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Abstract

Many graph algorithms are NP-hard for general graphs. But if we
know that the graph is a tree, or tree-like, then many such NP-hard
problems can be solved efficiently. To measure how close to being
a tree a graph is we can use either the parameter treewidth or the
closely related parameter branchwidth. The edge-maximal graphs of
treewidth k are the k-trees. The algorithm for generating k-trees is
trivial and well known. The k-branches are the edge-maximal graphs
of branchwidth k. Since the branchwidth often is smaller than the
treewidth, dynamic programming algorithms can often solve prob-
lems faster when using the branch-decomposition instead of the tree-
decomposition. Until the results of [12] nobody knew how to generate
k-branches. In this thesis we implement a simplified version of the
fairly complicated algorithm from [12]. The result is a user-friendly
program that interactively generates edge-maximal graphs of branch-
width k.
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1 Introduction

In this chapter we first discuss graphs and graph algorithms in the real world,
and give several short examples of this. We then briefly describe how a pro-
gram called a crawler is used to discover parts of the Web graph. Since there
are more than 11 billion web pages search engines are needed to find pages
related to different topics. Google is one of the most popular search engines
today. The algorithm it uses to rank the web pages is called PageRank and
is described in chapter 1.2. We then list several algorithm design techniques
and give examples for each of them.

1.1 Graphs and graph algorithms in the real world

Graphs are often used to make facts clearer and more understandable. They
visually represent relationships among data elements, and are used to solve
problems in many fields. Graphs with weights assigned to edges can be used
to solve problems such as finding the shortest path between two cities in a
transportation network. To solve this problem, and other graph problems,
we use graph algorithms. In this case one could use Dijkstra’s shortest path
algorithm. We can also represent airline schedules as a graph. The vertices
would correspond to airports, and the edges would correspond to flights. If
we store the time, cost and airline for each flight, Dijkstra’s algorithm could
again be used to find the cheapest route from one city to another. We can
also use graphs to schedule exams, to represent various relationships between
people, or to show which computers are connected via a communications net-
work.

The history of graph theory starts with the seven bridges of Köningsberg
problem that was solved by Euler. Köningsberg, Prussia (now Kaliningrad,
Russia) was divided into four sections by the Pregel River. These four re-
gions were connected by seven bridges (see Figure 1(a)). The question is
whether it is possible to walk with a route that crosses each bridge exactly
once. In 1736, Leonhard Euler proved that this was not possible. He for-
mulated the problem in terms of graph theory. Each of the four sections of
land was replaced by a vertex, and each bridge with an edge (see Figure 1(b)).
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(a) Map of Köningsberg (b) Graph representation

Examples of graph problems in the real world:

• The problem of determining whether a message can be sent between
two computers using intermediate links can be studied with a graph
model. Are two cities connected by railroad?

• Topological ordering is the problem of ordering n tasks where some
tasks can be completed only after others have been finished. Suppose
that a project is made up of 30 different tasks. Some tasks can only
be started after others have been completed. In what order could the
tasks be started? In what order could one choose computer science
courses such that all prerequisites were satisfied?

• Suppose you have a lecture room and many people request to use the
room for periods of time. A request starts at a time s and ends at time
f . What is the maximum number of requests that can be accepted, so
that no two requests overlap in time?

• Data elements that are stored in the cache are quicker to access than
the elements that are on the hard disk. Since the cache can only store
a limited number of data elements, one has to decide which elements
that should be evicted from the cache when a new element is requested.
In the 1960s, Les Belady showed that one should evict the item that is
needed the farthest into the future.

• Shortest path between two points is a problem that arises frequently.
What is the shortest path between two cities? What combinations of
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flights has the smallest total flight time between two cities? What is
the cheapest fare between two cities?

• Suppose we have a set of locations, and we want to build a communica-
tion network on top of them. Where should we place the links so that
the network is connected and the total cost is as small as possible?

• Consider a computer network where the edges are links that can carry
packets and the nodes are switches. The number of packets on each
edge cannot exceed the capacity of the edge. What is the maximum
number of packets that can flow through such a network?

• Graph coloring is the problem of coloring a map such that two adjacent
regions never have the same color. Graph coloring has a variety of
applications, e.g. scheduling final exams. How can the final exams at a
university be scheduled so that no student has two exams at the same
time?

• Suppose you have n friends, and some pairs of them don’t get along.
How many can you invite while avoiding fights?

• In which order can a salesman visit n cities exactly once and return to
his starting point so that he travels the minimum total distance?

1.2 The web graph and search engines

Graphs can also be used to study the structure of the World Wide Web.
The World Wide Web can be modeled as a directed graph. Each web page
is represented by a vertex and if there is a hyperlink on page x pointing to
page y, then the graph will have a directed edge from x to y. Each vertex
is therefore a URL (Unique Resource Locator), and the outgoing edges of a
vertex are the hypertext links contained in the corresponding page. The Web
graph changes on an almost continual basis. New pages are added every day
and others are removed. In July 2000, it was estimated that the web graph
contained about 2.1 billions vertices and 15 billions edges ([2]). Because of
the size of the Web graph it is impossible to get the whole graph. A method
called crawl is used to discover parts of the Web graph. This method is also
used by search engines for locating web pages. A crawler consists of a com-
puter program which browses the World Wide Web in a methodical manner.
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It starts at a predefined set of web pages and follows the links from each of
the pages, and iterates the process from the newly discovered pages.

Since there are today more than 11 billion ([3]) web pages, one of the chal-
lenges is finding what pages you want. Search engines are a popular way
to find web pages relating to a particular topic. Google is a popular search
engine which uses graph theory to decide which web pages are most relevant.
Google assigns a number called PageRank to every web page. Then when
you do a search, it returns the pages related to the searched topic with the
highest PageRank. PageRank is a link analysis algorithm that was devel-
oped at Stanford University by Larry Page and later Sergey Brin as part of a
research project on a new kind of search engine. PageRank is one of several
factors used by Google to determine best search results. It evaluates two
things: how many links there are to a web page from other pages, and the
quality of the linking sites. Links from pages with low credibility are worth
less than links from pages with higher credibility. PageRank assigns a weight
to each page of the World Wide Web. A link to a page counts as a vote
of support. The PageRank of a page is defined recursively and depends on
the number of incoming links to the page and the PageRank of the incoming
links. A page that is linked to by many pages with high PageRank receives
a high rank itself.

A web page is generally more important if many other web pages link to it.
If a search engine only considered link popularity the rankings could easily
be manipulated by pages which are only created to deceive search engines
and which don’t have any significance within the web. The incoming links do
therefore not count equally in PageRank. The rank of a page is given by the
rank of those pages which link to it. Their rank again is given by the rank
of pages which link to them. Hence, the PageRank of a document is always
determined recursively by the PageRank of other documents. ( [18] and [19])

PR(A) = (1− d) + d(PR(T1)/C(T1) + ...+ PR(Tn)/C(Tn))

where
PR(A) is the PageRank of page A.
PR(Ti) is the PageRank of pages Ti which link to page A.
C(Ti) is the number of outgoing links on page Ti. The more outgoing links
a page T has, the less will the pages that T link to benefit from such a link.
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d is a damping factor which can be set between 0 and 1. d is often set to 0.85.

