . , x∗n2
, y∗1 , . . . , y∗n3

�

=
n1
∑

i=1







log(1+ θ)−
�

2+
1

θ

�

log






1+

 

Γ(1)i

Γ(2)i

!θ





+ θ

�

logΓ(1)i − logΓ(2)i

�

− logΓ(2)i







+
n2
∑

i=1

log







1−






1+

 

Γ(∗1)i

λY

!θ






−1−1/θ






+
n3
∑

i=1

log







1−






1+

 

Γ(∗2)i

λX

!θ






−1−1/θ






.

= n1 log(1+ θ)−
�

2+
1

θ

� n1
∑

i=1

log
�

�

Γ(1)i

�θ
+
�

Γ(2)i

�θ
�

+ θ
n1
∑

i=1

�

logΓ(1)i +Γ
(2)
i

�

+
n2
∑

i=1

log







1−






1+

 

Γ(∗1)i

λY

!θ






−1−1/θ






+
n3
∑

i=1

log







1−






1+

 

Γ(∗2)i

λX

!θ






−1−1/θ






.

(6.18)

Optimization of this function must be done numerically. In our implementation we
use the R function “optimize” from the package “stats” to maximize equation 6.18.

Newton’s binomial theorem says that if −1< x < 1 and α ∈ R then (see page 201
in Rudin (1976))

(1+ x)α = 1+
∞
∑

n=1

α (α− 1) . . . (α− n+ 1)
n!

xn. (6.19)

Let c = 1+
�

Γ(∗2)i

λX

�θ

and α=−1− 1/θ .

In the event that Γ∗2i a is close to zero we are faced with the task of calculating
log (1− cα) with cα almost equal to one.

To avoid numerical problems we then use a truncated version of equation 6.19
and calculate log (1− cα) as
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log (1− cα)

= log

 

1−

 

1+
N
∑

n=1

α (α− 1) . . . (α− n+ 1)
n!

cn

!!

= log

 

N
∑

n=1

α (α− 1) . . . (α− n+ 1)
n!

cn

!

,

where the N is chosen high enough that the residual is small.
In the event that Γ∗1i is close to zero we make the same calculation, but with

c = 1+
�

Γ(∗1)i

λY

�θ

.

To get some idea how this estimatator performs we tried the estimator on simu-
lated observations from two compound Poisson processes on R, X t and Yt , linked
with a Clayton Lévy copula. We let X t and Y have generalized Pareto distributed
jumps with ξ= 0.618, β = 1, threshold 10, intensity parameter λ= 25, and tried
different values of the Clayton Lévy copula parameter θ . Under the assumption
of known values of all the parameters except θ , we then compared the obtained
point estimates of θ , with the real value. We let the time period be 1, so letting
λ = 25 caused the expected number of jumps from each component was 25. We
repeated this experiment 10000 times for each value of θ . In our evalutation of the
estimator we considered the bias and the root mean square error (RMSE) defined

as
q

n−1
∑n

i=1

�

θ − θ̂i

�2
, where θ̂ is the ith estimate of θ .

θ 0.3 0.7 3.3 10
Bias -0.014 0.016 0.106 0.330
RMSE 0.108 0.171 0.706 1.971
2.5 percentile 0.014 0.434 2.272 7.189
97.5 percentile 0.469 1.099 5.0225 14.716

Table 6.1: Bias, RMSE, 2.5 percentile and 97.5 percentile for θ = 0.3, θ = 0.7,
θ = 3.3 and θ = 10.
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Figure 6.4: Histograms from the simulation experiment: In the upper left hand
corner: θ = 0.3, upper right hand corner: θ = 0.7, lower left hand
corner: θ = 3.3: lower right hand corner: θ = 10. We see that the
estimates are less precise for large values of the Clayton Lévy copula
parameter θ .
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7
Application to Danish fire insurance

data

7.1 Application of positive Lévy copulas to ruin theory

7.1.1 Some classical Ruin theory

We begin this discussion by giving a few basic definitions as well as classical ruin
theory results taken from Bregman and Klüppelberg (2005).

In this discussion the net risk portfolio of an insurance company is modelled as
a multivariate Lévy process Rt = (R

(1)
t , R(2)t , . . . R(d)t ), t ≥ 0. The corresponding

net risk reserve of the insurance company is given by the stochastic process R+ =
�

R+t
�

t≥0
, where

R+t = R(1)t + R(2)t + · · ·+ R(d)t , t ≥ 0.

Here each component can be taken as a risk process R(i)t = x i + ci t − C (i)t , t ≥ 0,
for initial risk reserves x i ≥ 0, premium rates ci > 0 and for all i = 1, . . . , d. Then

R+t = x + c t − C+t , t ≥ 0

for x =
∑d

i=1 x i , c =
∑d

i=1 ci and C+t =
∑d

i=1 C (i)t .
For the initial risk reserve x ≥ 0 the ruin probability is defined as

Ψ(x) := P
�

R+t < 0 for some t ≥ 0
�

.
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Before further discussion of ruin probability we need to introduce a few concepts
regarding the tails of probability distributions.

Definition 7.1.1

(a) A Lebesgue-measurable function h : [0,∞)→ (0,∞) is regularly varying
with index γ ∈ R (written as h ∈Rγ) if

lim
x→∞

h(r x)
h(x)

= rγ, for all r > 0.

(b) Let F be the distribution function of a positive random variable X. We define
the survival function F̄(x) of X as F̄(x) := 1− F(x).

Denote by F2∗ = F ∗ F the convolution of F with itself and by F̄2∗ the
survival function 1− F2∗. F or X is called subexponential, if

F̄2∗~2F̄(x), as x →∞.

As noted in Bregman and Klüppelberg (2005) all distribution functions with
regularly varying tails are included in the class of subexponential distributions.

For subexponential distributions we have the following ruin theory result (see
Theorem 2.11 in Bregman and Klüppelberg (2005) and theorem 1.3.6 in
Embrechts et al. (1999)):

Theorem 7.1.2
Let C be a compound Poisson process with Poisson rate λ > 0.
Then the corresponding risk process is

Rt = x + c t − Ct = x + c t −
∑Nt

i=1 Yi , t ≥ 0, where Nt is a Poisson process
with rate λ and the Y ′i s are i.i.d. random variables.

If the claims Yi obey a subexponential distribution F and have a finite expec-
tation EY , then, under the net profit condition c − λEY > 0, we obtain the
ruin probability

Ψ(x)~
λ

c−λEY

∫ ∞

x

F̄(y)dy, as x →∞.

Here F̄ is the survival function of the claim distribution F .

Combined with Karamata’s theorem (see page 28 in Bingham et al. (1987)) we
get that if F̄ ∈R−b and b > 1, then
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Ψ(x)~
λ

c−λEY

x

b− 1
F̄(x) as x →∞. (7.1)

7.2 The Clayton risk process

In this section we will be employing the positive Clayton Lévy copula and tail
integrals (see definition 5.3.1 on page 51) in a ruin theory context, with heavy-tail
claims obeying a generalized Pareto distribution.

Definition 7.2.1

C = (C (1), C (2)) denote a bivariate subordinator. Define
C+ := C (1)+ C (2). Then C+ has tail integral

U+(z) = ν
�¦

(x , y) ∈ [0,∞)2 : x + y ≥ z
©�

,

where z ≥ 0 and ν is the Lévy measure.

