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Abstract: We present a procedure for estimating age-depth relationships in stratigraphical sequences by
means of a generalized mixed-effect regression using an ancillary function for the partitioning of the fixed
effect and the random effect corresponding to the degree of representativity of the individual calibrated
dates for a particular section of the sedimentary sequence. The procedure uses mid-point estimates of the
calibrated ages in combination with the central distributional range as the basis for estimating the fixed
relationship between age and depth. Further, it combines the variability of the calibrated age at individual
layers (within-object variance) with estimation of the variability of the calibrated age distribution as a
whole between the layers standardized by the fixed effect (between-object variance). These components of
random variability can be considered independent, and hence the uncertainty of the estimated fixed
relationship between age and depth can be estimated by combining the two random variables. The
procedure follows the logic of mixed-effects models, but with prior information about the expected
variance within each dated object.

Key words: Sediment sequences, age-depth relationships, GAM, mixed effects, calibrated ages.

Introduction
In palaeoecology and palaeoclimatology keys to any inference
about historical records are the times of particular events the
time between events, the duration of such events and the rates
of changes. These temporal issues have led to a great interest in
the fields of 14C dating (Boaretto et al., 2002), 210Pb dating
(Appleby, 2001), varved records (Brauer et al., 2001), and other
dating methods. These procedures are expensive and time-
consuming, and frequently materials from sediment cores are
poor in quality or quantity for particular procedures. Never-
theless, as we are interested in the entire historical sequence, we
wish to extract information from dated points that is applicable
to the rest of the core, i.e., by finding the relationship between
the depths of the sediment sequence and their ages. To estimate
such age-depth relationships, several statistical techniques
have been proposed, e.g., various regression techniques
(Maher, 1972; Bennett, 1994; Bennett and Fuller, 2002) and
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() 2005 Edward Arnold (Publishers) Ltd

fuzzy-regression (Boreux et al., 1997). The key difficulties that
these procedures consider are how to find the expected age at a
particular depth and, more importantly, what is the uncer-
tainty of the particular estimate. The importance of the latter is
obvious, as a statement about the age of an event has very
different meanings if we say the age will most likely lie within a
50-year interval or within a 200-year interval.
Most procedures estimate the error by an assumed distribu-

tion of the central points of a calibrated depth, or by a
bootstrap procedure of observations from the calibrated
distributions (see Bennett, 1994; Telford et al., 2004a). Alter-
natively, a Bayesian procedure estimates the probability density
distribution, i.e., posterior probability, of the calibrated age
using the calibrated distributions (see Buck et al., 1996). We
fully recognize the potential advantages of the Bayesian
approach in finding reliable estimates of the probability density
function for ages at dated depths. Nevertheless, we formalize
here a procedure that highlights some additional aspects of
estimating age-depth relationships, namely the uncertainty
related to how representative the dated object is in relation to
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the sampled layer, and not just the error estimates of the
individual dated object (objects here are organic material
submitted for dating). The procedure has not been fully
described before, although it has been applied in several
published studies (e.g., Rosen et al., 2001; Seppa and Birks,
2001, 2002; Bigler et al., 2002; Seppa et al., 2002; Heiri et al.,
2003a, b), and functions for the statistical software S-plus and
R are available (Heegaard, 2003). The procedure can be
characterized as a mixed-effect model as it includes both a
fixed effect, namely the 'influence' of depth on age, and two
random effects, first related to the dating of the objects (within-
object variance), and secondly related to how representative
the dated objects are in relation to the section of the sequence
from where they were sampled (between-object variance).

