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Abstract—During the last ten years or so, diffusion tensor application of theshape-adaptive discrete cosine transform
imaging has been used in both research and clinical medical (SA-DCT) [8], [10], [11]. This is a direct method, i.e. only
applications. In order to construct the diffusion tensor images, e vjteration” is needed in the solution process. Moreover, the
a large set of direction sensitive MR acquisitions are required. method can be parallelized in a straight forward manner, since
These acquisitions in general have a lower signal-to-noise ratio ) P 9 g
than conventional MRI acquisitions. In this paper we discuss the computations for each voxel can be performed without
computationally effective algorithms for noise removal for DTI any knowledge of the computations performed in any of the
using the framework of 3D shape-adaptive discrete cosine trans- other voxels. In sectiof [V we make a quantitative and visual
form. comparison of the method proposed in this paper with a
recently introduced PDE method for regularization of tensor
valued images [5]. Interestingly we observe that the proposed

o . ] ~transform based method gives results which are very similar to
Diffusion Tensor Magnetic Resonance Imaging (DT1) is afhe results from the completely different PDE based method.

important magnetic resonance imaging protocol used in b%‘fthough the SA-DCT methodology may not be superior to

research and in clinical applications. The DTI modality hagiher methods, it is an interesting alternative methodology for
the advantage that highly structured tissue, for example tﬁ@noising of tensor valued images.

nerve fibers in the human brain can be studied non-invasively

[20], [33]. From a series (typically 6-50) of direction sensitive

MR acquisitions & x 3 diffusion tensor can be estimated for Il. BACKGROUND
each voxel of the imaging domain [1], [2], [21], [32]. Froma_ piffusion Tensor Imaging

these voxel-wise diffusion tensors a number of interesting lued d . b h f sci
clinical quantities can be estimated and used to investigate! €NSOr valued data occurs in many branches of science,

or differentiate between normal and abnormal tissue, e.g.5G€ ©:9- [30]. In this paper the tensor valued data comes
Multiple Sclerosis or Schizophrenia research [12], [13], [18]fom diffusion tensor MRI of the human brain. From a set of
However, it is a well-known fact that the MRI signal from/t direction sensitive magnetic resonance imaggg};_, a

the scanner contains measurement noise which degradesS¥BMeLric positive definite tensd € R*** is constructed in
quality of the images. In the following, we model the Ileleach voxel of the image domain. This matrix yields structural

true signalS™Y as a composition of clean (or “true”) signalinformation of the tissue in each voxel. ,
and additive normally distributed noise, i.e. The relat|ons_h|p _between e_ach direction Welghted measure-
_ ment and the diffusion tensa? is given by the Stejskal-Tanner
Snoisy — gelean 4, where 7 ~ N(0,0?). (1) equation [25], [26]

I. INTRODUCTION

Although we cannot in general assume that the noise is Sy = Spe b9k P9k k=1,... K, )
normally distributed with zero mean and variance we may
approximate the noise by such a distribution. The signal-tethere b is a positive scalar given by the measuring pulse
noise-ratio (SNR) in DTl is low compared to standard MRIsequence, ang, € R? is one of the predefined selected
This makes it important to construct good models and methadisections for which measuremersy, is acquired. Fromik
for noise removal for diffusion tensor data. Due to the hugdirection weighted measurements we obt&irequations that
amount of data, the methods should ideally be efficient withie use for estimating the six unknowns of the diffusion tensor
regards to computational time. D. This can be done for example by a linear least-squares
Several successful methods for denoising of diffusion temethod, or other more adaptive methods [21]. We note that
sor MRI have been proposed [4], [5], [27]-[29], [31]. Asince the transformatiorf](2) is non-linear, we do not know
large class of existing state-of-the-art methods are basedtba distribution of the noise in each element of the tenSor
partial differential equations. The nature of these methotfahn et al. [14] have studied how noise propagates through
typically makes them computationally heavy. These methotle estimation process.
are iterative methods, and often many computationally heavyln structured tissue such as in the heart-muscle or in the
iterations must be performed before convergence is reachetiite matter of the brain, the self-diffusion of water is highly
This is in particular true when gradient methods are used amisotropic. In gray matter and in cerebrospinal fluid the self-
the solution process. In this paper we introduce an alternatdifusion of water is almost isotropic. Based on knowledge
method for regularization of matrix valued images, based @ the diffusion tensorD, a model of the myelinated nerve



