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Summary 

Background 

In medical research some fundamental tasks are to study potential harmful exposures 

that may give increased risk of getting some disease, potential beneficial treatments 

that may increase chance of recovering from a disease, or interventions that may 

reduce the extent or effect of a harmful exposure. In epidemiologic research these 

questions are studied by collecting individual data for representative samples of the 

population. For a specified disease (e.g. breast cancer) there will usually be many risk 

factors, some may be modifiable (e.g. life style factors like smoking habits, physical 

activity, dietary factors) and other factors not so easy to modify (like reproductive 

factors, aging, genetic factors).  Provided that enough data for the individuals in the 

sample is collected on the occurrence of disease and the relevant risk factors, 

statistical models are identified to estimate the effects of the various risk factors on 

the prevalence or incidence of the disease in the population. Estimating the factual 

situation in the population and quantifying the uncertainty in the estimates are thus 

important aims of such statistical analyses. Having done so, a natural next question of 

importance is what kind of exposures can be avoided, or how many diseased cases 

can be prevented, if such exposure could be completely or partially eliminated. A 

statistical concept that can be used to quantify this is the attributable fraction. For a 

single disease caused by a single exposure the attributable fraction due to this factor 

is the proportion of diseased subjects that could have been prevented if the specified 

exposure had not been present. Or, in other words, one questions what would the 

proportionate reduction in diseased subjects in the population be if the exposure 

distribution had been different from what it actual is? For illustration, an Italian study 

estimated that 15.0 % of the breast cancer cases might have been avoided if the beta-

carotene intake had been increased to at least 3366 μg/day for everyone while not 

changing the distribution of a number of other risk factors (low vitamin E intake, 

residence, alcohol habits, physical activity, age, educational level, calorie intake and 

menopausal status).  Increasing also vitamin E intake (to at least 8.5 mg /day) for all 
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subjects gave a combined attributable fraction per cent of 21.5%. Sometimes 

eliminating a common exposure with a moderate increased risk of disease may have 

the same effect in the population at large as eliminating a rare exposure with a highly 

increased risk of disease. Thus, an attributable fraction depends both on the risk of 

disease if exposed and the extent of the exposure in the population studied. 

In general, the attributable fraction quantifies the proportion of cases prevented if the 

factual exposure distribution were replaced with a hypothetical, so called 

counterfactual, exposure distribution. The attributable fraction can also be crudely 

defined as excess proportion of diseased in the population relative to the total 

proportion. The attributable fraction has also several other applications, e.g. to 

quantify the proportion of diseased that can be ascribed to one or more exposures 

(epidemiology), to predict the effect of planned preventive interventions (health 

policy) and to apportion the responsibility for the disease to various agents 

responsible for the exposure (liability law). It has been used in regional and national 

research, as well as in global studies like the Global Burden of Disease and 

Comparative Risk Assessment projects of the World Health Organization. 

Results 

With multiple risk factors attributable fractions can be defined in many ways 

depending on how the counterfactual situation is hypothesized. This thesis describes 

how attributable fractions can be defined, interpreted and estimated for various 

scenarios, e.g. one factor is eliminated while the rest is kept fixed; several factors are 

eliminated; and, multiple factors are removed sequentially may be in different 

orderings. It also describes convenient graphical methods to illustrate the potential 

impact on disease load in a population from interventions on one or more risk factors. 

The statistical and graphical methodology is potentially useful as tools in health 

policy discussions illustrating possible effects of different preventive strategies under 

evaluation and may ease the communication between researchers, decision takers and 

the public. Which strategy will have the largest effect in a public health perspective? 

Which factors should be given priority in a public health intervention or in 
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legislation? How much can be achieved by changing personal habits versus general 

prevention of environmental exposure locally, nationally or globally? Methodology 

for computerized, and possibly interactive, manipulations of different scenarios is 

developed to depict the estimates of possible consequences.  

The statistical methodology for attributable fractions has traditionally been developed 

in relation to the classical epidemiological research designs like case-control studies, 

cross-sectional studies and cohort studies with fixed time to follow-up. Based on the 

statistical models for analysing time-to-event data the thesis extends and reformulates 

the traditional definitions of attributable fraction so as to apply also for scenarios 

where the risk of disease in the population is developing through time and actions 

against harmful exposure or treatment or other intervention may be implemented at 

different time points. Thus immediate, later, as well as cumulative effects of an 

intervention on the disease load in the population are incorporated in these new 

attributable fraction concepts. 

Conclusions 

In summary, the thesis discusses many types of attributable fractions to be used for 

various purposes. The thesis provides methodology for making adequate choices for 

the question at hand. It also gives new algorithms for calculating attributable fractions 

extending those of standard statistical software, and it suggests graphical displays that 

are useful for communicating research results concerning attributable fractions, most 

of which are not found in standard statistical software of today. Finally, new 

methodology for dynamic modelling of attributable fractions taking time to disease, 

time of intervention, or other time-dynamic aspects, into account is suggested by 

relating the methodology of attributable fractions to established theory of survival 

analysis.  The latter will be an interesting field for further methodological research as 

will also relating the concepts of attributable fraction to the recent development in 

causal statistical modelling. 
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1. Introduction 

The wish to quantify the number of the observed cases of diseased or deceased that 

can be ascribed to a given exposure or risk factor has always been fundamental to 

biomedical research, and the investigation of potential cause-effect relationships has 

been the ultimate goal. Levin (1953) seems to be the first to have published a measure 

for this based on probabilistic considerations. Levin’s interest was in quantifying the 

proportion of lung cancer cases in the population that could be ascribed to smoking. 

Another later, but early, example is Oftedal et al (1968) who were interested in 

quantifying the impact of radiation on the number of leukaemia cases. While Levin 

formulated his measure in terms of the relative risk and the probability of exposure, 

MacMahon & Pugh (1970) proposed an alternative formulation in terms of the total 

risk of disease and the risk of disease in the unexposed. The two formulations, that 

were proved to be algebraically equivalent by Leviton (1973), constitute the classical 

definitions of the attributable fraction (AF), and are given in probabilistic notation 

as follows: 

Levin’s formula 

1)()1(
)()1(
+−

−=
EPRR

EPRRλ      (1) 

MacMahon and Pugh’s formula 

)(
)|()(

DP
EDPDP −

=λ      (2) 

Here D denotes the event of disease, E the event of exposure, and over-line 

complementary events, while the relative risk is RR = P(D|E)/P(D|Ē). For instance, D 

might be getting or having leukaemia and E being exposed to radiation in some well-

defined meaning. 