Consider an example:
Assume the web only contains three pages A, B and C, where A links to
both B and C, B links to C, and C links to A (see Figure 1). Let d be set
to 0.85. We then get the following equations:
PR(A) = 0.15 + 0.85PR(C)
PR(B) = 0.15 + 0.85(PR(A)/2)
PR(C) = 0.15 + 0.85(PR(A)/2 + PR(B))
when we solve these equations we get the following PageRank values for the
single pages:
PR(A) = 1.1634
PR(B) = 0.6444
PR(C) = 1.1922
We also see that the sum of all pages’ PageRank is equal to the total amount
of pages, PR(A) + PR(B) + PR(C) = 3. C receives higher PageRank than
A since C is the only page that B links to. B has the lowest PageRank since
it only has one incoming link from A, and since A has two outgoing links, B
only receives half of A′s rank.

Figure 1: The web containing three web pages

Because of the size of the actual web, the PageRank values are computed iter-
atively. So each page is assigned an initial starting value, and the PageRanks
of all pages are then calculated in several computations, until converging.

The Google Toolbar displays the PageRank as an integer between 0 and 10.
For this display the PageRank has to be scaled. It is generally assumed that
the scaling is not linear but logarithmic. The PageRank of a web page can
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be checked at http://www.checkpagerank.com/

1.3 Graph algorithm design techniques

There exists various algorithm design techniques that are used for solving
different problems. Let us briefly describe brute force, greedy algorithms,
divide-and-conquer, dynamic programming and primal/dual techniques.

Brute force (also called exhaustive search) is the simplest of the design strate-
gies. A brute force algorithm solves a problem in a straightforward and sim-
ple way. Such an algorithm can often end up doing far more work to solve
a problem than a more clever algorithm might do. A brute force algorithm
usually searches through all the possibilities and checks whether any of the
possibilities satisfy the problem statement. It is simple to implement, and
will always find the solution if it exists. The weakness is efficiency. When the
problem size increases, the number of candidate solutions have a tendency
to grow very quickly. Brute force search is therefore typically used when the
problem size is limited.

Greedy algorithms make the choice that looks best at the moment, and never
changes the choices made. They often fail to find the optimal solution since
early decisions often prevent the algorithm from finding the best overall solu-
tion later. However, they are easy to implement and often give good approx-
imations to the optimum. One example of a greedy algorithm is Dijkstra’s
algorithm for finding the shortest path between two vertices.

Divide-and-conquer algorithms divide a problem into several (often only two)
subproblems. The subproblems are then solved recursively. The solutions for
the subproblems are then combined to get a solution to the original prob-
lem. Mergesort is a typical example where the divide-and-conquer strategy
is used. Mergesort sorts a list of numbers by first dividing the list into two
equal parts, sorting each half separately by recursion, and then merging the
two sorted halves.

The divide-and-conquer strategy is efficient when the subproblems don’t over-
lap. However, when the subproblems overlap, the recursion does redundant
work. In this case we use another strategy called dynamic programming.
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Dynamic programming is nonrecursive, and instead of starting on the top
and working it’s way down (such as divide-and-conquer algorithms do) they
start on the bottom and work their way up. The main idea is to solve several
smaller (overlapping) subproblems, and record the solutions in a table so
that each subproblem is only solved once. The last entry in the table will in
the end contain the overall solution to the problem.

Primality/duality as used in network flow is yet another algorithm design
technique. A flow network is a directed graph containing a single source
node and an single sink node, and where each edge has a certain capacity.
The primality/duality is reflected in the fact that a maximum flow is equal
to a minimum cut, and this is used to design an efficient algorithm. This
technique is used for finding the maximum flow in a network, and also for
other problems, like the bipartite matching problem. A bipartite graph is an
undirected graph whose node set can be partitioned into two parts with the
property that every edge has one end in each part. A matching is a subset of
the edges such that each node appears in at most one edge in the matching.
The bipartite matching problem is that of finding the largest matching in a
given graph.

Before giving some examples of problems that can and cannot be solved in
polynomial time, we will give a definition of polynomial time, the complexity
classes P and NP, and define NP−complete problems.

Definition 1. An algorithm is polynomial if its running time is bounded by
a polynomial in the size of the input.

Definition 2. P is the complexity class containing decision problems (prob-
lems with a yes-or-no answer) which can be solved in polynomial time.

Definition 3. A verifier for a problem A is an algorithm V that takes as
input two arguments, a string w which is an input string to the decision
problem, and a certificate string c. The algorithm V accepts <w, c> for
some c if and only if w ∈ A.

The clique problem is to determine whether a graph G contains a k-clique.
The input string w would contain G and k. The certificate given to the
verifier would in this case consist of the nodes in the clique. The verifier
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would then test if c is a set of k nodes in G and whether G contains all edges
connecting nodes in c. If so, the verifier would return YES, otherwise NO.

Definition 4. NP is the class of languages that have polynomial time veri-
fiers.

Definition 5. A problem is NP-hard if all problems in NP are polynomial
time reducible to it, even though it may not be in NP itself.

Definition 6. A language B is NP−complete if it satisfies two conditions:

1. B is in NP, and

2. Every A in NP is polynomial time reducible to B.

Reducible means that for every problem A, there is a polynomial time algo-
rithm which transforms a ∈ A into instances b ∈ B, such that the answer to b
is YES if and only if the answer to a is YES. So if we have a polynomial time
algorithm for any of these NP−complete problems then we could solve all
problems in NP in polynomial time.

Let us give some examples of problems that can be solved in polynomial time.

The shortest path problem can be solved in polynomial time. As mentioned
earlier we can use Dijkstra’s greedy algorithm. The algorithm maintains a
set S of nodes that we have already determined the shortest path to from the
start node s. In each iteration it adds the node that has one edge in S and
where the value mine=(u,v):u∈Sd(u) + le is minimized, where d(u) is the value
of the shortest path from the s to node u, and le is the weight of the edge e.
There are n − 1 iterations (one node v is added in each iteration). In each
iteration one has to consider each node v /∈ S, and go through all the edges
between S and v to determine the minimum mine=(u,v):u∈Sd(u) + le. The
running time would with this implementation be O(mn). With a different
data structure, we could reduce the running time to O(mlogn) ([6]).

Computing a topological ordering in a directed acyclic graph, i.e. a total
order on nodes such that all edges go from lower to higher numbered nodes,
can also be done in polynomial time. Since we know that in every directed
acyclic graph, there is a node with no incoming edges, the algorithm recur-
sively finds this node v, orders it first, deletes it, and calls the algorithm with
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G− {v} as input.

We can construct a greedy algorithm that solves the scheduling problem that
also runs in polynomial time. In each iteration this algorithm chooses the
request that has the smallest finishing time, adds it to a set S, deletes it
and all the other requests that are not compatible with this one. The algo-
rithm terminates when there are no more requests left, and returns the set S.

We describe two problems that cannot be solved in polynomial time, namely
k-coloring and the traveling salesman problem. Both of these problems are
NP−complete, i.e. the problem is in NP and every other problem in NP
is polynomial time reducible to it.

The problem of coloring a graph so that no two adjacent vertices are assigned
the same color is an example of a problem that cannot be solved in polyno-
mial time. Given a graph G and a bound k, does G have a k-coloring?

