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Abstract— During the last ten years or so, diffusion tensor
imaging has been used in both research and clinical medical
applications. In order to construct the diffusion tensor images,
a large set of direction sensitive MRI acquisitions are required.
These acquisitions in general have a lower signal-to-noise ratio
than conventional MRI acquisitions. In this paper we discuss
computationally effective algorithms for noise removal for DTI
using the framework of 3D shape-adaptive discrete cosine trans-
form.

I. I NTRODUCTION

Diffusion Tensor Magnetic Resonance Imaging (DTI) is an
important magnetic resonance imaging protocol used in both
research and in clinical applications. The DTI modality has
the advantage that highly structured tissue, for example the
nerve fibers in the human brain can be studied non-invasively
[20], [33]. From a series (typically 6-50) of direction sensitive
MR acquisitions a3× 3 diffusion tensor can be estimated for
each voxel of the imaging domain [1], [2], [21], [32]. From
these voxel-wise diffusion tensors a number of interesting
clinical quantities can be estimated and used to investigate
or differentiate between normal and abnormal tissue, e.g. in
Multiple Sclerosis or Schizophrenia research [12], [13], [18].

However, it is a well-known fact that the MRI signal from
the scanner contains measurement noise which degrades the
quality of the images. In the following, we model the MRI
true signalSnoisy as a composition of clean (or “true”) signal
and additive normally distributed noise, i.e.

Snoisy = Sclean+ η where η ∼ N (0, σ2). (1)

Although we cannot in general assume that the noise is
normally distributed with zero mean and varianceσ2, we may
approximate the noise by such a distribution. The signal-to-
noise-ratio (SNR) in DTI is low compared to standard MRI.
This makes it important to construct good models and methods
for noise removal for diffusion tensor data. Due to the huge
amount of data, the methods should ideally be efficient with
regards to computational time.

Several successful methods for denoising of diffusion ten-
sor MRI have been proposed [4], [5], [27]–[29], [31]. A
large class of existing state-of-the-art methods are based on
partial differential equations. The nature of these methods
typically makes them computationally heavy. These methods
are iterative methods, and often many computationally heavy
iterations must be performed before convergence is reached.
This is in particular true when gradient methods are used in
the solution process. In this paper we introduce an alternative
method for regularization of matrix valued images, based on

application of theshape-adaptive discrete cosine transform
(SA-DCT) [8], [10], [11]. This is a direct method, i.e. only
one ”iteration” is needed in the solution process. Moreover, the
method can be parallelized in a straight forward manner, since
the computations for each voxel can be performed without
any knowledge of the computations performed in any of the
other voxels. In section V we make a quantitative and visual
comparison of the method proposed in this paper with a
recently introduced PDE method for regularization of tensor
valued images [5]. Interestingly we observe that the proposed
transform based method gives results which are very similar to
the results from the completely different PDE based method.
Although the SA-DCT methodology may not be superior to
other methods, it is an interesting alternative methodology for
denoising of tensor valued images.

II. BACKGROUND

A. Diffusion Tensor Imaging

Tensor valued data occurs in many branches of science,
see e.g. [30]. In this paper the tensor valued data comes
from diffusion tensor MRI of the human brain. From a set of
K direction sensitive magnetic resonance images{Sk}Kk=1 a
symmetric positive definite tensorD ∈ R3×3 is constructed in
each voxel of the image domain. This matrix yields structural
information of the tissue in each voxel.

The relationship between each direction weighted measure-
ment and the diffusion tensorD is given by the Stejskal-Tanner
equation [25], [26]

Sk = S0e
−bgT

k Dgk , k = 1, . . . ,K, (2)

where b is a positive scalar given by the measuring pulse
sequence, andgk ∈ R3 is one of the predefined selected
directions for which measurementSk is acquired. FromK
direction weighted measurements we obtainK equations that
we use for estimating the six unknowns of the diffusion tensor
D. This can be done for example by a linear least-squares
method, or other more adaptive methods [21]. We note that
since the transformation (2) is non-linear, we do not know
the distribution of the noise in each element of the tensorD.
Hahn et al. [14] have studied how noise propagates through
the estimation process.