Maximum likelihood estimators (MLE) are easily obtained by substituting 

probabilities by the corresponding sample proportions. (Detailed proofs can be found 
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in Eide (1991a).)  Thus Levin’s formula is suitable when the relative risk can be 

estimated like in a case-control study, while MacMahon and Pugh’s formula is more 

convenient for a cross-sectional or a one-sample cohort study. 

Also alternative formulations have been proposed to optimally serve different 

sampling designs and a number of these were proved in the appendices of Eide 

(1991a). A new formulation useful when only exposure probabilities are available 

was given by Eide and Heuch (2007). 

Miettinen (1974) formulated the attributable fraction in exposed (AFE) confining 

the proportion to only those exposed (i.e. all subjects with the event E) and not the 

total population. The formulations à moduli MacMahon & Pugh (1970) and Levin 

(1953), respectively, are given as  

      
)|(

)|()|(
EDP

EDPEDP
E

−
=λ         (3) 

and      .    (4) 11 −−= RREλ

Miettinen (1974) also related AF to AFE by the equation 

       ).|( DEPEλλ =     (5) 

For the AF, Walter (1975; 1976 & 1978) developed asymptotic distributions for the 

MLEs in the cross-sectional, cohort and case-control designs providing approximate 

standard errors and confidence intervals. For AFE, being just at transformation of the 

RR, standard errors and confidence intervals are easily obtained by transforming 

them from the RR-scale.  

The theory so far was univariate, describing the total elimination of only one 

exposure. Thus, the attributable fraction as defined above is considered to be crude, 

unadjusted or ‘marginal’. However, most often the situation is multi-expositional, i.e. 

there are many factors influencing the probability of disease, and Walter (1980) was 

the first to discuss this problem in probabilistic terms. Some exposures may be 

considered to be modifiable, others not, and the adjusted attributable fraction as first 
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defined by Whittemore (1982), was designed to quantify the effect of removing one 

exposure while the others remained unchanged. Whittemore (1982 & 1983) also 

developed the asymptotic distribution of the maximum likelihood estimator from 

case-control data. Morgenstern & Bursic (1982) suggested the slightly more general 

concept of ‘potential impact fraction’ reflecting the possibility of imperfect 

prevention of exposure. 

Moreover, in the multi-factorial case often a multiple logistic model is estimated for 

the risk of disease and Bruzzi et al (1985) showed how this could be applied to 

estimate adjusted attributable fractions with case-control data. Benichou & Gail 

(1989) were the first to apply the delta method to find the asymptotic variance for a 

model-based adjusted AF with case-control data and Basu & Landis (1995) extended 

this methodology to cohort and cross-sectional data. 

Despite these developments, much confusion prevailed when trying to apportion an 

excess risk to single exposures in a multi-expositional setting. Some calculated the 

crude AF for each exposure, and some calculated the AF for each exposure adjusted 

for the rest. Each method gives AFs for the single exposures involved that might sum 

to more than the AF for them all and even to more than 1 (Doll & Peto, 1981). Some 

authors ‘normalized’ the calculated single factor AFs so that they were forced to sum 

to this total combined AF (mentioned, but not advocated, by Kjuus et al (1996)). An 

elegant solution to this problem was, however, first given by Cox Jr (1984, 1985 & 

1987) by adapting a principle from game theory (Shapley, 1953). Also, Kruskal 

(1987a & 1987b) discussed a parallel solution for ranking independent variables in a 

multiple regression model according to their individual contributions to the total 

explained variance. 

Recently, Rowe et al (2004) provided an updated discussion, however incomplete as 

it did not mention the attractive solution from game theory. 

At the end of the 1980s there was no standard software available for displaying or 

calculating estimates of attributable fractions of any kind. With regard to graphic 

presentation Kjuus et al (1986) and Olsen & Kristensen (1988) included some 
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instructive figures illustrating basic concepts of AFs by using pie charts and risk vs. 

exposure plots, respectively, thus paving the way for later development of graphic 

computer routines. 

In the classical epidemiologic literature the AF was mostly a static measure giving 

the proportion of cases at a given time point that could have been prevented by a 

hypothesized intervention on the exposure distribution. However, an intervention 

may have immediate, short term and long term effects on the occurrence of a disease 

and episodes of disease may more or less come and go (chronic diseases). Also, 

subjects may be of risk for an exposure for shorter or longer periods of time and with 

varying amount. Thus there was a need for considerable further development of the 

classical concept of attributable fraction by more dynamic and flexible modelling of 

the effects of putative preventive interventions also taking time to disease into 

account. The increasing availability of statistical methods and software for analysing 

survival data and other types of longitudinal data has further enhanced the need and 

possibility for such development. 

Finally, some words about terminology. In the literature the concept of attributable 

fraction has had many names, the most prominent being ‘attributable risk’ and 

‘etiologic fraction’. The first is often qualified as the ‘population attributable risk’ as 

opposed to the ‘attributable risk in exposed’. The preference of ‘attributable fraction’ 

throughout this thesis is meant to reflect that it may not necessarily quantify a causal 

effect (etiology, from Greek αίτιολογία, is the study of causation) nor is it always a 

probability in the usual sense (risk is often used as a non-technical term for 

probability of an adverse event) as it cannot be guaranteed to turn out nonnegative in 

all instants. Also the term ‘attributable proportion’ has been abandoned for the latter 

reason. The use of ‘attributable fraction’ is consistent with its definition in ‘A 

Dictionary of Epidemiology’ (Last, 1988). 
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2. Aims 

In general, the work in this thesis has been aiming at further developing the 

methodology for attributable fractions for use in practical epidemiological research. 