fiber pathways in the white matter can be constructed via fibgenoising of 3D scalar valued images as well as 3D matrix
tracking algorithms [19], [20], [33], [34]. valued images. In this paper we extend the framework of SA-
The quality of the estimated diffusion tensor depends d&CT to both 3D scalar valued and 3D matrix valued images.
several parameters. One particular parameter is the number of
acquisitions or excitations (NEX) performed in each of the dif- I1l. M ETHODS
fusion sensitizing directions. A high number of acquisitions iR
each direction gives a tensor estimate of good quality, provided
the patient does not move during the acquisitions, while aLet @ C R" be a closed spatial domain of dimensidh
small number of acquisitions gives a shorter examination tind@d / : 2 — R denote the noisy dataset which is discretized
for each patient. Therefore we have a compromise betwe@h a uniform grid. In the rest of this paper we restrict the
efficiency of the acquisitions and quality of the resultingttention to two-dimensional and three-dimensional datasets,
images. In this paper we investigate the possibility of pokg- NV € {2,3}. We refer to the resulting denoised dataset as
processing the data from a small number of acquisitions, ahd- Presently, we treat the standard deviatiowof the noise
still being able to construct tensor estimates of high qualit9f / as an input parameter.
Thus, a practical research goal is to decrease the scanner tim@ main ingredient of the SA-DCT method is the adaptive
required for each patient. neighborhood?, surrounding each voxet € Q. The idea is
that this neighborhood should contain voxels that in some way
. _ _ are "similar”, orhomogeneous\ neighboring poiny € 2 can
B. Shape-Adaptive Discrete Cosine Transform either have an intensity(y) which is close to the intensity
The 2D discrete cosine transform (DCT) is extensively usddx), or the intensities can differ substantially. In the case
in image science. In its original formulation it transformsvhere I(y) ~ I(z), we want to include the poing in the
a quadratic region in the spatial domain into the frequen@glaptive neighborhood of, i.e. y € Q,. To decide which
domain. Being a harmonic transform the DCT has a compagbxels that should belong to the adaptive neighborhood of a
ification property, i.e. good approximations of the image cagiven point, we use local polynomial approximations (LPA)
be constructed by employing only a few of the coefficients iand the intersection of confidence intervals (ICl) rule [15].
the frequency domain [23], [24]. However, when the image To construct the adaptive neighborhood we consider a set of
domain of the transform contains sharp edges and onlydiectionsf; € RY such that each component 6éf is either
few of the coefficients in the frequency domain are employed, O or 1, but never all equal to zero. It follows that there
for the reconstruction to the spatial domain, various artifactsust be3” — 1 such directions in adv-dimensional dataset.
such as smearing of edges and Gibbs phenomena occurlm@D [10] there are eight such directions; the four cardinal
avoid these artifacts the region should be as homogeneausl the four intermediate compass directions. In 3D there are
as possible. This is achieved by replacing the static regio? unique directions, following a similar pattern.
from the standard DCT by region@, which adapts to the We span a star shaped skeletoh around each point in
information in the image around a point We choose these the image domain by tracing the voxels along straight lines in
regions in such a way that the data can be well approximatie directions o#;. The lengthd; corresponding to the straight
by a smooth, slowly varying function. Such a function is weline in the direction o®, in the skeleton is determined by the
approximated by few coefficients from the frequency domaitCl algorithm. We close the skeleton such that it becomes a
The regions?, should ideally not contain any discontinuitiespolygonal hull by joining neighboring endpoints of the vertices
In a series of papers, Katkovnik, Foi, Egiazarian, Astol#@ the skeleton by line segments (in 2D) or triangles (in 3D).
and others describe shape adaptive DCT (SA-DCT) for dé/e denote the domain inside this closed polygonal hull by
noising of 2D gray-scale and color images [9]-[11], [15],. For each voxel in the image domain such an adaptive
The algorithm can be divided into three different stageseighborhood is constructed. The pseudo-code for our SA-
(i) construction of an adaptive neighborhodor each point DCT denoising is given in Algorithri]1.
in the domain, (ii)transformation and thresholdingf each In the following section we explain how we can use the
neighborhood, and (iiigstimationof the noise-free image. The LPA-ICI method to compute the lengty of each branch in
adaptive neighborhoods are constructed by local polynomthe starQ;.
approximations (LPA) in combination with the intersection of 1) LPA-ICI: To span the regiof} we calculate the support
confidence intervals (IClI) rule. The transformation of eachf each branch in the star, i.e. number of voxels that should
neighborhood to the frequency domain is done by a DdJe included along each direction vectyri = 1,...,3Y — 1.
algorithm, and hard thresholding is applied on the coefficienthe idea is that the voxels 1} should have intensity values
in the frequency domain. The inverse DCT algorithm is themhich are close to the intensity value of the center voxel
applied. This results in a denoised region. Since each pixériations in the included data should be due to the noise level
z has its own regior2,, and in general these regions maynd small local variations, and not due to edges in the image.
overlap, we get an over-complete basis. This over-completelTo achieve this we filter each direction with LPA kernels
basis is used to construct the final image by weighting tHg")},cs of varying length (scalep € H = {hy,...,h,},
basis elements in a proper way. whereh; < hy < --- < hjy. The generation of these filter
The state-of-the-art results obtained by the SA-DCT metkernels are described in [8]. For each kerp€l containing
ods in 2D as well as their efficiency makes them attractive fweighthgh), where: = 1,...,h, we have the property that