Calibrated age to depth relationship as
a mixed-effect model
The data for modelling
The dating of a sediment sequence by radicarbon dating
involves submitting organic material (objects) from selected
layers to a dating laboratory. From the laboratory we receive
the estimated radiocarbon age with an uncertainty for each of
the objects in radiocarbon years BP. As radiocarbon years do
not correspond to calendar years, we need to transform or
calibrate these observations into calibrated ages. For this, the
software Calib (Stuiver and Reimer, 1993), Oxcal (Ramsey,
2001), or Bcal (Buck et al., 1996) are frequently used. Although
radiocarbon years are normally distributed, the calibrated
years are not normally distributed owing to a non-linear
transformation function. For simplicity here, we assume
various procedures for finding a central distributional range
and the central point of these distributions (see Telford et al.,
2004a). Telford et al. found that a central point either as the
median or the weighted mean of the central 68% range gives
reasonable estimates in comparison with the widely used
intercept method of calibration. We can obtain a central point
and an uncertainty (variance) for each dated sample, i.e.,
within-object variance. However, an important question in this
context is does the object dated reflect the layer from which it is
picked? This is important because of the aim, namely, making a
statement about the layers throughout the sequence. Obviously
if the object is either contaminated or transported within the
sequence (up or down), or some sedimentary disturbance has
occurred (e.g., missing layers, erosion, etc.), there will be a
misrepresentation. In addition, the object selected is frequently
only a minor part of all the possible objects that could be
estimated at a particular layer. By selecting a different object
from the same layer a different radiocarbon estimate may be
obtained. This type of variability is in addition to the
variability of the dating process of the submitted object, and
must be included as a part of the overall uncertainty of the
final estimated relationship. Thus, there are at least two general
sources of error involved: (1) the error of the particular object
dated, i.e., within-object error, and (2) the potential error of the
object to layer relationship, i.e., between-object error, which is
influenced by processes within the sequence (contamination,
object transport, turbidites, hiatuses, etc.) and the random
difference between objects of the same population.

Mixed modelling
A mixed-effect model is defined as a model that includes both a
fixed variable, i.e., a particular variable that determines the
expected response, and a random variable, which describes the
variability of some group of observations in addition to the

individual observations themselves (see Pinheiro and Bates,
2000). The fixed variable, which is the predictor variable in a
classic linear model, tells us how the expected response will
differ as the conditions described by the predictor variable
change. The degree of change is identified as the fixed effect. A
random variable is a variable that describes a property of the
distribution for the underlying population from which the
different observations are gathered.
To formalize the calibrated age-depth relationship including

a fixed depth and the two sources of variance (random effects),
we can view the relationship as a fixed-effect function in
combination with a between-object random factor and a
within-object random factor:

Cageji =f(depthj) + boj + SFj (1)

where Cage1i is the ith possible calibrated age at the jth dated
object,J(depthj) is a fixed effect, and boj is the random effect for
dated objects being selected from a population of objects at
that layer and a population of depths to be selected (between-
object), whereas Cji represents the random effect related to the
calibrated age estimate of the jth submitted object (within-
object). It is important here to recognize that boj in general
follows a normal distribution with zero mean and sigma
squared variance (N(O,ca)). Further, we can assume that boj
and eji are independent, and hence the variance related to the
response is additive (see Pinheiro and Bates, 2000):

var(Cageji) = U2 + i

From the calibrated age distribution representing the indivi-
dual object we know the individual variability (a52). Thus we
only need to estimate the fixed relationship of the calibrated
age-depth relationship and the random effect inherent in the
different layers dated. However, as we only have one object
dated at each layer, how can we estimate the uncertainty of the
layers dated? To solve this we utilize the additivity of the terms
in Equation (1). The expected calibrated year for the objects
dated can be described as:

E(Cagej.) =f(depthj) + boj (2)

This simplification of Equation (1) is the observed central
point of the jth layer as a function of some fixed function of
depth and some random variability between objects (:b).
Equation (2) can be solved by various regression procedures,
including polynomial regression and various smoothers, with
the central points of each object as the response variable, i.e.,
E(Cagej.) = gj=jth central point. As boj is assumed to be
normal, the variance a;b is given by the mean sum of squares
for Equation (2). Note that the subscript reflects the jth layer,
which suggests that this part of the system amounts to
Ej number of observations, which is logical as all 'observations'
for each object have the same depth. Having estimated the
fixed function (f(depthj)) and the corresponding random effect
(boj) we can describe the relationship between the calibrated
age and depth by substituting Equation (2) into Equation (1):

