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Overview

Fiber tracking is a relatively recent methodology, made possible by access to new
highly advanced MR scanners able to produce high-quality diffusion tensor images
(DTI), which promises clinicians a possibility to observe the actual trajectories of fibers
and the connectivity of the living human brain. Analysis of such data provides clini-
cians with a unique tool for diagnosing and predicting disease which affect the “wiring”
of the brain, such as stroke, tumors, multiple sclerosis and Alzheimer’s disease. The
purpose of this PhD thesis has been toexplore ways to improve the quality of DTI as
well as the accuracy of the fiber tractography which can be estimated from such data.
In order to achieve this purpose we have investigated two fundamentally different areas
to improve DTI results; datapre-processingand more accurate datadescriptors.

Topics

It has been shown that pre-processing of MR data to increase the relatively low signal-
to-noise ratio in DTI can improve derived quantities such as anisotropy measures and
estimated fiber tracts. Visually this low signal-to-noise ratio can manifests itself as
random speckles of increased or lowered intensity scattered across the images. In terms
of fiber tractography noise can cause estimated fibers to be terminated prematurely, or
to veer off in unexpected directions. Improvements made in pre-processing of data
will propagate itself through all quantities computed from the processed data including
tensor invariants and tractography, and we therefore put emphasis on improving such
methods.

In particular we have investigate data pre-processing in order to alleviate the fol-
lowing problems which are known to occur in MR data analysis

• Recovering of data which has been polluted by additive random noise.

• Recovering of data which has been degraded by blurring, as well as random
additive noise.

Of course it is important that the pre-processing techniques we apply does not intro-
duce any new artifacts into the data since these will propagate through the computation
sequence as well, in a manner which may be hard to predict. This puts additional
demands on the accuracy of the techniques used.

The analysis of diffusion tensor images is a well established area of research. Over
the last decade the diffusion tensor model has shown itself to be adescriptorof lo-
cal diffusion characteristics which provide a good trade-off between simplicity of the
model and expressiveness in describing the actual data. Thousands of research papers
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has been published on diffusion tensor interpretation and visualization, and the general
understanding of tensor analysis is good.

However, this research has also pointed out that there are regions of crossing fibers
in the brain where the single diffusion tensor does not accurately describe the under-
lying physiology. These regions can be found e.g. near the corpus calosum and the
corona radiata in the human brain. The DTI community has not agreed on how such
cases should be handled. But since the diffusion tensor model has shown itself to be
“accurate in most cases” it seems reasonable to consider generalizations of the single
tensor model rather that replacing it with alternatives.

We will therefore investigate a more general tensor model which better describe the
voxelwise diffusion in such cases, in order to compute more accurate fiber trajectories.

Contributions

Our contribution in order to investigate these research topics can be summarized as
follows

• We have developed a denoising algorithm that can remove additive noise and
thus improve the quality of captured DTI datasets [3]. This algorithm is outlined
in chapter 1 and applied to DTI data in section 3.4.

• We have created an algorithm which can solve blurring problems which are
known to occur in certain MRI applications [7]. This procedure is outlined in
chapter 2.

• We have developed a conceptual model which describes all steps involved from
DTI generation up to voxelwise diffusion tensor estimation [6]. This procedure
can be used to generate synthetic DTI datasets for validation of algorithms. The
steps involved are described in chapter 3.

• We have devised a simple and inexpensive way to estimate better descriptors
of local diffusion than the traditional single diffusion tensor [4], and demon-
strate cases in which it provides superior results. Thismulti-tensor imagingis
described in chapter 4.

• We have created a new fiber-tractography algorithm [5] which can successfully
estimate fibers through regions in which the traditional methods fail. This algo-
rithm is outlined in chapter 4 by generalization of the standard method presented
in section 3.5.

All these methods can be applied to improve the results of analysis performed on diffu-
sion tensor images, thereby achieving the overall purpose of this thesis as stated above.

Important conclusions

Based on the research presented in this thesis the following conclusions are among the
ones which may be the most significant

• By application of pre-processing algorithms to the raw DTI data it is possible to
significantly increase the quality of quantities derived from the diffusion tensor.
We present results which show that pre-processing of a DTI dataset which takes
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about 9 minutes to capture using an MR scanner can can give results comparable
in quality to those which takes 45 minutes for the scanner to obtain.

• In some cases it is possible to calculate fiber trajectories in regions of crossing
fibers from commonly available DTI data. We have done so on several datasets
by application of our published multi-tensor techniques.

In chapter 5 we have included a more detailed list of conclusions.

Outline of the thesis

In the first two chapters we will present techniques for pre-processing in order to im-
prove the quality of 2D and 3D images. We will start with a simple noise model in
chapter 1 and describe a state-of-the-art algorithm for solving this problem in section
1.2. The examples we will use are not medically motivated to illustrate the general-
ity of the method. The problem that we solve in chapter 1 is a special case of the
more general problem of deconvolution, discussed in chapter 2. Solving deconvolution
problems are in general more difficult as they may be ill-conditioned and the solution
of these typically requires some form of regularization. In section 2.1 we discuss why
these problems are hard and in section 2.3 we present an algorithm which can solve
them with increased accuracy under certain assumptions. In order for easy comparison
to similar methods and to simplify the discussion the examples are not taken from a
medical application.

The following two chapters explores ways of improving the analysis of the medical
images that arise in the field of DTI. In chapter 3 we give a brief introduction to DTI
and to the quantities that often are estimated from the recorded data in order to examine
or differentiate between health and disease in patient data. In section 3.4 the 3D tech-
niques from section 1.2 are applied to matrix-valued DTI data in order to improve the
quality of the datasets. The descriptors presented in chapter 3 may fail or provide inac-
curate information in particular situations. In chapter 4 we will introduce more general
models that may better capture the underlying anatomy. In section 4.1 we present a
method that can be considered a generalization of the tensor-model described in sec-
tion 3.2 and in section 4.3 we will use this model to improve existing fiber-tracking
techniques for visualizing DTI data.

The final chapter of the thesis sumarize the main contributions of the thesis and
lists some interesting problems for future investigation.
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Chapter 1

Image Denoising

In this chapter we will start with a simple noise model that can describe the degrada-
tion of an initially undegraded image by noise. We will then briefly demonstrate how
statistics of this noise can be estimated for later use during denoising. In section 1.1
we show how images can be transformed into an alternative form in which the noise
often is easy to remove and we demonstrate a situation in which the approach is known
to produce poor results. In section 1.2 of the chapter we present an algorithm which
we show can can successfully solve the noise model, by avoiding the failings of the
simpler transformation. The problem investigated in this chapter is a special case of
a more general problem discussed in the next chapter, and will therefore also serve
as an introduction to chapter 2. In section 3.4 we will utilize our 3D generalization
of the technique developed in this chapter to perform denoising on multi-dimensional
medical images.

Some degree of noise is always present in any electronic device that transmits or
receives a signal. On televisions we may recognize this noise as “specs of snow” which
fly across the screen, on the radio we might hear the noise as a weak background hiss
when the volume is turned up loud. For digital images this noise appears as random
speckles on an otherwise smooth surface. A reoccurring problem in digital image
processing is the removal of this random noise from a digital image. This problem
is commonly referred to asimage denoising[13].

An example of image denoising can be seen in figure 1.1. Figure 1.1(a) shows the
noisy image that we have available. This image is a mixture of both anundegraded
image andnoise. The undegraded image is seen in figure 1.1(b), and the noise we have
used in this example is seen in figure 1.1(c). In actual applications both the undegraded
image and the noise is unknown and we wish to approximate the undegraded image
from the noisy image available.

A common model for this problem is

b = x + η (1.1)

wherex denotes the undegraded image without noise,η is additive noise andb is our
known noisy image. We wish to calculate the original unknown imagex from the noisy
observationb.

Note that the actual intensities of bothx andη are unknown to us, and when this
problem is solved without any additional knowledge it is referred to asblind denoising.
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(a) The noisy imageb. The
square indicates a subregion
Ω.

(b) The true undegraded im-
agex.
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(c) Synthetically generated
normal distributed noiseη.

Figure 1.1: The components of equation (1.1) in the cameraman example. The images
are individually normalized to improve visual contrast.

These types of problems are generally considered hard to solve as illustrated by the fact
that there in are literally infinitely many ways to decompose a signal into the sum of
two components. Therefore, in order to find a unique solution, various conditions need
to be imposed on each of the two components.

In order to simplify these hard problems additional information aboutx or η is
needed. Fortunately good estimates of the statistics of the noiseη can often be found
manually by searching for regions in which one would expectx to be constant. By an
assumption ofspatially invariantnoise, the estimates from this region can be used for
the whole image.

Let Ω be a set of connected pixels. The varianceσ2
Ω of this region can be estimated

as
σ2

Ω =
1

|Ω| − 1

∑
p∈Ω

[b(p)− µΩ]2

where|Ω| denotes the number of pixels in the regionΩ, b(p) is the intensity of the
noisy imageb in pixel p and the mean ofΩ is defined as

µΩ =
1
|Ω|

∑
p∈Ω

b(p)

The distribution of the noiseη can similarly be estimated from the intensities ofb
in Ω. We also note that if the mean of the noise is non-zero it can, without loss of
generality, be assumed to be zero by adding a scalar constant to the right-hand side of
equation (1.1). Ignoring this constant will then have the effect of shifting the mean of
the estimated denoised image. But if the intensities of the solution are normalized this
shift will be of no consequence, and the assumption of zero-mean noise can safely be
used.

In figure 1.1(a) we defineΩ as the set of pixels in the red square box in the upper
right hand corner of the image. The variance in this choice ofΩ was estimated to be
σ2

Ω = 0.0096. This estimate corresponds well with the known noise shown in figure
1.1(c) which was generated to have zero-mean and a variance ofσ2 = 0.01. The size of
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the images in figure 1.1 are256×256 and the intensities of the undegraded cameraman
image are normalized between 0 and 1 with a mean of0.45.

In the rest of this chapter we let the components of the noiseη be taken from a
normal distribution with zero-mean and known varianceσ2.

1.1 Frequency Domain Denoising

The images shown in figure 1.1 are examples of images in thespatial domain. In this
domain each intensity represents a measurement at a given spatial positionp = (x, y).

By the application of a special transformation an image in the spatial domain can be
transformed to an equivalent form in thefrequency domain[32]. Each element of the
image in the frequency domain is referred to as acoefficient. In the frequency domain
each coefficient expresses a weight of a specialbasis function. Different transforma-
tions use different basis functions.

An important and often used transformation from the spatial to the frequency do-
main is called thediscrete cosine transform(DCT). The basis function of the DCT is
the cosine trigonometric function. The DCT differs from other well-known sinusoidal
transformations, such as thediscrete Fourier transform, in that it uses only real num-
bers and that different boundary conditions are implied in the frequency domain. The
DCT is defined as

ẑk = ck

M−1∑
i=0

cos
[

π

M

(
i +

1
2

)
k

]
zi

wherez is a vector withM elements of intensity in the spatial domain,ẑ is the trans-
formedz in the frequency domain and wherec0 =

√
1
M andck =

√
2
M , k 6= 0 are

constants which ensure that the transformation matrix is orthogonal. Since the DCT
is defined simply as a weighted sum of intensities it is clear that it is alinear trans-
formation. The DCT also has an inverse which transform a signal from the frequency
domain back to the spatial domain. Multi-dimensional DCT transformations can be
achieved by successively employing the presented one-dimensional transform along
each coordinate axis direction [29].

It is important to point out that no information is lost by taking the DCT of an
image, as can be observed by the fact that immediately applying its inverse will yield
the original image. In this sense the image in the spatial and the frequency domain are
equivalent. However, the DCT has a strong “energy compaction” property; most of the
image information tends to be concentrated in a few low-frequency coefficients in the
frequency domain. This can be observed in figure 1.2(b). Quite good approximations
of the original image can be obtained even if many of the small frequency coefficients
are truncated to zero before application of the inverse transform. This can for example
be used for compression of images. This is the reason why the DCT is implemented in
signal compression algorithms such as JPEG and MPEG [32].

By definition white Gaussian noise appears on all frequencies with the same proba-
bility. This can be observed in figure 1.2(c) in which the frequency domain coefficients
are evenly distributed over the whole spectrum of frequencies. The magnitudes of this
noise in the frequency domain is, as the name implies, Gaussian distributed and directly
related to the noise varianceσ2 defined in the spatial domain.

As seen in figure 1.1(a), the intensities of the undegraded image is larger than those
of the noise i.e. we have a highsignal-to-noise ratio. In the frequency domain it also
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(a) The coefficients of the
noisy imagêb.

(b) The true undegraded co-
efficientsx̂.

(c) Synthetically generated
noise-coefficientŝη.

Figure 1.2: A zoomed in view of the regionΩ in the frequency domain, whenΩ is
defined as in figure 1.1(a). The images are shown on the same logarithmic scale with
the origin in the upper left hand corner.

holds true that the magnitude of the main coefficients ofx̂ are larger than those of̂η, as
seen in figure 1.2.

Since the DCT is a linear operation the noisy image in the frequency domainb̂ must
be the sum of̂x andη̂ also in the frequency domain, as seen in figure 1.2. Therefore it
is a reasonable assumption that the large coefficients ofb̂ will come from x̂ and most
of the small coefficients will come from the noiseη̂. This suggests that we can remove
the noise ofb simply by thresholding to zero its small magnitude coefficients in the
frequency domain.

The result of applying this procedure to the regionΩ, after transformation back to
the spatial domain can be seen in figure 1.3(c), with zoomed in details from figure 1.1
for reference in figure 1.3(a) and 1.3(b). Notice how the thresholding in the frequency
domain has successfully made the noisy image smoother, resulting a denoised image
significantly closer to the original undegraded image. Also observe that some of the
irregularities found in the undegraded image has been removed by the denoising pro-
cess. These were encoded in the small coefficients barely visible in 1.2(b), and were
truncated to zero along with the noise.

In Ω no “important” information was encoded in the small magnitude coefficients
of b̂. However, figure 1.4 shows the same procedure applied to a different region of the
same image. The region is the one surrounding the cameraman’s face, as seen without
noise in figure 1.4(b). The denoised image in 1.4(c) is hardly much better than the noisy
one shown in 1.4(a). The denoised image is bothblurredand it displays an “oscillatory
pattern” commonly referred to asGibbs phenomenon[32]. The blurriness has the effect
of smoothing out the edges, such as the transition between the cameraman’s hair and
face, and the oscillations distorts otherwise near constant regions, such as the face. The
result is an unsuccessful denoising which must come from the removal of coefficients
containing “important” information.

