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where

fµ(x) =
1

2
xT Hx + gT x +

1

2
bT b− µc(x)

∇fµ(x) = Hx + g − µ∇c(x)

∇2fµ(x) = H − µ∇2c(x)

and

c(x) =
m

∑

i=1

log(di −
n

∑

j=1

Cijxj)

∇c(x) = −CT diag(d− Cx)−1e

∇2c(x) = −CT diag(d− Cx)−2C

yielding a quadratic objective function in the unknown h, for a given x. A solution to
problem (3) can then by equation (4) be approximated by solving

min
h

qµ(x + h) (5)

s.t. ‖x + h‖ ≤ ∆

when h is small. Expanding the terms from equation (4) we get

qµ(x + h) = fµ(x) +∇fµ(x)T h +
1

2
hT∇2fµ(x)h

=
1

2
xT Hx + gT x +

1

2
bT b− µc(x)

+ (Hx + g − µ∇c(x))T h +
1

2
hT (H − µ∇2c(x))h

Now consider the function

pµ(x+h) =
1

2
(x+h)T (H−µ∇2c(x))(x+h)+(µ∇2c(x)x−µ∇c(x)+g)T (x+h)

and observe that
pµ(x + h) = qµ(x + h) + pµ(x)− fµ(x)

Since we keep x fixed and minimize in terms of h, the pµ(x)−fµ(x) term is a constant
which can be ignored. We can therefore use pµ instead of qµ when solving problem
(5). We now set z = x + h and this gives a final TRS problem which approximates a
solution to problem (1)

min
z

1

2
zT (H − µ∇2c(x))z + (µ∇2c(x)x− µ∇c(x) + g)T z (6)

s.t. ‖z‖ ≤ ∆

Finally, it can be shown that the following first order KKT conditions is necessary and
sufficient for a feasible point z and scalar Lagrange multiplier λ to be a solution to
problem (6)

(H − µ∇2c(x) + λI)z = −µ∇2c(x)x + µ∇c(x)− g (7)
H − µ∇2c(x) + λI � 0

λ(‖z‖2 −∆2) = 0

λ ≥ 0
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Abstract
In this work we present a new algorithm for solving the augmented trust-region

subproblem with a set of additional linear inequality constraints. The method can
be considered a generalization of previous published methods [10]. We discuss the
additional types of problems our formulation can solve and reproduce regularized
large-scale inverse-problem results from image processing in our general frame-
work.
Keywords: constrained optimization; regularization; image processing

1 Introduction
The trust-region subproblem (TRS), find a point that minimizes a quadratic function
subject to remaining inside an ellipsoidal region, is an important problem in optimiza-
tion and linear algebra. Frequently an application motivated TRS will require that the
solution satisfy an additional collection of linear constraints. In this case the problem
can be written as

min
x

1

2
‖Ax− b‖2

s.t. Cx ≤ d

‖Sx‖ ≤ ∆ (1)

where A ∈ R
m̂×n, C ∈ R

m×n, S ∈ R
n×n, x ∈ R

n, d ∈ R
m, b ∈ R

m̂ and ∆ is a
positive scalar. We let ‖ · ‖ denote the Euclidean norm. The matrix S is usually se-
lected to scale the problem appropriately and therefore is frequently a diagonal matrix.
For simplicity we will assume that a linear transformation has been employed to the
variables x so that the matrix S is the identity matrix without loss of generality (i.e.
S = I).

Problems on the form of equation (1) arise in many scientific and engineering fields,
such as regularization of certain ill-posed problems. Among such applications, the
regularization of large-scale ill-posed inverse problems in image processing will be
the topic of interest in this paper. Linear discrete ill-posed problems are numerically
under-determined because of the clustering of the singular values of A at the origin.
Therefore numerical methods that impose known properties of the true solution on the
computed approximate solution typically produce better approximations than those that
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do not. In image processing such known properties are often the component-wise non-
negativity of the solution. Large linear discrete ill-posed problems with a non-negative
solution arise for instance in image restoration where the entries of x corresponds to
pixel values, which are non-negative.

