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Parameter estimation solving a weak constraint variational
formulation for an Ekman model
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Abstract. A weak constraint variational formulation is used for inverse calculations and
parameter estimation in a one-dimensional Ekman model. When parameters in the model
are allowed to contain errors, the inverse problem becomes nonlinear even if the model
itself'is linear. It is shown that a convergent iteration can be defined for the nonlinear system
of Euler-Lagrange equations and that improved estimates of the poorly known parameters
can be calculated by solving the inverse problem for each of the linear iterates using the
representer method. The formulation of the variational problem and the solution methods
are illustrated using a simple example. The use of a simple dynamical model makes it
possible to give an instructive presentation of the representer method. The method is finally

used in an example using real ‘current meter data. It is shown that the weak constraint
formulation results in smooth solutions in good agreement with the data all through the
water column and that it is superior to the traditional strong constraint inverse estimate.

Introduction

Data assimilation and inverse methods are normally used
for generating estimates of dynamical variables, taking into
account both the information about the dynamics from a dy-
namical model and the information about the true state which
is contained in a set of measurements. Such techniques have
also been proposed as a tool for parameter estimation in
dynamical models, although only a few works have so far
considered the parameter estimation problem in this context.
Examples are Smedstad and O’Brien [1991] , who estimated
the phase speeds in a reduced-gravity model of equatorial
waves, using a strong constraint variational formulation, and
Yu and O’Brien [1991, 1992] , who used a modified one-
dimensional Ekman layer model in combination with varia-
tional optimal control techniques to simultaneously estimate
the surface wind drag coefficient and the vertical profile of
the eddy viscosity from observed data.

Yu and O’Brien [1991] defined a cost function where the
first guesses of the diffusion coefficient and the wind drag
coefficient were penalized in addition to the residual between
the model results and the observations. However, there was
no penalty on the first-guess initial conditions. Without such
a penalty, every choice of initial conditions can be used, and
there may exist many initial conditions resulting in a solu-
tion which interpolates the data and gives a penalty function
equal to zero [Bennett and Miller, 1990]. Yu and O’Brien
[1992] included such a term although the resulting equation
for the initial condition was incorrect. The cost function
was minimized using the adjoint technique to calculate the
gradient of the penalty function with respect to the control
parameters, i.e., the initial condition, the wind drag, and the
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eddy viscosity with the dynamical model acting as a strong
constraint.

Here the parameter estimation problem is reexamined us-
ing a weak constraint variational inverse formulation. Thus
the model, the initial and boundary conditions, the measure-
ments, the diffusion parameter, and the wind drag coefficient
are all allowed to contain errors. The strong constraint in-
verse may be obtained as a limiting case where the model
errors approach zero.

If the wind drag Cy and the vertical diffusion parameter
A are considered known, the inverse formulation for the Ek-
man model is linear. However, allowing them to contain
errors, the problem becomes nonlinear and some sort of it-
eration procedure must be used to solve the Euler—Lagrange
equations. Here it is shown that by defining an iteration for
the unknown parameters, each of the linear iterates for the
Euler-Lagrange equations can be solved exactly using the
representer method [Bennett, 1992]. Such an approach is
similar to previous applications of the representer method
with nonlinear dynamics. For instance, Bennett and Thor-
burn [1992] and Bennett et al. [1993] solved for the weak
constraint inverse of a nonlinear barotropic quasi-geostrophic
model by defining a convergent sequence of linear iterates of
the Euler-Lagrange equations, where each iterate could be
solved using the representer technique.

In the following sections, the inverse formulation is dis-
cussed and the Euler-Lagrange equations are derived. Then,
the representer method is applied to decouple the Euler—
Lagrange equations for the linear problem resulting when
the diffusion parameter and the wind drag coefficient are
assumed known. Next we define iterations of the Euler—
Lagrange equations which are used to solve for the diffusion
parameter and the wind drag coefficient, and an example that
illustrates the method is presented. Finally, the LOTUS-3
data set [Tarbell et al., 1984; Bowers et al., 1986] has been
used in a real data assimilation experiment to compare the
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results of a weak constraint formulation with the results of
Yu and O’Brien [1991, 1992].

