
Improving Efficiency in Parameter Estimation Using the

Hamiltonian Monte Carlo Algorithm

by

Mohammed Alfaki

A thesis submitted in partial fulfillment for the

degree of Master of Science

in the

Faculty of Mathematics and Natural Sciences

Department of Informatics

Optimization Group

May 2008

c©Alfaki

file:mohammeda@ii.uib.no
http://www.uib.no/mnfa/index_eng.html
http://iieng.iportal.uib.no/
http://www2.ii.uib.no/forskningsgrupper/opt/index-eng.shtml

UNIVERSITY OF BERGEN

Abstract

Faculty of Mathematics and Natural Sciences

Department of Informatics

Master of Science

by

Mohammed Alfaki

The Hamiltonian Monte Carlo algorithm, or alternately called hybrid Monte Carlo is Markov

chain Monte Carlo technique, which combines a Gibbs sampling update with the Metropolis

acceptance-rejection rule. The Hamiltonian Monte Carlo algorithm simulates the distribution

using Hamiltonian dynamics which, involves gradient information to investigate the distribution

space, and thus has better convergence properties than Metropolis–Hastings and Gibbs sampling

algorithms.

The Hamiltonian Monte Carlo algorithm suffers from random walk in generating the dynamics

momentum, and an additional error when the dynamics is simulated using constant step–size.

This thesis investigates three approaches to improve the performance of the Hamiltonian Monte

Carlo algorithm. The first approach enhances the Hamiltonian Monte Carlo by suppressing

random walk in the Gibbs sampling using ordered over–relaxation. The second approach inves-

tigates the simulation of the Hamiltonian dynamics using an adaptive step–size to reduce the

error of the simulation. The third proposal is to combine the two versions into one algorithm.

http://uib.no/info/english/
http://www.uib.no/mnfa/index_eng.html
http://iieng.iportal.uib.no/
file:mohammeda@ii.uib.no

Acknowledgements

I am very grateful to my supervisor Dr. Sam Subbey for the privilege of having excellent guidance

and constant support during this work. My knowledege has benefited greatly from his expertise,

enthusiasm and encouragement. I also wish to express my warmest gratitude to my co-supervisor

Prof. Dag Haugland for the numerous invaluable suggestions during this work and for giving

valuable suggestions to the manuscript. I also thank the administration staff at the department

of Informatics. I am enormously grateful to the Norwegian state educational loan fund for the

support during my master study.

The main body of this work was carried out at the Institute of Marine Research (IMR). I thank

the staff, researchers and employees at this institute for the comfortable working environment

and excellent facilities for this work.

Especially warm thanks go to my parents Altoma and Ali, my wife Sara, my family, and to all

my friends for their constant support and patience during this work.

ii

Contents

Abstract i

Acknowledgements ii

Contents iii

List of Algorithms v

List of Figures vi

List of Tables viii

1 Overview 1

1.1 Motivation . 1

1.2 Goal of this thesis . 2

2 Inverse theory 3

2.1 Introduction to inverse problems . 3

2.2 Deterministic approach to solving inverse problems 4

2.3 Statistical inversion . 6

2.4 Definitions . 6

2.5 Bayesian model for inverse problems . 8

3 Markov Chain Monte Carlo algorithms 10

3.1 Basic definitions . 10

3.2 Simulation of the Markov chains . 11

3.2.1 The Gibbs sampler algorithm . 11

3.2.2 The Metropolis-Hastings algorithm . 13

3.3 Classical MCMC in high dimensions . 14

4 Hamiltonian Monte Carlo algorithm 16

4.1 Definitions . 16

4.2 The Hamiltonian equations . 19

4.3 Classical Hamiltonian Monte Carlo algorithm . 22

5 Problem definition 25

5.1 The HMC algorithms in practice . 25

5.1.1 Step–size effect . 25

5.1.2 Constant vs. adaptive step–size . 25

5.1.3 Number of simulation steps . 26

5.1.4 The random walk in choosing the momentum 27

iii

Contents iv

6 Improving the Hamiltonian Monte Carlo algorithm 28

6.1 Basic definitions . 28

6.2 Over–relaxation methods . 29

6.2.1 Ordered over-relaxation . 29

6.3 Symplectic integrators . 31

6.4 Strategies for improving the HMC . 32

6.4.1 Restricting random walk in the momentum 33

6.4.2 Adaptive step–size . 34

6.5 Combining ordered Over-relaxation and Störmer–Verlet 36

7 Criteria for evaluating the improved HMC algorithm 38

7.1 Degree of the correlation criteria . 38

7.1.1 Spectral analysis criteria . 40

7.1.2 Testing convergence of a chain . 44

8 Simulation and results 45

8.1 Gaussian target and parameter estimation . 45

8.2 Distributions for the numerical experiments . 47

8.3 Results from numerical experiments . 47

8.3.1 Comparing OHMC and HMC algorithms 47

8.3.2 Comparing SVHMC and HMC algorithms 50

8.3.3 Comparing OSVHMC and SVHMC algorithms 53

8.4 Conclusion . 56

9 Suggestions for further works 57

A Abstract accepted at Thiele conference 59

B Abstract accepted at ECMOR XI conference 61

Bibliography 64

List of Algorithms

3.1 The Gibbs Sampler . 12

3.2 The Metropolis-Hastings . 13

4.1 The Hamiltonian Monte Carlo–leapfrog . 23

6.1 Ordered Over-relaxation . 31

6.2 HMC algorithm with ordered over–relaxation applied to the Gibbs sampling stage
to drawn the momentum variables. 33

6.3 HMC algorithm with Störmer–Verlet discretization used to simulate the Hamilto-
nian dynamics . 35

6.4 HMC algorithm using ordered over–relaxation to pick the momentum variables,
and Störmer–Verlet scheme to simulate the Hamiltonian dynamics. 37

v

List of Figures

2.1 The figure shows how small error in the data lead to a different model. Ideally we
expect that the error in model should be proportional to the data error. This is
the typical features of the inverse problem. Here A = G−1 : D → M, and δ is the
uncertainty in the data. 4

3.1 The histogram of the chain of 1000 samples generated according to Gibbs sampler
Algorithm 3.1 is illustrated on the left, and the estimated marginal distribution
for x1 from equation (3.3) on the right of the plot, when the parameters α = 2,
and β = 4. 12

3.2 10000 sample form the Cauchy distribution left plot. The histogram and the
Cauchy distribution curve drawn in the same plot (the right plot), which gives an
acceptable match. 14

4.1 The contour plot (left), and 3-dimensional plot of the correlated Gaussian distri-
bution defined in (4.39). 23

4.2 The marginal distributions and contour plots for the correlated 2–dimensional
Gaussian distribution, sampled from both Hamiltonian Monte Carlo (HMC) on
the left, and Metropolis–Hastings (MH) on the right, with chain length n = 4000
for each. It is clear that HMC captured the target distribution very well, while
MH appears trapped, leading to a skewed distribution. 24

5.1 The figure shows the effect of varying the step–size ǫ = 0.025, 0.1, and 1.9, in
the histogram of the chain (top row), and the corresponding change in the total
energy (bottom row). Observe the difference in scaling of δH axis. 26

5.2 The effect of using adaptive step–size instead of constant steps. The target dis-
tribution is a 2–dimensional Gaussian, Σ = I. 26

5.3 The figure shows the effect of using different values for the number of leapfrog steps
L = 5, 10, and 30, in the histogram of the chain (top row), and the corresponding
change in the total energy (bottom row). Observe the difference in scaling of δH
axis. 27

5.4 The plot on the left shows the points generated by the HMC algorithm from
the 2-dimensional correlated Gaussian distribution. The right plot presents the
desirable behavior of the point without random walks. 27

6.1 The contour plot (left), and 3-dimensional plot of the correlated Gaussian distri-
bution defined in (4.39). 34

6.2 The error introduced in the Hamiltonian H for both Leapfrog and Störmer–Verlet
(SV) scheme (left plot). The plot on the right shows the comparison of the theo-
retical and observed acceptance rate using different starting value for the fictive
variable ρ0. Here Pacc = erfc(1

2

√
< δH >). 36

vi

List of Figures vii

7.1 The figure shows how to compare two given chains. We are interested in the chain
with less correlation between the elements (in red), with smallest τint. 39

7.2 The discrete power spectral density of uncorrelated (white noise) chain for the
Gaussian distribution with mean zero and unit variance (left figure). The discrete
power spectral density function of an MCMC chain (N = 1000) for 2D Gaussian
centered at the origin and with identity covariance (right figure). 42

7.3 The power spectral density template for the MCMC chains, the curve is approxi-
mately power of two (α ≈ 2). The figure shows where the curve turnover is, before
correlated sample are drawn. 43

8.1 The discrete power spectral density (psd) and fitted template for the chains gen-
erated by the OHMC and HMC algorithm in 64-dimensions (the left column), and
128-dimensions (the right column). 48

8.2 The integrated autocorrelation time and estimated value of τint for both OHMC
and HMC algorithms are shown in the top row of the figure. The corresponding
autocorrelation function for different lags is presented in the bottom row. 49

8.3 500 trajectory points in the phase–space (q, p) for 64–dimensions (left column)
and 128–dimensions (right column) from OHMC (top row) and HMC (bottom row). 49

8.4 The histograms for OHMC (top row) and HMC (bottom plots) in 64 and 128–
dimensions. 50

8.5 Discrete power spectral density (psd) in logarithmic scale (bottom row) with the
best fit template (top row) for the chains generated by the SVHMC and HMC
algorithm in 64 and 128–dimensions. 51

8.6 The integrated autocorrelation time τint and the autocorrelation function ρ(τ) for
both SVHMC and HMC in 64 and 128–dimensions. 51

8.7 500 trajectory points in the phase–space (q, p) for 64-dimensions (left column) and
128-dimensions (right column) from SVHMC (top row) and HMC (bottom row). 52

8.8 The histograms for SVHMC (top row) and HMC (bottom plots) for 64 and 128–
dimensions. 53

8.9 The power spectral density (psd) in logarithmic scale (bottom row), and ap-
proximated template curves defined by (7.18) for the chains generated by the
SVHMC and HMC algorithm (top row), for 64-dimensions (left column) and 128-
dimensions (right column). 54

8.10 The integrated autocorrelation time and estimated value of τint for both OHMC
and HMC algorithms are shown in the upper row of the figure. The corresponding
autocorrelation functions are presented in the bottom row of this figure. 54

8.11 500 trajectory points in the phase–space (q, p) for 64-dimensions (left column) and
128-dimensions (right column) for OSVHMC (top row) and SVHMC (bottom row). 55

8.12 The histograms for OSVHMC (top) and SVHMC (bottom) for 64 and 128–
dimensions. 55

List of Tables

8.1 Summary of the power spectral and the degree of correlation convergence tests
for OHMC and HMC algorithms in 64 and 128–dimensions. 48

8.2 Summary of diagnostics convergence tests for SVHMC and HMC algorithm in
Gaussian distribution of 64 and 128–dimensions 52

8.3 The convergence diagnostics and the efficiency criteria for OSVHMC and SVHMC. 53

viii

to my

parents ALTOMA and ALI, and to my wife SARA

with my love

ix

Chapter 1

Overview

Some of the results from this thesis have been accepted as contributions to be presented at the

following conferences:

(1) Efficient Monte Carlo: From Variance Reduction to Combinatorial Optimization A Con-

ference on the Occasion of R.Y. Rubinstein’s 70th Birthday. Sandbjerg Estate, Snderborg,

Denmark 14-18 July 2008.

(2) 11th European Conference on the Mathematics of Oil Recovery. 8 - 11 September 2008,

Bergen, Norway

The Abstracts for the conference papers are provided in appendix A and B.

1.1 Motivation

Classical optimization based on stochastic sampling algorithms (e.g., Metropolis–Hastings and

Gibbs sampling algorithms) are usually slow, and could be inefficient sampling the parameter

space, especially in high dimensions. These algorithms could be made more efficient by intro-

ducing gradient information.

The Hamiltonian Monte Carlo (HMC) algorithm is a Markov chain Monte Carlo (MCMC) tech-

nique, which alternately combines a Gibbs sampling update with a Metropolis rule. The HMC

algorithm uses the advantages of the Hamiltonian dynamics to investigates the parameter space.

The trajectory is guided by gradient information, and thus has advantages over the classical

Metropolis-Hasting, and Gibbs sampling by having higher acceptance rate, less correlated and

faster converging chains.

The performance of the HMC algorithm can be further enhanced by suppressing the random

walks in the Gibbs sampling. Ordered over–relaxation has been suggested in the literature as

a means of suppressing random walk behavior, and which is applicable to any system involving

Gibbs sampling stage. However, this has not been applied to the HMC algorithm.

The dynamics in the HMC are simulated with constant step–size, which lead to extra computa-

tion cost when the dynamics of the system change along different regions of its trajectory. This

extra computation cost can be reduce by using adaptive step–step to simulate the dynamics.

1

Chapter 1. Overview 2

1.2 Goal of this thesis

The goal of this thesis is to present numerical experiments, which show that the performance of

the HMC algorithm is enhanced when ordered over–relaxation is applied to the Gibbs sampling

stage of the algorithm, and adaptive step–size in the Störmer–Verlet discretization scheme is

used to simulate the Hamiltonian dynamics.

We first investigate the use of the ordered over–relaxation in the Gibbs sampling step and

compare the performance of the resulting algorithm to the classical Hamiltonian Monte Carlo.

In the second step, we apply the Störmer–Verlet discretization with adaptive step–size to simulate

the dynamics and compare the performance of this algorithm to the Hamiltonian Monte Carlo

using the leapfrog scheme with constant step–size.

Finally, compare the performance of a hybrid algorithm consisting of the ordered over–relaxation

in the Gibbs sampling, and Störmer–Verlet scheme with adaptive step–size, to the classical

Hamiltonian Monte Carlo algorithm.

The performance of these algorithms will be evaluated by spectral analysis and degree of the

correlation of chains from numerical experiments using uncorrelated Gaussian distributions.

Chapter 2

Inverse theory

The main purpose of this chapter is to introduce inverse problems and parameter estimation.

Section 2.2 gives a brief description of classical approaches to solve inverse problems, section

2.3 gives the probabilistic approach to solve inverse problems, while section 2.5 introduces and

motivates the use of Bayesian inference to solve inverse problems. The material of this chapter

is mainly taken from [3, 23, 28, 46, 47].

2.1 Introduction to inverse problems

Most problems in science and engineering are characterized by finding relationship between the

system parameters that characterize a model1 m, and a collections of measurement observations

(data) d. Suppose that the mapping G : M → D, where M, and D are the model (parameter)

space and data space respectively, define the relation between m, and d as stated in equation

(2.1)

G(m) = d, (2.1a)

Gm = d. (2.1b)

The operator G may be nonlinear or linear. If G is a nonlinear operator then we can interpret

m, and d as functions (2.1a). On the other hand, in the case of linear operator for example,

matrix G ∈ R
m×n, usually we interpret m, and d as vectors, i.e., m ∈ R

n, and d ∈ R
m. In the

sense of the linear algebra the mathematical model (2.1b) is called a linear system.

The forward problem is to determine d given the model m, using (2.1). On the other hand the

inverse problem is to compute, or estimate the unknown m based on noisy observations data d

in (2.1).

While the forward problem has a unique solution, this is not the case in the inverse problem due

to lack of significant data or due to experimental uncertainties [28, 46].

According to Hadamard [52], the mathematical problem is well–posedness if has the properties

that

1Mathematician usually refer to m as the parameter, and for G(m) = d as the mathematical model.

3

Chapter 2. Inverse theory 4

(1) A solution exist. i.e. ∃ m ∈ M, such that (2.1) hold.

(2) The solution m is unique.

(3) The solution is stable with respect to perturbations in d.

δ
δ

A

o

o

d
m

Data Space Parameter Space

o

o m + m
d + d

Figure 2.1: The figure shows how small error in the data lead to a different model. Ideally
we expect that the error in model should be proportional to the data error. This is the typical
features of the inverse problem. Here A = G−1 : D → M, and δ is the uncertainty in the data.

A typical pathology of the inverse problems is that they are ill-posed, i.e. one of the Hadamard’s

postulates for well–posedness is not fulfilled. Because of these, in the inverse problem, one needs

to make explicit any available a priori information on the model parameters. One also needs to be

careful in the representation of the data uncertainties. Figure 2.1 shows a typical example of an

ill–posed problem. Here a small error δ (uncertainty) in data d leads to large and disproportional

error in estimation of the model m.