As in Bregman and Klüppelberg (2005), we define
U+(0) as the limit from the right, limx→0+ U(x).

Let C (1), C (2) denote compound Poisson processes with rates λ1 and λ2 > 0 and
claim size distribution functions F1 and F2. Let the dependence between C1, C2

be given by a positive Clayton Lévy copula with parameter θ ∈ [0,∞). Then the
following can be shown:
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Proposition 7.2.2

(a) The process C+ defined in definition 7.2.1 on the preceding page is a
compound Poisson process with tail integral given by

U+(z) = I1(z) + I2(z) + I3(z). (7.2)

Here for z > 0,

I1(z) = λ1λ
θ+1
2

∫

(0,z)

�

F̄θ2 (z− x)

λθ1 F̄θ1 (x) +λ
θ
2 F̄θ2 (z− x)

�
θ+1
θ

F1(dx),

I2(z) = λ1λ2 F̄1(z)
�

λθ1 F̄θ1 (z) +λ
θ
2

�−1/θ
,

I3(z) = λ1 F̄1(z) +λ2 F̄θ2 (z)−
�

λ−θ1 F̄−θ1 (z) +λ
−θ
2

�−1/θ

−
�

λ−θ1 +λ−θ2 F̄−θ2 (z)
�−1/θ

.

Moreover,

I2(z)~λ1 F̄1(z), z→∞. (7.3)

(b) Assume now that F = F1 = F2 and λ= λ1 = λ2. Then

U+(z) = λ
�

I ′1(z) + I ′2(z) + 2I ′3(z)
�

where

I ′1(z) =

∫

(0,z)

�

F̄(z− x)

F̄θ (z− x) + F̄θ (x)

�
θ+1
θ

F(dx),

I ′2(z) = F̄(z)
�

F̄θ (z) + 1
�−1/θ

~F̄(z), z→∞ and

I ′3(z) = F̄(z)
�

1− (1+ F̄θ (z))−1/θ
�

= o(F̄(z)), z→∞.

For a proof see page 11 in Bregman and Klüppelberg (2005).

With Pareto claim sizes (as opposed to generalized Pareto) the following theorem
and corollary is proven on page 14 in Bregman and Klüppelberg (2005):
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Theorem 7.2.3

Let C (1), C (2) be compound Poisson processes, both with rate λ > 0 and with
Pareto claim sizes having survival functions as follows:

F̄(x) =
� a

a+ x

�b
, x > 0, (7.4)

for some a > 0 and b > 1. Assume that the dependence between C1, C2 is
given by the positive Clayton copula Sθ for θ ∈ (0,∞).

Then

U+(x) = λ
�

K∗x
−b + F̄(x) + o

�

F̄(x)
�

�

, x →∞,

for some constant K∗ > 0 not dependent of x . In particular U+(.) ∈R−b.

For convenience we define K̄∗(b,θ) = a−bK∗.

Corollary 7.2.4

Suppose that the conditions of theorem 7.2.3 hold. Assume also that the
net profit condition holds. Note that since the process C+ is the sum of two
compound process, each with Poisson rate λ, the net profit condition is in this
case c−2λEY > 0. Then the ruin probability viewed as a function of the initial
reserve x is

Ψ(x)~
λ

c− 2λEY

ab

(b− 1)
�

K̄∗(b,θ) + 1
�

x−(b−1), x →∞.

Proof: A proof is given on page 15 in Bregman and Klüppelberg (2005).

In this connection note that the tail of the generalized Pareto distribution (GPD)
is of the same form, under the following conditions: Positive shape parameter (ξ)
and positive scaling parameter (β). Then in F̄~ab x−b, β

ξ
corresponds to a and 1

ξ
corresponds to b. Thus we would expect a similar asymptotic result to be true also
for the generalized Pareto distribution, with the above-mentioned substitutions.
This is indeed true, with a proof very similar to the proof for theorem 7.2.3 given in
Bregman and Klüppelberg (2005). We get the following result:

Theorem 7.2.5

Let C (1), C (2) be compound Poisson processes, both with rate λ > 0 and
with generalized Pareto distributed claim sizes having the following survival
functions:
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F̄(x) =
�

1+
ξ

β
(x −τ)

�−1/ξ

, x > τ, (7.5)

for β ,τ > 0 and ξ > 0. Assume that the dependence between C1, C2 is given
by the positive Clayton copula Sθ , with θ ∈ (0,∞),

and that 0< ξ < 1.
Then the ruin probability Ψ(x) viewed as a function of the initial reserve x is

Ψ(x)~
λ

c− 2λEY

�

β

ξ

�1/ξ

�

1
ξ
− 1
�

�

K̄ (ξ,θ) + 1
�

x−(1/ξ−1), as x →∞ (7.6)

for some constant K̄(ξ,θ)> 0.

Proof: A proof is given in section A.1 on page 103.

7.3 About the data and the model

For his article ((McNeil (1997)) Alexander McNeil choose to split the Danish
fire insurance claims data into three categories: damage on building, damage to
furniture and personal property, and a loss of profits category. This dataset can be
downloaded either from his website
http://www.ma.hw.ac.uk/~mcneil/data.html

or from
http://www.student.uib.no/~mhu080/master.
The claim sizes are adjusted for inflation as explained in McNeil (1997).

In our experiment we used the categories “damage to building” and “damage to
furniture and property” from McNeil’s
multivariate Danish fire insurance claims dataset. In our model the
excess of claims above a certain threshold τ is assumed to obey a generalized
Pareto distribution. The waiting times between claims of size greater than τ are
assumed to obey an exponential distribution. This amounts to a model with two
one-dimensional compound Poisson processes,

�

X t , Yt
�

, where X t is the sum of
claims due to damage to buildings up to time t and Yt is the corresponding sum
of claims due to damage to furniture and personal property. The experiment was
conducted under the assumption that all the parameters of X t and Yt were equal.

81

http://www.ma.hw.ac.uk/~mcneil/data.html
http://www.student.uib.no/~mhu080/master


We first estimated the marginals, assuming that the two processes were compound
Poisson processes with equal intensities. Then we estimated a value for the Clayton
Lévy copula and used some theorems from Bregman and Klüppelberg (2005) to try
to make some inferences about the probability of ruin due to claims larger in size
than the threshold τ.

7.4 Exploratory data analysis

The mean excess function is defined as e(u) := E (X − u|X > u). Let X1, . . . Xn be
i.i.d. random variables with the distribution function F . Let Fn denote the empirical
distribution function and let δn(u) =

�

i : i = 1, . . . , n X i > u
	

. Then the empirical
mean excess function en(u) is defined as

en(u) =
1

F̄n(u)

∫ ∞

u

F̄n(y)dy =
1

cardδn(u)

∑

i∈δn(u)

�

X i − u
�

, u≥ 0,

with the convention that 0/0= 0. A mean excess plot consists of the graph

¦�

Xk,n,en

�

Xk,n

��

: k = 1, . . . , n
©

The mean excess function for the generalized Pareto distribution is linear. There-
fore if the generalized Pareto distribution fits the data well, then the mean excess
plot should be approximately linear. Below are the mean excess plots for claims of
the building category and the furniture category. To plot the mean excess functions
we used the function “meplot” from the R package “evir”. The description of this
function is given below:

"Description

An upward trend in plot shows heavy-tailed behaviour.