In literature different techniques for solving the TRS with non-negativity con-
straints has been proposed. The methods proposed in [2] are based on truncated
singular-value decomposition regularization. The approach can be used on large-scale
regularization problems by computing only a few singular values, although determining
exactly how many is in general difficult. The authors report results for small problems
only. The methods in [7] are iterative methods for linear systems that impose a non-
negativity constraint at each step. Regularization is achieved by early termination of the
iteration. In practice it is difficult to determine good termination criteria for stopping
the iteration and the method requires preconditioners to obtain competitive results. Fi-
nally, [3] propose enforcing the non-negativity constraint by rewriting the variables of
the regularization problem as x = ez , and then solve the resulting problem in terms of
the new variable z. The resulting problem is then solved with different regularization
formulations using a Newton-based iterative algorithm. The results are promising but
the authors point out that effective preconditioners would further improve the results.
Additionally it is not clear how the method can be generalized to incorporate other
types of constraints.

In terms of equation (1) a non-negativity constraint can be modeled by letting
C = −I and d = 0. Indeed, this is precisely the formulation that Rojas and Stei-
haug solves [10]. By approximating the Lagrangian relaxation with a second order
Taylor polynomial, the non-negatively constrained TRS problem can be approximated
by a different TRS on standard form [10, 4, 6, 1]. Solving this large-scale ill-posed
TRS can then be attempted using trust-region based techniques.

Motivated by this recent and successful work on the solution of the TRS with non-
negativity constraint, we will in this work solve the more general problem (1) where
C and d can be an arbitrary matrix and vector respectively, using similar techniques.
In image processing this allows us to impose even more a priori knowledge about the
properties of the true solution on the regularized solution, either in the whole image or
in parts of it:
• We can impose both upper and lower bounds on the solution.

• We can impose constraints on the mean of the whole or in certain smaller regions
of the image, possibly compared to other regions in the same image or a scalar
quantity estimated from other sources.

• We can impose limitations on certain measures of deviations from the mean in
regions.

• We can impose constraints on the change in intensity (i.e. the gradient) from one
pixel or region in the image to the next in parts or in the whole solution image.

By enforcing such constraints we hope that we will be able to compute a solution which
is closer to the true undegraded image.

2 The method
We observe that the linearly constrained TRS in equation (1) always has a solution
and that this solution is unique when A has full rank. We will now derive optimality
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conditions that a solution to this problem must satisfy. The Lagrangian functional
associated with the problem is

L(x, λ, y) =
1

2
xT AT Ax− (AT b)T x +

1

2
bT b

−
λ

2
(∆2 − ‖x‖2)− yT (d− Cx)

where λ ∈ R and y ∈ R
m are multipliers. The gradient of this functional with respect

to x is
∇xL(x, λ, y) = AT Ax−AT b + λIx + CT y

Suppose that x is a local solution to problem (1). Then the first order necessary Karush-
Kuhn-Tucker (KKT) conditions [8] states that here exists multipliers λ and y such that

(AT A + λI)x = AT b− CT y (2a)
λ(∆2 − ‖x‖2) = 0 (2b)

yT (d− Cx) = 0 (2c)
λ ≥ 0, y ≥ 0

Observe that when AT A is positive definite then the objective function in problem (1)
is strictly convex and the KKT conditions are both necessary and sufficient. We will
later use the KKT expressions to find initial values for the algorithm and to update
the iterates. In order to solve our problem (1) we follow Rojas and Steihaug [10] and
simplify by relaxing the Cx ≤ d constraint and introduce a logarithmic penalty term
to the objective function which penalizes when d − Cx approaches zero. This yields
the modified problem

min
x

1

2
‖Ax− b‖2 − µ

m
∑

i=1

log(di −

n
∑

j=1

Cijxj) (3)

s.t. ‖x‖ ≤ ∆

This relaxation transforms our original problem into an interior point barrier problem
implying Cx < d in which the µ parameter controls the penalty imposed by approach-
ing the borders Cx = d of the feasible region. The central path of this problem is
defined as the set of minimizers x(µ) for different choices of the penalty parameter
µ. A standard result from the theory of barrier algorithms guarantees that the unique
global minimizer x∗ of problem (1) is the limit of the central path [8] , i.e.

x∗ = lim
µ↘0

x(µ)

Unfortunately, exact minimization of equation (3) cannot in general be completed in
finite time, but it is well known [4] that it is not necessary to solve the minimization
exactly in order to guarantee convergence to x∗. We will in the following therefore
only approximate a solution to the barrier problem as we for each iteration decrease
µ > 0.