2.2 Deterministic approach to solving inverse problems

In the classical approach to solving inverse problem we begin with the mathematical model in

(2.1), assume that there is a true model mt and that we have exact measurement data dt that

satisfy (2.1). Then actual data d that we have is given in (2.2)

d + δd = G(mt), (2.2a)

d + δd = Gmt, (2.2b)

where δ is error of the measurements data. Assuming that the problem in (2.2) is well–posed

(well–conditioned) and the error δ is independent and normally distributed δ ∼ N (0, σi), the

maximum likelihood estimation (MLE) solution is equivalent to the least square (LS) solution

[3], which is given by minimizing the square of the 2–norm of the residual,

mLS = argminF(m) = ‖G(m) − d‖2
2, (2.3a)

mLS = arg minF(m) = ‖Gm − d‖2
2. (2.3b)

Chapter 2. Inverse theory 5

Note that the least square principle can be applied to both linear and nonlinear problems. In

the linear problem if the matrix is full rank, the solution mLS given by setting ∂F
∂m

= 0 leads

to solving the normal equations GT Gm = GT d. Moreover if the Hessian matrix GT G of the

objective function (2.3b) is positive definite, then mLS is guaranteed to be a stationary point of

F(m). On other hand, with nonlinear problems, the minimization task in (2.3a) is performed

through numerical optimization techniques [37].

In many cases the assumption of the well–posedness (well–conditioned) is not fulfilled. In such

situations, the least square solutions that approximately fit the data are large and diverse, and

commonly contain many unreasonable models [3].

Regularization methods are remedy for ill–posedness by imposing stability on an ill-posed prob-

lem in a manner that yields accurate approximate solutions, often obtained through incorporating

prior information [52]. There are a number of regularizing approaches to least square problems,

which pick the best solution that approximately fits the data. One of these methods is the gen-

eral Tikhonov regularization, where the goal is find minimizer mα of the modified least square

solution given by (2.4)

mα = argminFα(m) = ‖G(m) − d‖2
2 + α‖A(d)‖2

2, (2.4a)

mα = arg minFα(m) = ‖Gm − d‖2
2 + α‖Ad‖2

2, (2.4b)

where α > 0 is a regularization parameter, and A is the penalty functional. The zero–order

Tikhonov regularization is given by taking the penalty functional to be the identity functional.

An important issue in Tikhonov methods is how to choose the regularization parameter α. There

are many methods for the choice of regularization parameter α, such as the discrepancy principle,

and the generalized cross validation [3].

For linear problems the computation of the regularized solution is generally done with help of the

singular value decomposition (SVD) [3]. In many applications the optimization problem (2.4a)

and (2.3a) may contain additional constraints such as inequality constraints. Nonlinear least

square problem may have a large number of local minimum solutions, and finding the global

minimum can be extremely difficult. Moreover regularization introduces bias in the solution.

This means that the derived solution is not necessarily the true solution [3].

The regularizing functional incorporates a priori information about the desired model m into the

least square problem. The interpretation and choice of the penalty functional as additional a

priori information, which is based on the knowledge about the desired model m [23], is emphasized

especially in statistical approach of the inverse problems.

Chapter 2. Inverse theory 6

2.3 Statistical inversion

The most general theory is obtained when using a probabilistic point of view, where the a priori

information on the model parameters is represented by a probability distribution over the model

space. The general theory has a simple probabilistic formulation and applies to any kind of

inverse problem, including linear as well as strongly nonlinear problems [46, 47].

The Bayesian approach is based on a philosophy different from the deterministic approach in

section 2.2. The most fundamental difference between the deterministic and the Bayesian ap-

proaches is in the nature of the solution. In the deterministic approach we seek a single unknown

model m. In the Bayesian approach the solution is a probability distribution for the model pa-

rameters [3]. For further discussion on statistical inversion the following definitions are necessary.

2.4 Definitions

The mathematical theory of probability begins with an experiment, which produces a set of

possible outcome S. We are interested in event A ⊂ S.

Definition 2.1. The probability function p, where p : S → [0, 1] has the following properties:

(1) Pr(S) = 0.

(2) Pr(A) ≥ 0, where A ⊂ S.

(3) Let Ai ⊂ S; i = 1, 2, . . . , and Ai

⋂Aj = φ; i 6= j. then

Pr(

∞
⋃

i=1

Ai) =

∞
∑

i=1

Pr(Ai), (2.5)

Pr(A) denotes the probability of the event A. In practice, the outcome of an experiment is often

a number rather than an event. Now let S = R.

Definition 2.2. A random variable X is a function that assigns a value for each outcome in the

sample space S. Then the relative probability of realization values for a random variable X , can

be describe by a non–negative probability distribution (density) function (PDF), p(x), defined

by (2.6)

Pr(X ≤ x0) =

∫ x0

−∞
p(x)dx. (2.6)

From definition (2.1) the probability density function satisfy (2.7)

∫ ∞

−∞
p(t)dt = 1. (2.7)

Chapter 2. Inverse theory 7

The cumulative distribution function F (x) (CDF) for the random variable X is given by the

definite integral of the associated PDF (2.8)

F (x) =

∫ x

−∞
p(t)dt. (2.8)

Definition 2.3. Expected value and the variance

(1) The expected value of a random variable X , denoted by E[X], or µ is

E[X] =

∫ ∞

−∞
xp(x)dx. (2.9)

In general if q(X) is a function of random variable X , then

E[q(X)] =

∫ ∞

−∞
q(x)p(x)dx. (2.10)

(2) The variance of X , denoted by V ar(X) or σ2, is given by

V ar(X) = E[(X − E[X])2], (2.11)

=

∫ ∞

−∞
(x − E[X])2p(x)dx. (2.12)

The standard deviation of X defined by σ =
√

V ar(X).

Similarly to one dimensional case, we generalize the same results to higher dimensions.

Definition 2.4. The joint probability distribution function of two variables X and Y , is denoted

by p(X, Y) and satisfies (2.13)

Pr(X ≤ x, Y ≤ y) =

∫ x

−∞

∫ y

−∞
p(x, y)dxdy. (2.13)

The two random variables are independent if their joint probability distribution satisfies (2.14)

p(x, y) = pX(x)pY (y), (2.14)

where pX(x) and pY (y), is the marginal density for the random variable X and Y , respectively,

and are defined by

pX(x) =

∫ ∞

−∞
p(x, y)dy,

pY (y) =

∫ ∞

−∞
p(x, y)dx.

Chapter 2. Inverse theory 8

Definition 2.5. The conditional probability of X , given Y = y is defined by (2.15)

p(x | y) =
p(x, y)

pY (y)
, (2.15)

By replacing the role of x and y, we have p(x, y) = p(y |x)pX(x), and plugging this again in

(2.15) gives Bayes’ theorem

p(x | y) =
p(y |x)pX(x)

pY (y)
. (2.16)

2.5 Bayesian model for inverse problems

In the Bayesian approach to inverse problems, we model the variables m, d and e in (2.2) as

random variables. The interpretation of this modelling is that the information concerning their

values is incomplete, due to lack of significant data or due to experimental uncertainties. Their

values are thus expressed by their distribution as random variables.

Bayes theorem provides the ultimate means of statistical inference on the basis of observations,

permits the use of arbitrary probability distributions other than Gaussian, and the use of ar-

bitrary measures of uncertainty other than the variance. It also extends the analysis to higher

levels of interpretation, e.g., the rejection of any particular model, and the selection of appropri-

ate models [16].

Assume that p(m) is prior probability distribution function (pdf), expressing our prior belief

about m. The conditional probability distribution p(d |m) is the likelihood density, expressing

the probability distribution of the measurement observation d if we assume that our model is

known. For simplicity, we assume that the model m is parameterized in terms of a vector,

m ∈ R
k, of k variables, m1, . . . , mk. The theorem allows update of the prior belief by calculating

a posterior pdf, p(m | d), given by equation (2.17),

p(m | d) =
p(d |m)p(m)

∫

Rk p(d |m)p(m)dm
. (2.17)

The posterior distribution provides the basis for inference about, e.g., the marginal probability

of a parameter mi, given all other parameters. This is defined as the integral of the posterior

probability over the remaining dimensions of the parameter space, i.e.,

p(mi |mj ; mj ∈ {m\mi}) =

∫

· · ·
∫

p(m | d)

m
∏

k=1

k 6=i

dmk. (2.18)

A similar expression, p(mi, mj |mk; mk ∈ {m\mi, mj}), could be derived for two-parameter

interactions.

Chapter 2. Inverse theory 9

Evaluating (2.18) requires computing generic Bayesian integral, 〈J〉, in (2.19).

〈J〉 =

∫

Rk

J(m)p(m | d)dm, (2.19)

where J(m) represents, e.g., the distribution of model parameters. The function J(m) could

also represent other derived quantities. Deriving 〈J〉 in (2.19) is conditioned on evaluating the

normalizing constant in (2.17), i.e.,
∫

Rk p(d |m)p(m)dm. This integral could be intractable even

for very low values of k. A Monte Carlo approach offers an attractive methodology for evaluation

(2.17) without explicit evaluation of the normalizing constant.

A Monte Carlo rendering of (2.19) is given by (2.20), where n is the number of indexed models

in an ensemble.

〈J〉 = (1/n)

n
∑

j=1

J(mj)p(mj | d)/h(mj), (2.20)

≈ (1/n)

n
∑

j=1

J(mj) for h(mj) ≈ p(mj | d), (2.21)

mj ≡ m(mj). (2.22)

Thus if one derives an ensemble of models, m1, m2, . . . , mn, whose distribution h(m), approxi-

mates p(m|d), the task of evaluating the generic integrals reduces to calculating averages over

J(mj).

Markov chain Monte Carlo (MCMC) methods are based on Markov chains, which generate

samples from target distributions, such as p(m | d). The Metropolis-Hastings algorithm is perhaps

the most popular of all implementation of MCMC algorithms. Chapter 3 will be devoted to the

MCMC algorithms.

Chapter 3

Markov Chain Monte Carlo

algorithms

This chapter will review some classical Markov chain Monte Carlo (MCMC) methods. The

chapter starts with an introduction to basic concepts and definitions. See for example [11, 26,

32, 39] for more details concerning MCMC algorithms and related concepts.

3.1 Basic definitions

Definition 3.1. A stochastic process is a consecutive set of random variables {Xt | t ∈ T }, where

T is any indexed set.

The common choice for the indexed set can be discrete T = {0, 1, 2, . . .}, where the stochastic

process might describe e.g. outcome of successive tosses of coin in a learning experiment, or

continuous such as T = [0,∞) where for example the stochastic process can represent the

number of cars in the period of length t, i.e. in [0, t] along a highway.

Definition 3.2. A Markov chain is stochastic process such that the distribution of Xt+1 given

the all the previous states X0, . . . , Xt−1, Xt depend only on the previous one Xt, i.e. the state

is conditionally independent. This can be state more formally expressed by (3.1).

Pr(Xt+1 |X0, X1, . . . , Xt) = Pr(Xt+1 |Xt), (3.1)

= T (Xt+1, Xt),

and referred to as the Markov property. the distribution of Xt+1; t ≥ 0, T (Xt+1 = j |Xt = i), is

called the transition kernel. Here we assume that the Markov chain is time-homogeneous, i.e the

transition kernel does not depend on the time t. Given the initial probability Pr(X0) = π0(x)

and using the transition kernel we can determine the behavior of the chain at any time by the

following recursion using so called the first step analysis [48]

πt+1(x) =
∑

x′

πt(x
′)T (x′, x).

10

Chapter 3. Markov Chain Monte Carlo algorithms 11

We are interested in a Markov chain that starting from any state X0 with initial probability

π0(x) will eventually forget its initial state and converge to a stationary distribution π(x). As

the sequence grows larger, such Markov chains must satisfy the following properties

(1) Stationarity: As t → ∞ the chain converges to its stationary (invariant or equilibrium)

distribution.

(2) Irreducibility: which means that there is a positive probability that the Markov chain

can reach any non-empty set of states from all starting point.

(3) Aperiodicity: ensures that the chain will not oscillate between different sets of states.

Definition 3.3. If the Markov chain satisfy the stationarity, irreducibility, and aperiodicity we

call it ergodic.

Ergodicity is sufficient condition for existence of the stationary distribution π(x) independent of

the initial probability at the starting state.

Definition 3.4. The sufficient, but not necessary condition for a distribution π(x) to be station-

ary distribution is that π(x) should satisfy the detailed balance equation (reversibility condition)

π(x)T (x, x′) = π(x′)T (x′, x). (3.2)

Definition 3.5. A Markov Chain Monte Carlo (MCMC) method for simulation of a distribution

π is an any method producing an ergodic Markov Chain {Xt}n
t=1 who’s stationary distribution

is π.

3.2 Simulation of the Markov chains

The main idea behind MCMC algorithms is to generate a Markov chain {Xi}t
i=1 with probability

transition kernel T (x, y) that has stationary distribution π(x) in the long run, independent of

where the chain starts. However, this is not the case for all Markov chains. The sufficient

condition for converging to stationary distribution is that the chain is ergodic. The Gibbs

sampling and Metropolis–Hastings algorithms are two classical approaches for implementing

MCMC algorithms.

3.2.1 The Gibbs sampler algorithm

The Gibbs sampler generates samples, X1, X2, . . . , Xn from π(x1, . . . , xd), and then uses these

samples to estimate the desired statistical properties. Generating large number of sample im-

proves the estimation accuracy. Algorithm 3.1 is the pseudo-code for the Gibbs sampler.

Chapter 3. Markov Chain Monte Carlo algorithms 12

The Gibbs sampler always accept the candidate point, also the Gibbs sampling algorithm is

restricted to distribution where the full conditional distributions is know and this makes it less

applicable in practice [27].

Algorithm 3.1: The Gibbs Sampler

Set t = 01

Generate a starting point Xt = (x
(t)
1 , . . . , x

(t)
d)2

for t = 1 to n do3

Generate x
(t+1)
1 ∼ π1(x1 |x(t)

2 , . . . , x
(t)
d)4

Generate x
(t+1)
2 ∼ π2(x2 |x(t+1)

1 , x
(t)
3 , . . . , x

(t)
d)5

...

Generate x
(t+1)
d ∼ πd(xd |x(t+1)

1 , . . . , x
(t+1)
d)6

Xt+1 = (x
(t+1)
1 , . . . , x

(t+1)
d)7

end8

To illustrate the Gibbs sampler, suppose we want to estimate the marginal distribution of x1,

i.e. compute π(x1) for the following joint distribution, which is picked from [39]

π(x1, x2) =

(

n

x1

)

xx1+α−1
2 (1 − x2)

n−x1−β−1,

where x1 = 0, 1, . . . , n, and x2 ∈ [0, 1], by considering n, α, and β as a fixed parameters. The

conditional distributions π(x1 |x2), and π(x2 |x1) follow the binomial distribution with param-

eters n and x2, and beta distribution with parameters x1 + α and n− x1 + β respectively. π(x1)

can be estimated by (3.3).

π(x1) ≈
1

n − m

n
∑

t=m+1

π(x1 |Xt). (3.3)

The resulting marginal distribution is shown in Figure 3.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

120

Bin Centers

Fr
eq

ue
nc

y

0 2 4 6 8 10 12 14 16 18
0

0.02

0.04

0.06

0.08

0.1

0.12

x
1

π(x
1)

Estimation of π(x
1
)

True curve of π(x
1
)

Figure 3.1: The histogram of the chain of 1000 samples generated according to Gibbs sampler
Algorithm 3.1 is illustrated on the left, and the estimated marginal distribution for x1 from

equation (3.3) on the right of the plot, when the parameters α = 2, and β = 4.

Chapter 3. Markov Chain Monte Carlo algorithms 13

3.2.2 The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is one of the best known MCMC methods, which was devel-

oped by [31] and generalized by [18]. Metropolis-Hasting algorithm was frequently used in physics

literature until the papers published by [29, 49], and later introduced to statistic literature and

many other fields.

The simplest Metropolis-Hastings algorithm to generate samples from the target distribution

π(x) work as follow. At step t generate a candidate state x′
t from the proposal distribution

q(. |x′
t) that have the same property as the target distribution. One convenient possibility is

the normal distribution centered at the current state x′
t in the simulation (the mean), and fixed

covariance matrix. One thing to consider when selecting q(. |x′
t) is that the proposal distribution

should be easy to sample from. The proposal distribution must satisfy the irreducibility and

aperiodicity conditions this is achieved if the proposal distribution has a positive density on the

same support as the target distribution. The candidate state is accepted or rejected for the next

state in the chain with probabilities given by

xt+1 =







x′
t, with probability α(xt, x

′
t),

xt, with probability 1 − α(xt, x
′
t),

where

α(xt, x
′
t) = min

(

q(xt |x′
t)π(x′

t)

q(x′
t |xt)π(xt)

, 1

)

.