The only differences between the successful denoising shown in figure 1.3 and
the unsuccessful one shown in figure 1.4 was the region onto which we applied the
method. Often edges and rapid changes in an image are encoded in low-magnitude
high-frequency coefficients and the thresholding of these to zero will result in blurring
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(a) The noisy imageb. (b) The undegradedx. (c) The denoised image.

Figure 1.3: A view of the the regionΩ visualized in figure 1.1(a) in the spatial domain.
The images are on the same scale as in figure 1.1(b).

(a) The noisy imageb. (b) The undegradedx. (c) The denoised image.

Figure 1.4: The denoising procedure applied to a region showing the cameraman’s
face. Again the images are on the same scale as figure 1.1(b).

and oscillations. However, if the region does not contain any edges then these problems
are avoided. The basic idea of the method we present in the next section is to first apply
some analysis in the spatial domain in order to find regions in which there are no edges.
These regions can then safely be denoised using thresholding in the frequency domain,
as we saw in figure 1.3.

1.2 Shape-Adaptive DCT

The Shape-Adaptive Discrete Cosine Transform (SA-DCT) for denoising is presented
by Foi et al in [10] and later extended in [11, 12]. One of the main contributions of
these works was the merging of the DCT with ashape-adaptivepre-processing step
to find regions without any edges. In the following we will refer to such regions as
homogeneousregions.

The pre-processing step consists of estimating weighted sums of neighboring pix-
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Figure 1.5: Details of ashape-adaptive
region found by the LPA-ICI algorithm.
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Figure 1.6: Example of theintersection
of confidence intervals(ICI) algorithm.

els, referred to aslocal polynomial approximation(LPA), followed by anintersection
of confidence intervals(ICI) algorithm.

The LPA-ICI algorithm starts by considering a given pixelx, and try to span a
regionΩx aroundx so that the intensities in this region does not contain any discon-
tinuities, apart from noise. This region is spanned in a predetermined set of directions
θi. In 2D these are taken to be the four cardinal and the four intermediate compass
directions. The output of the LPA-ICI algorithm is a distancedi ≥ 0 in each direction
θi around the center-pixelx. Each neighboringcornerdiθi is then connected by lines
and the region on the interior of thispolygonal hullis referred to asΩx.

The 8 directionsθi are in figure 1.5 visualized with dashed lines around the center
pixel x. The length of each dashed line is the distancedi from x to the corner where
the region ends in that direction. The polygonal hullΩx is the region on the inside of
the straight lines formed between neighboring corners.

In order to estimate the distancedi in each directionθi from x the LPA considers
weighted intensity averagesµ(h) of increasing lengthh along the direction. At length
h the weighted average includes the intensities of the pixels{x, x+θi, x+2θi, . . . , x+
hθi}. The weights applied to each of these pixel intensities has the property that they
sum to one and the weight applied to pixelj in this set is greater or equal to the one
applied to pixel(j + 1).

Intuitively this weighting has the effect of smoothing the data. If the pixels belong
to a homogeneous region, we would expect the noise-level in the weighted estimate
µ(h) to decrease as the number of pixelsh included in the average increases. We would
also expect the weighted averageµ(h) to “not change much” within a homogeneous
region. Conversely, if as the region is expanded in a given direction we observe “large
changes” inµ(h) this may be a sign that we have encountered pixels that should not be
included inΩx.

The ICI algorithm formalizes this behavior. The local noise-levelσµ(h) in the av-
erageµ(h) can be related to the global varianceσ2 and to the LPA weights. Together
with the averageµ(h) the noise-levelσµ(h) defines a confidence-interval

Dh = µ(h) ± Γσµ(h)
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whereΓ > 0 is a global parameter of the algorithm. WhenΓ is large more pixels will
be included in each region and whenΓ is small fewer will be accepted. The ICI rule
states that the region should continue to be expanded as long as confidence interval
Dh intersects all previous confidence-intervalsD1,D2, . . . ,Dh−1. The largest length
h that this holds for is referred to asdi.

Figure 1.6 illustrates this algorithm. We see the weighted averagesµ(j) on the
y-axis plotted against thex-axis showing the lengthshj in a given directionθi. The
confidence intervalsDj are visualized with braces and we see the algorithm terminate
when the intersection between all previous confidence intervals becomes empty. In this
example this happens whenh = h4 giving di = h3.

This LPA-ICI algorithm is applied to each of the (8 in 2D) directions and gives
a homogeneous regionΩx. This region can then be denoised by thresholding in the
frequency domain as outlined in the previous section. Note however thatΩx is not
in general rectangular so therefore a slightly modified DCT algorithm is applied. In
1995 Sikora [29] presented a transform that is similar to the one presented in the pre-
vious section when the region is rectangular but will also give accurate results on non-
rectangular support. We use a variant of this algorithm, although other alternatives also
exists.

As the shape-adaptive DCT algorithm is applied to each pixelx observe that many
pixels may be denoised in several (neighboring) regions. This provides us with multiple
denoised estimates for most of the pixels in the input image and improves robustness
in the denoising. A weighted average of each such overlapping pixel is then estimated
giving the final denoised image. We let the weights applied to each region be inversely
proportional to its size and how much noise we believe it to contain.

In our publication [3] we detail the SA-DCT denoising process. Our main con-
tribution has been to extend the original 2D formulation to 3D and to apply this 3D
algorithm to matrix-valued DTI data as described in section 3.4.

Figure 1.7 shows the results of applying the SA-DCT denoising algorithm to the
cameraman example shown in figure 1.1. The undegraded and the noisy image are re-
produced in figure 1.7(a) and 1.7(b) respectively for comparison. Figure 1.7(c) shows
the denoised image estimated by the SA-DCT algorithm usingΓ = 1. We observe
that the SA-DCT has successfully managed to remove much of the noise as seen on
the cameraman’s coat while still preserving the edges between the coat and the back-
ground. We also observe that the details in the grass has been blurred out and that
some of the buildings in the background seem a little vaguer compared to the unde-
graded image. This happens because the intensities in the undegraded image are on the
same scale as the noise in these regions, i.e. we have locally low signal-to-noise ratio.
Figure 1.7(d) shows the difference between the noisy imageb and the recovered image.
From equation (1.1) we recognize this difference as an estimate of the noiseη. As ex-
pected by observing figure 1.1(c) this quantity shows very little structure indicating no
systematic error in the denoising. Finally, theroot-mean-square(RMS) error defined
as √

1
mn

∑
p

(x(p)− b(p))2 (1.2)

between the undegraded imagex and the noisy imageb, both of sizem×n = 256×256
is σ = 0.100, compared to an RMS error of0.038 between the undegraded and the
denoised image.
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We implemented this algorithm in the Matlab programming language in order to
produce the results from this chapter. The purpose of this 2D implementation was
primarily to demonstrate thefeasibility of the algorithm, and to reproduce previous
results from literature.

It is often difficult to compare the running time of one algorithm implemented in
Matlab to another, because of how the Matlab language is interpreted by the computer
at runtime. For instance by going from for-loops tovectorizedcode, one can often
achieve dramatic improvements in the running time. However, the SADCT algorithm
is not very well suited for vectorization in Matlab and we therefore decided to imple-
ment some parts of the algorithm in C. By rewriting performance critical parts of our
algorithm in C using the MEX interface we were able to reduce the running time of
our implementation by many orders of magnitude, down to about 1.7 seconds for the
code which produced the results shown in figure 1.7(c). We did not have access to such
highly optimized code for other recently published works, and therefore opted not make
any quantitative comparisons of the running time of our implementation compared to
theirs.

1.3 Conclusion

This chapter contains little new research per se; it should be considered more a distil-
lation of previous works done in the context of SA-DCT denoising. In our work [3]
we extend this 2D algorithm to a full 3D algorithm that we use to improve the quality
of acquired DTI datasets. As expected from the 2D results presented in the previous
section, our 3D algorithm can be shown to significantly improve signal-to-noise ratio
in medical data as well, with relatively low cost in terms of computational expense.

The fact that the algorithm is local in nature, meaning that only neighboring pixel
information is needed to denoise each pixel, means the algorithm isembarrassingly
parallel and simple to implement when multiple CPUs are available.

The increase in quality achieved by this algorithm is important since it implies that
all derived quantities estimated from the denoised data should also be more accurate.
This allows researchers and scientists to work with lower quality data, which is easier
to acquire, while still obtaining accurate results. In chapter 3 we present examples of
some of the improved derived quantities obtained using our algorithm.

Next we will show that the problem considered in this chapter is a simpler and
special case of the more general deconvolution problem presented in chapter 2. This
next chapter will serve to highlight that the main difficulty in solving deconvolution
problems is not the randomness of the noise (which we have shown in this chapter can
be overcome for instance by the method presented here) but rather the ill-posedness of
the problems which makes the solution much more sensitive to noise.
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(a) The undegradedx. (b) The noisy imageb.

(c) The SA-DCT denoised image. (d) The difference between image (b) and (c).

Figure 1.7: The SA-DCT denoising procedure applied to the whole cameraman image.
Image (a) and (c) are shown on the same scale, image (b) and (d) are individually
normalized.
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Chapter 2

The Deconvolution Problem

In this chapter we will investigate a more general problem which is strongly related
to the denoising problem we considered in the first chapter. Although originally an
image processing problem, we state it here as a well known optimization problem and
in section 2.1 investigate its properties in terms of numerical linear algebra. We show
that this problem requires large-scale regularization and in section 2.2 we formulate a
regularization model with known conditions for verifying a solution. We then give a
brief overview of different standard algorithms that can solve the model. In section 2.3
we describe our main contribution to this chapter; a generalization of the regularized
formulation, and we give some examples of the additional types of problems which can
be solved using it. Finally we solve our model with help from one of the previously
described standard algorithms, and give numerical results.

In order to demonstrate the generality of the method we will use non-medical test
images in this chapter, as we also did in the first chapter. However, this does not imply
that our presented method does not have applications in medical imaging. As pointed
out e.g. by [30], the problem of deconvolution occurs in certain MRI applications
where the acquisition time of the scanner is long compared to the rate of diffusion,
resulting in a blurry MR image. In solving this MRI problem our deconvolution al-
gorithm could have impact. Unfortunately, before application of our algorithm to such
problems there are also quite a few non-trivial issues which must be resolved, including
obtaining accurate estimates of the convolution kernel. This is known to be difficult,
and we have therefore neglected this application in this chapter as well as in our decon-
volution paper. Instead we have focused on well-known deblurring test datasets from
astronomical imaging in which comparison to already existing methods is straightfor-
ward.

In the previous chapter we mentioned the concept ofblurring when discussing fig-
ure 1.4(c) and we observed that when we made certain changes to an image in the
frequency domain this resulted in a blurred image in the spatial domain. By the term
“blurred image” we conceptually mean an image which is smoother, has less contrast
and fewer sharp edges than an unblurred image, as seen in figure 2.1(a) compared to
2.1(c).

We can always generate a blurred image by removing the coefficients correspond-
ing to the high-frequencies in the frequency domain. This procedure is commonly re-
ferred to aslow-pass filtering, since only the low-frequency coefficients are preserved,
while the high-frequency ones are discarded [32, 13].
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In the previous chapter we performed denoising by removing all smallmagnitude
coefficients, regardless of which frequency they occurred on. But since most of the
large coefficients occurred in the low-frequency part of the spectrum we could have
produced similar results with a low-pass filter. Indeed, in figure 1.2(a) there was only
one single large coefficient found in the upper left-hand corner of the frequency-domain
image, which encodes the lowest frequency. This particular coefficient corresponds to
the weight of the basis function which (in the spatial domain) is constant everywhere
giving themeanof the region. In this case the “large magnitude” filter of the previous
chapter and a low-pass filter would give the same result.

Not surprisingly blurring can also be implemented in the spatial domain. When
this is done it is sometimes referred to asaveragingsince each pixelp in the output
image is then a weighted average of pixels in the input image. The pixels included in
the average typically lie within a given distance ofp and we will refer to them as the
neighborsof p. When the neighbors of each pixelp are weighted in a consistent manner
based on their position relative top across the image this operation can be implemented
as a mathematical operation calledconvolution[32].

Convolution between a kernelκ containing weights and an imageX is defined as

Y (p) = (κ ∗X)(p) =
∑

q

κ(q)X(p− q) (2.1)

wherep andq are pixels and where∗ denotes the convolution operator. The sum overq
is taken to include all pixels whereκ(q) is non-zero. A convolution can be interpreted
as aweighted moving averagewhere the weights are found inκ.

Blurring of images taken in the world around us can arise in many different situa-
tions. One source of blurring is if the camera is moved at the precise moment a picture
is taken, or if the object being photographed is moving too fast compared to the time it
takes the camera to acquire the image. Both of these cases results in what is known as
motion blur. Another common source of blurring is when the lens of the camera is out
of focus. In certain applications (such as those involving atmospheric turbulence e.g.
in space imaging) blurring can be modeled as aGaussian blur. When the kernelκ is a
discretization of the 2D Gaussian distribution

κ(q) =
1

2πσ2
e
−‖q‖2

2σ2 (2.2)

with varianceσ2 then equation (2.1) implements a low-pass filter termed a 2D Gaussian
blur. An example of a discretized Gaussian blur kernel of size32 × 32 with σ2 = 16
can be seen in figure 2.1(b). In figure 2.1(c) we see the undegraded standard test image
of former Playboy centerfold Lena Söderberg [1]. This normalized Lena image is of
size256×256 with a mean of0.47. The result of the convolution between the Gaussian
kernel in figure 2.1(b) and the image in figure 2.1(c) is seen in figure 2.1(a).

Notice that since a convolution is defined as a weighted sum of intensities fromX,
it can be expressed in a more general form using notation from linear algebra. IfX is
an image of sizem × n then letx = vec(X) be a column-vector withmn elements
obtained by stacking the columns ofX on top of each other. In order to simplify
notation we will throughout the rest of this chapter use upper-case letters to denote
matrices and lower-case letters to denote vectors. Equation (2.1) can then be expressed
equivalently as

y = Ax (2.3)
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(a) The blurred imageY .
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Figure 2.1: Some components of equation (2.1) and (2.3) in an example. Images (a)
and (c) and images (b) and (d) are on the same scale.

wherey = vec(Y ) andA is a matrix of sizemn × mn created fromκ. Whenκ is
defined as in the previous example thenA will have a nearblock diagonalstructure
similar to the one seen in figure 2.1(d).

As discussed in the previous chapter, all sampled images are subject to some degree
of measurement noise. The degradation of an initially undegraded imagex, first by
blurring and then by measurement error, can then by substitution of equation (2.3) into
equation (1.1) be modeled as

b = Ax + η (2.4)

whereb is our (vectorized) measured image and whereη is additive unknown noise of
the same dimensions asb. Again we wish to estimate the unknown undegraded imagex
from the noisy measurementsb. When the matrixA is generated from a known kernel
κ we will refer to the process of solving this model asdeconvolution[13]. Also notice
that whenA is the identity matrix then this model reduces to that of equation (1.1).
This implies that denoising is a special case of deconvolution, and that deconvolution
in general is a more difficult problem.