In particular, a straight line with positive gradient

above some threshold is a sign of Pareto behaviour in tail.

A downward trend shows thintailed behaviour whereas a line

with zero gradient shows an exponential tail. Because

upper plotting points are the average of a handful of

extreme excesses, these may be omitted for a prettier plot."

The data seems to fit a line quite nicely for both categories except, as warned,
the maximum observations of each. The generalized Pareto distribution has also
been found to fit the univarate version of this dataset quite well in both Embrechts
et al. (1999) and McNeil (1997).
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Figure 7.1: Mean excess plot of claims from the building category on the left and
from the furniture category on the right. Both plots are fairly linear,
which is a sign of Pareto behavior.

We also used the function “qplot” from “evir” to make QQ plots of the building
category and the furniture category vs the standard exponential distribution. A
description of the “qplot” function is given below:

"Details

If xi is zero the reference distribution is the exponential;

if xi is non-zero the reference distribution is the

generalized Pareto with that value of xi. In the case of

the exponential, the plot is interpreted as follows.

Concave departures from a straight line are a sign of

heavy-tailed behaviour. Convex departures show

thin-tailed behaviour."

In a QQ plot against a standard exponential distribution we see that both cate-
gories display a tail behavior which is heavier than the exponential.

7.5 Some inference theory

Definition 7.5.1

A statistic T (X) is a sufficient statistic for θ if the conditional distribution of the
sample X given the value of T (X) does not depend on θ .
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Figure 7.2: QQ plot of claims from the building category on the left and furniture
category on the right vs a standard exponential distribution. Both plots
show a concave deviation from a straight line, which is a sign of heavy-
tailed behavior.

Definition 7.5.2
Let X be a random vector with a probability distribution belonging to a known
family of probability distributions Fθ parameterized by θ . Let T (X) be any
statistic based on X. Then T (X) is complete if for all measurable functions
g (T (X)), E

�

g (T (X))|θ
�

= 0 for all θ implies P
�

g (T (X)) = 0
�

�θ
�

= 1 for all
θ . Equivalently, T (X) is called a complete statistic.

Theorem 7.5.3: Factorization theorem

Let f (X|θ) denote the joint distribution function or density of a sample X. A
statistic T(X) is a sufficient statistic for θ if and only if there exist measurable
functions g(r|θ) and h(x) such that for all sample points x and all parameter
points θ ,

f (x|θ) = g (T (x)|θ)h(x).

A proof can be found on page 276 in Casella and Berger (2001).
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Theorem 7.5.4

Let X1, . . . , Xn be i.i.d. observations from an exponential family of distribution
functions or densities of the form

f (x |θ ) = h(x)c (θ )exp







k
∑

j=1

w j (θ ) r j(x)






,

where θ =
�

θ1, . . .θk
�

. Then the statistic

T (X) =

 

n
∑

i=1

r1
�

X i
�

,
n
∑

i=1

r2
�

X i
�

, . . . ,
n
∑

i=1

rk
�

X i
�

!

is complete if the range of
��

w1(θ ), . . . , wk (θ )
�	

contains an open set in Rk.
This result is stated on page 288 in Casella and Berger (2001).

Theorem 7.5.5

Let T be a complete sufficient statistic for a parameter θ and let φ(T) be
any estimator based only on T . Then φ(T) is the unique minimum variance
unbiased estimator(UMVUE) of its expected value. This theorem is stated on
page 347 in Casella and Berger (2001).

7.5.1 Estimation of intensity/rate

In the compound Poisson model with intensity rate λ the waiting times between
jumps obey the exponential distribution with probability density

f (w|λ) = λe−λw1w>0.

This is readily seen to be a member of the exponential family.
Consider the case k = 1: Let W = W1, . . . , Wn be the observed waiting times. In
theorem 7.5.4 let r1(Wi) =Wi . We see from that theorem that
T (W) =

∑n
i=1 r1

�

Wi
�

is a complete statistic for λ.

Consider the joint probability density of W =W1, . . . , Wn. Since W1, . . . , Wn are
independent observations their joint probability density is
f (w|λ) = λne−λ

∑n
i=1 wi 1{min(w1,...wn)>0}. In theorem 7.5.3 on the facing page let

g (T (W)|λ
�

= λne−λ
∑n

i=1 wi and h(w) = 1{min(w1,...wn)>0}. We then see that

T (W) =
∑n

i=1 r1
�

Wi
�

=
∑n

i=1 Wi is also a sufficient statistic.
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The calculation below shows that if Z is a Gamma-distributed random variable
with parameters α > 1 and β , then E

�

1
Z

�

= β

α−1
.

E
�

1

Z

�

=

∫ ∞

0

1

z

βα

Γ(α)
zα−1e−βz dz

=
βα

Γ(α)
Γ(α− 1)
βα−1 s

∫ ∞

0

βα−1

Γ(α− 1)
zα−1−1e−βz dz

︸ ︷︷ ︸

=1

=
β

α− 1
.

We also have that 2βZ is χ2 distributed with 2α degrees of freedom.

Let us now consider the sum of n i.i.d exponentially distributed Poisson variables
Wi, each with intensity λ. This sum is Gamma-distributed with α = n and β = λ.

From the above we have that E
�

1
∑n

i=1 Wi

�

= λ
n−1

. Since λ̂ := n−1
∑n

i=1 Wi
is a statistic

based only on T (W) =
∑n

i=1 Wi , it follows from the sufficiency and completeness of
T (W), and theorem 7.5.5 on the previous page, that λ̂ is a UMVUE for E(λ̂) = λ.
Since

∑n
i=1 Wi is Gamma-distributed with parameters α = n and β = λ we have

that 2λ
∑n

i=1 Wi is χ2-distributed with 2n degrees of freedom. We can therefore
construct the following 1−% confidence interval for the parameter λ:







χ2
n, %

2

2
∑n

i=1 Wi
< λ <

χ2
n,1− %

2

2
∑n

i=1 Wi






.

Here χ2
n, %

2

and χ2
n,1− %

2

are the %
2

and 1− %
2

quantiles of the χ2 distribution with

2n degrees of freedom.

7.6 Estimation of shape and scale

7.6.1 Choice of estimation method

We initially considered four different estimators for the shape parameter ξ and
the scaling parameter β: the maximum likelihood estimatator (MLE), the method
of moment estimator (MOM), the probability-weighted moments (PWM) and the
elemental percentile method (EPM).
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The procedure for finding the MLE is based on solving the following equation for b
(see Zhang (2007)):

n−1
∑

i=1

(1− bX i)
−1−

 

1+ n−1
∑

i=1

log(1− bX i)
−1

!

= 0. (7.7)

Numerical methods for solving this equation do not always converge. Further-
more, for ξ in the range

�

−1
2
, 1

2

�

it was shown in Hosking (1987) that the MLE
does not display asymptotic efficiency even in samples as large as 500.

The method of moment estimators ξ̂MOM and β̂MOM is given by

ξ̂MOM =
�

x̄2/s2− 1
�

/2

and
β̂ = x̄

�

x̄2/s2+ 1
�

/2,

where x̄ and s2 are the sample mean and the sample variance. Both of these
estimators involve the second moment of the distribution. However, the second
moment of the generalized Pareto distribution does not exist if the shape parameter
ξ > 0.5. Intuitively this would make this method much less viable for ξ > 0.5 and
indeed, in the small-sample simulation study conducted in Castillo and Hadi (1997)
this method was found to be severely biased for ξ= 1 and ξ= 2.