So as to simplify our notation and for clarity of presentation we now define H =
AT A and g = −AT b. As in [10, 4, 1, 6] we then approximate the objective function
of the barrier problem with a second-order Taylor-polynomial

qµ(x + h) = fµ(x) +∇fµ(x)T h +
1

2
hT∇2fµ(x)h (4)
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Our method consists of solving a sequence of problems on the form of equation (6)
for different values of x and µ, while driving the barrier parameter µ towards zero and
ensuring that the linear constraint Cx ≤ d are satisfied.

3 The algorithm
Based on the previous section, we propose algorithm lincontrs for solving problem
(1) with H = AT A and g = −AT b. This top-level algorithm is similar to the one

Algorithm 1 lincontrs( H, g,∆, C, d, x0)
Require: H symmetric positive semidefinite , 0 ≤ ‖x0‖2 < ∆ and Cx0 < d

1: Choose initial µ0 ∈ R
+ and set k = 0

2: while not convergence do
3: Solve equation (6) with respect to the unknown zk

4: Set hk ← xk − zk

5: Calculate β∗
k such that C(xk + β∗

khk) < d

6: Set xk+1 ← xk + β∗
khk

7: Calculate µk+1 < µk

8: Set k ← k + 1
9: end while

presented by Rojas and Steihaug [10] and later Kearsley [4], Morigi et al [6], and
Calvetti et al [1] although the details of how we implement some of the steps differ
significantly. We will point out these differences as we describe the algorithm below.

3.1 Choosing initial values of the multipliers
An initial estimate of the solution vector x0 ∈ R

n that lies strictly on the interior of
the feasible region (i.e. that satisfies Cx0 < d and ‖x0‖ < ∆) must be supplied to the
algorithm by the user. From equation (2b) we then see that λ = 0, so equation (2a)
gives

−CT y = Hx0 + g

which can be solved by minimizing the linear least-squares problem

min
y
‖CT y + (Hx0 + g)‖

For a given y, the scalar µ0 required in line 1 of the algorithm can be found as will be
discussed in a later section. This enables us to calculate the gradient and the Hessian
needed to solve the trust-region subproblem in line 3.

In non-negative regularization [10, 1, 6] the problem (1) is often first solved as a
standard TRS, disregarding the linear non-negativity constraint. This allows an esti-
mate of the dual variable λTRS to be calculated. From λTRS an estimate of y is then
computed using the same set of equations as here. The solution xTRS to the TRS prob-
lem is then projected into the feasible region before the algorithm proceeds. Since
the linear constraint only impose non-negativity such a projection is easy and is im-
plemented by replacing negative intensities with small positive values. In our case of
general linear inequality constraints this projection may be non-trivial. Furthermore, if
the TRS solution xTRS lies far from the linearly constrained feasible region then λTRS
may be a poor estimate of the dual of the projected TRS solution.
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3.2 Solve the TRS
There exists efficient algorithms for solving the large-scale trust-region subproblem in
line 3 of the algorithm

min
x

1

2
xT Qx + rT x

s.t. ‖x‖ ≤ ∆

where Q is a symmetric positive semidefinite n×n matrix and r is a n-element vector.
One such algorithm presented by Rojas et al in [9] is implemented in the Matlab pack-
age lstrs. This package solves the TRS as an parameterized eigenvalue problem of
the form

[

Q r

rT θ

] [

x

1

]

= −λ

[

x

1

]

(8)

where
[

x 1
]T is the eigenvector corresponding to the eigenvalue −λ. This package

was used for solving the TRS problem in both [10] and [4].
The basic idea of the eigenvalue based approach is to solve this eigenvalue-problem

for various choices of θ until a solution is obtained which can be normalized to
[

x 1
]T

such that x satisfies the KKT conditions for optimality of the TRS. This procedure does
not rely on matrix factorizations and are thus “matrix free”, which makes it highly
suitable for large-scale problems.

Another advantage with this type of method is the fact that they provide a simple
way to detect and handle the hard case which usually occur in regularization; in this
framework the hard case manifests itself as an eigenvector which has zero in the last
component. Obviously this vector cannot be normalized to be on the form needed,
but in such cases it can be shown that there exists an eigenvalue slightly larger than
λ1 which has an eigenvector with non-zero last component. This can then be used to
construct a quasi-optimal solution x̂ instead [9].