The presence of the unknown noiseη in equation (2.4) means that we cannot expect
to find an exact solution to the problem. We can however attempt to estimate a solution
which is “as close as as possible” to the exact solutionx of the equation in some sense.
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One way to do this is to “ignore the noise” and minimize the least-square difference
between the right- and left-hand side of the equation. This yields the linear least-
squares minimization problem

min
x
||Ax− b||22 (2.5)

At this point it should be noted that the matrixA will be verylarge. When the image
X is of size256 × 256, as in figure 2.1(c) the vectorized imagex will be a column-
vector with 65 536 elements. The matrixA will then be of size65 536 × 65 536
and contain4 294 967 296 elements. If we attempt to store this matrix explicitly on
a computer in double (8 byte) precision, this would require more than 30 gigabyte
of storage capacity. Working with matrices of this size is rarely possible in practice.
However, in order to gain some insight into the structure of this problem we will now
examine a much smaller example: letX be of size32 × 32 thenA will be of size
1 024× 1 024. Figure 2.1(d) shows this matrixA whenκ is defined as in figure 2.1(b).

In the context of deconvolution the linear least-squares problem in equation (2.5)
is difficult to solve as can be seen using thesingular-value decomposition(SVD). Any
real matrixA of sizem× n can be written in terms of the SVD defined as

A = UΣV T (2.6)

whereU and V are orthogonal matrices andΣ is a diagonal matrix containing the
singular valuesσ1 ≥ σ2 ≥ · · · ≥ σr > 0 = σr+1 = · · · = σmin{m,n}

WhenA is defined as in figure 2.1(d) then its singular values are distributed as
visualized in figure 2.2(a). Thex-axis displays the indexi ∈ {1, 2, . . . , 1 024}, and the
y-axis shows singular valuesσi on a logarithmic scale. The machine accuracy of the
computer used to compute the singular values was on the order of10−16. Notice that
the singular values decrease rapidly towards zero and that the difference between each
consecutive singular value is small, especially when the values themselves are small.
The latter observation implies that it is hard to determine the numerical rankr of A,
and that when working in finite precision thenA has a large null-space as illustrated
in the example by the fact that about a third of the singular values are smaller than the
machine accuracy.

In general we can always expectA in large deconvolution problems to be be sin-
gular in finite precision with large null-space. Unfortunately there exists no way to
reformulate them into well-behaved problems either as the poor conditioning is a prop-
erty of the problem itself, rather then our model [15]. Problems with this property are
referred to asill-posed.

2.1 Regularization

The fact that the matrixA is ill-conditioned can be improved by employingregular-
ization [23, 15] when solving the model. Assuming that we have determined some
numerical rankr of A, using the truncated SVD we can compute a rankr approximate
solution to equation (2.5) as

xr =
r∑

i=1

UT
i b

σi
Vi (2.7)
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Figure 2.2: Logarithmic plot of the components of equation (2.7).

whereUi andVi denotes columni in the matricesU andV respectively. The norm of
this solution is

‖xr‖ =

√√√√ r∑
i=1

[
UT

i b

σi

]2

(2.8)

and we see that the norm will not be too large as long as|UT
i b| < σi when i ∈

{1, 2, . . . , r}. The discrete Picard condition (DPC) [23] is said to be satisfied when
|UT

i b| decay faster thanσi

In figure 2.2(b) we see a plot of how|UT
i b| behaves in our example. The black

curve shows the case whenb is without noise, i.e. whenη = 0. We observe that the
coefficients decrease rapidly towards zero. Comparing to figure 2.2(a), they decrease
at least as fast as the singular values down to machine accuracy. The red curve seen in
the same plot shows the behavior whenb is degraded by additive noiseη with known
standard deviation of0.003. We observe that the coefficients converge to a relatively
constant value on the order of10−2 after about the 200 first vectors. It is clear that
when the image is degraded by additive noise the DPC condition is not satisfied and
the norm of the solution grows large.

Note in equation (2.7) that wheni is large then the right singular vectorsVi are
from the null-space ofA. So if r is “too large” we see that we are adding weighted
basis vectors from the null-space to the solutionxr. Although this may have little effect
on thesolution errordefined as‖Axr − b‖, sinceA(xr + o(1) + o(2) + · · ·+ o(k)) =
Axr wheno(i) are nonzero vectors from the null-space ofA, it will certainly increase
the norm of the solution. Additionally the solution may look very different from the
undegraded solution we are trying to approximate even if the solution error is quite
small.

In the rest of this chapter we define regularization as the process of solving a prob-
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lem while preventing the norm of the solution from becoming too large. We apply
regularization hoping that the regularized solution will be “closer to the true solution”
although not only in the sense that we wish to minimize the difference as in equation
(2.5). Regularization therefore always implies that we have someadditional knowledge
that we wish to take into consideration and impose on the solution. There will always
be some trade-off between fitting the model and limiting the norm of the solution. In
regularized problems we can usually find a solution with smaller error but with larger
norm or conversely, with smaller norm but larger error.

This trade-off (or additional knowledge) is often represented as a parameter called
theregularization parameter. In equation (2.7) this parameter is the numerical rankr.
As can be observed, choosingr = 0 results in the solutionxr = 0 with zero norm but
with large error. A largerr will give a solution with smaller error but larger norm.

In the next section we will explore regularization algorithms which can be used to
solve the large-scale deconvolution problems seen in figure 2.1 by regularizing equa-
tion (2.5).

2.2 Large-Scale Regularization

As we have seen, the size of the matrixA is prohibitively large even when working
with images of relatively modest size such as those seen in figure 2.1. This makes
the use of methods which work by factoringA, such as the truncated SVD seen in
the previous section, impractical for most real problems. In this section we will use
so calledmatrix-freealgorithms to solve the deconvolution problem. Theseiterative
algorithms are termed matrix-free because they do not require the explicit storage of
the matrixA, nor do they rely on any complete factorizations ofA. Instead they only
require some way to evaluate the matrix-vector productAx betweenA and a vectorx.

Notice that the matrix-vector product of equation (2.3) by definition can be imple-
mented using the convolution operator in equation (2.1). Specifically, we have

Ax = y = vec(Y ) = vec(κ ∗X) = vec(κ ∗ vec−1(x)) (2.9)

wherevec−1 denotes the inverse of thevec operator, so thatvec−1(x) = X and where
κ and the∗ operator are as previously defined in equation (2.1) . This provides us with
a way to evaluate the matrix-vector productAx without ever forming theA matrix
explicitly. We also point out that there exist efficient ways to evaluate this convolution
by using some frequency domain manipulations when the size of the kernel is large
[32].

We now turn our attention to how to regularize equation (2.5). Since our aim is
to limit the norm of the solution, one possibility is to add a constraint to this problem
which limits the norm. In certain applications good estimates for the norm∆ of the true
solution is known a priori. This is for instance the case in the blurred images from the
Hubble telescope seen in figure 2.6. By using this information we can add a constraint
which ensures that the norm of our solution is no greater than that of the true solution.
This yields the constrained minimization problem

min
x

1
2
‖Ax− b‖2 (2.10)

s.t.‖x‖ ≤ ∆

28



where∆ is a scalar representing some upper bound on the norm of the solution. Writing
out the norm of the objective function we arrive at the slightly more general form

min
x

1
2
xT Hx + gT x (2.11)

s.t.‖x‖ ≤ ∆

which is identical to equation (2.10) whenH = AT A andg = −AT b. This prob-
lem is commonly referred to as thetrust-region subproblem(TRS) and is the topic of
ongoing research in large-scale non-linear numerical optimization. The trust-region
problem arise naturally in the context of unconstrained minimization of difficult non-
linear problems and it is often used as an alternative to line-search methods. See [8]
for more details about trust-region methods.

When solving the TRS there are two different classes of solutions that can be found.
One of them is theinterior solutions, which are found when the solution is unrestricted
by the constraint, i.e. when‖x‖ < ∆. In such cases the estimated solution lies strictly
in the interior of the feasible region and the solution is the same as that of the uncon-
strained linear least-squares problem in equation (2.5). This case therefore corresponds
to a non-regularized solution.

The other class of solutions occur when the constraint is satisfied with equality so
that ‖x‖ = ∆. This type of solution is referred to as aboundary solution; the solu-
tion has limited norm, as we would expect in a regularized solution. In regularization
problems we have pointed out that the unregularized solution will be dominated by el-
ements from the null-space ofA and that the norm will grow large. When∆ is chosen
properly we hope that the TRS formulation will prevent elements of the null-space to
enter into the solution while simultaneously ensuring that the solution error is minimal.
We know that minimizing the solution error will increase the solution norm, so when
∆ is adjusted to be small we know that we will find a boundary solution.

The TRS can be rewritten as an unconstrained minimization problem by formulat-
ing theLagrange relaxation

Lλ(x) =
1
2
‖Ax− b‖2 + λ(‖x‖ −∆) (2.12)

whereλ ≥ 0 is a Lagrange penalty parameter. When minimizingLλ(x) in terms ofx
the∆ term can be discarded as a constant and we arrive at the problem.

min
x

Lλ(x) =
1
2
‖Ax− b‖2 + λ‖x‖

Notice thatλ will impose a penalty on the norm of the solution. Whenλ = 0 we obtain
an unconstrained solution with large norm, and whenλ is large we obtain a solution
which (because of the larger weight put on the norm ofx in the minimization) will give
a solution with smaller norm. It is clear that we can useλ as a regularization parameter.
If we square the regularization term then the resulting regularization problem is referred
to asTikhonov regularization[37]. It can be shown that a solution to the TRS is also a
solution to the Tikhonov regularization problem.

Returning now to the TRS; it can be shown that in order forx∗ to be an optimal
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solution to the problem the following conditions are necessary and sufficient [8] :

(H + λI)x∗ = −g (2.13a)
(H + λI) is positive semidefinite (2.13b)

λ ≥ 0 (2.13c)
λ(‖x∗‖ −∆) = 0 (2.13d)

Notice that since in our applicationH = AT A we already know thatH is a symmetric
positive semidefinite matrix. This means that each of its eigenvaluesλ1 ≤ λ2 ≤ · · · ≤
λn is non-negative. Since the eigenvalues ofH +λI areλi +λ, we know that equation
(2.13b) must be satisfied when (2.13c) is satisfied.

Equation (2.13a) states that we can obtain a solution by solving a linear set of
equations. But, as opposed to the other linear systems of equations we have seen up
until now, we know that the coefficient matrix is positive definite and has full rank
whenλ > 0. Solving large linear sets of equations with positive definite coefficient
matrix is a classical theme from numerical analysis and can efficiently be implemented
using iterative schemes. So for a given non-negativeλ we can approximate the exact
parameterized solution

x(λ) = −(H + λI)−1g

= −(EΛET )−1g

= −ET Λ−1Eg

= −ET diag
(

1
λi + λ

)
Eg (2.14)

whereE are the orthogonal eigenvectors ofH +λI andΛ = diag(λi+λ) is a diagonal
matrix containing its eigenvalues.

Since we know that the matrixH is near singular we know that we needλ > 0 in
order forx(λ) to provide a meaningful regularized estimate forx∗. Equation (2.13d)
then states that we must have

∆ = ‖x(λ)‖

=
∥∥∥∥diag

(
1

λi + λ

)
Eg

∥∥∥∥
=

√√√√ n∑
i=1

[Eg]2i
(λi + λ)2

(2.15)

where[Eg]i denotes theith component in the vectorEg. This equation implies that the
solution we seek must lie on the boundary of the feasible region, as previously pointed
out.

From the right-hand side of equation (2.15) we observe that when[Eg]i 6= 0 then
the norm of the solution will grow very large asλ approaches−λi. In this situation a
plot of the right-hand side of the equation can, for variousλ, be seen in figure (2.3).
Here we have visualizedλ on the first axis and the norm of the solutionx(λ) on the
second axis. The asymptotes where the norm goes to infinity are found atλ = −λi,
whereλi ≥ 0 are the eigenvalues of the positive semidefinite matrixH. Since these
eigenvalues are non-negative we find all the asymptotes on the left-hand side of (or
exactly at) the origin. Since we wantλ > 0 we search for a positive choice ofλ giving
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Figure 2.3: The simple case.
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Figure 2.4: The hard case.

the prescribed norm∆ found on the second axis. In the figure we observe thatλ = λ∗

is the value we seek.
Unfortunately the “simple” situation described above is usuallynot the case in

regularization problems. We made the assumption that[Eg]i 6= 0, i.e. that eigenvector
Ei is not orthogonal tog. In certain applications (and among these, regularization)
this is precisely the case for some smalli [24]. As Ei becomes closer and closer
to orthogonal compared to the vectorg then the norm curve visualized in figure 2.3
becomes closer and closer to the asymptote at−λi. When the vectors are exactly
orthogonal the asymptote is completely lost. This situation is visualized in figure 2.4,
where we observe that we are unable to find an boundary solution for the prescribed∆
as the pole atλ = −λ1 is lost. In literature this situation is often referred to as thehard
case.

2.2.1 Computational methods for the TRS

In this section we will take a small detour and consider a few different ways to estimate
a solution for the TRS. For completeness we will also consider briefly some of the
“standard” approaches although direct application of them are not really appropriate
for the large-scale regularization problems we have considered in this chapter. See [8]
for references on each of the following methods.

As we saw in figure 2.3, a solution to the trust-region subproblem can in the sim-
ple case be found by solving‖x(λ)‖ = ∆ i.e. to find the roots of the function
‖x(λ)‖ − ∆ = 0. Newton’s method is usually very efficient for root-finding, but
does not perform well when the derivative of the function changes very quickly around
a root. As seen in figure 2.3 we can expect this to be the case near the asymptotes and
therefore implementing Newton’s method directly may fail. Fortunately this problem
can be avoided by inverting the function and instead finding the roots of thesecular
equation 1

‖x(λ)‖ −
1
∆ = 0. Newton’s method approximates the secular equation with

a quadratic Taylor polynomial involving the Hessian and gradient and it can be shown
that the secular equation will in many regions be near linear. In such cases Newton’s
method excel. Differentiating the quadratic polynomial model and equating with zero
yields a linear set of equations which can be solved usingCholesky factorization. It has
been shown that this algorithm converges to a TRS solution either in a finite number of
steps or, except in the hard case, ultimately at a Q-quadratic rate [8].

For our application however, the cost of calculating a Cholesky factorization of a
largen× n matrix is prohibitively high in addition to the problems involving the hard
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case.