Inverse Formulation

The Ekman model can be written in nondimensional form
by defining characteristic scales for the dependent and in-
dependent variables. The timescale is 7 = f~!, where f
is the Coriolis parameter, and the depth scale is the Ek-
man layer thickness 6. = /2A(0)f~!, where A(0) is the
diffusion coefficient at the surface. A velocity scale be-
comes 6.7~! = 1/2A(0) f, and the diffusion coefficient is
scaled by 2A(0). The atmospheric wind speed is scaled

by 1/2A(0)fpwpa', where p, and p,, are the air and wa-

ter densities. The nondimensional Ekman layer model then
becomes

Ou 0 Ou
5?+kxu_$(A$>+q, €))

where u(z,t) is the horizontal velocity vector, A = A(z) is
the diffusion coefficient, and q(z, ¢) is the unknown model
error. The initial conditions are given as

u(z,0) = Uy +a, )

where a contains the errors in the first-guess initial condition
Uj. The boundary conditions for the model are

LA - (C’d\/ug n ug) w+by, ()
32 z=0
ou
A'a—z z=_H—0+bH,‘ (4)

where the position z = 0 is at the ocean surface and the lower
boundary isat z = — H, Cy is the wind drag coefficient, u, is
the atmospheric wind speed, and by and b are the unknown
errors in the boundary conditions.

Now a set of measurements, d, of the true solution are
assumed given and linearly related to the model variables by
the measurement equation

d=L[u]+e. 5)

Here L is a vector of linear measurement functionals, u® is
the true state, and € is the measurement error.

If all the error terms are zero, the problem becomes overde-
termined and no solution can be found in general. However,
by allowing the model dynamics, the initial and boundary
conditions, and the measurements to contain errors, a solu-
tion can be found which minimizes these error terms in a
weighted least squares sense.

Here we also allow for the first guesses of the wind drag and
the diffusion coefficient, C,4, and Ao(z), to contain errors,
ie.,

Cd = Cdo +pC’d, (6)
A(z) = Ao(2) + pa(2), M

where pc, and p4(z) are the unknown error terms. Thus a
combined state estimation and parameter estimation problem
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is formulated. All the error terms are assumed to be normal
distributed with zerc mean and known covariances.
A convenient variational formulation is

j[uv Cq, A]

T T 0 0
= / dtl / dt2 / d21 / de
0 0 —-H —-H

Q" (z1,t1) Wyg(21,t1, 22, 12) q(22, 1)

0 0
+/ dzl/ dz aT(zl)Waa(zl,zz)a(zz)
—-H —H
T T
+/0 dtl/o dts B (t1) Wgs, (t1, £2) bo(t2) ®)
T T
+/0 dt1/0 dty bl (t)) Wb, (t1,82) br(t2)

0 0
+/ dzl/ dzy pa(z1)Waa (21, 22) pa(22)
-H —H

+pc.Weqcape,
+ eTwe.
A simpler way of writing this may be
J,CsAl=qT e W, eq+aToW,,0a
+bg * Wy, * bo + bF * Wi, b, by ()

+paoWasopa+pc,We,cupc, + €L we,

where the solid circles mean integration both in space and
time, the open circles mean integration in space, and the
asterisks mean integration in time.

The weights W, are functional inverses of the respective
covariances Q9, €.g., for the model weight, Q,, ¢ Wy, =
6(z1 — 23)6(t; — t3)I, or written out,

T 0
/ dt2/ dzy Qqq(21,t1, 22, t2) Weq(22, 82, 23, t3)
0 —H

= 5(z1 — Z3)5(t1 — t3)I,

(10
where w is the inverse of the measurement error covariance
matrix w™! and the weight W¢ .C, 18 1 over the error variance
of pc,. These weights determine the spatial and temporal
scales for the physical problem and ensure smooth influences
from the measurements. Note that the first guesses of all
unknown quantities are penalized. This is required to ensure
a unique solution of the inverse as shown by Bennett and
Miller [1990]. Even if no measurements are available, the
inverse will still have a unique solution corresponding to the
first-guess solution. This implies that the role of each of
the measurements is to add a specific contribution (influence
function) to the first- guess solution.

Note that estimators other than least squares could be de-
fined. However, the least squares formulation is attractive
for several reasons. If the unknown errors are Gaussian, i.c.,
completely explained by the two first statistical moments,
mean and covariance, then minimizing (8) is equivalent to
finding the maximum likelihood estimate. When working
with methods that involve the Euler—Lagrange equations,
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these are readily derived and the derivatives of the penalty
function exist everywhere.

Some important differences between the formulation used
in this paper and the previous works by Yu and O’Brien
[1991, 1992] should be mentioned. Here, in addition to al-
lowing the model and boundary conditions to contain errors,
nondiagonal weights have been used in the penalty function
(8) to ensure smooth results. In the works by Yu and O’Brien
[1991, 1992] the weights were diagonal, which means that
there was no regularization imposed on the control variables;
that is, they would accept noisy estimates as solutions.