Algorithm 3.2: The Metropolis-Hastings

Generate starting point x01

for t = 1 to n do2

Generate a candidate x′
t ∼ q(. |xt−1)3

Generate u ∼ U [0, 1]4

Compute r(xt, x
′
t) =

q(xt | x′

t)π(x′

t)
q(x′

t | xt)π(xt)5

if u < min(r(xt, x
′
t), 1) then6

xt = x′
t7

else8

xt = xt−19

end10

end11

If the candidate state is not accepted, then the Metropolis-Hastings chain will not move i.e.

xt+1 = xt. If our target distribution appears with normalizing constant that we do not know,

then in computing the ratio, r(xt, x
′
t) =

q(xt | x′

t)π(x′

t)
q(x′

t | xt)π(xt)
the normalizing constant will cancel out,

Chapter 3. Markov Chain Monte Carlo algorithms 14

which gives one of the characteristics of Metropolis-Hastings algorithm. Algorithm 3.2 is the

pseudo-code for the Metropolis-Hastings algorithm1

Figure 3.2 shows an example of simulating the Cauchy distribution (3.4) using the Metropolis-

Hastings algorithm (3.2).

π(x) =
1

π(x2 + 1)
, x ∈ R. (3.4)

In this example we use the Gaussian distribution as a proposal distribution with optimal variance

σT = 8.4

q(x) =
1√

2πσT

exp

(

− (x − µ)2

2σ2
T

)

, x ∈ R. (3.5)

The Metropolis-Hastings algorithm satisfied the detailed balance equation (3.2) [53].

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−40

−30

−20

−10

0

10

20

30

40

t

X t

−20 −15 −10 −5 0 5 10 15 20
0

1000

2000

3000

4000

5000

6000

x , Bin Centers

π(x
) ,

 F
re

qu
en

cy

Histogram
True curve

Figure 3.2: 10000 sample form the Cauchy distribution left plot. The histogram and the
Cauchy distribution curve drawn in the same plot (the right plot), which gives an acceptable

match.

3.3 Classical MCMC in high dimensions

The classical MCMC algorithms are very simple and easy to implement. However, in high

dimension, they are very slow in generating samples from the target distribution, and require a

huge number of samples in order to give a good accuracy for estimating the desired statistical

properties [11, 39].

Classical MCMC algorithms follow random walk behavior to investigate the target distribu-

tion.They have the property that in k iterations the simulation will usually moves distance

proportional to
√

k [32].

The efficiency of any MCMC algorithm is defined as reciprocal of the number of samples needed

to effectively provide a statistically independent samples from the desired target distribution.

1this type of the algorithm is called the Global Metropolis-Hastings, in which all components of the vector xt

are updated. Perferably the proposal distribution should be spherically and symmetric [32]. The other type is
called the local Metropolis-Hastings, where the update happens in one component of xt in turn, and we can use
any suitable proposal distribution.

Chapter 3. Markov Chain Monte Carlo algorithms 15

The efficiency of the Metropolis-Hastings with optimal choice of the proposal distribution drop

as 0.33
D

[9, 10, 15], where D is the dimension of the target distribution. In high dimensions the

Metropolis-Hastings is unsuitable.

Chapter 4

Hamiltonian Monte Carlo

algorithm

This chapter introduces Hamiltonian Monte Carlo algorithm. The algorithm was originally

developed to model physical system and have had wide applications in molecular dynamics. the

chapter starts with definitions of the main components of the algorithm which are derived from

the classical mechanics. It then discusses the implementation of the algorithm as a method for

parameter estimation. The material in this chapter is mainly from [13, 40, 51].

4.1 Definitions

Definition 4.1. Generalized Coordinates

A set of n independent coordinates q1(τ), q2(τ), . . . , qn(τ) which exactly determine a system in

a fixed time τ are called generalized coordinates, their derivatives q̇1, q̇2, . . . , q̇n with respect to

τ are referred to generalized velocities, even through they do not necessarily have dimensions of

length [51], e.g. qj may be an angle.

Now let ri = ri(q1(τ), q2(τ), . . . , qn(τ), τ) be the position vector at time τ for particle i of a

system containing N particles. Then

ṙi =
dri

dτ
,

=

n
∑

j=1

∂ri

∂qj

dqj

dτ
+

∂ri

∂τ
, (4.1)

=
n
∑

j=1

∂ri

∂qj

q̇j +
∂ri

∂τ
. (4.2)

Equation (4.2) defines the position vector of the system velocity. From the expression of the

velocity ṙi of particle i, one can derive two relations. First, take the partial derivative with

respect to time derivatives of the generalized coordinates q̇k, and by noting that the last term in

16

Chapter 4. Hamiltonian Monte Carlo algorithm 17

(4.2) will vanish immediately, and then we arrive at (4.4)

∂ṙi

∂q̇k

, =

n
∑

j=1

∂ri

∂qj

∂q̇j

∂q̇k

+
∂

∂q̇k

∂ri

∂τ
,

=

n
∑

j=1

∂ri

∂qj

δjk, (4.3)

=
∂ri

∂qk

, (4.4)

where δjk is the Dirac delta function. Secondly, take the partial derivative with respect to

the generalized coordinates qk to arrive at (4.5), which shows that the role of d
dt

and ∂
∂xk

are

interchangeable.

d

dτ

(

∂ri

∂qk

)

, =

n
∑

j=1

∂

∂qj

∂ri

∂qk

q̇j +
∂

∂τ

∂ri

∂qk

,

=

n
∑

j=1

∂

∂qk

∂ri

∂qj

q̇j +
∂

∂qk

∂ri

∂τ
,

=
∂

∂qk

(n
∑

j=1

∂ri

∂qj

q̇j +
∂ri

∂τ

)

,

=
∂ṙi

∂qk

. (4.5)

Now suppose that the system of the particles is moving, and we want to find the trajectory of

the system particles. Let Fi, and mi be the applied force and the mass of particle i. According

to Netown laws of motion we arrive at (4.6)

Fi = mi

d

dτ

(

∂ri

∂τ

)

, (4.6)

where the quantity d
dτ

(∂ri

∂τ
) is the acceleration of particle i.

Definition 4.2. The generalized force Qj of the generalized coordinate j is defined by (4.7)

Qj =

N
∑

i=1

Fi

∂ri

∂qj

. (4.7)

Then using (4.6) and the definition of the generalized force in (4.2) we get (4.8)

Qj =

N
∑

i=1

mi

d

dτ

(

∂ri

∂τ

)

.
∂ri

∂qj

. (4.8)

Chapter 4. Hamiltonian Monte Carlo algorithm 18

Using the product rule of the derivatives, u̇v = (uv)̇ − uv̇ on the left hand side of (4.8) and

plugging equations (4.4) and (4.5) in the resulting equation (4.9)

Qj =
N
∑

i=1

mi

[

d

dτ

(

∂ri

∂τ
.
∂ri

∂qj

)

− ∂ri

∂τ
.

d

dτ

(

∂ri

∂qj

)]

, (4.9)

=

N
∑

i=1

mi

[

d

dτ

(

ṙi.
∂ṙi

∂q̇j

)

− ṙi.
∂ṙi

∂qj

]

,

=

N
∑

i=1

mi

[

1

2

d

dτ

∂

∂q̇j

(

ṙi.ṙi

)

− 1

2

∂

∂qj

(

ṙi.ṙi

)

]

,

=
d

dτ

∂

∂q̇j

(N
∑

i=1

1

2
mi

(

ṙi.ṙi

)

)

− ∂

∂qj

(N
∑

i=1

1

2
mi

(

ṙi.ṙi

)

)

. (4.10)

Definition 4.3. The kinetic energy, T , for a system of N particles is defined by (4.11)

T =

N
∑

i=1

1

2
mi

(

ṙi.ṙi

)

. (4.11)

The Lagrange equations (4.12) is given by substituting (4.11) in (4.10), and consists of n

second order differential equations in n variables qj . Recall that no assumptions have been made

concerning the nature of the generalized forces Qj ’s, thus equations (4.12) can be applied to

both conservative and non–conservative systems.

Qj =
d

dτ

∂

∂q̇j

T − ∂

∂qj

T ; j = 1, . . . , n. (4.12)

Now suppose that the system is conservative, then Fi can be expressed as the gradient of a scalar

potential energy V (ri, τ) [51]

Fi = −∇V.

The potential energy is function of ri, and therefore function of qj . Taking the derivative of V

with respect to qj , we may write (4.13)

− ∂V

∂qj

= −
N
∑

i=1

∂V

∂ri

∂ri

∂qj

, (4.13)

= −
N
∑

i=1

∇V.
∂ri

∂qj

, (4.14)

= Qj . (4.15)

Thus the Lagrange equations for a conservative system are given in (4.16). By substitute (4.15)

into (4.12) and noting that the potential energy function V (ri, τ) is not a function of ṙi, i.e. V

Chapter 4. Hamiltonian Monte Carlo algorithm 19

is independent of the generalized velocity q̇j , therefore d
dτ

∂V
∂q̇j

= 0,

d

dτ

∂

∂q̇j

(T − V) − ∂

∂qj

(T − V) = 0; j = 1, . . . , n. (4.16)

where L(qj , q̇j , τ) = T − V is called the Lagrangian or the Lagrange function.

∂L
∂qj

=
d

dτ

∂L
∂q̇j

; j = 1, . . . , n. (4.17)

4.2 The Hamiltonian equations

Hamiltonian mechanics provide re–formulation of the classical mechanics [13, 40]. A knowledge

of the Hamilton’s formalism is fundamental to understand statistical mechanics, geometrical

optics and quantum mechanics [40].

For an introduction, let f be a function of two variables, f = f(x, y) and set u = ∂f
∂x

, v = ∂f
∂y

,

and define g(u, y) = f − ux. The differentials df(x, y), and dg(u, y) is given in (4.18) and (4.19)

df(x, y) = udx + vdy, (4.18)

dg(u, y) = −xdu + vdy. (4.19)

Thus, ∂g
∂u

= −x and ∂g
∂y

= v. g(u, y) is called the Legendre transformation of f with respect to

x [13]. The inverse Legendre transformation given by (4.20).

f = g + udx, (4.20)

Definition 4.4. The generalized momenta pj are defined as

pj =
∂L
∂q̇j

. (4.21)

Definition 4.5. The Hamiltonian H is defined by the negative Legendre transform of the

Lagrangian L(qj , q̇j, τ) with respect to all generalized velocities

H(qj , pj, τ) = −L +

n
∑

j=1

pj q̇j . (4.22)

Thus the Hamiltonian H is a function of generalized coordinates qj , generalized momenta pj ,

and the time τ .

Chapter 4. Hamiltonian Monte Carlo algorithm 20

The total derivative of H can be stated into two different ways, as in (4.23), or (4.24).

dH =

n
∑

j=1

∂H
∂qj

dqj +

n
∑

j=1

∂H
∂pj

dpj +
∂H
∂τ

dτ, (4.23)

dH = −
n
∑

j=1

∂L
∂qj

dqj −
n
∑

j=1

∂H
∂q̇j

dq̇j −
∂L
∂τ

dτ +

n
∑

j=1

q̇jdpj +

n
∑

j=1

pjdq̇j , (4.24)

= −
n
∑

j=1

∂L
∂qj

dqj +

n
∑

j=1

q̇jdpj −
∂L
∂τ

dτ. (4.25)

Now comparing (4.23) with (4.25) and using Lagrange equations (4.17) we arrive at the equa-

tions of motion of Hamiltonian mechanics, known as the canonical equations of Hamilton, or

Hamiltonian equations (4.26).

dpj

dτ
= −∂H

∂qj

, (4.26a)

dqj

dτ
=

∂H
∂pj

, (4.26b)

dH
dτ

= −∂L
∂τ

. (4.26c)

The system of the equation in (4.26) define the dynamics on the system phase–space, in which

the qi and pi are regarded as function of time τ [26, 32].

Definition 4.6. The phase–space of a system consists of all possible values of the generalized

coordinate variables qj ’s and the generalized momenta variables pj ’s.

The total energy function for a point (p, q) in the phase–space, i.e. the sum of the kinetic energy

T (p) and the potential energy V (q), is the Hamiltonian H for a conservative system [13].

H(p, q) = V (q) + T (p). (4.27)

Note that in (4.27) we use the notation for the vectors p = (p1, p2, . . . , pn)T , and q = (q1, q2, . . . , qn)T ,

which gives the Hamiltonian of the system, i.e. all the particles in the system. Now in the rest

of the section we will discuss the Hamiltonian properties.

Firstly, the Hamiltonian H is conserved as qj , and pj evolve through the time τ according to the

dynamics defined by (4.26). It can be shown that

dH
dτ

=

n
∑

j=1

(

∂H
∂qj

dqj

dτ
+

∂H
∂pj

dpj

dτ

)

,

=

n
∑

j=1

(

∂H
∂qj

∂H
∂pj

− ∂H
∂pj

∂H
∂qj

)

,

= 0.

Chapter 4. Hamiltonian Monte Carlo algorithm 21

Secondly, the Hamiltonian dynamics (4.26) remain invariant under the transformation defined

by (4.28). Thus classical mechanics is invariant to the direction of time, i.e. time reversibility.

p′ = p, (4.28a)

q′ = −q, (4.28b)

τ ′ = −τ. (4.28c)

Finally the dynamics preserves the volume of region of phase–space. i.e. if one take an arbitrary

time τ0, and arbitrary region of phase–space R0. For simplicity assume this time to be zero,

τ0 = 0. Let Rτ be the region of phase–space at time τ occupied by the points that were at time

zero. The volume V(τ) which is given as follow

V(τ) =

∫

Rτ

dq′dp′, (4.29)

=

∫

R0

det(I + τJ)dqdp + O(τ), (4.30)

where to get from (4.29) to (4.30) we used the transformations (4.31).

q′ = q + τ q̇ + O(τ), (4.31a)

p′ = p + τ ṗ + O(τ), (4.31b)

I + τJ is Jacobian matrix, J is part of the Jacobian with derivatives of q̇ and ṗ and O(τ) holds

as τ → 0. Since

det(I + τJ) = 1 + τtrace(J) + O(τ),

trace(J) =
∂

∂q
(q̇) +

∂

∂p
(ṗ),

=
∂2H
∂q∂p

− ∂2H
∂p∂q

,

= 0,

V(τ) =

∫

R0

det(I)dqdp + O(τ),

= V(0) + O(τ).

since τ0 was chosen arbitrary, the derivative is zero for all times, i.e., the volume is constant

and does not depend on the time. This is known as Liouville’s theorem [13, 40]. In other

words , if each of the points within th volume are considered as different systems within the

same Hamiltonian, but different initial conditions, this points will spread all over, even outside

the original volume, V . However, the equations of motion guarantee that the volume of the

phase–space covered, remain invariant with time.

Chapter 4. Hamiltonian Monte Carlo algorithm 22

4.3 Classical Hamiltonian Monte Carlo algorithm

The Hamiltonian Monte Carlo (HMC) [8], or Hybrid Monte Carlo algorithm is a Markov Chain

Monte Carlo (MCMC) technique, which combines the advantages of Hamiltonian dynamics [2, 40]

and Metropolis Monte Carlo approach [15, 31], to sample from complex distributions.

The first step in the dynamical approach involves augmenting the vector of parameters q ∈ R
n,

with a conjugate momentum vector p ∈ R
n [35], and the introduction of a Hamiltonian function

H(q, p), defined on the phase–space (q, p). The Hamiltonian function is given by (4.27), where

V and T are potential and kinetic energies, which are defined in (4.32) and (4.33) respectively,

and π(q) is the target distribution, here q playing the role of x in the previous chaoters. The

HMC algorithm requires that we can efficiently calculate the derivatives of − logπ(q), i.e., π(q)

must be continuous.

V (q) = − log π(q), (4.32)

T (p) =
1

2
pT p. (4.33)

The joint (canonical) distribution P (q, p) over the phase–space defined by the Hamiltonian (4.27)

is given in (4.34)

P (q, p) =
1

Z
exp(−H(q, p)), (4.34)

=

[

(2π)
n
2

Z
exp(−V (q))

][

1

(2π)
n
2

exp(−1

2
pT p)

]

, (4.35)

= π(q)N (p; 0, I). (4.36)

The first proposal in HMC algorithm is to randomize the momentum variables, and leaving the

parameters q unchanged. This proposal can be viewed as Gibbs sampling update by drawing

new momentum from the Gaussian density N (p; 0, I) [14, 26].