In structured tissue such as in the heart-muscle or in the
white matter of the brain, the self-diffusion of water is highly
anisotropic. In gray matter and in cerebrospinal fluid the self-
diffusion of water is almost isotropic. Based on knowledge
of the diffusion tensorD, a model of the myelinated nerve
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fiber pathways in the white matter can be constructed via fiber
tracking algorithms [19], [20], [33], [34].

The quality of the estimated diffusion tensor depends on
several parameters. One particular parameter is the number of
acquisitions or excitations (NEX) performed in each of the dif-
fusion sensitizing directions. A high number of acquisitions in
each direction gives a tensor estimate of good quality, provided
the patient does not move during the acquisitions, while a
small number of acquisitions gives a shorter examination time
for each patient. Therefore we have a compromise between
efficiency of the acquisitions and quality of the resulting
images. In this paper we investigate the possibility of post
processing the data from a small number of acquisitions, and
still being able to construct tensor estimates of high quality.
Thus, a practical research goal is to decrease the scanner time
required for each patient.

B. Shape-Adaptive Discrete Cosine Transform

The 2D discrete cosine transform (DCT) is extensively used
in image science. In its original formulation it transforms
a quadratic region in the spatial domain into the frequency
domain. Being a harmonic transform the DCT has a compact-
ification property, i.e. good approximations of the image can
be constructed by employing only a few of the coefficients in
the frequency domain [23], [24]. However, when the image
domain of the transform contains sharp edges and only a
few of the coefficients in the frequency domain are employed
for the reconstruction to the spatial domain, various artifacts
such as smearing of edges and Gibbs phenomena occur. To
avoid these artifacts the region should be as homogeneous
as possible. This is achieved by replacing the static regions
from the standard DCT by regionsΩx which adapts to the
information in the image around a pointx. We choose these
regions in such a way that the data can be well approximated
by a smooth, slowly varying function. Such a function is well
approximated by few coefficients from the frequency domain.
The regionsΩx should ideally not contain any discontinuities.

In a series of papers, Katkovnik, Foi, Egiazarian, Astola
and others describe shape adaptive DCT (SA-DCT) for de-
noising of 2D gray-scale and color images [9]–[11], [15].
The algorithm can be divided into three different stages:
(i) construction of an adaptive neighborhoodfor each point
in the domain, (ii)transformation and thresholdingof each
neighborhood, and (iii)estimationof the noise-free image. The
adaptive neighborhoods are constructed by local polynomial
approximations (LPA) in combination with the intersection of
confidence intervals (ICI) rule. The transformation of each
neighborhood to the frequency domain is done by a DCT
algorithm, and hard thresholding is applied on the coefficients
in the frequency domain. The inverse DCT algorithm is then
applied. This results in a denoised region. Since each pixel
x has its own regionΩx, and in general these regions may
overlap, we get an over-complete basis. This over-complete
basis is used to construct the final image by weighting the
basis elements in a proper way.

The state-of-the-art results obtained by the SA-DCT meth-
ods in 2D as well as their efficiency makes them attractive for

denoising of 3D scalar valued images as well as 3D matrix
valued images. In this paper we extend the framework of SA-
DCT to both 3D scalar valued and 3D matrix valued images.

III. M ETHODS

A. The shape-adaptive discrete cosine transform

Let Ω ⊂ RN be a closed spatial domain of dimensionN
and I : Ω → R denote the noisy dataset which is discretized
on a uniform grid. In the rest of this paper we restrict the
attention to two-dimensional and three-dimensional datasets,
i.e. N ∈ {2, 3}. We refer to the resulting denoised dataset as
I−. Presently, we treat the standard deviationσ of the noise
of I as an input parameter.

A main ingredient of the SA-DCT method is the adaptive
neighborhoodΩx surrounding each voxelx ∈ Ω. The idea is
that this neighborhood should contain voxels that in some way
are ”similar”, orhomogeneous. A neighboring pointy ∈ Ω can
either have an intensityI(y) which is close to the intensity
I(x), or the intensities can differ substantially. In the case
where I(y) ≈ I(x), we want to include the pointy in the
adaptive neighborhood ofx, i.e. y ∈ Ωx. To decide which
voxels that should belong to the adaptive neighborhood of a
given point, we use local polynomial approximations (LPA)
and the intersection of confidence intervals (ICI) rule [15].

