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Abstract— During the last ten years or so, diffusion tensor
imaging has been used in both research and clinical medical
applications. In order to construct the diffusion tensor im-
ages, a large set of direction sensitive MRI acquisitions are
required. These acquisitions in general have a lower signal-to-
noise ratio than conventional MRI acquisitions. In this paper we
discuss computationally effective algorithms for noise removal
for DTI using the framework of 3D shape-adaptive discrete
cosine transform. We use local polynomial approximations for
the selection of homogeneous regions in the DTI data. These
regions are transformed to the frequency domain by a modified
discrete cosine transform. In the frequency domain the noise
is removed by thresholding. We perform numerical experiments
on 3D synthetical MRI and DTI data as well as real 3D DTI
brain data from a healthy volunteer. The experiments indicates
good performance compared to current state-of-the-art methods.
The proposed method is well suited for parallelization and could
thus dramatically improve the computation speed of denoising
schemes for large scale 3D MRI and DTI.

I. INTRODUCTION

Diffusion Tensor Magnetic Resonance Imaging (DTI) is an

important magnetic resonance imaging protocol used in both

research and in clinical applications. The DTI modality has

the advantage that highly structured tissue, for example the

nerve fibers in the human brain can be studied non-invasively

[21], [34]. From a series (typically 6-50) of direction sensitive

MR acquisitions a 3× 3 diffusion tensor can be estimated for

each voxel of the imaging domain [1], [2], [22], [33]. From

these voxel-wise diffusion tensors a number of interesting

clinical quantities can be estimated and used to investigate

or differentiate between normal and abnormal tissue, e.g. in

Multiple Sclerosis or Schizophrenia research [12], [13], [19].

However, it is a well-known fact that the MRI signal from

the scanner contains measurement noise which degrades the

quality of the images. In the following, we model the MRI

true signal Snoisy as a composition of clean (or “true”) signal

and additive normally distributed noise, i.e.

Snoisy = Sclean + η where η ∼ N (0, σ2). (1)

Although we cannot in general assume that the noise is

normally distributed with zero mean and variance σ2, we may

approximate the noise by such a distribution. The signal-to-

noise-ratio (SNR) in DTI is low compared to standard MRI.

This makes it important to construct good models and methods

for noise removal for diffusion tensor data. Due to the huge

amount of data, the methods should ideally be efficient with

regards to computational time.

Several successful methods for denoising of diffusion tensor

MRI have been proposed [4], [5], [28]–[30], [32]. A large

class of existing state-of-the-art methods are based on partial

differential equations. The nature of these methods typically

makes them computationally heavy. These methods are itera-

tive methods, and often many computationally heavy iterations

must be performed before convergence is reached. This is in

particular true when gradient methods are used in the solution

process. In this paper we introduce an alternative method for

regularization of matrix valued images, based on application

of the shape-adaptive discrete cosine transform (SA-DCT)

[8], [10], [11], [15]. This is a direct method, i.e. only one

”iteration” is needed in the solution process. Moreover, the

method can be parallelized in a straight forward manner, since

the computations for each voxel can be performed without

any knowledge of the computations performed in any of the

other voxels. In section V we make a quantitative and visual

comparison of the method proposed in this paper with a

recently introduced PDE method for regularization of tensor

valued images [5]. Interestingly we observe that the proposed

transform based method gives results which are very similar to

the results from the completely different PDE based method.

Although the SA-DCT methodology may not be superior to

other methods, it is an interesting alternative methodology for

denoising of tensor valued images.

II. BACKGROUND

A. Diffusion Tensor Imaging

Tensor valued data occurs in many branches of science,

see e.g. [31]. In this paper the tensor valued data comes

from diffusion tensor MRI of the human brain. From a set of

K direction sensitive magnetic resonance images {Sk}K
k=1 a

symmetric positive definite tensor D ∈ R
3×3 is constructed in

each voxel of the image domain. This matrix yields structural

information of the tissue in each voxel.