By substituting for the error terms from (1) to (7) in the
penalty function J[u, Cy, A] and taking the variation with
respect to u, the system of Euler-Lagrange equations be-
comes '

Ou 8, 0u
— = —(A= A 11
g Thxu= A5 T Qued (D
with initial conditions
u|t=0 =Up+ Qae 0 A, (12)
and boundary conditions
A%lz—1 = Cav/u2 + v2us + Qpese * A, (13)
z=0
Ou
‘Eg e = —Qbyby * A (14)
The so-called adjoint equation becomes
oA 0, ,0A
—— —kxA=—(A—
ot X Bz( 0z (15)
+ LT[6(z — 22)6(t — ta)]w[d — L[u]],
subject to the “final” condition
AIt:T =0, (16)
and the boundary condition
oA =o0. 17

82 z2=0,z=—H

The system (11) to (17) is the Euler-Lagrange equations
which here comprise a two-point boundary value problem
in space and time, and since they are coupled, they must
be solved simultaneously. Equation (11) is the dynamical
model forced by a term that estimates the model errors and
contains the adjoint variable. A similar coupling to the ad-
joint variable is also contained in the initial conditions (12)
and boundary conditions (13) and (14). The “backward” or
adjoint equation (15), which strictly speaking is the Euler-
Lagrange equation, contains a weak coupling to the “for-
ward” variable u at measurement locations. Note that the
strong constraint assumption removes the coupling of (11)
to the adjoint variables, but the Euler-Lagrange equations
are still coupled through the initial and boundary conditions
(12) to (14). In the adjoint technique this coupling is iterated
using a gradient descent procedure.
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Since the drag coefficient and the diffusion are allowed
to contain errors, the variation of the penalty function with
respect to these parameters must also be taken. This results
in the additional equations

T
Ca = Cay + Qcye, / ‘AT(0,1) u,dt, (18)
0

oA o
0z 0z’
for the wind drag coefficient and the diffusion parameter.

The addition of the two equations (18) and (19) makes the
system of Euler—Lagrange equations nonlinear.

A=A41—-Qane (19)

Representer Solution

The nonlinearity appearing in the Euler-Lagrange equa-
tions for parameter estimation problems suggests that some
kind of iterative procedure should be used. If the parameters
A and Cj; are given, the remaining Euler-Lagrange equations
are linear and can be solved exactly using a representer ex-
pansion. It is therefore proposed to iterate (18) and (19) and
to solve for each of the linear iterates using the representer
method.

Assume now that the forward and backward variables can
be expressed as

M

u=up+ > bpnlm, (20)
' m=1
M

A=Ap+ Y bnam. Q1)

m=1

The coefficients b, are amplitudes for the M influence func-
tions or representers, r,,(z,t). There is one coefficient for
each of the measurements. Here the forward variable con-
tains both a » and a v component and so will each of the
representers.

If expressions (20) and (21) are substituted into the Euler-
Lagrange equations, one first observes that the first-guess
solution, Ap = 0, is the solution of the homogeneous back-
ward model, while ur is a first-guess model solution with
AF = 0, i.e., the model solution found when no information
from the measurements is used.

The M representers are found by solving the initial value
problems

R .

ot 22 (AW) *Queam  (22)

with initial condition

rmlt:O = Qaa o Qyy, (23)
and boundary conditions
or
or,,
AE o = _QbeH * Q. (25)
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These equations are coupled to the adjoints of the represen-
ters, a.,,, which satisfy the “final” value problems

_Oom 4 a, = 9 (499m
ot 0z 0z (26)
+ Em[é(z - 22)(5(t - tz)],
with “final” conditions
amlt:T = o, (27)
and boundary conditions
dam =o. (28)

0z 2=0,z=—H

The equations for the representers and their adjoints are
now decoupled since the dependence to the forward variable
has been removed in (26). This has been done by choosing
b to satisfy the linear system

(R+w Hb=d- Llug], (29)
where the representer matrix R is defined as
R(:;,m) = Llrn); 30)

that is, R is constructed by measuring the representers. By
rearranging (29), one can write

b=w[d - L(ur + Z bnrm)] = wld — L(u)]. (31)

m=1

This expression can be used on the right-hand side of (15) to
decouple the Fuler—Lagrange equations.

The solution procedure for the representer method can be
summerized as follows. First, each of the representers is
calculated by a backward integration of (26)—(28) to get a.,,,,
followed by a forward integration of (22)+25) to get ry,.
Note that only the representer matrix is required to find b,
so only the “measurements” of the representers need to be
stored. The calculations of the M representers are entirely
independent of each other and may therefore be computed
very efficiently on a multiprocessor computer [Bennett and
Baugh, 1992]. When the representer matrix has been gener-
ated, the system (29) can be solved after a forward integration
for upg to calculate the residual between the measurements
and the first-guess solution appearing on the right-hand side
of (29). The coefficient vector b is then used in (15) to

find X by a backward integration of (15)+17), followed by a .

forward integration of (11)~(14) to find the inverse solution.
The total cost of the solution algorithm is the integration of
2 M + 3 initial value problems, and only one field as function
of (z,t) needs to be stored simultaneously.