The probability-weighted moment method (PWM) was introduced in
Greenwood et al. (1979) and is based on the quantities

Mp,r,s = E
�

X p {F(X )}r {(1− F(X ))}s
�

.

Let n be the number of observations and i = 1, 2, . . . , n.
Let γ ∈ (0,1) and δ > 0 be positive constants and pi:n =

i−γ
n+δ .

The estimators ξ̂PW M and β̂PW M are then given by

ξ̂PW M = 2−
x̄

x̄ − 2m
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and

β̂PW M =
2 x̄

x̄ − 2m
,

where m= n−1
∑n

i=1

�

1− pi:n
�

x i:n

(see Castillo and Hadi (1997).
This estimator also has its problems, since the PWM estimates do not exist for

ξ > 1. In Zhang (2007) this estimator was found to be “nearly efficient if ξ≈ 1
4

”,
but behaving poorly otherwise.

The last estimator we considered was the elemental percentile method (EPM)
described in Castillo and Hadi (1997). The algorithm for the elemental percentile
method is somewhat elaborate and is given in the appendix.

In the simulation study conducted in Castillo and Hadi (1997) this estimator was
found to outperform the PWM and the MOM for ξ = 1 and ξ = 2. Castillo and Hadi
did not consider the maximum likelihood method.

In Embrechts et al. (1999) the generalized Pareto distribution (GPD) was fitted to a
univariate version of the Danish fire insurance claims dataset. The estimate for ξ for
excesses above 10 was 0.618 (see page 332 in Embrechts et al. (1999)). For the ruin
probability the shape parameter is much more important than the scale parameter.
Taking 0.618 as an initial guess we conducted a simulation test to see how each one
of the methods described above performed. We simulated 50 variables from a GPD
distribution with the shape parameter ξ = 0.618 and the scale parameter β = 1,
and then estimated the shape parameter with each of the four methods. This was
repeated 100,000 times for each estimator. We found that the MOM in particular,
but also the PWM method had a substantial negative bias. Using a negatively biased
estimator of ξ is particularly bad in ruin estimation since underestimation of the
shape parameter ξ corresponds to underestimating the “heaviness” of the tail.

In our evalutation of the estimators we considered the bias and the root mean

square error (RMSE), defined as
q

n−1
∑n

i=1

�

ξ− ξ̂i

�2
, where ξ̂i is the i-th esti-

mate of ξ.
Although the root mean square error (RMSE) of the MOM and PWM estimators

were on par with that of the other two, because of the substantial negative bias
and the bias reported in studies like Castillo and Hadi (1997) we decided not to
use them. In our test the maximum likelihood method and the elemental percentile
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Method MLE MOM PWM EPM
Bias -0.046 -0.297 -0.122 0.046
RMSE 0.245 0.316 0.217 0.357

Table 7.1: Bias and RMSE for the MLE, MOM, PWM and EPM estimators of the
shape parameter

method had almost the same bias, but with different signs. The RSME was a little
lower for the MLE than for the EPM. Moreover, it turned out that the Danish data
set contained a number of repeated values, as seen in the table below, which made
the EPM estimator not viable, so we settled for the maximum likelihood method.

Positions building contents
08/31/1985 5.0000000 0.850000
09/29/1985 5.0000000 1.200000
02/21/1988 3.1055901 4.880213
06/24/1988 0.8873115 4.880213
04/03/1989 0.0000000 5.927180
09/29/1989 3.3869602 5.927180
04/26/1989 1.6934801 8.467401
08/04/1989 5.0804403 8.467401
09/25/1989 0.0000000 8.467401
03/25/1988 7.0984916 17.746230
05/17/1988 6.0425910 17.746230
06/05/1988 6.6548359 17.746230

Table 7.2: Repeated values in Danish multivariate dataset

We did ask McNeil why there were repeated values, but the response we got
was that he himself had asked the provider of the data about this, but never got a
reply.

Below are the histograms from the simulation experiment where we estimated
the shape parameter with sample size 50. The simulated variables had
ξ = 0.618,β = 1 and threshold τ = 10. We repeated this experiment 100,000 times
for each estimator.
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Figure 7.3: Histograms of the estimated value of the GPD shape parameters, from
the simulation experiment: In the upper left hand corner:Maximum
Likelihood estimations, upper right hand corner: Method of Moment
(MOM) estimations, lower left hand corner: probability-weighted mo-
ment (PWM) estimations, lower right hand corner: Elemental Percentile
Method estimations. From the histograms of the shape parameter we
see that the median of both the MOM and the PWM are significantly
below the real ξ-value 0.618. A calculation shows that the average of
the MOM and PWM estimates are also substantially below 0.618.
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7.6.2 Estimation

Using the maximum likelihood method as implemented in the evir R package we
obtained estimates of the shape parameters for damage to building and damage
to furniture. For 5 or fewer exceedances the MLE algorithm failed to converge in
both cases. A description from http://www.r-project.org/ of the function “gpd”
in the “evir” package is given below:

Description

Returns an object of class "gpd" representing the fit of a

generalized Pareto model to excesses over a high threshold.

Usage

gpd(data, threshold = NA, nextremes = NA, method = c("ml", "pwm"),

information = c("observed", "expected"), ...).

The choice of threshold is a trade off between bias (such a low threshold that the
GPD-distribution is not appropriate) and uncertainty of the estimate (estimating the
shape parameter based on a very small sample leads to a high degree of uncertainty
of the estimate).

100 90 81 72 63 54 45 36 27 18 9

−1

0

1

2

3

 4.76  5.06  5.55  5.86  7.21  8.25 10.70 16.90

Exceedances

S
h
a
p
e
 (

x
i)
 (

C
I,
 p

 =
 0

.9
5
)

100 90 81 72 63 54 45 36 27 18 9

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

 4.92  5.77  6.90  8.44  9.55 12.20 15.60 32.50

Exceedances

S
h
a
p
e
 (

x
i)
 (

C
I,
 p

 =
 0

.9
5
)

Figure 7.4: MLE Shape parameter plot for the building category on the left and
damage to furniture on the right. The dotted lines are one standard error
above and one standard error below the estimates. We see that for both
the building category and the furniture category the shape estimates
are reasonably stable for exceedances corresponding to thresholds less
than 11.
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In the plots of estimates of ξ for the building and furniture categories we see that
for small up to medium high thresholds the shape parameter estimates are smaller
than 1 for both categories. This was a necessary, but far from sufficient condition for
equation 7.6 on page 81 to be applicable. For thresholds around 10 the estimates
are fairly stable while we still have enough observations. Choosing 10 as threshold
we obtain results as shown in the following table:

Building Furniture Combined estimate
Exceedances 26 45
Shape parameter ξ 0.93 0.62 0.73
Standard error for ξ 0.32 0.23
Scale parameter β 3.39 5.41 4.68
Standard error for β 1.27 1.41
Intensity λ 2.32 4.02 3.17
95% conf. int. for λ (1.58, 3.42) (3.00, 5.40)
Clayton Lévy copula θ 0.36

Table 7.3: Estimates, standard errors and 95% confindence intervals, choosing
threshold 10. The combined estimate of ξ is the weighted average
(26∗0.93+45∗0.62)

26+45
. The combined estimate of β is a similarly weighted

average, while the combined estimate of λ is the plain average. The val-
ues for the intensities and their confidence intervals were obtained using
a year as the time unit and using the estimator described in section 7.5.1
on page 85.