The dogleg method

A very different approach to solving equation (2.11) uses linear combinations of line-
search directions to estimate a solution. In the TRS we observe that if∆ is large, then
the minimizer of the problem is the unconstrained interior solutionxu = −H−1g.
Also notice that when∆ is very small the norm‖x‖ ≤ ∆ will also be very small and
thexT Hx-term of the objective function should be small compared togT x. Then the
constrained solution to the problem can be approximated asxc = − ∆

‖g‖g.
The dogleg method[19] assumes that the solution to the TRS problem is a linear

combination of the two extremesxc andxu. In particular, the doglegpathis defined as

x(τ) =

{
τxc, 0 ≤ τ ≤ 1
xc + (τ − 1)(xu − xc), 1 < τ ≤ 2

where0 ≤ τ ≤ 2. We see thatτ ≤ 1 gives the constrained linear solutionxc, andτ = 2
corresponds to the unconstrained solutionxu. The dogleg solutionxdogleg = x(τ∗) is
then calculated from the unique choice ofτ∗ such that‖x(τ∗)‖ = ∆. Estimatingτ∗

here is straightforward and can be done analytically.
In our application, as was also the case in the previous approach, the cost of in-

verting theH matrix is prohibitive in addition to the previously mentioned problems
involved with estimating an unregularized solutionxu.

Steihaug’s approach

Theconjugate gradient(CG) algorithm is a classical algorithm from numerical analy-
sis which solves a linear set of equations with positive semidefinite coefficient matrix
iteratively [19]. It can be implemented by first fixating all but the first variable and
solving the resulting problem in one variable, in the second step by fixating all but the
second variable, then solving again while keeping the solution components from the
previous iteration, and so on. Each step will then only solve a problem in one variable
and afteri iterationsi components of the iterate solutionxi should be set. Using this
procedure it can be shown that when theH matrix of sizen × n is diagonal then the
algorithm will have solved the problem in at mostn steps. When the matrix is not
near diagonal thenpreconditionerscan be applied to transform the problem into a form
better suited for CG.

The CG algorithm has the important property of being “matrix free” in the sense
that it does need to store or factorize the fulln × n coefficient matrix but rather only
requires a way to evaluate its product with a vector. Using this algorithm as a subpro-
cedure for solving linear set of equations the previous two methods can be adapted to
work in the large-scale case as well.

In the context of solving the TRS directly notice that minimizing equation (2.11) is
equivalent (after differentiating and equating with zero) to solving the linear problem
Hx = −g. Therefore CG can also be used directly for solving the TRS. Steihaug
[8, 19] made the observation that if the CG algorithm starts out with an initial vector
x0 = 0, then the norm of the solutions generated in each consecutive iteration of the
CG algorithm will be non-decreasing, i.e.‖xi‖ ≤ ‖xi+1‖. When solving the TRS we
can use this observation to terminated the algorithm as soon as we find‖xi+1‖ > ∆
because thenxi is a TRS solution.
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Steihaug’s approach for solving TRS problems has shown itself to be very efficient
whenH is large and sparse but requires a positive semidefinite coefficient matrix. For
our application, the hard case is however still a problem.

Eigenvalue-based techniques

In the mid 1990s some new techniques for solving the TRS were introduced in the
literature [22, 33, 27]. These techniques differ from the hitherto presented approaches
in that they solve the TRS as an eigenvalue problem as opposed to solving a linear
systems of equations. An advantage with these methods is the fact that they provide a
simple way to detect and handle the hard case which occurs in regularization.

Notice that equation (2.13a) can equivalently be expressed in matrix notation as[
H g

] [
x
1

]
= −λx (2.16)

and that by augmenting the coefficient matrix we arrive at the eigenvalue problem[
H g
gT θ

] [
x
1

]
= −λ

[
x
1

]
(2.17)

where
[
x 1

]T is the eigenvector corresponding to the eigenvalue−λ. Since the
asymptote we need in regularization is the one at the smallest eigenvalue−λ1, we can
use iterative methods which estimate good choices forλ1 in relatively few operations.

The basic idea of the eigenvalue based approach is to solve this eigenvalue-problem
for various choices ofθ until a solution is obtained which can be normalized to

[
x 1

]T

such that the solution satisfies equations (2.13b), (2.13c) and (2.13d).
In this framework the hard case manifests itself by an eigenvector which has zero

in the last component. Obviously this vector cannot be normalized to be of the form
we need, but in such cases it can be shown that there exists an eigenvalue slightly
larger thanλ1 which has an eigenvector with non-zero last component. This can then
be used to construct a solutionx instead. Rojas et al [24] published in 2000 an ef-
ficient implementation which solves the large-scale TRS based on these ideas. Their
implementation is publicly available in the Matlab package LSTRS [25].

In figure 2.5 we see some numerical examples of deconvolution using LSTRS. The
original undegraded image shown in figure 2.5(a) is the same as in figure 2.1(c), and
the deconvolution kernel is as defined on page 25 and seen in figure 2.1(b). In figure
2.5(b) we observe the convolution between the kernel and the undegraded image. No
additive noise was added to the image i.e.η = 0. The result of the deconvolution can
be seen in figure 2.5(e) using the regularization parameter∆ = ‖x∗‖. We observe that
the deconvolution has successfully made the edges in the degraded image clearer and
that details, for instance in the hair and eyes, are recovered. The reconstruction is not
perfect however. It has an RMS error (defined in equation (1.2)) of0.0577 compared
to the original undegraded image, and we observe that the recovered image still looks
somewhat blurred compared to the original. We also notice that the deconvolution
process has introduced some ringing-artifacts. These are manifestations of the Gibbs
phenomenon first encountered in chapter 1. These artifacts are particularly visible in
the background around the hat, and along the dark band going down from the upper
right-hand corner of the image.

Figures 2.5(c) and 2.5(d) shows the deconvolved image from figure 2.5(b) with
Gaussian white noise added with variance0.001 and0.01 respectively. In figures 2.5(f)
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and 2.5(g) we visualize the deconvolution results. The RMS error in these reconstruc-
tions are0.0741 and0.0869 respectively, both compared to the original. We observe
that the recovered images show some more detail, for instance in the eyes and in the
feathers in the hat, but clearly the quality of the restorations quickly deteriorate as more
and more additive noise is introduced. Also notice that we had to decrease∆ slightly
in order to prevent LSTRS from converging to an interior solution in these cases.

2.3 The Linearly Constrained TRS

In figure 2.5 we observed that the solution to the regularization problem was quite
sensitive to additive noise in the degraded image. We saw that as the variance of the
noiseη grows, the oscillations in the reconstructed solution also increased. In certain
applications these oscillations can cause significant errors.

In 1990 the Hubble Space Telescope (HST), named after astronomer Edwin Hub-
ble, was sent into orbit around Earth. The orbit of this satellite was outside the Earth’s
atmosphere so the images captured by it were expected to be of much higher quality
compared to those of ground telescopes. But within weeks of the launch of the tele-
scope, the images returned showed that there was a serious problem with the optical
system. Although the first images appeared to be sharper than ground-based images,
the telescope failed to achieve a final sharp focus, and the best image quality obtained
was drastically lower than expected. The cause of the problems was identified as a
faulty mirror which blurred the images.

In figure 2.6 we reproduce a zoomed in view1 of an image taken by the HST. We
have access to the true undegraded image, seen in figure 2.6(a), for reference. The
minimum intensity of this undegraded image is on the order of10−11, the maximum
is 31651.05 , with a mean of6.36. We see that the image consists mainly of black
background with a few bright stars of high intensity.

Figure 2.6(b) shows the observation available to us which has been degraded by a
known blurring kernel and unknown additive noise. The statistics of the kernel were
estimated from tests performed on the mirror prior to the launch of the satellite. At the
time of the launch these tests were considered inaccurate, but they were later shown to
be correct. The norm of the true solution is available, as this could be measured using
other instruments on the satellite. Finally, the noisy image has an RMS error compared
to the original of181.11.

Solving this problem using the TRS approach described in the previous section we
arrive at the solution seen in figure 2.6(c). However, inspection of this solution reveals
some undesirable artifacts. We observe that about 49% of the pixels have negative
intensity in the restoration; these have been marked in red in the figure. Particularly
around the bright stars of high intensity we find negative intensities of strong magni-
tude; the minimum value of the restored image is−563.16 and this intensity is found
next to a star. Compared to the undegraded image this reconstruction has an RMS error
of 32.01.

Since each pixel intensity represent a measurement of the amount of light received
by a sensor, negative intensities has no physical meaning in this context. A possible
way to avoid this problem is simply to truncate negative intensities in the regularized

1The original image and the images used in the numerical experiments are of size256 × 256. All
statistics, such as mean, minimum and maximum intensity, as well as RMS errors are reported here are for
the images of this size. But since these images do not look good on print we only visualize a small part (of
the full image) of size66× 73 in figure 2.6.
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solution to zero. It has however been shown that this might introduce significant er-
rors [26].

In literature various methods have been proposed in order to avoid negative pixel
intensities in the solution. Hanke et al [14] propose doing this by rewriting the variables
of the regularization problem asx = ez, and then solve the resulting problem in terms
of the new variablez. The resulting problem is then solved using different regulariza-
tion formulations and among these Tikhonov regularization. Rojas and Steihaug [26]
perform regularization of astronomical images by solving the TRS with an additional
non-negativity constraintx ≥ 0. The solution is then implemented quite efficiently
using the LSTRS algorithm of the previous section as a substep.

But sometimes even more prior knowledge about the properties of the true unde-
graded solution is known (in addition to the norm ofx) , and we wish these imposed
on the regularized solution as well, either in the whole image or in parts of it:

• Both lower as well asupper boundsare known.

• We may know something about themeanof the whole or in certain smaller re-
gions of the image, possibly compared to other regions in the same image or a
scalar quantity estimated from other sources.

• Some measure ofdeviationsfrom the mean is known.

• TheManhattan norm‖ · ‖1 is known.

• The infinity or maximum norm‖ · ‖∞ is known.

• The change in intensity (i.e. thegradient) from one pixel or region in the image
to the next is known. This can for instance happen in regions which are known
to be constant or where there is a strict increase in pixel intensity such as in a
blue sky fading into white at the horizon.

Imposing such constraints is in some sense analogous to what we did in chapter 1 where
we used a smaller regionΩ to define local noise properties such as the noise mean and
variance, and then used these properties to help estimate a global solution.

In our work [7] we propose a generalization of Rojas and Steihaug’s formulation
which can help model this additional knowledge that we wish to impose on the regular-
ized solution. We do this by adding a linear constraint to the TRS model. This yields
the linearly constrained TRS

min
x

1
2
xT Hx + gT x

s.t.Cx ≤ d (2.18)
‖x‖ ≤ ∆

whereC is a matrix andd is a vector.
The non-negativity constraint that we wish to impose in the HST deconvolution

problem can then be represented by lettingC = −I andd = 0 whereI is the identity
matrix. Observe that the other constraints listed above can all be implemented as linear
constraints by choosingC andd carefully as well as possibly introducing some addi-
tional variables where needed2. For the star-cluster problem however, we follow [26]
and have only used lower bounds.

2The main difficulty in implementing‖x‖1 and‖x‖∞ is to find a linear expression for|xi|. This can
be done however by introducing a helper variablezi = |xi| and imposing the two linear constraintszi ≥ xi

andzi ≥ −xi while adding the linear term+
P

i zi to the objective function. Using a similar idea themax
operator needed for the infinity norm can also be implemented.
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In order to solve this linearly constrained TRS we use a log-barrier penalty approx-
imation which yields the formulation

min
x

1
2
xT Hx + gT x− µ

n∑
i=1

log(d− Cx)i (2.19)

s.t.‖x‖ ≤ ∆

whereµ is a penalty parameter which impose a penalty on the last term in the objective
asCx approachesd. By second order Taylor approximation of the objective function
at positiony = x + h a solution to this problem can be approximated by solving

min
y

1
2
yT Hµy + gT

µ y

s.t.‖y‖ ≤ ∆

whereHµ andgµ are a matrix and a vector, both using the Hessian and the gradient of
the objective function of equation (2.19) at positionx. Notice this problem is on the
same form as equation (2.11). Our algorithm solves a series of subproblems on this
form using LSTRS while driving the penalty parameterµ towards zero.

In figure 2.6(d) we see the non-negative TRS reconstruction that was estimated
using our algorithm. The minimum intensity in the reconstruction is on the order of
10−6 and the maximum is31810.39 . Compared to the undegraded original this image
has an RMS error of23.09. This RMS error indicates a significant improvement by
imposing the non-negativity constraint, compared to the TRS solution.

2.4 Conclusion and Comments

In this chapter we have presented an algorithm which can solve the deconvolution prob-
lem with increased accuracy in certain cases. The details of our approach is presented
in our paper [7].

The deconvolution problem arise in the context of single-shot magnetic resonance
imaging protocols where the acquisition time of the scanner is long enough for a signif-
icant signal reduction from the first to the last echo to occur [30]. It can be shown that
this signal loss has the effect of increasing the size of the point-spread function (and
its discretized equivalent, the kernelκ), leading to blurring. Being able to solve this
resulting deconvolution problem accurately has direct applications in these situations.

Since the algorithm we have presented in this chapter is more mathematical and
theoretical in nature than the other work presented in this thesis, we have neglected the
application to medical imaging for now. Instead our focus has been on deconvolution
of standard datasets which makes comparison to previously published works easier.
These other applications also highlight the strength of our approach: the incorporation
of the linear inequality constraints. In our work [7] we show that on these datasets (in
particular the HST example) our algorithm produce results which are comparable to
some of the most popular of previously published works. The fact that our algorithm
also can solve a large additional set of problems by using the general linear inequality
constraints represents a significant theoretical contribution to the area of trust-region
methods. Judging by the effectiveness and popularity of trust-region methods our algo-
rithm could become an important tool for solving large-scale and ill-posed problems.

Application of the algorithm outlined in this chapter to medical data is one that
we hope to investigate in future works. An additional difficulty when applying our
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algorithm to such applications is finding a good estimate for the point-spread function
which in general is unknown and depend on specifics of the MR scanner used for the
acquisition. Indeed, the estimation of the point-spread function from the available MR
data is an interesting research-problem in its own.

Both algorithms we have considered this far in the thesis are not limited to just
medical applications and can be a applied directly to solve very fundamental problems
in image processing. An important point in the presentation up until now has been to
emphasis that these methods are general techniques and not very problem dependent,
although they also have direct applications in MRI.

In the remaining chapters we will now focus on diffusion tensor imaging (DTI) and
the specifics of this modality. These chapters will differ from the previous ones in that
they are not immediately applicable to other areas of science, because they exploit the
particulars of the modality to a greater extent.
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(a) The undegraded imageX∗.

(b) The convoluted image
κ ∗ X∗ + η whenη = 0.

(c) η hasσ2 = 0.001. (d) η hasσ2 = 0.01.