Traveling salesman is another NP−complete problem. In what order can
n vertices be traversed so that the start node equals the end node, and each
node (except the start node) is traversed exactly once. The goal is to find
a traversal with the minimum total distance. This traversal is also called a
Hamilton circuit after the famous Irish scientist William Rowan Hamilton.

1.4 Tree-like graphs

Several graph algorithms are NP-hard for general graphs. If we know cer-
tain properties about the graph, e.g. that the graph is a tree, then many
NP-hard problems can be solved efficiently. Maximum-size independent set
is an almost trivial example. An independent set is a set of vertices in a
graph where no two vertices are adjacent. A maximum independent set is
a largest independent set for a given graph. An algorithm that solves the
maximum-size independent set on trees would include an arbitrary node v
of degree 0 or 1, and delete both v and its neighbour. It would continue
recursively until the graph is empty.

Many graph problems that are NP-hard can also be solved efficiently even
when the graph has cycles. We use a parameter, called treewidth, to measure
how close to being a tree the graph is. The treewidth says how many nodes
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must be removed from the graph to split the graph into disconnected pieces.
This allows us to implement dynamic programming algorithms. Another pa-
rameter which is closely related to treewidth is branchwidth. These two pa-
rameters are related by the inequalities: branchwidth(G) ≤ treewidth(G) +
1 ≤ b3/2 branchwidth(G)c. ([13])

Before we can define the treewidth we need to define a tree decomposition,
whose width measures how close the graph is to being a tree.

Definition 7. Given a graph G = (V,E) a tree decomposition of G is a pair
(X,T ) where X = {X1, . . . , Xn} is a collection of subsets of V , and T is a
tree such that: ([6])

• Every node of G belongs to at least some bag Xi

• For every edge e = (u, v) there is a bag Xi that contains both u and v.

• If vertex v is in both Xi and Xj, then all nodes Xw of the tree between
Xi and Xj contain v.

The width of a tree decomposition is the size of the largest set Xi minus one.
The treewidth, tw(G) of a graph G is the minimum width among all possible
tree decompositions of G ([6]). Note that a tree has treewidth one.

Graphs of bounded treewidth often appear in practice. For example, it
has been shown that GOTO-free C programs have control-flow graphs of
treewidth 6. ([16])

Several problems that are NP-hard on general graphs can be solved efficiently
for graphs that have treewidth (or branchwidth) bounded by a constant. The
crucial property is that any bag Xi is a separator of the graph G. One exam-
ple of this is maximum independent set, which can be solved in polynomial
time with dynamic programming.

Let T be the tree decomposition of the graph G of width w. We call the
nodes of T : 1, 2, ..., n, and the bags of G: X1, ..., Xn. We root the tree T at a
bag node r, and let Ti denote the subtree rooted at i. Let Gi be the subgraph
of G induced by the nodes in all bags associated with nodes of Ti. wu is the
weight of a node u, and w(U) is the total weight of nodes in a subset U of
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V .

The optimal independent set intersects the bag Xi in some subset U , but we
do not know which set U is. We therefore go through all possibilities of this
set U and calculate the maximum weight, fi(U), for all independent sets in
the subgraph Gi which has intersection U with Xi. If the subset U is not an
independent set we let fi(U) = −∞. There may be a total of 2w+1 subsets of
i, so for each piece of the tree we go through all the subsets in a brute force
manner.

We traverse the tree from the leaves and up. For an internal bag node i, we
go through the different possibilities for what to do with the nodes in i. Since
once this decision is fixed, the problems for the different subgraphs induced
by nodes in subtrees below i become independent.

When i is a leaf, fi(U) is equal to w(U) for each independent set U ⊆ i.
When i has children i1, ..., id the value fi(U) is given by the recurrence: ([6]
page 583)
fi(U) = w(U) +

∑d
j=1max{fij (Uj)− w(Uj ∩ U) :

Uj ∩ i = U ∩ ij and Uj ⊆ ij is independent.}
We will end this section with a rather trivial example of the maximal inde-
pendent set problem.

Let G = (V,E) be the graph in Figure 2(a) with the tree decomposition T
(Figure 2(b)). Note that a has weight 2, b weight 3, c weight 6, d and e
weight 1 and f weight 4.
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(a) Graph G (b) Tree decomposition, T , of G

The values for the two leaves 3 and 4 are as follows:

(a) Values for leaf 4 of T .
Name of array: A4

4 f4(U)
0 {d} 1
1 {e} 1
2 {f} 4
3 {de} −∞
4 {df} 5
5 {ef} −∞
6 {def} −∞
7 {} 0

(b) Values for leaf 3 of T .
Name of array: A3

3 f3(U)
0 {b} 3
1 {c} 6
2 {d} 1
3 {bc} −∞
4 {bd} 4
5 {cd} −∞
6 {bcd} −∞
7 {} 0

Table 1: Values for the two leaves of T

Note that the values used to calculate f2(U) are taken from Table A3 and
Table A4. The values for the internal node 2 is given by the above recurrence
and are as follows:
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2 w(U) max for child 3 max for child 4 f2(U)
0 {b} 3 0 A4[1] 4
1 {d} 1 0 0 1
2 {f} 4 A3[1] 0 10
3 {bd} 4 0 0 4
4 {bf} −∞ −∞ −∞ −∞
5 {df} 5 0 0 5
6 {bdf} −∞ −∞ −∞ −∞
7 {} 0 A3[1] A4[1] 7

Table 2: Values for the internal node 2 of T . Name of array: A2

The values for the root node 1 is given by the same recurrence and are as
follows:

1 w(U) max for child 2 f1(U)
0 {a} 2 max{A2[1], A2[7]} 9
1 {b} 3 A2[1] 4
2 {f} 4 max{A2[1], A2[2]− 4} 10
3 {ab} −∞ −∞ −∞
4 {af} −∞ −∞ −∞
5 {bf} −∞ −∞ −∞
6 {abf} −∞ −∞ −∞
7 {} 0 max{A2[1], A2[7]} 7

Table 3: Values for the root node 1 of T

The maximal independent set for the graph G therefore has weight 10 and
consists of the vertices: c and f .

The remaining chapters of this thesis are organized as follows. In chapter 2
we give an overview of k-trees, k-branches and k-graphs, where k-trees are the
edge-maximal graphs of treewidth k, and k-branches are the edge-maximal
graphs of branchwidth k. The k-graphs are a superclass of k-branches. The
main part of this thesis is an interactive program that generates k-graphs.
Chapter 3 describes the different algorithms of the program, while chapter 4
discusses the implementation of the program. Chapter 4 also give a short
overview of the C++ class library for data types and algorithms called LEDA.

16



2 k-trees, k-branches and k-graphs

For a class C of graphs, we say that graph G ∈ C is edge-maximal if adding
any edge to G will result in a graph not belonging to C. In this section we
introduce k-trees, the edge-maximal graphs of treewidth k, and k-branches,
the edge-maximal graphs of branchwidth k. The k-graphs are a superclass
of k-branches which are more easy to handle algorithmically.

2.1 k-trees and chordal graphs

We consider simple undirected and connected graphs G = (V,E) with vertex
set and edge set.

Given a graph G = (V,E) and a subset U ⊆ V , the subgraph of G induced
by U is the graph G′ = (U,D), where (u, v) ∈ D iff u, v ∈ U and (u, v) ∈ E.

