Environmental change and atmospheric contamination on

Svalbard: sediment chronology*

P.G. Appleby

Environmental Radioactivity Research Centre, Department of Mathematical Sciences, University of Liverpool, P O Box 147, Liverpool L69 3BX, U.K. (E-mail: appleby@liverpool.ac.uk).

Received 18 May 2001; accepted in revised form 26 November 2003.

Key words: ²⁴¹Am, ¹³⁷Cs, Lake sediments, ²¹⁰ Pb, Radiometric dating, Sediment chronology, Svalbard

* This is the third in a series of nine papers published in this special issue dedicated to recent environmental change on Svalbard. H.J.B. Birks, Vivienne J. Jones, and Neil L. Rose were guest editors of this special issue.

Journal of Paleolimnology 31: 433-444, 2004

Abstract

Sediment cores collected from eight lakes along the western coast of Svalbard as part of a project investigating atmospheric pollution and environmental change in Arctic regions were dated radiometrically using natural (²¹⁰Pb) and artificial (¹³⁷Cs and ²⁴¹Am) fallout At four sites the sedimentation rates were relatively uniform, and in radionuclides. consequence the ²¹⁰Pb dates were relatively unambiguous. At the remaining sites there were irregularities in the ²¹⁰Pb activity versus depth profiles, indicating significant variations in the net sediment accumulation rate during the past 120 years. At these sites there were significant differences between ²¹⁰Pb dates calculated using the two standard simple dating models (CRS and CIC). In most cases, stratigraphic dates based on the ¹³⁷Cs and ²⁴¹Am records supported use of the CRS model, though at one site (Ossian Sarsfiellet) the CIC model appeared more The irregularities in the ²¹⁰Pb records were mainly caused by episodes of appropriate. accelerated sedimentation due, for example, to inwash or slump events, though at some sites there appears to have been a systematic increase in sediment accumulation rates in recent decades. Sediment accumulation rates were generally lower at the northern sites, and higher at the more southerly locations. Mean sediment accumulation rates varied by an order of magnitude, ranging from 0.002 - 0.050 g cm⁻² y⁻¹ (0.02 - 0.10 cm y⁻¹). ²¹⁰Pb fluxes measured from the core inventories were mostly in the range 34 - 80 Bq m⁻² y⁻¹ typical of Arctic sites. Much higher values, recorded at two sites (Birgervatnet and Daltjørna), may be due to significant inputs from in the catchments during spring thaw.

Introduction

In an investigation of the impact of recent environmental change in Arctic regions, detailed palaeolimnological studies were carried out on sediment sequences from several lakes along the western coast of Svalbard (Birks et al. 2004), at sites ranging from 77°33' N to 79°44' N. Such sequences have been shown to contain high quality records of a range of environmental parameters, and may be used to make reconstructions of the history and impact of changes in the recent past. Essential to this approach, is a reliable means for dating the sediment records. The most widespread technique on time-scales spanning the past 100 - 150 years uses the natural fallout radionuclide²¹⁰Pb. The method is unequivocal where environmental conditions have remained constant and the unsupported ²¹⁰Pb concentration versus depth profile follows a simple exponential relation. Deviations from such a relation are, however, to be expected at sites where environmental conditions have varied during the last 100 - 150 years. Different models have been developed to account for such deviations (Appleby and Oldfield 1978; Robbins 1978) and the accuracy of ²¹⁰Pb dates at these sites will depend on the validity of the model used. There are two standard simple models for calculating ²¹⁰Pb dates, the CRS (constant rate of supply) and CIC (constant initial concentration) models. Where they yield different results, the problem of model validation is usually resolved by using independently determined dates from stratigraphic records of the artificial fallout radionuclides ¹³⁷Cs (Pennington et al. 1973) and ²⁴¹Am (Appleby et al. 1991) from the atmospheric testing of nuclear weapons. At sites where neither of the simple models is consistent with the ¹³⁷Cs and ²⁴¹Am record, it may be necessary to use more complicated models involving a number of different processes. The objective of this paper is to give an account of the records of fallout radionuclides in the eight Svalbard cores examined and to present reliable sediment chronologies based on an assessment of these records that can be used to date biostratigraphic and geochemical records of the lake ecosystems, and to estimate fluxes of atmospheric pollutants.

Methods

The cores were collected using a Glew (1989) gravity corer. Five were collected in 1995 (Birks et al. 2004), and three were collected earlier in 1993 as part of the EU funded AL:PE2 project (Wathne et al. 1997). Details of the cores and their locations are given in Table 1 and Figure 1. The cores were sectioned at intervals ranging from 0.25 - 1.0 cm, and sub-samples of dried sediment from each section were sent to the Liverpool University Environmental Radioactivity Research Centre (ERRC) for radiometric analysis by direct gamma assay using Ortec HPGe GWL series well-type coaxial low background intrinsic germanium detectors (Appleby et al. 1986). ²¹⁰Pb was determined via its gamma emissions at 46.5keV, and ²²⁶Ra by the 295keV and 352keV γ -rays emitted by its daughter isotope ²¹⁴Pb following three weeks storage in sealed containers to allow radioactive equilibration. ¹³⁷Cs and ²⁴¹Am were measured by their emissions at 662keV and 59.5keV respectively. The absolute efficiencies of the detectors were determined using calibrated sources and sediment samples of known activity. Corrections were made for the effect of self-absorption of low energy γ -rays within the sample (Appleby et al. 1992). Unsupported (atmospherically delivered) ²¹⁰Pb was calculated by subtracting ²²⁶Ra (supported ²¹⁰Pb) activity from total ²¹⁰Pb. Radiometric dates were calculated from the ²¹⁰Pb and ¹³⁷Cs records using the procedures described in Appleby and Oldfield (1983) and Appleby (1998).