It should be noted that the expression (20) for u does not
represent all arbitrary functions of = and ¢. However, all
observable fields can be represented by (20), and only the
unobservable fields have been rejected [see Bennert, 1992].
Thus the problem has been reduced to searching for the solu-
tion in an M -dimensional space spanned by the representers.

A posterior error covariance estimate can be calculated for
the solution by using
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Cuul(zi,t1, 22, t2) = I'(21,t1, 22, t2)
T 1! (32)
—r(zl,tl) (R+W— ) I‘(Zz,tz),

where I'(zy,t1,2,t,) is the representer or prior space-
time covariance function for the first-guess solution and

T (R+w™!) ~'r is the explained error covariance. Nor-
mally, only the variances are needed and I'(z,t, z,t) may
be estimated using statistical simulations. It should also be
mentioned that each of the representers can be expressed as

(33)

thus the representer method is equivalent to Gauss-Markov
smoothing in space and time [Bennett, 1992]. A comparison
of the representer method and the Kalman filter has been
given by Evensen [1994a] .

T = Ln[T);

Parameter Estimation

In the previous section it was illustrated how the Euler—
Lagrange equations for the weak constraint inverse formula-
tion could be solved exactly when A(z) and C were known.
When the parameters are allowed to contain errors, the in-
verse problem becomes nonlinear and therefore an iteration
will be used for (18) and (19) for A(z) and Cy. In each
iteration, the representer technique will be used to solve for
the corresponding inverse estimate.

The equations (18) and (19) were here iterated using a
gradient descent method, i.e.,

n+l _
crtl =y -

T
v <C‘7j - Cdo — chcd/ /\2;\/’11% +v§uadt) ,(34)
0

A" (2) = A™(2) —

(3%)

T
3 [sz) — Ao(2) + Qpp 0 L 3*”} ,

8z 0z

Note that the expressions inside the parantheses and brackets
are the actual gradients used in the gradient descent algo-
rithin. The constants v and 3 determine length of the steps
in the direction of the gradient in the parameter space and
have an important impact on the convergence. If chosen too
large, the new values for the parameters will be unphysical
and the method will probably diverge. If chosen too small,
the method will converge but slowly. Thus there is an opti-
mal value that provides the fastest convergence. The Newton
method was also examined and gave similar convergence.

On the other hand, the problem studied here is rather sim-
ple and the number of iterations is not crucial since only a
few CPU seconds are needed for each iteration. If the con-
vergence rate is important, as it will be for a larger problem
having a huge state space, then a more sophisticated method
should be used.

The equations (34) and (35) are now iterated to generate
new guesses Cg““ and A"t which are used to solve for
u,+) and A, using the representer technique described in
the previous section.

As pointed out by Bennett [1992], Yu and O’Brien [1991]
did not impose a smoothing constraint on the diffusion co-
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Table 1. Physical Parameters Used in the Twin Experiment

Symbol Description Value

T integration time 50 hours

At time step 6 min

H depth 40m

Az grid size 14m

f Coriolis parameter 1.3x 10755~

bE Ekman layer thickness 6.3m

Da density of air 12kgm™3

P density of water 1.025 x 10* kgm™3

efficient A(z). It was therefore not clear if there was any
difference in varying A(0) or Cy in the surface condition
(13), since A(z) may be discontinuous. However, here the
nondiagonal weights will ensure a smooth A(z). It is there-
fore expected that a vertical profile of the solution for u,
which is consistent with the measurements, will determine
the profile for A(z), while C; will adjust to provide the cor-
rect surface forcing. Here we also included an error term
in the actual boundary condition to account for errors in the
atmospheric wind data. Clearly, these error sources give rise
to a highly nonlinear problem, where multiple minima may
exist and a unique solution is not guaranteed.

depth (m)

depth (m)

depth (m)

depth (m)

time (hours)
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Example

Here a simple example will be used to illustrate the method
which is proposed for parameter estimation. A constant wind
withu, = (10 m s~!, 10 m s~!) has been used to spin up the
vertical velocity structure in the first-guess solution, starting
with an initial condition u(z,0) = o and then performing
50 hours of integration. The reference case, from which
velocity data are extracted, is generated by continuing the
integration for another 50 hours. Values for some of the
physical parameters are given in Table 1. Note that the
values for variables in the text and the tables are all given in
dimensiona! units.