The second proposal change q and p by simulating the Hamiltonian dynamics in (4.26). Here the

momentum variable guide the moving of the parameters q, and the gradient gives the change in p

each time. In practice however, the Hamiltonian dynamics is simulated by the leapfrog algorithm

with a finite step size, ǫ, according to

p(τ +
ǫ

2
) = p(τ) − ǫ

2
∇V (q(τ)), (4.37a)

q(τ + ǫ) = q(τ) + ǫp(τ +
ǫ

2
), (4.37b)

p(τ + ǫ) = p(τ +
ǫ

2
) − ǫ

2
∇V (q(τ + ǫ)). (4.37c)

Though each leapfrog transition is volume–preserving and time–reversible, finite ǫ does not keep

H constant. Hence systematic error is introduced into the sampling procedure [32].

Chapter 4. Hamiltonian Monte Carlo algorithm 23

The error introduced by non-zero step–size can be eliminated by considering the end-point con-

figuration of each leapfrog transition as a candidate for the next state of the Markov chain, based

on the Metropolis rule [11, 32], given by (4.38), where the current and candidate states are given

by (q, p) and (q′, p′), respectively. Algorithm 4.1 is a pseudo code for the implementation of the

HMC algorithm using the leapfrog in the dynamics simulation.

min{1, exp[−(H(q′, p′) −H(q, p))]}. (4.38)

The leapfrog discretization almost preserves H to the order of O(ǫ2), preserves volumes since

only shear transformation are involved, and it is time reversible. [32].

x
1

x 2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−4

−2

0

2

4 −4

−2

0

2

4

0

0.2

0.4

0.6

0.8

x
2

x
1

π(x
1,x 2)

Figure 4.1: The contour plot (left), and 3-dimensional plot of the correlated Gaussian dis-
tribution defined in (4.39).

Algorithm 4.1: The Hamiltonian Monte Carlo–leapfrog

Initialize q0 and p01

Set ǫ2

for i = 1 to nsamples do3

draw p ∼ N (0, I)4

(q(0), p(0)) = (qi−1, p)5

for j = 1 to L do6

p(j− 1

2
) = p(j−1) − ǫ

2∇V (q(j−1))7

q(j) = q(j−1) + ǫp(j− 1

2
)

8

p(j) = p(j− 1

2
) − ǫ

2∇V (q(j))9

end10

(q′, p′) = (q(L), p(L))11

draw α ∼ U [0, 1]12

δH = H(q′, p′) −H(q(0), p(0))13

if α < min{1, exp(−δH)} then14

(qi, pi) = (q′, p′)15

else16

(qi, pi) = (qi−1, pi−1)17

end18

end19

return {qi, pi}nsamples
i=020

Chapter 4. Hamiltonian Monte Carlo algorithm 24

Since the parameters q move in the direction of the momentum p during each dynamical pro-

posal, the state of the system tends to move linearly with time. In contrast the system in random

walk algorithms, such as the Metropolis– Hasting, usually move distance proportional to
√

k in

k iterations [32].

Figure 4.1 shows the contour plot and the corresponding 3-dimensions plot of the distribution

in (4.39). In Figure 4.2 we compare HMC versus Metropolis–Hastings (MH) algorithm to give

a realization of the correlated Gaussian distribution in two dimensions (4.39) see Figure 4.1,

where the covariance matrix is given in (4.39b). In MH algorithm we use the optimal proposal

distribution as discussed in [9] to sample from it a candidate point. The optimal proposal

distribution for Gaussian target that we used defined by Σ =
(

2.4√
D

)2
σ0I, where σ0 is the standard

deviation of the target distribution, D the dimension, and I ∈ R
D×D is identity matrix.

π(x) =
1

(2π)
D
2 det(Σ)

1

2

exp

(

−1

2
xT Σ−1x

)

, (4.39a)

Σ =

(

1 0.98

0.98 1

)

. (4.39b)

HMC MH

−4 −3 −2 −1 0 1 2 3 4
0

100

200

300

400

500

600

x , Bin Centers

π(x
) ,

 F
re

qu
en

cy

Histogram
True curve

−4 −3 −2 −1 0 1 2 3 4
0

100

200

300

400

500

600

700

x , Bin Centers

π(x
) ,

 F
re

qu
en

cy

Histogram
True curve

x
1

x 2

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

x
1

x 2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 4.2: The marginal distributions and contour plots for the correlated 2–dimensional
Gaussian distribution, sampled from both Hamiltonian Monte Carlo (HMC) on the left, and
Metropolis–Hastings (MH) on the right, with chain length n = 4000 for each. It is clear
that HMC captured the target distribution very well, while MH appears trapped, leading to

a skewed distribution.

Chapter 5

Problem definition

The thesis investigates solutions to the problems in subsections 5.1.2 and 5.1.4.

5.1 The HMC algorithms in practice

Since the Hamiltonian dynamics is time reversible and preserves the volume and total energy,

the movement along the trajectories of constant energy H will leave the joint distribution P (q, p)

invariant [14] if the dynamics is simulated exactly. However, in practice, the dynamic is simulated

with finite number of steps using the leapfrog scheme and this leads to errors in the simulation.

Thus when using the HMC algorithm in practice, we have to address two main issues to get good

performance; controlling the step–size ǫ and choosing the simulation length L.

5.1.1 Step–size effect

Figure 5.1 shows the effect of choosing different step–sizes in the leapfrog scheme for the HMC

algorithm for a 2-dimensional Gaussian distribution with Σ = I. One of the simple ideas to find

a good approximation for ǫ is to run the HMC algorithm for different values of ǫ and monitor

the acceptance rate for each of them, then choose ǫ with highest acceptance rate. This approach

could be impractical and time consuming, especially for higher dimensions, and for chains with

long burn–in period.

5.1.2 Constant vs. adaptive step–size

While small ǫ implies good exploration of the distribution space, it could be computationally

expensive. In general, constant step–size schemes can lead to extra computational costs, espe-

cially in the application where the dynamic evolves with different speeds in different regions of

the trajectory. Alternatively, one can use adaptive step–size to move with variable ǫ, depending

on whether it is in a region of low or high probability. Figure 5.2 shows the effect of using adap-

tive step–size to reduce both computation cost and simulation errors involved in using constant

step–size.

25

Chapter 5. Problem definition 26

−4 −3 −2 −1 0 1 2 3 4
0

20

40

60

80

100

120

140

160

180

x , Bin Centers

π(
x)

 ,
Fr

eq
ue

nc
y

Histogram
True curve

−4 −3 −2 −1 0 1 2 3 4
0

20

40

60

80

100

120

140

160

180

x , Bin Centers

π(
x)

 ,
Fr

eq
ue

nc
y

Histogram
True curve

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

50

100

150

200

250

x , Bin Centers

π(
x)

 ,
Fr

eq
ue

nc
y

Histogram
True curve

0 50 100 150 200 250 300 350 400 450 500
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

−3

iterations

δH

Total energy error

0 50 100 150 200 250 300 350 400 450 500
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

iterations

δH

Total energy error

0 50 100 150 200 250 300 350 400 450 500
−10

−8

−6

−4

−2

0

2

4

6

8

10

iterations

δH

Total energy error

(a) ǫ = 0.025, L = 20 (b) ǫ = 0.1, L = 20 (c) ǫ = 1.9, L = 30

Figure 5.1: The figure shows the effect of varying the step–size ǫ = 0.025, 0.1, and 1.9, in the
histogram of the chain (top row), and the corresponding change in the total energy (bottom

row). Observe the difference in scaling of δH axis.

−4 −3 −2 −1 0 1 2 3 4
0

20

40

60

80

100

120

140

160

180

200

x , Bin Centers

π(x
) ,

Fr
eq

ue
nc

y

Histogram
True curve

−4 −3 −2 −1 0 1 2 3 4
0

20

40

60

80

100

120

140

160

180

x , Bin Centers

π(x
) ,

Fr
eq

ue
nc

y

Histogram
True curve

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

1.5

Constant step−size

iterations

ε

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Adaptive step−size

iterations

ε

(a) Constant step–size, ǫ = 0.1, L = 30 (b) Adaptive step–size, L = 30

Figure 5.2: The effect of using adaptive step–size instead of constant steps. The target
distribution is a 2–dimensional Gaussian, Σ = I .

5.1.3 Number of simulation steps

Once the good step–size have been established, we need to pick appropriate length L of the

simulation. The length of the simulation should be long enough to take the walker far from

the starting point. However, this leads to computational costs. In contrast, few simulations

step leads correlation between the points. Thus we need a tared off between long and short

length of the simulation. This can usually done by some experimentation, e.g. monitoring the

autocorrelation function and the efficiency of the chain, for more details about these diagnostics

see Chapter 7.

Chapter 5. Problem definition 27

Figure 5.3 presents example results of varying the number of simulation step in the HMC algo-

rithm when sampling from a 2-dimensional Gaussian distribution with Σ = I. The figure shows

that the wrong choice of L, leads to the chain converging to the wrong distribution, see Figure

5.3 (c)

−4 −3 −2 −1 0 1 2 3 4
0

20

40

60

80

100

120

140

160

180

200

x , Bin Centers

π(
x)

 ,
Fr

eq
ue

nc
y

Histogram
True curve

−4 −3 −2 −1 0 1 2 3 4
0

20

40

60

80

100

120

140

160

180

x , Bin Centers

π(
x)

 ,
Fr

eq
ue

nc
y

Histogram
True curve

−4 −3 −2 −1 0 1 2 3 4
0

20

40

60

80

100

120

140

160

180

200

x , Bin Centers

π(
x)

 ,
Fr

eq
ue

nc
y

Histogram
True curve

0 50 100 150 200 250 300 350 400 450 500
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

iterations

δH

Total energy error

0 50 100 150 200 250 300 350 400 450 500
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

iterations

δH

Total energy error

0 50 100 150 200 250 300 350 400 450 500
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

iterations

δH

Total energy error

(a) ǫ = 0.1, L = 5 (b) ǫ = 0.1, L = 10 (c) ǫ = 0.1, L = 30

Figure 5.3: The figure shows the effect of using different values for the number of leapfrog
steps L = 5, 10, and 30, in the histogram of the chain (top row), and the corresponding change

in the total energy (bottom row). Observe the difference in scaling of δH axis.

5.1.4 The random walk in choosing the momentum

Drawing the momentum variable in the HMC algorithm follows the Gibbs sampling, which is a

random walk algorithm. Thus the momentum variable moves back and forth in the distribution

space. Hence the algorithm takes a long time to traverse the space defined by the distribution.

Figure 5.4 (a) shows a typical behavior of the random walk effect when the momentum variable

is chosen by the Gibbs algorithm. Figure 5.4 (b) shows the desirable trajectory of the sample.

x
1

x 2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) HMC trajectory (b) desirable trajectory

Figure 5.4: The plot on the left shows the points generated by the HMC algorithm from the
2-dimensional correlated Gaussian distribution. The right plot presents the desirable behavior

of the point without random walks.

Chapter 6

Improving the Hamiltonian

Monte Carlo algorithm

This chapter introduces the main theories which underpin the thesis. Section (6.1) gives the

basic definitions, which are needed to understand subsequent sections. Sections 6.2 through 6.5

discuss strategies for improving HMC algorithm. We introduce the following basic definitions.

6.1 Basic definitions

Definition 6.1. The Order statistics of random variables X0, . . . , Xk are the sample values

placed in ascending order such as in (6.1). They are denoted by X [0], . . . , X [k].

X [0] ≤ X [1] ≤ · · · ≤ X [r] ≤ · · · ≤ X [k]. (6.1)

Theorem 6.2. Let X1, . . . , Xn be an independent and identically distributed (i.i.d.) random

variable from the uniform distribution on [0, 1], and X [0], . . . , X [n] be the ordered statistics. Then

the following statements are satisfied.

(a) Let N(x) be the cardinality (the number of element) of the set {Xi | Xi ≤ x; i = 1, . . . , n},
then the cumulative distribution function of X [k] is given by (6.2).

F[k](x) = Pr(N(x) ≥ k) =
n
∑

r=k

(

n

r

)

xr(1 − x)n−r. (6.2)

(b) The probability density function f[k](x) of X [k] is a Beta distribution with parameters k

and n − k + 1.

f[k](x) = Beta(k, n − k + 1),

=
n!

(k − 1)!(n − k)!
xk−1(1 − x)n−k. (6.3)

Proof of part (b):

Call the event {Xi ≤ x} ”success”, and the event {Xi > x} ”failure”. Hence N(x) count the

28

Chapter 6. Improving the Hamiltonian Monte Carlo algorithm 29

number of success, then N(x) is binomially distributed N(x) ∼ binomial(n, x), and success event

{Xi ≤ x} is equivalent to the event {N(x) ≥ k}; that is, at least k of the sample values are less

than or equal to x. The equation (6.2), which is then established.

proof of part (b): By differentiating (6.2) with respect to x we have

f[k](x) =

n
∑

r=k

(

n

r

)

[

rxr−1(1 − x)n−r − xr(1 − x)n−r−1
]

,

=

n
∑

r=k

(Sj−1 − Sj),

where Sj =
(

n
r

)

(n − r)xr(1 − x)n−r−1, Since Sn = 0 the sum telescopes down to Sk−1, which is

gives

f[k](x) =

(

n

k − 1

)

(n − k + 1)xk−1(1 − x)n−k,

=
n!

(k − 1)!(n − k)!
xk−1(1 − x)n−k. �

The above theory and it is prove is taken from [6, 7].

6.2 Over–relaxation methods

Over–relaxation is a method that was proposed to reduce the random walk behavior in the Gibbs

sampling technique for a limited type of problem, namely, when all of the conditional distribution

T (pi | {pj}j 6=i) are Gaussian. For example, the distribution T (p1, p2) = exp(−4p2
1p

2
2−2p2

1−2p2
2−

8) is not Gaussian, but all of its conditional densities are Gaussian [26, 34].

Alder’s Over–relaxation [1] is applicable when the log probability density is multiquadratic,

which is equivalent to when all of the conditional densities are Gaussian. Adler’s over–relaxation

replaces the Gibbs sampling update of component i by new value p′i, which will depend on it is

conditional mean µi, and variance σi as in (6.4).

p′i = µi + α(pi − µi) + σi(1 − α2)
1

2 u, (6.4)

where u ∼ N (0, 1), and the parameter −1 ≤ α ≤ 1 controls the degree of over–relaxation.

6.2.1 Ordered over-relaxation

Ordered over–relaxation [34, 36] is a technique to suppress the random walk of the Gibbs sampling

for some distributions with strong positive correlations. The normal iteration of Gibbs sampling

involves resampling p
(t+1)
i from it is conditional distribution T (pi | {p(t)

j }j 6=i). Ordered over–

relaxation was introduced as a generalization of the Adler’s overrelaxation method, applicable to

Chapter 6. Improving the Hamiltonian Monte Carlo algorithm 30

any system where Gibbs sampling is applied [34, 36]. A naive implementation of ordered over–

relaxation is to pick one value uniformly at random from k samples drawn from the conditional

distribution, or by including the current state and choosing a value uniformly at random from

k + 1 values. The ordered overrelaxation transition operator requires that the k + 1 candidates

for pj be ordered in some way. Numerical sorting is possible when the k + 1 candidates are real

scalars [30]. The candidates are then relabeled according to (6.5).

p[0] ≤ p[1] ≤ · · · ≤ p[r] = pj ≤ · · · ≤ p[k]. (6.5)

Based on (6.5), the operator chooses pj = p[k−i] as the next step in the Markov chain. The rule

is deterministic and reversible. Hence it leaves a uniform distribution over the points stationary

[30]. Further, it is estimated that for practical purposes, ordered over–relaxation may speed up

a simulation by a factor of ∼ 10 − 20% [26].

To show the validity of Ordered over–relaxation method as describe in [34], it is enough to

prove that each update for component j satisfies the reversibility condition (details balance, see

equations (3.2)). Assume that pj is replaced by p′j using the over-relaxation method, i.e. we

made a transition from pj to p′j . Since we have other k−1 values in our consideration along with

p′j , Then the transition probability P (pj , p
′
j) of the Ordered over–relaxation is given in (6.6)

P (pj , p
′
j) = k! T (p′j | {pi}i6=j) I(s = k − r)

∏

r 6=t6=s

T (p
[t]
j | {pi}i6=j), (6.6)

where r is order of the old value pj in (6.5), and s is the order of the chosen value p′j. The

indicator function I(s = k−r) takes the value 1, or 0 depending in whether the transition occur,

or not in the set of k − 1 value respectively. Now

T (pj | {pi}i6=j) P (pj , p
′
j),

= T (pj | {pi}i6=j) . k! T (p′j | {pi}i6=j) I(s = k − r)
∏

r 6=t6=s

T (p
[t]
j | {pi}i6=j),

= T (p′j | {pi}i6=j) . k! T (pj | {pi}i6=j) I(k − r = s)
∏

r 6=t6=s

T (p
[t]
j | {pi}i6=j),

= T (p′j | {pi}i6=j) P (p′j , pj). �

In practice we can implement ordered over–relaxation in time that is proportional to k using

some properties of the uniform distribution [34]. Suppose we want to apply the ordered over–

relaxation on the distribution T (p), where x ∈ R
n.