E[E(Cagej.)] = E(Cageji) =f(depth;) (3)

with the variance:

var(Cageji) = a' + i~

From these values we can then estimate the confidence
intervals following standard statistical procedures (Myers
et al., 2002)
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E(Cagej3)±Z,12var(Cage1j)
x / [depth(DepthTDepth) - l depthji] (4)

where E(Cagej3) is the predicted age at the jth dated object and
ith possible calibrated age, Za/2 iS the critical value of a
standard Normal distribution corresponding to significance
level a, var(Cagej,) is the variance of the predicted response
at jth dated object, and depthji is the depth at the jth dated
object, and Depth is the model matrix including an intercept
column and depth as a column. The expression
[depthjT(DepthTDepth)-ldepthji] describes the position of the
jth dated object in relation to the distribution of all dated
objects.

An example: age-depth relationship at
Storsandsvatnet, western Norway
As seen above, the estimation of the calibrated age-depth
relationship is based on several steps.

(1) Estimate a central point of the calibrated age and the
within-object variance (af).

(2) By regression, find the relationship between the central
points and sediment depth. This gives the expected
calibrated ages at the various depths.

(3) Estimate the between-object variance (G2) from the regres-
sion (step 2).

(4) Estimate the variance of the expected calibrated ages by
summing the variances from stages 1 and 2.

(5) Calculate the 95% confidence interval for each age estimate
at each depth.

The example follows the procedure provided by the Cage-
depth.fun function (Heegaard, 2003) for Windows-versions of
the statistical software R (http://cran.r-project.org/; last ac-
cessed 22 February 2005). Organic material from 11 layers
throughout the sequence spanning the entire Holocene was
dated from a core in Storsandsvatnet, western Norway
(63°27'N, 8°27'E) (H.J.B. Birks and S.M. Peglar, unpublished
dates).

Step 1. From the radiocarbon laboratory we received 11
radiocarbon dates, which where individually calibrated using
Oxcal (Ramsey, 2001). From the calibrated distribution we
found the central 68% percentage range, and the central point
by mid-point of the ranges. This procedure gives us a table of
the depth and the younger and older calibrated age (Table 1),
which is the basis for our estimations of the fixed effect, and
the two random components. For the variance of the indivi-
dual object ((7) we need the assumption that the central 68%
percentage integral of a calibrated distribution reflects the
central point+standard deviation (sd). Then the variance of
the individual object is CF2 = sd2. Owing to the independence of
the central point and variance, we then extract the central
points to be regressed against depth.

Step 2. To solve Equation (2) of the previous section by
regression of the central points against depth we assume a
normal distribution (although in very rare cases this is not
sufficient). In estimating J(depthj) we can use any regression
procedure, including polynomial terms, and a variety of
smoothers such as natural splines, cubic smooth splines, etc.
In addition, there are many criteria for selecting the 'best-fit'
relationship, such as F-statistics, AIC, BIC, cross-validation,
etc. (Hastie et al., 2001). Note that the choices made for
polynomial terms or smoothers, and the selection criterion can
give different results.

In Cagedepth.fun we use a cubic smooth spline function,
including a knot at each dated layer as the start for the
shrinkage process (Wood, 2000, 2001; Hastie et al., 2001). As a
criterion for the model selection, i.e., 'best-fit', we used the
Generalized Cross-Validation provided by Wood (2001) in the
mgcv library of R (http:llcran.r-project.org/; last accessed 22
February 2005). Further, as a check for the assumption of
normality between-object variance, we have included diagnos-
tic plots for two separate models; (1) constant variance
(Normal distribution), and (2) variance as a function of the
expected mean (Poisson-like distribution). To be able to
generate these regressions we use a Generalized Additive
Model (GAM; Hastie and Tibshirani, 199OWood, 2001) with
a quasi-likelihood distribution. This procedure allows an
identity link between the linear predictor and the expected
response to be combined with different variance functions (see
Firth, 1991). The diagnostic plots are used for comparison
between the two options, and we would only use option 2 if
there is clear evidence for this being a significant improvement
(very rarely observed). If there are no differences between the
two options, we select option 1 as is the case for the example
(Figure 1). The expected calibrated ages for both models are
given in the numerical output of Cagedepth.fun (Table 2).