The relationship between each direction weighted measure-

ment and the diffusion tensor D is given by the Stejskal-Tanner

equation [26], [27]

Sk = S0e
−bgT

k Dgk , k = 1, . . . ,K, (2)

where b is a positive scalar given by the measuring pulse

sequence, and gk ∈ R
3 is one of the predefined selected

directions for which measurement Sk is acquired. From K
direction weighted measurements we obtain K equations that

we use for estimating the six unknowns of the diffusion tensor

D. This can be done for example by a linear least-squares

method, or other more adaptive methods [22]. We note that

since the transformation (2) is non-linear, we do not know

the distribution of the noise in each element of the tensor D.
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Hahn et al. [14] have studied how noise propagates through

the estimation process.

In structured tissue such as in the heart-muscle or in the

white matter of the brain, the self-diffusion of water is highly

anisotropic. In gray matter and in cerebrospinal fluid the self-

diffusion of water is almost isotropic. Based on knowledge

of the diffusion tensor D, a model of the myelinated nerve

fiber pathways in the white matter can be constructed via fiber

tracking algorithms [20], [21], [34], [35].

The quality of the estimated diffusion tensor depends on

several parameters. One particular parameter is the number of

acquisitions or excitations (NEX) performed in each of the dif-

fusion sensitizing directions. A high number of acquisitions in

each direction gives a tensor estimate of good quality, provided

the patient does not move during the acquisitions, while a

small number of acquisitions gives a shorter examination time

for each patient. Therefore we have a compromise between

efficiency of the acquisitions and quality of the resulting

images. In this paper we investigate the possibility of post

processing the data from a small number of acquisitions, and

still being able to construct tensor estimates of high quality.

Thus, a practical research goal is to decrease the scanner time

required for each patient.

B. Shape-Adaptive Discrete Cosine Transform

The 2D discrete cosine transform (DCT) is extensively used

in image science. In its original formulation it transforms

a quadratic region in the spatial domain into the frequency

domain. Being a harmonic transform the DCT has a compact-

ification property, i.e. good approximations of the image can

be constructed by employing only a few of the coefficients in

the frequency domain [24], [25]. However, when the image

domain of the transform contains sharp edges and only a

few of the coefficients in the frequency domain are employed

for the reconstruction to the spatial domain, various artifacts

such as smearing of edges and Gibbs phenomena occur. To

avoid these artifacts the region should be as homogeneous

as possible. This is achieved by replacing the static regions

from the standard DCT by regions Ωx which adapts to the

information in the image around a point x. We choose these

regions in such a way that the data can be well approximated

by a smooth, slowly varying function. Such a function is well

approximated by few coefficients from the frequency domain.

The regions Ωx should ideally not contain any discontinuities.

In a series of papers, Katkovnik, Foi, Egiazarian, Astola

and others describe shape adaptive DCT (SA-DCT) for de-

noising of 2D gray-scale and color images [9]–[11], [16].

The algorithm can be divided into three different stages:

(i) construction of an adaptive neighborhood for each point

in the domain, (ii) transformation and thresholding of each

neighborhood, and (iii) estimation of the noise-free image. The

adaptive neighborhoods are constructed by local polynomial

approximations (LPA) in combination with the intersection of

confidence intervals (ICI) rule. The transformation of each

neighborhood to the frequency domain is done by a DCT

algorithm, and hard thresholding is applied on the coefficients

in the frequency domain. The inverse DCT algorithm is then

applied. This results in a denoised region. Since each pixel

x has its own region Ωx, and in general these regions may

overlap, we get an over-complete basis. This over-complete

basis is used to construct the final image by weighting the

basis elements in a proper way.

The state-of-the-art results obtained by the SA-DCT meth-

ods in 2D as well as their efficiency makes them attractive for

denoising of 3D scalar valued images as well as 3D matrix

valued images. In this paper we extend the framework of SA-

DCT to both 3D scalar valued and 3D matrix valued images.

III. METHODS

A. The shape-adaptive discrete cosine transform

Let Ω ⊂ R
N be a closed spatial domain of dimension N

and I : Ω → R denote the noisy dataset which is discretized

on a uniform grid. In the rest of this paper we restrict the

attention to two-dimensional and three-dimensional datasets,

i.e. N ∈ {2, 3}. We refer to the resulting denoised dataset as

I−. Presently, we treat the standard deviation σ of the noise

of I as an input parameter.