By measuring the reference case and adding Gaussian
noise, eight simulated measurements of u were generated;
that is, a total of 16 measurements of v and v components
were used. The locations of the measurements are shown in
Figure 1.

All error terms are assumed to be unbiased, and the error
covariances were specified as follows:

2
Qua(21,2) = 7% exp {— (z‘ - 22) }I, (36)

G7
(38)

Quoto (1, 12) = 0, 6(t1 — &)1,
Quuvy (1, t2) = 07,.6(t1 — )1,

depth (m)

depth (m)

depth (m)

depth (m)

time (hours)

Figure 1. Solution from the identical twin experiment. The left and right columns contain the « and v
components, respectively, of (from top to bottom) the first-guess estimate ur, the reference case u, the
inverse estimate 4 and the error variance reduction. The contour intervals are 0.05 m s~! for the velocity
plots and 0.00006 m? s~2 for the error variance reduction. For all the plots the thick lines are the zero
contour, dotted lines denote negative values, and solid lines denote positive values. The measurement

locations are marked with an asterisk.
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Table 2. Dimensional Values of the Variances and the Decorrelation Lengths Used in the
Twin Experiment
Symbol Description Value
0,21 model error variance 1.0 x 107P¥ m?s™*
o2 initial error variance 0.0025 m* s~2
oh boundary error variance 3.0x 1079 m*s™*
Ohy boundary error variance 3.0x 107" m*s™*
o} measurement error variance 2.5 % 10™° m?s™2
o4 diffusion error variance 6.25x 108 m*s™2
0%, wind drag error variance 1.7x 1078
lq e-folding scale for model error covariance 1.06.

l. e-folding scale for initial error covariance 1.06.
la e-folding scale for diffusion error covariance 2.0

Qqq(zh t17 22, t2) =

2
o2 exp {— (z‘ - zz) }6(t1 — &)L, (39)
q

: 2
QAA(thZ):UEleXP{“ <z]lj422> }7 (40)

(1)
(42)

Here it has been assumed that the model and the boundary
errors are uncorrelated in time. This is convenient for com-
putational reasons, but for more realistic applications, such
a correlation should probably be included. Values for the
variances and the decorrelation lengths are given in Table 2.
The error variances all correspond to a 5-10% standard devi-
ation of the variables or terms they represent errors in. This
means that all first guesses and the model dynamics are as-
sumed to be reasonably accurate and they have all about the
same impact on the inverse solution. : Small perturbations
in the weights give only small perturbations in the inverse
estimate. However, large perturbation may cause problems;
for example, with zero weights on some of the first guesses,
the inverse problem may become illposed. The decorrelation
lengths are similar to the characteristic length scales of the
dynamical system. This ensures that the representers also
become smooth with similar length scales as the dynamical
solution.

To illustrate the solution procedure using the representer
method in more detail, the variables s, rs, and A and the
right-hand sides, Qg ® a5 and Qg4 ® A, are given in Figure
2 with » and v components in the left and the right column,
respectively. These plots demonstrate how the information
from the measurements is taken into account and influences
the solution. Measurement number five corresponds to the u
component at the location (Zs, Ts) = (—20.0, 25.0).

The top row shows the components of as, and it is clear
from (26) that the © component of a5 is forced by the § func-
tion at the measurement location. This information is then
propagated backward in time, while the « and v components
interact during the integration.

The o, are then used on the right-hand side of the forward
equation for the representer and also in the initial and bound-

2
QCdCd = aCda

N

ary conditions. The convolution Q4 ® s tends to smooth
the a5 field according to the covariance functions contained
in Qqq, as can be observed from the second row in Figure 2.

The representer rs is smooth and is oscillating in time
with a period reflecting the inertial oscillations described by
the dynamical model. Note that the representers will have
a discontinuous time derivative at the measurement location
since the right-hand side Qg, ® s is discontinuous there.
However, if a correlation in time was allowed in Qgq, then
Qqq ® as would be continuous and the representer rs would
be smooth.

After all the representers have been calculated and mea-
sured to generate the representer matrix, the coefficient b is
calculated and used in (15) to decouple the Euler—Lagrange
equations. The v and v components of A (Figure 2)illustrate
how the various measurements have a different impact de-
termined by values of the coefficients in b, which again are
determined by the quality of the first-guess solution versus
the quality of the measurements and the residual between the
measurements and the first-guess solution. After A is found,
the right-hand side in the forward model equation can be
constructed through the convolution Qg, @ A, and this field
is given at the bottom of Figure 2. Clearly, the role of this
term is to force the solution to smooth the measurements.