Step 3. Having solved Equation (2) and found the 'best-fit'
relationship between the central calibrated ages and depth, we
use these results to find the between-object variance (a ). For
generalized models the variance can be expressed as: var(y) =
4 V(}t), where 4) is a scale parameter (C2 for Normal distribu-
tion), and V(1g) is a description of the mean to variance
relationship (McCullagh and Nelder, 1989; Firth, 1991). For
the two options the variances are: (1) ar = a2 V(j), where
V(p)= 1 (constant) and a2 = MSres, (2) c2=4) V(>t), where
V(,u) = 1t (expected mean) and 4 = standardized squared
Pearson residuals (Venables and Ripley, 2002). The variances
for both options are given in the numerical output of
Cagedepth.fun (Table 2).

Step 4. Having obtained an estimate of both random
components, boj and cji, we can determine the variance of the
expected calibrated age by summing these independent vari-
ables:

var(Cageji) = U2 + i~

This procedure models the variability of the individual point
in the calibrated age distribution as a function of the variance
between objects and of the variance within the object (Table 2).

Table 1 The input information to the Cagedepth.fun function

depthup depthdo cageup cagedo

69.5 70.5 - 56 - 46
119.5 120 3465 3565
156.6 157 5775 5925
204.5 205 6760 6900
244.5 245 8410 8625
274.5 275 9005 9085
296.5 297 7880 8010
314.5 315 10235 10400
334.5 335 10605 11060
349.5 350 11255 11555
389.5 390.5 13450 13820

Depthup = upper depth of sampled layer (cm), depthdo = lower
depth of sampled layer (cm), cageup = younger border of 68%
central calibrated age distribution (calibrated years BP), cagedo =
older border of 68% central calibrated age distribution (calibrated
years BP).
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Figure 1 The diagnostic plots for the cubic smooth spline regression including the constant variance (row 1) and A. variance (row 2). The
diagnostic plots include column-wise; residuals versus fitted values (no trend), square root of absolute residuals versus fitted (no trend should
appear), observed versus fitted (observations along the diagonal line), and a qq-normplot (observations along the diagonal line). Here we see
that there are no differences between the two options and hence we select the simpler constant variance

Step 5. Combining all the information gathered so far
produces an estimate of calibrated age-depth relationship
with a 95% confidence interval (Figure 2 and Table 2)
following Equation (4).

From the results of Storsandvatnet (Table 2, Figures 2 and 3)
we see that there are no big differences between the two
variance-function options. Hence, we select the simpler model
based on constant variance. Note that by assuming a p
variance function (option 2), the uncertainty decreases more

strongly towards today, but a higher variance is assigned to the
older dates. The function Cagedepth.fun only gives numerical
output for the dated layers. To be able to expand this
information to other layers of the core we have provided an

additional function Cagenew.fun. This function uses numerical
information from the Cagedepth.fun function to calculate age

estimates for all the sediment depths required. Both functions
can be found within the downloadable file CagedepthR.txt at
the HOLIVAR homepage (http://geog.ucl.ac.uk/ecrc/holivar/
utrecht.htm; last accessed 22 February 2005), or at EECRG
home page (http://www.uib.no/bot/qeprg/Age-depth.htm; last
accessed 22 February 2005).

Discussion

The procedure presented here differs from previous age-depth
estimation procedures (Bennett, 1994; Buck et al., 1996;
Boreux et al., 1997; Bennett and Fuller, 2002) by an explicit
attempt to estimate the variability between dated objects at the
different layers of the sequence. Hence, we try to derive a

measure of how representative each dated object is in relation
to the population from which it is sampled. This variability
comes in addition to the uncertainty of the radiocarbon dating
of the individual object. Thus, obviously we need an estimate
of both these types of variance to be able to derive a reasonable
error estimate for the final calibrated age-depth relationship.
The impact of the procedure is seen by the inference of the