This methodology should include parameters formally defined in probabilistic terms, 

estimators of these parameters and inference theory, interpretations that are easily 

understood, as well as enlightening graphical and numerical displays of results. For 

the five articles included the more specific aims have been as follows: 

1. The aims for Article I (Eide & Gefeller, 1995) were to establish a probabilistic 

framework for suggesting estimators of attributable fractions from multi-factorial 

cross-sectional or cohort data, to suggest such an estimator of the adjusted 

attributable fraction, to delineate its asymptotic standard error, and to implement the 

methods of Cox Jr (1985) for apportioning the AF to the single risk factors involved. 

2. In Article II (Eide & Heuch, 2001) the aims were to generalize the concepts of AF 

from Article I to include continuous exposure variables and to generalize and 

formalize the graphical methods implicitly suggested in the first article. 

3. In Article III (Eide & Heuch, 2006a) the aim was to further enhance the graphical 

methodology for displaying excess risk in two dimensions, as well as to extend it to 

three dimensions by exploiting an idea of combining the two-dimensional scaled 

Venn-diagram with the so-called Mosaic-plot for displaying association structures 

between multiple discrete variables. Moreover, an aim was to consolidate the 

definitions of attributable fractions with both discrete and continuous explanatory 

variables. 

4. In Article IV (Eide & Heuch, 2006b) the aim was to investigate if the methodology 

of average AF (AAF) developed in Article I for AF in the population also could be 

applied to AF in the exposed (AFE), and if so, to see if the resulting average AFs in 

exposed (AAFE) could be fit into one coherent theoretical framework together with 

the average AF in the whole population. 
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5. In Article V (Samuelsen & Eide, 2007) the aims were to further develop the 

concepts of adjusted AF for more dynamic scenarios as described with survival 

modelling and to suggest reasonable estimators for them.  
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3. Materials and methods 

All datasets applied in the Articles I-IV are published. The first and most prominent 

dataset is from the Hordaland study of obstructive lung disease (HSOLD) (Bakke et 

al, 1991) and a part of it can be found in detail in Table 1 of Article I (Eide & 

Gefeller, 1995). This part is reused in Article II (Eide & Heuch, 2001) as well as in 

Articles III (Eide & Heuch, 2006a) and IV (Eide & Heuch, 2006b). In Article II (Eide 

& Heuch, 2001) also a dataset published by Lloyd (1996) was used for illustration. 

Finally, in Article V (Samuelsen & Eide, 2007) a dataset on hearing-impairment 

described by Nafstad et al (2002) was applied. 

Analyses and programming have been done using various software including Excel, 

Minitab, BMDP, Maple, S-Plus and Stata. 

Besides, standard probability and statistical inference theory has been applied. 
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4. Results and discussion 

Article I (Eide & Gefeller, 1995) 

In retrospect, primarily there are possibly three significant areas of results to be found 

in the article. 

First, and most central, was a systematic development of terminology and probability 

theory concerning the effect on a binary response from hypothesized manipulations 

of one or several risk factors in a population. The manipulations were either lowering 

the harmful effect of an exposure or reducing the exposure’s extent in the population. 

Such modifications could be done in a stepwise manner by removing one exposure at 

a time. In this case the adjusted AF quantifies the effect of removing one exposure 

in step one leaving the rest unchanged. Further removal of one exposure at each step 

in a pre-specified order leads to the important concept of sequential attributable 

fractions (SAF) for all risk factors in an ordered stepwise strategy. Also, the 

combined adjusted attributable fraction arises as the measure of the combined 

effect of removing several (or all) exposures while adjusting for the remaining. In 

later work the last sequential AF, quantifying the remaining effect of removing an 

exposure after having removed all the others first, has also been termed the extra 

attributable fraction (EAF) (Eide & Gefeller, 2000). Not giving an exposure any 

priority in the set of exposures to be eliminated leads to the concept of average 

attributable fraction (AAF) as the average of the SAFs for this exposure over all 

possible orderings of the risk factors in the set. Both the SAFs and the AAFs for a set 

of risk factors exhibit the important property of summing to the combined AF for the 

set. However, only the AAFs are independent of the ordering and thus give a unique 

apportioning of the combined, possibly adjusted, attributable fraction to the single 

risk factors eliminated. Thus, in Article I the arguments of Cox Jr (1985) for using 

sequential or average attributable fractions for apportioning combined attributable 

fractions to single exposures were restated in an epidemiological context. The 

usefulness of these measures for evaluating and choosing between different 
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preventive strategies was described. Further theoretical justification has been 

provided by the research group of Gefeller (Land & Gefeller, 1997; Gefeller et al 

1998; Land et al 2001a) making the connection to the optimality of the Shapley value 

in game theory (Shapley, 1953). This group has also extended the concept of AAF to 

a multiplicative, rather than additive, variant (Land & Gefeller, 1998) as well as a 

variant for grouped exposure variables (Land et al 2001b). A Bayesian extension has 

also been suggested in which the different ordered strategies were given weights 

according to an a priori consensus (Llorca & Delgado-Rodrigues, 2004a & 2004b). 

Recent evaluations of the different approaches have been provided by Rabe & 

Gefeller (2006) and Rabe et al (2007). 

Second, and what has become a central topic for further development in Articles II 

and III of this thesis, is the suggested 2-dimensional ‘risk vs. exposure plot’ which at 

the same time displays the joint exposure distribution and the risk of diseases, as well 

as the resulting excess risk (or removable fraction of the disease) as areas of 

rectangles (Figure 1 in Article I). In addition, the graphical methods included a 

‘components of AF-plot’ (Figure 2 in Article I) and the construction of a simple pie 

chart for displaying the average attributable fractions (Figure 4 in Article I). The 

latter was further developed in Article IV. In Article I also a flow-chart-like diagram 

was developed to summarize all possible removal strategies for a multi-exposed 

population and the sequential attributable fractions associated to them (Figure 3 in 

Article I).  