Results and discussion

Birgervatnet

The results of the radiometric analyses are shown in Figure 2. Because of the large variations in dry bulk density within each core and from site to site, to facilitate a better comparison between cores, radionuclide concentrations have been plotted against depth measured as cumulative dry mass (g cm⁻²). Table 2 summarises a number of radiometric parameters determined for each core, including the maximum unsupported ²¹⁰Pb concentration, the unsupported ²¹⁰Pb and ¹³⁷Cs inventories, and the constant ²¹⁰Pb flux required to sustain the measured ²¹⁰Pb inventory.

Table 1. Sites det	tails of the ²¹⁰ Pb	dated cores	from Svalbard
--------------------	--------------------------------	-------------	---------------

Scurvy Pond

Lake	Location	Catchment Area (km ²)	Lake Area (km ²)	Max Depth (m)	Mean Depth (m)	Core	Coring date
Ossian Sarsfjellet (C)	78° 57' N 12° 28' E	1.8	0.13	26	11	SBAC1	1995
Ytertjørna (Q)	78° 13' N 12° 56' E	~1.5	0.14	2.6	1.2	SBAQ2	1995
Vassauga (S)	77° 45' N 13° 57' E	~1.8	0.037	1.3	0.8	SBAS3	1995
Daltjørna (T)	77° 33' N 14° 13' E	4.9	0.054	10.5	7.4	SBAT4	1995
Tenndammen (U)	78° 06' N 15° 02' E	2.1	0.15	2.5	1.5	SBAU4	1995
Arresjøen	79° 40' N 10° 51' E	~3.1	0.34	29	18	ARSJ93/4	1993
Birgervatnet	79° 48' N 11° 37' E	~2.0	0.15	15	8	BIRJ93/1	1993
'Scurvy Pond'	79° 44' N 12° 18' E	~1.5	0.10	1	0.8	SCUR93/1	1993

Figure 1. Map of Svalbard showing the locations of the study sites.

Lead-210 activity

The ²¹⁰Pb activity versus depth profiles (Figure 2i) suggest a north-south trend in which cores from the more southerly lakes have higher sedimentation rates and more frequent irregularities in the process of sediment accumulation. At the three northern sites (Arresjøen (Arsj), Birgervatnet (Bir), 'Scurvy Pond' (Scur)) ²¹⁰Pb/²²⁶Ra equilibrium (corresponding to ca. 150 years accumulation) is achieved at depths of between 3 - 5 cm (0.3 - 1.5 g cm⁻²; Figure 2i(a)). This compares with depths of between 8 - 11 cm (4 - 8 g cm⁻²) at the three most southern sites (Vassauga (S), Daltjørna (T), Tenndammen (U); Figure 2i(c)). At Vassauga and Tenndammen, the ²¹⁰Pb activity versus depth profiles both have significant non-monotonic features associated with layers of dense inorganic sediment that presumably record episodes of rapid accumulation, possibly associated with slump events. The significantly lower surficial ²¹⁰Pb activities at these sites (Table 2) suggest that they also have higher intrinsic sedimentation rates.

Figure 2. Fallout radionuclides in Svalbard cores showing (i) unsupported ²¹⁰Pb and (ii) ¹³⁷Cs concentrations versus depth (measured as cumulative dry mass). Figures (a) show the results for Arresjøen, Birgervatnet, and 'Scurvy Pond', (b) the results for Ossian Sarsfjellet and Ytertjørna, and (c) the results for Vassauga, Daltjørna, and Tenndammen.

				Weapons ¹³⁷ Cs				
	Maximum	Activity	Inven	Inventory			Inventory	
	Bq kg ⁻¹	±	Bq m ⁻²	±	Bq $m^{-2}y^{-1}$	±	Bq kg ⁻¹	±
Ossian Sarsfjellet	701	29	1914	89	60	3	1898	55
Ytertjørna	320	61	1455	68	45	2	1274	28
Vassauga	293	25	2582	114	80	4	2371	53
Daltjørna	507	37	7904	216	246	8	5032	99
Tenndammen	83	10	1497	125	47	4	1499	41
Arresjøen	1861	156	1560	171	50	5	715	35
Birgervatnet	928	17	6968	203	217	6	2044	63
'Scurvy Pond'	421*	34	1750	90	54	3	1558	56
Mean values			3204		100		2049	
					56†		1553†	

Table 2. Radionuclide inventories of Svalbard lake sediment cores. Also shown are the maximum 210 Pb concentrations and the mean fluxes required to sustain the 210 Pb inventories.

* Extrapolated value – the value for the surficial section (0-1 cm) was not determined.

† Mean values excluding the anomalously high values at Birgervatnet and Daltjørna

Artificial fallout radionuclide activities

At five of the eight sites, the ¹³⁷Cs activity versus depth profile (Figure 2ii) had a relatively well-resolved subsurface peak recording the 1963 fallout maximum from the atmospheric testing of nuclear weapons. In most cases this identification was corroborated by the presence at approximately the same depth of a similar but smaller peak in ²⁴¹Am activity (Appleby et al. 1991). At two sites (Ossian Sarsfjellet (C), Arresjøen) the maximum ¹³⁷Cs concentration occurred in the uppermost sediment layer, most probably because of the very slow contemporary sedimentation rate. At the remaining site ('Scurvy Pond'), the uppermost sample was not available for radiometric analysis.

Core chronologies

At four sites (Vassauga (S), Daltjørna (T) Arresjøen (Arsj), 'Scurvy Pond' (Scur)) there was little significant discrepancy between dates calculated using the CRS and CIC dating models. Both models indicated no major secular change in sedimentation during the past 120 years. At those sites where there were significant discrepancies (Ossian Sarsfjellet (C), Ytertjørna (Q), Tenndammen (U), Birgervatnet (Bir)), the ¹³⁷Cs records were used to assess which model, or combination of models, was most appropriate. Best chronologies (dates and accumulation rates) for each core are given in Tables 3 - 10. These Tables also give extrapolated dates for core depths below the base of the ²¹⁰Pb record calculated using the best estimate of the mean sediment accumulation rate appropriate to the core.