To construct the adaptive neighborhood we consider a set of
directionsθi ∈ RN such that each component ofθi is either
-1, 0 or 1, but never all equal to zero. It follows that there
must be3N − 1 such directions in anN -dimensional dataset.
In 2D [10] there are eight such directions; the four cardinal
and the four intermediate compass directions. In 3D there are
26 unique directions, following a similar pattern.

We span a star shaped skeletonΩ∗x around each pointx in
the image domain by tracing the voxels along straight lines in
the directions ofθi. The lengthdi corresponding to the straight
line in the direction ofθi in the skeleton is determined by the
ICI algorithm. We close the skeleton such that it becomes a
polygonal hull by joining neighboring endpoints of the vertices
in the skeleton by line segments (in 2D) or triangles (in 3D).
We denote the domain inside this closed polygonal hull by
Ωx. For each voxel in the image domain such an adaptive
neighborhood is constructed. The pseudo-code for our SA-
DCT denoising is given in Algorithm 1.

In the following section we explain how we can use the
LPA-ICI method to compute the lengthdi of each branch in
the starΩ∗x.

1) LPA-ICI: To span the regionΩ∗x we calculate the support
of each branch in the star, i.e. number of voxels that should
be included along each direction vectorθi, i = 1, . . . , 3N − 1.
The idea is that the voxels inΩ∗x should have intensity values
which are close to the intensity value of the center voxelx.
Variations in the included data should be due to the noise level
and small local variations, and not due to edges in the image.

To achieve this we filter each direction with LPA kernels
{g(h)}h∈H of varying length (scale)h ∈ H = {h1, . . . , hJ},
where h1 < h2 < · · · < hJ . The generation of these filter
kernels are described in [8]. For each kernelg(h) containing
weightsg

(h)
i , wherei = 1, . . . , h, we have the property that
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Algorithm 1 sadct(I, σ, Γ)
Require: I is an N -dimensional image,σ is the standard

deviation of the noise ofI, Γ is a threshold parameter
1: for all x ∈ I do
2: SetΩx ← lpaicix(I, σ, Γ)
3: Set Ω̂x ← dct(Ωx)
4: Define cutoff frequencyf as in eq. (10)
5: Apply f as specified in eq. (11) givinĝΩ−x
6: SetΩ−x ← dct−1(Ω̂−x )
7: Define weightk ← (|Ω̂−x |+ 1)|Ωx|
8: for all y ∈ Ω−x do
9: SetI−(y)← I−(y) + kΩ−x (y)

10: Set counter K(y)← K(y) + k
11: end for
12: end for
13: for all x ∈ I− do
14: I−(x) ← I−(x) / K(x)
15: end for

the center voxelx has the highest weightg(h)
1 . In addition, the

weights sum to 1 and decrease with the length of the filter.
We can consider this filtering as a convolution of the data

with a filter kernel of varying length. When the kernelg(h) is
applied to the voxels in directionθi we get the filtered value

µ(h) =
h∑

j=1

g
(h)
j I(x + (j − 1)θi). (3)

The standard deviation of the noise inµ(h) is given trough
the relation

σµ(h) = σ‖g(h)‖. (4)

For each direction we then get the confidence intervals

Dh = [µ(h) − Γσµ(h) , µ(h) + Γσµ(h) ], (5)

whereΓ > 0 is a global parameter of the algorithm. A large
Γ results in a large noise tolerance, and more voxels will be
included in the regions, and vice versa.

The ICI rule states that along the direction vectorθi we
should choose the largest distancedi ∈ H where we have
intersection of all the confidence intervals, see Figure 1. More
precisely

di = max
h∈H
{h : (D1 ∩ D2 ∩ · · · ∩ Dh) 6= ∅}. (6)

Having determined the length of each branch in the star
shaped domainΩ∗x, we define the neighborhoodΩx as all
voxels inside the polygonal hull closingΩ∗x with branchesdiθi,
wherei = 1, . . . , 3N−1. By construction, the intensities in this
region should not contain large changes due to edges in the
image. The noise in this region can now easily be removed by
thresholding small coefficients in the frequency domain. We
use the discrete cosine transform for this purpose as described
in section III-A.2.