(e) The recovered image us-
ing ∆ = ‖x∗‖.

(f) ∆ = 0.975‖x∗‖. (g) ∆ = 0.95‖x∗‖.

Figure 2.5: Deconvolution of the Lena image first seen in figure 2.1 using TRS regu-
larization. All images are on the same scale.
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(a) The undegraded image. (b) The blurred and noisy image.

(c) The image recovered using TRS. (d) The image recovered using TRS non-
negativity constraint.

Figure 2.6: The deconvolution process applied to the star-cluster example. Image (a),
(c) and (d) are shown on the same scale with negative intensities marked in red. Image
(b) is normalized for visualization.
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Chapter 3

Diffusion Tensor Imaging

In this chapter we will introduce the basics ofDiffusion Tensor Imaging(DTI). We will
start by outlining the more general field ofMagnetic Resonance Imaging(MRI), and
give a short explanation of the basic Magnetic Resonance (MR) physics involved. We
then describe how DTI differs from and complements MRI. In section 3.1 we define
precisely what constitutes a diffusion tensor dataset available to us from a scanner,
and we introduce the diffusiontensorwhich summarizes the diffusion using a compact
representation. In section 3.2 we show how the diffusion tensor can be estimated, and
we present some of the derived quantities which can be estimated from it and which
have medical significance. In section 3.4 we use the denoising algorithm developed
in section 1.2 to improve the quality of the estimated tensors as well as the derived
quantities. Finally, in section 3.5 we introduce fiber-tracking which offers an attractive
way to visualize structure in DTI data. This chapter is intended to serve as a general
introduction to the field of diffusion tensor imaging and to introduce the basic quantities
needed for the more specialized topics covered in chapter 4.

Our main contribution to this chapter is the application of our 3D generalization of
the originally 2D algorithm, presented in the first chapter, to medical data. The results
from this denoising is presented in section 3.4. Our explicit formulation of the diffusion
ellipsoid in equation (3.5) is also of importance since formulas describing this ellipsoid
is often not detailed sufficiently.

Magnetic Resonance Imaging is a non-invasive method used to render images of the
inside of an object. It is frequently used in medical imaging to investigate and diagnose
pathological or physiological alterations in living tissues such as the brain. Using MRI
diseases such as tumors, stroke, inflammation and Alzheimer’s can be examined and
monitored non-invasively in living patients.

As the name implies, MRI utilizesmagnetismto capture images and is considered
non-harmful to biological tissues, as opposed to other imaging modalities such ascom-
puted tomography(CT) X-raywhich relies on potentially dangerous ionizing radiation.
It is known that ionizing radiation may for instance increase the risk of malignancy
especially in fetus. MRI is considered safe to use for all except patients with metal im-
plants such as pacemakers, certain surgical prostheses or ferromagnetic foreign bodies
like shell or bullet fragments.

An MRI dataset can be obtained using an MRscanner. The MR scanners used
clinically today are physically quite large and typically allow a whole person to be
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placed inside of them. Usually however, the scan is limited to a certain organ, such as
the head, torso, arms or legs. In this thesis we will only consider images of the brain.

Describing in details the principles involved in obtaining an MR image is beyond
the scope of this dissertation, however for our applications the following simplified de-
scription will suffice: When protons, such as those found in water, are placed inside a
strong magnetic field induced by an MR scanner thespinof their atomic nuclei arrange
in a particular manner. Hydrogen nuclei are protons which have a large magnetic mo-
ment and they arrive at a spin which is either parallel or anti-parallel to the direction
of the magnetic field. The majority of these spins will cancel each other out, but using
Boltzman statistics it can be shown that there will be slightly more hydrogen atoms
spinning in one direction compared to the other. The difference in population using
a scanner of common field strength is about 1 or 2 in a million. By briefly exposing
the magnetic field to a radio-frequency (RF) pulse which is specific only to hydrogen
these extra atoms will absorb more energy that causes them to initiate a spin at a given
tissue dependent frequency referred to as theLarmour frequency, and in a given differ-
ent direction. When the RF pulse is turned off, the hydrogen protons begin to return to
their natural alignment within the magnetic field and release their excess stored energy.
When they do this, they give off, orresonate, a signal, with a tissue specific relaxation
rate, that the scanner can measure. The strong magnetic field induced by the scanner
can be manipulated by a set of much weakermagnetic field gradientswhich can be
switched on and off very rapidly. By engaging very carefully chosen sequences of
magnetic field gradient changes the main magnetic field is altered so that the process
can be localized to a surprisingly small region. This allows sampling of tissue informa-
tion at discretized spatial positions. This is accomplished by transforming the complex
valued MR signal in the frequency domain to a magnitude image in the real domain.

Hydrogen in living tissues is mainly found inwater and lipids such as fat and
MRI measurements can thus be used to distinguish between such tissues and other
substances such as bones or cartilage. Different tissues can also be distinguished by
the time it takes for the tissue specific spin to relax after they have been excited (i.e.
T1, T2, T

∗
2 relaxation times).

The resulting 2D or 3D MR image can be used to study the anatomy of the organ in
question, or as a part of a more elaborate protocol involving other imaging techniques.

During the last decade the development of MRI has led to the design of numerous
more specialized imaging techniques. One of these isDiffusion Tensor MRI(DT-MRI
or simply DTI), which measures the thermic motion distribution of water molecules
(i.e. water self diffusion) in 3D space.

Individual water molecules are constantly in motion, colliding with each other and
with other molecules in tissues at high speed. These high-speed collisions cause the
water molecules to spread out or diffuse. The phenomenon is commonly referred to
as Brownian motion. Water in tissues containing a large number of fibers, like skeletal
muscle or white matter in the brain, diffuses fastest along the direction that the fibers
are pointing in and slowest at right angles to it. This restricted diffusion is because the
various tissue components, such as membranes or cell walls, restrict the Brownian mo-
tion. When the diffusion is concentrated to a preferred direction in space it is referred
to asanisotropic diffusion. In contrast, water diffuses in an almost spherical pattern in
tissues that contain few fibers since the restriction (or rather,lackof restriction) is iden-
tical in every direction. This is referred to asisotropic diffusion. In the next sections
we will describe how anisotropic diffusion can be used to infer brain connectivity.
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An MR scanner programmed with a diffusion tensor protocol has the ability to
sample water diffusion in a given set of encoded directions. As in previously described
MRI a pulse sequence is used to resonate a spin in a small fraction of the proton pop-
ulation. This is done in DTI by first applying an RF pulse (referred to as90 degree
pulse), immediately followed by a gradient magnetic pulse of durationδ. This ensures
that the spin is sensitized in a particular preconfiguredgradient direction. Then another
RF pulse (referred to as a180 degreepulse, inverting the orientation of the spins) fol-
lowed by another gradient magnetic pulse in the same gradient direction and duration is
applied, refocusing the phase of the spins. The gradient direction pulses are applied at
known time∆ apart. After the second gradient magnetic pulse is switched off the hy-
drogen protons will emit a measurable signal as their spin again realigns with the main
magnetic field. As protons having diffused far in the spatial direction encoded by the
gradient direction during the time∆ do not refocus completely following application
of the second RF pulse, this results in a weaker signal.

The result is an image which encodes diffusion in the given gradient direction as
a lossof signal intensity. There is however an additional difficulty: these diffusion
images are also weighted with the amount of hydrogen at each discretized spatial po-
sition referred to as avoxel. Therefore a low intensity in a given voxel in a diffusion
image can mean one of two things; either there was a high degree of diffusion in this
voxel or there was little hydrogen here to begin with. Standard terminology takes this
distinction into account and refers to the diffusion images as diffusionweightedimages
(DWI), indicating that they are essentially measurements of the hydrogen population
weightedwith a measure of diffusion. In order to resolve the actual diffusion from a
DWI, a baselinereference image giving only the hydrogen population at each voxel
needs to be estimated. Fortunately, this information is exactly what is represented and
available in an MR image, and therefore a conventional MR baseline image always
accompanies a DTI dataset.

3.1 DTI Data

As mentioned, the DTI scanner is able to give some estimate of the apparent diffusion
per voxel in a given set ofn preconfigured gradient directions. Throughout the rest of
this chapter we will refer to each of the normalized gradient directions asr(i) ∈ R3

wherei ∈ {1, 2, . . . , n}. Thesen gradient directions are programmed into the scanner
by the MR technician as a part of specification of the DTI protocol. Often it is assumed
that the gradient directions are uniformly distributed on the unit sphere so that the
scanner is equally sensitive to diffusion in all directions. A typical DTI scanner today
has anywhere fromn = 6 up to hundred gradient directions.

So in each voxel the scanner makesn + 1 measurements, one for each gradient
directionr(i) and one for the baseline reference. We refer to the measurements in a
given voxel captured in directionr(i) asSi and denote the baseline MRI measurement
asS0. DTI data can therefore be considered 4 dimensional, with 3 spatial dimensions
and one dimension for the sample number.

These voxelwise measured valuesSi are related to the3× 3 diffusion tensorX as
described by the Stejskal-Tanner equations [38]

Si = S0 exp(−br(i)T
Xr(i)) (3.1)

whereb = γ2δ2(∆− δ
3 ) is an acquisition-specific constant (the “b-value”) involving the
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(a) A MRI baseline image
S0 (T2-weighted).

(b) The diffusion measure-
mentsS1 in directionr(1).

(c) MeasurementsS4 in di-
rectionr(4).

Figure 3.1: A DTI dataset showing mid-slice of the authors brain. Image (b) and (c)
are on the same scale.

proton gyromagnetic rationγ = 42 MHz/Tesla, the time between the gradient pulses
∆ and the duration of the gradient pulseδ, as described in the previous section.

The diffusion tensorX is the covariance matrix of the measurements with respect
to the three spatial dimensions. All covariance matrices are positive semi-definite, and
it can also be shown thatdiffusiontensors are symmetric (see [17] for references). By
careful examination of the diffusion tensor a number of clinically useful quantities can
be derived. The estimation of the diffusion tensor as well as these derived quantities
will be the topic explored in the rest of this chapter.

The sample DTI datasets that we will be using for all examples in this chap-
ter (except for the denoising in section 3.4) was acquired using a General Electric
Signa 1.5 Tesla Echospeed MR scanner equipped with EPI measurement techniques at
Haraldsplass Deaconess University Hospital. The data was collected from a 28 year old
healthy volunteer; the author of this thesis. The size of the dataset is256×256×24×7
and the diffusion measurements were obtained using a value ofb = 1000. Total acqui-
sition time for this DTI recording was 7 minutes.

Slice number 10 out of the total 24 axial slices available can be seen in figure
3.1, where 3.1(a) shows the baseline MRIS0 image, and images 3.1(b) and 3.1(c)
displays the measurements in directionr(1) andr(4), respectively. The visualized slice
is physically located just about where the brim of a hat would run, and the view is as
seen from above. The 6 gradient directionsr(i) used in this dataset are given by column
i in the matrix

1√
2

1 −1 0 0 1 −1
0 0 1 1 1 1
1 1 1 −1 0 0


3.2 Tensor Estimation

When solving the Stejskal-Tanner equations in equation (3.1) for the unknown diffu-
sion tensorX there are a number of different approaches, ranging from direct non-
linear minimization of the squared difference between the right and left-hand side of
the equations, to so-calledrobust estimationwith outlier rejection [18]. When solving
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this equation we use the linear least-squares approach outlined in our publication [6]
which has the advantage of being fast and relatively easy to implement.

SinceX is a symmetric3 × 3 matrix, we only have six unknowns in these equa-
tions. However,n is generally larger than six, and we therefore solve the voxelwise
set of equations by least-squares minimization. Taking the logarithm on both sides and
setting

di =
ln(S0)− ln(Si)

b
(3.2)

we obtain the least-squares minimization problem

min
X

n∑
i=1

(r(i)T
Xr(i) − di)2 (3.3)

The key observation here is that the term inside the parenthesis islinear in terms of the
components ofX. We now define the six element column-vectorx from the unique
elements of the tensorX such that

X =

x1 x2 x3

x2 x4 x5

x3 x5 x6


and observe that if we let

R(i) =
[
r
(i)
1

2
2r

(i)
1 r

(i)
2 2r

(i)
1 r

(i)
3 r

(i)
2

2
2r

(i)
2 r

(i)
3 r

(i)
3

2
]

then thei’th element in the sum can be rewritten as(R(i)x− di)2. Finally lettingR be
then× 6 matrix whose row numberi is R(i)

R =


R(1)

R(2)

...
R(n)


equation (3.1) can be solved as the well-known linear least-squares problem

min
x
‖Rx− d‖2 (3.4)

It is also worth pointing out that the gradient directionsr(i) are usually chosen in the
MR protocol so that theR matrix has full rank. This least-squares can be solved us-
ing several standard methods such as the normal-equations, the QR algorithm or the
singular-value decomposition. In our implementation we use the QR algorithm which
has built-in support in the Matlab environment.

Notice that this diffusion tensorX is symmetric by construction, but that we have
not made any attempts to ensure that it is positive semi-definite. In the absence of
noise we know from the definition that this property is guaranteed, but as any real
measurements invariably are degraded by noise the estimated diffusion tensor might
be indefinite. In literature the problem of indefinite tensors is usually ignored as it can
be shown to decrease when the signal-to-noise ratio of the dataset is increased. In DTI
this can be accomplished by post-processing the data, as we do in section 3.4, or by
altering the acquisition protocol to increase the number of diffusion measurements per
voxel, to increase the voxel size or by adjusting theb-value of equation (3.1) [30].
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3.2.1 The Diffusion Ellipsoid

One common way to visualize a symmetric positive definite diffusion tensor is to con-
sider itseigenvalue decomposition. An eigenvalue decomposition of the tensorX is
then

X = QΛQT

whereQ is an orthogonal matrix whose column numberi are the normalized and or-
thogonal eigenvectorsq(i), and whereΛ = diag(λi) is a diagonal matrix with the
eigenvaluesλ1 ≥ λ2 ≥ λ3 > 0 along the diagonal. This tensor can then be visual-
ized by letting the orthogonal eigenvectors define the orientation of an ellipsoidglyph
centered at the origin, whose scaling in each of the eigenvector directions is the cor-
responding eigenvalue. Thisdiffusion ellipsoidthen captures the main diffusion per
voxel; it shows the mean squared distances traveled by molecules initially placed in the
center of the voxel, after some diffusion timeτ .1

We explore the relationship between the estimated diffusion tensor and this diffu-
sion ellipsoid in our publication [6]. There we express the distance from the origin of
the diffusion ellipsoid surface in a normalized arbitrary directionr as

f(r) =
1

‖Λ−1QT r‖
(3.5)

Figure 3.2 displays the diffusion ellipsoid for various values ofλi giving Λ−1 =
diag( 1

λi
) and lettingQ be the identity matrix. In order to display the surface we take

642 pointsp(j) uniformly distributed on the unit sphere and visualize the surface that
the weighted pointsf(p(j))p(j) span whenj ∈ {1, 2, . . . , 642}.