The first-guess, the reference solution, and the inverse
estimate are given in Figure 1. The reference solution is
regenerated quite well, even though the first-guess solution
is out of phase with the reference case and the measurements
do not resolve the time period of the oscillation. In fact, a
single measurement may suffice for reconstructing the cor-
rect phase since the corresponding representer will carry the
information both forward and backward in time, although
the errors will be larger with less measurements. Note that
the quality of the inverse estimate is poorest near the initial
time. This is probably caused by a poor choice of weights
for the initial conditions relative to the initial condition that
was actually used.

The estimation of the diffusion parameter A(z) is illus-
trated in Figure 3 , where the first-guess Ay(z) and the refer-
ence A(z) are shown together with the estimate A(z). The
weak signal below the Ekman layer makes it difficult to cor-

. rect an erroneous first-guess of the diffusion parameter in

the deep ocean. Note also that the estimate for A does not
coincide with the reference diffusion parameter but is located
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Figure 2. The (left) u and (right) v components of (top to bottom) as, Q,, ® s, 7, the adjoint A, and
Qg ® A from the identical twin experiment. The measurement locations are marked with an asterisk.

somewhere in between the first-guess Ay and the exact A at
most of the depths. In some places, however, the estimate

Estimated A
Reference A
First guess A: ------

depth (m)
)
S

0 0.0005 0.001
A (m?s™1)

Figure 3. The estimation of the eddy viscosity profile A
from the identical twin experiment.

0.0015 0.002 0.0025

is located to the left of both the first guess and the reference
diffusion. This is not unexpected for this nonlinear problem
where the minimum of the penalty function does determine
a both the inverse solution and estimated parameters simul-
taneously. Note that these are mutually dependent. The
minimizing solution is determined by the prescribed weights
and should be located within the corresponding error vari-
ances.

The estimation of the the wind drag coefficient Cj is shown
in Figure 4 , and the estimate is a value somewhere in be-
tween the first-guess and the reference value. It should at
this time be commented on that the estimated values for the
unknown parameters found by Yu and O’Brien [1991, 1992]
did not show any effect from the penalty of the first-guess
values. This indicates that zero weights were used for the
first guesses. What they actually did was to replace the
first-guess value with the current estimate in each iteration.
A different variational problem was therefore implicitly as-
sumed in each iteration, and they had in reality no penalty on
the first-guess estimates. They therefore allowed for every
arbitrary and nonsmooth function to be a solution for A(z).
Unless there is enough independent information contained
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Estimation of Cd

0.0014

0.0012 [ gpostateet

0.001 .

Iterations
Reference Cd ------
0.0008

Cd

0.0006

0.0004

0.0002

0

0 10 20 30 40 50 60 70 8 90
iterations
Figure 4. The estimation of the wind-drag coefficient Cy
from the identical twin experiment. The number of iterations
is given along the z axis.

in the measurements to close this problem, many solutions
may be found which interpolate the measurements and give
the value zero to the penalty functions.

Assimilation of LOTUS-3 Time Series

The representer implementation will now be examined
using the LOTUS-3 data set [Bowers et al., 1986] in a similar
setup to the one used by Yu and O’Brien [1991, 1992] . The
LOTUS-3 measurements were collected in the northwestern
Sargasso Sea (34° N, 70° W) during the summer of 1982.
Current m fixed at depths 5, 10, 15, 20, 25, 35, 50, 65, 75 and
100 meters measured the in situ currents, and a wind recorder
mounted on top of the LOTUS-3 tower measured the wind
speeds. The sampling interval was 15 min, and the data used
by Yu and O Brien [1991, 1992] were collected in the period
from June 30 to July 9, 1982. Here data from the same
time period are used. However, while Yu and O’Brien [1991,
1992] used all data collected during the 10 days, we have used
a subsampled data set consisting of measurements collected
at a 5-hour time interval at the depths 3, 25, 35, 50, and 75 m.
The reason for not using all the measurements is to reduce the
size of the représente‘r matrix R and thus the computational
cost. The inertial period and the vertical length scale are still
resolved, and it is expected that mainly small-scale noise is
rejected by subsamplmg the measurements.

The model was initialized by the first measurements col-
lected on June 30, 1982. The standard deviation of the
small-scale variability of the velocity observations was esti-
mated to be close to 0.025 m s~ and this value was used
to determine the error variances for the observations and the
initial conditions. A similar approach was also used for the
surface beundary conditions by looking at small-scale vari-
ability of the wind data. The model error variance and the
error variances of the two parameters were specified after
a few test runs to give a relatively smooth inverse estimate
which seemed to be nearly consistent with the model dy-
namics and at the same time was close to the observations
without over fitting them. Some of the physical parameters
used are given in Table 3, while values for the variances and
the decorrelation lengths are given in Table 4.