In the upper left panel of Figure 2 we have visualized an 2D
example of the output of the LPA-ICI algorithm. The arrows
centered around voxelx indicate each of the 8 directions

h1
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q µ(1)D1

a

h2

a


q µ(2)D2

a

h3 = di

a
{q µ(3)D3

a

h4

a{ q µ(4)D4

a

Fig. 1. An example of the LPA-ICI algorithm whereH = {h1, . . . , h4}.
The area between the dashed lines shows the intersection of all previous
confidence intervals. When the intersection is empty (here ath4) the algorithm
is terminated.

θi employed by the algorithm and the length of each arrow
indicates the distancedi. The set of all voxels covered by an
arrow in the figure isΩ∗x and all voxels inside the dashed
polygonal hull spanned by the arrows isΩx.

Note that since we only perform a LPA-ICI estimation on
the voxels that coincide with the skeletonized domainΩ∗x, we
do not have direct control over the intensity values in the set
Ωx\Ω∗x. It has been shown that for scalar images this approach
is a good compromise between efficiency and accuracy [9].

Before the regionΩx is denoised in the frequency domain,
the mean of the region is estimated and subtracted from each
intensity inΩx. This process is referred to asDC separation,
and it has been shown to improve certain pathological issues
associated with the shape-adaptive DCT described in the next
section [16]. After the DCT denoising is complete and the
coefficients has been transformed back to the spatial domain,
the pre-computed mean is added to shift the mean of the
intensities back to the same level as before the DCT. Although
this shift of intensities is not entirely justified from the
approximation standpoint (since the pre-computed mean also
will contain noise), it has been shown to visually provide
superior results with few adverse effects [9].

2) The DCT algorithm: The discrete cosine transform
(DCT) is used extensively in signal and image processing. The
one-dimensional DCT of a signal{z0, . . . , zM−1} of lengthM
is defined as

ẑk = ck

M−1∑
m=0

zm cos
[

π

M

(
m +

1
2

)
k

]
, (7)

for k = 0, . . . ,M−1, wherec0 =
√

1
M andck =

√
2
M , k >

0. Note that this transform can be expressed as a matrix-vector
product

ẑ = Az. (8)

Whenck is defined as above then theA matrix is orthogonal.
This implies that the inverse DCT can be expressed as

z = AT ẑ. (9)

Two and three dimensional DCT are usually achieved by
successively applying the one dimensional DCT along the
coordinate axes (i.e. separability). However, note thatΩx will



4

in general not be rectangular. Sikora [23] has developed an
algorithm for discrete cosine transform on non-rectangular
domains. In this paper we employ this algorithm. However, we
still use the orthogonal transform (7) and not the one originally
presented in [23].

In the following we letΩ0
x denote the quadratic (in 2D)

or cubic (in 3D) null-extension ofΩx. Null-extension in this
context means a padding of the region with a particular value,
“null”. This value will only be used as a “place-holder” and not
in any direct calculations. Accordingly, it is never considered
a coefficient in the discussion below. The purpose of the null-
extension is to extend the size of the region into a more
manageable form, as later described.

Note that when examiningΩx along the coordinate axes,
it may be non-contiguous. One approach to alleviate this
problem could be by zero-padding the region instead. But this
causes problems when applying the traditional DCT algorithm
as many components of the DCT domain will be needed
to represent these high jumps in intensities introduced by
zero-padding. Sikora’s approach avoids this problem by first
shifting all non-null values ofΩ0

x along the first coordinate axis
so that they become consecutive inΩ0

x. A one-dimensional
DCT, where the length of the signalM is equal to the number
of non-null values, is then applied to the shifted data. The
same procedure is then applied to each dimension in turn, by
first shifting the data and then applying the 1D DCT. When
applying the inverse DCT we need to invert these shifts, so a
record of the rearrangements must be maintained.