For the weighted averages of the shape and scale parameters, we see that with
one exception the average is within one standard error of the individual esimtates.
The exception is the scale parameter of the building category. That is 1.02 standard
errors from the corresponding overall average. The assumption of common jump
distribution does therefore not seem unreasonable.

The above values for the intensities and their confidence intervals were obtained
using a year as the time unit and using the estimator described in section 7.5.1 on
page 85. This suggests that the assumption of equal intensities is not unreasonable.

In the above table the value 0.36 for the Clayton Lévy copula was obtained using
the other estimates and the algorithm described in section 6.4 on page 71 . We see
that the average intensity is well within the 95% confidence intervals for both the
building category and the furniture category. It is also just barely inside the 90%
confidence intervals (1.69, 3.23) for the the building category and (3.16, 5.17) for
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the furniture category. This suggests that the assumption of equal intensities is not
unreasonable.

In the above table the value 0.36 for the copula was obtained using the estimates
of all the other parameters and using the estimator described in section 6.4 on
page 71. This was an unexpectedly low estimate, but looking at the data we see
that only 4 times in the time period 1980-1990 covered by the dataset one and the
same fire led to damages over 10 million DKK in both the building category and the
furniture category.

Recall that in theorem 7.2.5 on page 80 we had a constant K̄ such that asymptot-
ically the ruin probability Ψ(x) as a function of the initial reserve x was:

Ψ(x)~
λ

c− 2λEY

�

β

ξ

�1/ξ

�

1
ξ
− 1
�

�

K̄ (ξ,θ) + 1
�

x−(1/ξ−1), x →∞ (7.8)

Here c is the premium rate, assumed to be greater than 2λEY .
As one of the steps in the derivation of equation 7.8 (see equation A.3 on

page 105) we have that, asymptotically,

L(w) :=
1

ξ

∫ w−1

1

y
θ
ξ
−1

�

y
θ
ξ +
�

w− y
�
θ
ξ

�
θ+1
θ

dy ~K̄(ξ,θ)w
−1
ξ . (7.9)

Here K̄ is the same K̄ as in equation 7.8.
We can find an approximate value for the constant K̄(ξ,θ) by inserting the

estimated ξ and θ , multiplying both sides of equation 7.9 by w
1
ξ and plotting

w
1
ξ L(w) for large w, as in the graph below.

93



0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0
.7

9
0

.8
0

0
.8

1
0

.8
2

plot of K with the estimated margin parameters

w

K

Figure 7.5: Plot of w
1
ξ L(w) for increasing w with estimated ξ and θ .

This plot can be used to find the value of K̄ , which is the asymptotic value of

w
1
ξ L(w) (see equation A.3 on page 105).

We see that w
1
ξ L(w) converges to about 0.83.

ξ β λ θ K̄
0.73 4.68 3.17 0.36 0.83

Table 7.4: Final estimates of the parameters

For ξ ∈ (0,1) the expectation of the generalized Pareto distribution defined in
equation 7.5 on page 81 can be calculated to be β

1−ξ .

Inserting all the estimated parameters as well as the value 0.83 for the K̄ we
finally obtain the asymptotic ruin probability
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Ψ(x)~
λ

c− 2λ β

1−ξ

�

β

ξ

�1/ξ

1
ξ
− 1

�

K̃ (ξ,θ) + 1
�

x−(1/ξ−1),

=
3.17

c− 2 ∗ 3.17 ∗ 4.68
1−0.73

�

4.68
0.73

�1/0.73

1
0.73
− 1

(0.83+ 1) x−(1/0.73−1),

≈
199.9

c− 109.9
x−0.37 (7.10)

for ruin due to the exceedances over 10 from either the building category or the
furniture category.

Here x is the initial reserve and c is the premium rate, assumed to be larger than
2λEY = 109.9.

Now let us investigate the sensitivity of K̄ and hence the ruin probability Ψ(x) to

changes in the copula parameter θ . Recall that w
1
ξ L(w) converges to K̄ as w→∞.

Figure 7.6 below is a plot of w
1
ξ L(w) vs θ for ξ= 0.73 and two very large values

of w. We see that K̄ , and hence Ψ(x), is quite sensitive to θ if θ is between 0 and
0.9. On the other hand K̄ is quite close to one in the entire range one to ten. Thus
except when the two risk processes are almost independent the ruin probability
Ψ(x) is quite robust for small changes in θ .
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Figure 7.6: On the left, plot of K̄ for θ ∈ (0, 1). On the right, plot of K̄ for θ ∈ (1, 10)

From these plots and the formula equation 7.8 on page 93 we conclude that
with a medium strong or strong dependency the ruin probability is about twice
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as large as the ruin probability with indepencence or extremely weak dependence
(0 ≤ θ ≤ 0.1). In general the plots suggest that for ruin estimation using the
model described in section 7.3 on page 81 the most crucial question is whether
the risk processes are independent or not. Once dependence is established the ruin
probability increases only slowly with the Clayton Lévy parameter θ .

7.6.3 Goodness of fit

To assess the goodness of fit we used the Anderson-Darling statistic A2 and the
Cramer-von Mises statistic W 2.

Both of these statistics are based on first finding the order statistics. Let n be the
number of observations.

Let x(1), . . . , x(n) be the order statistics and let

H(ξ,τ,β) = 1− (1+
ξ

β
(x−τ))−

1
ξ be the distribution function of the generalized

Pareto distribution.
Then, letting z(i) = H

�

x(i),ξ,τ,β
�

, the Anderson-Darling statistic A2 is defined
as follows:

A2 =−n−
1

n

n
∑

i=1

(2i− 1)
�

ln
¦

z(i)
©

+ ln
�

1− zn+1−i
	

�

and the Cramer-von Mises statistic W 2 is defined as

W 2 =
1

12n
+

n
∑

i=1

�

z(i)−
(2i− 1)

2n

�2

(see Choulakian and Stephens (2001)).

Asymptotic critical values for A2 and W 2 are found in the table below (taken
from Choulakian and Stephens (2001)), where k corresponds to −ξ in our parame-
terization.

Having chosen threshold 10 we have 26 observations from the building category
and 45 observations from the furniture category.

The Monte Carlo simulation study conducted in
Choulakian and Stephens (2001) indicated that the critical values have good
accuracy for n≥ 25, so these statistics should be viable in our case. To find critical
values at significance level 0.05 for ξ = 0.73 we used linear interpolation, as
suggested in Choulakian and Stephens (2001), and obtained the critical values
0.805 for A2 and 0.12 for W 2.
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Table 7.5: Asymptotic critical values for A2 and W 2

With threshold 10 and estimated values 0.73 for ξ and 4.68 for β , as found in
table 7.3 on page 92, we obtain the following values for A2 and W 2 for the building
category and the furniture category.

Category A2 W 2

critical (maximum) value 0.805 0.12
building 0.453 0.166
furniture 0.718 0.233

Table 7.6: A2 (Anderson-Darling) and W 2 (Cramer-von Mises) goodness of fit sta-
tistics for the building and furniture category
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We find that the fit is good enough to pass the Anderson-Darling test, but unfor-
tunately fails the Cramer-von Mises test.
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8
Conclusion, final remarks and topics

for future research

“Oft expectation fails, and most oft there Where most it promises; and
oft it hits Where hope is coldest, and despair most fits.”