Third, in Article I the MLE of the adjusted attributable fraction from a one sample 

cohort or cross-sectional study was developed, filling in a gap in the literature at the 

time. Its asymptotic distribution was developed using the delta-method, and, although 

not stated in the article, this is a generalization of the theory for the unadjusted AF 

estimator developed by Walter (1976). Finally, in Article I, also estimators of all the 

different types of attributable fractions based on a multiple logistic regression model 

were stated. For case-control data, asymptotic theory for this model-based adjusted 

AF estimator was developed already by Benichou & Gail (1989), while the theory of 

this estimator for cross-sectional or cohort data was published by Basu & Landis 



Geir Egil Eide      Attributable fractions                                       28

(1995). Model-based estimators from multiple logistic and Poisson regression models 

have been programmed in Stata (Brady, 1998) and a brief user guide exists (Eide, 

2006).  

For small samples, the asymptotic distribution of the MLE of the adjusted AF is 

skewed suggesting that the variance estimation should be based on a transformed 

adjusted AF and, may be, also by using the re-sampling techniques of jack-knifing or 

bootstrapping. A recent paper (Lehnert-Batar et al, 2006) summarized the historical 

development and compared the coverage of different interval estimators. In 

conclusion they found that confidence intervals based on the computer intensive 

methods may be worth considering when estimating the adjusted attributable fraction. 

Lehnert-Batar (2006) also developed the ‘pARtial’ Package in R for the computation 

of estimates from these estimators.  Also Cox (2006) gave an updated review of 

model-based estimators for case-control and cohort studies. He showed that two 

proposed methods for case-control studies, the empirical (Whittemore, 1982 & 1983) 

and the model-based (Greenland & Drescher, 1993), are in fact identical which 

allows for a unified approach accommodating stratified sampling as well. Moreover, 

he treated the cohort and cross-sectional designs possibly with stratified sampling and 

gave estimators based on the delta method and showed good equivalence with the 

bootstrap method. 

For the average attributable fraction Grömping & Weimann (2004) developed the 

asymptotic distribution and a SAS-procedure for its estimation that may facilitate 

extended use in the future. Also the pARtial Package (Lehnert-Batar, 2006) can 

compute these and, moreover, bootstrap- and jack-knife-estimates. 

A preliminary version of Article I was printed as an internal report (Eide, 1991a) and 

presented on an international conference (Eide, 1991b). 

 

Article II (Eide & Heuch, 2001) 



Geir Egil Eide      Attributable fractions                                       29

This article establishes very general formulations of the attributable fraction in a 

population. The definition of the generalized attributable fraction in equation 20 of 

Article II includes the situations with multiple continuous as well as discrete 

explanatory variables in an m-dimensional vector, X, with the options of modifying 

their joint distribution, F(x), the conditional risk function, p(x), or both. Equation 26 

in Article II gives the corresponding definition of an adjusted generalized 

attributable fraction where the distribution of one set of adjustment variables, F2(x) 

is held fixed while the conditional distribution for the rest, F1(x1|x2), is modified. 

From this the theory of sequential and average attributable fraction follows along the 

lines of Article I.  

Also, in Article II the risk-exposure plot of Article I (Eide & Gefeller, 1995) is 

formalized and termed a ‘scaled Venn diagram’. This ‘scaled Venn diagram’ consists 

of a unit square representing the sample space where the probability metric at the 

horizontal scale represents the joint distribution of the explanatory variables and at 

the vertical scale the response (disease/not disease) distribution. For discrete exposure 

variables the probabilities of various events are mapped as areas of corresponding 

rectangles in the unit square thus directly depicting the sizes of diseased and exposed 

groups in the population. A version with a continuous exposure variable is also 

described. The problem of generalizing the diagram to the case with more than one 

continuous explanatory variable has, however, not been resolved. To give an exact 

and correct visual impression of the joint probabilities the scaled Venn diagram 

should be displayed as a unit square so that probabilities in the response dimension 

and explanatory dimension get equal weights. Thus, for instance, figure 39 of Article 

II is somewhat misleading as the disease probability scale is shorter than the exposure 

probability scale.  

The term ‘scaled Venn diagram’ was chosen because its construction was inspired by, 

and reminded the authors of, the classical Venn diagram (John Venn 1834-1923). 

This term is, however, slightly misleading since the classical Venn diagram is 

different in some important aspects like having no metric (is scale-less), no outer 

border for the ‘universe’, a symmetrical appearance, and in that events (sets) are 
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illustrated by possibly intersecting circles or ellipses rather than rectangles (Edwards, 

2004). A contemporary competitor to Venn’s diagram was the ‘Lewis Carroll 

diagram’ (Louis Carroll was the pseudonym of Charles Lutwidge Dodgson 1832-98) 

in which the ‘universe’ was confined within a square and the events were represented 

by rectangles. A metrical Venn diagram was suggested by Edwards & Edwards 

(1992) as a squared diagram enabling visual comparison of expected and observed 

frequencies in a 2×2×2 contingency table. However, neither these, nor later, 

developments of the classic Venn diagram (Edwards, 2004) are convenient for 

illustrating excess risk or attributable fractions. Rather, for discrete exposure 

variables the ’scaled Venn diagram’ is a two-dimensional (2D) Mondrian plot (Theus, 

1997) where all combinations of the values for the explanatory variables generate the 

first dimension and the response variable the other. To also embrace the variant with 

a continuous explanatory variable, the term scaled sample space square (SSSS) may 

be more appropriate. 

In Article II examples of the suggested diagrams are given for cross-sectional as well 

as case-control data, relaxing the requirement of a unit square. 

Article II is the first paper in a thematic issue of Statistical Methods in Medical 

Research on attributable fractions in epidemiology (Gefeller, 2001). A preliminary 

version of the article can be found as a research report (Eide, 2000). A fair resume of 

the theory and some of the graphical methods was recently given by Benichou 

(2007), although the description of average attributable fractions (p.293, termed 

‘partial attributable risk’) seems somewhat flawed. 

 

Article III (Eide & Heuch, 2006a) 

This is a purely graphical investigation where the principles of the SSSS of Article II 

(Eide & Heuch, 2001) were combined with the mosaic plot (Hartigan & Kleiner, 

1981 & 1984) to create a three-dimensional (3D) display of the multivariate 

association structure within the exposure variables as well as between disease 
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variable and the exposure variables. Moreover, the constructed scaled sample space 

cube (SSSC) directly depicts the sizes of diseased and not diseased subpopulations in 

the various exposure groups, making it especially useful for illustrating excess risk 

given any level and combination of exposures. 