A clique is a set of vertices that induce a complete subgraph of G. A maximal
clique is a clique which is not a subset of any other clique.

A set of vertices S ⊂ V is a separator if the subgraph of G induced by
V −S is disconnected. The set S is a uv-separator if u and v are in different
connected components of G [V − S]. A uv-separator S is minimal if no subset
of S separates u and v.

Definition 8. k-trees are defined recursively:

• The complete graph on k vertices is a k-tree.

• A k-tree G with n + 1 vertices (n ≥ k) can be constructed from a k-
tree H with n vertices by adding a vertex adjacent to all vertices of a
k-clique of H.

Theorem 1. A graph G has treewidth at most k iff G is a subgraph of a
k-tree. ([8])

A chord is an edge joining two nonconsecutive vertices of a cycle.

A graph is chordal if every cycle of length > 3 has a chord.
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Theorem 2. A graph G is chordal if and only if every minimal separator of
G is a clique. see [4]

Proof. Adapted from [4]
⇒: Let G = (V,E) be chordal and let S be a minimal separator of G. Let
x and y be any two vertices in S. Let a and b be the vertices for which S
is a minimal ab-separator, and let A and B be the connected components of
G [V − S] containing respectively a and b. There must exist a path between
x and y through vertices belonging to A. Let p1 be the shortest such path,
and let p2 be the shortest such path in B. p1 and p2 joined together create a
cycle of length at least 4. Since G is chordal, this cycle must have a chord.
Since no edges exist between vertices in A and vertices in B, the edge (x, y)
must be present and a chord of the cycle. (Figure 2)
⇐: Let G be a graph where each minimal separator is a clique. Assume that
G is not chordal and let w, x, y, z1, ..., zk, w be a chordless cycle of length
at least 4 in G (k ≥ 1). Any minimal wy-separator of G must contain x
and at least one zi for 1 ≥ i ≥ k. Since all minimal separators are cliques,
the edge (x, zi) must belong to G contradicting that the cycle is chordless.
(Figure 3)

Figure 2: P1 joined together with P2 create a cycle of length at least 4. Since
G is chordal, this cycle must have a chord, namely xy.
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Figure 3: Every minimal wy-separator must contain x and at least one zi.
Since all minimal separators are cliques, (x, zi) must belong to G

Lemma 1. k-trees are chordal. see [4]

Definition 9. A vertex v is said to be simplicial if all its neighbours are
adjacent to each other.

Note that any set of connected simplicial vertices form a clique.

Lemma 2. A chordal graph is either complete or has at least two nonadjacent
simplicial vertices. (see [4])

Proof. The proof has been adapted from [4].
Let G be a chordal graph which is not complete. The proof is by induction
on the number of vertices n. The base case is when n = 2 and G has two
isolated vertices that are both simplicial.
Let n > 2 and assume that the lemma holds for all such graphs with less
than n vertices. Let a and b be two nonadjacent vertices of G, let S be a
minimal ab-separator, let G [A] be the connected components of G [V − S]
that contains a, and G [B] be the connected components that contain b.
G [A ∪ S] is a chordal graph with less than n vertices. So the lemma is valid
and G [A ∪ S] is either complete (every vertex of A is simplicial) or has at
least two nonadjacent simplicial vertices one of which must belong to A since
S is a clique. G has therefore at least one simplicial vertex that belongs to
A. With the same argument, G has another simplicial vertex in B, and the
proof is complete.

As shown in Theorem 1 it is well-known that the subgraphs of k-trees are
exactly the graphs of treewidth k. In other words, the k-trees are the edge-
maximal graphs of treewidth k. Apart from the definition of k-trees given in
Definition 8 k-trees can also be characterized by the following 3 conditions:

Theorem 3. A graph G is a k-tree iff ([13])

1. G is chordal
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2. Every minimal separator of G has size k

3. Every maximal clique of G has size k + 1

Paul and Telle ([13]) studied also the edge-maximal notion for branchwidth.

2.2 k-branches and k-graphs

As mentioned earlier, there is an alternative parameter measuring how tree-
like a graph is, that is similar to treewidth, called branchwidth. The two
parameters are related by the inequality branchwidth(G) ≤ treewidth(G) +
1 ≤ b3/2 branchwidth(G)c. For many graphs branchwidth is smaller than
treewidth and this means that the dynamic programming algorithms to
solve optimization problems are faster when using the so-called branch-
decompositions [1]. Let us start with the standard definition of branchwidth
that however we will not be using in this thesis.

Let G be a graph with node set V (G) and edge set E(G). Let T be a tree
having |E(G)| leaves in which every nonleaf node has degree 3. Let µ be a
bijection from the edges of G to the leaves of T . The pair (T, µ) is called a
branch decomposition of G. Removing an edge of T , e, partitions the edges
of G into two subsets Ae and Be. The middle set of e, denoted by mid(e), is
the set V (Ae) ∩ V (Be). The width of a branch decomposition (T, µ) is the
maximum cardinality of the middle sets over all edges in T . The branchwidth
of G, denoted by bw(G), is the minimum width over all branch decomposi-
tions of G.

Recently Paul and Telle gave an alternative characterization of branchwidth.

Definition 10. A k-troika (A,B,C) of a set X are 3 subsets of X such that
|A| ≤ k, |B| ≤ k, |C| ≤ k, and A ∪ B = A ∪ C = B ∪ C = X. (A,B,C)
respects S ⊆ X if S ⊆ A or S ⊆ B or S ⊆ C.

For example, Let A = {0, 1, 2}, B = {1, 2, 3}, C = {0, 1, 3}. (A,B,C) is a
3-troika of X = {0, 1, 2, 3}. X does not have a 2-troika.

Theorem 4. A graph G has branchwidth at most k iff G is a subgraph of a
chordal graph H and every maximal clique X of H has a k-troika respecting
the minimal separators of H contained in X. (see [13])
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Definition 11. A graph is a k-branch if it has branchwidth k and is edge-
maximal, i.e. adding any edge will increase its branchwidth.

The k-branches can be characterized by five conditions.

Theorem 5. A graph G is a k-branch iff ([13])

1. G is chordal

2. Every minimal separator of G has size k

3. Every maximal clique of G has a k-troika respecting minimal separators

4. G has at least b3(k − 1)/2c+ 1 vertices.

5. The maxclique-minsep tree-decomposition of G has no mergeable sub-
tree.

The first two are common with Theorem 3 for k-trees. They are chordal
and their minimal separators have size k only. The third condition can also
be compared to the third condition for k-trees, namely that every maximal
clique of G has size k + 1. The fourth condition is a size constraint. There
is also a fifth condition, namely ”The maxclique-minsep tree-decomposition
of G has no mergeable subtree” which we will not consider in this thesis, as
it is quite technical and does not have a main practical importance. Thus,
the main graphs that we study are those that satisfy the first 4 conditions of
k-branches. We call these the k-graphs.

