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Abstract 

We have studied phospholipase D (PLD) in human blood platelets.  This enzyme hydrolyzes 

phosphatidylcholine to phosphatidic acid (PA) and choline, where PA is considered to be the 

main effector of PLDs function in cells.  PA is reported to function as a second messenger, 

involved in membrane protein recruitment and membrane fusion processes, and PLD is proposed 

to play a role in signalling, intracellular transport and cytoskeletal rearrangements in cells. The 

role and regulation of PLD in platelets are largely unknown. 

In this study we report that both isoforms of PLD, PLD1 and 2, are present in platelets. In resting 

platelets the two isozymes were localized all over the cells and upon addition of the platelet 

agonist thrombin they rapidly translocated to the membrane area. We showed that thrombin-

induced PLD activity was enhanced by extracellular Ca2+ and autocrine stimulation, notably by 

ADP and binding of fibrinogen to its receptor. The thrombin-induced translocation was 

independent of Ca2+, autocrine stimulation or PA from the PLD reaction, thus a primary 

thrombin effect.  

We found that the platelet antagonist PGE1 was able to induce a modest PLD activity at the same 

time as it inhibited PLD activation by thrombin. Further investigations using forskolin, inhibitors 

and specific activators of protein kinase A (PKA) and G, indicated that thrombin-induced PLD 

activity was inhibited by PKA. We observed that PLD1 and PLD2 had different regulation 

mechanisms in platelets as PKA/forskolin only inhibited PLD1 translocation by thrombin and 

also as phorbol 12–myristate 13-acetate (PMA), a direct activator of protein kinase C (PKC) 

only was able to induce PLD1 translocation. We wanted to study possible interactions between 

PLD and PKC isoenzymes by immunoprecipitation as previously demonstrated in C3H10T1/2 

fibroblasts. We observed co-precipitation of both PLD1 and 2 with all PKC isoenzymes 

investigated in both stimulated and unstimulated  platelets. PKCα showed a constitutive 

association with both PLD1 and 2 independent of the agents added (thrombin, PMA, forskolin or 
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PGE1), while the association between PLDs and PKC βI, βII and δ varied with the different 

conditions. PLD1 and PLD2 associated differently with the PKC isoenzymes, again indicating 

different regulation mechanisms. We also report that PLD1 and 2 associated with PLCβII, which 

is believed to be upstream of PKC in the platelet activation pathway mediated by thrombin. Our 

findings that PLD1 and 2 associated with different PKC isoforms believed to be involved in 

distinct different mechanisms in platelets, indicate different roles for the PLD isozymes. PLD in 

platelets is thought so far to be implied in aggregation and secretion; we suggest in this work by 

correlation-studies, however, that PLD might be involved in lysosomal secretion and F-actin 

formation. 
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Abbreviation list 
 
αIIbβ3 An integrin 

12-HETE 12-Hydroxyeicosatetrenoate 
14-3-3 A Binding protein 

AC Adenylyl cyclase 
Akt Protein kinase B 
aPKC Atypical protein kinase C 
ARF ADP- ribosylation factor 
BAPTA 1,2-bis-(o-aminophenoxy)ethane-N,N,N’,N’-

tetraacetic acid 
CP/CPK Creatine phosphatase/creatine phosphatase 

kinase 
cPKC Conventional protein kinase C 
DAG Diacylglycerol 
EGF Epidermal growth factor 
EGTA Ethylene glycol tetraacetic acid 
ERK Extracellularly regulated kinase 
FAK Focal adhesion kinase (non receptor TK) 
Fgr A protein tyrosine kinase 
Fyn A protein tyrosine kinase 
GEF Guanine nucleotide exchange factor 
GP Glycoprotein 
GPCR G protein-coupled receptor 
Grb Growth factor-binding protein 
GTPγS Guanosine-5´-O(3-thio)-triphosphate 
hPLD Human phospholipase D 
IAS Inhibitor of autocrine stimulation 
ITAM Immunoreceptor tyrosine-based activation 

motif 
Lyn Protein tyrosine kinase 
MEK Mitogen activated protein kinase (MAPK)/ 

ERK kinase 
MLC Myosin light chain 
MLCK Myosin light chain kinase 
mTOR Mammalian target of rapamycin 
nPKC Novel protein kinase C 
PA Phosphatidic Acid 
PAK   Serine/threonine kinase p21-activated kinase 

(Rac/Cdc42 effector) 
PAR Proteinase activated receptors 
PC Phosphatidylcholine 
PDGF Platelet-derived growth factor 
PE Phosphatidylethanolamine  
PH Pleckstrin homology domain 
PI Phosphatidylinositol 
PI3K Phosphatidylinositol 3-kinase 
PI4P 5K Phosphatidylinositol 4-phosphate 5-kinase 
PIP2 Phosphatidylinositol 4,5- bisphosphate 
PIP3 Phosphatidylinositol 3,4,5 trisphosphate 
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PKA Protein kinase A 
PKC Protein kinase C 
PKG Protein kinase G 
PLA2 Phospholipase A2 
PLC Phospholipase C 
PLD Phospholipase D 
PLD-PA Phosphatidic acid derived from the 

phospholipase D catalyzed reaction 
PMA Phorbol 12–myristate 13-acetate 
PPI Polyphosphoinositides 
PTB Phosphotyrosine binding 
PtdBut Phosphatidylbutanol 
PtdEth Phosphatidylethanol 
PTK Protein tyrosine kinase 
PX Phox consensus sequence 
PYK2 /RAFTK Proline-rich tyrosine kinase/ related adhesion 

focal tyrosine kinase 
Ral Ras-related protein 
Rap Ribosomal acidic P proteins kinase 
Raf Serine/threonine kinase  
Ras Rat sarcoma virus 
RGDS The peptide Arg-Gly-Asp-Ser 
Rho Ras homology 
ROCK Rho kinase  
rPLD Rat phospholipase D. 
SH Src homology domain 
Sos Son of sevenless 
Src Non receptor protein tyrosine kinase 
Syk A tyrosine kinase 
TXA2 Thromboxane A2 
Vav A Rho/Rac family guanine nucleotide 

exchange factor and adaptor protein 
vWF von Willebrand factor 
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1. Introduction 

 

1.1. Phospholipase D (PLD)  

 

1.1.1.  Catalysis and structure 

PLD (EC 3.1.4.4) is a phosphodiesterase and was first demonstrated in mammalian tissues in 

1975 [1]. The enzyme is stimulated by neurotransmitters, cytokines, hormones, growth factors 

and other extracellular signals [2, 3]. The major substrate for PLD is phosphatidyl choline (PC) 

which is hydrolyzed to phosphatidic acid (PA) and choline, but phosphatidyl ethanolamine (PE) 

and phosphatidyl inositol (PI) may also be substrates [4, 5]. A second substrate in the 

phosphatidate-producing PLD reaction is water (Figure 1). However, if the PLD reaction is 

carried out in the presence of a primary alcohol like 1-butanol or ethanol, the alcohol is the 

preferred substrate; giving phosphatidyl butanol (PtdBut) or phosphatidyl ethanol (PtdEth) as the 

products. This reaction is referred to as the PLD transphosphatidylation reaction and is regarded 

highly specific for PLD [6] (Figure 1). 
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Figure 1. PLD-catalysed hydrolysis and transphosphatidylation of PtdCho. R1 and R2 are hydrocarbon 

chains of long fatty acids.  

 

Two mammalian PLD isoforms exist, PLD1 (120 kDa) [7] and PLD2 (105 kDa) [8, 9], which 

have about 50 % sequence identity [8]. PLD1 exists in two splice variants (PLD1a and PLD1b) 

[10, 11], while PLD2 exists in four splice variants [12].  

PLD is member of a PLD superfamily containing the highly conserved HxKx4-Dx6GSxN motif 

(HKD motif) [7, 13, 14] (Figure 2). Members of this family containing two copies of the HKD 

motif include mammalian and plant PLD, cardiolipin synthase and phosphatidylserine synthase, 

while a bacterial endonuclease (Nuc) and a helicase-like protein from E.coli contain a single 

copy of the HKD motif [13, 15].  

Choline CH3
R1R1

R2

O
HO

CH3N+ CC
O C

CH3(CH2)2

O O

+

O-

O
P OH

O-

O
OP

PtdH
PtdBut

X = (CH2)2 CH3X = H

CH3
OOOO

O

R2

C

O

O-

O

P O
O PtdChoCH3N+

CH3

CH3

TransphosphatidylationHydrolysis
PLD

X
O

H

R1

O
C

O

O

R2

C

O



 14 

Sung et al. [16] reported that the HKD motifs and a serine at the position 911 were critical for 

PLD activity, and suggested a two-step catalytic mechanism involving the two HKD motifs and 

a phosphoserine intermediate. Gottlin et al. [17] have presented evidence for a phosphohistidine 

intermediate in the phosphate (oxygen)-water exchange reaction catalyzed by the endonuclease 

Nuc. Both the crystal structure of Nuc [14] (dimer) and mutagenesis studies of Yersinia pestis 

murine toxin [15] indicate that two HKD motifs lie adjacent to one another, forming a single 

putative active site. It is also shown that the N- and C- terminal of rPLD1 can associate in vivo 

involving the conserved HKD motifs, and that the association is essential for catalytic activity 

[18], thus indicating that the two domains work together in forming an active site also in 

mammalian cells. 

Human PLD1 (hPLD1) does not contain phospho tyrosine binding (PTB), Src homology (SH) 2 

or SH3 domains and only a poorly defined pleckstrin homology (PH) domain in contrast to the 

various forms of phospholipase C (PLC) [7, 19]. 

Phox consensus sequences (PX motifs) is identified as a phosphatidylinositol binding domain 

[20]. Its function is critical for the mammalian PLD enzyme [21]. The PX motif of PLD1 have 

been reported to specifically interact with phosphatidylinositol (3,4,5)-trisphosphate (PIP3) and is 

suggested to mediate signal transduction via ERK1/2 [22], while the PLD2 PX domain is 

reported to be involved in protein kinase C (PKC)ζ activation by PLD [23]. Recently, it was 

shown that PLD may function as a GTPase-activating protein (GAP) through its PX motif which 

activates dynamin and accelerates EGF-receptor endocytosis, identifying a novel role for PX 

motifs [24]. The PH domain binds to phosphatidylinositol (4,5)-bisphosphate (PIP2) and is 

important for PLD regulation and localization [25], a phosphoinositide-binding motif that 

mediates activation of mammalian phospholipase D isoenzymes has also been identified [26], 

and both domains have been suggested to be involved in membrane targeting and catalysis by 

PLD [27]. 
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Figure 2. Domain organization of PLD. Roles of some PLD1 and PLD2 sequences. The loop sequence is 

unique to PLD1 while the PX (phox), PH-like domain (PH), CR (conserved regions), HxKx4Dx6GSxN motifs 

(HKD motifs) and CT carboxyl terminus are found in both PLD isozymes. Interaction sites for PKC, Rho, PIP3 

and PIP2 are as indicated. 
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containing the PH domain [28], but not for activation by ADP-ribosylation factor (ARF)  and 

RhoA. There is also evidence for the N-terminal hPLD1b involvement in actin-PLD interactions 
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experiments [16] that it is almost as critical as the HKD motifs. Conserved region I has some 

critical position for PLD function, whereas others appear to be dispensable [16]. The loop region 

that is unique for PLD1 has been shown to mediate inhibition of the enzyme [21]. The carboxy 

terminus has been shown to be intolerant to modification, thereby important for enzymatic 

activity [21]. It is also shown that RhoA interacts whit this part of the PLD1 enzyme [30]. Sung 

et al. [21] showed that the NH2-terminal 308 amino acids are necessary for the characteristic 

high basal activity of the PLD2 isoform.  