The mosaic plot is a version of the spine plot (Unwin et al, 2006) made to graphically 

disclose possible associations in multidimensional contingency tables (Theus & 

Lauer, 1999). In the mosaic plot (Hartigan & Kleiner, 1981) the tiles are separated by 

gaps to improve visual discrimination. This is especially useful with empty or 

infrequent categories, but is not so convenient when the introduction of a probability 

metric to the plot is desired. Hofmann (2006) discussed several variations of the 

mosaic plot including the default, ‘same binsize’, ‘fluctuation’ and χ2 diagrams.  

Without gaps the mosaic display is termed a Mondrian diagram (reminding of 

paintings by the Dutch painter Pieter Cornelis Mondriaan, 1872-1944) (Theus, 1997). 

Hartigan & Kleiner (1981) also suggested a version with horizontal or vertical dotted 

lines to show the deviance from the situation with independent variables.   

The resulting scaled sample space cube illustrates the joint exposure distribution as a 

Mondrian diagram in the two first dimensions and the conditional response 

distribution in the third dimension. Probabilities of the various events appear as 

volumes of 3D rectangular boxes within the cube. In Article III it was demonstrated 

how the scaled sample space cube can be used to illustrate excess risk and the 

potential impact on risk of disease from hypothesized interventions on the exposures 

in the population. An example was given by Eide, Heuch & Eagan (2002) and is 

shown in Figure 1. The figure uses data of the Hordaland Study of Obstructive Lung 

Disease (Eagan et al, 2002) on 11 years incidence of attacks of dyspnoea and 

illustrates the effect of removing exposures according to all possible ordered 

preventive strategies (Eide & Gefeller, 1995). The volume of the yellow boxes 

represents the proportions of disease that might have been prevented. In the first 

column of cubes the largest yellow volume is found in the second row. It illustrates 

that the most effective strategy would be to remove smoking first (direct estimated 
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adjusted AF: 0.297, 95% CI: (0.173, 0.420)). From this there are three options shown 

by arrows to the second column of cubes, i.e. to the cubes in the first, fourth and fifth 

row, and it is seen that among these the largest yellow volume is the last which also 

has an arrow from the female cube in the first column illustrating that female gender 

is the best to prevent in combination with smoking (adjusted combined AF: 0.441, 

95% CI: (0.242, 0.640)). Gender is, however, not a realistic target for a preventive 

campaign and this strategy is mostly of academic interest. However, one might 

speculate if female gender in this case could be a proxy for other, possibly 

modifiable, exposures that are yet to be identified. For the probably more realistic 

combination, dust/gas and smoking, the combined adjusted AF is 0.344 with 95% CI: 

(0.201, 0.488) which is illustrated in Figure 1 by the first SSSC in the 2nd column. 

 

Dust/gas 

Smoking 

Age <50 

Scaled 

sample 

space 

cubes 

Female 

Figure 1 Scaled sample space cubes showing the effects of stepwise removal of exposures; Volumes of 

yellow boxes are potentially removed excess risks. 
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 (Notice that changing the incidence in the persons being under 50 years of age in 

1985 to that of those at least 50 gave positive attributable fractions as shown in 

Figure 1, but that choosing below 30 years of age in 1985 as the reference level, as 

initially done, increased the overall incidence and gave negative attributable fractions 

for age.) 

Also, scaled sample space cubes may be used for comparing the observed and the 

modelled (estimated) response distribution as shown in Figure 2.  

b. Observed prevalence of chronic cough 

The regularity of the scaled sample space cube (here without roof and side walls) for 

the modelled prevalence (left), which is based on a logistic regression model with no 

interactions, is striking compared to that for the observed distribution of the same 

variables (right), and one may identify exposure classes where the discrepancy 

between model predicted risk and data is large (for instance heavy-smoking, not dust 

exposed, urban residents). Of course, also the empirical illustration here (right) is a 

simplification of the observed situation since the explanatory variables included are 

chosen by a statistical selection procedure before making the plot. In a regression 

model the response is usually modelled conditionally on the explanatory variables, 

implicitly doing no smoothing of the joint distribution of the explanatory variables. 

With categorical explanatory variables further smoothing of the cube could be done 

by applying the technique of log-linear modelling of multidimensional contingency 

Figure 2 Scaled sample space cubes illustrating modelled (a) and observed (b) probabilities of 

disease. 
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tables removing nonsignificant interaction terms between the explanatory variables. 

Indeed, in a random sample from a population, also the explanatory variables are 

random variables and their possible dependencies can be tested and estimated, but 

this is rarely done in practice. 

The scaled sample space cube is especially beneficial when used interactively on a 

computer screen. Rotation and zooming often disclose hidden features of the data or 

the model. Interactivity is even more important with the volume-based scaled sample 

space cube than with the area-based scaled sample squares of Article II. In print, 

however, the advantages of such interactive manipulation are not so apparent, but 

Figure 3 shows an example of rotating the scaled sample space cube of Figure 1 

 

b

a 

Figure 3 Rotation of scaled sample space cube to better display the extreme risks in the small exposure 

groups in the back of Figure 1. For females over 50 years there were no cases of breathlessness in the 

smoking group (a), but a large proportion among the ex-smokers (b). 
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that discloses the small group of women who were above 50 years and smokers in 

1985 but had no incident cases of breathlessness during 1985-1996; a survival of the 

fittest effect?  

An example of the usefulness of zooming is given with the scaled sample space 

square in Figures 33-38 of Article II (Eide & Heuch, 2001).  

Like for the mosaic plot, or the double-decker plot (Hofmann, 2001), plotting the 

scaled sample space cube for different orderings of the explanatory factors, may 

disclose information that otherwise might go undetected. Indeed, in the context of 

attributable fractions this can give directions to more efficient preventive strategies. 

