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Abstract 

Multi-proxy studies are becoming increasingly common in palaeolimnology. Eight basic requirements 
and challenges for a multi-proxy study are outlined in this essay – definition of research questions, 
leadership, site selection and coring, data storage, chronology, presentation of results, numerical tools, 
and data interpretation. The nature of proxy data is discussed in terms of physical proxies and biotic 
proxies. Loss-on-ignition changes and the use of transfer functions are reviewed as examples of 
problems in the interpretation of data from multi-proxy studies. The importance of pollen analysis and 
plant macrofossil analysis in multi-proxy studies is emphasised as lake history cannot be interpreted 
without knowledge of catchment history. Future directions are outlined about how multi-proxy studies 
can contribute to understanding biotic responses to environmental change. 
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Introduction 

Ecosystems can be thought of as an almost infinite network of interactions among biotic and abiotic 
components balanced between internal and external driving factors. In a stable ecosystem the 
interactions are in balance, but when they become unbalanced the character of the ecosystem will 
change. The change may be small or substantial and may occur suddenly in a short time or slowly over 
an extended period. A rapid change occurring at present may be monitored by regular observations. 
However, many changes have been proceeding over a long period before observation was possible, and 
some rapid and extensive changes have occurred far back in the past. In order to study the dynamics of 
these ecosystems we have to look back into the past by using the record of changes in fossil organisms 
and sediment characteristics (‘proxy’ data) to reconstruct past ecosystems and biotic responses. 
Because of the complex network of interactions throughout the ecosystem, it is desirable to study as 
many proxies as possible in order to gain a wider overview of the situation than could be acquired from 
a single proxy (Smol 2002; NRC 2005). Such an investigation is called a multi-proxy study. In this 
essay about multi-proxy studies we shall concentrate on lake-sediment studies (palaeolimnology) in 
temperate areas, although one should be aware that successful multi-proxy studies have been carried 
out on peats (e.g. Booth and Jackson 2003; Pancost et al. 2003; Booth et al. 2004; Chambers and 
Charman 2004; Charman and Chambers 2004; Mighall et al. 2004), dendrochronological series (e.g. 
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McCarroll et al. 2003), archaeological sites (e.g. Clark 1954; Wasylikowa et al. 1985; Davies et al. 
2004; Selby et al. 2005), salt-marsh sediments (e.g. Gehrels et al. 2001), freshwater-marsh sediments 
(e.g. Finkelstein et al. 2005), and marine sediments (e.g. Andersson et al. 2003; Risebrobakken et al. 
2003; Haug et al. 2005), and in tropical (e.g. Verschuren et al. 2000; Vélez et al. 2005) and extreme 
polar (e.g. Birks et al. 2004; Hodgson et al. 2005) environments. 

The earliest multi-proxy studies, reviewed by Wright (1966) and Birks and Birks (1980), used the 
palaeolimnological record to test ideas of lake ontogeny and biotic responses over time to external 
perturbations and internal processes. Although these studies used selected taxa and proxies and there 
was little or no statistical or numerical analyses, they provided elegant and carefully argued narratives, 
emphasising limnological processes and the role of catchment changes on lake dynamics. They are 
major contributions and in many ways they present a challenge to palaeolimnologists today to make 
further advances in our understanding of lake development and dynamics (Deevey 1984; Likens 1985). 
In palaeolimnological studies these days, a multi-proxy approach is the norm, but the aims of 
investigating ecosystem dynamics have turned more towards the reconstruction of past environments 
and climate changes (Lotter 2003). The synthesis of multi-proxy results in successful studies exceeds 
the sum of the component parts. However, as knowledge and experience expand, problems have 
become apparent in the use of some of these component parts for ecosystem reconstruction.  

Extensive and detailed reviews of multi-proxy studies in palaeolimnology and palaeoecology 
include Wright (1966), Birks and Birks (1980), Delcourt and Delcourt (1991), Smol (2002), Cohen 
(2003), Lotter (2003), Pienitz et al. (2004), and NRC (2005). The four volumes on palaeolimnological 
methods edited by Last and Smol (2001a, 2001b) and Smol et al. (2001a, 2001b) provide detailed 
accounts of the full range of field and analytical techniques currently available in palaeolimnology. 

The essential aspect of any multi-proxy study is that several proxies are used simultaneously to 
address the aims of the project. The methods used will, of course, be related to the research question 
under investigation. The study of lake sediments can be directed towards reconstructions of the aquatic 
environment and/or of the terrestrial catchment of the lake, even including the regional landscape 
beyond the catchment. The factors or processes behind the reconstructed changes (patterns) in the lake 
ecosystem can be sought in terms of causal processes such as changes in climate, both temperature and 
precipitation, or human activity that affect most aspects of lake ecosystem functioning. Often, more 
specific questions are asked concerning both natural and human-induced changes in lake-water quality 
and catchment characteristics, especially changes in vegetation and the catchment that affect the lake 
either directly or indirectly (Birks et al. 2000; Lotter and Birks 2003).  

The results of a multi-proxy study are usually presented and discussed in a descriptive or narrative 
way (Birks 1993a), using all the lines of evidence to reconstruct the past ecosystem and to deduce the 
range of changes it has undergone. The value of any multi-proxy study clearly rests on the reliability of 
the proxies used to reconstruct the past environmental conditions. Different proxies reflect a range of 
spatial scales and show different strengths and weaknesses. By combining proxies, strengths can be 
exploited and weaknesses can be identified (Mann 2002). However, weaknesses exposed by multi-
proxy studies should not be ignored. They demonstrate shortcomings in methodology and resolution, 
limitations in taxonomic identifications, lack of understanding of the taphonomy of fossils, and gaps in 
our knowledge of the relationships of proxies, both biological and physical, to environmental factors. 
Thus important new lines of research may be stimulated. 

There have been many major advances in palaeolimnology in the last 25 years, as reviewed by Smol 
(2002). In the context of multi-proxy studies discussed here there have been at least six major areas of 
development: (1) the study of new proxies such as stable isotopes, near-infrared spectroscopy, organic 
chemistry and bio-markers, chironomids, and organic contaminants; (2) improved chronological tools 
including the discovery of lakes with annually laminated sediments, and improvements in 14C dating, 
14C calibration, and 210Pb dating; (3) increasing use of quantitative methods for summarising patterns in 
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complex stratigraphical data and for deriving transfer functions to reconstruct quantitatively past 
environmental variables from biological proxy data; (4) increasing fine-resolution studies, often 
utilising laminated sediments; (5) increasing concern for careful and rigorous project design, site 
selection, and hypothesis testing; and (6) an emphasis, perhaps an over-emphasis, on 
palaeoenvironmental reconstructions and a corresponding neglect of lake biotic responses to changing 
internal or external factors, of lake dynamics and processes, and of the underlying biology and ecology 
of the organisms preserved as proxy records in lake sediments. The aim of this essay is to outline some 
of the methodological and conceptual aspects and challenges of multi-proxy studies in 
palaeolimnology. It makes no attempt to be exhaustive and inevitably reflects our personal interests and 
biases, particularly towards quantitative approaches and recent (last 100-300 years), Holocene, and late-
glacial palaeolimnology, our research experiences in temperate areas, and our collaborations with 
colleagues in the UK, Fennoscandia, USA, Canada, The Netherlands, and Switzerland. 