There is evidence that PLD1 is glycosylated in vivo. However, PLD1 is not an integral protein, 

and a role for the glycosylation in its membrane association would be unusual [31]. 

 

1.1.2. Regulation 

A large number of agonists as mentioned above increase the activity of PLD in many cells and 

tissues, which implies that different mechanisms may be involved in the regulation of PLD. 

Many of these agonist acts through receptors coupled to the heterotrimeric G proteins or through 

receptors with tyrosine kinase activity. In either case it is clear that the signals caused by 

activated G proteins, tyrosine kinase activity or autophosphorylation of the receptors must be 

transmitted in some way to the PLD isoenzymes. Since most receptors coupled to G proteins or 

possessing tyrosine kinase activity are capable of inducing significant PIP2 hydrolysis and 

thereby PKC activation, PKC has been proposed to mediate many of these signals. However, 

PKC activation cannot entirely explain the actions of these agonists on PLD, and PLD activity 

has also been shown to be regulated by small G proteins, PIP2, Ca2+, protein tyrosine kinases 

(PTKs) and other kinases. 

In vitro PLD1 has a low basal activity and is readily activated by PKC, ARF and Rho family 

members, while in contrast PLD2 shows a constitutive high basal activity as mentioned above.  
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1.1.2.1. PKC 

Tumour-promoting phorbol esters such as phorbol 12-myristate 13- acetate (PMA) stimulate 

PLD in a large number of tissues and cell lines [32]. This indicates that the enzyme is regulated 

by PKC and this is supported by numerous studies showing that specific and non-specific 

inhibitors of PKC partly or totally inhibits the agonist-induced stimulation of PLD in many cell 

types (for review see Exton, [33]). 

The loss of PLD activation by inhibiting PKC indicates that PLD is activated downstream of 

PKC. It was shown that overexpressing PKCα in Swiss/3T3 cells gave a constitutively high PLD 

activity [34], which could be further increased by the addition of both PMA and PDGF. A 

different approach was used in Madin–Darby canine kidney cells [35], where depletion of PKCα 

and PKCβ by the use of antisense cDNA decreased the activity of PLD in these cells.                                            

The mechanism of activation by PKC could be expected to involve phosphorylation of PLD, but 

there is some controversy concerning this matter. Min et al. [31] have shown in vitro that rPLD1 

can be directly phosporylated by PKCα and βII, but that the phosphorylation inhibits the PLD 

activity. This has also been shown for PLD2 phosphorylation by PKCα [36]. Further studies 

propose a dual mechanism involving both phosphorylation and protein-protein interactions [37]. 

rPLD1 overexpressed in Sf9 cells is shown to be serine/threonine phosphorylated in response to 

PMA treatment [38]. Kim et al. [39] suggest that phosphorylation by PKCα plays a pivotal role 

in PLD1 regulation in vivo and identified serine 2, threonine 147 and serine 561 as 

phosphorylation sites, but the physiological significance of this findings remain unclear. Others 

[11, 40] states that rPKC stimulates PLD in the absence of ATP and that PLD activation is 

independent of PKC kinase activity. This indicates that PKC regulates PLD activity through 

direct molecular interactions. This hypothesis is supported by PMA dependent co-

immunoprecipitation of PKCα and PLD1 [41]. We also found co-immunoprecipitation of PKCα 

with both PLD1 and 2 in C3H10T1/2 fibroblast, and the co-precipitation was independent of 
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PLD/PKC activation by PMA/PDGF [42]. Coelution of the regulatory domain of trypsinated 

PKCα with stimulatory PLD activity indicates that this domain contains a site for PLD 

complexation [40]. In Swiss 3T3 fibroblasts PLD was found to be associated with both the 

PDGF-receptor and PKCα, the association was independent of addition of vanadate, a tyrosine 

phosphatase inhibitor [43]. If protein-protein interactions is a major mechanism by which 

conventional (c)PKC activates PLD, then one could believe that translocation of cPKC to 

membranes containing PLD activity would be sufficient for PLD activation. Kim et al. [44] have 

found that upon treatment with PMA, PKCα translocates from cytosol to the membrane fraction 

where PLD1 also resides in the 3Y1fibroblast cells. It has also been reported that PKCα 

translocates to the perinuclear region to activate PLD1 [45] and previously by the same group 

that the initial activation of PLD1 by PMA was highly correlated with the binding of PKCα, and 

again that phosphorylation of  PLD1 was associated with inactivation of the enzyme [46]. Most 

studies concern PLD and cPKCs, but lately it has been reported that also novel PKC isoforms 

can participate in the activation of PLD [47] and there are increasing evidence that PLD-PA 

might be involved in activation of atypical PCKs [48].  

Thus, the evidence is strong for direct PLD/PKC interactions; however, the exact activation 

mechanisms seem complex. There are discrepancies in the reported mechanisms involved and 

probably involvement of different mechanisms in order of involvement of different isoenzymes, 

subcellular localization and function, and yet unknown factors such as a 220 kDa protein that 

also co-immunoprecipitates with PLD/PKC [38] can not be excluded. 
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1.1.2.2. Small G proteins 

The requirement for protein factors from both the plasma membrane and the cytosol for 

obtaining full PLD activity were shown amongst others by Olson et al. [49].  

The protein factors have been identified as small monomeric GTPases like Rho [50] and ARF 

[51] belonging to the Ras superfamily. Synergistic interactions between PKC, ARF and Rho in 

activating PLD have been reported [11, 40], suggesting that these three classes of regulators 

interact with different sites on the enzyme. 

The ARF-family consists of small proteins, where Sar1, ARF1 and ARF6 are the best-

characterized members. ARF-family members are involved in membrane traffic and in 

organizing the cytoskeleton as reviewed [52].  Brown et al. [51] identified the ARF that activated 

PLD to be ARF1 and ARF3, and the myristoylated rARF1 was found to be a better activator of 

PLD than the non-myristoylated form. However, PLD can be activated by all six members of the 

ARF-family [53, 54]. Purified enzymes of both PLD1 splice variants are highly activated by 

ARF1 [11]. In vitro studies of PLD2 have shown that its high basal activity was largely 

insensitive to ARF and Rho [8, 9]. However, it has been shown that hPLD2 can be activated by 

ARF [55], although to a much lesser extent than that seen with PLD1. PLD activity found in 

cytosol from HL60 cells was also regulated by ARF, whereas the Rho proteins RhoA and Cdc42 

were ineffective [56]. However, PLD activity found in the cytoskeleton from the same cell line 

[57] required both ARF1, a Rho-family member and PKC for full activity. Observations that 

ARF translocates from the cytoplasma to the membrane is associated with observations of 

increased PLD activity, which suggest that an association of ARF with the membrane is 

necessary for PLD activation [58, 59]. Kim et al. [60] have reported that RalA and ARF1 

synergistically stimulated PLD1 activity, and that both RalA and ARF1 interact directly with 

PLD1. RalA has also been reported to control calcium-regulated exocytosis by interacting with 

ARF6 dependent PLD1 [61]. The interaction site of PLD with ARF has been suggested to be in 
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the carboxyl terminus region of PLD [21]. Most studies identify ARF1 and ARF6 as involved in 

PLD regulation. ARF1 is localized to the Golgi complex and is required for proper Golgi 

structure and function while ARF6 localizes to the plasma membrane where it may be involved 

in vesicular transport and organization of the actin cytoskeleton [52]. PLD-PA is reported to be 

involved in vesicle transport from ER to Golgi [62], and PLD is reported to be involved in 

intracellular transport [63-65] and actin remodeling [29, 66-68]. However, it should be 

mentioned that ARF also can be involved in PIP2 synthesis as reviewed [52], which is important 

in PLD activation as discussed later. 

The Rho-family regulates cell morphology, cell cycle progression, gene transcription and cell 

transformation and comprises now 20 family members in mammalian cells, where the most 

studied are Rac1, Cdc42 and RhoA [69]. Initial evidence for a Rho family member to be required 

for PLD activation came from studies employing Rho-GDP dissociation inhibitor (GDI) [70]. 

Rho-GDI caused a nearly complete inhibition of PLD activation by GTPγS in human neutrophil 

membranes. The activation of PLD could be restored in Rho-GDI treated membranes by the 

addition of RhoA and to a lesser extent by Rac1 and CdC42 [56]. As in the case of ARF, 

agonist-induced PLD activation is associated with RhoA translocation to the membrane [71]. 

The characterization of PLD activation by muscarinic stimulation of HEK cells transfected with 

m3mACh3, demonstrates that both ARF and Rho are involved in receptor-PLD coupling [59, 

72]. Such synergism suggests that ARF and RhoA interact with the same PLD molecule. RhoA 

is reported to interact with the carboxyl terminus of PLD1 [16, 30]. There exist a myriad of 

possibly indirect Rho PLD activation mechanisms where one is via PIP2 [73].  

 

1.1.2.3. PIP2 

Brown et al. observed in 1993 that PIP2 stimulated mammalian PLD and this has been confirmed 

in several other studies, and PIP2 is now generally included as a cofactor to in vitro PLD-assays. 
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The addition of neomycin, an aminoglycoside antibiotic that binds PIP2, was shown to inhibit in 

vitro PLD activity in rat brain membranes [74]. Then Pertile et al. [75] showed that an inhibitory 

antibody to phosphatidylinositol 4-kinase reduced the levels of PIP2, with a coincident decline in 

GTPγS-stimulated PLD activity, PIP2 was suggested also as an in vivo regulator of PLD activity. 

It is reported that PLD1a and PLD1b are activated by both PIP2 and PIP3 whereas other acidic 

phospholipids were ineffective stimulators [11]. It is also reported that both hPLD2 [55] and 

rPLD2 [8] have a requirement for PIP2. As already mentioned PLD’s PIP2-binding sites can be 

involved both in PLD catalysis and localization [76].  

 

1.1.2.4. Ca2+-ions 

Although Ca2+-ions can stimulate the activity of certain PLD isoforms, the concentration required 

are often well above the physiological range (for review see Exton, [33]), or the stimulation is 

not observed in the presence of physiological Mg2+ concentrations [11]. However depletion of 

cytoplasmic Ca2+-ions by treatment with chelators such as EGTA or BAPTA results in inhibition 

of PLD activation by various agonists [33]. Since Ca2+-dependent proteins like PKC regulate 

PLD, it is unlikely that Ca2+-ions directly control the PLD enzyme. 

 

1.1.2.5. Inhibitory factors  

Several proteins have been reported to inhibit PLD activity [77, 78], some of those identified are 

the cytoskeletal protein fodrin [79], the clatrin assembly protein AP3 [80] and synaptojanin [81], 

where both fodrin and synoptojanin acts by decreasing the availability of PIP2 [81, 82]. 
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Ceramides (C6 and C2) inhibit PLD activity in agonist- or PMA-treated cells [83-86] and also 

block the stimulation of PLD by GTPγS in cell extracts with PMA, ARF or RhoA [86, 87]. 