A main ingredient of the SA-DCT method is the adaptive

neighborhood Ωx surrounding each voxel x ∈ Ω. The idea is

that this neighborhood should contain voxels that in some way

are ”similar”, or homogeneous. A neighboring point y ∈ Ω can

either have an intensity I(y) which is close to the intensity

I(x), or the intensities can differ substantially. In the case

where I(y) ≈ I(x), we want to include the point y in the

adaptive neighborhood of x, i.e. y ∈ Ωx. To decide which

voxels that should belong to the adaptive neighborhood of a

given point, we use local polynomial approximations (LPA)

and the intersection of confidence intervals (ICI) rule [16].

To construct the adaptive neighborhood we consider a set of

directions θi ∈ R
N such that each component of θi is either

-1, 0 or 1, but never all equal to zero. It follows that there

must be 3N − 1 such directions in an N -dimensional dataset.

In 2D [10] there are eight such directions; the four cardinal

and the four intermediate compass directions. In 3D there are

26 unique directions, following a similar pattern.

We span a star shaped skeleton Ω∗
x around each point x in

the image domain by tracing the voxels along straight lines in

the directions of θi. The length di corresponding to the straight

line in the direction of θi in the skeleton is determined by the

ICI algorithm. We close the skeleton such that it becomes a

polygonal hull by joining neighboring endpoints of the vertices

in the skeleton by line segments (in 2D) or triangles (in 3D).

We denote the domain inside this closed polygonal hull by

Ωx. For each voxel in the image domain such an adaptive

neighborhood is constructed. The pseudo-code for our SA-

DCT denoising is given in Algorithm 1.

In the following section we explain how we can use the

LPA-ICI method to compute the length di of each branch in

the star Ω∗
x.

1) LPA-ICI: To span the region Ω∗
x we calculate the support

of each branch in the star, i.e. number of voxels that should

be included along each direction vector θi, i = 1, . . . , 3N − 1.

The idea is that the voxels in Ω∗
x should have intensity values

which are close to the intensity value of the center voxel x.
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Algorithm 1 sadct(I, σ,Γ)

Require: I is an N -dimensional image, σ is the standard

deviation of the noise of I , Γ is a threshold parameter

1: for all x ∈ I do
2: Set Ωx ← lpaicix(I, σ,Γ)

3: Set Ω̂x ← dct(Ωx)

4: Define cutoff frequency f as in eq. (10)

5: Apply f as specified in eq. (11) giving Ω̂−
x

6: Set Ω−
x ← dct−1(Ω̂−

x )

7: Define weight k ← (|Ω̂−
x | + 1)|Ωx|

8: for all y ∈ Ω−
x do

9: Set I−(y) ← I−(y) + kΩ−
x (y)

10: Set counter K(y) ← K(y) + k
11: end for
12: end for
13: for all x ∈ I− do
14: I−(x) ← I−(x) / K(x)

15: end for

Variations in the included data should be due to the noise level

and small local variations, and not due to edges in the image.

To achieve this we filter each direction with LPA kernels

{g(h)}h∈H of varying length (scale) h ∈ H = {h1, . . . , hJ},

where h1 < h2 < · · · < hJ . The generation of these filter

kernels are described in [8]. For each kernel g(h) containing

weights g
(h)
i , where i = 1, . . . , h, we have the property that

the center voxel x has the highest weight g
(h)
1 . In addition, the

weights sum to 1 and decrease with the length of the filter.

We can consider this filtering as a convolution of the data

with a filter kernel of varying length. When the kernel g(h) is

applied to the voxels in direction θi we get the filtered value

μ(h) =
h∑

j=1

g
(h)
j I(x+ (j − 1)θi). (3)

The standard deviation of the noise in μ(h) is given trough

the relation

σμ(h) = σ‖g(h)‖. (4)

For each direction we then get the confidence intervals

Dh = [μ(h) − Γσμ(h) , μ(h) + Γσμ(h) ], (5)

where Γ > 0 is a global parameter of the algorithm. A large

Γ results in a large noise tolerance, and more voxels will be

included in the regions, and vice versa.