The Ekman model describes wind driven currents and in-
ertial oscillations only, while the measurements may also
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contain contributions from, e.g., .pressure-driven currents.
Therefore some drift in the measurements has been removed
from the deepest moorings as was also done by Yu and
O’Brien [1991, 1992] .

The results from the inverse calculation are shown in Fig-
ures 5 and 6 as time series of the u and v component of the
velocity at various depths. The inverse estimate is plotted
together with the full time series of the measurements. The
measurements which were used in the inversion are shown
as diamonds.

It is first of all evident that the inverse estimate is close to
the measurements at all times and depths and also at 10 m
where no measurements were assimilated. Both the ampli-
tude and phase are in good agreement with the measurements
at all depths. Note also that the inverse estimate is smooth
and does not interpolate the measurements; however, it is
close to the measurements at all depths. By a closer ex-
amination of the inverse estimate, it is possible to see that
the time derivative of the inverse estimate is discontinuous
at measurement locations. This is caused by neglecting the
time correlation in the model error covariances.

The posterior error variances Cyu(z,t, 2,t) can be cal-
culated from (32), and normally, the prior error variances
I'(z,t, z,t) are estimated from a statistical simulation, [e.g.,
Evensen, 1994b] . However, note that from (30) and (33),

R=ccT [T]. 43)

The use of direct measurements implies that the diagonal of
the representer matrix R will contain the error variances at
the measurement locations. Having a high density of mea-
surements and assuming a smooth prior error variance field
in space and time makes it possible to interpolate the prior er-
ror variances at measurement locations to the full space-time
grid. Thus the posterior error variances are readily calculated
without much computational effort.

In Figure 7, the prior and posterior error variances for the
u component of the horizontal velocity u at 5 m and 50 m
are shown. What may be observed is that the prior errors are
growing in time as a result of incorporating model errors. The
posterior error variances have the characteristic structure one
would expect from a smoother solution for linear dynamics,
with minimum values at the measurement locations [e.g.,
Bennett and Budgell, 1989] . The error estimates are given
for the final iteration in the estimation of the diffusion A and
the wind drag C; and are thus those corresponding to the
best estimates of the parameters.

Table 3. Physical Parameters Used in the LOTUS-3 Data
Assimilation Experiment

Symbol Description Value

T integration time 240 hours

At time step 30 min

H - depth 100 m

Az grid size 0.5m

f Coriolis parameter 0.8 x 10™* 57!

b Ekman layer thickness 2. 71 m

Pa density of air 12kgm™3

Pw density of water 1.025 x 10° kg m™>
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Table 4. Dimensional Values for the Variances and the Decorrelation Lengths Used in the
LOTUS-3 Data Assimilation Experiment

Value

5.0x 1072 m? s~*
6.25 x 107*m? s~
3.0x 1070 m* s
3.0x 1070 m*s™*
6.25 x 10™# m? s72
0.5x 10 8m*s™?
1.7 x 1078

2.26.

2.26.

5.06.
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Symbol Description

o’ model error variance

o2 initial error variance

aﬁo boundary error variance

Ohy boundary error variance

ol measurement eITor variance

o4 diffusion error variance

0%, wind drag error variance

lq e-folding scale for model error covariance

la e-folding scale for initial error covariance

la e-folding scale for diffusion error covariance
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Figure 5. Weak constraint inverse estimate (solid line), the time series of measurements (dashed lines),
and the subsampled measurements (diamonds) at 5, 10, and 25 m from the LOTUS-3 data assimilation
experiment. The u and v components (meters per second) are shown in the left and right columns,

respectively.
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Figure 6. Same as Figure 5, but for the depths 35, 50, and 75 m.
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Figure 7. The error variance for the « component of the inverse estimate at (left) 5 m and (right) 50 m in
the weak constraint case.
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Figure 8. Results of the estimation of the eddy viscosity
profile A from the LOTUS-3 data assimilation experiment.

The results of the estimation of the vertical diffusion pa-
rameter are shown in Figure 8. It generally decreases at all
depths from the first-guess profile, e.g., at the surface from
the first-guess value 0.0003 to 0.00035 m? s~!. The cor-
responding value found by Yu and O’Brien [1991] starting
from a first-guess of 0.00001 m? s~! was 0.0029 m? s~!.