Ceramides also inhibit the translocation of ARF, RhoA and Ca2+-dependent PKC, so that the 

inhibition of PLD activity by ceramides could be due to these effects. 

It has also been reported that the βγ subunits of heterotrimeric G proteins can inhibit both PLD1 

and 2 in vitro and PLD activity in vivo in MDA-MB-231 cells [88]. 

The inhibitory factors explain why investigators have had problems with determining PLD 

activity in crude cells and extracts and leaves the possibility that negative regulation can play an 

important role in PLD control mechanisms. There are no known specific PLD inhibitors in intact 

cells. 

 

1.1.2.6. Other phosphorylation-dependent mechanisms 

There is considerable evidence that soluble tyrosine kinases can activate PLD [89, 90]. Slaaby et 

al. [91] have shown that PLD2 complexes with the EGF-receptor and undergoes tyrosine 

phosphorylation at a single site, identified to Tyr-11 in EGF-stimulated HEK293 cells. Min et al. 

[43] have, as mentioned above, reported a constitutive association between the PDGF-receptor 

and PKCα in H2O2-stimulated Swiss 3T3 cells. This stimulation also showed a concentration- 

and time-dependent tyrosine phosphorylation of rPLD that coincided with PLD activation. The 

oncogenic tyrosine kinase v-src has been reported to activate PLD in a PKC-independent manner 

[92]. In RBL-2H3 cells PLD2, but not PLD1, is phosphorylated through the Src kinases Fyn and 

Fgr, and that this phosphorylation appears to regulate PLD2 activation and degranulation in 

FcεRI- stimulated cells [93]. The same group also shows that protein kinase A (PKA), 

Ca2+/calmodulin-dependent kinase II and PKC synergistically regulate PLD1 and 2 and secretion 
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[94]. A calmodulin-dependent kinase has also been reported in the signaling pathways for PLD 

activation in renal epithelial cells downstream of Gα12/13/Rho/F-actin [95]. PKA is reported to 

act both by stimulating and inhibiting PLD activity [96-100], notably indirectly by inhibiting 

RhoA membrane translocation [100-102] or activation via ERK1/2 [99]. 

 

1.1.3. PLD localization 

The subcellular localization of PLD seems to differ in cells (for review, see [2, 3]). In general, 

PLD1 is often found in perinuclear membrane structures while PLD2 is found at the plasma 

membrane, but PLD1 has also been reported to be present in the plasma membrane area. In fact, 

several groups report translocation of PLD to the plasma membrane upon cell stimulation [103-

105] and there is also evidence of PLD1 recycling between the plasma membrane and 

intracellular vesicles [27], which might explain the varying reports of localization. It is also 

thought that the different locations of PLD determines the function of the enzyme [2].  

 

1.1.4. Physiological roles  

Degradation of cellular membrane phospholipids by phospholipases alters the composition and 

properties of the membrane such as charge, packing and fluidity which influence activities of 

membrane-associated proteins [106]. Phospholipid degradation, which also produces changes in 

membrane structure, therefore represents means to modulate and initiate signal transducing 

processes in addition to the cellular messengers produced. 

The main effector of PLD activity is PA. PA may act as a signal transducer by direct interactions 

or as protein membrane recruitment site. PA production has been shown to be important for 
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vesicle transport and cytoskeletal rearrangements, and PA can also be further metabolized to 

diacylglycerol (DAG) and lyso-PA. 

PA is reported to modulate many enzymes and proteins in vitro [32, 107, 108]. Potential targets 

of PA include neutrophil NADPH oxidase [108], GAP [109], PLCγ [110], PKCζ [111], 

phosphatidylinositol 4-phosphate 5-kinase (PI4P 5K) (type I) [112], mammalian target of 

rapamycin (mTOR) and Raf-1 kinase [113]. 

The role of PLD in mitogenesis and DNA synthesis has been demonstrated in PDGF-stimulated 

Balb/c 3T3 cells [114]. The mitogenic effect of PA has been explained [115] by its ability to 

inhibit the activity of GAP [109], which functions to turn off the Ras monomeric GTPase [116]. 

We have, however, demonstrated that PLD activation is involved in PDGF-induced ERK1 

activation and c-fos expression [42], suggesting other mechanisms for PLD involvement in 

mitosis. The role for PLD in mitogenic pathways has been reviewed and also places Raf-kinase 

and mTOR as potential downstream targets [117]. 

The role of PLD-PA in regulating PI4P 5K which produces PIP2 has emerged as a key 

downstream event of PLD activity [2, 118]. PI4P 5K appears to be linked to many of the same 

cellular functions and small G proteins as PLD. PLD has a definite role in vesicular trafficking 

through its association with small G proteins [112] and possibly also PIP2, which as discussed 

above, might regulate both PLD localization and catalysis. The role of PIP2 and small GTPases 

in PLD signaling has recently been reviewed [119]. It is hypothesized that the co-regulation 

between PLD/PA and PI4P 5K/PIP2 leads to a local and explosive generation of these lipids with 

signaling and possibly fusogenic properties, which may then govern signal transduction and 

especially membrane trafficking and changes in the actin cytoskeleton. It is reported that the 

interaction of PLD1/ARF1 is the selective one in contrast to the binding of PI4P 5K/ARF, and it 

has been suggested that the PLD/ARF binding is the critical one in the formation of optimal 

triplets of ARF/PLD/ PI4P 5K [120]. 
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Experiments using inactive PLD mutants and RNA interference can indicate that the PLD 

isoforms may have different roles in cells with PLD1 suggested involved in agonist- induced 

secretion/exocytosis, [64, 105, 121], cell adhesion and migration [122, 123], while several 

reports places PLD2 in regulating endocytosis and especially recycling of membrane receptors 

[124-127]. 

Furthermore, dephosphorylation of PA by phosphatidate phosphohydrolase gives DAG, which is 

a potential PKC activator [128].There is substantial evidence for a sustained production of  DAG 

generated via PA [129], whether this DAG can activate PKC isoenzymes are disputed as 

reviewed [48]. PA generated by the PLD reaction, is also a substrate for PLA2, which generates 

free fatty acids and lyso-PA. Lyso-PA has been shown to be an important extracellular signal 

produced by activated platelets and other cell lines [130, 131]. However, the production of lyso-

PA from PLD derived PA remains to be demonstrated in vivo. Taken together, the role for PA as 

a pre-cursor for lipid-signaling molecules needs further illumination.  

 

1.1.5. PLD in platelets 

In the presence of ethanol, thrombin induces formation of PtdEth in human platelets, which 

demonstrates that a physiological agonist can activate PLD in these cells [132]. There is also 

evidence for PLD activation by other platelet agonists [133-135] and different activation 

mechanisms have been proposed:  

The thrombin-induced activation of PLD is markedly inhibited by ADP scavengers (apyrase, 

phosphocreatine-creatine kimase) [136, 137] while ADP itself does not activate platelet PLD 

[133, 136], suggesting that secreted ADP amplifies the thrombin-induced PLD activation, and 

that thrombin and ADP activates PLD in a synergistic manner. The thromboxane mimetic 

U46619 also activates PLD in an ADP-sensitive manner [136]. The particulate agonist collagen 
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gave more activation of platelet PLD than thrombin, and in a thromboxane-insenstive manner; 

choline was released in parallel with aggregation [133].  Sphingosine, a PKC inhibitor, inhibited 

both thrombin and collagen-induced activation of PLD, aggregation and ATP secretion in a 

parallel manner [133]. In contrast, only a slight inhibition of thrombin-induced PLD activity by 

the PKC inhibitor staurosporine was found in an other study, which estimated that 13% of PA 

produced in the thrombin-platelet activation originated from the PLD reaction, which was 

thought to be stimulated by intracellular mobilization of Ca2+ [134]. We reported that addition of 

extracellular Ca2+ potentiated thrombin-induced PLD activity, while extracellular Ca2+ alone was 

unable to induce PLD activity [137]. 

In permeabilised platelets the GTPγS-induced formation of PA paralleled serotonin secretion in 

platelets, suggesting involvement of a G protein in dense-granule secretion and PLD activation 

[138]. Using quercetin, a flavonoid shown to inhibit platelet activity [139-143], dense-granule 

secretion and PLD activity was inhibited in permeabilised platelets [144]. However, the PLD 

activation seemed to be a more slow process than dense-granule secretion and addition of 

exogenouse PA alone had no effect, indicating that PLD is not essential for dense-granule 

secretion, but a modulatory role was proposed as was also the case for PLC and PLA2 activities 

[144]. Both thrombin- and GTPγS- induced activation of PLD in intact and permeabilised 

platelets, respectively, are markedly inhibited by a variety of protein tyrosine kinase inhibitors, 

suggesting involvement of both G proteins and protein tyrosine phosphorylation, particularly 

pp60src, in the activation mechanism(s) [145]. Prevention of platelet aggregation by blocking 

fibrinogen binding to integrin αIIbβ3 by RGDS, or use of platelets from a thrombosthenic patient 

lacking this integrin, did not prevent PLD stimulation by thrombin or PMA, while the specific 

PKC inhibitor Ro-31-8220 completely blocked PLD activation [135]. In contrast, we recently 

found that RGDS, which prevents fibrinogen binding, could inhibit thrombin-induced PtdEth 

formation in platelets pre-labeled with [3H]arechidonic acid [137], and previously PLD 

activation in platelets by high density lipoprotein (HDL3) has been reported to depend on 
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ligation of integrin αIIbβ3  [146] indicating that fibrinogen binding to integrin αIIbβ3 can be 

important for activation of PLD in platelets. 

Others have shown that platelets possess a specific receptor for low density proteins (LDL) with 

high affinity for the cholesterol moiety of LDL that directly activates PLD [147]. It has also been 

demonstrated that incorporation of cholesterol in platelets stimulates both PLD and PLA2 [148]. 

While the above characteristics are confined to human platelets, PLD activity has also been 

demonstrated in rabbit platelets. Thus, membranes from PMA-treated rabbit platelets contain a 

GTPγS-activatable PLD, that is thought to produce PA exclusively as substrate for a PA-specific 

PLA2 [149]. This involves PLD in the formation of eicosanoids. Platelet membranes contain a 

PLD that is activated by PMA and GTPγS in a synergistic manner and which is inhibited by 

staurosporine at low concentration but activated by staurosporine at high concentration, 

suggesting that PMA may activate PLD by a phosphorylation-independent mechanism [150]. 

Platelets contain phosphatidate phosphohydrolase (lipid phosphate phosphatase) [151] which 

splits PA to DAG and inorganic phosphate. DAG is produced directly in the PLC reaction and 

this DAG originates from PIP2 and consists almost exclusively of sn-1-stearoyl-2-

arachidonoylglycerol, which is effectively converted to the corresponding PA in platelets by 

DAG kinase [152]. The production of DAG in platelets upon thrombin stimulation is 

controversial as some groups report a biphasic production while others report a monophasic, 

transient production (for references, see [152]). 