The ICI rule states that along the direction vector θi we

should choose the largest distance di ∈ H where we have

intersection of all the confidence intervals, see Figure 1. More

precisely

di = max
h∈H

{h : (D1 ∩ D2 ∩ · · · ∩ Dh) �= ∅}. (6)

Having determined the length of each branch in the star

shaped domain Ω∗
x, we define the neighborhood Ωx as all

voxels inside the polygonal hull closing Ω∗
x with branches diθi,

where i = 1, . . . , 3N−1. By construction, the intensities in this

region should not contain large changes due to edges in the

h1

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

� μ(1)D1

�

h2

�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

� μ(2)D2

�

h3 = di

�

{
� μ(3)D3

�

h4

�

{
� μ(4)D4

�

Fig. 1. An example of the LPA-ICI algorithm where H = {h1, . . . , h4}.
The area between the dashed lines shows the intersection of all previous
confidence intervals. When the intersection is empty (here at h4) the algorithm
is terminated.

image. The noise in this region can now easily be removed by

thresholding small coefficients in the frequency domain. We

use the discrete cosine transform for this purpose as described

in section III-A.2.

In the upper left panel of Figure 2 we have visualized an 2D

example of the output of the LPA-ICI algorithm. The arrows

centered around voxel x indicate each of the 8 directions

θi employed by the algorithm and the length of each arrow

indicates the distance di. The set of all voxels covered by an

arrow in the figure is Ω∗
x and all voxels inside the dashed

polygonal hull spanned by the arrows is Ωx.

Note that since we only perform a LPA-ICI estimation on

the voxels that coincide with the skeletonized domain Ω∗
x, we

do not have direct control over the intensity values in the set

Ωx\Ω∗
x. It has been shown that for scalar images this approach

is a good compromise between efficiency and accuracy [9].

Before the region Ωx is denoised in the frequency domain,

the mean of the region is estimated and subtracted from each

intensity in Ωx. This process is referred to as DC separation,

and it has been shown to improve certain pathological issues

associated with the shape-adaptive DCT described in the next

section [17]. After the DCT denoising is complete and the

coefficients has been transformed back to the spatial domain,

the pre-computed mean is added to shift the mean of the

intensities back to the same level as before the DCT. Although

this shift of intensities is not entirely justified from the

approximation standpoint (since the pre-computed mean also

will contain noise), it has been shown to visually provide

superior results with few adverse effects [9].

2) The DCT algorithm: The discrete cosine transform

(DCT) is used extensively in signal and image processing. The

one-dimensional DCT of a signal {z0, . . . , zM−1} of length M
is defined as

ẑk = ck

M−1∑
m=0

zm cos
[
π

M

(
m+

1
2

)
k

]
, (7)

for k = 0, . . . ,M−1, where c0 =
√

1
M

and ck =
√

2
M
, k >

0. Note that this transform can be expressed as a matrix-vector

product

ẑ = Az. (8)



4

When ck is defined as above then the A matrix is orthogonal.

This implies that the inverse DCT can be expressed as

z = AT ẑ. (9)

Two and three dimensional DCT are usually achieved by

successively applying the one dimensional DCT along the

coordinate axes (i.e. separability). However, note that Ωx will

in general not be rectangular. Sikora [24] has developed an

algorithm for discrete cosine transform on non-rectangular

domains. In this paper we employ this algorithm. However, we

still use the orthogonal transform (7) and not the one originally

presented in [24].

In the following we let Ω0
x denote the quadratic (in 2D)

or cubic (in 3D) null-extension of Ωx. Null-extension in this

context means a padding of the region with a particular value,

“null”. This value will only be used as a “place-holder” and not

in any direct calculations. Accordingly, it is never considered

a coefficient in the discussion below. The purpose of the null-

extension is to extend the size of the region into a more

manageable form, as later described.

Note that when examining Ωx along the coordinate axes,

it may be non-contiguous. One approach to alleviate this

problem could be by zero-padding the region instead. But this

causes problems when applying the traditional DCT algorithm

as many components of the DCT domain will be needed

to represent these high jumps in intensities introduced by

zero-padding. Sikora’s approach avoids this problem by first

shifting all non-null values of Ω0
x along the first coordinate axis

so that they become consecutive in Ω0
x. A one-dimensional

DCT, where the length of the signal M is equal to the number

of non-null values, is then applied to the shifted data. The

same procedure is then applied to each dimension in turn, by

first shifting the data and then applying the 1D DCT. When

applying the inverse DCT we need to invert these shifts, so a

record of the rearrangements must be maintained.