The shape-adaptive discrete cosine transform



. D { (4)
Algorithm 1 sadct(, o, T") Vs
Require: I is an N-dimensional imageg is the standard 4 [ - OEEEEE

deviation of the noise of, I" is a threshold parameter D3t p
1: for all x € I do Dyt @ S
2. SetQ), « Ipaici,(I,0,T) 1)
3. Set{), « dct(,) Dyqt o
4:  Define cutoff frequencyf as in eq.[(ID) L
5. Apply f as specified in eq[ (11) givin@;
6:  SetQ), «— dct'(Q;) S
7. Define weightk « (|| + 1)|92|
g forall ye Q. do hy ha hs = d; ha
9: Setl—(y) «— I~ (y) + k2, (v)
10: Set counter Ky) — K(y) + k Fig. 1. An example of the LPA-ICI algorithm whefd = {h1,...,h4}.
11 end for The area between the dashed lines shows the intersection of all previous
’ confidence intervals. When the intersection is empty (hehq pthe algorithm
12: end for is terminated.

:forall x € I~ do

14: I~ (x) — I~ (z) I K(x)

15: end for 6; employed by the algorithm and the length of each arrow
indicates the distancé;. The set of all voxels covered by an
arrow in the figure isQ2} and all voxels inside the dashed

the center voxet has the highest weight”. In addition, the POlygonal hull spanned by the arrows(is. o

weights sum to 1 and decrease with the length of the filter, NOt€ that since we only perform a LPA-ICI estimation on
We can consider this filtering as a convolution of the dafi® VOxels that coincide with the skeletonized domain we

with a filter kernel of varying length. When the kerng) is do not have direct control over the intensity values in the set

applied to the voxels in directiofy we get the filtered value % \{2;. Ithas been shown that for scalar images this approach
is a good compromise between efficiency and accuracy [9].

h . . . . .
h , Before the regiorf2, is denoised in the frequency domain,
= Zg§ (5= 1)6). ) the mean of the region is estimated and subtracted from each
3=t intensity in{2,. This process is referred to &C separation
The standard deviation of the noiseif® is given trough and it has been shown to improve certain pathological issues
the relation associated with the shape-adaptive DCT described in the next
o, = ollg™]]. (4) section [16]. After the DCT denoising is complete and the
coefficients has been transformed back to the spatial domain,
the pre-computed mean is added to shift the mean of the
Dp, = [p™ — To,m, JTRRINE To,m), (5) intensities back to the same level as before the DCT. Although
) ) this shift of intensities is not entirely justified from the
wherel’ > 0 is a global parameter of the algorithm. A larggypproximation standpoint (since the pre-computed mean also
I' results in a large noise tolerance, and more voxels will R@|l contain noise), it has been shown to visually provide
included in the regions, and vice versa. superior results with few adverse effects [9].
The ICI rule states that along the direction vectgrwe 2) The DCT algorithm: The discrete cosine transform
should choose the largest distan¢e € H where we have (DCT) is used extensively in signal and image processing. The