In the cubes in Figure 1 the orderings of the variables in the mosaic plot in the base is 

the same for all preventive strategies to make visual comparisons between the 

different removal strategies easier. When illustrating only one selected preventive 

strategy one could adopt the convention of having the same order in the base mosaic 

as in the actual strategy because eliminating one exposure from the mosaic will give 

the mosaic display corresponding to the remaining exposure factors. Another 

ambiguity is the ordering of categories within each categorical variable. For an 

ordinal variable it seems natural to stick to the original ordering, but for a nominal 

variable the ordering does not come automatically. One reasonable convention would 

then be to order the categories according to increasing risk of disease, be it 

hypothesized, observed or estimated. 

As of today neither mosaic plots, nor spine plots, Mondrian diagrams, or SSSCs can 

be found in standard statistical software, although specialized software exists 

(http://www.rosuda.org/GOLD/Software.html). Indeed, this author could not even 

find a standard statistical package with the option of creating a univariate histogram 

with bin widths varying between the categories, nor could the option of a 3D 

bivariate histogram with irregular baseline grid be found. To incorporate such 

flexibilities in the plotting routines, for instance drawing a, possibly two-dimensional, 

histogram with varying pre-selected or data-driven bins, should be a natural challenge 

for statistical software developers. 
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Statistical graphics are distinguished from other graphics by their universality (Theus, 

2006) and should be valid for any data measured on a nominal, ordinal or continuous 

scale and not tailored for only one specific application. The 3D scaled sample space 

cube is such a method that, like a histogram, can be used also for continuous 

distributions provided that reasonable categorizations, or possibly smoothing, are 

made. Developing further interactive facilities like querying, selection and linking, 

and varying the plot characteristics by rescaling, resizing, zooming, reordering or re-

colouring (Unwin, 2006) might further enhance its applicability. 

A first version of Article III can be found as a Centre for Clinical Research (CCR) 

Research Report (Eide & Heuch, 2002). 

 

Article IV (Eide & Heuch, 2006b) 

From the beginning there has been a duality between AF and AFE and also between 

attributing risk to variables and to categories. While the theory of adjusted, sequential 

and average AFs was developed in Articles I and II and illustrated in Articles II and 

III, a similar development was not done for the AFE although for the unadjusted 

versions equation (5) gives a simple relationship. In Article IV a probabilistic 

development of adjusted, sequential and average AFEs is carried out in parallel to 

that for the AF. In principle then, the AFE for each exposure subclass is partitioned 

into average AFEs for all the factors responsible for the excess risk of this subclass 

and by piecing together the AFEs from all the subclasses for one particular factor the 

average AF in the total population for this factor is restored. Thus, the relationships 

between average AF concepts for the exposed and for the population are disclosed, 

and a complete theory for adjusted, sequential and average attributable fractions is 

established. This does not only resolve the duality between partitioning the AF and 

AFE to multiple risk factors, but also the duality between attributing risk to variables 

or to categories. Indeed, the complete decomposition of the AF, as for example given 

in Table 3 of Article IV, can be visualized in a pie chart putting the emphasis on the 
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variables or on the categories as reproduced from Eide & Heuch (2004) in Figure 4, 

panel A and B, respectively.  

Average attributable fractions apportioned to 
exposure classes (negative classes subsumed)
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Figure 4 Pie chart showing complete decomposition of total AF = 60.18 % to risk factors and exposure 

classes. Left panel sorted according to exposure class numbering, right panel according to the risk 

factors, i.e. residence (green: 12.75%), smoking (red: 34.96%) and occupational exposure to dust or gas 

(blue: 12.47%). 

Finally, it was demonstrated that the methodology of average attributable fractions in 

exposed has favourable characteristics compared with other methods proposed in the 

literature and some ad hoc proposals. These results have been substantiated by other 

recent research (Rabe & Gefeller, 2006; Rabe et al, 2007). 

 A first version of this article can be found as a CCR Research Report (Eide & Heuch, 

2004). 

 

Article V (Samuelsen & Eide, 2007) 

A major limitation of the classical concept of attributable fraction is that it has no 

time dimension. Traditional epidemiology usually concerns relationships between 

exposure and disease that are causal and a common requisite for an association to be 

causal is that the individual should be exposed before a disease occurs (Hill, 1965). 

However, time from exposure to disease is not an ingredient in the definitions of the 
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attributable fractions that were discussed in the first four articles of this thesis. 

Moreover, the time from a suggested intervention to its impact on the population 

studied is traditionally not taken into account when estimating attributable fractions. 

Thus the attributable fraction is a static measure considering the disease situation at 

one point in time and what it could have been if the risk distribution at the same time 

point or some other fixed timed point had been different. The need for a more 

dynamic attributable fraction measure is obvious. Indeed, from the field of event 

history analysis (or survival analysis) a set of models is offered that describes 

evolution of disease in individuals over time. Indeed, such models set out to describe 

the time from one event (starting time) to another (disease) and estimation procedures 

are especially developed that account for the feature of censored observation times 

that is so frequently present in survival data. 

Article V set out to transfer the concepts of attributable fraction to the situation with 

survival data. To accomplish this, three different concepts were proposed: the 

attributable hazard fraction (AHF), the attributable fraction before (AFB) time t, 

and the attributable fraction within study (AFW). Traditionally one would think of 

these AFs as the potential effects of removing an exposure at the starting time, that is 

that some kind of intervention takes place at the intervention time s = 0. In Article V 

this situation was modelled within the time to event analysis framework and further 

extended to include the possibility of an intervention at a later time point, i.e. at a 

time s where possibly s > 0. Thus, rather general models are formulated.  

The different definitions are interpreted and their features analysed and illustrated, as 

well as how they relate to each other. With intervention at time s all measures are 

zero at time-points t < s. For t ≥ s AHF(t,s) is monotonically decreasing and 

approaches zero, while the effect on the cumulative risk function (1-S(t)) described 

by AFB(t,s) is increasing continuously from zero to a maximum cumulative effect 

before decreasing to zero in the long run. The attributable fraction within study is a 

measure that depends on the censoring scheme for the particular study at hand and 

may or may not approach zero when maximum follow-up time is approaching 

infinity. 
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Also, the bias from the common practice of substituting the adjusted hazard ratio 

from a Cox proportional hazards model for survival data (Cox, 1972) for the RR in 

the classical definition of Levin (1953) was demonstrated. 