Definition 12. G is a k-graph if and only if:

1. G is chordal

2. Every minimal separator of G has size k

3. Every maximal clique of G has a k-troika respecting minimal separators

4. G has at least b3(k − 1)/2c+ 1 vertices.

Lemma 3. The maximal number of nodes that a maximal clique X can
contain and still have a k-troika respecting its minimal separators is k+bk/2c.
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Proof. Let |X| = k + z. A k-troika (A,B,C) of the set X can, without loss
of generality, be built as follows. A will contain the first k nodes. Since the
union of A and B should equal X, B has to contain the z last nodes, and
k− z of the nodes that A already contains (assuming z ≤ k). To ensure that
A ∪ C = B ∪ C = X, C has to contain the nodes that are in X, but not in
the intersection of A and B. Since the size of each set has to be less than or
equal to k:

|X| − |A ∩B| ≤ k

k + z − (k − z) ≤ k

2z ≤ k

z ≤ bk/2c

Note that any k-branch is a k-graph and also that a k-graph has branchwidth
k.
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3 An algorithm generating k-graphs

The main part of this thesis is an implementation of an interactive algorithm
to generate k-graphs. The need for such an algorithm arose because of the
recent interest in branchwidth. As we show in section 3.1 the interactive
algorithm to generate edge-maximal graphs of treewidth k is trivial, but until
the results of [12] nobody knew how to do this for k-branches. The interactive
algorithm given in [12] is very complicated. The need for a simpler algorithm
was clear, and the decision taken in this thesis was to drop condition 5 of
Theorem 5 which turned out to make it much easier to generate the resulting
superclass of k-branches called k-graphs. Still, the algorithm is non-trivial
and much more complicated than the one generating k-trees.

3.1 k-trees

Let us first describe the similar but almost trivial algorithm (see Algorithm 1)
to generate k-trees based on Definition 8. The algorithm starts by construct-
ing a (k+1)-clique. In each iteration of the for loop it selects a random
k-clique, and constructs a new (k+1)-clique by adding a new node adjacent
to all nodes of the selected k-clique.

Algorithm 1: construct k-trees(graph G, int k, int n)

input : empty graph G, positive integer k, positive integer n
output: A k-graph G consisting of n cliques

Construct a (k+1)-clique
for i = 2 to n do

Choose a random k-clique C in G
Construct a new (k+1)-clique by adding a new node adjacent to all
nodes of C

end

Figure 4 shows a 2-tree consisting of 8 nodes while Figure 5 shows the same
graph drawn in a different manner. The k-graph algorithm (see Algorithm 2)
constructs k-graphs in a similar way to how Algorithm 1 constructs k-trees.
Figure 6 shows how the program draws a 3-graph. As in Figure 5 maxi-
mal cliques are represented by grey rectangles and minimal separators are
represented by green ellipses.
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Figure 4: 2-tree with 8 nodes. Note that {0, 1, 2} and {0, 2, 4} are maximal
cliques sharing the minimal separator {0, 2}
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Figure 5: Same graph as in Figure 4. Maximal cliques are represented by
grey rectangles and minimal separators are represented by green ellipses.
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Figure 6: 3-graph with 8 maximal clique nodes
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Note that the main algorithm for interactively generating k-graphs is given on
separate pages, and that the actual implementation of these algorithms are
discussed in the next section. When discussing the algorithm in detail we will
use the line numbers listed on these separate pages. We will now describe the
two main algorithms of the program behind the implementation, and briefly
three help algorithms.

3.2 Overview

The program starts by asking the user how many nodes the graph should
contain. The user can thereby choose if she would like to start with an
empty graph and add one and one node, or if she would like the program to
generate a random k-graph. After the random k-graph has been generated
the user can click on nodes of the graph and construct new neighbours. The
program can also at any point of the execution generate random cliques.

The program can therefore be used as a interactive way of learning about
k-graphs. If the user constructs nodes one at the time she will be informed
whether or not the new node is valid. If it is not valid she will receive an
error message that explains why this node cannot be constructed. There is
also a ”help” button that the user can click on which explains how to create
nodes and which conditions valid k-graphs must satisfy.

3.3 Overview of the algorithms of the program

Algorithm 2 will be called if the user chooses to start with a graph containing
more than one node. The algorithm receives a graph G consisting of at least
one node as input. It then constructs a graph that satisfies the three first
conditions of Lemma 12. When the number of nodes exceeds b3(k − 1)/2c
the fourth condition of Lemma 12 is also satisfied and the graph is a valid
k-graph. If the user chooses to start with n nodes, where n > 0, the help al-
gorithm construct x is called before Algorithm 2, so that the graph given as
input consists of a single node. Algorithm 2 is also called when the user clicks
on the ”Construct new random maximal cliques” button. The algorithm adds
as many new maximal cliques as the user choose (with an upper limit of 100).

Algorithm 3 is called every time the user clicks on a node of the graph. If the
node was a maximal clique, both a minimal separator and a maximal clique
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is added to the graph. If she clicked on a minimal separator only a maximal
clique is added.

Both Algorithm 2 and Algorithm 3 uses the help algorithms construct sep
and construct y. construct x is only used to construct the first node of the
graph. construct sep is used to construct all the minimal separators of the
graph, while construct y constructs all the maximal cliques of the graph (ex-
cept the first).

3.4 The main algorithm

Algorithm 2 constructs a random graph G that satisfies the 4 conditions of
Definition 12. In Line 2 it enters a for loop where a new maximal clique
is constructed in each iteration, until n maximal cliques has been added to
G. In each iteration a random maximal clique x is chosen and either both a
new maximal clique and a new minimal separator are constructed, or only a
new maximal clique is constructed adjacent to an already existing minimal
separator. This depends on the random variable p.

Line 6 adds a random minimal separator and a new maximal clique contain-
ing between 1 and k/2 new nodes to the graph. Only the first node of the
graph can have degree 0.

When the maximal clique node has degree 1 (Line 9) the algorithm will ei-
ther only construct a new maximal clique adjacent to the already existing
minimal separator, or construct both a new maximal clique and minimal
separator. If a new minimal separator is to be created it has to satisfy the
third condition of Lemma 12. The set given to construct sep will therefore
consist of the nodes that are in the maximal clique, but not in the already
existing minimal separator (Line 14).

Line 17 is similar to the case when the degree of x was 1. The set given
to construct sep has to contain the nodes that are in the maximal clique x
minus the nodes that are in the intersection of the two minimal separators,
u and v, adjacent to x (Line 20).

If the maximal clique already has degree 3 (Line 25), then a new minimal
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separator cannot be created. A new maximal clique will then be added next
to one of the already existing minimal separators.

The last if statement (Line 30) checks whether the graph is a valid k-graph
or not, i.e. if it contains b3(k − 1)/2c+1 or more nodes. If it does a message
(see Figure20) is shown informing the user that the graph is now a valid
k-graph. This message is only displayed once in each run of the program.
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Algorithm 2: ConstructGraph(graph G, int k, int n)

input : k-graph G consisting of at least one node, positive integer k,
positive integer n

output: A k-graph G consisting of n new maximal cliques

begin
2 for i = 1 to n do

Choose a random maximal clique x in G
Let p be a random integer between 0 and 2
switch deg(x) do

6 case deg(x) = 0 /* adds new maxclique and minsep */
construct sep(G, x, <empty set>)
construct y(G, sep, random[1, k/2])

9 case deg(x) = 1
Let u denote the neighbour of x (minimal separator).
if p = 0 then /* adds new max clique */

construct y(G, u, random[1, k/2])
else /* adds new maxclique and minsep */

14 construct sep(G, x, <nodes in x − nodes in u>)
construct y(G, sep, random[1, k/2])

end

17 case deg(x) = 2
Let u and v denote the two neighbours of x.
if p = 0 then /* adds new maxclique and minsep */

20 construct sep(G, x, <nodes in x − [u ∩ v] >)
construct y(G, sep, random[1, k/2])

else /* adds new max clique */
construct y(G, random[u, v], random[1, k/2])

end

25 case deg(x) = 3 /* adds new max clique */
Let u, v and w denote the three neighbours of x.
construct y(G, random[u, v, w], random[1, k/2])

end

end
30 if G consists of b3(k − 1)/2c+ 1 or more nodes then

Display a panel informing the user that the graph is now a
valid k-graph.