=
w

For each direction we then get the confidence intervals

intersection of all the confidence intervals, see Figlire 1. Mogge-dimensional DCT of a signéto, ..., 21} of length M
precisely is defined as
d; = max{h: (D; N DyN---NDy) # 0}. (6) ) = ™ 1
HeH 2 = i Z_:O Zm, COS [M <m + 2> k} : (7

Having dete.rmlned the !ength of gach branch in the stay, ;. _ 0,...,M—1, wherec, —
shapeq dpmamm, we define the .ne|ghporhooﬁw as all 0. Note that this transform can be expressed as a matrix-vector
voxels inside the polygonal hull closing with branchesl;6;, product
wherei = 1, ..., 3" —1. By construction, the intensities in this = A ®)
region should not contain large changes due to edges in the T
image. The noise in this region can now easily be removed Whenc;, is defined as above then tiematrix is orthogonal.
thresholding small coefficients in the frequency domain. WEhis implies that the inverse DCT can be expressed as
use the discrete cosine transform for this purpose as described _ AT ©)
in sectionTI[-A2. * =

In the upper left panel of Figufg 2 we have visualized an 2Dvo and three dimensional DCT are usually achieved by
example of the output of the LPA-ICI algorithm. The arrowsuccessively applying the one dimensional DCT along the
centered around voxet indicate each of the 8 directionscoordinate axes (i.e. separability). However, note fhatwill

/1 _ 2
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in general not be rectangular. Sikora [23] has developed an
algorithm for discrete cosine transform on non-rectangular
domains. In this paper we employ this algorithm. However, we
still use the orthogonal transforin| (7) and not the one originally
presented in [23].

In the following we letQ! denote the quadratic (in 2D)
or cubic (in 3D) null-extension of),.. Null-extension in this
context means a padding of the region with a particular value,
“null”. This value will only be used as a “place-holder” and not
in any direct calculations. Accordingly, it is never considered
a coefficient in the discussion below. The purpose of the null-
extension is to extend the size of the region into a more
manageable form, as later described.

Note that when examinin§?, along the coordinate axes,
it may be non-contiguous. One approach to alleviate this
problem could be by zero-padding the region instead. But this
causes problems when applying the traditional DCT algorithm
as many components of the DCT domain will be needed
to represent these high jumps in intensities introduced by
zero-padding. Sikora's approach avoids this problem by firf§t. 2. lllustration of how coefficients are collected in one corner by Sikora’s
shifting all non-null values of2? along the first coordinate axis 2/901thm (see text for description).
so that they become consecutive @}. A one-dimensional

DCT, where the length of the signdf is equal to the number L .
of non-null values, is then applied to the shifted data. The he thresholded region is then transformed and shifted back

same procedure is then applied to each dimension in turn, 'Bt the spatial domain by the inverse DCT (as outlined in

first shifting the data and then applying the 1D DCT. WheR ctior| l-A.9) giving{l; in the spatial domain.

applying the inverse DCT we need to invert these shifts, so a4) Estimation from over-complete basiblotice that since

record of the rearrangements must be maintained. W)?t cr?ki:ylarte ? :]eg'\cl)ﬂrr forieve\;/y vr(])x\(/el |nnth(?/|r:1agrenvvlethat\)/e i
In Figure[2 we display a 2D example of how the nulIEXIENSIVE TEgIoN-overiap, 1.€. We have an over-complete basis.