 

Basic requirements and challenges for a multi-proxy study 

1. As in any scientific investigation, clear research questions are needed at the outset that the study 
aims to address. This is especially important in multi-proxy studies as they inevitably involve several 
scientists collecting a large amount of data. This process is often very time-consuming and therefore 
expensive in time, effort, and resources. 

2. A good leader is required, with effective communication and co-ordination skills, a broad 
knowledge, a flexible approach, and an enthusiasm and determination to synthesise and publish the 
results. Multi-proxy studies accumulate large amounts of data (e.g. an estimated 25,000 data points 
were collected in the Kråkenes Project; Birks et al. 1996, 2000; Birks and Wright 2000). Thus the 
project has to be carefully planned and co-ordinated from the outset so that all the data are available to 
all the participants at the synthesis and writing-up stages. A major benefit from a well co-ordinated 
study is that all the participating scientists are involved and cross-disciplinary links and collaboration 
can be established. 

 3. Because so much work goes into a multi-proxy study it is vital that the site or sites for 
investigation are chosen in locations that will potentially provide answers to the original aims of the 
project. Once a site is chosen, the collection of the sediments must be done in the most careful and 
precise way possible from an appropriate place in the lake. It is vastly preferable to undertake all the 
analyses on one core, as precise correlations can then be made between proxy records. It is therefore 
worth spending time on site selection, establishing the basic morphometry and sediment stratigraphy of 
the basin, and obtaining continuous  large-diameter (10-11 cm) cores (e.g. Nesje 1992) or a series of 
overlapping large-diameter cores (e.g. Cushing and Wright 1965). Such cores usually provide enough 
material for the majority of analyses to be performed, but perhaps not enough for studies of fossil 
beetles or some organic bio-markers. If more than one core is required, (e.g. a central core in deep 
water and a littoral core in shallow water, or a transect of cores) then the cores should be correlated as 
precisely as possible. This can be done using sediment lithology and comparison of percent loss-on-
ignition or magnetic susceptibility measurements. If several lakes are to be investigated, the cores can 
be correlated using dating techniques (14C, 210Pb, tephra) or by correlating events in a regional proxy 
record such as anemophilous pollen, tephra, or atmospheric contanimnants such as spaeroidal 
carbonaceous particles. 

In practice there are three sampling and analytical situations in a multi-proxy study – (1) the 'ideal' 
situation where all the analyses of the various proxies are made at the same levels in the same core, (2) 
the 'worst' situation where the analyses are made at different levels in two or more cores from the same 
part of the basin, and (3) the 'compromise' situation where different proxies are studied at different 
levels but in the same core. To help alleviate the 'worst' situation, reliable core correlation can often be 
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achieved using sequence-slotting procedures (Birks and Gordon 1985; Thompson and Clark 1989) or 
other numerical procedures (Kovach 1993) with percent loss-on-ignition [percentage weight loss 
after burning at 550 or 900◦C], magnetic susceptibility, and other sedimentary variables as the basis 
for core comparison and correlation. In the 'compromise' situation of sampling different levels in the 
same core, it may be necessary to interpolate the different data sets to constant sampling interval or 
temporal resolution to permit various types of time-series analysis (Birks 1998) and to allow 
comparisons between different proxies. A wide range of interpolation procedures is available (Davis 
2002; Weedon 2003). They all inevitably result in some loss of information and temporal resolution. 
The interpolation approach adopted depends very much on the research questions under study. 

4. Because so many data are collected, it is important to store and co-ordinate them efficiently. A 
multi-proxy relational data-base (e.g. Juggins 1996) ensures compatibility and consistency between 
data types and provides a rapid and effective means of bringing together, comparing, and cross-
correlating different proxy records within and between cores. It provides archival and research tables 
of, for example, basic core data, physical and chemical variables, biological data, chronological 
information, age–depth model results, and correlations. A data-base allows rapid retrieval of data and 
provides the basis for subsequent data manipulation and output for further analysis. 

5. For almost all multi-proxy studies a reliable chronology is essential. This is usually provided by 
high-resolution radiocarbon dating, preferably AMS 14C dating of carefully determined terrestrial plant 
material (e.g. Gulliksen et al. 1998). Recent sediments can be dated by the 210Pb method and associated 
radiometric techniques involving 137Cs and 241Am (e.g. Appleby 2004) and age-depth models of recent 
peat profiles have been made by 14C dating (Goslar et al. 2005). In rare instances, lake sediments may 
be annually laminated and an absolute, or at least a 'floating' absolute, chronology can be established 
(e.g. Bradbury and Dean 1993; Anderson et al. 1995, 1996; Ralska-Jasiewiczowa et al. 1998, 2003; 
Lotter 1999, 2001; Smith et al. 2004) and used to establish rates of compositional change in different 
proxies (e.g. Lotter et al. 1992), to detect decadal or even annual environmental changes (e.g. Smith et 
al. 2004), and to infer catchment–lake interactions at a decadal scale (Anderson et al. (1995, 1996). 

6. Clear presentation of the wealth of results from a multi-proxy study is necessary. An important 
first step, essential if the data-sets are from different cores, is to establish age–depth models for each 
core, so that all the data can be plotted on a comparable age basis. Calibration of radiocarbon dates into 
calendar years is needed to provide a linear age scale into which other chronologies (e.g. 210Pb) can be 
combined. Techniques for radiocarbon calibration (e.g. Buck and Millard 2004) and the underlying 
radiocarbon calibration data-sets (Reimer et al. 2005) are continually evolving. There are many 
approaches to age–depth modelling (e.g. Bennett 1994; Telford et al. 2004b; Heegaard et al. 2005), all 
with strengths and weaknesses. The limiting factor of all age–depth models is the number and reliability 
of the available radiocarbon or other radiometric dates (Telford et al. 2004b). 

Once a robust and realistic age–depth model is established, the variables from the core(s) can be 
plotted stratigraphically using computer software such as TILIA, TILIA.GRAPH, and TGView 
(Grimm 1991-2004) or PDP (Palaeo Data Plotter, Juggins 2002), now superseded by C2 (Juggins 
2003). These programs allow stratigraphical variables with different sampling intervals to be plotted on 
a common depth or age basis (e.g. Oldfield 1996) or stratigraphical variables with different sampling 
intervals and from different sites or cores to be plotted on a common age basis (e.g. Oldfield 1996). 

7. Numerical techniques for detecting the major patterns of variation in a range of stratigraphical 
data, often consisting of a large number of variables, and for summarising the main stratigraphical 
patterns are an invaluable tool in synthesising data in multi-proxy studies. The major numerical 
techniques are reviewed by Birks (1998). A valuable philosophical concept is the principle of 
parsimony and hence the statistical concept of the 'minimal adequate model' in numerical analysis and 
model selection (Crawley 1993).  