In Figure 2 we display a 2D example of how the null-

padded voxels are shifted to produce consecutive values. The

upper right panel shows the null-padded region, where black is

used to indicate voxel-intensities (and later DCT coefficients)

and white is used to show null-values. The lower left panel

shows the intensities shifted in the x direction towards the

origin in the lower left corner. A one-dimentional DCT is then

applied to the non-null elements of each row containing non-

null values; first to row 2 containing M = 1 intensities, then to

row 3 containing M = 4 consecutive intensities, and so forth.

The lower right panel shows the results after the row-wise

DCT, shifted along the y axis. Again a one-dimensional DCT

is applied, this time to each non-null element of each column.

When the data is 3D this procedure has to be repeated again

in the z-direction. The final configuration is a set of shifted

DCT coefficients in the origin corner of the cube.

3) Thresholding in the DCT domain: Let Ω̂x denote the do-

main transformed from Ωx using the DCT algorithm described

in the previous section and let ẑ denote a given coefficient in

Ω̂x. In addition, let |Ω̂x| denote the number of coefficients in

the neighborhood Ω̂x. The cutoff threshold f is given as [16]

f = σ

√
2 log(|Ω̂x|) + 1, (10)

�
��� �
�

�
���

�
�

�
��	
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Fig. 2. Illustration of how coefficients are collected in one corner by Sikora’s
algorithm (see text for description).

and the hard thresholded coefficients ẑ− are given as

ẑ− =

{
ẑ, if |ẑ| ≥ f

0, if |ẑ| < f
(11)

for all ẑ ∈ Ω̂x.

The thresholded region is then transformed and shifted back

into the spatial domain by the inverse DCT (as outlined in

section III-A.2) giving Ω−
x in the spatial domain.

4) Estimation from over-complete basis: Notice that since

we calculate a region Ωx for every voxel in the image we have

extensive region-overlap, i.e. we have an over-complete basis.

To reconstruct an image from this information, we weight

the data together. We assign a weight to every region and

use the information in overlapping regions to estimate the

denoised image. It is a standard approach to use weights that

are inversely proportional to the mean variance of the region.

However, for adaptive regions this leads to over-smoothing

[9]. To compensate for this we can divide the weights by the

square of the size of the region.

The mean variance of the region Ω−
x is given by

σ2
Ω−

x
= σ2 1 + |Ω̂−

x |
|Ω̂x|

, (12)

where |Ω̂−
x | is the number of non-zero coefficients in Ω̂−

x . This

gives the following weights for the regions

wx =
1

(1 + |Ω̂−
x |)|Ω̂x|

. (13)

The regions can now be weighted together giving the final

recovered estimate I− : Ω → R using the relation

I−(p) =
∑

x wxΩ−
x (p)∑

x wx

, (14)

for all p ∈ Ω and where the sum is taken over all voxels x
such that Ω−

x contains p.
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IV. GENERALIZATION TO DTI

In the previous section we extended the SA-DCT methods

from 2D to 3D images. This code can be used directly for

denoising of 3D MRI images. In this section we will show how

the code also can be applied for matrix valued DTI images.

In previous work, two of the authors have investigated

total variation (TV) regularization of tensor valued data [5],

where the estimated tensor is regularized. In order to ensure

positive definiteness of the regularized tensor, it is represented

implicitly by Cholesky factorization as D = LLT , where L
is a lower triangular matrix. In the present work, we have

adopted this approach when regularizing tensor valued data by

SA-DCT methods. Thus we apply the 3D algorithm to each

of the elements of L.

We are aware that there are other ways to apply the 3D code

on matrix valued DTI images, e.g. we could denoised directly

on the Si images. However, the advantage of the presented

method is that we are able to guarantee positive eigenvalues.

In addition we have conducted numerical tests that indicates

that the performance is similar for both methods.

V. EXPERIMENTAL RESULTS

In this section we show qualitative numerical results

achieved by the method proposed in this paper. We process

both synthetically produced images and real diffusion tensor

images of a healthy human volunteer.

3D scalar-valued data
We have in this paper generalized the SA-DCT methods

from 2D to 3D images. In the first example we want to show

the difference between the 2D SA-DCT algorithm applied

slice by slice in a 3D dataset, referred to as quasi-3D, and

application of our genuine 3D algorithm. We use 3D data from

the BrainWeb, a database of freely available semi-realistic

simulated MR images [6]. The true dataset have a range from 0

to 1 and a mean of 0.26. The added noise is normal distributed

with zero mean and a variance of 0.07.