Finally, Article V proposed estimators for the three AF measures and showed how 

various point-wise confidence intervals can be obtained using the bootstrap 

methodology. The proposed concepts and their estimators are illustrated using a real 

data set on age when being granted cash benefit for hearing impairment. Receiving 

cash benefit here serves as a proxy for developing hearing impairment and the impact 

on the risk of being hearing impaired preventing harm from low birth weight in 

several scenarios is estimated.  

The main ideas and results of this paper were presented internationally for the first 

time as an oral contribution at the International Conference on Reliability and 

Survival Analysis in Columbia, USA (Samuelsen & Eide, 2003). 

 

Some general remarks 

As noticed already in Article I (Eide & Gefeller, 1995) the average attributable 

fraction is an application of a principle described by Kruskal (1987a & 1987b) for 

determining relative importance of  explanatory variables (regressors) in a multiple 

linear regression model with correlated regressors based on decomposing the 

determination coefficient, R2 (Kruskal & Majors, 1989).  The background and a 

summary of further development of this methodology within linear regression 

modelling have recently been provided by Grömping (2007a). Grömping (2007a), 

ascribing the principle to Lindeman, Merenda & Gold (1980), denoted it the LMG 

method and compared it with the method of ‘proportional marginal variance 

decomposition’ (PMVD) proposed by Feldman (2005).  The PMVD is shown to be a 

weighted averaging method, as opposed to the LMG method where all rankings of 

regressors have equal weight, and is shown to fulfil four postulated desirable 

requirements while the LMG method fulfils three of them. The four requirements, 
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restated from Grömping (2007a), are: a) ‘proper decomposition’: the model variance 

is to be decomposed into shares, that is, the sum of all shares has to be the model 

variance, b) ‘non-negativity’: all shares have to be non-negative, c) ‘exclusion’: the 

share allocated to a regressor Xj with βj = 0 should be 0, and d) ‘inclusion’: a 

regressor Xj with βj ≠ 0 should receive a nonzero share. Requirements a) and c) is 

quite similar to two of the three axioms of Cox Jr (1985) which were informally 

stated as A1 and A3, respectively, in Article I. According to Grömping (2007a) the 

LMG method does not fulfil the ‘exclusion’-requirement. However, examples of 

causal models are given where a regressor Xj has βj = 0 in the regression model but 

still is a causal factor and so it is not reasonable to assign it a zero share. 

Consequently, Grömping (2007a) recommended the LMG method unless there are 

specific reasons to exclude an Xj with βj = 0 from the causal model. Further 

discussion can be found in Menard (2007) and Grömping (2007b). 

The LMG method does neither seem to be developed for regression models with 

discrete regressors on a nominal (or ordinal) scale represented by a set of indicator 

variables in the model, nor for models with interaction terms (Xi·Xj). Although both 

indicators and multiplicative terms can be accommodated within the general 

framework of the LMG method, the interpretation of the assigned shares for these 

becomes obscure. For the AAF, however, the theory for such cases is thoroughly 

developed in Article IV. A similar development for the LMG method could be 

warranted.  

An important difference between the use of AF in epidemiology and the general use 

of the determination coefficient, R2, in linear regression is that while R2 is a measure 

of the proportion of the total variation around the expected value of the response 

variable explained by variation in the explanatory variables, the AF is a measure of 

the proportion of the total risk explained by raised levels of exposure (proportionate 

excess risk). Thus, to transfer the ideas of the AF to the situation with a linear 

regression model one might define an R2 using a chosen reference value for the 

response representing the expected (normal) level in an unexposed population. In a 

linear regression model with the continuous explanatory variables normalised to have 
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E(Xj) = 0 as the ‘normal’ value and categorical variables represented by indicators of 

exposure, this reference value would be μ0 = E(Y|X=0), the total variation would be 

SST0 = Σi(Yi-μ0)2 and the explained variation SSR0 = Σi(μi-μ0)2 where μi = E(Y|xi), so 

that the attributable squared variation becomes AV = SSR0/SST0. More generally, in 

a linear regression model one could define the attributable squared variation (AV) 

due to a specified change in the joint distribution of the regressors in the same way as 

for the generalized attributable fraction. The AV will coincide with the usual R2 when 

μ0 is the mean response. Further development of this theory could be interesting, but 

are not found in the literature as of today. 

In the effort of understanding the various kinds of attributable fractions discussed in 

this thesis graphical illustrations have been of great help. A number of displays have 

been suggested, especially in Articles II and III, and one might hope that some of 

these can find their way to standard statistical software. Both 2D and 3D 

visualizations are possible and can supplement each other in a graphical menu for 

attributable fractions. Modern ways of interactively manipulating graphs on the 

computer screen like querying, selection and linking, and varying the plot 

characteristics by rescaling, resizing, zooming, reordering or re-colouring could be 

implemented. Moreover, a possibility of flexible choice of preventable exposures and 

their ranking in a preventive strategy would certainly aid in understanding more 

complex modelling and estimation of attributable fractions and in discussing pros and 

cons for various preventive strategies of interest. 

Taking into account time from exposure or intervention to effect on disease risk, as 

suggested in Article V, is a major step forward in the development of attributable 

fractions and also other authors have now taken up this idea (Chen et al, 2006). 

Further development in this direction will be natural by linking the attributable 

fraction to even more realistic intervention scenarios and to causal models (Hernán & 

Robins, 2006). Survival models with time-dependent effects and covariates will be 

central and one possibility is intervention at a fixed time-point s that has, however, an 

impact after a stochastic latency period L. Also, introducing an intervention at a fixed 

date, d, may induce a random intervention time V in the model. For instance, if the 
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accrual of individuals in the study is uniformly distributed over a given calendar 

period (a,b) the intervention time V will also be uniformly distributed, i.e. on 

(a+d,b+d), and combined with a latency period an effect of intervention might not be 

observed until a random time V+L after time zero. Thus the attributable fractions 

should be defined accordingly. One can also foresee to study a series of interventions 

at successive dates or time-points and to evaluate the effects of different orderings or 

selections of interventions in order to obtain maximum preventive effects after 

minimum elapse of time.  