There are three classes of numerical techniques that are useful for analysing multivariate multi-
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proxy stratigraphical data.  Independent zonations of different stratigraphical proxies (e.g. pollen, 
diatoms, chironomids, sediment geochemistry) using Gordon's (1982) optimal, non-hierarchical 
partitioning (see also Birks and Gordon 1985) and subsequent comparisons of the various partitionings 
with the broken-stick model (Bennett 1996) will detect the minimal number of potentially 'significant' 
zones. Zonation schemes based on different proxies can then be compared visually (e.g. Lotter and 
Birks 2003) or statistically (e.g. Gardiner and Haedrich 1978). Sequence-splitting (Walker and Wilson 
1978; Walker and Pittelkow 1981) is a potentially valuable tool for summarising multi-proxy data. It 
was developed for pollen-stratigraphical data and it has not, as far as we know, been applied in 
palaeolimnology. It 'zones' each stratigraphical variable (like individual pollen taxa) into sections with 
distinct but homogenous means and standard deviations. The statistical significance of each split is 
tested (Walker and Wilson 1978) and the occurrence of all splits in time can be tested statistically 
(Gardiner and Haedrich 1978). Birks and Gordon (1985) discuss the approach in detail and Birks and 
Line (1994) present a palaeoecological application involving statistical testing within and between 
sequences. The procedure requires statistically independent stratigraphical variables (like accumulation 
rates). A simple way of transforming relative percentage stratigraphical data into independent variables 
is to represent them as principal component or correspondence analysis axes that are, by definition, 
orthogonal and uncorrelated.  Each axis can be used as a variable in sequence splitting. The temporal 
occurrence of significant splits in the data can then be compared with the occurrence of splits in other 
data-sets from the same core, thereby identifying consistent periods of change in different individual 
proxy variables. 

Ordination techniques (e.g. principal components analysis, correspondence analysis) provide 
valuable summaries of the major stratigraphical patterns in a particular palaeolimnological variable 
(e.g. diatoms), particularly when the sample scores on ordination axes 1, 2, etc. are plotted 
stratigraphically. Such plots (e.g. Ammann et al. 2000; Birks et al. 2000; Birks and Birks 2001; Lotter 
and Birks 2003) highlight the major patterns of variation, and illustrate and summarise the nature of the 
temporal changes. It is most parsimonious to consider only those ordination axes that are statistically 
significant, namely that have eigenvalues larger than expected under the broken stick model (Jolliffe 
2002; Jackson 1993). For biological data, detrended correspondence analysis (DCA) (Hill and Gauch 
1980) is preferable because the sample scores are scaled in 'standard deviation' units of compositional 
change or turnover (β-diversity). It is thus possible to obtain a graphical summary of the magnitude of 
compositional change within a stratigraphical proxy (like chironomids) and between stratigraphical 
proxies (e.g. chironomids, pollen, diatoms) from the same stratigraphical sequence (e.g. Birks et al. 
2000; Birks and Birks 2001). When interest is focussed on the magnitude of compositional change in a 
group of organisms over a specific time interval between sites, a series of constrained DCCAs (= 
detrended canonical correspondence analysis with detrending by segments and non-linear rescaling: ter 
Braak 1986) using sample age as the constraining variable can be made and the estimates of 
compositional change for the time interval at each site can be mapped and compared (e.g. Smol et al. 
2005). 

8. Interpretation and publication of the large amounts of data resulting from a multi-proxy study are 
major challenges. Firstly, there is often too much data to assimilate readily and it is here that numerical 
techniques for data summarisation are their most useful and powerful (see above, Birks 1998 and 
Bradshaw et al. 2005a). Secondly, there is the challenge to avoid the natural tendency to believe that 
one type of proxy is, in some way, more reliable or more informative than another proxy record, and 
hence to give subconsciously greater weight to some proxies than to others. Thirdly, it is a major 
challenge to avoid the 'reinforcement syndrome' (Watkins 1971; Thompson and Berglund 1976; 
Bennett 2002). This syndrome was articulated in the field of palaeomagnetism when Watkins (1971) 
wrote "It is infinitely more difficult, if not impossible, to prove that a given magnetic field behaviour 
has not taken place, than to 'show' it has occurred. Superimposed on this is an important human 
element: it is far more reasonable to generate the energy and the belief (? faith) required for publication 



 
 

6

of data confirming a discovery than to publish more negative data of a pedestrian nature. Thus the 
initial discovery is reinforced." In palaeolimnology there is a tendency to try to match small changes in 
proxy data-sets ('signal') to fit or to confirm the current paradigm or model and to ignore the other, 
perhaps equally large, changes as 'noise'. To avoid the reinforcement syndrome it is important to let the 
data speak for themselves. Lotter et al. (1995) and Ammann et al. (2000) provide striking examples 
where numerical techniques helped the data to speak for themselves. The relative sensitivities of 
different proxies were revealed and the presence or absence of lags in biotic response to rapid climate 
change could be assessed. An invidious effect of the reinforcement syndrome is so-called publication 
bias (Möller and Jennions 2001; Meiri et al. 2004) where only confirmatory results are published, 
especially in so-called 'high-impact journals' and non-confirmatory results are published in other 
journals or, worst of all, are never published. As Watkins (1971) noted, "it would be instructive to 
compile examples of other applications of this 'reinforcement syndrome' to see if there are any natural 
laws governing the blossoming or survival of possibly spurious, or at least only partially correct, 
observations or ideas." Examples of this syndrome may exist in the palaeoclimatological literature 
concerning, for example, cycles or periodicities in Holocene climatic change, and the global extent of 
rapid and short-lived climatic changes in the late-glacial and early Holocene.  

Fourthly, a potentially rewarding approach in the interpretation of multi-proxy data is so-called 
'data-splitting'. One proxy (e.g. pollen) may be used to reconstruct mean July air temperature and this 
reconstruction is then used to interpret stratigraphical changes in another independent stratigraphical 
proxy (e.g. chironomids, diatoms) in terms of biotic responses to climate change (e.g. Ammann 1989a, 
1989b, 2000). Lotter and Birks (2003) adopted this approach in their interpretation of Holocene multi-
proxy data at Sägistalsee. Plant macrofossil data were used to reconstruct catchment vegetation, and 
these reconstructions were then used, along with solar insolation and other independent climate proxies, 
as 'predictors' in statistical modelling to see which 'predictors' best explained, in a statistical sense, the 
observed changes in five different types of limnological variables (chironomids, cladocera, sediment 
geochemistry, sediment magnetics, and sediment grain-size). This hypothesis-testing approach is 
relatively new and has great potential for future research development. It is a powerful way of testing 
ideas and it should be undertaken more widely in the future (Birks 1993a, 1993b, 1996, 1998), in an 
attempt to test hypotheses about the possible processes driving biotic and lake-ecosystem changes. 
Ammann et al. (2000) used the oxygen-isotope stratigraphy from late-glacial sediments as a record of 
climate change against which observed biotic changes (pollen, chironomids, cladocera, beetles, plant 
macrofossils) could be compared and evaluated in terms of lags in response to rapid climate change. 
Other examples of this 'data-splitting' approach as an effective means of using one or more proxy type 
to help interpret the observed changes in another proxy type include Seppä and Weckström (1999), 
Seppä et al. (2002), Heiri et al. (2003), and Shuman et al. (2004). 