Ossian Sarsfjellet core SBAC1

This core has a somewhat unusual ²¹⁰Pb profile. The relatively high ²¹⁰Pb activity in the surficial sediments (Table 2) and steep decline in the top 2 cm (0.5 g cm⁻²; Figure 2i(b)) suggest that present-day sedimentation rates are intrinsically low, as implied by the ¹³⁷Cs

record (Figure 2ii(b)). High ¹³⁷Cs concentrations occur only in the top 1.5 cm of the core, and are coupled with significant ²⁴¹Am concentrations. Between 2 and 6 cm ($0.5 - 3 \text{ g cm}^{-2}$), ²¹⁰Pb activity declines much more slowly, suggesting an earlier period of more rapid accumulation. A further steep fall in ²¹⁰Pb activity between 6 and 7 cm ($3 - 3.5 \text{ g cm}^{-2}$), suggests a reversion to low accumulation rates in the older sections of the core, comparable in value to those in the top 2 cm.

There is a major difference between the CRS and CIC model chronologies for this core. The CIC model dates place 1963 at a depth of ca. 1.25 cm, and are in better agreement with the ¹³⁷Cs and ²⁴¹Am records than the CRS model. The latter places 1963 at ca. 3 cm, well below the depths recording high ¹³⁷Cs and ²⁴¹Am concentrations. The results of the CIC model calculations, presented in Table 6, suggest that the middle section of the ²¹⁰Pb record records a major slump dating from the period 1890 - 1910. The lithostratigraphy shows that these sediments were relatively dense and inorganic. The validity of the CIC model suggests that they were composed largely of surficial sediments from that period. Although this might be expected to cause a substantial increase in the unsupported ²¹⁰Pb inventory, the relatively slight impact on the present-day value (Table 2) can be attributed to radioactive decay during the intervening 90 years. The (normal) sedimentation rate following the slump is estimated to be 0.0088 ± 0.0025 g cm⁻² y⁻¹. Dates prior to the slump have been calculated using this value.

<i>Table 3</i> . ²¹⁰ Pb	_							
chronology of Arresigen core	Rate	edimentation	Se		ronology	Ch	pth	De
ARSJ93/4	± (%)	cm y ⁻¹	g cm ⁻² y ⁻¹	±	y Age	AD	g cm ⁻²	cm
					0	1993	0.00	0.00
	13%	0.033	0.0023	2	6	1987	0.01	0.25
	13%	0.027	0.0023	3	15	1978	0.03	0.50
	13%	0.023	0.0023	4	24	1969	0.06	0.75
	13%	0.018	0.0023	6	37	1956	0.08	1.00
	13%	0.017	0.0023	8	52	1941	0.12	1.25
	13%	0.018	0.0023	10	66	1927	0.15	1.50
	13%	0.019	0.0023	11	79	1914	0.18	1.75
	13%	0.017	0.0023	13	93	1900	0.21	2.00
		0.015	0.0023	17	124	1869	0.28	2.50
		0.014	0.0023	21	157	1836	0.36	3.00
		0.013	0.0023	26	195	1798	0.45	3.50
NB:		0.011	0.0023	32	237	1756	0.55	4.00
Extrapolated		0.010	0.0023	39	290	1703	0.67	4.50
values below		0.011	0.0023	45	340	1653	0.78	5.00
²¹⁰ Pb record.		0.012	0.0023	51	384	1609	0.88	5.50
shown in		0.012	0.0023	56	425	1568	0.98	6.00
italics, have		0.012	0.0023	61	465	1528	1.07	6.50
been		0.012	0.0023	67	505	1488	1.16	7.00
calculated		0.012	0.0023	72	547	1446	1.26	7.50
using the mean post-		0.012	0.0023	78	589	1404	1.36	8.00
1900		0.012	0.0023	83	629	1364	1.45	8.50
sedimentation		0.012	0.0023	88	672	1321	1.55	9.00
rate of 0.0023		0.011	0.0023	94	715	1278	1.64	9.50
$g cm^2 y^2$ (see		0.010	0.0023	101	766	1227	1.76	10.00

Figure 3. Sedimentation rates $(g \text{ cm}^2 \text{ y}^{-1})$ versus time in Svalbard lake sediment cores. Figure (a) shows the results for Arresjøen, Birgervatnet, and 'Scurvy Pond', (b) the results for Ossian Sarsfjellet and Ytertjørna, and (c) the results for Vassauga, Daltjørna, and Tenndammen. Note that the sedimentation rates are plotted on a logarithmic scale.

De	pth	Cł	nronology		Sedi	mentation R	ate
	•	Date	Age				
cm	g cm ⁻²	AD	y	±	g cm ⁻² y ⁻¹	cm y ⁻¹	± (%)
0.00	0.00	1993	0				
0.50	0.08	1990	3	1	0.0200	0.091	3.4
1.00	0.21	1982	11	2	0.0175	0.053	5.5
1.50	0.38	1971	22	2	0.0143	0.042	7.3
2.00	0.56	1958	35	2	0.0125	0.036	8.1
2.50	0.73	1943	50	2	0.0114	0.032	7.8
3.00	0.89	1927	66	3	0.0085	0.025	8.0
3.50	1.04	1903	90	4	0.0051	0.019	13.1
4.00	1.17	1875	118	8	0.0042	0.017	26.9
4.50	1.29	1845	148	16	0.0041	0.016	40.9
5.00	1.42	1814	179	19	0.0041	0.016	
5.50	1.55	1781	212	23	0.0041	0.015	
6.00	1.69	1747	246	27	0.0041	0.015	
6.50	1.83	1714	279	30	0.0041	0.015	
7.00	1.96	1681	312	34	0.0041	0.015	
7.50	2.10	1649	344	37	0.0041	0.015	
8.00	2.23	1616	377	41	0.0041	0.016	
8.50	2.36	1584	409	44	0.0041	0.015	
9.00	2.49	1551	442	48	0.0041	0.015	
9.50	2.63	1518	475	51	0.0041	0.015	
10.00	2.77	1484	509	55	0.0041	0.015	
10.50	2.91	1450	543	59	0.0041	0.015	
11.00	3.04	1419	574	62	0.0041	0.016	
11.50	3.16	1388	605	65	0.0041	0.018	
12.00	3.27	1363	630	68	0.0041	0.020	
12.50	3.37	1338	655	71	0.0041	0.020	
13.00	3.47	1313	680	74	0.0041	0.020	
13.50	3.57	1288	705	76	0.0041	0.019	
14.00	3.69	1261	732	79	0.0041	0.018	
14.50	3.80	1233	760	82	0.0041	0.018	
15.00	3.91	1206	787	85	0.0041	0.018	