Let F (xi) be the cumulative distribution function (cdf) for the conditional distribution T (pi | {pj}j 6=i),

and F−1(pi) is the inverse of F (pi). Then applying over–relaxation for pj is equivalent to:

(1) Transform pj to uj using the cdf, uj = F (pj).

(2) Perform the ordered over–relaxation on uj.

Chapter 6. Improving the Hamiltonian Monte Carlo algorithm 31

(3) Transform back to p′j = F−1(u′
j).

Algorithm 6.1: Ordered Over-relaxation

Compute u = F (pj);1

Generate integer r ∼ Binomial(k, u);2

if r > k − r then3

Generate v ∼ Beta(K − r + 1, 2r − k);4

u′ = uv;5

else if r < k − r then6

Generate v ∼ Beta(r + 1, k − 2r);7

u′ = 1 − (1 − u)v;8

else if r = k − r then9

u′ = u10

end11

pj = F−1(u)12

Step (2) requires generating k additional samples from the uniform distribution. Then using

part (a) of Theorem 6.2 we can easily find the number of samples r that are less or equal to uj

in the order statistics (6.7) of the k samples, this number will be binomially distributed with

parameters k, and uj, i.e. r ∼ Binomial(k, uj).

u[0] ≤ u[1] ≤ · · · ≤ u[r] = uj ≤ · · · ≤ u[k]. (6.7)

By assuming that r > k
2 , Since we will pick u′ = u[k−r], which is the k − r + 1th statistic of

sample of size r from Uniform[0, uj]. According to part (b) of Theorem 6.2 the distribution of

u′ ∼ Beta(k − r + 1, 2r − k). Algorithm 6.1 is the pseudo-code of ordered overrelation method

according to this result.

6.3 Symplectic integrators

Here we focus our discussion about improving the simulation of the Hamiltonian dynamics in

Chapter 4, where the simulation involved integration using the leapfrog scheme. The leapfrog

scheme belongs to general class of geometric integrators used in the numerical solution of the

Hamilton’s equations in (4.26) [25].

To introduce the concept of symplecticity, first define z = (q, p), and let the trajectory governed

by the Hamiltonian, H(q, p), be z(τ). Then the map defined by this trajectory over some time

interval τ , z −→ Z = Lτ (z), is said to be a canonical or symplectic transformation, if it satisfies

Chapter 6. Improving the Hamiltonian Monte Carlo algorithm 32

(6.8), [13].

MJMT = J, (6.8)

where

Mij =
∂Zi

∂zj

and,

J =

[

0 −I

I 0

]

.

If S is the time–reversal operator (e.g. for Cartesian coordinates S(q, p) = (q,−p)), the dynamic

system, Ll, satisfying (6.9) is referred to as being reversible.

LlSLl = T. (6.9)

The properties of symplecticity and reversibility have implications for numerical integrators of

the Hamiltonian equations [19, 42]. Specifically, if the map is symplectic, then the numerical

integrator should as well be symplectic, while reversibility of the dynamical system constrains

the map defined by the numerical integration algorithm to be reversible as well. Further, any

Hamiltonian generates a symplectic transformation [25].

The leapfrog in the HMC algorithm works well because in addition to being time–reversible,

it has been shown to be the simplest in the class of schemes, which generate a symplectic

transformation, [21, 41, 55]. The leapfrog has a one–step error ∼ O(ǫ3).

Irrespective of the underlying structure of the dynamics, which an integrating scheme seeks to

preserve, accurate and stable fixed stepsize numerical integration schemes often require exces-

sively small timesteps [20]. In many applications where the dynamical system can evolve either

rapidly or slowly along different regions of its trajectory, the use of a constant step-size could

lead to extra computational costs.

6.4 Strategies for improving the HMC

This thesis investigates two versions of HMC described in Chapter 4. First, by suppressing the

random walks behavior introduced in the sampling the momentum variables, i.e. the Gibbs

sampling step, using the ordered over–relaxation method. Second, using adaptive step–size in

simulating the Hamiltonian dynamics, to allow different step–sizes according to present informa-

tion, using the Störmer–Verlet discretization scheme.

Chapter 6. Improving the Hamiltonian Monte Carlo algorithm 33

6.4.1 Restricting random walk in the momentum

The performance of the HMC algorithm can be enhanced by suppressing random walk in the

Gibbs sampling. Ordered overrelaxation has been suggested in the literature as a means of sup-

pressing random walk behavior, and which is applicable to any system involving Gibbs sampling.

However, has not been applied to the HMC algorithm.

Algorithm 6.2: HMC algorithm with ordered over–relaxation applied to the Gibbs sam-

pling stage to drawn the momentum variables.

Initialize q0 and p01

for i = 1 to nsamples do2

Compute u = cdf(‘Normal‘, p; 0, 1)3

Generate integer r ∼ Binomial(k, u)4

if r > k − r then5

Generate v ∼ Beta(K − r + 1, 2r − k)6

u′ = uv7

else if r < k − r then8

Generate v ∼ Beta(r + 1, k − 2r)9

u′ = 1 − (1 − u)v10

else if r = k − r then11

u′ = u12

end13

p = icdf(‘Normal‘, u; 0, 1)14

(q(0), p(0)) = (qi−1, p)15

for j = 1 to L do16

p(j− 1

2
) = p(j−1) − ǫ

2∇V (q(j−1))17

q(j) = q(j−1) + ǫp(j− 1

2
)

18

p(j) = p(j− 1

2
) − ǫ

2∇V (q(j))19

end20

(q′, p′) = (q(l), p(l))21

draw α ∼ U [0, 1]22

δH = H(q′, p′) −H(q(0), p(0))23

if α < min{1, exp(−δH)} then24

(qi, pi) = (q′, p′)25

else26

(qi, pi) = (qi−1, pi−1)27

end28

end29

return {qi, pi}nsamples
i=030

Chapter 6. Improving the Hamiltonian Monte Carlo algorithm 34

In this thesis we investigate and presents results on the performance of the HMC algorithm,

with ordered overrelaxation applied to the Gibbs sampling stage of the algorithm. We refer to

this version as the OHMC algorithm. The performance of the OHMC algorithm is evaluated in

terms of the acceptance and convergence rates, as well as the degree of correlation of the chains.

Algorithm 6.2 is the pseudo code for OHMC algorithm.

x
1

x 2

OHMC

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

δπ(x
1
,x

2
)

OHMC points

x
1

x 2

HMC

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

δπ(x
1
,x

2
)

HMC points

Figure 6.1: The contour plot (left), and 3-dimensional plot of the correlated Gaussian dis-
tribution defined in (4.39).

Figure 6.1 shows the OHMC algorithm applied to a highly correlated bivariate Gaussian (see

the example in (4.39)). Some exact samples from the distribution are shown in blue. On the

other hand, the Metropolis–Hastings algorithm for comparison is shown in red proceeds by slow

diffusion. OHMC is able to make persistent progress along the distribution. In this example we

set the over–relaxation parameter k = 10.

6.4.2 Adaptive step–size

The possible construction of variable stepsize, time–reversible integration schemes was first

demonstrated in [21, 45]. Any integration scheme, which is symplectic for constant time-step

cannot necessarily retain its symplectic characteristic with variable time-stepping, see [5, 12].

Further, rather than solve the original Hamiltonian problem, H(q, p), in adaptive time stepping,

the integrators (roughly speaking) attempt to solve a perturbed time-dependent Hamiltonian,

H(q, p) + δH̃(q, p, τ) [4]. Unless the time step is properly changed, secular terms are introduced.

Consequently, δH̃ grows with τ and the error in energy and positions grows similarly to standard

non symplectic integrators [4].

An explicit stepsize scheme for the Störmer–Verlet scheme has been reported in [20], and im-

proved by [19]. Lately, other schemes, e.g., [17], have been reported in the literature. Here we

implements the scheme reported in [19].

In [20], the authors introduced a variable modification of the Störmer–Verlet scheme by intro-

ducing a fictive variable ρ, which was related to a scaling function U . The resulting variable

stepsize Störmer–Verlet scheme is explicit if U depends only on q and semi-explicit if U depends

on p. The approach adopted in [19] generalizes and simplifies the scheme in [20].

Chapter 6. Improving the Hamiltonian Monte Carlo algorithm 35

Equation (6.10)–(6.14) summarizes the explicit variable step–size and time reversible Störmer–

Verlet integration scheme, see [20] for details.

qn+ 1

2

= qn +
ǫ

2ρn

pn+ 1

2

, (6.10)

pn+ 1

2

= pn − ǫ

2ρn

∇E(pn), (6.11)

ρn+1 + ρn = 2U(qn+ 1

2

, pn+ 1

2

), (6.12)

pn+1 = pn+ 1

2

− ǫ

2ρn+1
∇E(qn+1), (6.13)

qn+1 = qn+ 1

2

+
ǫ

2ρn+1
pn+ 1

2

. (6.14)

The scheme is fully explicit, symmetric and time–reversible if U(q, p) = U(q,−p). Algorithm 6.3

is a pseudo code for the implementation of applying the Störmer–Verlet discretization to HMC

algorithm.

Algorithm 6.3: HMC algorithm with Störmer–Verlet discretization used to simulate the

Hamiltonian dynamics

Initialize q0 and p01

Set ǫ2

for i = 1 to nsamples do3

draw p ∼ N (0, I)4

(q(0), p(0)) = (qi−1, p)5

Set ρ06

for j = 1 to L do7

p(j− 1

2
) = p(j−1) − ǫ

2ρj−1
∇V (q(j−1))8

q(j− 1

2
) = q(j−1) + ǫ

2ρj−1
p(j− 1

2
)

9

ρj = −ρj−1 + 2G(q(j− 1

2
), q(j− 1

2
))10

q(j) = q(j− 1

2
) + ǫ

2ρj
p(j− 1

2
)

11

p(j) = p(j− 1

2
) − ǫ

2ρj
∇V (q(j))12

end13

(q′, p′) = (q(l), p(l))14

draw α ∼ U [0, 1]15

δH = H(q′, p′) −H(q(0), p(0))16

if α < min{1, exp(−δH)} then17

(qi, pi) = (q′, p′)18

else19

(qi, pi) = (qi−1, pi−1)20

end21

end22

return {qi, pi}nsamples
i=023

Chapter 6. Improving the Hamiltonian Monte Carlo algorithm 36

An initial value for the fictive variable ρ, and the scaling function, U must be determined in order

to implement the scheme. The paper suggests ρ0 = U(q0, p0). However, a modified initialization

of ρ0 is suggested as an inappropriate choice could introduce undesirable oscillations in the

numerically computed values of ρn. The original time variable τn is recover from the update

(6.15).

τn+1 = τn +
ǫ

2(ρn + ρn+1)
. (6.15)

Choices of this function U(q, p) can be found in [19, 20]. Here we adopt the definition of U in

(6.16).

U(q, p) =
√

E′(q)[E′(q)]T + pT E′′(q)E′′(q)p, (6.16)

E′(q) = ∇E(q)T , (6.17)

E′′(q) = ∇E′(q)T . (6.18)

The theoretical acceptance rate for HMC algorithm is approximated by erfc(1
2

√
< δH >) [22],

where δH is vector containing the error of total energy in each step in the simulation, and erfc(.)

is the error function, see the right plot of Figure 6.2. The left plot of Figure 6.2 shows the

simulation error of the adaptive Störmer–Verlet method and the leapfrog scheme.

0 500 1000 1500
10

−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

time period τ

log
(∆

E/
E)

leapfrog Scheme
SV method

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

ρ
0

Ac
ce

pta
nc

e r
ate

 , P
ac

c

Observed
Theoretic

Figure 6.2: The error introduced in the Hamiltonian H for both Leapfrog and Störmer–
Verlet (SV) scheme (left plot). The plot on the right shows the comparison of the theoretical
and observed acceptance rate using different starting value for the fictive variable ρ0. Here

Pacc = erfc(1

2

√
< δH >).

6.5 Combining ordered Over-relaxation and Störmer–Verlet

The third idea is combine the ordered over–relaxation in Gibbs sampling step and simulate the

dynamics using the adaptive Störmer–Verlet discretization. Algorithm 6.4 is a pseudo code for

the implementation of applying the Störmer–Verlet discretization and ordered over–relaxation

to HMC algorithm.

Chapter 6. Improving the Hamiltonian Monte Carlo algorithm 37

Algorithm 6.4: HMC algorithm using ordered over–relaxation to pick the momentum

variables, and Störmer–Verlet scheme to simulate the Hamiltonian dynamics.

Initialize q0 and p01

Set ǫ2

for i = 1 to nsamples do3

Compute u = cdf(‘Normal‘, p; 0, 1)4

Generate integer r ∼ Binomial(k, u)5

if r > k − r then6

Generate v ∼ Beta(K − r + 1, 2r − k)7

u′ = uv8

else if r < k − r then9

Generate v ∼ Beta(r + 1, k − 2r)10

u′ = 1 − (1 − u)v11

else if r = k − r then12

u′ = u13

end14

p = icdf(‘Normal‘, u; 0, 1)15

(q(0), p(0)) = (qi−1, p)16

Set ρ017

for j = 1 to L do18

p(j− 1

2
) = p(j−1) − ǫ

2ρj−1
∇V (q(j−1))19

q(j− 1

2
) = q(j−1) + ǫ

2ρj−1
p(j− 1

2
)

20

ρj = −ρj−1 + 2G(q(j− 1

2
), q(j− 1

2
))21

q(j) = q(j− 1

2
) + ǫ

2ρj
p(j− 1

2
)

22

p(j) = p(j− 1

2
) − ǫ

2ρj
∇V (q(j))23

end24

(q′, p′) = (q(l), p(l))25

draw α ∼ U [0, 1]26

δH = H(q′, p′) −H(q(0), p(0))27

if α < min{1, exp(−δH)} then28

(qi, pi) = (q′, p′)29

else30

(qi, pi) = (qi−1, pi−1)31

end32

end33

return {qi, pi}nsamples
i=034

Chapter 7

Criteria for evaluating the

improved HMC algorithm

If the distribution of the points generated by any MCMC algorithm is asymptotically convergent

to the exact target distribution π(x), then we can estimate the statistical properties such as mean,

median, and quantiles to our distribution [10, 39]. The estimation improves as the number of

samples approaches infinity. However, this not reasonable in practice. Instead, we generate a

finite chain to give estimation of the statistical properties for the target distribution. The error

arises from the truncation to finite chain both because of the shot–noise and correlation between

successive elements of the chain. We can say that the finite chain is converged, if the statistical

properties, sufficiently reflect those of the target distribution π(x) with sufficient accuracy [9].

To achieve convergence of such chains, the following two requirements must be satisfied.

(1) The chain should fully traverse the region of high probability such that the correlation

between successive elements does not bias the inferred distribution for π(x).

(2) The estimation of statistical properties of the target distribution should be well defined

with sufficient accuracy.

To achieve the second requirement of convergence, a level of accuracy for a given statistics must

be specified. A common diagnostic criterion is the variation of the sample mean obtained form

a finite chain.

There are many diagnostics tests to evaluate the convergence of MCMC chain in the literature.

In this thesis we concentrate on a few of them namely the power spectral criteria, i.e. using the

power spectral density to estimate the efficiency, convergence ratio, the number of independent

samples, and the degree of the correlation in the chain.

7.1 Degree of the correlation criteria

Definition 7.1. The autocorrelation function ρ(τ) of a given chain {xi}n
i=1 describes the cor-

relation between the successive elements xi, and xi+l of the chain at different lags l. The

38

Chapter 7. Criteria for evaluating the improved HMC algorithm 39

autocorrelation function at lag l is defined in (7.1).

ρ(l) =
Cov(xi, xi+l)

V ar(xi)
,

=

∑n−l
i=1 (xi − x̄)(xi+l − x̄)
∑n

i=1(xi − x̄)2
. (7.1)

The ideal chain with no correlation between successive elements in the chain has autocorrelation

function starting from unity and decays quickly to tauch the zero–line, see the left plot of Figure

7.1.

Definition 7.2. Integrated autocorrelation time τint, for chain {xi}∞i=1 that have autocorrelation

function ρ(τ) is given in (7.2).

τint =
1

2
+

∞
∑

t=1

ρ(t). (7.2)

The effective number of samples in a chain of length N can be approximated by N/(2τint). The

ideal chain, i.e. the chain with ρ(τ) = 0 for all τ 6= 0, and ρ(0) = 1 (uncorrelated case) has an

integrated autocorrelation time 2τint = 1.