In Figure 3 we show a coronal slice of the image comparing

the performance of the quasi-3D SA-DCT algorithm and the

genuine 3D version. Line artifacts between neighboring slices

can be observed, since the 2D algorithm ignores information in

the z-direction. An additional problem with the 2D approach,

dealing with isotropic voxels, is determining which axis to

slice across. We have arbitrarily chosen the z-direction, but

a choice of x- or y- would in this example yield different

suboptimal results. As we observe from Figure 3 the result

from the full 3D algorithm proposed in this paper yields results

in which the noise reduction is performed in a consistent

manner across all three dimensions. In Figure 4 we show a

zoom-in of a small portion of the result from Figure 3.

We define the error as the Euclidean 2-norm of the differ-

ence between the noise-free image and the denoised image.

The error between the noisy image and the noise-free image

was 140.13. The image denoised using the quasi-3D algorithm

gave 47.60, and using the full 3D algorithm reduced the error

to 41.92.

3D tensor-valued synthetic data
The main motivation behind this paper is denoising of tensor

valued images, in particular diffusion tensor MR images. First

we denoise a synthetic DTI dataset where the object is a

simulated torus. The DTI torus has been generated using

the software teem, written by Gordon Kindlmann [18]. For

visualization of the color-coded fractional anisotropy (FA)

images, derived from the estimated tensor images, we have

used DtiStudio developed by Susumu Mori and coworkers

[7].

Our DTI phantom consists of a doughnut-shaped object with

cigar-shaped diffusion in the direction of the main circumfer-

ence. The baseline image S0 is constant equal to 1 and the six

direction sensitive measurements S1, . . . , S6 have the range 0
to 0.80. We added normal distributed noise with zero mean and

a variance of 0.01 to S0 and variance of 0.04 to S1, . . . , S6.

The six gradient directions g1, . . . , g6 used are given by the

columns of the matrix

1√
2

⎛
⎝1 −1 0 0 1 −1

0 0 1 1 1 1
1 1 1 −1 0 0

⎞
⎠

The diffusion tensors computed from the clean DTI data is

used as a reference and the denoised tensors are compared

against this ground truth. We define the error as the sum of

squared element-wise tensor differences√√√√∑
p∈Ω

3∑
i=1

3∑
j=1

(
Dtrue

ij (p) −Ddenoised
ij (p)

)2
, (15)

where Dij(p) denotes the tensor element in position (i, j) at

voxel p. The global error in the noisy data was found to be

95.86.

When first computing the diffusion tensors from the noisy

DTI data and then apply the 3D SA-DCT algorithm to each

of the six elements of the voxel-wise lower triangular L
decomposition of the tensor, the global error was 18.03. The

results of this denoising procedure are shown in Figure 5.

3D tensor-valued real brain data
Finally, we tested SA-DCT denoising on real diffusion

tensor images from a healthy human brain. The human subject

data were acquired using a 3.0 T scanner (Magnetom Trio,

Siemens Medical Solutions, Erlangen, Germany) with a 8-

element head coil array and a gradient subsystem with the

maximum gradient strength of 40 mT·m−1 and maximum

slew rate of 200 mT·m−1·ms−1. The DTI data were based on

spin-echo single shot EPI acquired utilizing generalized auto

calibrating partially parallel acquisitions (GRAPPA) technique

with acceleration factor of 2, and 64 reference lines. The DTI

acquisition consisted of one baseline EPI, S0, and six diffusion

weighted images S1, . . . , S6 (b-factor of 1000 s·mm−2) along

the same gradient directions as in the previous example. Each

acquisition had the following parameters: TE / TR / averages

was 91 ms / 10000 ms / 2, FOV was 256 mm×256 mm, slice

thickness / gap was 2 mm / 0 mm, acquisition matrix was

192×192 pixels and partial Fourier encoding was 75%.
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Fig. 3. The difference between application of the 2D SA-DCT along coronal slices of a 3D image, and application of the genuine 3D SA-DCT algorithm.
Upper left panel: the original true image. Upper right panel: the noisy image (zero mean, σ2 = 0.07). Lower right panel: result after application of the
quasi-3D algorithm along the z-direction. Lower left panel: result after application of the full 3D algorithm proposed in this paper. See also detail in Figure 4.