We have previously reported a biphasic production of DAG [152] and we have found, as others 

have for other cell-lines, that the second peak disappears in the presence of ethanol and also with 

the use of inhibitors of autocrine stimulation, IAS (Figure 3), which we have previously found to 

inhibit PLD activity in platelets [137], indicating a role for PLD in the sustained DAG 

production also in these cells. 
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Figure 3: The effect of ethanol and IAS on DAG production in human platelets. The procedure was 

performed as described [152]. Thrombin (0.5 U/ml) added to gel-filtered human platelets in the presence or not 

of 0.4 % ethanol or inhibitors of autocrine stimulation (IAS) and the reaction stopped at the indicated times. 

Total lipid was extracted and DAG phosphorylated to PA with [γ32P]ATP. PA was separated by thin layer 

chromatography (TLC) and its radioactivity measured by instant imager. IAS are; the ADP-removing system, 

creatine phosphate/creatine phosphokinase (CP/CPK 5 mM/ 10 U/ ml, Sigma Chemical Co. St. Louis, MO), 

the selective thromboxane A2 (TXA2) antagonist SQ 29.548 (150 µM, Research Biochemicals International, 

MA, USA) and the peptide RGDS (150 µM, Calbiochem, San Diego, CA, USA) that prevents fibrinogen 

binding, all used as described [153]. Control value was 6580 cpm. The experiment is representative of four 

others 

 

A recent report using propranolol to inhibit lipid phosphate phosphatase-1 (LPP-1), inhibited 

PAR1-mediated aggregation and sustained Rap1 activation, and the same effects was observed 

when 1-butanol was added, indicating a role for PLD-PA and DAG produced from PA in the 

PAR1-mediated aggregation via Rap1. Propranolol inhibited PKC-mediated aggregation and 
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Rap-1 activation totally. Propranolol also inhibited αIIBβ3 activation, α-granule and lysosomal 

secretion mediated by both PAR1 and PAR4 [154].  

We have found evidence for the presence of both PLD1 and PLD2 in platelets both by 

immunoprecipitation and by immunohistochemical studies. In resting platelets both isoenzymes 

seemed to be localized throughout the cells. PLD1 seemed to be up-concentrated in some areas 

as the imaging studies show PLD1 in dots, which we hypothesize being granules, while PLD2 

seems to be all over the cells.  By addition of thrombin both isoenzymes rapidly translocate to 

the plasma membrane area; this translocation seems to be a primary response to thrombin as it is 

independent of the use of IAS as described above (Figure 3) [137]. Our most recent study 

indicates different activation mechanisms for the two isoenzymes as PLD1 membrane 

translocation was inhibited by PKA activation with forskolin and a specific PKA activator while 

PLD2 was not [155]. 

As reviewed above there is evidence for PLD involvement both in aggregation and secretion. In 

our hands we propose a role for PLD in F-actin regulation and secretion of lysosomal 

glycosidases as these processes are partially affected both by ethanol and the inhibitors of 

autocrine stimulation that inhibit PLD activity [137], and these platelet responses also correlated 

with the more slower process of PLD activation than the rapid dense-granule secretion. The 

finding that propranolol also inhibits lysosomal secretion [154] might suggest involvement of 

DAG produced from PLD-PA. As no specific inhibitors of PLD are known, studies rely on the 

use of alcohols as an initial approach to identify PLD involvement. The use of alcohols to 

establish PLD’s role in platelets is however difficult as high concentration gives adverse 

negative effects on platelets and low concentration will allow PLD-PA production.  

In conclusion, the mechanisms for activation of PLD in platelets correlate well with findings for 

the enzyme in other cells placing PKC and small G proteins as important PLD activators. The 

assumed pathways of PLD activation in platelets are depicted in Figure 4A and B. However, the 

exact mechanisms for PLD activation in platelets remain unclear. Findings from platelets taken 
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together with results from other cell-lines; good candidates for PLDs involvement are vesicle 

transportation (notably secretion) and cytoskeletal rearrangements. 

 

 

 

 

 

 

 

 

 

Figure 4A: Mechanism of thrombin induced PLD activation in platelets. PKC, protein tyrosine kinases 

(PTK) and Ca2+ are shown to be involved in the activation of PLD by thrombin, Ca2+ probably via indirect 

mechanisms such as PKC. Secreted ADP and the binding of fibrinogen to its receptor are necessary for full 

thrombin-induced activation of PLD. Thrombin induces translocation of PLD to the plasma membrane area, 

independently of ADP/fibrinogen binding. PLD activity has been implicated in aggregation and Rap1 

activation mediated by the thrombin receptor PAR1. Rap1 is reported involved in activation of the fibrinogen 

receptor (αIIbβ3). PGE1, forskolin and direct PKA activators inhibit thrombin-induced PLD activation and the 

translocation of PLD1. 
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Figure 4B: Other mechanisms for PLD activation in platelets. Collagen has been reported to activate PLD 

in a PKC dependent pathway and direct PKC stimulation by PMA increased PLD activity. Activation of the 

thromboxane receptors lead to an ADP dependent activation of PLD, while activation by high density 

lipoprotein (HDL3) was dependent of fibrinogen binding. Low density proteins (LDL) were reported to 

activate PLD directly and the incorporation of cholesterol in platelet membranes was observed to lead to PLD 

activation. The addition of GTPγS to permabilized platelets also activates PLD implying G proteins in the 

activation of PLD in a protein tyrosine kinase dependent mechanism. 
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1.2. Human Platelets 

1.2.1. Platelets in haemostasis and thrombosis  

Platelets are the smallest cellular components of blood. They are anucleate, discoid cells which 

circulate along the vessel wall, 1 µm thick and 3 µm in diameter. Platelets are produced by the 

megakaryocytes in the bone marrow [156], and sequestered after about 9 days of circulation in 

man by the reticuloendothelial system. Their main function is in the normal haemostatic process, 

but they are also actively involved in thrombosis, restenosis and in inflammatory reactions. 

Platelets interact with other components in blood and with components in the vessel wall during 

haemostasis and these complex interactions are influenced by the rate of blood flow, which are 

slower at the vessel wall than in the centre, creating a shearing effect between adjacent layers of 

fluid. The shear rate (S-1) is expressed as difference in flow velocity as a function of distance 

from the wall, the highest wall shear rate in normal circulation occurs in small arterioles and 

have been estimated to vary between 500-5000 S-1 [157]. Upon rupture of a vessel wall the 

initial deposition of platelets is predominantly mediated by the interactions of platelet 

glycoprotein (GP) Ib-IX-V with von Willebrand Factor (vWF) at high shear rates and the GPVI 

and integrin α2β1 with exposed collagen fibers at low shear rates. As platelets adhere to collagen 

they change shape to spheres with long pseudopods and secrete a number of substances from 

three distinct storage granules, the dense granules (ATP, ADP, serotonin, Ca2+), α-granules 

(growth factors, coagulation factors, many glycoproteins) and lysosomes (mostly acid 

glycosidases). Upon adhesion to the collagen fibers they also activate PLA2 that liberates 

arachidonic acid (AA) esterified in glycerophospholipids; the free AA is rapidly oxygenated to 

prostaglandins, thromboxanes and leukotriens. The secreted ADP and serotonin as well as the 

thromboxane A2 (TXA2) produced during platelet stimulation are potent platelet agonists that 

activate bypassing platelets that in turn aggregate with the adhered platelets and with each other. 
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In this way a platelet plug is growing that partially stops the loss of blood from the damaged 

vessel (primary haemostasis). The adhesion, secretion, TXA2 formation and aggregation 

described above takes 1-3 min within which time the extracellular coagulation cascade reaches 

the stage of thrombin formation. Thrombin is also a potent platelet agonist that both potentiates 

the activation of platelets and causes formation of fibrin strands between platelets and around the 

plug, making it non-permeable (secondary haemostasis).    

Platelet activation leads to release of cell activators like TXA2, platelet factor 4, platelet-derived 

growth factor (PDGF) and 12-HETE and exposure of P-selectin and CD40 on the  platelet 

surface, all factors which may facilitate monocyte activation and strengthen the intercellular 

interactions, also important for the coagulation process [158]. 

The initial aggregation under high shear rates differs from the process described above as it 

occurs between discoid platelets and is mediated by formation of membrane tethers and involves 

the adhesive functions of both GP1b and αIIbβ3 receptors and  vWF and fibronectin in addition to 

fibrinogen, (details are reviewed in  [159]). 

In the microcirculation ruptures of the wall of small vessels occur continuously and the 

haemostatic process is vital in order to prevent blood loss in vital organs such as brain and heart. 

When the number of circulating platelets is low (<20 000/µL) or the platelets have impaired 

functions; the growth of the platelet plugs is too slow to cause proper haemostasis, which causes 

local ischemia in the brain, which for example, might cause stroke.  

Hyperactive platelets and/or pathological deposits of various cells and substances on the vessel 

wall (i.e. cholesterol) resulting in plaque formation or other forms of arterial occlusion, which 

result in high shear stress which might lead to activation-independent platelet aggregation 

mediated by soluble vWF facilitated adhesion can lead to unwanted plug formation, the so-called 

thromboembolism. It is believed that under pathological high shear stress, vWF links platelets 
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together transiently until activation occurs [159], and one believes that platelets during 

thrombosis are activated in the same way as in haemostasis. The pathological thrombotic plug 

leads to reduced supply of blood downstream of the thrombus. Such platelet thrombi form 

exclusively in the arteries. The platelet plug can also dissociate and lead to emboli elsewhere. 

Proper platelet function is therefore vital for normal body function. 

 

1.2.2. Platelet responses 

When platelets are activated in the haemostatic process, a number of responses are revealed that 

can be observed in vitro. The responses include: 1) Adhesion: the mechanism of platelet binding 

to foreign surfaces, like collagen. 2) Shape change: a rapid process in which the platelets change 

form from discs to spheres presenting pseudopods, involving rearrangements in the platelet 

cytoskeleton and depending on actin polymerization. The resting platelets have four distinct 

actin structures: membrane skeleton, filaments of the central core, radiating filaments that 

connect the core to the membrane and monomeric actin in the cytoplasm. Platelet activation 

cause formation of a ring structure which separates from the membrane skeleton and move to the 

centre of the cells; this is called the contractile ring and is formed from components of the 

membrane skeleton and associated with rounding of platelets. Next filopodia protrude and during 

the adhesion process lamellipodia become spread out while stress-like fibers coalesce internally 

[160]. During platelet shape change cryptic integrin receptors are exposed on the platelet surface. 

3) Aggregation: platelets stick to each other mediated by binding of fibrinogen and also vWF to 

the αIIbβ3-receptors. The aggregation process takes 2-3 min to be complete. Two types of 

aggregation may be observed in vitro depending of the potency and concentration of the agonist 

involved, a reversible aggregation without secretion and an irreversible associated with 
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secretion. Thus, a biphasic response can be observed by the use of some activating factors, 

where the second phase results from autocrine stimulation. 4) Secretion: as mentioned, platelets 

contain three types of granules. The granules differ from each other by the agonist strength 

necessary to induce their secretion, the speed and the degree of secretion. Dense- and α-granules 

can be induced by week agonists such as ADP and TXA2; it is rapid and 100% completed in 1-2 

min. Lysosomal secretion is a more slow process and occur only after stimulation with a strong 

agonist like collagen or thrombin and is never completed [161].  