0 1 2 3 4 5 6 7 8
−0.5

−0.3

−0.1

0.1

0.3

0.5

0.7

0.9

τ / lag

ρ(τ
)

acf

0 1 2 3 4 5 6 7 8
0.3

0.5

0.7

0.9

1.1

1.3

τ / lag

ρ int
(τ)

iacf

Figure 7.1: The figure shows how to compare two given chains. We are interested in the
chain with less correlation between the elements (in red), with smallest τint.

Since the chain produced by any MCMC algorithm is finite, our goal is find a good estimator

of the integrated autocorrelation time. Numerical estimation of the integrated autocorrelation

time has many difficulties [44, 54]. For example, the autocorrelation become noisy as the t in

equation (7.2) grows larger. Hence the sum in (7.2) diverges.

In this thesis, to estimate the integrated autocorrelation time τint and the autocorrelation func-

tion for a given chain, we will follow the methods described by [54] and use the MATLAB

program associated with this paper. A typical output from the program with some adaptation

is shown in Figure 7.1, where the τint corresponds to the value when curves values become more

flat and stable.

Chapter 7. Criteria for evaluating the improved HMC algorithm 40

7.1.1 Spectral analysis criteria

Let {xn}π
n=1 be the chain generated by MCMC algorithm, and X̃(κ) denote the discrete Fourier

transform this chain given in (7.3), and (7.4) which is the chain itself.

X̃(κ) =
∞
∑

n=−∞
xne−inκ, (7.3)

xn =
1√
2π

∫ π

−π

X̃(κ)einκdκ. (7.4)

Since the {xn}∞n=1 ⊂ R It is easily to show that X̃(κ) = X̃∗(−κ), where X̃∗(κ) denotes the

complex conjugate of X̃(κ).

Definition 7.3. The non–normalized power spectral density h(κ) of chain {xn}∞n=1 is defined

in (7.5). Where X̃T (κ) is the discrete Fourier tansform of the chain in the period [−T, T].

h(κ) = lim
T→∞

1

2T
< |X̃T (κ)|2 >, (7.5)

where the operator < . > means the expected value. Assume that our chain {xn}π
n=1 can be

represented by a continuous function x(t), where x(tn) = xn, for all n. Then we can have the

following definitions.

The autocovariance function R(τ) and the autocorrelation function ρ(τ) of x(t) are given in (7.6)

and (7.7), respectively. Note that in the definition of autocorrelation function in (7.1) we can

generalize the formula in (7.1) to cover the one in (7.7), since any integral can be written as a

sum.

R(τ) =< x(t)x(t − τ) >,

=

∫ π

−π

x(u)x(u − τ)du, (7.6)

ρ(τ) =
< x(t)x(t − τ) >

σ2
,

=
1

σ2

∫ π

−π

x(u)x(u − τ)du, (7.7)

where σ2 is variance of the chain, and hence the variance of x(t), as we assumed. The normalized

power spectral density P (κ) [38] given by (7.8), will be used to infer information about the

convergence of the chain.

P (κ) =
h(κ)

σ2
. (7.8)

Theorem 7.4. The Wiener–Khinchine Theorem

Let {xn}∞n=1 be a zero–mean MCMC chain with power spectral density P (κ), and autocorrelation

Chapter 7. Criteria for evaluating the improved HMC algorithm 41

function ρ(τ). Then P (κ) is Fourier transform of C(τ), i.e.

ρ(τ) =
1

2π

∫ π

−π

P (u) cos(τu)du. (7.9)

The proof can be found for example in [38].

Now let the average of the independent sample of the chain be σ2
x̄, which gives the variance of the

sample mean. A useful diagnostic is variation of the sample mean of finite chain length [9, 14].

This diagnostic is called the convergence ratio r, defined in (7.10).

r =
σ2

x̄

σ2
. (7.10)

To estimate the convergence ratio, we first consider a finite chain with mean zero, and of length

N , i.e. {x}N
n=1, then the sample mean of chain is give by

x̄N =
1

N

N
∑

n=1

xn. (7.11)

The variance of x̄N can be expressed as

< x̄2
N > =

1

N2

N
∑

n=1

N
∑

m=1

< xnxm >,

=
1

N2

N
∑

n=1

N
∑

m=1

1

2π

∫ π

−π

P (k) cos[k(m − n)]dk,

=
1

N

∫ π

−π

1

2πN
P (k)

N
∑

n=1

N
∑

m=1

cos[k(m − n)]dk. (7.12)

The summation term in (7.12) can be written as

Re

(

N
∑

n=1

N
∑

m=1

ek(m−n)i

)

= Re

(

N
∑

n=1

(

e−ki
)n

N
∑

m=1

(

e−ki
)m

)

,

= Re

([

1 − e−kNi

1 − e−ki

]

.

[

ekNi − 1

eki − 1

])

,

= Re

(

[

1 − ekNi

1 − eki

]2

.

[

e−kNi

e−ki

]

)

,

= Re

(

ekNi + e−kNi − 2

eki + e−ki − 2

)

=
sin2[Nk/2]

sin2[k/2]
.

Then using this result in (7.12), we have

< x̄2
N > =

1

N

∫ π

−π

1

2πN

sin2[Nk/2]

sin2[k/2]
P (k)dk. (7.13)

Chapter 7. Criteria for evaluating the improved HMC algorithm 42

Since (7.13) is a weighted average of the power spectral density, it becomes more concentrated

around k = 0 as chain length become larger. Moreover, using the results in (7.15) and (7.14),

lim
N→∞

1

2πN

sin2 [Nt/2]

sin2 [t/2]
= δ(t), (7.14)

∫ π

−π

1

2πN

sin2[Nk/2]

sin2[k/2]
dk = 1. (7.15)

Then the estimation of sample mean of a long chain is given by

σ2
x̄ =< x̄2

N >≈ 1

N
P (κ = 0). (7.16)

Through out this thesis the power spectral density function P (κ) is approximated in a discrete

point using the discrete Fourier transform, computed by the fast Fourier transform (FFT) algo-

rithm. Then power spectral density function for a chain of length N can be approximated by

(7.17) using (7.3)

P̃j = |X̃(κ)∗X̃(κ)|. (7.17)

10
−3

10
−2

10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

10
1

κ

P(
κ)

10
−3

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

κ

P(
κ)

Figure 7.2: The discrete power spectral density of uncorrelated (white noise) chain for the
Gaussian distribution with mean zero and unit variance (left figure). The discrete power
spectral density function of an MCMC chain (N = 1000) for 2D Gaussian centered at the

origin and with identity covariance (right figure).

The ideal chain produced from the target distribution has a white noise spectral, i.e. there are no

correlation between the successive points, then the power spectral density is flat and P (κ) = σ

for all κ, where σ is the standard deviation of the target distribution. the power spectral density

function for any MCMC chain follows the template in (7.18) [24, 43].

P (κ) = P0
(κ∗/κ)α

(κ∗/κ)α + 1
, (7.18)

where P0 is the value of the white noise spectral density function of the chain, κ∗ indicates where

the white noise spectrum turnover at κ∗, to a different power law behavior, characterize by the

parameter α, see Figure 7.2.

Chapter 7. Criteria for evaluating the improved HMC algorithm 43

10
−3

10
−2

10
−1

10
0

10
1

10
0

10
1

κ*

P(0)

P(κ*)≈ (κ*)−α

 The curve turn over

Figure 7.3: The power spectral density template for the MCMC chains, the curve is approx-
imately power of two (α ≈ 2). The figure shows where the curve turnover is, before correlated

sample are drawn.

Definition 7.5. Efficiency E of any MCMC chain is ratio of the number of independent points

in MCMC chain to the number of MCMC iteration required to reach the same variance.

E = lim
N→∞

σ2
0/N

σ2
x̄(N)

,

where σ2
0 , and σ2

x̄ are the variance of the target distribution and the chain sample mean, re-

spectively. σ2
0/N can be consider as the sample variance of best chain of length N.E−1. form

equation (7.16) we will get,

E =
σ2

0

P0
where P0 = P (0).

For a chain of length N , the discrete power spectral density function of the template in equation

(7.18) become P̃j , where j = 0, 1, 2, . . . , N/2− 1. To fit this template we use the optimization of

least square technique supported in MATLAB software, such as the function lsqcurvefit, in

the range of the Fourier mode 1 ≤ j ≤ jmax, for spectrum have a knee at j∗ = κ∗(N/2π), then

an appropriate choice of limiting the point in the least square is jmax ≈ 10j∗. In practice, it is

good to use a predictor for the template parameters by fitting first an appropriate point-length,

and then use this predictor parameters as a starting point.

Let σ2
x̃(N) be the variance of sample mean, define by averaging over independent realization of

a finite chain of length N . Then the variance of sample mean can be measured by the ratio,

r = σ2
x̃/σ2

0 , where σ2
0 denotes the variance of the target distribution, this ratio is called the

convergence ratio. We require r to be below some tolerance value, for example 0.01.

Chapter 7. Criteria for evaluating the improved HMC algorithm 44

7.1.2 Testing convergence of a chain

Once we know the template parameters P0, α, and κ∗ then we are ready to perform the conver-

gence test, to insure that the MCMC chain achieves enough level of convergence. We check the

following two requirements:

(1) the smallest value of κ, must be in the white noise regime P (κ) ≈ κ0, where j∗ =

κ∗(N/2π) > 20. This insures that the correlated points are not biased and indicates

that the chain has explored the regions of high probability.

(2) the estimation of the convergence ration r = σ2
x̄/σ2

0 ≈ P0/N for chain with unit variance.

To obtain a good accuracy we should generate a chain with, r < 0.01.

When the above requirements are met, then we are confident that the chain has converged and

the chain can be stopped. We would run the chain longer to get better samples in order to reduce

the shot–noise from the histogram, and find good approximation of the statistical properties of

our interest. This is particularly relevant for lower dimensions where the chain can converge

after relatively few steps. In practice, we find for high dimensional chain (D ≥ 8), that there are

enough samples by the time the test is passed [9]. To avoid saving more values in the chain we

sometime save only the mth points in the original chain.

Chapter 8

Simulation and results

This chapter presents numerical experiment on the performance of the Hamiltonian Monte Carlo

algorithm with, ordered over–relaxation (OHMC), and adaptive step–size using Störmer–Verlet

scheme (SVHMC). The analysis compares these versions to the classical Hamiltonian Monte

Carlo algorithm. The assessment is based on using the Gaussian distribution targets with un-

correlated variates in different dimensions. The performance of these versions are judged by the

diagnostic tests discussed in Chapter (7).

8.1 Gaussian target and parameter estimation

In many applications, the problem of estimating the model parameter for given data can often be

formulated as a least square problem, non–linear system of equation (linear system as especial

case), or Bayesian inference problem. Assuming that G : R
l → R

n is a given mathematical

model, where the vector m ∈ R
l is the model in question. Moreover, suppose that our data is

given in the vector d ∈ R
n. Then the relationship between these quantities is given in (8.1).

G(m) = d. (8.1)

For simplicity consider the linear least square approach for the problem in (8.1), which can be

written in form

argmin
m∈Rl

‖Gm − d‖2. (8.2)

Let the measurement error in particular observation di be denoted ǫi by

ǫi = gT
i m − di, i = 1, 2, . . . , n,

where gi ∈ R
l is ith row in the matrix G, i.e. G = [g1 g2 . . . gn]T . It is reasonable to assume

that the ǫi’s are independently identically distributed (i.i.d.) with variance σ2, then

Pr(ǫi) =
1√

2πσ2
exp

(

−1

2

ǫ2i
σ2

)

, i = 1, 2, . . . , n. (8.3)

45

Chapter 8. Simulation and Results 46

The probability of the observation data d to match the actual model parameter m is given in

(8.4), which is called the likelihood for a particular data m.

p(d|m) =

n
∏

i=1

Pr(ǫi) =

l
∏

i=1

Pr(ǫi),

=
1

(2πσ2)
l
2

exp

(

− 1

2σ2

n
∑

i=1

(gT
i m − di)

2

)

. (8.4)

The distribution in (8.4) is proportional to Gaussian distribution with mean µ = m, and covari-

ance Σ = σ2(GT G)−1. To show this we consider the sum

− 1

2σ2

n
∑

i=1

(gT
i m − di)

2 = − 1

2σ2
(Gm − d)T GT G(Gm − d),

= − 1

2σ2
(dT d − 2mT GT d + mT GT Gm). (8.5)

If GT G is symmetric and positive semidefinite, then the inverse of it exist and have the same

properties. By defining the random vector x ∈ R
l by x = (GT G)−1GT d, then we can rewrite

(8.5) as

− 1

2σ2

n
∑

i=1

(gT
i m − di)

2 = −1

2

[

xT
(

σ−2GT G
)

x − 2mT
(

σ−2GT G
)

x + mT
(

σ−2GT G
)

m
]

,

= −1

2
(x − m)T

(

σ−2GT G
)

(x − m),

= −1

2
(x − m)T Σ−1(x − m). (8.6)

For a suitable constant A the distribution in (8.4) can be written as

p(d|m) = A exp

(

−1

2
(x − m)T Σ−1(x − m)

)

, (8.7a)

x = (GT G)−1GT d, (8.7b)

Σ = σ2(GT G)−1. (8.7c)

Then transforming the data d, by the transformation x = (GT G)−1GT d, we get realizations

from the Gaussian distribution. There is thus a link between the problem in (8.7) and the least

square problem in (8.2). By simulating the distribution in (8.7) we can estimate the stochastic

distribution of model m in question.

Chapter 8. Simulation and Results 47

8.2 Distributions for the numerical experiments

Equation (8.3) presents the univariate case where A = 1√
2πσ2

, Σ = (1/σ)I, and ǫ = x − m. For

multivariates case (8.3) translate into (8.8) where A = 1

(2π)
D
2 |Σ|

1

2

.

π(x) =
1

(2π)
D
2 |Σ| 12

exp

(

−1

2
(x − m)T Σ−1(x − m)

)

, x ∈ R
D, (8.8)

Σ = I. (8.9)

We have investigate several dimensions, in this thesis we present the results of D = 64, and 128.

8.3 Results from numerical experiments

The section is devoted to compare the performance of OHMC and SVHMC algorithms to the

classical HMC algorithm. Then combine the OHMC and SVHMC algorithm in one algorithm

which we call OSVHMC algorithm and compare it is performance to SVHMC algorithm.

The performance of these versions are evaluated in terms of the spectral analysis convergent

test, as well as the degree of correlation of the chains, which are discussed in Chapter (6).

In the simulation for each algorithm we will produce realizations from 64 and 128 dimensions

(parameters) uncorrelated Gaussian distribution (8.8) with mean zero and unit covariance. Since

we have more than one chain, one for each parameter, and all of the chains are identical, we will

analyze the first chain (the chain for m1) to get information about the diagnostics criterion. The

true value for the parameters we want to estimate is mi = 0 for all i.

8.3.1 Comparing OHMC and HMC algorithms

To see the effect of ordered over–relaxation, we run the over–relaxed version (OHMC) and the

classical HMC algorithm with the same values for leapfrog step–size ǫ = 0.1 and L = 10 leapfrog

steps, and compare the results using the criteria in Chapter 6.

The power spectral analysis and the degree of the correlation are shown in Figures 8.1 and 8.2 for

the chains generated by the two algorithms. The OHMC spends longer time on the white-noise

regime than HMC, i.e. OHMC chain has more independent realizations from the target than

HMC. This is given by calculating the length of the flat part of the power spectral density curve

before the curve turns over to a different power region, which measured by the parameter κ∗

(see equation (7.18)). These values can be read from Table 8.1 and Figure 8.1.

The numerical values for diagnostic tests are shown in Table 8.1. The parameter P (0) is used

to calculate the efficiency E and convergence ratio r of SVHMC and HMC algorithm. The ideal

chain has an efficiency of approximately 1. As the table shows, OHMC has better efficiency than

Chapter 8. Simulation and Results 48

64 Dimension 128 Dimension

10
−3

10
−2

10
−1

10
0

10
1

10
0

κ

P(
κ)

OHMC
 HMC

10
−3

10
−2

10
−1

10
0

10
1

10
0

κ

P(
κ)

OHMC
 HMC

10
−3

10
−2

10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

10
1

κ

P(
κ)

OHMC
 HMC

10
−3

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

κ
P(

κ)

OHMC
HMC

Figure 8.1: The discrete power spectral density (psd) and fitted template for the chains
generated by the OHMC and HMC algorithm in 64-dimensions (the left column), and 128-

dimensions (the right column).

Table 8.1: Summary of the power spectral and the degree of correlation convergence tests
for OHMC and HMC algorithms in 64 and 128–dimensions.