The wind drag coefficient Cy converges rapidly from the
first-guess value 0.001 to the value 0.00068 as shown in
Figure 9. The value found by Yu and O’Brien [1991] was
0.00126, starting from 0.00134. '

There is a substantial difference in the values for the diffu-
sion coefficient and the wind drag obtained in the two works.
It should be noted that while Yu and O’Brien [1991] replaced
the first-guess values, Cy, and Ag(z), with the current es-
timate in each iteration of (18) and (19), these were kept
constant in our.calculations. Clearly, Yu and O’Brien [1991]
solved a different inverse problem in each iteration. Actu-
ally, it is not clear from their figures that their iterations did
converge.

By comparing our results for the diffusion parameter and
wind drag coefficient with results found by, e.g., Price et al.
[1987], who inferred an effective viscosity A = 0.006 m?
s~! by separating the wind-driven current from the measured
LOTUS-3 current and averaging over the whole period, it
may seem as if our final diffusion and wind- drag are too
small. Note that the inverse estimate for the model state is in
good agreement with the observations also in the deep ocean,
even if the estimated diffusion may be to small to produce the
correct velocities in a model simulation without assimilation.
Thus the observations in the deep ocean may account for the
use of a too low vertical diffusion coefficient. On the other
hand, the diffusion parameter is within reasonable values
given from simple turbulence closure schemes. A shear
profile estimated from the observations results in a typical
shear of 0.003—-0.004 s—! from the z = O m to z = —25 m;
then the shear increases to about 0.007 s~! from z = —25m
to z = —35 m, before it decreases to a much lower value at
greater depths. Using a shear S ~ 0.005 s~! and a diffusion
coefficient A ~ 0.00025 m? s~!, in the expression A =
£2S which relates shear and diffusion through the Prandtl
turbulence mixing length [Speziale, 1991], results in a value
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of the Prandtl mixing length of £ ~ 4.5 m, which is of the
same order as the characteristic Ekman layer thickness (see
Table 3).

For comparison a strong constraint inversion was per-
formed and the results are shown in Figures 10 and 11.
The final estimates of the diffusion A and the wind drag
Cy4 from the weak constraint inversion were used. Note
that the strong constraint inverse for a linear model is easily
solved for without any iterations simply by calculating the
representer solution with the model error covariance set to
ZETO.

It is clear from comparisons that the strong constraint so-
lution in the upper part of the ocean is in reasonable phase
with the measurements, as determined by the initial condi-
tions, while the amplitudes are not as good as in the weak
constraint inverse. The only way the amplitudes can change
when the model is assumed to be perfect is by vertical trans-
fer of momentum from the surface. This is seen to work
reasonably well near the surface, while in the deeper ocean,
there is hardly any effect from the wind stress and the strong
constraint inverse solution is also far from the measurements.
The solution is actually rather close to a sine curve represent-
ing the pure inertial oscillations. The strong constraint results
from Yu and O’Brien [1992] are similar to ours and also have
the same problems with amplitude and phase. These results
indicate that model deficiencies, such as neglected physics,
should be accounted for through a weak constraint variational
formulation to ensure an inverse solution in agreement with
the measurements.

Summary

A combined state estimation and parameter estimation
problem has been formulated for a one-dimensional Ekman
model. The formulation of the inverse problem and the so-
lution method which is based on the representer method has
been outlined and discussed in some detail. The inclusion
of unknown physical parameters as control variables yields
a nonlinear inverse problem even if the model itself is lin-
ear. It has been illustrated how an iterative technique in
combination with the representer method can be used to es-
timate poorly known parameters in the model. This was
done by defining an iteration for the unknown parameters in

0.0014

0.0012

0.001

0.0008
\

0.0006

Cd

0.0004

0.0002

0 5 10 15 20 25 30 35 40 45
Iterations

Figure 9. Results of the estimation of the wind-drag C; from
the LOTUS-3 data assimilation experiment.
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Figure 10. Strong constraint inverse estimate (solid line), the time series of measurements (dashed
lines), and the subsampled measurements (diamonds) at 5, 10, and 25 m from the LOTUS-3 assimilation
experiment. The u and v components (meters per second) are shown in the left and right columns,
respectively.
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Figure 11. Same as Figure 10 but for the depths 35, 50, and 75 m.
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Figure 11. (continued)

the Euler—Lagrange equations and then solving each linear
iterate exactly using the representer method. In addition to
illustrating the method on a simple twin experiment, a com-
parison was also made with the strong constraint solution
found by Yu and O’Brien [1991, 1992], where measure-
ments from the LOTUS-3 data set were assimilated. It was
shown that the weak constraint inverse solution was in good
agreement with the observations and that it was superior to
the strong constraint inverse.
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