Other approaches for solving the TRS are of course also possible. Landi [5] use a
truncated conjugate gradient based method proposed by Steihaug [8]. Morigi [6] use
a variant of the LSQR algorithm proposed by Björck [11] which is an implementation
of the conjugate gradient method applied to the normal equations. Finally Calvetti [1]
develop their own algorithm that solves the TRS with equality constraints by searching
for the roots of the function ‖x(τ)‖ −∆ = 0, where x(τ) is an approximation to the
Thikonov regularized solution and τ is a regularization parameter. It should be noted
however that all of these methods may have problems associated with the hard case
which usually occur in regularization problems.

3.3 The line search
Notice that the approximate solution z to the TRS problem computed in line 3 of the
algorithm may not be feasible given the linear constraints, i.e. Czk > d. One approach
used by Rojas and Steihaug [10] is then to estimate an update hk = zk − xk and then
take a step of length β away from the feasible point xk in direction hk. The scalar step
length β must then be chosen so that the next iterate xk+1 in line 5 of the algorithm is
feasible given the linear constraints. We then get

xk+1 = βkzk + (1− βk)xk

= xk + βkhk
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where βk ≥ 0 is chosen so that Cxk+1 < d. Some recent publications [4, 5] has
suggested using an Armijo-type line search in order to estimate the step-length. We
will follow [10, 6] and choose β∗

k as large as possible given the constraints i.e. we
define

β∗
k = max βk

s.t. βkChk ≤ d− Cxk

If any (d− Cxk)j > (Chk)j then the solution to this problem is

β∗
k = min

{

(d− Cxk)i

|(Ch)i|

}

(9)

where i ∈ {j : (d − Cxk)j > (Chk)j}, otherwise we define β∗
k = 1. We then define

the next iterate as
xk+1 = xk + min{1, 0.995β∗

k}hk (10)

This ensures that xk+1 is close to the TRS solution zk while simultaneously ensuring
that xk+1 is on the interior of the linearly constrained feasible region.

3.4 Updating µ

As pointed out in section 2, in order for the algorithm to converge to a solution to
problem (1) the penalty parameter µ must be iteratively decreased towards zero. We
will now consider formulas for updating µ needed in line 7 of the algorithm. Kearsley
[4] and Morigi [6] use the simple update used in classical barrier algorithms of letting

µk+1 =
µk

M

where M > 1 is a user specified constant. We develop a more elaborate scheme
similar to the one proposed by Rojas and Steihaug [10] in order to improve the rate of
convergence of the algorithm. First note from equation (2a) that

CT y = −(H + λI)x− g

and from equation (7)

−(H + λI)z − g = µ∇2c(x)(x− z)− µ∇c(x)

When (H + λI)x ≈ (H + λI)z then we have

CT y ≈ µ∇2c(x)(x− z)− µ∇c(x)

= µCT diag(d− Cx)−2C(z − x) + µCT diag(d− Cx)−1e

From this we define ŷ as an approximation to the Lagrangian multiplier y so that

ŷ = µdiag(d− Cx)−2C(z − x) + µdiag(d− Cx)−1e (11)

and note that when z = x we have

ŷ = µdiag(d− Cx)−1e (12)
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From the duality gap in equation (2c) and using our last expression for ŷ we have

ŷT (d− Cx) = (d− Cx)T µdiag(d− Cx)−1e

= µeT e

= µm

Therefore we will estimate µ as

µ =
σ

m
ŷT (d− Cx) (13)

where σ is a constant chosen so that µk > µk+1 and ŷ is calculated from equation (11).
It is worth noting here that the approximation ŷ used by Rojas and Steihaug [10],

and later by Calvetti [1], assumes z = x and therefore equation (12) is used for ap-
proximating the dual variables instead of equation (11).

4 Numerical results
In the next sections we will now show the performance of our presented lincontrs
algorithm for two very different test cases from different applications.

4.1 The star cluster
We now consider an example inspired by the Hubble Space Telescope (HST) which
experienced a faulty mirror which blurred the acquired images the first period of oper-
ation. It is possible to solve this problem as a TRS where b is the measured blurry data,
where A represents the blurring operator, and where regularization is achieved through
a constraint on the norm of the solution. However, employing this approach leads to
the undesirable effects of negative intensities in the solution. Since each intensity is a
measurement of the amount of light at that location, negative intensities has no physical
meaning.