64 Dimension 128 Dimension
OHMC HMC OHMC HMC

Acceptance Rate 0.993000 0.985000 0.9855000 0.975500
P (0) 3.106938 3.560673 2.9206225 3.125949
κ∗ 0.985683 0.812680 1.2495117 1.145286
CPU time/Sec 561.224400 557.381400 1128.3454000 1117.776300
Efficiency E 0.321860 0.280845 0.3423927 0.319902
Convergence ratio r 0.001553 0.001780 0.0014603 0.001562
iacf τint 1.629816 1.845748 1.5333956 1.804368
Error of τint 0.176595 0.212930 0.1675069 0.208802
Error of estimation µ1 0.038702 0.043258 0.0393236 0.043891
Estimation of m1 0.048826 −0.054868 0.0026030 0.010457

HMC. All algorithms reached convergence based on r < 0.01 criterion as used in [9]. Also the

CPU times for the algorithms are almost identical. However, the OHMC needs a few additional

function evaluations in the ordered over–relaxation stage, see Algorithm 6.2.

In term of the efficiency, OHMC chain is about 1.2 times shorter than the HMC chain, i.e.
EOHMC

EHMC
≈ 1.2.. Note also that the we have better convergence of OHMC in estimating the true

value for the parameter m in both dimensions.

These feature are seen much better in the autocorrelation function (acf) and the integrated

autocorrelation function (iacf), which are shown in Figure 8.2. The bottom left row shows that

the autocorrelation of OHMC dies off much faster than HMC.

Chapter 8. Simulation and Results 49

64 Dimension 128 Dimension

0 2 4 6 8 10 12 14 16
0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

τ

ρ int
(τ)

iacf OHMC
(τ*,τ*

int
) OHMC

iacf HMC
(τ*,τ*

int
) HMC

0 2 4 6 8 10 12 14 16
0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

τ

ρ int
(τ)

iacf OHMC
(τ*,τ*

int
) OHMC

iacf HMC
(τ*,τ*

int
) HMC

0 2 4 6 8 10 12 14 16
−0.5

0

0.5

1

τ

ρ(τ
)

acf OHMC
OHMC mxlag
acf HMC
HMC maxlag

0 2 4 6 8 10 12 14 16
−0.5

0

0.5

1

τ

ρ(τ
)

acf OHMC
OHMC mxlag
acf HMC
HMC maxlag

Figure 8.2: The integrated autocorrelation time and estimated value of τint for both OHMC
and HMC algorithms are shown in the top row of the figure. The corresponding autocorrelation

function for different lags is presented in the bottom row.

64 Dimension 128 Dimension

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

q

p

OHMC

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

q

p

OHMC

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

q

p

HMC

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

q

p

HMC

Figure 8.3: 500 trajectory points in the phase–space (q, p) for 64–dimensions (left column)
and 128–dimensions (right column) from OHMC (top row) and HMC (bottom row).

Chapter 8. Simulation and Results 50

64 Dimension 128 Dimension

−4 −3 −2 −1 0 1 2 3 4
0

50

100

150

200

250

300

350

400

450

x , Bin Centers

π(x
) ,

 F
re

qu
en

cy
OHMC

Histogram
True curve

−4 −3 −2 −1 0 1 2 3 4
0

50

100

150

200

250

300

350

400

450

x , Bin Centers

π(x
) ,

 F
re

qu
en

cy

OHMC

Histogram
True curve

−4 −3 −2 −1 0 1 2 3 4
0

50

100

150

200

250

300

350

400

x , Bin Centers

π(x
) ,

 F
re

qu
en

cy

HMC

Histogram
True curve

−4 −3 −2 −1 0 1 2 3 4
0

50

100

150

200

250

300

350

400

450

500

x , Bin Centers
π(x

) ,
 F

re
qu

en
cy

HMC

Histogram
True curve

Figure 8.4: The histograms for OHMC (top row) and HMC (bottom plots) in 64 and 128–
dimensions.

The number of independent samples in a chain of length N is given by N/(2τint), where τint

is the iacf. The chain generated by HMC has 614 independent samples, while there are 541

independent samples in the OHMC chain, taking into account the error of estimating the value

of τint see Table 8.1. Looking at the trajectories and the histograms in Figures 8.3 and 8.4

respectively, for these algorithms, we observe a slight improvement in the OHMC algorithm over

the HMC. The trajectories for OHMC are well concentrated in the region of high probability.

8.3.2 Comparing SVHMC and HMC algorithms

To compare the Störmer–Verlet discretization and the leapfrog scheme, we first need to optimize

ǫ in HMC, and the starting value for the fictive variable ρ0 in SVHMC. These can be obtained

by running short chains of the algorithms with different values for these parameters, then by

optimizing the efficiency, for example, we can find corresponding values for ǫ and ρ0. We use the

same number of simulation steps L.

We run 2000 iterations for each algorithm in 64 and 128–dimensions, and calculate the diagnostics

criteria for these chains for the first parameter. The spectral analysis of these chains is shown

in Figure 8.5. The flatter curve corresponds to the chain with better convergence properties.

From Table 8.2, the number of the effective independent samples for SVHMC is bout 1064

samples, while HMC has only about 541 samples. this means that we should generate twice

the sample size of HMC to get the same performance as SVHMC. The ratio of the efficiency of

Chapter 8. Simulation and Results 51

64 Dimension 128 Dimension

10
−3

10
−2

10
−1

10
0

10
1

10
0

κ

P(
κ)

SVHMC
 HMC

10
−3

10
−2

10
−1

10
0

10
1

10
0

κ

P(
κ)

SVHMC
 HMC

10
−3

10
−2

10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

10
1

κ

P(
κ)

SVHMC
 HMC

10
−3

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

κ

P(
κ)

SVHMC
HMC

Figure 8.5: Discrete power spectral density (psd) in logarithmic scale (bottom row) with the
best fit template (top row) for the chains generated by the SVHMC and HMC algorithm in

64 and 128–dimensions.

64 Dimension 128 Dimension

0 2 4 6 8 10 12 14 16
0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

τ

ρ int
(τ)

iacf SVHMC
(τ*,τ*

int
) SVHMC

iacf HMC
(τ*,τ*

int
) HMC

0 2 4 6 8 10 12 14 16
0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

τ

ρ int
(τ)

iacf SVHMC
(τ*,τ*

int
) SVHMC

iacf HMC
(τ*,τ*

int
) HMC

0 2 4 6 8 10 12 14 16
−0.5

−0.3

−0.1

0.1

0.3

0.5

0.7

0.9

τ

ρ(τ
)

acf SVHMC
SVHMC maxlag
acf HMC
HMC maxlag

0 2 4 6 8 10 12 14 16
−0.5

0

0.5

1

τ

ρ(τ
)

acf SVHMC
SVHMC mxlag
acf HMC
HMC maxlag

Figure 8.6: The integrated autocorrelation time τint and the autocorrelation function ρ(τ)
for both SVHMC and HMC in 64 and 128–dimensions.

Chapter 8. Simulation and Results 52

SVHMC to HMC algorithms about 1.6.

ESV HMC

EHMC

≈ 1.6.

Table 8.2: Summary of diagnostics convergence tests for SVHMC and HMC algorithm in
Gaussian distribution of 64 and 128–dimensions

64 Dimension 128 Dimension
SVHMC HMC HMC OHMC

Acceptance Rate 0.938500 0.985000 0.916000 0.975500
P (0) 2.2586970 3.560673 2.111930 3.125949
κ∗ 3.1397510 0.812680 3.270751 1.145286
CPU time/Sec 669.3962000 557.381400 1568.014500 1117.776300
Efficiency E 0.4427331 0.280845 0.473500 0.319902
Convergence ratio r 0.0011293 0.001780 0.001055 0.001562
iacf τint 0.9440914 1.845748 0.856717 0.208802
Error of τint 0.0796167 0.212930 0.073130 1.804368
Error of estimation µ1 0.0313669 0.043258 0.029080 0.043891
Estimation of m1 0.0036804 −0.054868 0.034602 0.010457

For each trajectory, the momentum is drawn from the normal distribution (HMC) and the over–

relaxed normal distribution (SVHMC). (The vertical jumps in plots of Figure 8.7) represent

several steps along a trajectory of constant Hamiltonian value. The overall shape of the trajec-

tories from SVHMC are more elliptical than HMC, which means that SVHMC visits more points

in the high probability region in the phase–space than HMC.

64 Dimension 128 Dimension

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

q

p

SVHMC

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

q

p

SVHMC

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

q

p

HMC

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

q

p

HMC

Figure 8.7: 500 trajectory points in the phase–space (q, p) for 64-dimensions (left column)
and 128-dimensions (right column) from SVHMC (top row) and HMC (bottom row).

In addition, Figure 8.8 shows that the histograms for SVHMC match the marginal distribution

of the first chain better than the HMC.

Chapter 8. Simulation and Results 53

64 Dimension 128 Dimension

−4 −3 −2 −1 0 1 2 3 4
0

50

100

150

200

250

300

350

400

x , Bin Centers

π(x
) ,

 F
re

qu
en

cy
SVHMC

Histogram
True curve

−4 −3 −2 −1 0 1 2 3 4
0

50

100

150

200

250

300

350

x , Bin Centers

π(x
) ,

 F
re

qu
en

cy

SVHMC

Histogram
True curve

−4 −3 −2 −1 0 1 2 3 4
0

50

100

150

200

250

300

350

x , Bin Centers

π(x
) ,

 F
re

qu
en

cy

HMC

Histogram
True curve

−4 −3 −2 −1 0 1 2 3 4
0

50

100

150

200

250

300

350

400

x , Bin Centers
π(x

) ,
 F

re
qu

en
cy

HMC

Histogram
True curve

Figure 8.8: The histograms for SVHMC (top row) and HMC (bottom plots) for 64 and
128–dimensions.

Thus the SVHMC algorithm outperforms the classical HMC by having better convergence chain.

The difference in the CPU time between SVHMC and HMC is largely due to the additional

function evaluations in computing the fictive variable ρn. This difference can be reduced by

running a shorter chain for SVHMC. The shorter chain will still have a better efficiency than

HMC because the SVHMC algorithm will have more effective samples.

8.3.3 Comparing OSVHMC and SVHMC algorithms

Finally, we compare the hybrid of OHMC and SVHMC algorithm, i.e OSVHMC, to SVHMC to

see the effect of the ordered over-relaxation on the Störmer–Verlet discretization.

Table 8.3: The convergence diagnostics and the efficiency criteria for OSVHMC and SVHMC.

64 Dimension 128 Dimension
OSVHMC SVHMC OSVHMC SVHMC

Acceptance Rate 0.921500 0.938500 0.916000 0.911000
P (0) 1.898972 2.258697 2.111930 2.180878
κ∗ 4.886321 3.139751 3.270751 4.106211
CPU time/Sec 639.581200 669.396200 1568.014500 1626.932000
Efficiency E 0.526600 0.442733 0.473500 0.458530
Convergence ratio r 0.000949 0.001129 0.001055 0.001090
iacf τint 0.714289 0.944091 0.856717 0.810302
Error of the error 0.001119 0.001487 0.001379 0.001397
Error of estimation µ1 0.026770 0.031366 0.029080 0.029453
Estimation of m1 0.007290 0.003680 0.034602 −0.026153

Chapter 8. Simulation and Results 54

64 Dimension 128 Dimension

10
−3

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

κ

P(
κ)

OSVHMC
SVHMC

10
−3

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

κ

P(
κ)

OSVHMC
SVHMC

10
−3

10
−2

10
−1

10
0

10
1

10
0

κ

P(
κ)

OSVHMC
 SVHMC

10
−3

10
−2

10
−1

10
0

10
1

10
0

κ
P(

κ)

OSVHMC
SVHMC

Figure 8.9: The power spectral density (psd) in logarithmic scale (bottom row), and approx-
imated template curves defined by (7.18) for the chains generated by the SVHMC and HMC

algorithm (top row), for 64-dimensions (left column) and 128-dimensions (right column).

Following the same arguments as in the previous sections, we observe from Figures 8.9, 8.10, 8.11,

8.12 and Table 8.3, that OSVHMC has better efficiency and converges faster than the SVHMC.

Further, the number of effective samples in the OSVHMC are more than in the SVHMC.

64 Dimension 128 Dimension

0 1 2 3 4 5 6 7 8
0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

τ

ρ int
(τ)

iacf OSVHMC
(τ,τ

int
) OSVHMC

iacf SVHMC
(τ*,τ*

int
) SVHMC

0 1 2 3 4 5 6 7 8
0.3

0.5

0.7

0.9

τ

ρ int
(τ)

iacf OSVHMC
(τ,τ

int
) OSVHMC

iacf SVHMC
(τ*,τ*

int
) SVHMC

0 1 2 3 4 5 6 7 8
−0.5

0

0.5

1

τ

ρ(τ
)

acf OSVHMC
OSVHMC mxlag
acf SVHMC
SVHMC maxlag

0 1 2 3 4 5 6 7 8
−0.5

0

0.5

1

τ

ρ(τ
)

acf OSVHMC
OSVHMC mxlag
acf SVHMC
SVHMC maxlag

Figure 8.10: The integrated autocorrelation time and estimated value of τint for both OHMC
and HMC algorithms are shown in the upper row of the figure. The corresponding autocorre-

lation functions are presented in the bottom row of this figure.

Chapter 8. Simulation and Results 55

64 Dimension 128 Dimension

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

q

p

OSVHMC

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

q

p

OSVHMC

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

q

p

SVHMC

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

q

p

SVHMC

Figure 8.11: 500 trajectory points in the phase–space (q, p) for 64-dimensions (left column)
and 128-dimensions (right column) for OSVHMC (top row) and SVHMC (bottom row).

64 Dimension 128 Dimension

−4 −3 −2 −1 0 1 2 3 4
0

50

100

150

200

250

300

350

x , Bin Centers

π(x
) ,

 F
re

qu
en

cy

OSVHMC

Histogram
True curve

−4 −3 −2 −1 0 1 2 3 4
0

50

100

150

200

250

300

x , Bin Centers

π(x
) ,

 F
re

qu
en

cy

OSVHMC

Histogram
True curve

−4 −3 −2 −1 0 1 2 3 4
0

50

100

150

200

250

300

x , Bin Centers

π(x
) ,

 F
re

qu
en

cy

SVHMC

Histogram
True curve

−4 −3 −2 −1 0 1 2 3 4
0

50

100

150

200

250

300

x , Bin Centers

π(x
) ,

 F
re

qu
en

cy

SVHMC

Histogram
True curve

Figure 8.12: The histograms for OSVHMC (top) and SVHMC (bottom) for 64 and 128–
dimensions.

Chapter 8. Simulation and Results 56

8.4 Conclusion

The thesis has investigated methods to improve the Hamiltonian Monte Carlo (HMC) algorithm,

by considering three techniques, which would enhance the performance of the algorithm. Firstly,

by reducing the random walk in drawing the momentum variables, using ordered over–relaxation

in the Gibbs sampling stage. This version, designated by OHMC, improves the number of

effective samples by a factor ∼ 12%.

A second improvement involves reducing the error involved in simulating the Hamiltonian dy-

namics using the adaptive step–size with Störmer–Verlet discretization, which gives the SVHMC

algorithm. The SVHMC algorithm outperforms the classical HMC algorithm with the leapfrog

scheme by having ∼ 50% more effective samples size. However, care must be taken when choosing

the starting adaptive step–size in discretization of the simulation time.

Finally, the numerical experiments show that when ordered over–relaxation is applied to the

SVHMC algorithm, the effect sample size is improved by ∼ 12%. This result is identical to

applying ordered over–relaxation to the HMC algorithm.

Chapter 9

Suggestions for further works

Its is well established in the literature that MCMC algorithm propose small changes in the state

vector at each iteration step. The result is:

(1) rare inter–modal moves,

(2) slow convergence of the chain, and

(3) high correlation between successive states.

The approach in the MSc thesis addresses points (1)–(2). Point (1) may be partially addressed

by an approach based on using adaptive step–size. However, this remains to be proven.

When sampling from a multi–modal targets, it is desirable that the algorithm has the following

properties:

(a) large proposal changes (not entirely random) in the state vectors are allowed,

(b) proposed new states are located in high–probability regions, and

(c) have high acceptance probabilities.

The HMC algorithm may boast good performance with respect to points (a)–(c). However its

performance, when faced with multi–modal target distributions, this observation is based on

preliminary studies, could be worse of than the classical MH algorithm.

One promising approach is to use the Mode Jumping Proposal, firstly suggested by [50], and

which seeks to address points (a)–(c). above. The construction is based on firstly defining

Qϕ
0 and Qϕ

1 as two proposal kernels on R
n, with corresponding densities q0(y|x) and q1(y|x),

respectively–(There are several methods for combining the proposal kernels into a single kernel

Q on R
n). The approach then follows a 3-step procedure:

Step (1) A move from x → T0(x, ϕ) = x + ϕ.