From “All’s Well That Ends Well” by William Shakespeare

8.1 Lévy copula

8.1.1 Motivation

In Cont and Tankov (2004) the following motivation is given for introducing Lévy
copulas:

• “The construction allows one to choose any one-dimensional spectrally posi-
tive Lévy process for each of the components. In particular, it is possible to
couple a compound Poisson process with a process which has almost surely
an infinite number of jumps in every bounded interval.”

• “The range of possible dependence structures includes complete dependence
and independence with a smooth transition between these two extremes.”

• “The dependence can be modeled in a parametric fashion.”
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8.1.2 Shortcomings of Lévy copula

As warned in Baüerle (2007), the Lévy copula is not sufficient to characterize
all types of dependence. In particular the properties “conditionally increasing in
sequence (CIS) ” and “Multivariate total positivity of order 2” (MTP2) can not be
characterized. To see what this means we first need to introduce some concepts and
a little notation.

Definition 8.1.1: MTP2

Let X be a random vector X =
�

X1, . . . , Xn
�

on Rn with distribution P and a
probability density f with respect to a σ-finite 1product measure (if P is a
continuous distribution) or a counting measure (if P is a discrete distribution).
Let x∨ y signify

�

max{x1, y1}, . . . ,max{xn, yn}
�

and x∧ y signify
�

min{x1, y1}, . . . , min{xn, yn}
�

.
Then X (or f ) is said to be MTP2 if

f (x) f (y)≤ f (x∧ y) f (x∨ y) (8.1)

for all x,y ∈ Rn.

Definition 8.1.2: Usual stochastic order

We say that a function f : Rn→ R is bounded and increasing if f is bounded
and increasing in each component.

Let X and Y be random vectors on Rn. X and Y are said to be comparable
with respect to usual stochastic order (written X≤st Y) if
E f (X)≤ E f (Y) for all bounded increasing f : Rn→ R.

We say that X is stochastically increasing in Y, denoted X ↑st Y, if the conditional
distribution of X given Y= y is ≤st -increasing in y.

As a simple example suppose X=
�

X1, X2
�

is a random vector on R2 and that
−∞< τ1 < τ2 <∞. Then X2 ↑st X1 means that for all increasing and bounded

functions f , E
�

f (X2)
�

�X1 = τ1

�

≤ E
�

f
�

X2
�

�

�X1 = τ2

�

.

Definition 8.1.3: Conditionally increasing in sequence

A random vector X = (X1, . . . Xn) is said to be conditionally increasing in sequence
(CIS) if X i ↑st

�

X1, X2 . . . , X i−1
�

for all i = 2, . . . , n.

1Let
�

Ω,F ,ρ
�

be a measure space. ρ is σ-finite if there exists a countable family of measurable
subsets of Ω, A1, A2, . . ., such that ρ(Ak)<∞ for each k = 1,2, . . ..
ρ is a counting measure if ρ(E) =

∑

x∈E 1 for every E ∈ F .
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Example 8.1.4: CIS random vector

Let X=
�

X1, X2, X3
�

be a random vector with the CIS property.
Let x1, x2, x3, y1, y2, y3 be real constants such that x1 < y1, x2 < y2 and
x3 < y3. Then the CIS property gives that X3 ↑st

�

X1, X2
�

. Hence

E
�

X3|X1 = x1, X2 = x2
�

≤ E
�

X3|X1 = y1, X2 = y2
�

.

It can be shown that Lévy copulas unfortunately characterize neither C IS nor
M T P2. That is to say, as in the example given in section A.2 on page 107, it is
possible for a Lévy process Yt with both the MTP2 property and the CIS property to
have the same Lévy copula as another Lévy process Xt which is neither MTP2 nor
CIS.

8.2 Stable processes

As pointed out in example 5.4 in Cont and Tankov (2004) it is possible to spec-
ify dependence between the components of a two-dimensional stable process

Xt =
�

X (1)t , X (2)t

�

by means of the spherical measure (see theorem 3.4.2 on page 32).
In this case the Xt will also be a stable process. Unfortunately the class of depen-
dencies that can be modelled this way is quite small (see section 3.3.3 on page 30).
Modelling the dependence with a Lévy copula, however, makes it possible to specify
a much larger class of dependencies (although even this class is not exhaustive
(see section A.2 on page 107) ). Lévy copulas also allow model specification and
simulation of multi-dimensional Lévy processes having stable components with
different indexes.

8.3 Ruin probability

In chapter 7 we used a multivariate fire insurance dataset to estimate the parameters
for the ruin probability of ruin caused by large insurance claims. The claims of this
dataset are given in millions of danish kroner and adjusted for inflation.

We first estimated the parameters of the assumed common generalized Pareto
claim size distribution. To decide which estimators to use we tried 4 different
estimators on simulated observations from a generalized Pareto distribution. Since
the method of moment estimator and the probability-weighted method showed a
large bias and the Elemental Percentile method could not cope with the presence
of repeated values in the dataset, we decided on using the maximum likelihood
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estimator. Choosing threshold 10 we obtained point estimates 0.73 for the shape
parameter ξ and 4.68 for the scale parameter β . Choosing one year as the time unit
we then obtained the point estimate 3.17 for the intensity λ. Using as input these
estimated values as well as the dataset we obtained the estimate 0.36 for the Lévy
copula. This was a surprisingly low estimate, since we expected large claims from
the damage category and large values of the furniture category to be more strongly
correlated. Having estimated all the parameters in equation 7.6 on page 81 we
arrived at equation 7.10 on page 95, which give the ruin probability as a function
of the premium rate. Experimenting with different values of the Lévy copula we
found that the effect on the ruin probability from a shift from independence to
weak dependence was much greater than that from a shift from weak dependence
to medium or quite strong dependence (up to a value 10 for the Lévy copula).

Afterwards we looked at the goodness of fit of the generalized Pareto distri-
bution using the Anderson-Darling statistic and the Cramer-von Mises statistic.
The Anderson-Darling statistic suggested that the fitted model was adequate. The
Cramer-von Mises statistic, however, unfortunately does not give support to the
model. Indeed, a conservative minded person would certainly reject the ruin proba-
bility estimate of equation 7.6 on page 81 for the following reasons:

1. The model fitted poorly, as measured by the Cramer-von-Mises statistic, and

2. The estimated shape parameter ξ was too close to one rule out that ξ > 1
(which would violate the assumptions of theorem 7.2.5 on page 80).

If, on the other hand, one is willing to accept as much risk for underestimation
as overestimation, we believe equation 7.6 on page 81 can be regarded as a fair
estimate of the ruin probability.

8.4 Topics for future research

An obvious area of future research is to find estimators of the Lévy copula for more
general Lévy processes, not just compound Poisson processes. The usefulness of
Lévy copulas would no doubt be enhanced if more estimation algorithms were
developed.

The requirement of equal parameters for the two risk processes, which is the
basis of the ruin probability formulas given in chapter 7, seems very restrictive. A
natural topic for further research is to see if the requirement of equal parameters
can be loosened somewhat.
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A
Proofs of some results

A.1 Proof of ruin probability theorem

In this section we give a proof of theorem 7.2.5 on page 80.