Display graph
end
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3.5 Valid minimal separators

Algorithm 2 will only construct valid maximal cliques and minimal separa-
tors. Maximal cliques will always contain the k nodes that are in the adjacent
minimal separator, and between 1 and k/2 new nodes (see Lemma 3). When
the maximal clique has one neighbour, the new minimal separator will al-
ways contain the nodes that are in x, but not in the already existing minimal
separator (Line 14). When the degree of the maximal clique is two, the new
minimal separator will always contain the nodes that are in x minus the
nodes that are in the intersection of the two neighbours of x (Line 20). The
remaining elements are chosen at random. Since the conditions of Lemma 12
are satisfied, all minimal separators that are constructed are valid.

3.6 The random integer p

In each iteration of the for loop (Line 2) a new maximal clique is constructed.
An already existing maximal clique node x is chosen in G. The probability
of constructing both a minimal separator and a maximal clique depends on
the degree of the maximal clique, x, i.e. the number of existing minimal
separators.

• if deg(x) = 0 then 1

• if deg(x) = 1 then
2

3

• if deg(x) = 2 then
1

3

• if deg(x) = 3 then 0

3.7 Adding new nodes to the graph

The user can construct new nodes by left clicking on an already existing node
in the graph. Algorithm 3 is called every time the user clicks on a node in
the graph. If the user has clicked on a maximal clique the algorithm will
construct both a new minimal separator and a new maximal clique, but if
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the user clicked on a minimal separator (Line 1) only a new maximal clique
will be constructed (by the algorithm construct y). The size of the maximal
clique must be between k + 1 and k + k/2, to ensure that condition three of
Lemma 12 is satisfied.

If the maximal clique x already has three neighbours (Line 4), the user is
asked whether she would like to construct a new maximal clique adjacent to
one of the three existing minimal separators (see Figure 24).

In line 6 the user is asked to choose k of the nodes from the maximal clique x.
The minimal separator will consist of these k nodes. The program displays
all the nodes from the maximal clique x as boolean boxes (see Figure 21).
Line 7 checks whether the user chooses exactly k nodes. If she chose too
many or too few nodes, error massages are displayed (see Figure 23 and Fig-
ure 22) informing the user that the second condition of Lemma 12 has not
been satisfied.

Line 9 checks whether or not the minimal separator already exists. If it does
she is asked if she would like to construct a new maximal clique adjacent to
the already existing minimal separator (see Figure 25).

Line 11 ensures that condition three of Lemma 12 is satisfied. It checks
whether this new minimal separator will form a valid k-troika with the max-
imal clique’s other minimal separators. This is done by checking that the
union between the new minimal separator and each of the already existing
ones equals the nodes of the maximal separator. The program can generate
three different error messages (see Figure 26, Figure 27 and Figure 28) de-
pending on the degree of the maximal clique and whether the union of new
minimal separator and on or both of the existing minimal separators did not
equal the maximal clique.

In Line 13 the minimal separator is created. The user is then asked how
many nodes the new maximal clique should consist of (see Figure 31 and
32). According to Lemma 3 the maximal number of new nodes a maximal
clique can contain is bk/2c. In Line 15 a new maximal clique node is created
consisting of between k + 1 and k + k/2 nodes. If either of the two if state-
ments, Line 4 or Line 9, evaluates to true then only a new maximal clique is
constructed.

32



Instead of selecting the nodes oneself, the user can click on a ”random” but-
ton. In this case the program will automatically construct a valid minimal
separator consisting of k nodes, and a valid maximal clique of random size.

The last if statement (Line 16) checks whether the graph is a valid k-graph
or not, i.e. if it contains b3(k − 1)/2c+1 or more nodes. If it does a message
is shown informing the user that the graph is now a valid k-graph. This
message is only shown once in each run of the program, so if it has already
been displayed, the if statement will be ignored.
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Algorithm 3: Construct new minimal separator

input : graph G, positive integer k, node x
output: A new maximal clique and a new minimal separator

1 if x is a minimal separator then
User chooses number of new nodes the maximal clique should
contain, between 1 and k/2
return construct y (G, x, number of nodes)

4 if degree of maximal clique x is three then
Ask the user if she would like to construct a new maximal clique
adjacent to one of the already existing neighbours of x.

6 User chooses k of the nodes from x which will be the new minimal
separator, sep.

7 if the user either chose more or less than k nodes then
return error message

9 if sep already exists then
Ask the user if she wants to construct a new maximal clique
adjacent to sep.

11 if union(sep, w) 6= x, ∀ w neighbour of x then
return error message

/* A minimal separator and a maximal clique is added */

13 construct sep (G, x, <nodes chosen by user>)
User chooses number of new nodes the maximal clique should contain,
between 1 and k/2

15 construct y (G, number of nodes)
16 if G consists of b3(k − 1)/2c+ 1 or more nodes then

Display a panel informing the user that the graph is now a valid
k-graph.

Display graph

3.8 Help algorithms

All nodes are constructed by either of the three help algorithms construct x,
construct sep and construct y.

Algorithm 4 is used to construct the first maximal clique node of the graph.
It is given the size of the node as input.
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All minimal separators are generated by Algorithm 5. The algorithm takes
a maximal clique node x and a set of nodes (integers) as input. To satisfy
condition two of Lemma 12 the size of the minimal separator has to be k. If
the size of the set is less than k, random nodes are added from the maximal
clique node x. Since elements never appear more than once in sets the same
node will never be added twice to the minimal separator. Before returning
the minimal separator, the algorithm constructs an edge between the maxi-
mal clique node x and the new minimal separator node sep.

Algorithm 6 is used to generate all the maximal cliques of the graph, except
the first one. It receives the minimal separator node sep and an integer n as
input. The new maximal clique node will contain the nodes that are in the
minimal separator and n new ones. An edge between the minimal separator
and the new maximal clique is also constructed.

Algorithm 4: construct x(graph G, int n)

begin
Add new maximal clique node x of size n to G

end

Algorithm 5: construct sep(graph G, node x, set S)

begin
while size of S is less than k do

Add random node from x to S
end
Add new minimal separator node sep containing the nodes in S to
G
Add edge (x, sep)
return sep

end

Algorithm 6: construct y(graph G, node sep, int n)

begin
Add new maximal clique node y consisting of the k nodes in sep
and n new nodes to G
Add edge (y, sep)

end
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4 The Implementation

In this section we will talk about the graph drawing package LEDA that was
used for the implementation. We also describe the user interface and the
different messages that are given to the user. Note that the program code is
given as a separate file.