Table 4. ²¹⁰Pb chronology of Birgervatnet core BIRJ93/1

NB: Extrapolated values below the base of the ²¹⁰Pb record, shown in italics, have been calculated using the estimated pre-1900 sedimentation rate of 0.0041 g cm⁻² y⁻¹ (see text).

Yterjørna core SBAQ2

In the top section of this core, down to 6 cm (0.7 g cm⁻²), unsupported ²¹⁰Pb activity declines more or less exponentially with depth (Figure 2i(b)). For this section, dating from ca. 1940, the CRS and CIC models suggest similar accumulation rates, with a mean value of 0.013 \pm 0.002 g cm⁻² y⁻¹. This is in relatively good agreement with the ¹³⁷Cs and ²⁴¹Am records. The ¹³⁷Cs profile (Figure 2ii(b)) has a well-resolved subsurface peak at 2.5 cm (0.3 g cm⁻²) and a distinct ²⁴¹Am peak at the same depth. Dating these features to 1963 gives a mean post-1963 sedimentation rate of 0.010 \pm 0.001 g cm⁻² y⁻¹. Below ca. 8 cm ²¹⁰Pb activity declines much more steeply and ²¹⁰Pb/²²⁶Ra equilibrium is reached at a depth of ca. 10 cm (1.25 g cm⁻²). In consequence, CRS model dates in the deeper sections are significantly older than those given by the CIC model. During the period 1900 - 1940 the CRS model suggests a steady increase in accumulation rates from a 19th century value of ca. 0.0042 g cm⁻² y⁻¹. The CIC model suggests a later and more dramatic increase, during the 1930s. Since the results given in Table 2 show no evidence of an elevated ²¹⁰Pb flux, as would be demanded by the CIC model, the CRS model is thought to be more appropriate at this site. The sediment dates and accumulation rates chronology determined by this method are given in Table 7.

De	epth	Ch	ronology		Sedin	mentation R	ate
		Date	Age				
cm	g cm ⁻²	AD	У	±	$g \text{ cm}^{-2} \text{ y}^{-1}$	cm y ⁻¹	± (%)
0.00	0.00	1993	0				
0.50	0.10	1989	8	1	0.0130	0.060	10.5
1.00	0.21	1979	17	1	0.0130	0.059	10.5
1.50	0.31	1968	25	2	0.0130	0.058	10.5
2.00	0.44	1958	35	3	0.0130	0.052	12.2
2.50	0.58	1948	45	3	0.0130	0.045	13.8
3.00	0.73	1932	61	5	0.0100	0.033	18.5
3.50	0.88	1917	76	6	0.0068	0.021	23.2
4.00	1.05	1896	97	9	0.0093	0.026	40.8
4.50	1.23	1875	118	13	0.0120	0.031	58.4
5.00	1.43	1855	138	20	0.0100	0.026	68.8
5.50	1.63	1836	157	27	0.0087	0.021	79.1
6.00	1.85	1811	182	31	0.0087	0.020	
6.50	2.06	1786	207	36	0.0087	0.020	
7.00	2.28	1761	232	40	0.0087	0.020	
7.50	2.50	1737	256	44	0.0087	0.020	
8.00	2.72	1710	283	49	0.0087	0.019	
8.50	2.95	1684	309	53	0.0087	0.019	
9.00	3.19	1657	336	58	0.0087	0.018	
9.50	3.43	1629	364	63	0.0087	0.018	
10.00	3.67	1601	392	67	0.0087	0.018	
10.50	3.92	1573	420	72	0.0087	0.017	
11.00	4.18	1543	450	77	0.0087	0.017	
11.50	4.43	1514	479	82	0.0087	0.017	
12.00	4.70	1483	510	88	0.0087	0.018	
12.50	4.97	1452	541	<i>93</i>	0.0087	0.016	
13.00	5.25	1420	573	<i>9</i> 8	0.0087	0.016	
13.50	5.52	1389	604	104	0.0087	0.016	
14.00	5.80	1357	636	109	0.0087	0.016	
14.50	6.07	1326	667	115	0.0087	0.016	
15.00	6.35	1293	700	120	0.0087	0.016	
15.50	6.63	1261	732	126	0.0087	0.015	
16.00	6.92	1228	765	132	0.0087	0.015	

Table 5. ²¹⁰Pb Chronology of 'Scurvy Pond' core SCUR93/1

NB: Extrapolated values below the base of the ²¹⁰Pb record, shown in italics, have been calculated using the estimated 19^{th} century sedimentation rate of 0.0087 g cm⁻² y⁻¹ (see text).