In addition, platelets expose neoisotopes, shed microparticles, display procoagulant activity and 

participates in the retraction of fibrin clots as described [161]. 

  

1.2.3. Mechanisms of platelet activation and inhibition 

1.2.3.1. Activation 

In the haemostatic process described above, collagen, thrombin, ADP, TXA2 and serotonin 

participate as platelet agonists, and they all have distinct receptors on the platelet surface. These 

receptors are of two main types: 1) G protein-coupled receptors (GPCRs), receptors that consist 

of seven transmembrane domains that are linked to and activate heterotrimeric G proteins upon 

agonist occupation, and 2) Adhesion receptors often linked to soluble protein tyrosine kinases of 

the Src family. An overview of the receptors mentioned in the text and their main effector 

systems are presented in table 1. 
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Table 1: Platelet receptors are divided into two subgroups: G protein-coupled receptors (GPCP) and adhesion 

receptors. GPCR are listed with the G proteins coupled to each receptor and their main effector systems. All 

receptors lead to activated platelets except the PGI2-receptor which inhibits platelets by activating adenylat 

cyclase (AC). Abbreviations: protease activated receptor (PAR), purinergic receptors (P2Y), thromboxane 

receptor (TP), prostaglandin (PG), glycoprotein (GP), von Willebrand factor (vWF), thromboxane A2 (TXA2), 

phospholipase C (PLC), Rho kinase (ROCK), phosphoinositide 3-kinase (PI3K), protein tyrosine kinase 

(PTK). 

 

Receptor 

category 
Receptors Agonist G-proteins 

Receptor-coupled effector 

system 

GPCP PAR1 Thrombin Gq, G12/13, Gi 
PLCβII (+), Rho/ROCK (+),  

AC (-)Giα and PI3K (+)Giβγ 

GPCP PAR2 Thrombin Gq, G12/13, Gi 
PLCβII (+), Rho/ROCK (+),  

AC (-)Giα and PI3K (+)Giβγ 

GPCP P2Y1 ADP Gq PLCβII (+) 

GPCP P2Y12 ADP Gi AC (-)Giα and PI3K (+)Giβγ 

GPCP TP TXA2 Gq, G12/13 PLCβII (+), Rho/ROCK (+) 

GPCP PGI2 PGI2, PGE1 Gs AC (+) 

Adhesion GP IV Collagen - PTK (+) 

Adhesion GP1b vWF - PTK (+) 

Adhesion αIIbβ3 Fibrinogen, vWF - PTK (+) 
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1.2.3.1.1. G protein-coupled receptors 

Agonists that activate platelets through GPCRs include thrombin, ADP, TXA2 and serotonin 

amongst others. Signaling via GPCR in platelets involve three major G protein mediated 

pathways that are initiated by activation of Gq, G13 and Gi. Thrombin is the most efficient platelet 

activator of the above-mentioned agonists; thrombin is the main effector protease of the 

coagulation system, and act by cleaving of protease-activated receptors (PARs). Cleaving of the 

receptors induce conformational changes leading to activation of the coupled G proteins. In 

human platelets thrombin activate platelets through the PAR1 and PAR4 receptors [162], which 

couple to Gq, G12/ G13 and sometimes also to Gi family members, as reviewed [163] . Reports 

indicate that PAR1 mediates platelet activation at low thrombin concentrations, while PAR4 

mediates the response to high thrombin concentrations [162, 164, 165]. TXA2, produced as 

described above functions as an autocrine stimulator during platelet activation by binding to the 

TXA2 receptor (TP) coupled to Gq and G12/G13 [166-169]. Platelet activation by ADP is mediated 

by the two purinergic receptors P2Y1 and P2Y12, where P2Y1 is reported to be coupled to Gq and 

P2Y12 to Gi2 as reviewed [170]. 

The exact role of the individual G proteins have been difficult to establish in platelets as all 

mediators in turn can  increase the formation and release of thrombin, ADP and TXA2; their 

effects are amplified by all major heterotrimeric G protein pathways; however, the use of mice 

platelets lacking different G proteins have lead to new knowledge. Thus Moers et al. [171] 

showed that Gq or G13 was required to induce some platelet activation, whereas the activation of 

Gi -mediated signaling alone was insufficient to induce activation of mouse platelets. Gi-

activation on the other hand seemed important for obtaining full platelet activation through Gq 

and G13. As reviewed [172] G13- mainly mediates signals leading to shape change, while Gq and 

Gi pathways mainly are involved in activation of aggregation and secretion . However, one 

should bear in mind that human and mouse platelets are different i.e. human platelets present 
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PAR1 and PAR4 receptors while mouse platelets PAR3 and 4 [173], and results observed are not 

necessarily interchangeable. 

The Gq family activates phospholipase Cβ, where especially βII and βIII are present in platelets. 

These PLCs are specific for polyphosphoinositides (PPIs) and hydrolyze phosphatidylinositol 4, 

5-bisphosphate (PIP2) to membrane-bound diacylglycerol (DAG) and cytoplasmic inositol 1, 4, 

5-trisphosphate (IP3). IP3 binds to specific receptors in the dense tubular system (DTS, 

counterpart to endoplasmic reticulum in other cells) which causes release of stored Ca2+ to the 

cytoplasm. The free, cytoplasmic Ca2+ has many functions; it is involved in activation of a range 

of enzymes like PKC, PLC, PLA2 and Ca2+-calmodulin-dependent protein kinase (CAMK). 

Activated CAMK in turn activates myosin light chain kinase (MLCK) by phosphorylation, and 

the active MLCK phosphorylates myosin light chain (MLC). Phosphorylated MLC combines 

with actin and makes contractile actomyosin bundles (thick filaments), the contraction of which 

may be of importance in shape change [174] and exocytotic secretion of granule contents. Ca2+ 

also activates a number of proteases of which calpain has been shown to proteolyse PKC, thus 

terminating its activity [175].  

DAG produced by PLC can activates protein kinase C isoforms. PKC activity in platelets is 

discussed in detail below.  

Apart from activating classical PKC (cPKC), in mouse platelets DAG and calcium ions can also 

activate guanine nucleotide exchange factor (CalDAG-GEF1), which in turn activate Rap1 

[176]. Mouse platelets that lack CalDAG-GEF1 are severely compromised in integrin-dependent 

aggregation [176]. 

Other small G proteins are also candidates for activation by Gq. The Rho/ Rho kinase pathways 

which lead to MLC activation, as described below, has been suggested in the P2Y1-mediated 

activation [177] and is also reported involved in the disruption of the microtubular ring leading 
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to the rapid shape change of platelets from disc to spheres [178]. Thrombin-induced PLC activity 

and Ca2+ was demonstrated to be essential for Rac activity, while Cdc42 activation was 

independent of PLC activation [179]. PAR-1 stimulation rapidly activates both Rac and Cdc42, 

and upon activation Rac associates with the plasma membrane and the association between 

Cdc42 and actin increases, indicating different signaling roles for these GTPases [180]. 

Downstream targets for Rac are PI4P 5K and p21-activated kinase (PAK). Activated PI4P 5K 

generates PI(4,5)P2 which induces uncapping of actin filament ends [181]. ADP activated Rac 

and its effector PAK via its P2Y1 receptor, through a Gq-dependent pathway [182]. Thrombin 

was reported to activate Cdc42 and Rac1, which both activated PAK in another study. Activated 

PAK dissociated from the cortical/actin binding protein cortactin which might trigger early shape 

change was reported [183]. The use of mice platelets deficient in Rac and Rac inhibition in 

human platelets blocked platelet dense-granule secretion, which was partly responsible for 

diminished aggregation [184].  

G13 has been shown to activate /regulate several signaling pathways where the Rho/Rho kinase 

pathway is the best established. The Gα13 subunit directly interacts with and activate p115 Rho 

guanine exchange factor [185], thus leading to activated RhoA. It has been established that 

RhoA activates Rho kinase (ROCK) which inhibits myosin light chain phosphatase, thus also 

contributing to the activation of MLC and shape change independently of calcium [186]. The 

RhoA-specific ADP-ribosyltransferase, C3 toxin [187], inhibits thrombin induced platelet 

aggregation [188, 189]. It has also been reported that RhoA inactivation decreased the adhesion 

of agonist-stimulated platelets to fibrinogen [190]. However, it has been shown that inhibition of 

RhoA (C3 exoenzyme) or its downstream effector Rho kinase had no effect on integrin αIIbβ3 

activation induced by soluble agonists or adhesive substrates, but that RhoA regulated the 

stability of integrin αIIbβ3 adhesion contacts under conditions of high shear stress [191]. It is 

reported that both RhoA and the Rho effector Rho kinase activate and mediate PI4P 5K 

membrane translocation in thrombin-activated platelets [192]. It has also been demonstrated that 
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PAR1- mediated Gα13 activation can mobilize intracellular calcium in a Rho kinase-independent 

mechanism and that G13 signaling is required for shape change, aggregation and secretion 

mediated by PAR1 [193].  

Gi2 is the main member of the Gi family present in platelets. The Gi2α subunit is linked to the 

inhibition of adenylyl cyclase, inhibiting the cAMP production in platelets, whereas one 

important role for the Gβγ subunit is to activate PI3K. The two isoforms involved in platelets are 

believed to be PI3Kγ and PI3Kβ. One downstream target for PI3K is Akt. In mice deficient in 

PI3Kγ phosphorylation of Akt does not occur, which indicate that Akt is a PI3Kγ effector [194]. 

Gi- induced Akt phosphorylation has been reported potentiated by the G12/13 pathway via the 

activation of Src kinase [195]. It has recently been reported that thrombin activation of platelets 

mediated by PARs causes rapid Akt phosphorylation independently of ADP secretion, but that 

ADP/PI3K were required for the maintenance of this phosphorylation. Activated Akt regulates 

platelet function by modulating secretion and the α2bβ3 activation [196].   

Gi also activates Rap1b via PI3K and further studies indicate PIP3 as the primary regulator of 

Rap1b activation [197], which is critical for fibrinogen receptor activation, leading to 

aggregation. 

It has been reported that thrombin-induced cPLA2 activity leading to TXA2 generation was 

potentiated by secreted ADP via the P2Y12 receptor through regulation of ERK1/2 activation 

[198].  

 

1.2.3.1.2. Platelet adhesion receptors 

There are three types of adhesion receptors: the leucine-rich glycoproteins (GP), integrins and 

immunoglobulin. The main agonists involved in adhesion, and aggregation using these receptors 
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are vWF, collagen and fibrinogen and the main receptors involved are the GP Ib-V-IX complex, 

GP VI and αIIbβ3, respectively. 