Fifthly, it is a major challenge not only to interpret and synthesise the results from a multi-proxy 
study in as fair and as objective way as possible, but also to write the results up and to publish synthesis 
papers, which are, by their very nature, often rather complex and long. There is a tendency today 
towards the publication of more and more short papers. This has the disadvantage that papers can easily 
be overlooked because of the ever-increasing number of publications and 'information-overload' for 
readers. A reader can become frustrated when, for example, environmental reconstructions from the 
same core but based on different numerical methods or calibration data-sets or on different types of 
proxies are published in different journals, and presented and plotted in different ways and on different 
scales. If the potential of multi-proxy studies is to be maximised, it is essential that the results be 
synthesised in a common format  presenting points of similarity and points of difference, the potential 
strengths and weaknesses, and the different potential sensitivities of different proxies, so that their 
contribution to the conclusions can then be evaluated. It will be vastly more interesting to discuss 
apparent contradictions in interpretation as these will raise important questions about the proxies, what 
aspects of the environment they may be reflecting and responding to, and how to interpret them. 
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Contradictions or anomalies also raise important and productive research questions concerning the 
appropriate use of calibration data-sets and the limitations of our existing ecological, environmental, 
and limnological understandings (see Bigler et al. 2002; Rosén et al. 2003). Palaeoceanographers now 
recognise that different proxies (diatoms, planktonic foraminifera, benthic foraminifera, grain-size, 
chemical ratios, and stable isotopes) reflect different aspects of the ocean system in terms of 
stratification, currents, and rates of overturn (Andersson et al. 2003; Risebrobakken et al. 2003). 
Palaeolimnologists could, with profit, adopt a similar approach in their interpretation of multi-proxy 
data. 

 

The complex nature of proxy data 

The essential feature of multi-proxy studies is that several stratigraphical proxies are used to investigate 
a common aim. Each proxy takes its own unique place in the ecosystem network and may be used to 
reconstruct different facets of the ecosystem. Besides the standard much-used proxies, new techniques 
and proxies are continually being developed, often for specific purposes. Rather than trying to discuss 
all the various types of proxies available in palaeolimnology, we illustrate the complexities of deriving 
reliable and robust palaeoenvironmental inferences by focusing on the interpretation of a commonly 
used physical proxy, namely sediment loss-on-ignition, and on the interpretation of biological proxies 
using transfer functions. 

Physical proxies 

Percent loss-on-ignition (%LOI) is the most widely used and perhaps the most useful, simple, physical 
proxy in palaeolimnology. It reflects the proportion of organic carbon, carbonate, and mineral matter in 
the sediment (Dean 1974; Boyle 2004). Loss-on-ignition at 550ºC (Heiri et al. 2001) has been found to 
be a remarkably good summarising proxy for many changes in a lake ecosystem (e.g. Levesque et al. 
1994; Birks et al. 2000; Battarbee et al. 2001, 2002). However, it is a percentage, and thus an increase 
can reflect an absolute increase in organic matter or an absolute decrease in mineral matter, or some 
combination of both. In addition, organic and mineral matter can both originate in the lake 
(bioproduction, biogenic silica and carbonate) and/or in the catchment (bioproduction, humus or 
mineral inwash due to catchment instability). Thus %LOI is a simple measurement that can have a 
complex interpretation (Shuman 2003). Livingstone et al. (1958) were the first to realise this, but few 
absolute estimates of organic accumulation have been made. Recently, Velle et al. (2005a) estimated 
the rates of accumulation of organic and mineral matter at Råtåsjoen, central Norway, and were able to 
interpret changes in %LOI as processes related to early Holocene increased lake productivity and 
decreased mineral inwash resulting from stabilisation and vegetation of the catchment. Maximum 
organic matter deposition occurred around 5000 cal BP and was related to the climate-induced loss of 
trees from the catchment. The organic matter stored in the soils was released and washed into the lake. 
Velle et al. (2005a) were also able to show that %LOI was not related to diatom productivity of 
biogenic silica. It was slightly correlated with Holocene temperature changes as deduced from the 
chironomid record, but the organic matter accumulation rate was not. The absolute amount of carbon in 
the sediments was related much more strongly to changes in catchment vegetation, as deduced from the 
plant macrofossil and pollen records. The predominant catchment origin of organic matter to sediments 
in upland lakes was long-ago proposed by Mackereth (1965, 1966), and elegantly confirmed by whole-
lake additions of 13C (Pace et al. 2004). 

%LOI has also been interpreted more directly as a climate signal (e.g. Willemse and Törnqvist 
1999). At Lochan Uaine, Scotland, changes in the chironomid assemblage could be related to small 
temperature changes coinciding with changes in the %LOI curve (Battarbee et al. 2001), suggesting 
that the %LOI was reflecting greater bioproduction and preservation during times of either warm or 
cool temperatures. In the Jotunheim mountains of central Norway, Nesje and Dahl (2001) found sharp 
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decreases in %LOI in several lakes at around 8200 cal BP that were related to times of glacier re-
advance, the so-called Finse event. This cool and/or wet event is correlated in time to a major cool 
period in the Greenland ice cores (Alley et al. 1997). It is unlikely that the dips in %LOI in the 
Jotunheim lakes were caused by changes in bioproduction, as the sediments are visibly more silty, 
suggesting that the %LOI may be reflecting minerogenic inwash from the catchment. At Lake 
Tsuolbmajavri in northern Finland, the %LOI (Seppä and Weckström 1999) follows the annual 
precipitation reconstruction more closely than the summer temperature curve reconstructed from the 
pollen data (Seppä and Birks 2001), suggesting that precipitation effects on the catchment may have 
influenced the minerogenic input and thus the %LOI in this sub-arctic lake. Shuman (2003) emphasises 
that changes in LOI in a single core may be difficult to interpret because of within-lake processes and 
thus multiple cores increase the interpretability of the LOI record. 

Various other chemical and physical proxies have been measured in lake sediments, most notably 
stable isotopes of H, O, C, and N, carbonate content, chemical composition, and magnetic properties. 
Developing proxies include near-infrared spectroscopy (Rosén et al. 2000, 2001) and bio-markers in 
sediment organic geochemistry. The last is particularly useful as it is a record of organic compounds 
produced by organisms that leave no visible remains, such as algal groups, bacteria, and cyanobacteria 
(e.g. Fritz 1989; Lotter 2001). Long-chain lipids from leaf cuticles have been used to characterise 
terrestrial vegetation changes in response to changes in precipitation and run-off into near-shore marine 
sediments in Venezuela (Hughen et al. 2004). A new approach by Huang et al. (2004) has shown the 
potential of studying isotopes in specific lipid biomarkers preserved in lake sediments as a record of 
environmental change. 

Biotic proxies 

Environmental reconstructions 

Biotic proxies are as numerous as the organisms that leave a record in lake sediments (Smol et al. 
2001a, 2001b). As specialist knowledge is needed to identify the fossil material, the organisms are 
usually studied as groups, such as diatoms, pollen, plant macrofossils, chironomids, etc. If enough is 
known about the biology and ecological tolerances of a taxon, that taxon may be used as an indicator 
species for the reconstruction of past habitat, community, and environment, including climate (Birks 
and Birks 1980). Similarly if an assemblage of taxa resembles a modern community that lives in a 
defined ecological range today, that assemblage may be used to infer past conditions. The indicator 
species and assemblage approaches rely on modern analogy and assume that the limiting conditions in 
the past were the same as they are today (Birks and Birks 1980; Birks 2003). The assemblage approach 
has been quantified as the Mutual Climatic Range Method (MCRM) used with Coleoptera (Atkinson et 
al. 1987), with molluscs (Moine et al. 2002), and with plant macrofossils (Sinka and Atkinson 1999; 
Pross et al. 2000). It is also the basis of probability density functions used with plants (Kühl et al. 2002; 
Kühl 2003) and modern analogue techniques, often used on marine assemblages (e.g. Telford et al. 
2004a; Telford and Birks 2005), but also on terrestrial pollen assemblages (e.g. Bartlein and Whitlock 
1993; Davis et al. 2003). These methods are designed to reconstruct past environments from fossil 
assemblages of taxa whose environmental limits have been either determined or assumed by correlation 
of taxon distributions and abundance with climate or other environmental data. 