system. Without taking account of the between-object varia-
bility, we treat the calibrated-age distribution as fixed for that
particular layer. Next we infer a relationship between cali-
brated ages and objects rather than a calibrated age to depth
relationship. Our procedure relaxes the assumption required by
previous procedures (Maher, 1972; Bennett, 1994; Boreux et
al., 1997; Bennett and Fuller, 2002), namely that the objects
dated are themselves accurate representations for particular
layers. By relaxing this assumption and explicitly estimating
the variability between objects we expand the confidence
interval, as the variance now comprises two components. The
inclusion of both types of errors (within-object and between-
object) allows the uncertainty in the system of age-depth
relationships through the core, being expressed not only as a

function of errors related to the radiocarbon dating process,
but also as errors related to layers and dated objects within
layers, such as contamination, inaccurate depth measurement,
etc. This makes the difference in interpretation from previous
procedures, as we do not consider each dated object as fixed
focusing on the relationship of the dated objects, but consider
the population of possible dated objects to infer for the whole
stratigraphical sequence. However, the procedures will numeri-
cally approximate each other when the central points can be
replicated exactly by the fixed function used in Equation (2), as
the between-object variability will then be negligible. Never-
theless, we find it reassuring that the different potential sources
of variability are accounted for, and the inference is in the
calibrated age-depth relationship.

However, the procedure as described here, and for which
functions are provided (Heegaard, 2003) makes some assump-
tions. As the radiocarbon dates are normally distributed, and
hence the mean and variance are independent, and as this is a
property we need to include, we assume that the transfer
function is linear within the standard deviation range of the
radiocarbon dates. This procedure equals that of a 68% central
range based on the central point, which is a reasonable
estimate of the central points (Telford et al., 2004a). This
procedure will also ensure that the central point and the
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Table 2 Parts of the numerical output from Cagedepth.fun

Variance Depth Cal.age Est.age Low.lim Upplim Tsd Csd Rsd

Constant 70.0 -51.0 -45.30 -199.05 108.45 78.44 5.00 78.28
119.8 3515.0 3339.44 2623.54 4055.34 365.25 50.00 361.82
156.8 5850.0 5334.36 4517.82 6150.90 416.60 75.00 409.80
204.8 6830.0 7057.09 6231.50 7882.68 421.22 70.00 415.36
244.8 8517.5 8083.89 7317.04 8850.75 391.25 107.50 376.19
274.8 9045.0 8753.74 8113.96 9393.52 326.42 40.00 323.96
296.8 7945.0 9317.56 8673.61 9961.52 328.55 65.00 322.06
314.8 10317.5 9914.85 9205.29 10624.42 362.02 82.50 352.50
334.8 10832.5 10701.73 9775.01 11628.45 472.81 227.50 414.48
349.8 11405.0 11339.43 10346.25 12332.61 506.72 150.00 484.01
390.0 13635.0 13178.80 11484.25 14873.36 864.57 185.00 844.54

70.0 - 51.0 - 51.00 - 61.46 - 40.54 5.34 5.00 1.87
119.8 3515.0 3417.89 2887.19 3948.58 270.76 50.00 266.11
156.8 5850.0 5424.08 4772.60 6075.57 332.39 75.00 323.82
204.8 6830.0 7105.80 6366.42 7845.19 377.24 70.00 370.69
244.8 8517.5 8113.73 7384.46 8843.00 372.08 107.50 356.21
274.8 9045.0 8786.88 8154.88 9418.88 322.45 40.00 319.96
296.8 7945.0 9346.96 8694.61 9999.32 332.83 65.00 326.43
314.8 10317.5 9921.38 9186.90 10655.85 374.73 82.50 365.54
334.8 10832.5 10665.02 9684.63 11645.41 500.20 227.50 445.47
349.8 11405.0 11263.69 10174.33 12353.04 555.79 150.00 535.17
390.0 13635.0 12975.83 11080.44 14871.21 967.03 185.00 949.17