Collagen has the ability to bind to several platelet receptors where GP VI is considered to be the 

main signaling receptor. The GP VI receptor is coupled to the disulfide-linked Fc receptor (FcR) 

γ- chain homodimer. Stimulation of platelets with collagen induces tyrosine phosphorylation of 

the FcR γ-chain immunoreceptor tyrosine based activation motif (ITAM). The Src kinases Fyn 

and Lyn are involved in this initial activation step [199, 200]. The phosphorylation of ITAM 

promotes association between the FcR γ-chain and the tyrosine kinase Syk [201]. Collagen (type 

I) stimulates platelets through phosphorylation of PLCγ, and Syk kinase is reported to be 

upstream of PLCγ. PLCγ stimulation leads to production of DAG and IP3, which acts as 

described above. Collagen activation mediated by GP VI, involve PI3K signaling as reviewed 

[202]; PI(3,4,5)P3 is reported to interact directly with PLCγ2 [203] indicating involvement 

upstream of PLC. In fact both PI3K and PLCγ2 are reported to be involved in formation of a 

signalosome together with adaptors and other effector proteins downstream of Syk, some of the 

factors involved are the transmembrane adapter LAT, the cytosolic adapters SLP-76 and Gads 

and Vav 1/3, a Rho/Rac family GEF, which also can act as an adaptor through its multidomaine 

structure including SH2 and SH3 domains, the purpose of this LAT signalosome is probably to 

modulate and support signaling via PLCγ2, one of the major effector enzymes in the GP VI 

signaling cascade [204, 205].   

There are evidence of GP VI activation leading to activation of several small G proteins: Vav is 

constitutively associated with Grb2 (growth factor receptor bound protein 2) [206]. Grb2 

is an adaptor protein comprised of a central SH2 domain and two flanking  SH3 domains, and it 

forms a stable complex with Sos (“Son of sevenless”) via the SH3 domains, Sos is a dual 

specificity guanine nucleotide exchange factor (GEF) that regulates both Ras and Rho family 
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GTPases, thereby linking recruitment of Grb2 to activation of Ras. The downstream effectors of 

Ras are believed to be well characterized [161]. Activated Ras recruits the Ser/Thr kinase Raf to 

the membrane where it is activated. Raf then phosphorylates MAP kinase kinases (MEKs) that in 

turn phosphorylate MAP kinases (ERKs) on serine, threonine and tyrosine residues. ERKs can 

activate cPLA2 in platelets leading to TXA2 as reported above. However, a later study reporting 

Ras activation by GP VI stimulation demonstrates that Ras is not necessarily coupled to ERK in 

human platelets [207]. Phosphorylated Vav acts as an exchange protein for Rac-1 [208], a 

member of the Rho-family. The exact steps from Vav to Rac are still not clear in platelets.  

Collagen was reported to rapidly activate both Cdc42 and Rac, where Cdc42 activation was 

independent of PLC and Rac dependent of both PLC and PI3K [179]. ARF6 has also been 

reported involved in the collagen signaling cascade upstream of the Rho-family of GTPases 

[209]. 

GP VI can also mediate signals in FcRγ-independent mechanisms involving calmodulin (calcium 

pathway) [210]. 

Ultimately, the engagement of GP VI up-regulates platelet integrins, including the collagen 

receptor α2β1 and αIIbβ3 involved in aggregation (inside-out signaling). 

vWF is involved in the primary adhesion of platelets and binds to the GP Ib subunit of the GP 

Ib-V-IX complex. It can also interact with the αIIbβ3 receptor contributing to platelet aggregation. 

Signaling through the GP Ib-V-IX complex is suggested  to involve phosphorylation of the 

FcRγ-chain and the downstream effects as described for collagen, and phosphorylation of 

another ITAM-containing receptor, FcγRIIA, a low affinity receptor for IgG [211]. This 

phosphorylation is mediated by a Src-kinase [212] and probably involves PLC at some point 

[211].   
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Pyk2 (proline-rich tyrosine kinase 2) also called RAFTK (related adhesion focal tyrosine kinase) 

is reported to be activated in response to vWF, downstream of Syk and probably independent of 

phospholipase signaling [213]. Pyk2 is a cytosolic tyrosine kinase which has two proline-rich 

domains which may interact with SH3 domains in other proteins, and it has at least two tyrosines 

that become phosphorylated, Y882 (a Grb2 binding site) and Y402 (a binding site for members 

of the Src family). This makes Pyk2 a signaling-complex, which in vWF mediated platelet 

activation is believed associated with 14-3-3, Src, FAK, PI3K and talin, where PI3K and talin 

effect the activation of integrins [211]. 

PI3K effectors involved are probably Akt1 and Akt2 reported to activate the NO-cGMP-PKG 

pathway leading to integrin activation mediated by p38/ERK [214]. 

Another pathway leading to fibrinogen receptor activation by vWF involves Src/ERK-mediated 

TXA2 generation, which was reported to be an absolute requirement for aggregation [215].  

The GP Ib-V-IX complex is reported constitutively associated with a number of intracellular 

proteins which include actin-binding proteins and calmodulin amongst others. These interactions 

may explain GP Ib-V-IX involvement in adhesion, cytoskeletal reorganization and 

transmembrane signaling as reviewed in detail [211]. 

Agonist-induced integrin activation and ligand binding is in general proposed to initiate 

formation of phosphotyrosine signaling complexes mediating the outside-in signaling. This topic 

has recently been reviewed [205, 216] and the initial tyrosine kinases so far established to be 

involved are Syk and Src [217-219] and the activation mechanisms involved suggested as: Src 

dependent activation of Syk, leading to activation of a signalosome similar to the one established 

for GP IV signaling, except for involvement of ITAM and LAT, containing SLP76, Vav 1/3, 

PLCγ2 and PI3K. Syk independent pathway, where focal adhesion kinase (FAK) has been 

shown to interact with the cytoplasmic domain of β1, β2 and β3 integrins and becomes 
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autophosphorylated following integrin engagement [220]. Src is bound via a SH2 domain at 

Y397 to FAK [221]. It has been demonstrated in Cho cells that Src and αIIbβ3 form distinct 

signaling complexes with either FAK or Syk [222].  FAK interacts with Grb2 [223], and is 

thereby linked to the Ras pathway as described above. Rac is considered a downstream effector 

of Syk/Vav in integrin signaling, leading to actin polymerization/reorganization [216]. 

 

1.2.3.1.3. Protein kinase C 

Both soluble agonists and adhesion molecules activate platelets through PLC, thus increasing 

intracellular calcium and DAGs, which activate PKC. PKC seems to be central in regulating 

platelet activity and function; the use of broad-spectrum PKC inhibitors has given PKC a role in 

calcium entry, granule secretion, αIIbβ3 activation, and outside-inn signaling. PKC is a protein 

serine/threonine kinase which exist in at least 10 isoforms divided in three subgroups: 

conventional PKC (cPKC), comprises the α-, βI-, βII- and γ- isoforms activated by DAG and 

Ca2+, novel PKC (nPKC) which are the δ-, ε-, η- and θ- isoforms activated by DAG and the 

atypical PKC (aPKC) comprising the ζ-, ι-, λ- and μ-isoforms that are insensitive to DAGs and 

Ca2+. In platelets multiple isoforms of PKC are expressed [224, 225], and it is presumed that 

each isoform plays one or more distinct roles, although the exact roles of each isozyme have not 

yet been elucidated. However, progress have been made by the use of more specific inhibitors 

and platelets deficient in PKCβ, δ and θ. PKCα have been reported to be essential for α- and 

dense-granule secretion [226] and directly involved in Ca2+-induced aggregation [227]. The 

importance of PKCα in αIIbβ3 activation and aggregation is underscored by the significant 

inhibition of broad-spectrum PKC inhibitors, while platelets lacking PKCβ, δ or θ showed no 

decrease in aggregation. Others have shown that PKCα activation was important for both GP VI 

and GP Ib-IX-V mediated dense granule secretion and aggregation. The PKCα activity was 



 45

dependent of both PLC and Syk, while PKCα itself negatively regulated Src [228]. The use of 

mice lacking PKCβ or θ have implied that these isoforms are involved in αIIbβ3 outside-in 

signaling playing distinct but essential roles as reviewed [229]. PKCβ was also reported to co-

immunoprecipitate with αIIbβ3 probably mediated by RACK1 in another study [230]. Several 

roles for PKCδ have been proposed by the use of the specific inhibitor rotlerin [224, 231]. 

However, the use of murine platelets lacking PKCδ questions the specificity of this inhibitor 

[232] as it exhibits many of the same effects in the absence of PKCδ. PKCδ appears to regulate 

filopodia dynamics negatively, probably by inhibiting VASP phosphorylation by a cPKC at 

Ser157 [232]. Another study showed that Gp VI and GP Ib-IX-V mediated signaling leads to 

interaction of Fyn and PKCδ, which involves tyrosine phosphorylation of PKCδ [225]. 

Activated PKC’s main substrate is pleckstrin (P47) that is rapidly phosphorylated during platelet 

activation on multiple sites and may function in inhibiting PIP2 hydrolysis. PKC also 

phosphorylates the PKC-specific substrates MARCKS (myristoylated, alanine-rich C-kinase). 

MARCKS is known to bind actin and cross-link actin filaments, which is inhibited by PKC 

phosphorylation and is suggested to play a role in dense granule secretion [233, 234]. 

Figure 5 summaries the major activation pathways in platelets and the possible involvement of 

PLD in these pathways. One should bear in mind that in platelets during haemostasis the 

receptors and pathways work together in synergy to enhance or dampen signals elicited for the 

proper platelet response.  
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Figure 5: Major signaling pathway following activation of adhesion or G protein-coupled receptors in 

platelets, adapted from [161]. Se the text for more details and abbreviations. This figure is meant to give an 

overview of the signaling pathways and their complexity, it does not show all factors or pathways involved. 

Solid arrows represent known interactions and broken arrows proposed. 

 

1.2.3.2. Inhibition 

The most known system that inhibits platelet activation is elevation of cAMP, but the exact 

mechanism(s) by which cAMP exerts its action is not yet known. The level of cAMP is 

controlled by the activities of adenylyl cyclase (AC) and cyclic nucleotide phosphodiesterase 
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(PDE). Prostacyclin (PGI2), PGD2 and adenosine are physiological activators of AC that work 

through Gs. However, the interaction of most all platelet agonists with their receptors activates Gi 

thereby inhibiting AC, so AC is controlled by the relative concentration of agonists and AC 

activators. Thrombin is also reported to regulate the cAMP concentration by 

phosphorylation/activation of PDE3A involving Akt signaling pathway [235].  Many antiplatelet 

drugs (e.g. persantin) are PDE inhibitors, which elevate the cAMP level. cAMP activates protein 

kinase A that  phosphorylates many platelet proteins, including a Ca2+-ATPase in the DTS which 

pumps cytosolic Ca2+ back into the DTS, thereby suggesting one mechanism for cAMP’s 

inhibitory effect. Elevation of cAMP also slows down the PPI cycle, thus decreasing the 

amounts of PIP2 available to PLC early in the signaling cascade [236]. 

Nitric oxide (NO) released from the endothelium, is another physiologically important platelet 

antagonist. NO leads to an elevation of cGMP [237]. cGMP activates cGMP-dependent protein 

kinase (PKG), but there is also reports of cGMP involvement in the cAMP pathway by inhibiting 

PDE3A [238-240]. It has been reported that NO mediates inhibition of thrombin-induced platelet 

shape change via PKA, an inhibition that correlated to an increase in cGMP in compartments 

close to PDE3A, PKA and VASP (vasodilator-stimulated phosphoprotein) [237]. VASP is 

phosphorylated on Ser157 by PKA and Ser239 by PKG; VASP is a key regulator of filopodia 

dynamics and negatively regulate platelets through these kinases. A recent study identifies a 

novel target for NO and PGI2 mediated signals via PKG/PKA: the phosphorylation of 

Rap1GAP2, which inhibits Rap1GAP2 binding to 14-3-3, that eventually leads to early 

termination of Rap1 signaling, which is involved in integrin activation and platelet adhesion 

[241]. 