Proof: From proposition 7.2.2 on page 79 we have that

I ′1(z) =

∫ z

0

�

F̄θ (z− x)

F̄θ (z− x) + F̄θ (x)

�

θ + 1

θ
F(dx),

F̄(x) =







�

1+ ξ
β
(x −τ)

�−1/ξ
if x > τ,

1 otherwise, and

f (x) =
1

β

�

1+
ξ

β
(x −τ)

�−(1+1/ξ)

1{x>τ}.

If 0< x < z−τ and z > 2τ then
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I ′1(z) =

∫ z−τ

τ









h

1+ ξ
β
(z− x −τ)

i−θ/ξ

�

1+ ξ
β
(z− x −τ)

�−θ/ξ
+
�

1+ ξ
β
(x −τ)

�−θ/ξ









θ+1
θ

×
1

β

�

1+
ξ

β
(x −τ)

�−(1+1/ξ)

dx

+

∫ z

z−τ









1

1+
�

1+ ξ
β
(x −τ)

�−θ/ξ









θ+1
θ

1

β

�

1+
ξ

β
(x −τ)

�−(1+1/ξ)

dx

=
1

β

∫ z−τ

τ

�

1+ ξ
β
(x −τ)

�
θ
ξ
−1

�

�

1+ ξ
β
(x −τ)

�θ/ξ
+
�

1+ ξ
β
(z− x −τ)

�θ/ξ
�
θ+1
θ

dx

︸ ︷︷ ︸

r(z)

(A.1)

+

∫ z

z−τ

1
β

�

1+ ξ
β
(x −τ)

�−(1+1/ξ)

�

1+
�

1+ ξ
β
(x −τ)

�−θ/ξ
�
θ+1
θ

dx

︸ ︷︷ ︸

s(z)

.

We obviously have that

s(z)<

∫ z

z−τ

1

β

�

1+
ξ

β
(x −τ)

�−(1+1/ξ)

dx <
τ

β

�

1+
ξ

β
(z−τ)

�−(1+1/ξ)

,

so that s(z) = o
�

z−1/ξ
�

.

Now let y := 1+ ξ
β
(x −τ) and w := 2+ ξ

β
(z−τ).

Then dx
dy
= β
ξ

and

1+
ξ

β
(z− x −τ) = 2+

ξ

β
(z−τ)− y = w− y. (A.2)

With a change of integral variable from x to y in equation A.1 we have that
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r(z) =
1

ξ

∫ 1+ ξ
β
(z−2τ)

1

y
θ
ξ
−1

�

y
θ
ξ +
�

2+ ξ
β
(z−τ)− y

�
θ
ξ

�
θ+1
θ

dy.

=
1

ξ

∫ w−1

1

y
θ
ξ
−1

�

y
θ
ξ +
�

w− y
�
θ
ξ

�
θ+1
θ

dy.

Let

L(w) :=
1

ξ

∫ w−1

1

y
θ
ξ
−1

�

y
θ
ξ +
�

w− y
�
θ
ξ

�
θ+1
θ

dy. (A.3)

Then for any t > 0

L(tw) :=
1

ξ

∫ tw−1

1

y
θ
ξ
−1

�

y
θ
ξ + (tw− y)

θ
ξ

�
θ+1
θ

dy

=
1

ξ
t−1/ξ

(

∫ 1

1/t

+

∫ w−1

1

+

∫ w−1/t

w−1

)

x
θ
ξ
−1

�

x
θ
ξ + (w− x)

θ
ξ

�
θ+1
θ

dx

:= L1(w) + L2(w) + L3(w).

We see that L2(w) = t−1/ξL(w).

Since

|L1(w)|<

�

�

�

�

�

1

ξ
t−1/ξ

∫ 1

1/t

1

(w− 1)
θ
ξ
+ 1
ξ

dx

�

�

�

�

�

<

�

�

�

�

1

ξ
t−1/ξ(1− 1/t)(w− 1)−(

θ+1
ξ
)
�

�

�

�
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and

|L3(w)|<

�

�

�

�

�

1

ξ
t−1/ξ

∫ w−1/ξ

w−1

x−1/ξ−1 dx

�

�

�

�

�

<

�

�

�

�

1

ξ
t−1/x i(

1

ξ
− 1)(w− 1)−

1
ξ
−1
�

�

�

�

,

both L2(w) and L3(w) are o(w−1/ξ).

Thus

L(tw) = t−1/ξ
�

o
�

w−1/ξ
�

+ L(w)
�

,

so asymptotically L(w)ö K̄w−1/ξ for some K̄(ξ,θ).

We thus have that

I ′1(z)ö L
�

2+
ξ

β
(z−τ)

�

ö
�

2+
ξ

β
(z−τ)

�−1/ξ

K̄(ξ,θ)

ö K̄(ξ,θ)
�

β

ξ

�1/ξ

z−1/ξ.

Furthermore, from proposition 7.2.2 on page 79, we have that I ′2(z)~F̄(z)

and I ′3(z)~o(I1(z)). Since F̄(z)~
�

ξ

β

�1/ξ
we get that asymptotically

U(z)+~
�

ξ

β

�1/ξ �
K̄(ξ,θ)z−1/ξ+ 1

�

.

If 1/ξ > 1 then by equation 7.1 on page 78
(see remark 2.12 in Bregman and Klüppelberg (2005)) we also have the
following result for the ruin probability:

Ψ(x)~
λ

c− 2λEY

�

β

ξ

�1/ξ

1
ξ
− 1

�

K̄ (ξ,θ) + 1
�

x−(1/ξ−1), x →∞. (A.4)

Here x is the initial reserve, ξ and β are the parameters of the generalized Pareto
claim distribution, θ is the Clayton Lévy copula parameter and K̄ is a constant
depending on ξ and θ , but not on x .
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A.2 Lévy copulas characterize neither MTP2 nor CIS

Example A.2.1: Different properties in spite of same Lévy copula

Let Xt =
�

X (1)t , X (2)t

�

be a 2-dimensional compound Poisson process with

νX =
1

3
t
�

δ(1,0)+δ(2,1)+δ(3,3)

�

. (A.5)

Let Yt =
�

Y (1)t , Y (2)t

�

be a 2-dimensional compound Poisson process with

νY =
1

3
t
�

δ(1,1)+δ(2,2)+δ(3,3)

�

. (A.6)

Note that the jumps of X (1) are completely dependent on the jumps of X (2)

and that the jumps of Y (1) are completely dependent on the jumps of Y (2).
It can be shown (see proposition 5.4 in Cont and Tankov (2004)) that if the

jumps of two-dimensional Lévy process are positive and completely dependent
then F(x1, x2) :=min(x1, x2) is a possible Lévy copula. We therefore have that
F(x1, x2) :=min(x1, x2) is a possible Lévy copula for both Xt and Yt .

We now go on to show that Yt has the MTP2 and the CIS property, while Xt is
neither MTP2 nor CIS.

It follows from equation A.6 that jumps of the two components of Yt are of
the same size a.s.

We hence have that P
�

Y (1)t = u1, Y (2)t = u2

�

P
�

Y (1)t = v1, Y (2)t = v2

�

> 0
implies that u1 = u2 and v1 = v2.