De	pth	Cl	nronology		Sedi	mentation R	ate
	±	Date	Age				
cm	g cm ⁻²	AD	y	±	g cm ⁻² y ⁻¹	cm y ⁻¹	± (%)
0.00	0.00	1995	0				
0.50	0.08	1986	9	4	0.0088	0.027	
1.00	0.21	1971	24	5	0.0088	0.027	
1.50	0.39	1951	44	5	0.0088	0.027	28%
2.00	0.61	1926	69	6	0.0088	0.027	
2.50	0.87	1909	86	6			
3.00	1.17	1907	88	6	0.11	0.21	
4.00	1.79	1901	94	7	0.11	0.21	
5.00	2.31	1897	98	9	0.11	0.21	37%
6.00	2.83	1892	103	10	0.11	0.21	
6.50	3.05	1889	106	14			
7.00	3.25	1867	128	23	0.0088	0.022	
8.00	3.67	1831	164	32	0.0088	0.020	
9.00	4.15	1776	219	42	0.0088	0.017	
10.00	4.61	1724	271	52	0.0088	0.025	
11.00	4.92	1689	306	59	0.0088	0.028	
12.00	5.23	1653	342	66	0.0088	0.028	
13.00	5.54	1618	377	73	0.0088	0.030	
14.00	5.82	1586	409	79	0.0088	0.037	
15.00	6.00	1566	429	83	0.0088	0.059	
16.00	6.15	1549	446	86	0.0088	0.054	
17.00	6.33	1529	466	90	0.0088	0.049	
18.00	6.49	1510	485	94	0.0088	0.055	
19.00	6.69	1488	507	98	0.0088	0.033	
20.00	7.02	1450	545	105	0.0088	0.025	
21.00	7.35	1413	582	112	0.0088	0.032	
22.00	7.59	1386	609	117	0.0088	0.035	
23.00	7.88	1352	643	124	0.0088	0.027	
24.00	8.22	1313	682	131	0.0088	0.026	
25.00	8.51	1281	714	138	0.0088	0.040	
26.00	8.71	1258	737	142	0.0088	0.042	

Table 6. ²¹⁰Pb chronology of Ossian Sarsfjellet core SBAC1

NB: Extrapolated values below the base of the ²¹⁰Pb record, shown in italics, have been calculated using the estimated normal sedimentation rate (excluding slump events) of 0.0088 g cm⁻² y⁻¹ (see text).

Vassauga core SBAS3

The ²¹⁰Pb profile for this core (Figure 2i(c)) also includes a significant non-monotonic feature, at 2.5 cm depth, that again coincides with a layer of dense inorganic sediment. Although this precluded use of the CIC model to calculate ²¹⁰Pb dates, use of the CRS model was validated by the ¹³⁷Cs results. The CRS model dates place 1963 at a depth of 3.5 cm, in reasonable agreement with the ¹³⁷Cs record, which has a relatively well resolved peak between 3.5 - 4.5 cm (1.4 - 1.8 g cm⁻²; (Figure 2ii(c)). The ²¹⁰Pb results, given in detail in Table 8, indicate an episode of rapid sedimentation during the mid 1970s. Excluding this episode, sedimentation rates appear to have been relatively uniform during the past century, with a mean value of 0.023 ± 0.002 g cm⁻²y⁻¹.

Table 7. ²¹⁰Pb chronology of Yterjørna core SBAQ2

De	epth	C	nronology		Sedi	imentation Ra	ate
	1	Date	Age				
cm	g cm ⁻²	AD	y	±	$g \text{ cm}^{-2} \text{ y}^{-1}$	cm y ⁻¹	± (%)
0.0	0.00	1995	0				
0.5	0.03	1993	2	2	0.014	0.18	18
1.0	0.07	1990	5	2	0.015	0.15	16
1.5	0.13	1985	10	2	0.012	0.11	12
2.0	0.20	1979	16	2	0.011	0.07	9
2.5	0.29	1972	23	2	0.013	0.09	11
3.0	0.36	1967	28	2	0.013	0.11	14
3.5	0.42	1962	33	2	0.012	0.11	14
4.0	0.47	1957	38	3	0.011	0.10	14
4.5	0.52	1953	42	3	0.012	0.10	14
5.0	0.58	1948	47	3	0.012	0.10	16
5.5	0.65	1942	53	3	0.012	0.094	21
6.0	0.71	1936	59	4	0.011	0.083	23
6.5	0.77	1929	66	4	0.0084	0.068	21
7.0	0.83	1921	74	5	0.0066	0.054	21
7.5	0.89	1911	84	6	0.0051	0.041	23
8.0	0.96	1898	97	9	0.0043	0.033	25
8.5	1.03	1882	113	12	0.0042	0.031	27
9.0	1.10	1866	129	14	0.0042	0.029	
10.0	1.25	1830	165	17	0.0042	0.031	
11.0	1.37	1800	195	21	0.0042	0.033	
12.0	1.51	1767	228	24	0.0042	0.027	
13.0	1.69	1726	269	29	0.0042	0.023	
14.0	1.85	1687	308	33	0.0042	0.032	
15.0	1.97	1659	336	36	0.0042	0.032	
16.0	2.13	1621	374	40	0.0042	0.023	
17.0	2.30	1579	416	44	0.0042	0.027	
18.0	2.44	1545	450	48	0.0042	0.030	
19.0	2.58	1514	481	51	0.0042	0.033	
20.0	2.70	1483	512	54	0.0042	0.032	
21.0	2.84	1452	544	58	0.0042	0.032	
22.0	2.96	1422	573	61	0.0042	0.033	
23.0	3.10	1389	606	64	0.0042	0.028	
24.0	3.25	1354	641	68	0.0042	0.031	
25.0	3.37	1324	671	71	0.0042	0.034	
26.0	3.50	1293	702	75	0.0042	0.028	

NB: Extrapolated values below the base of the ²¹⁰Pb record, shown in italics, have been calculated using the mean 19th century sedimentation rate of 0.0042 g cm⁻² y⁻¹ (see text).