In Figure 2 we display a 2D example of how the null-
padded voxels are shifted to produce consecutive values. The
upper right panel shows the null-padded region, where black is
used to indicate voxel-intensities (and later DCT coefficients)
and white is used to show null-values. The lower left panel
shows the intensities shifted in thex direction towards the
origin in the lower left corner. A one-dimentional DCT is then
applied to the non-null elements of each row containing non-
null values; first to row 2 containingM = 1 intensities, then to
row 3 containingM = 4 consecutive intensities, and so forth.
The lower right panel shows the results after the row-wise
DCT, shifted along they axis. Again a one-dimensional DCT
is applied, this time to each non-null element of each column.
When the data is 3D this procedure has to be repeated again
in the z-direction. The final configuration is a set of shifted
DCT coefficients in the origin corner of the cube.

3) Thresholding in the DCT domain:Let Ω̂x denote the do-
main transformed fromΩx using the DCT algorithm described
in the previous section and let̂z denote a given coefficient in
Ω̂x. In addition, let|Ω̂x| denote the number of coefficients in
the neighborhood̂Ωx. The cutoff thresholdf is given as [15]

f = σ

√
2 log(|Ω̂x|) + 1, (10)

and the hard thresholded coefficientsẑ− are given as

ẑ− =

{
ẑ, if |ẑ| ≥ f

0, if |ẑ| < f
(11)

for all ẑ ∈ Ω̂x.
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Fig. 2. Illustration of how coefficients are collected in one corner by Sikora’s
algorithm (see text for description).

The thresholded region is then transformed and shifted back
into the spatial domain by the inverse DCT (as outlined in
section III-A.2) givingΩ−x in the spatial domain.

4) Estimation from over-complete basis:Notice that since
we calculate a regionΩx for every voxel in the image we have
extensive region-overlap, i.e. we have an over-complete basis.
To reconstruct an image from this information, we weight
the data together. We assign a weight to every region and
use the information in overlapping regions to estimate the
denoised image. It is a standard approach to use weights that
are inversely proportional to the mean variance of the region.
However, for adaptive regions this leads to over-smoothing
[9]. To compensate for this we can divide the weights by the
square of the size of the region.

The mean variance of the regionΩ−x is given by

σ2
Ω−x

= σ2 1 + |Ω̂−x |
|Ω̂x|

, (12)

where|Ω̂−x | is the number of non-zero coefficients in̂Ω−x . This
gives the following weights for the regions

wx =
1

(1 + |Ω̂−x |)|Ω̂x|
. (13)

The regions can now be weighted together giving the final
recovered estimateI− : Ω→ R using the relation

I−(p) =
∑

x wxΩ−x (p)∑
x wx

, (14)

for all p ∈ Ω and where the sum is taken over all voxelsx
such thatΩ−x containsp.

IV. GENERALIZATION TO DTI

In the previous section we extended the SA-DCT methods
from 2D to 3D images. This code can be used directly for
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denoising of 3D MRI images. In this section we will show how
the code also can be applied for matrix valued DTI images.

In previous work, two of the authors have investigated
total variation (TV) regularization of tensor valued data [5],
where the estimated tensor is regularized. In order to ensure
positive definiteness of the regularized tensor, it is represented
implicitly by Cholesky factorization asD = LLT , whereL
is a lower triangular matrix. In the present work, we have
adopted this approach when regularizing tensor valued data by
SA-DCT methods. Thus we apply the 3D algorithm to each
of the elements ofL.

We are aware that there are other ways to apply the 3D code
on matrix valued DTI images, e.g. we could denoised directly
on the Si images. However, the advantage of the presented
method is that we are able to guarantee positive eigenvalues.
In addition we have conducted numerical tests that indicates
that the performance is similar for both methods.

V. EXPERIMENTAL RESULTS

In this section we show qualitative numerical results
achieved by the method proposed in this paper. We process
both synthetically produced images and real diffusion tensor
images of a healthy human volunteer.

3D scalar-valued data

We have in this paper generalized the SA-DCT methods
from 2D to 3D images. In the first example we want to show
the difference between the 2D SA-DCT algorithm applied
slice by slice in a 3D dataset, referred to asquasi-3D, and
application of our genuine 3D algorithm. We use 3D data from
the BrainWeb , a database of freely available semi-realistic
simulated MR images [6]. The true dataset have a range from 0
to 1 and a mean of 0.26. The added noise is normal distributed
with zero mean and a variance of0.07.