In addition, inhibition of production of the autocoid TXA2 by cyclooxygenase inhibitors 

(eg. acetylsalicylate) is also a much-used means of inhibiting platelet activation that has been 

used in many antithrombotic trials.  
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1.2.3.3. Autocrine stimulation and inhibition 

Activation of platelets by a primary agonist such as thrombin or collagen leads to secretion of a 

number of substances and the synthesis of several platelet antagonists, which enhance the 

primary signal, a phenomenon known as autocrine stimulation. However, PDGF has an 

inhibitory effect, which makes PDGF an autocrine inhibitor of platelets, as illustrated in Figure 

6.  

Thus, the primary signal acts through multiple receptors and effector systems and crosstalk 

between different signaling pathways leads to multiple platelet responses as discussed above. In 

order to distinguish between primary and autocrine effects different inhibitors of autocrine 

stimulation (IAS) have been developed. The combination of creatine phosphate (CP)/ 

creatinphosphate-kinase (CPK) will catalyze conversion of ADP to ATP. Activated αIIbβ3 has the 

ability to bind fibrinogen, vWF, fibronectin and trombospondin, all of these ligands contain an 

Arg-Gly-Asp-Ser- (RGDS) sequence recognizes by the receptor, thus the peptide RGDS is a 

useful inhibitor of binding to the fibrinogen receptor inhibiting aggregation and outside-in 

signaling. Inhibitors for TXA2, Serotonin and PAF are SQ 29,548, cyproheptadine and BN 

52021 respectively. An important issue is that all of these inhibitors act extracellularly [161]. 
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Figure 6: Platelet autocrine stimulation and inhibition as a result of addition of a primary agonist.  

Inhibitors of the different pathways are indicated in red and described in more details in the text. 
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2. Aims of the study 

 

In the last decades great progresses have been made in the field of phospholipids, and it is now 

recognized that both the head group and the acyl chains are important for lipid functions.  The 

lipid composition of membranes determines their properties such as charge and fluidity, 

membrane fusion processes, protein localization and activation. It is therefore of major interest 

to study the enzymes able to modulate these properties. 

Phosphatidylcholine, the main substrate for PLD, is the most abundant phospholipid in 

eukaryote cells, and the PLD product PA is recognized as a signaling lipid, implied in protein 

translocation to and localization in/at the membrane and is probably important for membrane 

fusion as discussed above. Thus PLD is an interesting enzyme to study. 

When this project was started it seemed clear that PLD was present in platelets and activated by 

agonists that evoke platelet responses (as reviewed in 1.5). However, many of the reported 

findings were contradictory (e.g. requirement for integrin ligation and autocrine stimulation, time 

courses of PtdEth, etc.).  In addition most of the studies where PLD activity has been measured, 

have been performed in the presence of alcohol, which might have severe inhibitory effects on 

platelet functions. Equally importantly, use of alcohol to measure PLD activity eliminates 

production of PA, the physiological cellular product of the PLD reaction, which has been 

postulated to be an important signaling molecule in platelets. Therefore our initial goal was to 

establish a PLD assay without the use of alcohol by measuring released [14C]choline as an 

indicator of PLD activity, but this seemed difficult as discussed in the appendix. 

We have previously in our lab studied the PLD enzyme in C3H10T1/2 fibroblasts, especially the 

interaction between PLD and PKC, which we wanted to explore further in platelets. In addition, 

little is generally known about PLD’s exact role and activation mechanisms in eukaryotic cells.  
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Thus our main goal was to gain more knowledge about activation mechanisms and functional 

roles of PLD, and the  partial aims of this study is described in detail for each paper below. 

 

Paper 1   

In this study the main goal was to investigate thrombin-induced PLD activity and its dependence 

of autocrine stimulation using specific, extracellular inhibitors. A secondary goal was to study 

possible roles for PLD in platelet function. However, as no specific inhibitors for PLD exist at 

present, this had to be done by time and dose correlation studies. We also wanted to establish the 

presence of PLD isoenzymes in platelets and, if possible, their subcellular localization both by 

cellular fractionation and immunohistochemistry. 

 

Paper 2 

The initial work with establishing a choline release assay for measuring PLD activity, indicated 

that PLD could be activated by the platelet antagonist PGE1, which we wanted to investigate 

further in this study. As PGE1 is a platelet inhibitor we also wanted to se if it could inhibit the 

thrombin-induced PLD activity and PLD translocation (found in Paper 1). PGE1 is believed to 

inhibit thrombin-induced platelets activity by increasing cAMP. To study the mechanisms 

involved we included other substance, which affects this pathway in both the PLD activity 

measurements and immunohistochemical studies. The additional substances used were: forskolin 

(direct activator of adenylate cyclase), PKA inhibitors (Rp-8-Br- cAMPS and Rp –cAMPS), 

PKA activator (Sp-5,6-DCL-cBIMPS), PKG inhibitor (Rp-8-pCPT-cGMPS) and PKG activator 

(8Br-PET-cGMP).  

 

Manuscript for paper 3 

The main objective of this work was to study the relationship between PKC isoenzymes and 

PLD1 and 2. We wanted to investigate if PKC activity was involved in thrombin-induced PLD 
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activity and translocation, and to study a possible association between the two enzymes by 

immunoprecipitation, as previously found in fibroblasts, and if this association was dependent of 

addition of thrombin, PMA, PGE1 or forskolin. One of the main effectors for thrombin-induced 

platelet activation is PLCβII leading to PKC activity amongst others, therefore a second 

objective were to investigated if this enzyme also associated with the PLDs using 

immunoprecipitation and the same substances as for the PKC interactions. Additionally, we 

wanted to compare the localization of PKC isoenzymes and PLCβII with PLD in resting and 

thrombin-treated platelets by immunohistochemistry and to observe if the localization in 

thrombin-treated platelets were affected by the presence of forskolin as we found for PLD (Paper 

2). 
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3. Summary of results 

 

In the first paper we report the presence of a basal PLD activity and a thrombin-induced PLD 

activity in human platelets. We used [3H]arachidonic acid-labeled platelets and incubated the 

labeled platelets with 0.4% ethanol in order to measure PLD activity as the formation of 

[3H]labeled PtdEth. The thrombin-induced PLD activity in this system was immediate and did 

not level of until after 10 min. Thrombin-induced PLD activity was increased by presence of 

extracellular calcium, while calcium alone had no effect. When adding the calcium chelator 

EDTA together with thrombin extracellularly, the PLD activity decreased compared with 

thrombin alone.  

In order to study if activation of PLD was a primary effect of thrombin or dependent of 

thrombin-induced autocrine stimulation we included three inhibitors of autocrine stimulation 

(IAS); RGDS a peptide inhibiting binding to the αIIbβ3 receptor (which prevents fibrinogen 

binding) and subsequently the outside-in signaling, CP/CPK which removes the secreted ADP 

and SQ that inhibits binding of TXA2 to its receptor. We found that the thrombin-induced PLD 

activity was greatly inhibited by IAS, notably by RGDS and CP/CPK in synergy. 

In this study (Paper 1) we also investigated potential roles for PLD in platelets; knowing that 

extracellular calcium and IAS affected thrombin-induced PLD activity, we used these parameters 

together with dose dependencies, time course and effects of ethanol in order to try to correlate 

platelets responses such as shape change (measured by F-actin formation), and secretion 

(lysosomal and dense-granules) with PLD activity. 

Dense granule secretion is a rapid platelet response; the secretion was independent of 

extracellular calcium, IAS and ethanol and therefore did not correspond well with PLD activity. 
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The lysosomal secretion is a more slow process than the dense-granule secretion, and the 

response to different thrombin concentrations at 300 sec was almost identical of that observed 

for PLD, which was also the case for the effect of calcium. In addition, lysosomal secretion was 

inhibited by CP/CPK and ethanol, making this secretion a possible candidate for PLD 

involvement. F-actin formation in platelets is an ongoing event in activated platelets and seems 

to be dependent more on the time since stimulation than the thrombin concentrations used. F-

actin formation was independent of the presence of extracellular calcium; however, its removal 

by EDTA seemed slightly inhibitory. The addition of IAS had little effect of the F-actin 

formation, with the exceptions of RGDS with 10 min of thrombin incubation. The addition of 

ethanol led to an increase in F-actin formation, which might suggested a regulatory role for PLD 

in this particular process. 

We established the presence of both PLD 1 and 2 isoenzymes in platelets (Paper 1) and we found 

them to be localized predominantly in the cytosolic fraction, with traces present both in the low-

speed (cytosolic actin filaments) and high-speed (membrane cytoskeleton) fractions.  Further we 

studied PLD localization by the use of immunohistochemistry: thus, in resting platelets we found 

that PLD1 and PLD2 were present all over the platelets, although with PLD1 localized in dots. 

When thrombin was added, both isoforms rapidly translocated to the plasma membrane areas. 

The translocations were independent of extracellular calcium, PLD-PA or autocrine stimulation. 

In order to establish a PLD assay by measuring choline-release, we added the platelet antagonist 

PGE1 to avoid aggregation during a centrifugation step and often we observed an elevated level 

of released choline, when starting the PLD assay. In Paper 2, we found that PGE1-induced 

choline release and also increased PtdEth formation. This effect was slightly increased by 

extracellular calcium and only 50 % of the activity obtained by thrombin.  

As PGE1 is a well-known platelet antagonist, we wanted to study its effect on the thrombin-

induced PLD activity. PGE1 inhibited thrombin-induced PLD activity partially (40%), as was 
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found for forskolin (a direct activator of adenylate cyclase) and a direct activator of PKA (Sp-5, 

6-DCL-cBIMPS). The direct activator of PKG (8Br-PET-cGMP) had no effect on the thrombin-

induced PLD activity. The inhibitory effect of forskolin on PLD activated by thrombin could be 

partially abolished by addition of PKA inhibitors (Rp-8-Br- cAMPS and Rp –cAMPS).  

Forskolin, PGE1, the PKA activator, but not the PKG activator inhibited thrombin-induced PLD1 

translocation. Although PGE1 was able to activate PLD, it was not able to induce PLD 

translocation to the plasma membrane (Paper 2).   

In order to study the relationship between PLD and PKC (manuscript for Paper 3), we 

established that PMA induced PLD activity in our PtdEth assay, which was markedly increased 

by the addition of extracellular calcium. PMA, was able to induce the same level of PLD activity 

as thrombin, however, it did not have the same effect on PLD translocation as PMA only 

induced translocation of PLD1. 