57

Chapter 9. Suggestions for further works 58

Step (2) Deterministic local optimization to determine the location of the minimum point µ(x + ϕ)

of the energy function U(x) = − ln(π(x)) in order to generate proposal state y. If µ(x)

is the location of the minimum found with xstart = x, and Σ(x) =
[

(∇2U)µ(x)
]−1

, then

qϕ
0 (y|x) is defined by (9.1), where Nn(µ, Σ)(·) is the pdf of a n-variate Gaussian with mean

and covariance denoted by µ and Σ, respectively.

qϕ
0 (y|x) = Nn(µ(T0(x, ϕ)), Σ(T0(x, ϕ)))(y). (9.1)

Step (3) Deterministic local optimization to determine the location of the minimum point µ(y−ϕ).

The choice of Qϕ
1 is such that the reverse jump, from y to x, has high probability under

the defined kernel. Thus if µ(T0(x, ϕ)) is relatively close to T0(x, ϕ), then T1(y, ϕ) = y−ϕ

is most likely to be located within the same basin of attraction as the mode of x. Hence it

reasonable to define qϕ
1 (x|y) by (9.2).

qϕ
1 (x|y) = Nn(µ(T1(y, ϕ)), Σ(Ty(y, ϕ)))(x). (9.2)

Steps (1)–(2) above are designed to address the desirable characteristics of the chain, outlined

in points (a)–(c). Incorporating the mode jumping into the general framework of the HMC

algorithm implemented in this thesis could addresses the multi mode sampling drawback. An

alternative approach has been proposed by [33].

Appendix A

Abstract accepted at Thiele

conference

Abstract accepted at Efficient Monte Carlo: From Variance
Reduction to Combinatorial Optimization A Conference on the
Occasion of R.Y. Rubinstein’s 70th Birthday. Sandbjerg Estate,

Snderborg, Denmark 14-18 July 2008.

59

Appendix A. Abstract accepted at Thiele conference 60

The Hamiltonian Monte Carlo Algorithm with

Overrelaxation and Adaptive–Step Discretization–

Numerical Experiments with Gaussian Targets

Mohammed Alfaki∗ Sam Subbey† Dag Haugland‡

April 11, 2008

Abstract

Using results from numerical experiments, we discuss the performance of the Hamiltonian
Monte Carlo (HMC) algorithm with adaptive–step Störmer–Verlet discretization of the dy-
namic transitions, and ordered overrelaxation applied to the static transitions.

Our results show that the combined effect of overrelaxation and adaptive–step discretiza-
tion results in an algorithm, which outperforms the classical Leapfrog HMC algorithm in
sampling Gaussian targets with uncorrelated covariates.

We exemplify using Gaussian targets in 64 and 128 dimensions, and discuss the significance
of our results in a more general context of parameter estimation involving high–dimensional
Gaussian targets with uncorrelated covariates.

Keywords: Hamiltonian Monte Carlo, Overrelaxation, Symplectic integrator, Leapfrog, Störmer–

Verlet, Gaussian targets, Parameter estimation.

∗University of Bergen, Department of Informatics, email: mohammeda@ii.uib.no
†Inst. for Mar. Res., Bergen, Norway, email: samuels@imr.no
‡University of Bergen, Department of Informatics , email: dag@ii.uib.no

Appendix B

Abstract accepted at ECMOR XI

conference

Abstract accepted at 11th European Conference on the
Mathematics of Oil Recovery. 8 - 11 September 2008, Bergen,

Norway

61

Appendix B. Abstract accepted at ECMOR XI conference 62

The Hamiltonian Monte Carlo Algorithm in Parameter

Estimation and Uncertainty Quantification

Sam Subbey∗ Mohammed Alfaki† Dag Haugland‡

March 12, 2008

Abstract

The Hamiltonian Monte Carlo (HMC) algorithm is a Markov Chain Monte Carlo (MCMC)
technique, which combines the advantages of Hamiltonian dynamics methods and Metropolis
Monte Carlo approach, to sample from complex distributions. The HMC algorithm incor-
porates gradient information in the dynamic trajectories and thus suppresses the random
walk nature in traditional Markov chain simulation methods. This ensures rapid mixing,
faster convergence, and improved efficiency of the Markov chain. The leapfrog method is
generally used in discrete simulation of the dynamic transitions. In this paper, we refer to
this as the leapfrog–HMC.

The primary goal of this paper is to present the HMC algorithm as a tool for rapid sam-
pling of high dimensional and complex distributions, and demonstrate its advantages over
the classical Metropolis Monte Carlo technique.

We demonstrate that the use of an adaptive–step discretization scheme in simulating the
dynamic transitions results in an algorithm which significantly outperforms the leapfrog–
HMC algorithm.

An example application to reservoir parameter estimation and uncertainty quantification
is presented.

This paper differs from previous work in the following ways:

• Application of the HMC algorithm to parameter estimation and uncertainty quan-
tification has not been reported in petroleum science literature. Previously reported
traditional MCMC algorithms almost invariably suffer from inefficiency caused by the
random walk nature of the Metropolis algorithm.

• We demonstrate improvement of the traditional HMC algorithm by application of a
discretization scheme, which although reported in the Physics literature, has never
been directly applied to the HMC algorithm.

1 Significance of Proposed Paper

This paper makes 3 distinct technical contributions to the knowledge base of the mathematics
of oil recovery in the areas of

(1) (Assisted) History Matching:
Provides an efficient algorithms for rapid parameter estimation in history matching.

∗Inst. for Mar. Res., Bergen, Norway, email: samuels@imr.no
†University of Bergen, Department of Informatics , email: mohammeda@ii.uib.no
‡University of Bergen, Department of Informatics , email: dag@ii.uib.no

Appendix B. Abstract accepted at ECMOR XI conference 63

(2) Uncertainty Quantification:

Facilitates rapid uncertainty quantification (especially in a Bayesian framework), where

posterior distributions from which to sample are usually high-dimensional and complex.

Usually in such cases, traditional MCMC techniques have slow convergence, low efficiency

and are CPU intensive

(3) Stochastic Methods:

Applicable in other areas such as in rapid generation of stochastic realizations of porosi-

ty/permeability fields

Bibliography

[1] S. L. Adler. Over–relaxation Method for Monte Carlo Evaluation of the Partition Function

for Multiquadratic Actions. Physical Review D, 23:2901–2904, 1981.

[2] H. C. Andersen. Molecular Dynamics Simulations at Constant Pressure and/or Tempera-

ture. Journal of Chemical Physics, 72:2384–2393, 1980.

[3] R. C. Aster, B. Borchers, and C. H. Thurber. Parameter Estimation and Inverse Problems.

Elsevier Academic Press, 2005.

[4] S. Blanes and C. J. Budd. Explicit Adaptive Symplectic (EASY) Integrators: a scaling

invariant generalization of Levi–Civita and KS. Celestial Mechanics and Dynamical As-

tronomy, 89(4):383–405, 2004.

[5] M. P. Calvo, M. A. López-Marcos, and J. M. Sanz-Serna. Variable Step Implementation of

Geometric Integrators. Appl. Numer. Math., 28(1):1–16, 1998.

[6] P. Clifford. Lecture Notes of Mathematical Statistics. 2000.

[7] H. A. David and Herbert Aron David. Order Statistics. Wiley-Interscience, second edition,

1981.

[8] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo. Physics

Letters B, 195:216–222, 1987.

[9] J. Dunkley, M. Bucher, P. G. Ferreira, K. Moodley, and C. Skordis. Fast and Reliable

MCMC for Cosmological Parameter Estimation. arXiv,astro-ph., 0405462, 2004.

[10] A. Gelman, G. O. Roberts, and W. R. Gilks. Efficient Metropolis Jumping Rules. Bayesian

Statistics, 5:599–607, 1996.

[11] W. R. Gilkks, S. Richardson, and D. J. Spiegelhalter. Markov Chain Monte Carlo in

Practice. Chapman and Hall, second edition, 1996.

[12] B. Goldman, M. Duncan, and J. Candy. Symplectic Integrators for Longterm Integrations in

Celestial Mechanics. Celestial Mechanics and Dynamical Astronomy, 52(3):221–240, 1991.

[13] H. Goldstein. Classical Mechanics. Addison–Wesley, Reading, MA, 1980.

64

Bibliography 65

[14] A. Hajian. Efficient Cosmological Parameter Estimation with Hamiltonian Monte Carlo.

arXiv:, 0608679v2 [astro-ph.], 2006.

[15] K. M. Hanson. Markov Chain Monte Carlo Posterior Sampling with Hamiltonian Methods.

IIn Proc. SPIE 4322, Medical Image Processing, M. Sanka K. H. Hanson, eds.:456–467,

2001.

[16] K. M. Hanson, G. S. Gunningham, and R. J. Mckee. Uncertainty Assessment for Recon-

struction Based on Deformable Geometry. Int. J. Imaging Syst. Technol, 8:506–516, 1997.

[17] E. Harier and G. Söderlind. Explicit, Time Reversible, Adaptive Step Size Control. SIAM

Journal of Scientific Computing, 26(6):1838–1851, 2005.

[18] W. K. Hastings. Monte Carlo Sampling Methods Using Markov Chains and Their Applica-

tions. Biometrika, 57:97–109, 1970.

[19] T. Holder, B. Leimkuhler, and S. Reich. Explicit Variables Step-Size and Time-Reversible

Integration. Applied Numerical Mathematics, 39(Issues 3-4):367–377, 2001.

[20] W. Huang and B. Leimkuhler. The Adaptive Verlet Method. SIAM Journal on Scientific

Computing, 18:239–256, 1997.

[21] P. Hut, J. Makino, and S. McMillan. Building A Better Leapfrog. The Astrophysical Journal,

443:L93–l96, 2001.

[22] A. D. Kennedy, R. Edwards, H. Mino, and B. Pendleton. Tuning the Generalized Hybrid

Monte Carlo Algorithm. hep–lat/9509043, 1995.

[23] V. Kolehmainen. Novel Approaches to Image Reconstruction in Diffusion Tomography. PhD

thesis, 2001.

[24] A. Krakovská and S. Štolc. Fractal Complexity of EEG Signal. Measurement Science

Review, 6(4):63–66, 2006.

[25] B. Leimkuhler and S. Reich. Simulating Hamiltonian Dynamics. Cambridge University

Press, University of Leicester and Imperial College, London, 2004.

[26] D. Mackay. Efficient Monte Carlo Methods, chapter 30, pages 387–397. Cambridge Univer-

sity Press, 2003.

[27] W. L. Martinez and A. R. Martinez. Computation Statistics Handbook with Matlab. Chap-

man and Hall, 2002.

[28] K. Mosegaard and A. Tarantola. Monte Carlo Sampling of Solutions to Inverse Problems.

Geophysical Reseach, 100, No.,B7:12431–12447, 1995.

[29] P. Müller. A Generic Approach to Posterior Integration and Gibbs Sampling. 1993.

[30] I. Murray. Advances in Markov Chain Monte Carlo Methods. PhD thesis, 2007.

Bibliography 66

[31] M. N. Rosenbluth N. Metropolis, A. W. Rosenbluth and E. Teller. Equations of State

Calculations by Fast Computing Machines. Journal of Chemical Physics, 21(6):1087–1092,

1953.

[32] R. M. Neal. Probabilistic Inference Using Markov Chain Monte Carlo Methods. Technical

report, University of Toronto, 1993.

[33] R. M. Neal. Sampling from Multimodal Distributions Using Tempered Transitions. Tech-

nical report, Department of Statistics, University of Toronto, 1994.

[34] R. M. Neal. Suppressing Random Walks in Markov Chain Monte Carlo Using Ordered

Overrelaxation. Technical report, Department of Statistics, University of Toronto, 1995.

[35] R. M. Neal. Bayesian Learning for Neural Networks. Springer, New York, 1996.

[36] R. M. Neal. Suppressing Random Walks in Markov Chain Monte Carlo Using Ordered

Overrelaxation, In M. I., Editor,. Learning in Graphical Models, pages 205–228, 1998.

[37] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, second edition, 2000.

[38] M. B. Priestley. Spectral Analysis And Time Series. Academic Press, 1996.

[39] C. Robert and G. Casella. Monte Carlo Statistical Methods. Springer, second edition, 2000.

[40] K. Rossberg. A first Course in Analytical Mechanics. John Wiley & Sons, New York, 1983.

[41] J. M. Sanz-Serna and M. P. Calvo. Numerical Hamiltonian Problems. Chapman & Hall,

London, 1994.

[42] M. B. Sevryuk. Reversible Systems, Lecture Notes in Mathematics, volume 1211. Springer-

Verlag, 1986.

[43] D. Sigeti and W. Horsthemke. High–Frequency Power Spectra for Subject to Noise. Physical

Review A, 35(5):2276–2282, 1987.

[44] A. Sokal. Monte Carlo Methods in Statistical Mechanics: Fundation and New Algorithm.

In Cours de Troisiéme Cycle de la Physique en Suisse Romande, 1996.

[45] D. M. Stoffer. Variable Steps for Reversible Integration Methods. Computing, 55:1–22,

1995.

[46] A. Tarantola. Inverse Problem Theroy and Methods for Model Parameter Estimation. SIAM,

2005.

[47] A. Tarantola and K. Mosegaard. Probabilistic Approach to Inverse Problems, chapter 16,

pages 237–265. Academic Press, 2002.

[48] H. M. Taylor and S. Karlin. An Introduction to Stochastic Modeling. Academic Press, third

edition, 1998.

Bibliography 67

[49] L. Tierney. Markov Chains for Exploring Posterior Distributions (with discussion). Annals

of Statistics, 22:1701–1762, 1994.

[50] H. Tjelmeland and B. Hegstad. Mode Jumping Proposals in MCMC. Technical report,

Norwegian University of Science and Technology, 1999.

[51] B. J. Torby. Advanced Dynamics for Engineers. Holt, R & W, 1984.

[52] C. R. Vogel. Computation Methods for Inverse Problems. Frontiers In Applied Mathematics,

SIAM, Montana State University, 2002.

[53] B. Walsh. Markov Chain Monte Carlo and Gibbs Sampling. Lecture Notes for EEB 581.

2004.

[54] U. Wolff. Monte Carlo Errors with less Errors. ELsevier, Computer Phyics Communications,

156(2004):143–153, 2003.

[55] H. Yoshida. Construction of Higher Order Symplectic Integrators. Phys. Lett. A, 150:262–

268, 1995.

	Abstract
	Acknowledgements
	Contents
	List of Algorithms
	List of Figures
	List of Tables
	1 Overview
	1.1 Motivation
	1.2 Goal of this thesis

	2 Inverse theory
	2.1 Introduction to inverse problems
	2.2 Deterministic approach to solving inverse problems
	2.3 Statistical inversion
	2.4 Definitions
	2.5 Bayesian model for inverse problems

	3 Markov Chain Monte Carlo algorithms
	3.1 Basic definitions
	3.2 Simulation of the Markov chains
	3.2.1 The Gibbs sampler algorithm
	3.2.2 The Metropolis-Hastings algorithm

	3.3 Classical MCMC in high dimensions

	4 Hamiltonian Monte Carlo algorithm
	4.1 Definitions
	4.2 The Hamiltonian equations
	4.3 Classical Hamiltonian Monte Carlo algorithm

	5 Problem definition
	5.1 The HMC algorithms in practice
	5.1.1 Step--size effect
	5.1.2 Constant vs. adaptive step--size
	5.1.3 Number of simulation steps
	5.1.4 The random walk in choosing the momentum

	6 Improving the Hamiltonian Monte Carlo algorithm
	6.1 Basic definitions
	6.2 Over--relaxation methods
	6.2.1 Ordered over-relaxation

	6.3 Symplectic integrators
	6.4 Strategies for improving the HMC
	6.4.1 Restricting random walk in the momentum
	6.4.2 Adaptive step--size

	6.5 Combining ordered Over-relaxation and Störmer--Verlet

	7 Criteria for evaluating the improved HMC algorithm
	7.1 Degree of the correlation criteria
	7.1.1 Spectral analysis criteria
	7.1.2 Testing convergence of a chain

	8 Simulation and results
	8.1 Gaussian target and parameter estimation
	8.2 Distributions for the numerical experiments
	8.3 Results from numerical experiments
	8.3.1 Comparing OHMC and HMC algorithms
	8.3.2 Comparing SVHMC and HMC algorithms
	8.3.3 Comparing OSVHMC and SVHMC algorithms

	8.4 Conclusion

	9 Suggestions for further works
	A Abstract accepted at Thiele conference
	B Abstract accepted at ECMOR XI conference
	Bibliography