padded voxels are shifted to produce consecutive values. 'F’ig rgc:)nsttruc:han |\;Vnage f'rom this .mrf]?rTatlon, we yvelghtd
upper right panel shows the null-padded region, where blackti ata together. e assign a weignt 1o every region an

used to indicate voxel-intensities (and later DCT coefficient )se t_he dlr_1format||ct>r_1 N otver(ljapglng reglor?? to est|m_athe; t?ﬁ t
and white is used to show null-values. The lower left pan phoised image. It 1S a standard approach 1o use weights tha

shows the intensities shifted in the direction towards the &€ inversely proportional to the mean variance of the region.

origin in the lower left corner. A one-dimentional DCT is thej;ow_lt_ever, for adatpt|¥e :ﬁglons this O:eqdcis ttr? ove'r-z?wot())thtlag
applied to the non-null elements of each row containing no )] To compensate for this we can divide the weights by the

null values; first to row 2 containing/ = 1 intensities, then to Square of the size of the region. L
row 3 containingM = 4 consecutive intensities, and so forth. The mean variance of the regidty, is given by
The lower right panel shows the results after the row-wise ) L1+ 105
DCT, shifted along the axis. Again a one-dimensional DCT Og- =0 T (12)
is applied, this time to each non-null element of each column. ¥
When the data is 3D this procedure has to be repeated agaifere|(); | is the number of non-zero coefficients{yy . This
in the z-direction. The final configuration is a set of shiftedjives the following weights for the regions
DCT coefficients in the origin corner of the cube. 1

3) Thresholding in the DCT domain:et (1, denote the do- Wy = ——————.
main transformed fronf2,. using the DCT algorithm described (14 1822 )[€2]
in the previous section and létdenote a given coefficient in The regions can now be weighted together giving the final
Q.. In addition, Iqt|Q,E| denote the number of coefficients inrecovered estimaté~ : O — R using the relation
the neighborhood,.. The cutoff thresholdf is given as [15] B

I~ (p) _ Zg; w’I‘Q,z (p)

f=ov/2log(|Q]) + 1, (10) Yota

for all p € Q and where the sum is taken over all voxels

(13)

(14)

and the hard thresholded coefficienits are given as such that®2; containsp.
o z, 0f 2| > f
= 11
3 {07 12 < (11) IV. GENERALIZATION TO DTI

R In the previous section we extended the SA-DCT methods
for all 2 € Q. from 2D to 3D images. This code can be used directly for



denoising of 3D MRI images. In this section we will show howve denoise a synthetic DTI dataset where the object is a
the code also can be applied for matrix valued DTI imagessimulated torus. The DTI torus has been generated using
In previous work, two of the authors have investigatethe softwareteem, written by Gordon Kindlmann [17]. For
total variation (TV) regularization of tensor valued data [Slisualization of the color-coded fractional anisotropy (FA)
where the estimated tensor is regularized. In order to ensureages, derived from the estimated tensor images, we have
positive definiteness of the regularized tensor, it is representeskdDtiStudio  developed by Susumu Mori and coworkers

implicitly by Cholesky factorization a®) = LL”, whereL [7].
is a lower triangular matrix. In the present work, we have Our DTI phantom consists of a doughnut-shaped object with
adopted this approach when regularizing tensor valued datadiyar-shaped diffusion in the direction of the main circumfer-
SA-DCT methods. Thus we apply the 3D algorithm to eadtnce. The baseline imagg is constant equal td and the six
of the elements of.. direction sensitive measuremerfts, .. ., Sg have the rangé

We are aware that there are other ways to apply the 3D cdde).80. We added normal distributed noise with zero mean and
on matrix valued DTI images, e.g. we could denoised directyy variance of0.01 to S, and variance 0f).04 to Sy, ..., Se.
on the S; images. However, the advantage of the present&te six gradient directiong, ..., gs used are given by the
method is that we are able to guarantee positive eigenvalueslumns of the matrix
In addition we have conducted numerical tests that indicates 1 10 0 1 -1
that the performance is similar for both methods. 1

2lo 001 101 1
V2\1 1 1 210 o

The diffusion tensors computed from the clean DTI data is
Gsed as a reference and the denoised tensors are compared
inst this ground truth. We define the error as the sum of
ared element-wise tensor differences

V. EXPERIMENTAL RESULTS

In this section we show qualitative numerical result
achieved by the method proposed in this paper. We proc
both synthetically produced images and real diffusion tensg u
images of a healthy human volunteer.