Both the thrombin-induced PLD activity and translocation were independent of the PKC 

inhibitor Ro-32-0432. Immunoprecipitation studies showed that PLD 1 and 2 were associated 

with the PKC isoforms PKCα, βI, βII and δ. The association between PLD isozymes and PKCα 

was constitutive, whereas the associations between PLDs and the other isoforms varied with the 

factors added (thrombin, PMA, PGE1 and forskolin). The localization of the PKC isoenzymes 

was investigated by immunohistochemistry; in resting platelets the PKC isoenzymes were 

localized all through the platelet cytosol as observed for the PLDs, except for PKCβII, which 

showed a distinct different more central localization. Upon addition of thrombin, PKCα, βI, and 

δ moved towards the plasma membrane area, while βII became even more centralized. PKCβI 

was the one corresponding best with PLD translocation. Thrombin-induced PKC translocation 

was inhibited by forskolin.  Activation of platelets by thrombin leads to activation of PLCβII, 

which is considered to be upstream of PKC, thus, we wanted to se if this enzyme also could 

associate with PLDs. PLCβII co- immunoprecipitaded with both PLD1 and 2 in unstimulated as 
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well as in activated platelets. PLCβII was also observed to have the same localization as PLD in 

unstimulated and thrombin-activated platelets as observed by immunohistochemistry; however, 

PLCβII translocation was independent of forskolin. 
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4. General discussion and future perspectives 

4.1. Measuring PLD activity 

In the present work we initially wanted to measure PLD activity as released labeled choline, but 

as discussed in the appendix this appeared complicated since choline seemingly was re-

metabolized in platelets. The product of the transphosphatidyl reaction in the presence of ethanol 

(PtdEth) is considered to be un-metabolized and is therefore a good measure of PLD activity and 

most studies uses the detection of radiolabeled PtdEth or PtdBut, which is the product in the 

presence of 1-butanol, as a measure of PLD activity. The use of butanol to measure PLD activity 

or to inhibit the formation of PA has an advantage over ethanol that one can use 2-butanol or 

tert-butanol to control for adverse effects as they are not substrates in the PLD reaction. 

However, most studies in platelets use ethanol. In our hands, with 10 min pre-incubation of 

butanol, we found a decrease in both PLD and PLA2 activity with 1-butanol compared to using 

ethanol and that tert-butanol had a severe inhibitory effect on PLA2 (unpublished results). A 

recent report using butanol to inhibit PA-production in platelets observed no inhibition with tert-

butanol on aggregation and Rap1 activation using 3 min pre-incubation [154]. On the other hand, 

it is also reported that 1-butanol interferes with PLD1 and PKCα association and inhibits PLD1 

basal activity after 2 min of incubation in COS-7 cells [242]. Therefore, great care should be 

taken in choosing the alcohol, time of incubation and concentrations in each study in order to 

obtain reliable results.  

In our studies we preferred to label with arachidonic acid after testing several fatty acids  (Paper 

1), and by using this method we found non-corresponding results with studies using different 

labeling [135]. One should bear in mind that by labeling the acyl chains one probably measures 

parts of PLD activity as PLD in other cells shows substrate specificity [243-246] and which has 
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been shown for platelet PLC and PLA2 [247]. In our study we also tried to label the glycerol 

backbone to avoid the possible effects of labeling only parts of PtdEth formation, [3H]labeled 

glycerol in our hands did not incorporate well in platelets and was therefore not an option. As 

discussed (Paper 1), the labeling of cellular lipids is anisotropic; thus the possibility also exists 

that findings only reflect the availability of the labeled-lipids to the PLD enzyme. It will be of 

great interest to establish a PLD assay in our lab in which one measure all PtdEth produced and 

the specific acyl chains by mass spectrometry and not a selective labeled part of the population 

as probably done by different means of labeling and ultimately to develop an assay without the 

use of alcohol, since many enzymes are regulated by the concentration of substrates, it can not 

be excluded that the removal of PA does not give a full picture of PLD activation and regulation 

mechanisms. PA produced by PLD1 has been reported involved in activation of PLD2 [117]. 

 

4.2. Activation mechanisms and PLDs role in platelets 

The so far reported activation mechanisms of PLD in platelets are depicted in Figure 4AB and 

the involvement of PLD in platelet activation pathways are proposed in Figure 5. As mentioned 

in the introduction, a recent report suggests PAR1 signaling to be dependent of a PLD-PA 

pathway [154] .It would be of interest in the further study of thrombin-induced PLD activity to 

establish which PAR receptors are involved as emerging evidence reports that they act by 

different mechanisms [154, 248], this can be done by specific peptides. Although PAR1 

mediated activity was the only one affected by 1-butanol [154], this does not exclude PAR4 in 

activating PLD. PLD is activated by high concentrations of thrombin which are proposed to act 

via PAR4 [162, 164, 165]. Another aspect is to identify the G protein pathways involved, since  

PLD are implied downstream of G12/13 and the Rho pathway in other cells [249]. PAR1 reported 
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to be dependent of PLD-PA was in another study reported to activate human platelets through a 

Gi/o/PI3K signaling pathway [248]. As mentioned in the introduction, PLD possesses a PIP3 

binding site, making PI3K a possible factor in PLD activation, which would be interesting to 

study further in platelets. We find co-localization with PLCβII that suggest involvement of the 

Gq pathway.  

It would also be interesting to study which ADP receptors contribute to the autocrine stimulation 

of PLD and to use this knew knowledge to continue correlation studies in wait for a specific 

inhibitor.  

The immunohistochemical studies can be improved by using electron microscopy and 

immunogoldlabeling, which might enable us to find the exact localization of the PLD enzymes. 

The subcellular localization of PLD can also contribute to more knowledge of PLDs role in cells. 

Co-localization studies by immunohistochemistry can be continued by fluorescence resonance 

energy transfer (FRET), a more accurate method for identifying proteins in proximity to each 

order.  

To look into the concept of a signaling platform one could do an immunoprecipitation with 

PLD1 and PLD2 antibodies and a proteomic study of the immunoprecipitates in order to look for 

the presence of other proteins.  

The mechanism underlying PGE1-induced PLD activity also remains to be determined. 

To conclude, this work establishes the presence of both PLD1 and PLD2 in platelets, which are 

both translocated to the plasma membrane area in thrombin-treated cells; this translocation 

seems important for PLD activation as loss of translocation coincides with loss of activity. 

However, translocation is not sufficient for maximal PLD activity since translocation is 

independent of autocrine stimulation while the PLD activity is not. We show that PLD1 and 

PLD2 have different mechanism of activation in platelets as PKA activity only inhibits PLD1 
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translocation and as PMA only induces translocation of PLD1. Finally, we suggest that PKC 

activity and association is implicated in regulating PLDs in platelets possibly involving a 

signaling complex including PLCβII, and that different isoforms of PKC interacts with PLD1 

and 2 in a different manner, which implies different regulation mechanisms and probably 

different roles for the two PLD isoenzymes. However, major tasks remains to establish exact 

roles and regulation of PLD enzymes in platelets. 
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5. Appendix-Introductory results and observations 

 

Initially we wanted to study PLD activity as the release of [14C]choline to avoid the use of 

alcohol and its possibly negative effects on platelet functions. 

The exact procedure for measuring PLD activity by release of [14C]choline was as described in 

the methods in paper 2. In short, gel-filtered platelets suspended in modified Tyrode’s solution 

(without Ca2+) were incubated with [14C]choline for 120 min. at 37oC, centrifuged in the 

presence of 25 µM PGE1 and resuspended in modified Tyrode’s solution before they were 

stimulated with 1 U/ml thrombin. We observed an immediate increase in the [14C]choline 

production, which leveled off after a few minutes (Figure 7); the same effect was observed with 

the natural agonist collagen (50 µg/ml) while PMA (170 nM) only gave 50 % of the effect 

obtained by thrombin and collagen.  
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Figure 7. Stimulation of [14C]choline-prelabeled platelets with PMA, thrombin and collagen. GFP were 

prelabeled for 2 h with [14C]choline, washed in the presence of PGE1 and resuspended in Tyrode’s-buffer 

before the incubation with 170 nM PMA, 1 U/ml thrombin or 50 µg/ml collagen at 37 oC for the indicated 

times. [14C]choline was isolated by thin-layer chromatography  (TLC) from the water phase of 

chloroform/methanol extracts of the platelets  and the radioactivity determined by Instant Imager. Control 

value (set to 100) was ≈ 23 cpm. Similar results were obtained in two other experiments.  

 

[14C]Choline-labeled platelets were separated from the media by centrifugation after stimulation 

with thrombin to investigate the localization of the newly formed choline. Choline appeared to 

leak rapidly out of the platelets (Figure 8) before re-entering the cells, and the total amount of 

free, labeled choline decreased with time.  

 

 

 

 

 

 

Figure 8: Choline produced by thrombin stimulation leaks rapidly out of the platelets. GFP were 

prelabeled for 2 h with [14C]choline, and the platelets isolated, washed and resuspended as described in Figure 7,

before the addition of 1 U/ ml thrombin for the indicated time. Platelets and medium were separated by 

centrifugation before extraction. [14C]choline was isolated by TLC from the water phase of platelet extracts and 

the radioactivity determined by Instant Imager. Control values were 4 cpm intracellular and 2 cpm 
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extracellular. Two parallels were performed and the standard deviations calculated as indicated by the vertical 

bars. Similar results were obtained in five other experiments. 

 

In these experiments we used a relatively high dose of thrombin (1 U/ml), but we observed 

release of choline at concentrations down to 0.1 U/ml; we also performed the assay with shorter 

time intervals, and already 15 sec after stimulation choline was released and leaking out of the 

cells. It was excluded that this release was due to secretion of [14C]choline as we observed no 

incorporation into the granules. 

PLD activity in human platelets as measured by the release of choline, has previously been 

shown to be stimulated by thrombin, collagen and PMA [133], as we have observed in our 

experiments. However, the time course studies showed fluctuations in the choline level, which 

was different from donor to donor; this made it difficult to choose a fixed time for performing 

the PLD assays. It also seemed that choline can be re-metabolized by the platelets, since the total 

amount of free, labeled choline decreased by time (Figure 7 and 8). This is different from our 

previous studies with fibroblasts where PLD-produced choline is not reutilized [250]. Choline 

can be phosphorylated to participate in de novo-PC synthesis, and choline generated by PLD 

isoforms can participate in synthesis of acetylcholine [251], which is present in platelets [252].   

Another interesting fact was the observation that choline leaked out of the platelets before 

disappearing from the extracellular space, probably by re-uptake (Figure 8). Choline is a charged 

hydrophilic cation, and is transported by mechanisms driven by Na-gradients in other cells 

[253-255], but no mechanisms of this is so far known for  platelets. We suspected that this 

presence of labeled choline in the extracellular space could be due to incorporation into granules 

and subsequent secretion as choline is an amide and could be stored in dense granules as is the 

case  for serotonin [256], histamine [257], tyramine  and tryptamine (Holmsen, unpublished 
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results), but we found this to be untrue as we observed no choline incorporation in the granule 

fraction. 

In our choline release experiments we included PGE1 to avoid aggregation during platelet 

preparation, however later experiments (Paper 2) showed that PGE1 also could act as a PLD 

agonist, which has also been shown in human erythroleukemia cells [258, 259].  

The choline release assay is also very time-consuming and taken together with the findings that 

choline was seemingly metabolized by platelets; we concluded that this assay was not optimal as 

a frequently used assay to screen for factors and concentrations that may affect PLD activity, but 

rather to give additional information to the PtdEth assay.  

Although knowing that ethanol can affect the platelet activities, we preferred to measure PLD 

activity as the PLD-specific product PtdEth.  
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