Another approach to environmental and climate reconstruction is the transfer function approach 
(Birks 1995, 1998, 2003). Within a group of organisms, taxa from surface-sediment samples are related 
numerically to environmental parameters by means of a quantitative transfer function. Using the 
transfer function, past environmental parameters are reconstructed from fossil assemblages. The most 
widely used transfer functions are between diatoms and lake-water pH, salinity, and total P, pollen and 
mean July and January temperature and annual precipitation, chironomids and mean July air 
temperature and water temperature, and Cladocera and mean July air temperature. The use of transfer 
functions to reconstruct past climate has often been an aim of multi-proxy studies, but surprisingly few 
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multi-proxy studies have compared the resulting reconstructions. When the mean July temperature 
reconstructions using various methods (transfer functions for pollen, chironomids, and cladocera; 
MCRM for Coleoptera; indicator species and assemblages for plant macrofossils) were compared for 
the late-glacial and early Holocene at Kråkenes (Birks and Ammann 2000) the results were somewhat 
surprising. Although the patterns of the temperature curves were all the same, as one might expect 
given the temperature-driven changes through the late-glacial, the estimated temperature values of the 
reconstructions were different. The reasons for the discrepancies need to be sought in a more detailed 
examination of the performance of the numerical reconstruction methods and the representativity of the 
training sets, especially near the limits of biological existence that prevailed during the Younger Dryas 
in western Norway. 

Transfer functions perform well when the environmental changes are large and are within the central 
range of the modern training set (Birks 1998). In the late-glacial, the large temperature changes are well 
reconstructed. However, reconstructions become less reliable when the values of the environmental 
variables are near the limits of the training set (Birks 1998). In cold climates, diversity is reduced and 
the same cold-adapted assemblage of e.g. chironomids, may exist over a wide temperature range. The 
same restriction applies to pollen, but there is the additional complication of the presence of long-
distance-transported pollen from trees in warmer regions into the pollen assemblages deposited beyond 
the arctic or alpine tree-lines (Birks and Birks 2003). Thus, the reconstruction of cold temperatures and 
associated precipitation levels from pollen assemblages is difficult (Birks et al. 2000; Larsen and 
Stalsberg 2004) A similar imbalance is present in diatom/total phosphorus reconstructions; diatoms are 
very sensitive to low and medium total-P concentrations but relatively insensitive to high total-P 
situations. Related problems of insensitivity can arise when inferring Holocene temperature changes 
from fossil chironomid assemblages. Temperature changes in the Holocene are smaller and more subtle 
than late-glacial changes. Reconstructed changes are nearly always within the inherent prediction error 
range of reconstruction (Birks 2003), and the reconstructions may be rendered insensitive by the overall 
predominance of common species with wide ecological tolerances. Small reconstructed environmental 
changes may result from the chance occurrence of species with narrow tolerance ranges (Velle et al. 
2005b). 

Apparent discrepancies in quantitative environmental reconstructions based on transfer functions 
and a range of organisms raise important and critical questions about transfer functions and their 
robustness. There are several assumptions behind the transfer-function approach (Birks 1995). The 
most relevant here are the assumptions that (1) the environmental variable(s) to be reconstructed is, or 
is linearly related to, an ecologically important determinant in the ecosystem of interest and (2) 
environmental variables other than the one of interest have negligible influence, or their joint 
distribution with the environmental variable of interest in the past is the same as in the modern 
calibration data-set (Birks 1995). Transfer functions are, by necessity, correlative in character; they 
model numerically the relationship between the observed occurrence and abundance of organisms in 
surface-sediment samples and modern environmental variables, for example the relationships between 
chironomid assemblages and mean July air temperature. It is probable that chironomids respond to 
water temperature rather than directly to air temperature (Brooks and Birks 2001; Brooks 2003). 
Although there is a strong correlation today between lake-water and air temperatures (Livingstone and 
Lotter 1998; Livingstone et al. 1999) and transfer functions for modern chironomid assemblages and air 
temperature perform well as assessed by statistical criteria in cross-validation using modern samples, 
the critical question is whether the relationship between lake-water and air temperature would be the 
same if winter precipitation as snow increased by 100-200% or more, as it probably did in parts of the 
Holocene in the Norwegian mountains (Nesje et al. 2001; Bjune et al. 2005; Bakke et al. 2005a). Large 
amounts of snow melt-water would result in cool lake-water even though the mean air summer 
temperature may be the same as the periods with less winter precipitation. Brooks and Birks (2001) 
discuss two lakes today in Norway with cold-water modern chironomid assemblages but with high 
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summer air temperatures. Both lakes are 'outliers' when chironomids are used to infer modern summer 
air temperatures, giving estimates of air temperature 4ºC cooler than the observed values. Observed 
differences between reconstructed values of mean July air temperature based on pollen and plant 
macrofossils and on chironomids in the Holocene (Brooks and Birks unpublished) may be, in part, a 
result of the relationship between mean July air temperature and July water temperature not having the 
same joint distribution in the past. A further complication in the use of chironomid transfer functions 
for inferring past climate is the strong covariance between modern temperature and lake trophic 
conditions (Brodersen and Anderson 2002). Velle et al. (2005b) discuss possible additional 
confounding variables in chironomid-inferred air temperatures for the Holocene in western Norway. A 
similar problem may arise in the use of diatom–climate transfer functions as several limnological 
variables (e.g. alkalinity, pH, conductivity) may covary with temperature (Anderson 2000). 

Although there are several numerical procedures for evaluating transfer function models (e.g. Birks 
1995; Telford and Birks 2005), the most powerful means for assessing the reliability and sensitivity of a 
particular transfer function is to compare palaeolimnological reconstructions using transfer functions 
with known historical records (e.g. Renberg and Hultberg 1992; Fritz et al. 1994; Bennion et al. 1995; 
Lotter 1998; Teranes et al. 1999; Bradshaw and Anderson 2001). In general the environmental 
reconstructions based on transfer functions parallel the trends in the historical records but do not always 
match the absolute values. 

Discrepancies emerging from multi-proxy studies (e.g. Birks and Ammann 2000; Rosén et al. 2003) 
encourage researchers to ask what particular transfer functions really reflect – air temperature, water 
temperature, length of growing season, trophic status, pH, lake habitat, or a complex interaction of 
these and other variables? Recent work by Heegaard et al. (2006) indicates that there are significant 
differences between modern chironomid, cladoceran, and diatom assemblages along an altitudinal 
gradient in the Swiss Alps in terms of where major compositional changes occur. There appears to be 
no consistent 'aquatic ecotones' between the three groups of organisms, suggesting that each is 
responding to different environmental variables and complexes of variables that may influence the rates 
of compositional change between the taxonomic groups with altitude. Thus different proxies and their 
responses to different aspect of the environment can be utilised to demonstrate varying degrees of 
inertia and different thresholds (Smith 1965; Maslin 2004). This adds to the challenges of interpreting 
multi-proxy data and illustrates its potential to differentiate a range of biotic responses to environmental 
change. 