3 3
3D scalar-valued data SN (Dike(p) — D?]eno'seip))z, (15)
We have in this paper generalized the SA-DCT methods peQ =t =1
from 2D to 3D images. In the first example we want to showhere D;;(p) denotes the tensor element in positian;) at
the difference between the 2D SA-DCT algorithm appliedoxel p. The global error in the noisy data was found to be
slice by slice in a 3D dataset, referred to @sasi-30Q and 95.86.
application of our genuine 3D algorithm. We use 3D data from When first computing the diffusion tensors from the noisy
the BrainWeb , a database of freely available semi-realistiDTl data and then apply the 3D SA-DCT algorithm to each
simulated MR images [6]. The true dataset have a range fronel0the six elements of the voxel-wise lower triangular
to 1 and a mean of 0.26. The added noise is normal distributéelcomposition of the tensor, the global error w893. The
with zero mean and a variance @07. results of this denoising procedure are shown in Fi§ire 5.
In Figure[3 we show a coronal slice of the image comparing
the performance of the quasi-3D SA-DCT algorithm and thg@D tensor-valued real brain data

genuine 3D version. Line artifacts between neighboring Sl'ceSFinaIIy, we tested SA-DCT denoising on real diffusion

can be'obs.erved, sincg t.he 2D algorithm.ignores informationt'ghsor images from a healthy human brain. The human subject
the z_-dlrec_non_. An agldmonal pr_oblem W't.h _the ZD. appro_achdata were acquired using a 3.0 T scanner (Magnetom Trio,
d‘?a"”g with isotropic voxe_ls, 1S determlnmg_wmph axis iemens Medical Solutions, Erlangen, Germany) with a 8-
slice across. We have arblt.rarlly_ chosen M'Fec“of" but - olement head coil array and a gradient subsystem with the
a choice ofz- or y- would in this example yield different aximum gradient strength of 40 mii—! and maximum
suboptimal results. As we observe from Figlife 3 the reslgll]teW rate of 200 min-1.ms-!. The DT data were based on
from the full 3D a_lgorlthm pr_opo_sed in this paper yields re_sul in-echo single shot EPI acquired utilizing generalized auto
in which the nmﬁe hreducét_lon 'S perftl)rmlgd n 3 cons:teg librating partially parallel acquisitions (GRAPPA) technique
manner across all three dimensions. In Figure 4 we show,gn 4cceleration factor of 2, and 64 reference lines. The DTI

zo\c;vm—lg ]f_’f a ;ma" pomonthof tge Ir%sult frzom FlghS. diff acquisition consisted of one baseline ERJ, and six diffusion
¢ define the error as the tuclidean c-norm of e dilleyeighied images,, . . ., Ss (b-factor of 1000 snm—2) along
ence between the noise-free image and the denoised im

Th b h o dth so-free | & same gradient directions as in the previous example. Each
€ error etwgen the NOISy Image an the NoISe-Iree im uisition had the following parameters: TE / TR / averages
was140.13. The image denoised using the quasi-3D algorlthwas 91 ms / 10000 ms / 2. FOV was 256 m@56 mm. slice

gave47.60, and using the full 3D algorithm reduced the errofi i kness / gap was 2 mm / O mm, acquisition matrix was

to 41.92. 192x 192 pixels and partial Fourier encoding was 75%.
_ Since we are working with real data we do not have access
3D tensor-valued synthetic data to an exact solution of the denoising problem. Instead we
The main motivation behind this paper is denoising of tensased a higher quality reference dataset for comparison. This
valued images, in particular diffusion tensor MR images. Firdataset was obtained by registering and averagifigsuch



Fig. 3. The difference between application of the 2D SA-DCT along coronal slices of a 3D image, and application of the genuine 3D SA-DCT algorithm.
Upper left panel the original true imageUpper right panel the noisy image (zero meam? = 0.07). Lower right panel result after application of the
quasi-3D algorithm along the-direction. Lower left panelresult after application of the full 3D algorithm proposed in this paper. See also detail in Flgure 4.