With u1 = u2 and v1 = v2 we have that

P
�

Y (1)t =min
�

u1, v1
�

, rvY (2)t =min
�

u2, v2
�

�

P
�

Y (1)t =max
�

u1, v1
�

, Y (2)t =max
�

u2, v2
�

�

= P
�

Y (1)t =min
�

u1, v1
�

, Y (2)t =min
�

u1, v1
�

�

P
�

Y (1)t =max
�

u1, v1
�

, Y (2)t =max
�

u1, v1
�

�

= P
�

Y (1)t = u1, Y (2)t = u1

�

P
�

Y (1)t = v1, Y (2)t = v1

�

= P
�

Y (1)t = u1, Y (2)t = u2

�

P
�

Y (1)t = v1, Y (2)t = v2

�

.

Hence Yt satisfies equation 8.1 on page 100 and thus has the MTP2 property.
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We also have that, for every bounded and increasing function

f : R→ R, E
�

f (Y (2)t |Y
(1)
t = y

�

= y , so clearly Yt also has the CIS property.

We will now show that Xt is neither MTP2 nor CIS,
Let u1 = 3, u2 = 3, v1 = 4 v2 = 2 and t > 0.
We then have that
P
�

X (1)t = 3, X (2)t = 3
�

P
�

X (1)t = 4, X (2)t = 2
�

> 0.
On the other hand

P
�

X (1)t =min(3,4), X (2)t =min(3,2)
�

P
�

X (1)t =max(3,4), X (2)t =max(3,2)
�

= P
�

X (1)t = 3, X (2)t = 2
�

P
�

X (1)t = 4, X (2)t = 3
�

= 0 ∗ P
�

X (1)t = 4, X (2)t = 3
�

= 0,

so Xt does not have the MTP2 property.
Now fix t = 1. From equation A.5 on the previous page and definition 4.1.5

on page 36 wee see that Xt has the intensity λ= 1.
Let N be the number of jumps occurring before or at t = 1.
We have that

P
�

X (1)1 = 3
�

= P
�

X (1)1 = 3|N = 1
�

P (N = 1) +P
�

X (1)1 = 3|N = 2
�

P (N = 2)

+ P
�

X (1)1 = 3|N = 3
�

P (N = 3)

=
1

3

�

e−1
�

+ 2
�

1

3

�2 e−1

2!
+
�

1

3

�2 e−1

3!

= e−1







1

3
+
�

1

3

�2

+

�

1
3

�2

3!







(A.7)

and

108



P
�

X (1)1 = 4
�

= P
�

X (1)1 = 4|N = 2
�

P (N = 2) + P
�

X (1)1 = 4|N = 3
�

P (N = 3)

+ P
�

X (1)1 = 4|N = 4
�

P (N = 4)

=

�

�

1

3

�2

+ 2
�

1

3

�2
�

e−1

2!
+ 3
�

1

3

�3 e−1

3!
+
�

1

3

�4 e−1

4!

= e−1
�

1

3
+

1

54
+

1

34

1

3!

�

. (A.8)

Let f (x) := 1x≥3.
Making use of equations A.7 to A.8 on pages 108–109 we have that

E
�

f
�

X (2)1

�

X (1)1 = 3
�

= E
�

1X (2)1
|X (2)1 = 3

�

= P
�

X (2)1 ≥ 3|X (1)1 = 3
�

=
P
�

X (1)1 = 3, X (2)1 = 3
�

P
�

X (1)1 = 3
�

=
P
�

X (1)1 = 3, X (2)1 = 3|N = 1
�

P (N = 1)

P
�

X (1)1 = 3
�

=
1
3
e−1

= e−1

¨

1
3
+
�

1
3

�2
+
�

1
3

�2

3!

« =
18

25
= 0.72.

We also have that
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E
�

f
�

X (2)1

�

|X (1)1 = 4
�

= E
�

1X (2)1
|X (2)1 = 4

�

= P
�

X (2)1 ≥ 3|X (1)1 = 4
�

=
P
�

X (1)1 = 3, X (2)1 = 4
�

P
�

X (1)1 = 4
�

=
P
�

X (1)1 = 3, X (2)1 = 3|N = 2
�

P (N = 2)

P
�

X (1)1 = 4
�

=
2
�

1
3

�2
e−1

e−1
n

1
3
+ 1

54
+ 1

34
1
3!

.
o =

27

43
≈ 0.63.

Since E
�

X (2)1 |X
(1)
1 = 3

�

> E
�

X (2)1 |X
(1)
1 = 4

�

X1 does not have the CIS property.
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B
Algorithm of the Elemental Percentile

Metod

Taken from Castillo and Hadi (1997).
In Castillo and Hadi (1997) the distribution function of the generalized Pareto

distribution with shape parameter ξ 6= 0 is written as

F(x) = 1−
�

1−
x

δ

�1/k
,

where k corresponds to −ξ in our parameterization in chapter 7.
Let x(1), x(2), . . . , x(n) be the ordered observations.

Let pi:n =
i−γ
n+η

and Ci = ln
�

1− pi:n
�

.
Here γ ∈ (0,1) and η > 0 are positive constants.
In the simulation study conducted in Castillo and Hadi (1997), setting γ = 0 and

η= 1 were found to give the best results.
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Let

ln
�

1−
x i:n

δ

�

= kCi (B.1)

and

ln
�

1−
x j:n

δ

�

= kC j

be a system of two equations and two unknowns.
Eliminating k we obtain

Ci ln
�

1−
x j:n

δ

�

= C j ln
�

1−
x i:n

δ

�

. (B.2)

Eliminating δ we obtain

x i:n

h

1−
�

1− p j:n

�k
i

= x j:n

h

1−
�

1− pi:n
�k
i

. (B.3)

Note that each of equations B.2 and B.3 are functions of only one unknown
variable, and as shown in Castillo and Hadi (1997), can be solved numerically with
a bisection method. After solving equations B.2 to B.3 we obtain a corresponding
estimator k̂(i, h) for k given by

k̂(i, j) =
ln
�

1−x i:n

δ̂(i, j)

�

Ci
. (B.4)

An estimator of β can then be computed as

β̂(i, j) = k̂(i, j)δ̂(i, j). (B.5)

Algorithm 1

1. Select any two distinct order statistics x i:n < x j:n, and compute Ci and C j . Let
d = C j x i:n− Ci x j:n.

112



2. If d = 0, then let δ̂(i, j) =±∞ and k̂(i, j) = 0.

3. Compute δ0 = x i:n x j:n

�

C j − Ci

�

/d. If δ0 > 0, then δ0 > x j:n (a proof can
be found in Castillo and Hadi (1997)). Thus use the bisection method on the
interval [x j:n,δ0] to obtain a solution δ̂(i, j) of equation B.2 on the facing
page and go to Step 5; if δ0 < 0 go to Step 4.

4. Use the bisection method on the interval [δ0, 0] to solve equation B.2 on the
preceding page and obtain δ̂(i, j).

5. Use δ̂(i, j) to compute k̂(i, j) and β̂(i, j) by means of equation B.5 on the
facing page.

Algorithm 2

1. Use Algorithm 1 to compute k̂(i, j) and β̂(i, j) for all distinct pairs
x i:n < x j:n.

2. Use the median of each of the foregoing sets of estimators to obtain corre-
sponding overall estimators of k and β; that is

k̂EPM = median
�

k̂(1,2), k̂(1,3), . . . , k̂(n− 1, n)
�

and

β̂EPM = median
�

β̂(1,2), β̂(1,3), . . . , β̂(n− 1, n)
�

.
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