3.2.2 Tensor Invariants

I figure 3.2(a) we see an example whenλ1 � λ2 ≈ λ3. This is referred to as
anisotropicdiffusion and in this case we believe the water to flow primarily in one
main direction corresponding to the largest eigenvector. This shape of the diffusion
ellipsoid is sometimes referred to ascigar-shapedand this is usually a sign that the
samples are taken from a region containing strong structure such as muscle, fibers or
fiber-bundles. Whenλ1 ≈ λ2 � λ3 the glyph is shaped as a disc, seen in figure 3.2(b).
In this case we have unrestricted diffusion in two directions and a barrier in the last
direction. Notice that we no longer have a single principal direction of diffusion. The
final case is whenλ1 ≈ λ2 ≈ λ3 which is commonly referred to asisotropic (ball or
sphere-shaped) diffusion. See figure 3.2(c). When water diffuses evenly in all direc-
tions it is assumed that there are few or no barriers constraining it. This will be the case
in regions consisting of fat or inside tumors.

A number of quantities have since the inception of DTI been devised to summarize
the shape of the diffusion ellipsoid [31]. Some of these quantities are defined only
on the eigenvalues of the diffusion tensor (and not on the eigenvectors) and are thus
rotational invariant. They are therefore commonly referred to as tensorinvariants. The
invariants we now consider will transform the estimated voxelwise diffusion tensor into

1Another similar diffusion ellipsoid is defined by the pointsr which satisfies the implicit equation
rT Xr = 1. This ellipsoid will also have the orientation given by the eigenvectors of the tensor, but the
scaling in each eigenvector direction will be proportional to thesquare rootof the corresponding eigenval-
ues. This ellipsoid is an iso-surface of the probability density function of the diffusion model from equation
(3.1); if releasing a drop of ink at the center of the voxel then the ink will disperse proportionally to this
iso-probability surface.
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(a) The linear case when
λ = {1, 1

4
, 1
4
}.

(b) The planar case when
λ = {1, 1, 1

4
}.

(c) The spherical case when
λ = {1, 1, 1}.

Figure 3.2: The three basic cases of diffusion.

ascalarquantity which describe some particular aspect of the tensor. The fact that each
tensor is reduced to a scalar value allows us to visualize tensor data as scalar intensity
images, like those seen in figure 3.1.

Westin [39] defines three invariants

cl =
λ1 − λ2

λ1 + λ2 + λ3
(3.6)

cp =
2(λ2 − λ3)

λ1 + λ2 + λ3
(3.7)

cs =
3λ3

λ1 + λ2 + λ3
(3.8)

These are defined so that each invariant lies in the range 0 to 1 and so thatcl+cp+cs =
1. They describe how similar the diffusion ellipsoid is to the linear, planar and spherical
case respectively. Specifically, ifcl is close to one thencp and cs will be close to
zero, and we see from the numerator in equation (3.6) that the largest eigenvalue of the
tensor is significantly larger than the second largest eigenvalue. This situation therefore
corresponds to the case of linear diffusion described in the previous section and seen in
figure 3.2(a). Similarly, whencp or cs is large then we have diffusion ellipsoids similar
to those seen in figure 3.2(b) or 3.2(c) respectively.

Other invariants frequently used are thefractional anisotropy(FA) and relative
anisotropy(RA) [38]. These two invariants describe the normalized variance of the
eigenvalues and have the advantage that they can be calculated without explicitly esti-
mating the eigenvalues of the diffusion tensor. They are defined as

FA =
1√
2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2√

λ2
1 + λ2

2 + λ2
3

(3.9)

=
√

3√
2

|X − 1
3 trace(X)I|
|X|
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(a) The linear invariantcl. (b) The planar invariantcp. (c) The spherical invariant
cs.

(d) Fractional anisotropy
(FA).

(e) Rational anisotropy
(RA).

Figure 3.3: The tensor invariants estimated from the data slice seen in figure 3.1.

and

RA =
1√
2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2

λ1 + λ2 + λ3
(3.10)

=
√

3√
2

|X − 1
3 trace(X)I|

trace(X)

Again these are scaled so that they lie in the range 0 to 1.
In figure 3.3 we show the tensor invariants estimated from aregion of interest(ROI)

in the same slice as seen in figure 3.1. Notice from figure 3.1 that the measuredS values
are not exactly zero outside the brain because of noise. This is particularly visible in
the diffusion weighted images. In these voxels outside of the brain we know there is
no diffusion, and the estimation of a diffusion tensor therefore is meaningless. We
therefore limit the estimation of the tensors to voxels inside the ROI, and define the
ROI as all voxel where the baseline MRI is larger than a given threshold value, in this
example larger than150.

The linear invariant seen in figure 3.3(a) shows some of the “butterfly-shaped”
anisotropic brain structures as the brighter region surrounding the darker ventricles in
the center of the image. The inverted U-shaped structure seen in the center of the lower
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half is called thecorpus callosum. The fibers running on both sides of the ventricles
in the longitudinal direction above it are thecortico-spinaltracts. The corpus callosum
connects the left and right hemispheres of the brain, and contains highly structured tis-
sue where water primarily diffuse in one direction, explaining the high values in this
plot. The same brain structure is also seen in figures 3.3(d) and 3.3(e), but notice that
here the structures appear larger, as can be explained by the fact the FA and RA also
have higher values in some of the regions of planar diffusion, seen in figure 3.3(b).
Conversely this means that in the FA and RA plots we will find a high value where
the diffusion isnot isotropic. In this sense these two plots can be interpreted as some
additive inverse of the spherical invariant seen in figure 3.3(c).

3.3 Noise in MRI

As pointed out in the first section of this chapter, the signal which is usually used in
MRI is a magnitude image of the originally complex-valued data. It is known that the
noise is Gaussian distributed in the complex domain, but by application of the non-
linear magnitude operator the noise in the resulting resulting dataset becomesRician
distributed. A unfortunate property of this distribution is, as opposed to additive Gaus-
sian noise, Rician noise is signal-dependent and consequently separating signal from
noise is in principle a difficult task [28].

In particular, in regions of low magnitude signal-to-noise ratio (SNR), such as in the
air in the background of an MRI, the Rician distribution behaves similarly to a Rayleigh
distribution. In regions of high magnitude SNR the Rice distribution approaches a
Gauss distribution.

Since we are concerned with the parts of an MRI where there is a significant sig-
nal, we make the approximation that the noise in DTI is Gaussian rather than Rician
distributed. In the next section we will use this approximation and show that we obtain
reasonable results.

3.4 Denoising of DTI

As described in chapter 1, all measured quantities are subject to some degree of degra-
dation during acquisition. In MRI and DTI this is also true, but the source of the
problem may not always be just hardware limitations.

There is usually a direct relationship between the time spent in the scanner during
acquisition and the resolution of the acquired dataset:high qualitydatasets, meaning
datasets with high resolution and many captured gradient directions, take a long time
to capture. It is both uncomfortable for the patient, who has to lie perfectly still inside
the noisy scanner for anywhere up to an hour, as well as expensive for the hospital,
to obtain such datasets. However lower quality datasets, which can be acquired much
faster, will have larger uncertainty associated with each measurement, and are thus
more “noisy”. Faced with this trade-off between cost and image quality, hospitals may
choose to use lower quality images.

In section 1.2 we outlined a 2D algorithm that can efficiently denoise a dataset
containing normally distributed white noise. In our publication [3] we have extended
this 2D formulation to 3D such that it can be used to denoise DTI data. Using this
algorithm we show that we can, in the cases we have studied, denoise low quality
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datasets from the scanner and obtain denoised results which are comparable in quality
to datasets which using the scanner takes much longer to obtain.

In order to achieve such results we start out with a DTI datasetS with a low number
of gradient direction, but of high enough spatial resolution to be of interest. We then
estimate a diffusion tensor at each voxel and apply our 3D denoising algorithm to each
of the tensor elements separately. This means that we apply our denoising algorithm
once for all 3D voxels using tensor elementX11, then once forX12 and so on until
X33. We will denote the denoised tensor dataset resulting from this procedure asX̄.
From this denoised dataset we estimate the FA tensor invariant outline in the previous
section.

In figure 3.4 we see a visualization of the results of this procedure. The size of the
dataset is110 × 126 × 65 × 7 and we consider slice number32 in thez-direction. In
order to see the effect of noise and denoising on orientation we visualize color-coded
main eigenvector plots weighted with FA. In these plots the intensity of each pixel is FA
as described in the previous section, but we have replaced the gray intensity scale seen
in figure 3.3 with a color scale which encodes theprincipal direction of diffusion, i.e.
the eigenvector corresponding to the largest eigenvalue of the tensor per voxel. We let
principal diffusion from ear-to-ear (thex-direction in the images) be represented by red,
diffusion from the nose-to-the-back-of-the-head (they-direction) with green, and the
head-to-toe direction (thez-direction, out of the viewing plane) in blue. Intermediate
directions are interpolated from these. A high FA value is thus represented by some
color and a low FA value is visualized as black. In figure 3.4(a) we see the color-coded
eigenvector plot estimated from the high quality DTI datasetS∗. The acquisition of
this dataset took about 45 minutes using a 3 T Siemens scanner usingb = 1000 with
6 gradient directions. Figure 3.4(b) displays the same calculated from a low quality
scanS taking about 20% of the time to capture compared to the high qualityS∗ one.
Notice the image degradation in the measurements seems to visually manifests itself in
the image in a way similar to the noise seen in chapter 1. The final figure 3.4(c) shows
the results of applying our 3D SA-DCT denoising procedure to the noisy tensorsX,
giving a denoised dataset̄X from which we calculate and visualize the FA weighted
orientations. We observe that the image created from the low quality denoised samples
seems visually to be comparable to that one estimated from the high quality one.

3.5 Fiber-Tracking

As we saw in section 3.2.1 the voxelwise principal direction of diffusion can be esti-
mated from a diffusion tensor dataset by calculating the eigenvector corresponding to
the largest eigenvalue. Fiber-tracking takes this idea one conceptual step further by try-
ing to trace the movement of a virtual water-molecule from voxel to voxel by following
the principal diffusion direction when the anisotropy is high. In this way DTI can be
used to infer connectivity between various parts of the brain, which in turn can be used
for diagnosis, exploration or classification of fiber and fiber-bundles in-vivo.

The measurements available from the DTI scanner are discretized at a given scanner-
specific resolution. But in order to perform fiber-tracking a continuous tensor-field is
needed so that a diffusion tensor can be estimated at arbitrary locations in the data.
There exists a few different ways tointerpolatein order to provide such a continuous
diffusion tensor field

(i) Basser et al [2] precompute the diffusion tensors at each discrete voxel given
by the resolution of the DTI scanner, and then performs trilinear interpolation
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(a) A high quality dataset. (b) A low quality dataset, taking about 20% of
the time to capture.

(c) The denoised dataset restored from the data used in image (b).

Figure 3.4: Color-coded main eigenvector plots weighted with FA, from a DTI dataset.
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on these tensors. The interpolation step will then consist of estimating a non-
negatively weighted sum of tensors, where the weights are inversely proportional
to the distance to each of the neighboring voxels where the tensors are located.

(ii) Another approach is to perform component-wise 3D interpolation on then diffu-
sion weighted imagesSi wheni ∈ {1, 2, . . . , n}, giving a continuousn-dimensional
dataset where a diffusion tensor can be evaluated at arbitrary locations.

Notice that since the estimation of a diffusion tensor by least-squares is a non-linear
operation the tensors estimated by approach (i) and (ii) are not necessarily equal.

Approach (i) has the advantage that the diffusion tensor estimation only has to
be performed once for each voxel, and that this can be done in advance potentially
making the method faster. Additionally it is enough to perform interpolation on only
the 6 elements of the precomputed diffusion tensors as opposed to then elements in
approach (ii). Because of this approach (i) is usually preferred in literature.

The principal direction of diffusion is given by the eigenvectorq(1) corresponding
to the largest eigenvalueλ1 of the diffusion tensor at interpolated positionp = (x, y, z).
Using simple Euler integration we can estimate a fiber trajectory by following the prin-
cipal diffusion direction as

pi+1 = pi + αq(1)(X(pi))

wherepi is a given spatial position andq(1)(X(pi)) is the eigenvector corresponding
to the largest eigenvalue calculated from the interpolated tensor atpi. The scalar value
α is the step length which must be chosen to be small in order for Euler integration to
be accurate.

Tracking thus typically proceeds from a given seed positionp0 in which some
anisotropy measure is larger than a given threshold value. A diffusion tensor is esti-
mated at that position and the principal direction of diffusion is estimated. An updated
position is found from this direction using some numerical procedure (e.g. Euler in-
tegration) and a diffusion tensor is calculated at the new position. This procedure is
repeated until a position is encountered in the dataset in which the anisotropy drops
below a given threshold value. The tract is then terminated.

The traditional measure of anisotropy used in fiber-tracking is FA [2]. As we saw in
figure 3.3(d) compared to figure 3.3(a) however, this particular choice of measure may
be less than ideal in certain cases as FA may have a larger value in regions of planar
diffusion. Although not as common in the context of fiber-tracking,cl may sometimes
be a better measure of anisotropy. In the following examples we have usedcl to seed
and terminate tracts.

In figure 3.5 and 3.6 we visualize diffusion tensor fiber-tracking results on the orig-
inal dataset of the author’s brain, also seen in figure 3.1 and 3.3. Figure 3.5 and 3.6
were created for this thesis by Dr. Gordon Kindlmann using utilities from his publicly
available Teem software library [16].

The green fibers seen in the left hand foreground of figure 3.5 are theinferior
longitudinal fasciculuswhich connects the occipital and temporal lobes. It has been
shown that this structure is involved in human visual processing and object recognition.
The blue fibers running upwards seen towards the center of the image belong to the
corona radiatawhich connects the spinal cord (through the corticospinal tract) and
the cerebral cortex. Finally, the red fibers barely visible in the center of the dataset
in figure 3.5 but easily seen along the vertical midline in figure 3.6 are thecorpus
callosumwhich connect the left and right cerebral hemispheres. It is the largest white
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Figure 3.5: Diffusion tensor fiber-tracking results showing the corticospinal tract and
superior corona radiata in the cranio-caudal direction, and the inferior fronto-occipital
fasciculus and the inferior longitudinal fasciculus in the fronto-occipital direction. The
colors on the fibers encode their directions as in figure 3.4.

matter structure in the brain also clearly visible in the anisotropy plots visualized in
figure 3.3 and 3.4.