Daltjørna Core SBAT4

Sedimentation rates at this site appear to have been relatively uniform throughout the past 100 years or more. ²¹⁰Pb activity declines more or less exponentially with depth and there is little significant difference between the CRS and CIC model dates. There is a small discrepancy between the ²¹⁰Pb and ¹³⁷Cs/²⁴¹Am results that is slightly higher than might have been expected in view of the uniform accumulation. The ²¹⁰Pb chronology (Table 9) places 1963 at a depth of 3.25 cm whereas the peak ¹³⁷Cs activity occurs between 3.75 and 5 cm (1.8 - 2.8 g cm⁻²; Figure 2ii(c)). The difference could be due to a small amount of mixing (the ¹³⁷Cs peak is less well resolved than in other cores) or to a small loss of sediment from the top of the core

before or during coring. The mean sedimentation rate during the past 100 years is calculated to be 0.050 ± 0.002 g cm⁻² y⁻¹.

De	epth	Cl	nronology		Sedi	mentation R	ate
		Date	Age				
cm	g cm ⁻²	AD	у	±	$g \text{ cm}^{-2} \text{ y}^{-1}$	cm y ⁻¹	± (%)
0.0	0.00		0				
0.5	0.07	1992	3	2	0.025	0.13	8.5
1.0	0.18	1989	6	2	0.030	0.11	6.6
1.5	0.29	1985	10	2	0.036	0.10	4.7
2.0	0.55	1980	15	2	0.062	0.13	9.8
2.5	0.81	1975	20	2	0.089	0.16	14.9
3.0	1.10	1970	25	2	0.061	0.11	12.7
3.5	1.39	1964	31	2	0.033	0.06	10.4
4.0	1.61	1956	39	3	0.027	0.05	12.9
4.5	1.83	1947	48	4	0.023	0.04	15.4
5.0	2.11	1935	60	5	0.023	0.04	20.2
5.5	2.38	1923	72	7	0.023	0.03	24.9
6.0	2.78	1905	90	11	0.023	0.032	27.6
6.5	3.17	1888	107	14	0.023	0.031	30.2
7.0	3.70	1864	131	17	0.023	0.021	
7.5	4.22	1841	154	20	0.023	0.020	
8.0	4.84	1814	181	24	0.023	0.018	
8.5	5.45	1787	208	27	0.023	0.019	
9.0	6.00	1762	233	30	0.023	0.020	
9.5	6.56	1738	257	34	0.023	0.023	
10.0	6.98	1719	276	36	0.023	0.027	
10.5	7.41	1700	295	38	0.023	0.028	
11.0	7.78	1684	311	41	0.023	0.031	
11.5	8.15	1668	327	43	0.023	0.031	
12.0	8.50	1652	343	45	0.023	0.032	
12.5	8.85	1636	359	47	0.023	0.032	
13.0	9.20	1621	374	49	0.023	0.032	
13.5	9.55	1605	390	51	0.023	0.033	
14.0	9.89	1590	405	53	0.023	0.033	
14.5	10.23	1575	420	55	0.023	0.034	
15.0	10.56	1561	434	57	0.023	0.035	
15.5	10.88	1546	449	59	0.023	0.030	
16.0	11.30	1528	467	61	0.023	0.027	
16.5	11.72	1510	485	63	0.023	0.023	
17.0	12.27	1485	510	67	0.023	0.020	
17.5	12.82	1461	534	70	0.023	0.020	

Table 8. ²¹⁰Pb chronology of Vassauga core SBAS3

NB: Extrapolated values below the base of the ²¹⁰Pb record, shown in italics, have been calculated using the estimated normal sedimentation rate (excluding slump events) of 0.023 g cm⁻² y⁻¹ (see text).

Tenndammen core SBAU4

The ²¹⁰Pb results for this core (Figure 2i(c)) are dominated by a major non-monotonic feature at $3.5 \text{ cm} (1 \text{ g cm}^{-2})$ depth. The presence of this feature, which coincides with a layer of dense inorganic sediment, precluded use of the CIC dating model and dates for this core have been calculated using the CRS model alone. The results, given in Table 10, indicate that the dense

layer records a brief episode of very rapid sedimentation in the early 1970s, presumably due to a slump of catchment derived material or old marginal sediments, possibly as a result of human activity in the catchment associated with the use of the lake as a water supply for Colesbukta prior to the closure of the mine there in 1967. There are indications of a similar though smaller episode (at 8.5 cm depth) at the beginning of this century. Excluding these events, it is estimated that sedimentation rates are normally ca. 0.015 g cm⁻² y⁻¹.

The ¹³⁷Cs results for this core (Figure 2ii(c)) record a well resolved peak in the 6 - 7 cm (3.0 - 3.4 g cm^{-2}) section. Traces of ²⁴¹Am between 5 and 8 cm confirm that this feature records the weapons fallout maximum in the early 1960s. The ²¹⁰Pb dates place 1963 at a depth of 5.75 cm, in relatively good agreement with the ¹³⁷Cs and ²⁴¹Am records. Since rapid changes in bulk density between 3 and 6 cm may have caused some distortion of the fallout record, the ¹³⁷Cs peak has not been used to adjust the ²¹⁰Pb chronology.

De	epth	Cl	nronology		Sedi	mentation R	on Rate	
		Date	Age					
cm	g cm ⁻²	AD	У	±	$g \text{ cm}^{-2} \text{ y}^{-1}$	cm y ⁻¹	± (%)	
0.00	0.00	1995	0					
0.50	0.18	1991	4	2	0.046	0.13	7.7	
1.00	0.36	1987	8	2	0.048	0.12	6.0	
1.50	0.59	1982	13	2	0.047	0.10	6.6	
2.00	0.85	1977	18	2	0.053	0.10	7.1	
2.50	1.12	1972	23	2	0.059	0.10	7.4	
3.00	1.41	1967	28	2	0.051	0.085	8.5	
3.50	1.72	1960	35	2	0.047	0.074	9.8	
4.00	2.05	1954	41	3	0.045	0.067	11.5	
4.50	2.41	1946	49	4	0.048	0.063	14.7	
5.00	2.82	1937	58	5	0.046	0.054	19.3	
5.50	3.25	1929	66	6	0.055	0.060	24.4	
6.00	3.72	1919	76	8	0.056	0.058	30.6	
6.50	4.23	1910	85	10	0.048	0.049	37.9	
7.00	4.73	1899	96	14	0.043	0.043	44.7	
7.25	4.98	1893	102	16	0.042	0.043	48.0	