In Figure 3 we show a coronal slice of the image comparing
the performance of the quasi-3D SA-DCT algorithm and the
genuine 3D version. Line artifacts between neighboring slices
can be observed, since the 2D algorithm ignores information in
the z-direction. An additional problem with the 2D approach,
dealing with isotropic voxels, is determining which axis to
slice across. We have arbitrarily chosen thez-direction, but
a choice ofx- or y- would in this example yield different
suboptimal results. As we observe from Figure 3 the result
from the full 3D algorithm proposed in this paper yields results
in which the noise reduction is performed in a consistent
manner across all three dimensions. In Figure 4 we show a
zoom-in of a small portion of the result from Figure 3.

We define the error as the Euclidean 2-norm of the differ-
ence between the noise-free image and the denoised image.
The error between the noisy image and the noise-free image
was140.13. The image denoised using the quasi-3D algorithm
gave47.60, and using the full 3D algorithm reduced the error
to 41.92.

3D tensor-valued synthetic data

The main motivation behind this paper is denoising of tensor
valued images, in particular diffusion tensor MR images. First

we denoise a synthetic DTI dataset where the object is a
simulated torus. The DTI torus has been generated using
the softwareteem , written by Gordon Kindlmann [17]. For
visualization of the color-coded fractional anisotropy (FA)
images, derived from the estimated tensor images, we have
usedDtiStudio developed by Susumu Mori and coworkers
[7].

Our DTI phantom consists of a doughnut-shaped object with
cigar-shaped diffusion in the direction of the main circumfer-
ence. The baseline imageS0 is constant equal to1 and the six
direction sensitive measurementsS1, . . . , S6 have the range0
to 0.80. We added normal distributed noise with zero mean and
a variance of0.01 to S0 and variance of0.04 to S1, . . . , S6.
The six gradient directionsg1, . . . , g6 used are given by the
columns of the matrix

1√
2

1 −1 0 0 1 −1
0 0 1 1 1 1
1 1 1 −1 0 0


The diffusion tensors computed from the clean DTI data is

used as a reference and the denoised tensors are compared
against this ground truth. We define the error as the sum of
squared element-wise tensor differences√√√√∑

p∈Ω

3∑
i=1

3∑
j=1

(
Dtrue

ij (p)−Ddenoised
ij (p)

)2
, (15)

whereDij(p) denotes the tensor element in position(i, j) at
voxel p. The global error in the noisy data was found to be
95.86.

When first computing the diffusion tensors from the noisy
DTI data and then apply the 3D SA-DCT algorithm to each
of the six elements of the voxel-wise lower triangularL
decomposition of the tensor, the global error was18.03. The
results of this denoising procedure are shown in Figure 5.

3D tensor-valued real brain data

Finally, we tested SA-DCT denoising on real diffusion
tensor images from a healthy human brain. The human subject
data were acquired using a 3.0 T scanner (Magnetom Trio,
Siemens Medical Solutions, Erlangen, Germany) with a 8-
element head coil array and a gradient subsystem with the
maximum gradient strength of 40 mT·m−1 and maximum
slew rate of 200 mT·m−1·ms−1. The DTI data were based on
spin-echo single shot EPI acquired utilizing generalized auto
calibrating partially parallel acquisitions (GRAPPA) technique
with acceleration factor of 2, and 64 reference lines. The DTI
acquisition consisted of one baseline EPI,S0, and six diffusion
weighted imagesS1, . . . , S6 (b-factor of 1000 s·mm−2) along
the same gradient directions as in the previous example. Each
acquisition had the following parameters: TE / TR / averages
was 91 ms / 10000 ms / 2, FOV was 256 mm×256 mm, slice
thickness / gap was 2 mm / 0 mm, acquisition matrix was
192×192 pixels and partial Fourier encoding was 75%.

Since we are working with real data we do not have access
to an exact solution of the denoising problem. Instead we
used a higher quality reference dataset for comparison. This
dataset was obtained by registering and averaging18 such
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Fig. 3. The difference between application of the 2D SA-DCT along coronal slices of a 3D image, and application of the genuine 3D SA-DCT algorithm.
Upper left panel: the original true image.Upper right panel: the noisy image (zero mean,σ2 = 0.07). Lower right panel: result after application of the
quasi-3D algorithm along thez-direction.Lower left panel: result after application of the full 3D algorithm proposed in this paper. See also detail in Figure 4.