3.6 Conclusion

In this chapter we have presented a brief overview of “traditional” analysis performed
in diffusion tensor images. This tour started with simpled descriptors of the voxelwise
diffusion and culminated with state-of-the-art DTI tractography results. Much of the
material in this chapter has been published in our publication [6].

Our main contribution to this chapter has been the 3D extension of the SA-DCT
algorithm first outlined in chapter 1 to DTI data. We have shown that there is a signifi-
cant improvement potential in terms of quality by applying pre-prosessing to DTI data.
This way to improve image quality can be utilized for instance to allow researchers
to work with scanner data of lower quality which are both faster and cheaper to ac-
quire. By post-processing using our algorithm and conventional personal computer
valuable scanner time can be freed up, while the post-processed data will be of com-
parable quality to data taking much longer to acquire. Therefore this algorithm has a
significant potential for improving patient treatments clinically.

In the next and final chapter we will examine a situation in which the quantities
presented in this chapter are known to fail, in particular where the diffusion tensor
does not accurately represent the underlying physiology. We will then describe a more
general framework which can remedy the situation, and our contributions to solve the
resulting problems.
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(a) Front view, looking towards the forehead.

(b) Top view, looking down from above.

Figure 3.6: Front and top view of results from figure 3.5 showing fiber bundles in the
horizontal (mediolateral) direction representing the corpus callosum. Fiber bundles in
the cranio-caudal direction are the corona radiata. In the postero-lateral region we see
the visual radiations.
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Chapter 4

Multi-Tensor Imaging

In this chapter we will investigate a generalization of the single tensor model from the
previous chapter. In this new model the diffusion is described using multiple diffusion
tensors per voxel. We will first motivate the new model by showing a pathological case
in which the single tensor model is known to fail. In section 4.1 we will then present
a generalization which can resolve the problem, and we briefly outline in section 4.1.1
some attempts in literature to solve it. In section 4.2 we outline our simplification
which approximates the more general multi-tensor model, and describe how we solve it
efficiently. Finally, in section 4.3 we present our multi-tensor tracking algorithm which
can perform fiber-tracking in a multi-tensor dataset using our multi-tensor estimation
procedure. The main new contributions of this thesis are the multi-tensor estimation
procedure and the multi-tensor fiber-tracking algorithm presented in sections 4.2 and
4.3.

Diffusion tensor imaging as presented in the previous chapter has over many years
proved itself to be a useful modality which today is employed for research and in clini-
cal applications in hospitals around the world. Using diffusion tensors and their invari-
ants a number of pathologies and diseases are investigated every day. Nevertheless it
has been shown that the diffusion tensor model of the Stejskal-Tanner equation (3.1)
has some drawbacks which in certain cases can lead to inaccuracies or errors in inter-
pretation of the results.

On the spatial scale of DTI individual voxels may be quite large, in some datasets
having dimensions of several millimeters in each direction. In such cases the voxelwise
DTI measurements will be a composition of all diffusion within that voxel. This is true
even if a single voxel contains diffusion in multiple directions. The term associated
with this situation isintra-voxel orientation heterogeneity(IVOH).

A well known example of IVOH is when two fiber bundles cross in a voxel. Even
though the diffusion in each one of the two trajectories flows in just one direction
measurements taken over too large a region will contain information from both trajec-
tories. When a diffusion tensor is calculated from this data the corresponding diffusion
ellipsoid will obtain a disc-like shape [21]. This oblate diffusion is not an accurate
description of the actual physiology but rather is an artifact of trying to fit a too simple
convex model to the data, resulting inunder fitting.

Figure 4.1 displays an example of this situation. In figure 4.1(a) we observe the true
shape of the flow of diffusion at a given position in a synthetic DTI dataset. We observe
that the distribution of water is limited to two preferred directions, rather than one as
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(a) The actual diffusion. (b) The estimated single tensor fit.

Figure 4.1: Pathological case for the single tensor.

in the case of cigar-shaped diffusion in the previous chapter. Attempting to estimate
the diffusion tensor using the Stejskal-Tanner equation of the previous chapter yields
the diffusion ellipsoid seen in figure 4.1(b). We observe that the model is unable to
reproduce the two main directions of diffusion in thexy-plane, and instead yields a
surface which in some sense is an average of the true diffusion surface; the result is a
planar diffusion ellipsoid. In terms of the tensor invariants IVOH results in a falsely
low anisotropy estimate, as can be seen for instance by estimating the linear invariant
of this tensor.

This behavior motivates other models for describing the diffusion in certain cases.
Since the tensor model of Stejskal-Tanner has proved itself over the last decade to
be a both simple and accurate description of diffusion in most voxels in the brain,
we will in the following consider a generalization of this model. The generalizations
we consider will reduce to the Stejskal-Tanner model for certain choices of the free
parameters, but also allow accurate descriptions of diffusion in crossing fibers for other
choices. Therefore the generalization should theoretically be at least no worse than the
current model, since the set of problems that can be resolved with the generalizations
is superset of existing solvable problems.

An additional advantage of this approach is that it allows already existing software
for diffusion analysis and fiber-tracking to be extended to also handle the crossing-
fiber case without major rewriting to accommodate a different theoretical framework.
Indeed, the implementation of our multi-tensor fiber-tracking algorithm in the open-
source project Teem [16] demonstrates this point perfectly.

4.1 Multi-Tensor Estimation

An alternative to the single tensor model of chapter 3 ismulti-tensor estimation[34,
35, 36, 20]. As we have seen modeling the diffusion with just one tensor will in some
situations fail to describe the underlying anatomy accurately. Multi-tensor imaging
attempts to rectify this situation by modeling the measured diffusion as a composition
of multiple diffusion tensors.
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Determining exactly how many diffusion tensors one should fit to the measure-
ments in each voxel is a non-trivial problem. As we saw in chapter 3 a single tensor fit
seemed to produce reasonable results compared with prior anatomical knowledge for
most voxels. This suggest that we should use the single tensor model inmostcases.
When using multiple tensors there is also the risk of introducing too much complexity
into the model. Although the number of gradient directionsn used during acquisition
effectively puts an upper bound on the total number of tensors per voxel, it may still be
chosen too large leading toover fittingof the data and decrease of the model validity.
In order to simplify the discussion throughout this chapter we will therefore assume
that we know a priori some good estimate of the number of diffusion tensorsk needed
per voxel in order to accurately describe the diffusion measurements. Good estimates
of k can often be obtained by examining relevant anatomical atlases, and manually in-
specting the fit of the model. In the examples we will consider we letk = 2 in the
regions of interest.

Tuch [34] has modeled the relationship between thek unknown tensorsX(j), j ∈
{1, 2, . . . , k} in a given voxel and then measuredSi, i ∈ {1, 2, . . . , n} values found
there as

Si = S0

k∑
j=1

fj exp(−br(i)T
X(j)r(i)) (4.1)

wherefj are non-negative weights which sum to 1. The model letsr(i) be the normal-
ized gradient directions and definesb as in the single tensor case. Note that this model
reduces to that of equation (3.1) whenk = 1. Whenk > 1 the measured diffusion is
modeled as a weighted sum of multivariate Gaussian distributions.

An immediate observation from equation (4.1) is that there is some redundancy in
the model. Notice that since the weightsfj are defined to be positive, they can without
loss of generality be written on the formfj = ezj and the scalarzj can be included
in the exponent. Manipulation of the equation then yields an equivalent formulation
involving a different tensorX(j)− zj

b I in the exponent. Adjusting the weightfj there-
fore corresponds to adding a constant to the eigenvalues of the estimated tensor. It is
clear that the model loses no expressive power by always lettingfj = 1 giving zi = 0.
In our model we will later do this.

A disadvantage of model (4.1) is that the measured signal is modeled as a sum of
statistics from allk tensors in that voxel. This implies that the tensor-invariants from
section 3.2.2 change meaning when applied to each individual of thek tensors. Instead
multi-tensor invariants analogous to their single tensor equivalents must be developed.

4.1.1 Solving for multiple tensors

As mentioned the problem of estimating multiple tensors per voxel using equation
(4.1) can be interpreted as solving a Gaussian mixture problem. One common way of
dealing with these types of problems is to use theexpectation maximizationalgorithm.
However, as Tuch [36] points out, we may want to impose other constraints on the so-
lution which may not be easy to incorporate into this framework. He therefore employs
another solution method, outlined below.

The relatively low number of gradient direction measurements available per voxel
is a significant problem when working with real DTI data. Whenk = 2 there are in
principle 12 unknowns (ignoring the fractional weights) in the set of multi-tensor equa-
tions. The data we will be analyzing later in this chapter hasn = 30 measurements per
voxel, giving slightly more than 2 measurements per variable. This makes the estimates
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sensitive to noise. In the following we will therefore first present some algorithms that
will solve equation (4.1) by reducing the number of variables in the model based on
various assumptions.

A priori knowledge

Tuch et al. [35, 36] solve a simplified version of equation (4.1) by means of least-
squares minimization between the right and left-hand side. They rewrite the diffusion
tensor using the eigenvalue decompositionX(j) = QΛQT and assumes that the linear
diffusion in each of the tensor basis directions is known givingΛ. They then solve for
thek orthogonal eigenvector matrices (each parameterized by the three Euler-angles)
and the fractionsfj by minimizing the difference between the observed signal and the
model in the least-squares sense. Whenk = 2 the resulting problem in 7 variables
(usingf2 = 1−f1) is minimized using a “conventional gradient descent method” [36].

Using the single tensor fit

Peled et al. [20] solve the same problem in thek = 2 tensor case by examining a
single tensor fit. As we have seen in figure 4.1, the resulting single tensor diffusion
ellipsoid will obtain a disc-like shape when we have two crossing fibers. Since the
two tensor ellipsoids ofX(1) andX(2) to be estimated should lie in the plane of this
disc, one eigenvector of each of the tensors is fixed to be orthogonal to this plane.
The estimation of the remaining two orthogonal eigenvectors of each tensor is thus
simplified to calculate an angle of rotation around this plane-normal. Additionally an
assumption ofcylindrically symmetricdiffusion is made, implying that the two minor
eigenvalues are equal for each tensor, and given by the the smallest eigenvalueλ3 of
the single tensor fit. The largest eigenvalue is also assumed identical for each of the
two tensors. Thus the number of variables in the model is reduced to four; the in-plane
rotation of each of the two tensors, the shared largest eigenvalueλ1 and the fraction
0 ≤ f1 ≤ 1 giving f2 = 1 − f1. As in Tuch’s approach, the least-squares difference
between the model and the measurements are minimized, now using the Optimization
toolbox in Matlab.

By using our observation about the fractional weights from the previous section it
should be possible to reduce the number of unknowns even further, although we have
not investigated the details of this approach any further.

4.2 Our approximate model

In our work [4, 5] which was presented at the MICCAI 2006 and ISBI 2007 conferences
in Copenhagen, Denmark and Washington D.C., USA respectively, we present a new
simplified solution method which can be used to estimate multiple tensors per voxel.
These works represents some of the main contributions of this thesis and they were
both well received when they were presented to the DTI community1. We will devote
the rest of this chapter to these two new methods; the first which estimates multiple
tensors per voxel, and the second which applies the first method iteratively to perform
multi-tensor fiber-tracking.

1At the ISBI conference our publication was voted among the top student contributions.
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(a) TensorX(1). (b) TensorX(2).

Figure 4.2: The Rayleigh surfaces of the tensors seen in figure 4.1(a).

Our published multi-tensor solution method [4] can be interpreted as solving a model
that approximates that of equation (4.1). Whereas equation (4.1) model each measure-
ment as a weighted sum of exponentials, we make in our model the simplifying as-
sumption that each measurement originates from just one of the exponentials of thek
diffusion tensors. We will now justify this in the anisotropick = 2 tensor case from
the example in figure 4.1(a).

In figure 4.2 we have visualized theRayleigh surfacedefined as(
r(i)T

X(j)r(i)
)

r(i)

for each of the tensorsX(j) from figure 4.1(a) using many normalized gradient direc-
tions r(i). This surface is an alternative way to visualize a tensor, similar to the one
defined in section 3.2.1 and shown in figure 3.2. It is easy to prove that the Rayleigh
surface must interpolate the same three pointsλq that define the diffusion ellipsoid
whenq = r(i) is an eigenvector ofX(j) andλ is the corresponding eigenvalue. In
this sense the diffusion ellipsoid and the Rayleigh surface are equivalent. In the figure
4.2(a) we notice that the main extents of the Rayleigh surface ofX(1) correspond well
with the first principal directions of diffusion seen in figure 4.1(a). We also see that the
Rayleigh quotient ofX(2) in the same direction seen in figure 4.2(b) has a compara-
tively low value. This is not surprising given that, if they were equal then both tensors
would have the same principal direction of diffusion and a single tensor model would
describe the situation accurately.

Now returning to equation (4.1), we recognize the Rayleigh quotient in the expo-
nent. Since we now know that the exponent of the one term in the sum is larger than
the second we also know that one of the exponentials will evaluate to a number sig-
nificantly larger than the other. Since the measurementSi in directionr(i) is the sum
of these two exponentials, we hope that ignoring the smaller of the two terms does not
introduce significant errors.

We therefore define the following model as an approximation to equation (4.1)

Si = S0 exp(−br(i)T
X(j)r(i))
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wheni ∈ Zj andZj is the set of all measurement indexes that are approximated by
tensorX(j) whenj ∈ {1, 2, . . . , k}. We will also require that the union of all setsZj

contain all of the original measurementsi exactly once. This way no measurements are
discarded or included more than once in the model. Whenk = 1 we see that we only
have one setZ1 = {1, 2, . . . , n}, and this model reduces exactly to the single tensor
model from equation (3.1).

Our multi-tensor estimation procedure presented in our papers [4, 5] is a variant of
the linear least-squares method shown in equation (3.4) adapted for solving our multi-
tensor model. Again the idea is not to use all samples to estimate one diffusion tensor
but rather to use disjunct subsets of the samples to estimate each of thek diffusion
tensors per voxel. Thus the problem of estimating multiple tensors per voxel is reduced
to asegmentation problem.

Given a segmentation of the measurementsSi intok disjunct setsZj , j ∈ {1, 2, . . . , k}
equation (3.3) can be used to estimate a diffusion tensorX(j) by letting the sum run
over i ∈ Zj . By the same reasoning used in section 3.2 this problem can be rewritten
in an equivalent weighted form analogous to equation (3.4) as

min
x(j)

‖W (j)(Rx(j) − d)‖2 (4.2)

whereW (j) is a diagonal 0-1 matrix so that
∑k

j=1 W (j) equals the identity matrix.
The weighting matrixW (j) then enforces the segmentationZj by weighting to zero
those measurements that are not in the setZj . Specifically, we define element(i, i) in
the diagonal matrix as

W
(j)
ii =

{
1, iff i ∈ Zj

0, otherwise
(4.3)

Note that whenk = 1 all samples are segmented into the same setZ1 = {1, 2, . . . , n}
and thereforeW (1) is the identity matrix. The approach then reduces exactly to the
standard single tensor estimation of equation (3.4).