Environmental reconstructions using transfer functions may be dependent on a surprisingly small 
number of taxa (e.g. Racca et al. 2003). If there is a preponderance towards abundant taxa with wide 
ecological tolerances in Holocene fossil assemblages and taxa with narrow tolerances are rare or absent, 
transfer functions may be rather insensitive, as they appear to be in several reconstructions of Holocene 
past climate (e.g. Brooks and Birks 2001; Rosén et al. 2001, 2003; Bigler et al. 2002; Korhola et al. 
2002; Velle et al. 2005b). 

Given current uncertainties about what environmental variables are the major determinants of the 
occurrence and abundance of different groups of organisms, it is advisable to avoid any attempts to 
derive 'consensus' reconstructions based on different groups of organisms. Given the hidden biases and 
assumptions in different numerical reconstruction procedures (Telford et al. 2004a; Telford and Birks 
2005), 'consensus' reconstructions, based on the same group of organisms but involving different 
numerical techniques, may conceal important differences in the behaviour of the numerical procedures 
and are similarly not recommended (cf. Birks 1995; 1998). 

A further problem associated with environmental reconstructions in multi-proxy studies is 
distinguishing between 'signal' and 'noise' (Birks 1998). The SiZer smoothing procedure of Chaudhuri 
and Marron (1999) helps to assess which features in a smoothed time-series are statistically significant 
and hence which features may represent 'signal'. Korhola et al. (2000) provide a palaeoecological 
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application of SiZer. The approach could be extended to consider several stratigraphical records from a 
multi-proxy study to help distinguish 'signal' from 'noise'. 

There have been considerable advances in the theory, methodology, and development of quantitative 
transfer functions in the last 20 years (Birks 1995, 1998, 2003). However, as a result of recent multi-
proxy studies, problems in some transfer functions are emerging. There is thus the need to 'return to 
basics', in particular to study the environmental requirements and niche parameters of species 
commonly found as fossils (e.g. Brodersen et al. 2004). There is considerable scope for incorporating 
ecological knowledge into environmental reconstructions and interpretations of multi-proxy studies 
within a Bayesian framework for inference and prediction – see Ellison (2004) and Clark (2005) for 
recent lively discussions about why ecologists (and thus palaeoecologists) are becoming or should 
become Bayesians. 

A wider-based multi-proxy approach is now developing where transfer functions, involving whole 
groups of organisms, are being used in combination with indicator species information. The interest is 
shifting away from climate or pH reconstruction as ends in themselves and more towards whole lake 
ecosystem reconstructions and the causes behind the changes. To do this, one has to look inside the 
proxy group and seek reliable indicator species. This approach was the original approach to 
palaeolimnology. It is particularly well developed for aquatic macrophytes where individual species 
ecology has always been important (e.g. Iversen 1954; Watts 1978; Birks et al. 1976, 2001; Birks 2000, 
2001). Less is known about the ecology of freshwater algae, including diatoms, but ecological studies 
of arctic and Antarctic lakes and ponds (e.g. Douglas et al. 2004) are contributing much to our 
knowledge of diatom and chrysophyte ecology. The modern ecology of chironomid taxa has recently 
been used to help to rationalise anomalous temperature reconstructions made from chironomids 
(Brodersen et al. 2004; Velle et al. 2005b). Cladoceran ecology has always been of more interest than 
climate reconstruction from the whole group (e.g. Hofmann 1996, 2000; Duigan and Birks 2000; 
Milecka and Szeroczyńska 2005). Coleopteran ecology has also always played a large role in 
palaeoecological investigations although climate reconstructions using MCRM have now become 
dominant (e.g. Elias 1994, 1997, 2001; Elias et al. 1999). The ordination method detrended 
correspondence analysis (DCA) can be used to summarise compositional turnover for groups of 
organisms that can then be directly compared among groups (e.g. Birks et al. 2000). Individual species 
changes can then be investigated to seek the reasons for rapid changes in turnover and ecological 
factors can be inferred to explain the changes (e.g. Birks and Birks 2001). 

Pollen analysis and plant macrofossils 

As palaeolimnology has made considerable methodological and conceptual advances in the last 20 
years (e.g. Battarbee 2000; Smol 2002; Brooks 2003; Fritz 2003; Mackay et al. 2003), it has 
increasingly developed its own identity, with its own journal, meetings, and research agenda. Pollen 
analysis has not, however, played a major part in the recent development of palaeolimnology (Birks 
2005) even though pollen analysis and the associated study of plant macrofossils can provide the main 
evidence for catchment vegetation over long time periods. Pollen and plant macrofossil analysis (e.g. 
Wick et al. 2003) are becoming increasingly important in multi-proxy palaeolimnological studies as the 
role of the lake's catchment and its vegetation and soils is so important in understanding lake biotic and 
sedimentary changes (e.g. Anderson et al. 1995; Korsman and Segerström 1998; Seppä and Weckström 
1999; Lotter 1999, 2001; Birks et al. 2000; Bradshaw 2001; Lotter and Birks 2003; Oldfield et al. 
2003b; Bradshaw et al. 2005a). Limnologists are exploring links between water chemistry and nutrient 
status and catchment vegetation (Maberly et al. 2003; van Breeman and Wright 2004). There is also a 
resurgence of interest in biogeochemistry (Jackson and Hedin 2004). Palaeolimnological techniques 
such as sediment geochemistry can also be used to address critical questions in understanding changes 
in vegetation history by providing information about catchment soil development and change (e.g. 
Engstrom and Hansen 1985; Ford 1990; Willis et al. 1997; Ewing 2002; Ewing and Nater 2002). There 
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is thus an increasing need for close collaboration and interaction between pollen analysts, vegetation 
historians, and palaeolimnologists in multi-proxy studies. 

Another area where close collaboration is needed is the analysis of plant macrofossils. Besides 
providing unique evidence for the local presence of certain taxa in or near the study lake, macrofossils 
of aquatic macrophytes are a record of a major component of the lake ecosystem, namely the 
macrophyte flora (Birks 2000, 2001). Aquatic macrophytes are a major habitat for other aquatic biota, 
are sensitive to changes in lake level and nutrient status, and represent one alternative equilibrium state 
in shallow lakes. Interest in plant macrofossils is greatly increasing, not only to provide terrestrial 
material for 14C AMS dating, but also to help understand changes in aquatic biota in multi-proxy 
studies (e.g. Sayer et al 1999, 2006; Birks et al. 2001; Brodersen et al. 2001; Odgaard and Rasmussen 
2001; Bradshaw et al. 2005b; Davidson et al. 2005).  