In survival analysis there is also the problem of selection bias in the meaning that the 

more fit patients are the best survivors so that the comparison of hazard functions is 

gradually more biased as time increases. To remedy this problem some authors have 

proposed that comparing expected survival times, E(T), is more appropriate. In this 

perspective one might define ‘attributable fraction of lost life time’ in a population 

(AF(T)) due to an exposure as   

)(
)|()()(

TE
ETETETAF −=        .       (6)  

Further development of theory for estimating this or similar parameters is in demand. 
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5. Main conclusions 
 
This investigation describes reasonable and practical methods for apportioning excess 

risk to different risk factors as well as to groups of risk factors and to subpopulations 

identified by given risk profiles. For the attributable fraction in the classical sense this 

is developed in Articles I, II and IV and the synthesis is given in Article IV. 

Secondly, a graphical methodology for describing excess risk attributable to different 

exposure groups in a multi-expositional setting has been developed. This 

methodology provides means for dynamic illustrations of the effects on the risk of 

disease in a population of stepwise removing exposures in an ordered preventive 

strategy. It also paves the way for making simple pie charts quantifying the portions 

of the total risk to different exposures or risk profiles. The methodology is described 

in Articles II and III, and a synthesis is given in Article IV. 

Finally, Article V points at how the classic concept of attributable fraction from 

epidemiology can be further developed from being a static measure to being used 

with dynamic scenarios encountering risks developing in time or effects of preventive 

interventions on risk changing over time.  

In summary, the practice of simple and crude calculations of attributable fractions in 

epidemiology should be abandoned. Modern statistical software should be upgraded 

to be able to illustrate the different kinds of attributable fractions as well as with 

procedures for estimating the more advanced types. Finally, further development of 

the statistical theory for attributable fractions with survival data and possibly linking 

it to causal modelling will be of great interest.  
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6. Errata 

Article I (Eide & Gefeller, 1995) 

Eide, Geir Egil & Gefeller, Olaf (1995) “Sequential and average attributable 
fractions as aids in the selection of preventive strategies.” Journal of Clinical 
Epidemiology 48, 5, 645-655. 

 
p. 649: Subscripts “c” and “s” in the logistic regression formulas should be “C” (for 

Chronic cough) and “B” (for Breathlessness), respectively. 

Table 1: For stratum 1, exposure class 9, the predicted #yes should be 36.71, not 

30.00. 

Table 1: The average attributable fraction in the lower rightmost corner should be 

0.512 (or 51.2%), not 5.12. 

Fig. 4: The sector labels “Residence” and “Occupational exposure” should be 

interchanged so that “Residence” gives 13 % and “Occupational exposure” 12 %. 

p.655: In the definition of θ  ’θ11K’ should be ’θ22S’ and ’4K’ should be ’4S’. 

p.655: The line with the expectation and the covariance matrix should read: 

E(X) = nθ and ΣX = n[diag(θ) - θθ′]. 

 

Article II (Eide & Heuch, 2001) 

Eide, Geir Egil & Heuch, Ivar (2001) “Attributable fractions: fundamental 
concepts and their visualization.” Statistical Methods in Medical Research 10, 
3, 159-193. 

 
Fig. 4: The heading ‘V’ should be ‘Ω’ and ‘12P*(E) should be ‘1-P*(E)’ at the q-axis. 

Fig. 26: The colour codes under the figure should be interchanged so that eliminating 

E first is the darker. 
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Article III (Eide & Heuch, 2006a) 

Eide, Geir Egil & Heuch, Ivar (2006a) “A scaled sample space cube used to 
illustrate attributable fractions.” Biometrical Journal 48, 1, 93-104. 

 
p. 98: In the equation, the sign of 0.37126 should be negative (-), not positive (+). 

Fig. 8d: This should not be equal to Fig. 8c, but look like 

  

as correctly shown in Animation 1 on the website   

 http://www.helse-bergen.no/avd/kkf/statistiskforskning/cube.htm. 

p.104: The page numbers for the reference of Uter & Pfahlberg (2001) should be 231-

237, not 231-231. 

 

Article IV (Eide & Heuch, 2006b) 

Eide, Geir Egil & Heuch, Ivar (2006b) “Average attributable fractions:  a 
coherent theory for apportioning excess risk to individual risk factors and 
subpopulations.” Biometrical Journal 48, 5, 820-837. 

 
p. 826:  Line 13: ‘[1]’ should be ‘(Eide and Gefeller, 1995)’. 
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Article V (Samuelsen & Eide, 2007) 

Samuelsen, Sven Ove & Eide, Geir Egil (2007) “Attributable fractions with 
survival data”. Statistics in Medicine. Published Online: 10 Aug 2007 DOI: 
10.1002/sim.3022.  

 
Section 4.3, paragraph 2, line 2: Delete ‘are’. 

Section 5.1, paragraph 1, line 2: Insert ‘for’ in ‘… to use for covariates …’. 

Chapter 6, paragraph 2, line 4: Delete first occurrence of ‘other’. 

Chapter 7, paragraph 1, line 6-7 should read: ‘That the time perspective has not been 

taken into account has been typical for the use of AFs so far.’ 

Chapter 7, paragraph 2, line 3: Insert a comma after ‘dates’. 

Chapter 7, paragraph 5, line 15: Replace ‘the models’ with ‘their’. 

Reference 38: Insert ‘Research’ in ‘Centre for Clinical Research Research Report‘. 
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Appendix III: English – Norwegian nomenclature 
 

Attributable fraction (AF)  Tilskrivbar andel (TA) 

Adjusted AF   Justert TA 

Sequential AF   Sekvensiell TA 

Combined AF   Samlet TA 

Average AF   Gjennomsnittlig TA 

AF in exposed   TA blant eksponerte 

Relative risk   Relativ sannsynlighet 

Relative odds   Relativ odds 

Risk ratio   Sannsynlighetsforhold 

Odds ratio   Oddsforhold 

Scaled sample space square Skalert utfallsromskvadrat 

Scaled sample space cube  Skalert utfallsromskube 

Survival time   Levetid 

Ordered stepwise strategy  Ordnet stegvis strategi 

Generalized AF   Generalisert TA 
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