An additional observation can be made by remembering the fact that there is only
six unknowns per diffusion tensor in the classical Stejskal-Tanner equation (3.1). When
exactly six measurements are available then a diffusion tensor can be created that fits
the data perfectly (i.e. with zero difference between the right hand and left hand side
in the equation). If we assume that there is no noise in the samples and that there are
more than six measurements available, then there the same diffusion tensor can still be
calculated with zero error. Finally, any subset containing six samples would uniquely
define the same diffusion tensor with zero error, in the absence of noise.

From this reasoning it is clear that our multi-tensor procedure which works by esti-
matingk tensors fromk subsets of the available data should producek equal diffusion
tensors if applied to “clean data” originating from a voxel where the single tensor model
would be appropriate.

Although we know that the assumption of zero noise is not justified in DTI we
obtain good results using our procedure on the real (and noisy) datasets presented at
the end of this chapter. It is reasonable to expect these tensors to be as sensitive to noise
as single tensor estimates would be, when computed from the same number of samples
as in each subset.
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(a) The two tensors seen in
figure 4.1(a).

(b) The corresponding q-
ball profile.

(c) The recovered two ten-
sors using our procedure.

Figure 4.3: Visualization of the q-ball profile and the recovered multi-tensors.

Applying Q-ball Imaging

This approach hinges on finding a good segmentation of the samples. In our pub-
lications [4, 5] this is done usingq-ball imaging[34, 35, 9]. The basic idea of q-ball
imaging is to transform the measured diffusion signal to a orientation distribution func-
tion directly on the sphere. The q-ball can thus be considered an alternative model to
the tensor.

Considering each pointr(i) on the sphere as apole, the q-ball transform assigns the
value at the poleqi to be the integral over the associated equator [35]. This integral
can either be approximated numerically [35] or analytically, typically using spherical
harmonics [9]. We approximate this integral simply as a weighted sum of discrete
samplesSi yielding

qi =
1
S0

n∑
j=1

Sj cos(
π

2
r(i)T

r(j))p (4.4)

wherep is a user specified parameter. Whenr(i) andr(j) are orthogonal the weighting
cosine-term evaluates to 1 and when they are parallel it evaluates to 0. The parameter
p controls how quickly the weights go to zero in the other cases.

Figure 4.3(b) shows an example where the q-ball is evaluated using this approxima-
tion. The surface displayed isqir

(i) for a large number of directionsr(i). We observe
that the main extents of the q-ball corresponds well with the two principal directions of
diffusion seen in figure 4.1(a), also reproduced in figure 4.3(a) using the same view for
comparison.

In our publication [4] the main extents of the q-ball is captured by estimating thek
lines that best approximate it, by solving a binary optimization formulation. Our publi-
cation [5], which is an continuation of the previous work [4], approximates a solution to
this optimization problem using ak-means clusteringalgorithm. This algorithm is out-
lined in the next subsection. In terms of computational complexity the latter approach
is much more efficient.

Since each vertex, as seen in figure 4.3(b), corresponds to a gradient directionr(i)

and also to a sampleSi, segmentation of the q-ball vertexes also implicitly segments
the samplesS. We segment the vertexes intok setsZj according to which of thek lines

61



each vertex is the closest to. Each setZj is then used to estimate a diffusion tensorX(j)

as outlined before. The result of applying our multi-tensor estimation procedure to the
measurements in the example from figure 4.3(a) is seen in figure 4.3(c) using the q-ball
approximation from figure 4.3(b).

Clustering of Q-ball vertexes

The result of the Q-ball procedure is a large number of vertexes distributed in 3D space.
We now wish to find thek lines which best approximate the data. In order to do so we
use an heuristic based on thek-means clustering algorithm.

Our modified heuristics starts withk random lines inR3, all going through the
origin. Each Q-ball vertex is then clustered according to which of thek lines it is the
closest to. This definesk sets of vertexes. For each of these sets the corresponding line
is moved so that it goes through the origin and the mean of the points in each set. The
process is now once again repeated by clustering vertexes to the closets of the current
lines, then again moving the lines, and so on until no more vertexes change cluster. The
algorithm usually converges to a steady state within a few iterations.

The final clustering of Q-ball vertexes belonging to the same lines implicitly gives
the segmentation of samples that we use to estimate each of thek diffusion tensors.

In figure 4.4 we visualize the results of our multi-tensor estimation procedure in a
larger synthetic example. The dataset consists of a set of diffusion weighted imagesS
generated from equation (4.1) where the diffusion tensorsX(j) are known and given
by a torus model. The torus model defines two diffusion tensors per voxel, one with its
main diffusion direction parallel to the tube, along the larger radius, and the other goes
around the tube, tangential to the circular cross section. The details of how such a syn-
thetic DTI dataset can be generated is outlined in our publication [6]. A cutting plane
samples the field in figure 4.4(a) on which glyphs indicate the single-tensor fit. The
diffusion is disc-shaped indicating the expected crossing fiber trajectories. Also note
that there is no well defined principal direction of diffusion, so standard tractography
would fail to reveal the underlying anisotropic structure in this example. Figure 4.4(b)
displays the two tensors estimated per voxel using our multi-tensor estimation proce-
dure, visualized on the same slice through the same data as in figure 4.4(a). Each glyph
has been colored using the same colors as in section 3.4 to help distinguish the prin-
cipal diffusion direction of each tensor. The figure shows that the estimated diffusion
tensors seem to correspond well with the two orthogonal principal diffusion directions
in the original data.

4.3 Multi-Tensor Fiber-Tracking

Having generalized the single tensor model of chapter 3 we now turn our attention to
how we can adapt the single tensor fiber-tracking procedure outlined in section 3.5 to
work in a multi-tensor framework. This work is detailed in our publication [5] and
represents our second main contribution in the field of multi-tensor imaging.

In section 3.5 we outlined how single tensor fiber-tracking usually is implemented;
starting from a given seed point, then by interpolation of the diffusion tensors finding
the principal direction of diffusion and finally, taking a step in that direction.

Although in principle similar to this procedure, there are a couple of additional
complications that arise in the context of multi-tensor fiber-tracking. One of the major
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ones is that theordering of the multiple diffusion tensors estimated at each position
is not well defined. By this we mean that the “first” tensorX(j=1) estimated at a
given position does not necessarily have a principal direction of diffusion similar to
the “first” tensor at any of the neighboring positions. This is because the principle
flow of diffusion from one position to the next may be represented by any of thek
tensors available, regardless of the numberj we have labeled them with. Solving this
correspondence problemto find out which tensorX(j1) describes the same flow of
diffusion as neighboring tensorX(j2) is fundamental to calculating multi-tensor fiber-
tracts.

In single-tensor tracking interpolation is usually done by estimating a weighted sum
of pre-calculated neighboring diffusion tensors. In multi-tensor interpolation the cor-
respondence problem makes this approach difficult, since it is non-trivial to determine
which one of thek tensors found at each neighboring voxel position should be included
in the weighted sum. In particular, if a given positionp there are 8 neighboring voxels,
each withk = 2 tensors then there is28 = 256 possible ways of choosing which one
tensor to include in the 8 element weighted sum which gives the tensor atp. Because
of this problem we use approach (ii) from section 3.5 when interpolating to evaluate a
multi-tensor dataset.

Another difference between tracking in the single and multi-tensor case lies in how
the principal direction of diffusion is calculated at each step of the algorithm. In single
tensor fiber-tracking the main direction of diffusion is given by the eigenvector cor-
responding to the largest eigenvalue. When we estimate multiple tensors per position
we also get multiple largest eigenvectors and determining which of these (if any) a
trajectory should follow requires careful consideration. In our work [5] we solve the
correspondence problem here by comparing each of thek principal diffusion directions
with the direction taken in the previous step of the procedure. In particular, for each
step of the fiber tractography algorithm, we choose the diffusion tensor which has the
principal eigenvector which is themost similarto the principal eigenvector calculated
in the previous step. In our work we define “most similar” as the one in which the
angular difference is the smallest2.

In this way we have resolved the principal diffusion direction for each step of the
algorithm but the first. In the first step we have no previous direction defined and
we let our algorithm estimate one trajectory for each of thek tensors estimated there.
Therefore the output of our multi-tensor fiber-tracking algorithm isk trajectories per
seed point. As in the single tensor case, each of these tracts are terminated when the
trajectory being followed encounters a position in which the corresponding tensor has
FA lower than a given threshold value. One interpretation of this choice is that we use
prior information to determine which of thek tensors describe the “flow of diffusion”
the algorithm is currently following. The tract is then terminated once the FA of this
tensor becomes too small.

In figure 4.4(c) we show the results of applying our multi-tensor tracking algorithm
to the estimated multi-tensor dataset visualized in figure 4.4(b) and described on page
62. We start tracking in three seed positions chosen such that thek = 2 tensors defined
there each have relatively high FA. We then visualize thek trajectories estimated for
each of these seed positions. Since these dataset is defined to have constant FA for each

2A consequence of this choice is that the algorithm will tend to favor producing fibers which do not
change direction. This is obviously problematic in terms of the situation of “kissing fibers” (discussed in
paper C) in which fibers with higher degree of curvature would more accurately describe the actual diffusion.
In the absence of ana priori model (such as an atlas giving probabilities of crossing vs. kissing) it is not
known how the case of kissing fibers should be handled.
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point in the fiber-trajectory we terminate the paths in this example after a predefined
number of steps of the tractography algorithm. We observe that the estimated fibers
seem reasonable compared to the principal direction of diffusion given by the multi-
tensor glyphs seen in figure 4.4(b).

Figure 4.5 shows results from a DTI dataset captured from a healthy human volun-
teer. The scanning was performed using a 3T GE system with51 gradient directions
and withb = 700. The total scan time was17 minutes. The ROI is centered around
the corpus callosum and the ascending fibers of the internal capsule and corona radiata.
Prior anatomical knowledge indicates that crossing or kissing fibers can be found in
the intersection of these structures. The single tensor glyphs in figure 4.5(a) indicate
a region of high and consistently oriented planar anisotropy, suggesting fiber crossing.
Indeed, single-tensor fiber tractography results seeded in the area (figure 4.5(b)) fail to
pass through the area, due to the single tensor fit dropping below the FA= 0.15 thresh-
old. The two-tensor fiber-tracking shown in figure 4.5(c) uses the same FA= 0.15
threshold, with tracts passing through the region of single-tensor planar anisotropy. As
expected from prior knowledge of anatomy, some of the fibers from the internal capsule
successfully extend upwards into the corona radiata.

4.4 Conclusion

In this chapter we have extended the diffusion tensor framework developed in chapter 3
so that it can better represent the actual physiology in certain cases. These new methods
are fast, relatively easy to implement and quite similar to their well-known and well-
understood single tensor equivalents. Therefore they provide a vital complement to,
and natural extension of, the standard single-tensor model.

It is important to point out that these new quantities allows the investigation of
regions of the brain where there are crossing fibers, and that tensor methods previously
has failed to compute accurate descriptors and trajectories in these regions. Therefore
our algorithms has the potential to lead to significant clinical applications. The fact
that the approach is relatively fast and inexpensive to compute suggests that it can be
useful e.g. for interactive examination of patient data. In such an application switching
between standard single tensor and our multi-tensor method would be simple, only
requiring a change of the “number of tensors” parameter to visualize the difference
between the different approaches.

A reference implementation of ourk-tensor estimation routine is freely available
in the open-source project Teem. This should make quantitative comparison to other
methods, such as those outlined in section 4.1.1, relatively easy. Our initial experi-
ments seems to indicate that our method performs favorably since it does not impose
simplifying constraints, such as cylindrical diffusion or the same amount of diffusion in
each of the two principal directions, which may not generally be justified in real data.
Our algorithm is also simpler to compute as it does not require non-trivial non-linear
minimization.
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(a) The single tensor fit.

(b) Our 2-tensor fit.

(c) Our multi-tensor fiber-tracking procedure.

Figure 4.4: The synthetic diffusion tensor torus dataset.
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(a) Single tensor estimation.

(b) Single-tensor tractography seeded in region.

(c) 2-tensor tractography with same seed points.

Figure 4.5: Results in a coronal slice near corpus callosum and corona radiata.
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Chapter 5

Conclusion

In this chapter we will summarize the main contributions of this thesis. As stated in the
overview section, the overall purpose has been to investigate and improve algorithms
which can be applied to improve the the results of DTI analysis, including specifically,
fiber tracking.

The research problems that we have investigated to fulfill the overall objective can
naturally be grouped into two separate types: those that work by improving the qual-
ity of the sampled data, and those that provide a more accurate description of actual
diffusion. In chapter 1, 2 and 3 we presented our contributions for improving sampled
data, and in chapter 4 we presented ways to more accurately estimate the diffusion in
the special case of crossing fibers.

Our main contributions in each of these two approaches can be summarized as
follows

• Quality improvement

– We have created an algorithm which can improve the signal-to-noise ratio
in DTI data significantly.

– We have created an algorithm which can solve blurring problems with in-
creased accuracy in certain cases.

– We have developed a conceptual model which can be used to generate syn-
thetic datasets for the testing of e.g. noise removal algorithms or multi-
tensor estimation procedures.

• Generalized DTI descriptors

– We have created a way to estimate multi-tensors in DTI data for more ac-
curate description of actual diffusion.

– We have generalized fiber-tracking so that this can be performed in multi-
tensor datasets.

Out of these the contributions the ones which may have the most immediate applica-
tions, as discussed in sections 3.6 and 4.4, are the 3D SA-DCT denoising algorithm
and the multi-tensor estimation and fiber-tracking algorithms respectively.
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5.1 Future work

Being a PhD student means that at some point you have to decide that there is no
more time to do more research. This means that there are interesting questions that
for the moment must be left unanswered. If I had more time to continue my work,
the following is a non-exhaustive list of problems that I would have liked to look more
into:

• Investigate the details of how the deconvolution algorithm should be applied to
MRI data.

• Generalize the SA-DCT algorithm to also explicitly handle other noise distribu-
tions than the normal distribution.

• Quantitative comparisons with other multi-tensor estimation procedures should
be performed, including performance on noisy data.

• Find criteria for determining from DTI data how many diffusion tensors are
needed locally to describe the actual diffusion, i.e. to determine automatically
when multi-tensor imaging should be applied.

• Investigate how the multi-tensor fiber-tracking algorithm should be extended to
perform tracking with different descriptors, such as the Q-ball, directly.
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