Pollen and plant macrofossils represent different but indeterminate spatial scales. The regional 
pollen rain reflects vegetation at a regional scale, but pollen may also be derived more locally, such 
as from lake-side and aquatic vegetation (Birks 2005). Plant macrofossils are usually not dispersed 
far from their source. However, they can be carried long distances by water and by wind. For 
example, it has been difficult to determine the local significance of isolated Betula fruits and small 
fragments of Pinus bark in sites above the tree-line (Eide et al. 2006). Within a lake, aquatic 
macrofossils are usually related closely to the parent vegetation. Consequently, they are better 
represented in shallow water where the macrophytes were growing (Birks 2001). Thus a core from 
deep water in the centre of a lake, ideal for pollen, is not always so suitable for macrofossil 
representation. Central cores appear to contain a good representation of the chironomid community 
(Heiri 2004), whereas marginal cores can give a biased record of chironomids (Brooks 2000). 
Central cores contain diatoms from all the available lake habitats (plankton, mud, sand, stones, 
macrophytes). However, few comparisons have been made of central and littoral cores in multi-
proxy studies, mainly because of the large amount of work involved (e.g. Digerfeldt 1971, 1986; 
Andersson et al. 2005). The multi-proxy study at Lobsigensee led by Brigitta Ammann is an 
impressive example of using both central and littoral cores to study a wide range of late-glacial 
proxies and their responses to climatic changes (Ammann et al. 1983, 1985; Ammann and Tobolski 
1983; Chaix 1983; Eicher and Siegenthaler 1983; Elias and Wilkinson 1983; Hofmann 1983; 
Ammann 1989b). 

 

Recent examples of multi-proxy studies 

The Kråkenes Project (Birks and Wright 2000) is an example of how a variety of proxies can be used to 
reconstruct the lake ecosystem, including the catchment, and climate changes over the late-glacial and 
early Holocene. Plots of DCA sample scores on axis 1 of the groups combined with the %LOI and 
Pediastrum curves, all showed synchronous changes at the end of the Allerød interstadial, the inception 
of the glacier in the catchment during the Younger Dryas stadial, and its melting and the temperature 
rise at the beginning of the Holocene. A similar synchroneity was observed at Pine Ridge Pond in 
eastern Canada (Levesque et al. 1994), indicating that temperature changes were the over-riding forcing 
factor in late-glacial ecosystem change. During the early Holocene at Kråkenes, however, major 
changes in turnover of the various groups were not synchronous and different groups reached 
compositional stability at different times. This suggests that internal ecosystem factors were playing an 
important role, such as the development of macrophyte communities, cessation of mineral inwash from 
the catchment, natural acidification and reduction of nutrients in the lake water, and catchment 
vegetation and soil development culminating in the immigration of birch trees and the development of 
birch forest (Birks et al. 2000). 

A good chronology can be used to estimate rates of biotic change, as at Kråkenes (e.g. Birks et al. 
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2000). Here, rapid rates of change in the late-glacial coincided with the major temperature changes. In 
the early Holocene rates of change were variable among proxies, reflecting major stages in the 
successions of the different groups, related particularly to catchment vegetation and soil development 
and to lake nutrient status. In contrast, the chronology of the recent sediment sequences in the 
CASSARINA project in North Africa was often poor because of low 210Pb accumulation (Appleby et 
al. 2001). However, all the sequences covered about 100-150 years. Plots of the DCA sample scores on 
axis 1 of the organism groups (aquatic and terrestrial macrofossils, pollen, zooplankton, diatoms; Birks 
and Birks 2001) showed very large amounts of compositional turnover, quantifying that enormous 
changes in aquatic ecosystems had occurred within decades under strong forcing imposed by human 
activity, in this case freshwater withdrawal or continuous freshwater supply in the Nile Delta. 

When palaeolimnological data are available from many sites and for the same time period (e.g. last 
150 years), the amount of compositional change or biotic turnover for the time interval of interest can 
be estimated for each site and compared between sites (Smol et al. 2005) This approach was applied to 
55 palaeolimnological records from lakes in the circumpolar Arctic and it demonstrated widespread 
changes in algal and invertebrate communities that are consistent with recent climate warming (Smol et 
al. 2005). The observed palaeolimnological changes in diatoms, chrysophytes, chironomids, and 
cladocera are interpreted as reflecting increases in arctic lake primary production (Smol et al. 2005). 
This hypothesis has been tested for six lakes on Baffin Island by using reflectance spectroscopy to infer 
changes in lake sediment chlorophyll a concentrations and hence change in lake primary productivity 
(Michelutti et al. 2005). The inferred changes in chlorophyll a are paralleled by changes in total organic 
carbon reflecting the balance between the production and decomposition of organic carbon, in biogenic 
silica, and in C:N ratios. The changes in these four biogeochemical proxies are all consistent with the 
hypothesis of increased primary production since 1850 AD. Similarly, a multi-proxy study of Svalbard 
lakes has illustrated how lake development has responded to cliamt change over the last century (Birks 
et al 2004).  

A similar multi-proxy approach involving a range of biological, biogeochemical, stable isotope 
variables, and numerical techniques has been used to test hypotheses about recent (last 100 years) 
changes in diatom assemblages in alpine lakes in the Colorado Front Range. The changes appear to be a 
response to anthropogenic nitrogen deposition from agricultural and industrial sources to the east of the 
Rockies (Wolfe et al. 2001, 2002, 2003; Das et al. 2005). The effects of recent human impact have also 
been demonstrated by a multi-proxy study of Upper Klamath Lake, USA (Bradbury et al. 2004) and the 
impact of lake pollution and subsequent recovery were traced by Hynynen et al. (2004). Human impact 
has also been studied in an archaeological context (Davies et al. 2004). 

A recent development in multi-proxy studies is the statistical testing of alternative hypotheses about 
the causes of the observed or reconstructed changes. This has already been mentioned at Sägistalsee 
(Lotter and Birks 2003). There is great potential for developing this approach more specifically in 
future multi-proxy studies (Lotter and Birks 1997; Birks 1998, 2003) as a means of evaluating multiple 
alternative hypotheses. 

 

Future directions 

Multi-proxy studies are making major contributions to palaeoecology and palaeolimnology. Our 
knowledge about the history of past climate change and past ecosystem development and lake ontogeny 
is steadily increasing. Each proxy reflects the environment at its own spatial scale, taking its place in 
the network of interactions that comprise an ecosystem, thus providing insights into different facets of 
an ecosystem.  

New proxies are continually being recognised, applied, and evaluated. Some of the most promising 
and diverse being biogeochemistry (e.g. Meriläinen et al. 2001; Fisher et al. 2003; Hynynen et al. 2004; 
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Das et al. 2005; Sayer et al. 2006) and stable isotopes (e.g. Finney et al. 2000, 2002; Hammarlund et al. 
2002; Veski et al. 2004; Wooller et al. 2004; Seppä et al. 2005). As well as under-utilised fossil proxies 
(e.g. animal hairs (Hodgson et al. 1998), phytoliths (Carnelli et al. 2004), fish scales (Davidson et al. 
2003)), well-known proxies are being used in new ways, using newly developed analytical techniques 
and improved chronologies to estimate amounts and rates of change through time and using new 
approaches to detect morphological or genetic changes in response to environmental change (e.g. 
Weider et al. 1997; Kerfoot et al. 1999; Cattaneo et al. 2004; Hairston et al. 2005).  