4.1 LEDA

LEDA stands for Library of Efficient Data Types and Algorithms. It is
a C++ class library for data types and algorithms. LEDA has been used
in such diverse areas as code optimization, robot motion planning, traffic
scheduling, machine learning and computational biology [9]. Some of the
data types that were used in the program are random source, node map,
list, set, graph and GraphWin.

The stream of integers generated by a random source is only pseudo-random.
It is generated by a seed that can either be set by the user or it can be
generated by the internal clock. By using the same seed, one can create
the same random sequence because the algorithm that creates the random
numbers always creates the next number from the previous one. Using the
same seed can be very useful during debugging since the program in that
case always takes the same decisions, but since this program was not meant
to be deterministic the seed is created by the internal clock. The graphs that
are generated will therefore vary from time to time, even though the k value
and the number of maximal cliques are the same. The built in data type
random source is used by the program to:

• Decide whether only a new maximal clique or both a new maximal
clique and minimal separator should be constructed.

• Generate a random point on the screen.

• Decide the number of new nodes in a maximal clique.

• Decide which nodes should be included in the new minimal separator
from the maximal clique.

The data type node map < E > can be used to associate additional informa-
tion of type E with the nodes of the graph. The program uses a node map
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with the data type list < int >. The data type node map is dynamic,
so when a new node is added to the graph it is automatically added to
the node map. Each list includes the nodes (represented as integers) that
the maximal clique or minimal separator contains. The initialization of a
node map is in constant time, and access is in expected constant time [21].
Node maps use hashing to associate information to nodes.

In the program we originally wanted to use the data type set to store the dif-
ferent nodes that were in each maximal clique and minimal separator. Since
the data type set has methods that calculate the union and intersection be-
tween two sets, and also the difference between two sets, it would have been
ideal to be able to use this data set. However, the only way to get a random
element from a set is by using the predefined method set.choose() which is
meant to return a random element of the set. The only problem is that
this method always returns the first element of the set. The construct sep
method (see Algorithm 5) takes as input a maximal clique x and a set that
contains the nodes that the minimal separator has to contain. If the size of
this set is less than k, random nodes are added from the maximal clique x.
Since the method set.choose() always gives back the first element the code
below would hang:

Algorithm 7: example()

Let N denote the set that contains the nodes that must be in the
minimal separator.
Let C denote the set that contains the nodes that the maximal clique
x contains.
while size of N is less than k do

N.insert(C.choose())
end

The data type list was therefore used to store the nodes contained in each
maximal clique and minimal separator. Lists are generally not sorted, but
since the lowest numbers always were included first, all lists in the program
are sorted. Some places in the program the data type set is also used de-
spite the problems with the method set.choose(). The method construct sep
receives a set as input. It could alternatively have also received a list, but
ensuring that the list contained k distinct and sorted elements would have
been harder.
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Graphs and their data types are very central to LEDA. A graph G = (V,E)
consists of a set of nodes V and a set of pairs of nodes E, called edges. The
data type graph is the basic data type for representing graphs in LEDA. They
are implemented by doubly linked lists. The space requirement for graphs is
O(n + m), where n is the number of nodes and m is the number of edges.
This data type is used in the program to represent the k-graph constructed
by the user. The built in method G.undirected() is used since the graph
should be undirected. Methods such as G.degree(node v), G.choose node,
G.first adj edge(node v), G.last adj edge(node v), G.opposite(node v, edge e),
forall nodes and forall adj nodes(node v) were used frequently in the pro-
gram. The method G.choose node is used in Algorithm 2 when a random
maximal clique is selected. G.first adj edge(node v), G.last adj edge(node v)
and G.opposite(node v, edge e) return the first adjacent edge to v , the last
adjacent edge to v, and the node u opposite to v such that e = (u, v). The
two last methods are used to iterate through either all the nodes in the graph
or only the neighbours of v.

The data type GraphWin combines the graph data type and the window
data type. A GraphWin object is both a window, a graph, and a (two dimen-
sional) representation of this graph in this window. The class GraphWin was
used to visualize the k-graphs. Built in methods such as save gw was used to
save the graph in .gw format. When a .gw file is opened the build in method
read gw was used to read in the graph. The program also uses a boolean
variable to determine whether or not the graph has been changed since last
save operation. LEDA has a built in function, gw.unsaved changes(), that
reports whether or not the graph has been changed since last save operation,
but in the program this function did not work properly. The only explanation
why this method did not work properly would be that the method save gw
is called by a pointer of type GraphWin instead of the object.

LEDA has several built in algorithms for solving various problems. The only
algorithm used by the program is spring embedding, but several of the prob-
lems from the list in chapter 1.1 can be solved by such built in algorithms.
The TOPSORT algorithm finds a topological ordering if the input graph has
one, the NT DIJKSTRA T method computes a shortest path from a source
node to a sink node and returns its length, and the NT MAX FLOW T
computes a maximal flow in the input graph and returns its value.
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The only algorithm the program that generates k-graphs uses is spring embedding.
It models the nodes of a graph as points in the plane that repulse each other,
and it models each edge as a spring between the endpoints of the edge. In
each iteration the force acting on any node is computed as the sum of repul-
sive forces (from all other nodes) and attractive forces (from incident edges)
and the node is moved accordingly [9]. The algorithm does not guarantee
that edges do not cross or nodes overlap. Figure 7 and Figure 8 shows the
same graph before and after the spring embedder algorithm was used.

Methods such as increase/decrease node size and construct random maximal
cliques have a maximal limit of 100. The user can click the button again and
construct 100 new random maximal cliques, but to ensure that the user do
not give too high numbers a maximal value was added in.
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Figure 7: Before the spring embedding algorithm was called
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Figure 8: After the spring embedding algorithm was called.
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4.2 The program

The program generates k-graphs (graphs that satisfies the four conditions of
Lemma 12) either automatically or manually. The user can choose to start
with an empty graph and add one and one node and will then receive error
messages if either of the four conditions have not been satisfied, or she can
ask the program to generate a random k-graph.

4.3 Overview of the user interface

Figure 9 shows the upper part of the program. It has three sub-menus,
namely file, window and layout, and two buttons ”Construct new random
maximal cliques” and ”Help”. Figure 10 shows the three sub-menus ex-
panded.

Figure 9: The upper part of the program

The file menu offers I/O operations for graphs. It contains the following
operations:

• New Graph : Deletes the old graph, asks the user for a new value of
k, and the number of maximal cliques the new graph should contain.
(Figure 11)

• Open : Opens a file in gw format. The program assumes that the
graph in the file has the right format, i.e. that the four conditions of
Lemma 12 have been satisfied. If the file cannot be opened, an error
message is produced (Figure 12).

• Save : Saves the graph in gw format.

• Exit : If the graph has been altered since last save operation the user
will be asked if she wants to save the file before exiting the program
(Figure 13).
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(a) File menu (b) Window menu

(c) Layout menu

Figure 10: The contents of the file, window and layout menu

Figure 11: The user is asked if she wants to start on a new graph

The window menu has zoom operations that allows the user to change the
user space of the drawing window. (This menu is the default window menu
that was already implemented in LEDA)
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Figure 12: Error message when a file cannot be loaded

Figure 13: Warning message that is shown if the user wants to exit the
program and the graph has been altered since last save operation

The layout menu allows the user to change the design of the graph. It
contains the following operations:

• Redraw with spring embedding : The graph is redrawn with spring
embedding. The idea of spring embedding is to simulate a graph as
a system of mass particles. The nodes are the mass particles and the
edges are springs between the particles. The algorithm tries to minimize
the energy of this physical system. (Even though the graph is planar
edges may cross, and edges may also cross nodes.)