Variance = the options of variance function used, Depth = depth of the sampled layer (cm), Cal.age = central point estimation of the
calibrated age distribution (calibrated years BP), Est.age = estimated age for the individual layers sampled (calibrated years BP), Low.lim =
younger 95% confidence interval (calibrated years BP), Upp.lim = older 95% confidence interval (calibrated years BP), Tsd = total standard
deviation (Tsd = /Csd2+Rsd2), Csd = calibrated age standard deviation (within object), Rsd = regression standard deviation (between
object).

variance of the calibrated ages are independent. The assump-
tion of linearity need not be constant, i.e., the slope of the
transfer function may differ for neighbouring dated objects.
Nevertheless, it is unclear at present if this assumption is really
needed to obtain independence between the central point and
the within-object variability, otherwise the complexity of the
relationship increases dramatically. A second assumption is the
distribution of the between-object variance. In very rare cases,
diagnostic plots have shown that a normal distribution is an
insufficient assumption for the estimation of the fixed effect
and the between-object variability (Equation 2). Several
reasons may account for this situation. For example, the lower
parts of a core may have been exposed to disturbance or
mixing for a longer period than the upper layers just because of
their greater age. Such processes can increase the natural
variability between dated objects, and we need to assume a
relationship between the estimated mean and the variance. This
relationship is solved by Generalized Models (McCullagh and
Nelder, 1989; Hastie and Tibshirani, 1990) using a quasi-
likelihood distribution that can combine various link-functions
with different variance-functions (Firth, 1991). Of all the cases
that we have encountered where the normal assumption has
been insufficient, an identity link function combined with a pt
variance function (var(y) = 4jt; see Firth, 1991) has provided
an appropriate alternative.
A feature of the procedure presented here is the allowance

for combining objects being dated by several different
procedures, such as 14C or 2l0Pb dating, and also to include
layers that we have specific a priori information about, such
as top-layer = today, and tephra-layers with a very small
within-object uncertainty. The only information needed is the
central point of the object on a calibrated age scale and a
measurement of the within-object uncertainty. Different
inherent uncertainties of the different procedures will be
accounted for by the weighted regression of Equation (2),

and we can also 'fix' estimation, i.e., making the estimation
biased towards layers that are nearly precisely dated (top-
layer, tephra-layers, etc.) by increasing the weights. In the
Cagedepth.fun function such weights can be introduced,
which by default are the inverse of the within-object
variance. Further, a property of explicitly examining the
between-object variability is that we can compare for each
dated object the magnitude of the within-and between-error.
From these comparisons we can gain information about the
stratigraphical sequence and the individual object dated. If
the between variability is large in comparison with the within
variability we may have an outlier. An outlier is by definition

Constant variance Mu variance
I ~~ ~

a.

a) -

co

(0

2

1-
*00 150 200 250 300 350 400

Depth (cm)
10 D50 2 et250 3003c 40

Depth (cm)

Figure 2 The expected age throughout the sequence (bold line)
with 95% confidence intervals (thin lines) for the two models with
different variance structure. In this example we select the constant
variance. Note that the confidence interval of the j variance
model tends to be narrower towards the surface but wider with
increasing age

I
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an observation that is relatively far from the expected value
in comparison to the general variance. Note that an object
may be an outlier even though the within variance is minor.
Such points should be carefully examined and the potential
cause of the outlier sought. It may be the observation itself,
but it may also be the specified relationship. In cases where
there are missing sections in the sequence we can have an
object at both sides that may both show a very low within
variance. Owing to the missing section, these will be closer
together in the depth axis than in reality, and the expected
estimate may be somewhere between these observations,
generating a high between-object variability. For such cases
the best thing to do is to submit more objects for dating. In
cases where we are certain of missing sections we can expand
the fixed function of Equation (2) by a piecewise function,
i.e., estimate a function with a discontinuity at the potential
missing section (Hastie et al., 2001). However, such proce-
dures demand several dated objects present on both sides of
the missing section. In relation to outliers, reversed observa-
tions have been discussed in several aspects. A reversed
object is a date that, relative to the nearby objects, does not
follow the law of superposition, i.e., an object found higher
up in the core is older than the object below. This is seen by
the seventh object in our example (Figure 2). In this
example, there is a high probability that this object poorly
represents the underlying sedimentology of the sequence.
However, in many other cases it can be difficult to determine
which of two points are 'wrong', i.e., the law of super-
position is fulfilled if we take away either of these observa-
tions. Instead of deleting any of these observations, thereby
creating a curve with a narrower confidence interval, we
favour including both observations and rather state that
within this section there is a large uncertainty in relation to
the expected calibrated ages. However, as mentioned above
the best thing to do is to obtain more information by
submitting more samples for dating.