An important new direction in multi-proxy studies is a shift in the approaches to the interpretation of 
palaeolimnological data. Many multi-proxy studies today are focusing on palaeoecological questions as 
well as environmental reconstructions, invoking ecological indicator species and assemblages to 
provide new insights into past ecosystem functioning and pushing proxies further in interpretations of 
possible causal processes and driving factors. Data interpretation used to be primarily descriptive in 
terms of the reconstruction of past populations, communities, environments, and ecosystems (Birks and 
Birks 1980) but it can be more ecologically focused on the potential causes of the observed patterns of 
change or stability (Bennett and Willis 2001). It is here that well-designed multi-proxy studies can 
make a great contribution in the future because they can provide several potentially independent lines 
of evidence that can help to evaluate and resolve alternative competing hypotheses for a given 
stratigraphical pattern (Bennett and Willis 2001). Multi-proxy studies can thus explore 'the geological 
record of ecological dynamics' (NRC 2005) and use 'the geological record as an ecological laboratory' 
(NRC 2005) to study critical research problems concerning biological diversity, community structure, 
biogeochemistry, ecological impacts of climatic variability, habitat alteration, and the dynamics of 
biotic invasions. The resolution of such problems requires the fourth dimension of time that can only be 
provided by palaeolimnological or other palaeoecological data. Carefully designed and rigorously 
implemented multi-proxy studies have the potential to provide unique records of ecological dynamics 
over time and to contribute to our understanding of the natural variability of populations, communities, 
and environments and of the response of biological assemblages to a range of different environmental 
changes and forcing functions. Statistical techniques that take account of the inherent properties of 
multi-proxy data (Birks 1993b, 1996, 1998) can play an important role in testing competing hypotheses 
concerning possible causal factors and will allow a fuller exploitation of 'the geological record as an 
ecological laboratory' (NRC 2005). Deevey (1964) proposed over 40 years ago the idea of 'coaxing 
history to conduct experiments' as a way of exploiting the palaeoecological record as a record of long-
term ecological experiments. The analytical and statistical tools now available in multi-proxy studies 
have expanded greatly and have become increasingly more refined and will no doubt continue to do so. 
They can be used in the future to focus multi-proxy studies on ecological interpretations and causal 
factors and to exploit the palaeolimnological record as a unique source of information on biotic changes 
and responses over a wide range of environmental changes at many temporal scales. 

A further exciting development in multi-proxy studies is the involvement of ecological dynamic 
models. For example, a forest succession model has been used to simulate tree-line dynamics and forest 
composition over long time periods. Climatic parameters derived from palaeolimnological proxies that 
are independent of the vegetation proxies (e.g. chironomid-inferred temperatures) can be used to drive 
the model (Heiri et al. 2006). In this elegant study, the model results were compared with pollen and 
plant macrofossil reconstructions of the catchment vegetation, making it possible to disentangle the 
effects of climate and human impact on long-term vegetation dynamics. The combination of ecological 
models and palaeolimnological proxies (e.g. Keller et al. 2002; Lischke et al. 2002; Heiri et al, 2006) is 
a powerful means of interpreting observed patterns of ecological changes and dynamics in terms of 
several causal processes, and highlights the future potential of multi-proxy studies in the modelling and 
understanding of palaeoecological patterns and processes. 
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Conclusions 

Multi-proxy studies are deceptively simple, highly seductive, and seemingly full of promise. In 
practice, they are a huge amount of work, they are never simple, they are full of surprises, even shocks, 
and they are rarely neat, tidy, or simple to interpret. In terms of multi-proxy reconstructions of past 
climates, we may be near the resolution of current data and predictive abilities of our transfer-function 
models. The sample-specific errors of prediction estimated by bootstrapping or some form of statistical 
cross-validation of about 0.8 – 1.5ºC for July temperatures (Birks 2003) encompass the likely range of 
summer temperature change within the Holocene. In Norway the major changes in glaciers during the 
Holocene appear to be a response to changes in winter precipitation rather than to changes in summer 
temperature (e.g. Bjune et al. 2005). Reconstruction of the full picture of Holocene climate change here 
thus requires a major multi-proxy combination of biological, geological, and sedimentological data (e.g. 
Dahl et al. 2003; Bakke et al. 2005a, 2005b; Bjune et al. 2005). Multi-proxy studies are not really 'safe' 
science. It is relatively easy and 'safe' to develop modern organism–environment calibration data-sets 
and associated transfer functions. However, complexities can and do arise when these transfer functions 
are applied to stratigraphical data in multi-proxy studies (e.g. Rosén et al. 2003; Velle et al. 2005a, 
2005b). 

Despite these problems, multi-proxy studies are important research activities as they provide the 
means to study lake and biotic responses to environmental change. For example, the CASSARINA 
project in North Africa (Birks and Birks 2001; Birks et al. 2001; Flower 2001) revealed alarming 
amounts of biotic change in the last 100 years in response to human impacts. In the Egyptian Nile delta 
lakes, hydrological and salinity modifications resulted from the year-round inflow of fresh irrigation 
water controlled by the Nile dams and the rise in the freshwater table due to inadequate drainage in the 
flat delta.  Azolla nilotica recently became extinct in these lakes (Birks 2002), probably as a result of 
eutrophication or salinity changes. Without the evidence provided by the analysis of plant macrofossils, 
pollen, diatoms, mollusca, foraminifera, ostracods, and other animal remains from the same cores, the 
extinction of A. nilotica would not have been recorded and the likely causes would have remained 
obscure.  

Multi-proxy studies are challenging. Projects are usually expensive because of the labour involved, 
so they have to be carefully designed and coordinated and suitable sites must be chosen to provide the 
maximum amount of useful information in relation to the aims of the project. It is a major challenge to 
synthesise the large amount of diverse data and to prepare it for publication. Although we now have 
vast computing resources, a diverse range of numerical techniques, and large numbers of modern 
calibration data-sets and transfer functions, the real challenge is to improve on the classical pioneer 
studies and to argue as logically and as rigorously as was done in the early multi-proxy studies (e.g. 
Livingstone 1957; Livingstone et al. 1958; Cowgill et al. 1966; Wright 1966; Hutchinson 1970; Deevey 
1984; Likens 1985). There has been a tendency in some aspects of palaeolimnology to get too pre-
occupied with the minutiae of reducing modern prediction errors from 0.91ºC to 0.89ºC when the 
environmental data themselves have inherent variability of 1 or 2ºC, or with the details of a particular 
ordination or time-series technique. As a result there is a danger that we can lose sight of the important 
research questions, of the research hypotheses we are trying to test, of the long-term trends we are 
trying to detect, and of the limitations of our data, methods, and approaches. Carefully designed and 
critically implemented multi-proxy studies have the potential to contribute greatly to our understanding 
of how lakes and their biota respond to internal and external forcings, and to our appreciation of the 
sensitivities, strengths, and weaknesses of different proxies. They will enable us to test specific 
hypotheses about lake development and biotic responses to specific factors. The interpretation of multi-
proxy data raises many important research questions involving new approaches such as ecological 
modelling and statistical testing. Much has been achieved in such studies, much more remains to be 
done. 
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Dedication 

We dedicate this essay to Brigitta Ammann on the occasion of her retirement from the University of 
Bern, in appreciation of her friendship, support, and scientific collaboration and in recognition of her 
many contributions to Quaternary vegetation history, palaeoecology, and multi-proxy studies. 
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