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ABSTRACT

This thesis is concerned with giving both an overview of the application of hash
functions in cryptography and a presentation of today’s standard cryptographic
hash functions.

Cryptographic hash functions are a valuable tool in cryptography. They are
applied in many areas of information security to provide protection of the authen-
ticity of messages; data integrity verification which prevents modification of data
from going undetected, time stamping and digital signature scheme.
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Part I

Introduction

1 Introduction

Cryptographic hash functions cannot be thought of outside mathematics. In fact,
computer science is a science due to mathematics; in other word, it is because of its
mathematical properties that computer science can be explained and understood
like any other scientific knowledge. This is why we have decided to introduce
the reader not only to some fundamental concepts in mathematics but also to
some terminologies that will be used later in this paper. Knowing that the words
which make up our languages can be prone to different interpretations, we have
introduced this section as a reference that should define and clarify some few
technical words which might be susceptible to lead to any ambiguity whatsoever.

1.1 Goal

The goal of this paper is to introduce the reader to hash functions and their area
of application. Some standards hash functions are presented in detail to give a
more in-depth explanation of how most cryptographic hash functions are designed.

1.2 How is the paper organized?

This paper is organized in 4 parts as follows:

Part 1, introduces the content of this paper and explains how it is organized.

Part 2, defines some concepts we have judged important to understand in order
to fully take advantage of what is presented later in the text. Hash functions
in cryptography are defined and a discussion of the idea underlying the birthday
paradox is elaborated.

Part 3, gives an overview of the main areas where cryptographic hash functions
are applied.

Part 4, presents the main building blocks of the standard hash functions and also
introduces three well known hash functions which are used worldwide.
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Part II

Definition of concepts

2 Definition of concepts

2.1 Sets

Sets

Definition. A set is an unordered collection of distinct objects which share a
common property. The objects of a set are called elements.

It is important to note that for any object, one should be able to clearly deter-
mine whether or not it is an element in the set under consideration. For example
let A be the set of all positive even integers greater than 2 and strictly less than
8. We can clearly determine that the integer 4 is an element of the set A, but not
the integer 8.

Subsets

Definition. A subset is a set which is contained in another set. That is, A is a
subset of B if every element of the set A is also an element of the set B, and we
write A ⊆ B. In case B contains an element that is not in A, we say that A is a
proper subset of B, and we write A ⊂ B.

Finite sets

Definition. A set A is finite if it contains a finite number of elements.

An infinite set contains an infinite number of elements.

For any finite set A, |A| denotes the number of elements in A, and it is known
as the cardinality of A.

We will not go any deeper in this interesting subject of mathematics called set
theory. We direct the reader to any writing on set theory to learn more about
this fundamental concept of mathematic which provides the support needed by
other mathematical topics in order to be concisely formulated and understood.
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2.2 Cartesian Products

Cartesian Products

Definition: Let A and B be two sets, the cartesian product or cross product, of
A and B denoted by A × B equals {(a, b) | a ∈ A and b ∈ B}.

The elements of A × B are ordered pairs. The definition of the cartesian product
can be extended to more than two sets. For instance, if we consider the sets A,B
and C, we say that A × B × C equals {(a, b, c) | a ∈ A, b ∈ B and c ∈ C}.
The elements of A × B × C are called ordered triples. When more than 3 sets
are involved, say n sets, the elements are called ordered n-tuples.

Example: Let A = {2, 3}, B = {4, 5}, C = {6}, the following statements hold
true:

? A × B = {(2, 4), (2, 5), (3, 4), (3, 5)}

? B × A = {(4, 2), (4, 3), (5, 2), (5, 3)}

? B2 = B × B = {(4, 4), (4, 5), (5, 4), (5, 5)}

? A × B ×C = {(a, b, c) | a ∈ A, b ∈ B and c ∈ C}, for instance (2, 4, 6)
is an ordered triple of A × B × C.

2.3 Relations

Relations

Definition: For two sets A and B, any subset of A × B is called a relation from
A to B. Any subset of A × A is called a binary relation on A.

Example: Consider the sets A and B from the example above, the followings are
relations from A to B:

? {(2, 5)}

? {(2, 4), (3, 5)}

? A × B

Thus, a relation can simply be defined as a set of ordered pairs; where the first
elements in the ordered pairs form the domain, whereas the second elements in
the ordered pairs form the range.
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2.4 Function

Function

Definition. Consider two nonempty sets A and B. A function f from A to B,
denoted f : A → B is a relation from A to B where each element of the set A
is assigned to a unique element of the set B.

We write f(a) = b whenever (a, b) is an ordered pair in the relation defined by
the function f , and b is called the image of a under f , whereas a is called the
preimage of b. Notice that not all relations from the set A to B are functions.

Example: Let A = {1, 2, 3}, B = {k, l,m},

? f = {(1, k), (2,m), (3,m)} is a function which implies that it is a relation
from A to B

? r1 = {(1, k), (2,m)} is a relation but not a function as the element 3 in the
set A is not assigned to any element in the set B.