Fig. 4. Zoomed-in detail from Figure 3. Left panel: result after application of the genuine 3D algorithm. Right panel: result after application of the quasi-3D
algorithm. Notice the slightly improved distinction between white matter, gray matter, and CSF, when the genuine 3D algorithm is applied.
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Fig. 5. Results from application of the proposed 3D SA-DCT algorithm to a synthetically produced diffusion tensor dataset where the object is a torus.
Upper left panel: the true (noise-free) data. Upper right panel: the noisy data. Lower left panel: the denoised data. Lower right panel: 3D view of the torus.
All figures are color-coded FA plots derived from the tensor.

Since we are working with real data we do not have access

to an exact solution of the denoising problem. Instead we

used a higher quality reference dataset for comparison. This

dataset was obtained by registering and averaging 18 such

acquisitions. The noisy input to the denoising algorithm was

a dataset with 4 averaged acquisitions consuming about 20%

of the acquisition time, compared to the higher-quality one.

For better evaluation of our denoising algorithm, we have

compared our 3D SA-DCT results with those obtained using

the total variation PDE based method reported in [5] (cf.

Fig. 6). This PDE model is essentially a generalization of

the well-known Rudin Osher Fatemi (ROF) model and the

Blomgren Chan model [3], [23]. The solution is here the

minimizer u of an energy functional on the form

E(u) = R(u) + λF (u, f), (16)

where R(u) is a regularization functional which measures the

smoothness of u, and F (u, f) is a fidelity functional which

measures the distance from the noisy data f and the solution

u. The solution is a compromise between a completely smooth

solution (λ = 0) and a solution which is close to the input data

(λ� 0).

We calculated the error in the tensor in the same way as

in the previous example. Using this measurement we found

the global error of the noisy image (4 averages compared to

18 averages) to be 96.61. Denoising with the 3D SA-DCT

algorithm was able to reduce the error to 77.07. The PDE

denoising algorithm produced a solution with a global error

of 76.19.

VI. CONCLUSIONS

In this paper we have generalized the SA-DCT methods

from 2D scalar-valued images via 3D scalar-valued images

to 3D tensor-valued images. We have shown numerical ex-

periments on both 3D scalar-valued images and 3D tensor-

valued images. The numerical studies indicates that the SA-

DCT framework can successfully be applied as an alternative

method for denoising in both of the scalar-valued setting and

the tensor-valued setting.

We have demonstrated that a substantial improvement of

results can be achieved by employing the genuine 3D denois-

ing algorithm, as opposed to 2D SA-DCT denoising applied

slice-by-slice.

Additionally, we have shown that our numerical results are

comparable to those obtained with three-dimensional PDE

based techniques of the kind reported in [5]. That PDE

approach represents a class of total variation denoising al-

gorithms that has up to now been considered state-of-the-

art. The fact that the 3D SA-DCT approach, representing a

mathematically simpler idea, can provide results which are of
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Fig. 6. Color-coded FA plot of a slice from the DTI dataset recorded in a healthy volunteer. Upper left panel: high quality scan using 18 averages. Upper
right panel: the 4 averaged dataset that was input to the 3D SA-DCT denoising algorithm. Lower left panel: the output of the SA-DCT algorithm. Lower
right panel: a comparison image calculated using the PDE technique described in [5].
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same quality is remarkable. Moreover, an important advantage

of the SA-DCT is that the method is local in nature. Thus, it is

easy to parallelize the algorithm and speed up the calculations.

This is a topic for further studies.
We also believe it would be beneficial to extend the method

to work directly on the matrix structure instead of its elements,

however this is not a trivial task. The key idea behind the

method is to work on homogeneous areas, and how to extend

this to matrices is not know. Thus we have left this as topic

for further studies.
We are aware of the sparse data being used for evaluation

of our numerical experiments. A natural next step will be to

evaluate the performance on a large number of DTI datasets,

comparing FA values within specific regions of interest, and

also comparing fiber tracking results obtained after PDE-

denoising and after SA-DCT denoising of the tensors.
¿From our preliminary results, we conclude that SA-DCT

denoising methods are both well-performing and comparable

to other methods with respect to computational cost. A parallel

implementation of the methodology might aswell have a

potential in clinical examinations and in biomedical research

where DTI data is recorded.
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