• Change node size : Asks the user how many pixels she wants to increase
or decrease all the nodes in the graph with. The maximum value is 100,
while the minimum value is −100.

The ”Construct new random maximal cliques” button asks the user how
many new maximal cliques she wants to add to the graph (Figure 14). The
maximum number of new cliques is 100 (she can however click the button
several times).
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Figure 14: User is asked how many new maximal cliques she wants to add
to the graph

The ”HELP” button produces a panel that explains the different buttons of
the program and how to construct a valid graph (Figure 15).

If the user clicks on the ”X” in the upper right corner of any panel (for
instance the help panel, error messages, and so on.) the whole program will
be terminated due to the way LEDA has been implemented.
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Figure 15: Help panel
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4.4 Node attributes

The user can change the size of either a single node or all the nodes in the
graph simultaneously (Figure 16). If the user right clicks on a node it will
increase its size by 10 pixels, if she middle clicks it will decrease by 10 pixels.
Next time the user constructs a new node its size will be equal to the size of
the last added node of the graph.

Figure 16: User is asked how many pixels the node should increase or decrease
with

The maximal clique nodes are grey, while the minimal separators are green.
Both maximal cliques and minimal separators can be moved by dragging.
While the user drags a maximal clique node, all its adjacent edges will change
color to grey (Figure 17). If she drags a minimal separator, all its adjacent
edges will change color to green (Figure 18).
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Figure 17: User drags a maximal clique node and its adjacent edges change
color
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Figure 18: User drags a minimal separator node and its adjacent edges change
color
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4.5 Constructing the graph and error messages

The program starts by asking the user how many maximal cliques she wants
to start with and the value of k (Figure 19).

Figure 19: User is asked how many maximal cliques she wants to start with
and the value of k

When the graph consists of b3(k − 1)/2c+ 1 or more nodes the fourth condi-
tion of Lemma 12 has been satisfied and a message informing the user that
the graph is now a valid k-graph is produced (Figure 20).

Figure 20: The user has created a valid k-graph

If the user clicks on a maximal clique node x she has to choose k nodes from x
that the new minimal separator should consist of (Figure 21). All the nodes
from the maximal clique x are displayed as boolean boxes.

50



Figure 21: User is asked to choose k nodes

If the user chooses too few or too many nodes error massages are displayed
(Figure 23 and Figure 22) informing the user that the second condition of
Lemma 12 has not been satisfied.

Figure 22: User chooses too few nodes.
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Figure 23: User chooses too many nodes.

If the minimal separator already has three neighbours she is asked whether
she would like to construct a new maximal clique adjacent to one of the three
minimal separators (Figure 24).

Figure 24: The maximal clique ”0 1 2 3 4 5” already has three neighbours
(minimal separators). The user is asked whether she would like to construct
a new maximal clique adjacent to one of the already existing minimal sepa-
rators.

If the minimal separator already exists the user is asked if she would like to
construct a new maximal clique adjacent to the minimal separator she chose
(Figure 25).
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Figure 25: User is asked whether she would like to construct a new maximal
clique adjacent to an already existing minimal separator.

If the union of the new minimal separator, chosen by the user, and one or
several of the already existing ones, does not equal the maximal clique, three
different error messages can be produced. If the degree of the maximal clique
is one an error message is created (Figure 26). If the union between one of
the already existing minimal separators and the new minimal separator is
unequal to the maximal separator, a second error message (Figure 27) is
shown. If the union between the new minimal separators and two of the
already existing minimal separators is unequal to the maximal separator, a
slightly different error message (Figure 28) is produced.
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Figure 26: The maximal clique has only one minimal separator. The minimal
separator selected by the user cannot be created since the third condition of
Lemma 12 has not been satisfied.
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Figure 27: The maximal clique has two minimal separators. The union of
the proposed minimal separator and one of the already existing minimal sep-
arators does not equal the maximal clique, and can therefore not be created.
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Figure 28: The maximal clique has two minimal separators. The union of
the proposed minimal separator and both of the already existing minimal
separators does not equal the maximal clique, and can therefore not be cre-
ated.
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If the user has created a valid minimal separator or maximal clique she is
asked where she wants to place it on the screen. (Figure 29 and Figure 30)

Figure 29: User is asked where she wants to place the new minimal separator

Figure 30: User is asked where she wants to place the new maximal clique

Figure 31: User can only add one new node to the maximal clique
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Figure 32: User is asked how many nodes the new maximal clique should
consist of

Figure 31 and 32 asks the user how many new nodes she wants to include
in the maximal clique. If bk/2c = 1 then the user can only add one extra
node to the maximal clique so Figure 31 is displayed, otherwise Figure 32 is
displayed.
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5 Summary and conclusion

We have seen several examples of graphs and graph algorithms in the real
world. For example the shortest path problem, scheduling problems and
graph coloring. We have also described certain algorithms more thoroughly.
One example of this is the maximum independent set. While listing up dif-
ferent algorithm design techniques we have seen that dynamic programming
can be used to solve certain graph problems, where the treewidth or branch-
width is bounded, faster. Since the branchwidth often is smaller than the
treewidth for graphs, dynamic programming based on branch-decomposition
rather than tree-decomposition can be more efficient. In the paper [12] it
is demonstrated how one can generate k-branches. In this master thesis we
implement a program that generates the superclass of k-branches called k-
graphs.

There are certain things in the implementation that could have been done
differently. As mentioned in chapter 4.1 we would have preferred to use the
data type set to store the nodes that were included in the different maximal
cliques, but due to problems with the method set.choose() this was impos-
sible. This led to some extra work since methods such as intersection, diff
and union had to be implemented. The intersection method receives two
lists as input and return the intersection of the two lists as a set. The diff
methods also receives two lists as input and returns the elements of the first
list minus the elements in the second list. The union method receives three
lists as input and returns true if the elements in the first set equals the union
of the two last sets.

We would also have preferred to use a graph drawing method that ensured
that the graph, if it was a tree, could be drawn without edges crossing. How-
ever LEDA had no such methods to offer, and we decided that the spring
embedding algorithm was the best to use.

Another thing that should be done differently was the size of the nodes in
the program. Unfortunately we found no method implemented in LEDA that
would change the node size automatically. Instead the user has to right or
middle click on a node to change its size. Alternatively she can change the
size of all the nodes in the graph with the button ”change node size”.
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One could also have used the data type array instead of the data type list
for storing the different nodes contained in the maximal cliques and minimal
separators. We decided to use the data type list since elements (nodes) of-
ten were added to the list, and the insertion time for lists is O(1). However,
since we also need to access the elements by position rather frequently it
could have been better to use an array.

We hope that this program can be used in pedagogical settings and as an
aid to researchers in the field of tree-like graphs. The edge-maximal graphs
of branchwidth k, called k-branches, are a little-known graph class. This is
in contrast to the similar notion for treewidth, the k-trees, which are well
known by every graph algorithms researcher due to the very easy algorithm
to generate them. By experimenting with our program for generating the
k-graphs we hope that researchers can gain a better intuition also for k-
branches.
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