Table 9. ²¹⁰Pb chronology of Daltjørna core SBAT4

Arresjøen core ARSJ93/4

Both the very high surficial ²¹⁰Pb activity (Table 2) and the steep gradient of the unsupported ²¹⁰Pb activity versus depth profile (Figure 2i(a)), indicate that sedimentation rates in this lake are extremely low. ²¹⁰Pb/²²⁶Ra equilibrium, corresponding to c.130 year's accumulation, is reached at a depth of about 2.75 cm (0.32 g cm⁻²). The unsupported ²¹⁰Pb activity versus depth profile is more or less exponential and there is little significant difference between ²¹⁰Pb chronologies calculated using the CRS and CIC ²¹⁰Pb dating models. Both models indicate a more or less constant sedimentation rate of 0.0023 \pm 0.003 g cm⁻² y⁻¹. ²¹⁰Pb dates calculated using this value are given in Table 3.

The ¹³⁷Cs profile (Figure 2ii(a)) does not have a sub-surface peak recording the 1963 weapons fallout maximum, but this is not surprising in view of the very low accumulation rate. The ²¹⁰Pb chronology puts the 1963 level at a depth of only 0.75-1.0 cm. A mid 1960s date for this level is broadly supported by the distribution of the ¹³⁷Cs, the bulk of which is contained in the top 1 cm of the core.

De	epth	Cl	nronology		Sed	imentation R	late
	1	Date	Age				
cm	g cm ⁻²	AD	y y	±	g cm ⁻² y ⁻¹	cm y ⁻¹	± (%)
0.0	0.00	1995	0				
0.5	0.09	1993	2	2	0.054	0.20	15
1.0	0.22	1990	5	2	0.048	0.20	16
1.5	0.36	1988	7	2	0.043	0.17	16
2.0	0.54	1984	11	2	0.051	0.13	18
2.5	0.73	1980	15	2	0.059	0.17	20
3.0	1.07	1978	17	3	0.096	0.20	23
3.5	1.40	1975	20	3	0.134	0.25	25
4.0	1.81	1974	21	3	0.142	0.33	36
4.5	2.22	1972	23	3	0.149	0.20	48
5.0	2.52	1969	26	4	0.107	0.17	39
5.5	2.82	1966	29	4	0.065	0.11	30
6.0	3.04	1960	35	5	0.042	0.077	28
6.5	3.26	1953	42	6	0.019	0.053	26
7.0	3.45	1941	54	9	0.016	0.042	35
7.5	3.65	1929	66	13	0.014	0.042	44
8.0	3.94	1917	78	20	0.033	0.042	85
8.5	4.23	1905	90	26	0.053	0.036	126
9.0	4.59	1889	106	32	0.031	0.031	151
9.5	4.96	1873	122	38	0.015	0.020	176
10.0	5.37	1839	156	49	0.012	0.015	
10.5	5.78	1805	190	59	0.012	0.014	
11.0	6.24	1766	229	71	0.012	0.013	
11.5	6.70	1728	267	83	0.012	0.013	
12.0	7.17	1689	306	95	0.012	0.013	
12.5	7.64	1649	346	108	0.012	0.012	
13.0	8.15	1607	388	121	0.012	0.012	
13.5	8.66	1564	431	134	0.012	0.012	
14.0	9.18	1521	474	148	0.012	0.012	
14.5	9.70	1478	517	161	0.012	0.012	
15.0	10.18	1438	557	174	0.012	0.012	
15.5	10.66	1398	597	186	0.012	0.012	
16.0	11.19	1354	641	200	0.012	0.011	
16.5	11.72	1310	685	213	0.012	0.011	
17.0	12.27	1264	731	228	0.012	0.011	
17.5	12.82	1218	777	242	0.012	0.011	

Table 10. ²¹⁰Pb chronology of Tenndammen core SBAU4

NB: Extrapolated values below the base of the ²¹⁰Pb record, shown in italics, have been calculated using the estimated mid-19th century sedimentation rate of 0.012 g cm⁻² y⁻¹.

Birgervatnet core BIRJ93/1

Total ²¹⁰Pb activity reached equilibrium with the supporting ²²⁶Ra at a depth of ca. 5.5 cm (1.55 g cm⁻²). The unsupported ²¹⁰Pb activity versus depth profile (Figure 2i(a)) can be divided into two distinct parts. Below 3.5 cm (1.04 g cm⁻²) the concentration varies exponentially with depth, indicating uniform accumulation. Above this depth the profile has a progressively shallower gradient, suggesting steadily increasing sedimentation rates.

The ¹³⁷Cs activity versus depth profile (Figure 2ii(a)) has a well-resolved peak at 1.75 cm (0.47 g cm⁻²). The detection of a small but significant peak in ²⁴¹Am activity at the same

depth confirms that this feature records the 1963 fallout maximum from the atmospheric testing of nuclear weapons.

²¹⁰Pb chronologies calculated using the CRS and CIC dating models both suggest uniform sediment accumulation rates prior to the transition at 3.5 cm, followed by a prolonged period of accelerating sedimentation rates, though there is a significant difference in timing. The CIC model dates the increase to the late 1940s, whereas the CRS model suggests an earlier increase at around 1900. The CRS model chronology places 1963 at a depth of 1.75 cm, in good agreement with the ¹³⁷Cs record, in contrast to the CIC model which places 1963 at a depth of nearly 2.5 cm. The CRS model has accordingly been used to calculate the chronology shown in Table 4. The mean sedimentation rate prior to 1900 is estimated to be 0.0041 ± 0.004 g cm⁻² y⁻¹. Since then it has increased five-fold to reach a current value of ca. 0.020 g cm⁻² y⁻¹.