In literature this TRS has been solved with an additional non-negativity constraints
in order to avoid undesirable solutions. This approach has produced results which are
closer to the known true solution than other approaches, e.g. truncation of negative
intensities to zero [10]. In terms of equation (1), the non-negativity constraint can be
implemented by letting C = −I and d = 0. Indeed, this is the exact formulation that
Rojas and Steihaug solve in 2002. We will now solve the same problem, using our
generalization of their approach, for comparison.

As mentioned we have access to the true undegraded image x∗ for reference. The
minimum intensity of this undegraded image is on the order of 10−11, the maximum
is 31651.05, with a mean of 6.36. The image consist mainly of black background with
a few bright stars of high intensity. The noisy observation b available to us has been
degraded by a known blurring kernel giving the poorly conditioned A matrix of the
model. The norm of the true solution ∆ = ‖x∗‖2 is also available to us. Finally, the
noisy image has a relative error compared to the undegraded original x∗ of ‖b−x∗‖2

‖x∗‖2

=
0.91073.

Solving this problem as a TRS without any non-negativity constraints we arrive
at a solution with a relative error of 0.16135. We solve this problem using the previ-
ously described LSTRS package (version 1.2) in Matlab (version 7.4). Obtaining this
solution requires 740 matrix-vector multiplication between A (or AT ) and a vector.
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Careful inspection of this solution reveals that near the stars we find some pixels which
have negative intensity in the restoration; the minimum value of the restored image is
−563.16.

Using our algorithm to solve the problem with a non-negativity constraint (i.e. C =
−I and d = 0) we arrive at a solution with a relative error of 0.11640. The minimum
intensity in the reconstruction is on the order of 10−6 and the maximum is 31181.39.
Calculating this solution requires initialization and one iteration of the main loop, using
a grand total of 934 matrix-vector products.

This result is comparable to the one published in [10] in which the published
TRUSTµ algorithm terminates after one main iteration using a grand total of 973
matrix-vector products with a relative error of 0.12358. Our estimated solution is
therefore marginally more accurate, and requires slightly fewer matrix-vector prod-
ucts in this example. We expect that these discrepancies can be explained by different
versions of both LSTRS and Matlab, used in our implementation, compared to theirs.

4.2 The circus tent
In this section we solve the circus tent example which is documented in the Optimiza-
tion toolbox in Matlab, as an example of “large-scale quadratic programming”. The
following introduction is given in the Matlab documentation:

“Imagine building a circus tent to cover a square lot. The tent has five poles that
will be covered with an elastic material. From this structure, we want to find the natural
shape of the tent. This natural shape corresponds to the minimum of a certain energy
function computed from the surface position and squared norm of its gradient.”

Specifically, the energy function that we will minimize is a quadratic function of
900 variables, where each variable represents the distance from the ground level to the
circus tent ceiling on a uniform 30 × 30 grid. The Hessian of this problem is sparse
and has a near diagonal structure. The 5 poles which hold up the elastic ceiling gives
lower bounds around 5 locations.

The quadprod routine in the Matlab Optimization Toolbox is able to solve this
problem quite efficiently. Internally it uses a subspace trust-region method based in the
interior-reflective Newton method. Each iteration involves the approximate solution of
a large linear using the method of preconditioned conjugate gradients (PCG). After 14
such iterations employing 158 CG iterations the Matlab routine calculates a solution to
the problem which has a norm of 5.83098.

When solving the problem with our lincontrsmethod we choose ∆ large enough
to not be an active constraint in the solution since the problem is not ill conditioned and
does not require regularization. This makes it easy to calculate the interior solutions
of the TRS using the CG algorithm. We use the linear inequality constraints to en-
force that each variable is greater than the bounds specified by the circus tent poles
and the ground at level zero. We use the same initial solution x0 = 0.6 as we used in
quadprog. After 15 iterations of our algorithm we arrive at a solution with a norm of
5.83106. This solution is visualized in figure 1. The norm of the difference between our
solution and the quadprog solution is 5.79867 ·10−4. Based on this we conclude that
for this example the performance of our algorithm is comparable to the state-of-the-art
optimization algorithms provided in the Optimization Toolbox in Matlab.
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Figure 1: The circus tent example.

5 Conclusion
We have in this work presented a new algorithm which is a generalization of previously
published works by Rojas and Steihaug [10]. We compare the results of our algorithm
with those obtained using state-of-the-art algorithms from different areas and show that
our algorithm can solve both these problems accurately and efficiently in our general-
ized formulation.
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