Conclusions
We see that the confidence intervals provided by this
procedure are wider than previous estimation procedures,
but these all depend on whether we view an object as a
definite fixed sample or as part of a broader population of
samples. However, as all statistical models are wrong
(McCullagh and Nelder, 1989), and as we will obtain
different expectations and uncertainties by varying the
properties within the age-depth relationship estimation, all
we can say, given the specified properties chosen (polynomial
or smoother, AIC or cross-validation, weights of objects), is
that this will be the expected age at particular depths, and
this is the uncertainty associated with that estimate. To
obtain better results we need more information, which leads
to our general recommendation of submitting more objects
for dating. It is important to remember that with few dates
(10-15) the age-depth model statistics will be no more than
a guess (Telford et al., 2004b).
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Appendix 1

To apply the functions Cagedepth.fun and Cagenew.fun
(Heegaard 2003) using the Windows-version of the free
statistical software R (http://cran.r-project.org/; last accessed
22 February 2005).

(1) Download and install R from their homepage (windows
version).

Open R
(2) Download and import the Cagedepth functions into R

(copy the content CagedepthR.txt into the R-command
window. This version also works under Unix platforms).
For Mac users download CageMacl3.txt.

#Copy the depths and calibrated ranges as labelled in Table 1
from a spreadsheet
> lake.df < -read.table("clipboard",header = T) #imports the
data into a data.frame in R
> attach(lake.df) #attach the data.frame to the search path
of R
> library(mgcv) #opens the library mgcv in R (Wood, 2001)
> fit.mod < -Cagedepth.fun(depthup,depthdo,cageup,cagedo)
#Runs a default estimation of the calibrated age depth
relationship. This generates two
#plots (Figures 2 and 3), and a numerical output to the object
fit.mod (extracts in Table 2).
#For more information on modelling options see.
#http://www.bio.uu.nl/ - palaeo/Congressen/Holivar/
Literature_Holivar2003.htm (last accessed 22 February 2005).
#The Cagedepth.fun function takes the arguments depthup,
depthdo, cageup, cagedo,
#weights, vspan, and k. The first four arguments describe the
characteristics of the dated
#objects, the weights argument is a vector of length n that
specifies the weights to be
#used in the weighted regression (default is 1 for the top layer
and 1/sd from the
#calibrated uncertainty, note that 0 = 1/sd), the vspan
(default = 1) is a parameter of
#the local regression used in the diagnostic plot (reduced
increase roughness), and k is
#a number of splines used in the cubic smooth spline
regression (default k = n - 1, this can not exceed n, and lower
k can reduce roughness in the estimated age-depth
#relationship).
> fitl.mod < -
Cagedepth.fun(depthup,depthdo,cageup,cagedo,weights =
rep(I,length(depthup)),vspan = 0.8, k = 5)
#This models the age-depth relationship by equal weight for
all dated objects, the
#diagnostic plot local regression has a span of 0.8, and we have
used five basis functions #in the smooth spline algorithm.
#The following R commands will export data as comma
separated text-files for #producing Table 2.
> write.table(fit.mod$Constant,file = "const.csv",sep = ",")
> write.table(fit.mod$Muvar,file = "muvar.csv",sep = ",")

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Universitetsbiblioteket i on December 11, 2007 http://hol.sagepub.comDownloaded from 

http://hol.sagepub.com


618 The Holocene 15 (2005)

#Estimations for new depths through the core
> fit.new < -Cagenew.fun(fit.mod,1,1:360)
#This function estimates ages and their 95% confidence
interval by using the object
#fit.mod, with 1 = constant variance (optional 2 = p variance),
for each centimetre between #1 and 360.
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