Fig. 4. Zoomed-in detail from Figufg Beft panei result after application of the genuine 3D algorithRight panel result after application of the quasi-3D
algorithm. Notice the slightly improved distinction between white matter, gray matter, and CSF, when the genuine 3D algorithm is applied.
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Fig. 5. Results from application of the proposed 3D SA-DCT algorithm to a synthetically produced diffusion tensor dataset where the object is a torus.
Upper left panelthe true (noise-free) datélpper right panel the noisy dataLower left panel the denoised datd.ower right panel 3D view of the torus.
All figures are color-coded FA plots derived from the tensor.

acquisitions. The noisy input to the denoising algorithm was VI. CONCLUSIONS
a dataset witht averaged acquisitions consuming about 20%
of the acquisition time, compared to the higher-quality one. In this paper we have generalized the SA-DCT methods
For better evaluation of our denoising algorithm, we hav&m 2D scalar-valued images via 3D scalar-valued images
compared our 3D SA-DCT results with those obtained usirig 3D tensor-valued images. We have shown numerical ex-
the total variation PDE based method reported in [5] (cReriments on both 3D scalar-valued images and 3D tensor-
Fig. [G). This PDE model is essentially a generalization omlued images. The numerical studies indicates that the SA-
the well-known Rudin Osher Fatemi (ROF) model and thHeCT framework can successfully be applied as an alternative
Blomgren Chan model [3], [22]. The solution is here th&ethod for denoising in both of the scalar-valued setting and
minimizer u of an energy functional on the form the tensor-valued setting.
We have demonstrated that a substantial improvement of
E(u) = R(u) + AF(u, f), (16) results can be achieved by employing the genuine 3D denois-
where R(u) is a regularization functional which measures thg algorithm, as opposed to 2D SA-DCT denoising applied
smoothness ofi, and F(u, f) is a fidelity functional which slice-by-slice.
measures the distance from the noisy datand the solution  Additionally, we have shown that our numerical results are
u. The solution is a compromise between a completely smoatbmparable to those obtained with three-dimensional PDE
solution @ = 0) and a solution which is close to the input dathased techniques of the kind reported in [5]. That PDE
(A>0). approach represents a class of total variation denoising al-
We calculated the error in the tensor in the same way gerithms that has up to now been considered state-of-the-
in the previous example. Using this measurement we fouad. The fact that the 3D SA-DCT approach, representing a
the global error of the noisy image (4 averages comparedrtathematically simpler idea, can provide results which are of
18 averages) to b86.61. Denoising with the 3D SA-DCT same quality is remarkable. Moreover, an important advantage
algorithm was able to reduce the error 7@.07. The PDE of the SA-DCT is that the method is local in nature. Thus, it is
denoising algorithm produced a solution with a global erraasy to parallelize the algorithm and speed up the calculations.
of 76.19. This is a topic for further studies.



Fig. 6. Color-coded FA plot of a slice from the DTI dataset recorded in a healthy volutheger left panel high quality scan using 18 averagéspper
right panel the 4 averaged dataset that was input to the 3D SA-DCT denoising algotithwer left panel the output of the SA-DCT algorithm.ower
right panel a comparison image calculated using the PDE technique described in [5].




We also believe it would be beneficial to extend the methgoh
to work directly on the matrix structure instead of its elements,
however this is not a trivial task. The key idea behind the
method is to work on homogeneous areas, and how to extend
this to matrices is not know. Thus we have left this as toplé®]
for further studies.

We are aware of the sparse data being used for evaluatitsi
of our numerical experiments. A natural next step will be to
evaluate the performance on a large number of DTI datasets;
comparing FA values within specific regions of interest, and
also comparing fiber tracking results obtained after PDES]
denoising and after SA-DCT denoising of the tensors.

From our preliminary results, we conclude that SA-DCT
denoising methods are both well-performing and comparalﬁ’ré]
to other methods with respect to computational cost. A parallel
implementation of the methodology might aswell have [&9]
potential in clinical examinations and in biomedical researtilz*&]
where DTI data is recorded.
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