'Scurvy Pond' core SCUR93/1

The unsupported ²¹⁰Pb activity versus depth profile again divides into two distinct parts (Figure 2i(a)). In this core, however, the change in gradient is partly attributable to a progressive decline in dry bulk sediment density towards the surface of the core, from more than 0.4 g cm^{-3} at 5.5 cm to less than 0.2 g cm^{-3} in the surficial sediments.

The ¹³⁷Cs activity versus depth profile (Figure 2ii(b)) has its maximum value in the uppermost sample analysed, at 1 - 2 cm (0.2 - 0.4 g cm⁻²). Since traces of ²⁴¹Am were also detected in this sample, sediments from this depth can be presumed to date from the mid 1960s.

In this core there is little significant difference between ²¹⁰Pb chronologies calculated using the CRS and CIC dating models, and both are in good agreement with the 1963 level suggested by the artificial radionuclides. The ²¹⁰Pb results place 1963 at a depth of between 1.5 and 1.75 cm. Using both models, the mean sedimentation rate since the mid 19th century is calculated to be 0.010 ± 0.02 g cm⁻² y⁻¹. The detailed results, given in Table 5, have been determined using the CRS model. These suggest that there may have been a small increase in sedimentation rates during the ²¹⁰Pb period, from a mean value of ca. 0.0087 g cm⁻² y⁻¹ in the 19th century to a contemporary value of ca. 0.013 g cm⁻² y⁻¹.

Atmospheric fluxes of fallout radionuclides

There are very few data of atmospheric fluxes of fallout radionuclides at high latitudes. Data from a number of lake sediment and peat-bog cores in the ERRC data-base suggest values for the ²¹⁰Pb flux in the range 30 - 70 Bq m⁻² y⁻¹, though the actual amount at any given site will depend on the mean annual rainfall. Excluding the two anomalous sites (Daltjørna (T) and Birgervatnet), the ²¹⁰Pb fluxes recorded in the Svalbard cores are consistent with those from other Arctic sites. Since there is quite a weak correlation between the ²¹⁰Pb flux and mean sedimentation rate, it appears that sediment focussing is not a major factor at these sites. The mean ²¹⁰Pb flux of 56 Bq m⁻² y⁻¹ recorded in the sediments (excluding the two anomalous sites) can thus be regarded as a reasonable measure of the atmospheric flux. The mean ¹³⁷Cs inventory at these sites is 1553 Bq m⁻², though since ¹³⁷Cs is less strongly associated with particulates than ²¹⁰Pb this figure will be less reliable as an estimator of the atmospheric flux. Since the mean sediment accumulation rates at Birgervatnet and Daltjorna are not significantly different from those at the sites with normal ²¹⁰Pb fluxes, it appears likely that the abnormally high ²¹⁰Pb fluxes at these two sites (Table 2) are due to significant inputs of

fallout radionuclides (and presumably other pollutants) from the catchment during the annual spring thaw (Appleby et al. 1995).

Acknowledgments

Funding for this study from the Norges forskningsråd (grant number 107745/730) and the EU AL:PE2 project (contract no. EV5V-CT92-0205) is gratefully acknowledged. I would also like to thank John Birks, Nigel Cameron, Nick Cox, Sharon Foster, Viv Jones, Hans Lund, Don Monteith, Marianne Prytz, Neil Rose, and John Sweeney for collecting the samples, and José Corcho Alvarado for help with the graphics.

References

- Appleby P.G. 1998. Dating recent sediments by ²¹⁰Pb: Problems and solutions. Proc. 2nd NKS/EKO-1 Seminar, Helsinki, 2-4 April 1997, STUK, Helsinki, pp. 7-24.
- Appleby P.G. and Oldfield F. 1978. The calculation of ²¹⁰Pb dates assuming a constant rate of supply of unsupported ²¹⁰Pb to the sediment. Catena 5: 1-8
- Appleby P.G. and Oldfield F. 1983. The assessment of ²¹⁰Pb data from sites with varying sediment accumulation rates. Hydrobiologia. 103: 29-35.
- Appleby P.G., Jones V.J. and Ellis-Evans J.C. 1995. Radiometric dating of lake sediments from Signy Island (maritime Antarctic): evidence of recent climatic change. J. Paleolim. 13: 179-191.
- Appleby P.G., Richardson N. and Nolan P.J. 1991. ²⁴¹Am dating of lake sediments. Hydrobiologia. 214: 35-42.
- Appleby P.G., Richardson N. and Nolan P.J. 1992. Self-absorption corrections for well-type germanium detectors. Nucl. Inst. & Methods B 71: 228-233.
- Appleby P.G., Nolan P.J., Gifford D.W., Godfrey M.J., Oldfield F., Anderson N.J. and Battarbee R.W. 1986. ²¹⁰Pb dating by low background gamma counting. Hydrobiologia. 141: 21-27.
- Birks H.J.B, Monteith D.T., Rose N.L., Jones, V.J. and Peglar S.M. 2004. Recent environmental change and atmospheric contamination on Svalbard as recorded in lake sediments – modern limnology, vegetation and pollen deposition. J. Paleolim. (this issue)
- Glew J.R. 1989. A new trigger mechanism for sediment samples. J. Paleolim. 2: 241-243
- Pennington W., Cambray R.S. and Fisher E.M. 1973. Observations of lake sediments using fallout ¹³⁷Cs as a tracer. Nature 242: 324-326
- Robbins J.A. 1978. Geochemical and geophysical applications of radioactive lead. In: Nriagu J.O. (ed.) Biogeochemistry of Lead in the Environment, Elsevier Scientific, Amsterdam, pp. 285-393.
- Wathne B.M., Patrick S.T. and Cameron N. (eds.) 1997. AL:PE Acidification of Mountain Lakes: Paleolimnology and Ecology. Part 2 – Remote Mountain Lakes as Indicators of Air Pollution and Climate. Norwegian Institute for Water Research, Oslo, 525 pp.