Fig. 4. Zoomed-in detail from Figure 3.Left panel: result after application of the genuine 3D algorithm.Right panel: result after application of the quasi-3D
algorithm. Notice the slightly improved distinction between white matter, gray matter, and CSF, when the genuine 3D algorithm is applied.
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Fig. 5. Results from application of the proposed 3D SA-DCT algorithm to a synthetically produced diffusion tensor dataset where the object is a torus.
Upper left panel: the true (noise-free) data.Upper right panel: the noisy data.Lower left panel: the denoised data.Lower right panel: 3D view of the torus.
All figures are color-coded FA plots derived from the tensor.

acquisitions. The noisy input to the denoising algorithm was
a dataset with4 averaged acquisitions consuming about 20%
of the acquisition time, compared to the higher-quality one.

For better evaluation of our denoising algorithm, we have
compared our 3D SA-DCT results with those obtained using
the total variation PDE based method reported in [5] (cf.
Fig. 6). This PDE model is essentially a generalization of
the well-known Rudin Osher Fatemi (ROF) model and the
Blomgren Chan model [3], [22]. The solution is here the
minimizer u of an energy functional on the form

E(u) = R(u) + λF (u, f), (16)

whereR(u) is a regularization functional which measures the
smoothness ofu, and F (u, f) is a fidelity functional which
measures the distance from the noisy dataf and the solution
u. The solution is a compromise between a completely smooth
solution (λ = 0) and a solution which is close to the input data
(λ� 0).

We calculated the error in the tensor in the same way as
in the previous example. Using this measurement we found
the global error of the noisy image (4 averages compared to
18 averages) to be96.61. Denoising with the 3D SA-DCT
algorithm was able to reduce the error to77.07. The PDE
denoising algorithm produced a solution with a global error
of 76.19.

VI. CONCLUSIONS

In this paper we have generalized the SA-DCT methods
from 2D scalar-valued images via 3D scalar-valued images
to 3D tensor-valued images. We have shown numerical ex-
periments on both 3D scalar-valued images and 3D tensor-
valued images. The numerical studies indicates that the SA-
DCT framework can successfully be applied as an alternative
method for denoising in both of the scalar-valued setting and
the tensor-valued setting.

We have demonstrated that a substantial improvement of
results can be achieved by employing the genuine 3D denois-
ing algorithm, as opposed to 2D SA-DCT denoising applied
slice-by-slice.

Additionally, we have shown that our numerical results are
comparable to those obtained with three-dimensional PDE
based techniques of the kind reported in [5]. That PDE
approach represents a class of total variation denoising al-
gorithms that has up to now been considered state-of-the-
art. The fact that the 3D SA-DCT approach, representing a
mathematically simpler idea, can provide results which are of
same quality is remarkable. Moreover, an important advantage
of the SA-DCT is that the method is local in nature. Thus, it is
easy to parallelize the algorithm and speed up the calculations.
This is a topic for further studies.
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Fig. 6. Color-coded FA plot of a slice from the DTI dataset recorded in a healthy volunteer.Upper left panel: high quality scan using 18 averages.Upper
right panel: the 4 averaged dataset that was input to the 3D SA-DCT denoising algorithm.Lower left panel: the output of the SA-DCT algorithm.Lower
right panel: a comparison image calculated using the PDE technique described in [5].
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We also believe it would be beneficial to extend the method
to work directly on the matrix structure instead of its elements,
however this is not a trivial task. The key idea behind the
method is to work on homogeneous areas, and how to extend
this to matrices is not know. Thus we have left this as topic
for further studies.

We are aware of the sparse data being used for evaluation
of our numerical experiments. A natural next step will be to
evaluate the performance on a large number of DTI datasets,
comparing FA values within specific regions of interest, and
also comparing fiber tracking results obtained after PDE-
denoising and after SA-DCT denoising of the tensors.

From our preliminary results, we conclude that SA-DCT
denoising methods are both well-performing and comparable
to other methods with respect to computational cost. A parallel
implementation of the methodology might aswell have a
potential in clinical examinations and in biomedical research
where DTI data is recorded.
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