? r2 = {(1, k), (2, l), (2,m), (3,m)} is a relation but not a function because the
element 2 in the set A has been assigned to more than one element in the
set B

One-To-One Function

Definition: a function f : A → B is called one-to-one or injective, if it maps
distinct elements from A to distinct elements in B.

A pictorial representation of two injective functions appears in figure 1.

(a) Injection (b) Injection

Figure 1: Injective functions.
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In other words, if f : A → B is injective, then for a1, a2 ∈ A, f(a1) = f(a2)
implies that a1 = a2. This implication simply means that every element of the
codomain B is mapped onto by one and only one element of the domain A.

Example: Consider the function f : R → R where f(x) = x + 1 for all x ∈ R.
Thus, for r1, r2 ∈ R, we have

f(r1) = f(r2)⇒ r1 + 1 = r2 + 1⇒ r1 = r2, the function f is injective or one-to-
one.

However, as for the function g : R → R, defined by g(x) = x2 − x for each real
number x, we can easily find that,

g(0) = (0)2− 0 = 0 and g(1) = (1)2− (1) = 1− 1 = 0, Hence the function g is not
injective, since g(0) = g(1) but 0 6= 1. This strictly means that g is not injective
since we are able to find one element in the codomain which is mapped onto by
more than one element in the domain.

Note that hash functions should guarantee that the latter situation referred to as
a collision rarely occurs in practice; The credibility of any hash function depends
entirely on its ability not to exhibit such behaviour.

Onto Function

Definition: A function f : A→ B is called onto, or surjective, if f(A) = B.

That is, if for every element b in the codomain B, there is at least one element a
in the domain A such that f(a) = b.

(a) Surjective (b) Surjective (c) Non surjective

Figure 2: Surjective and non-surjective functions.
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A pictorial representation of two surjective functions and one non − surjective
function is shown respectively in figure 2(a), 2(b) and 2(c). The function in
figure 2(c) is not surjective because there is no element a ∈ A such that f(a) = C.

There exist a wide range of interesting arithmetic functions in mathematics which
are applied in computer science as well.
Among them we can list the following:

The additive function: a+ b, a− b which equals a+ (−b)

The multiplicative function: a× b, a÷ b which equals a× (1÷ b)

The power function: xn = x× x× · · · × x︸ ︷︷ ︸
n times

, where n is an integer number

The absolute value function: |x|, which equals −x if x is negative and x otherwise,
i.e. |5| = 5, | − 2| = 2.

The floor function: bxc, which is the largest integer less than or equal to x, i.e.
b3.6c = 3, b−3.6c = −4.

The ceiling function: dxe , is the smallest integer greater than or equal to x, i.e.
d7.3e = 8, d−3.4e = −3

The trunk function: trunc(x), deletes the fractional part of the real number x, i.e.
trunc(2.95) = 2, trunc(5) = 5. It appears that this last function is mostly used
in pocket calculators and programming languages. One uses the floor function in
mathematics as it produces the same result as the function trunc.

The modulus function: a modulo b, is the remainder of the division of a by b, i.e.
7 modulo 5 = 2.

2.5 Domain, Co-domain and Range

Domain

Definition: For the function f : A→ B, A is called the domain of f.

Co-domain
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Definition: For the function f : A→ B, B is called the codomain of f.

Range

Definition: For the function f : A → B, the subset of B consisting of those
elements that appear as the second components in the ordered pairs of f is called
the range of f and is denoted by f(A) since it is the set of images under f .

2.6 Division, Prime Numbers, Integers Modulo n

The Division Algorithm

Definition: Given a, b ∈ Z, with b 6= 0
There exist unique integers q and r such that a = q× b+ r and 0 ≤ r ≤ |b|, where
|b| denotes the absolute value of b.

q is the quotient
r is the remainder
b is the divisor
a is the dividend

We say that b divides a, and we write b|a, if there is an integer n such that a = b×n.
In this case, b is a divisor of a, and a is a multiple of b.

Example:

14 = 2× 7, so both 2 and 7 are divisors of 14 which is a multiple of 2 and is also
a multiple 7. We also observe that 1 and 14 are divisors of 14, since 14 = 1× 14.
In general, every number divides itself, and 1 divises all numbers.

Prime numbers

Definition: A prime number is a natural number which is only divisible by two
natural numbers, 1 and itself. All other numbers are called composite numbers.

Example:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 are the positive prime numbers less than 40.
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6 is not a prime number since 6 is divisible by 1, 2, 3 and 6. Therefore 6 is called a
composite number. It is equal to the product of two prime numbers, namely 2×3.

The Integers modulo n

The modulus operation finds the remainder of division of one number by another
number.

Definition: Let n ∈ Z+, with n > 1. Given two numbers a, b ∈ Z, we say that a
is congruent to b modulo n, and we write a ≡ b modulo n, if n divides (a− b).

Example: 17 ≡ 3 modulo 7 and −3 ≡ −13 modulo 5.

2.7 Fundamental Rules of Counting

Fundamental Rules of Counting

In our daily life, we make use of mathematics all the time, both consciously and
unconsciously.

Following a simple recipe to bake a cake for your daughter on her birthday can be
one of your worst days if you don’t do some mathematics that will involve count-
ing the right amount of eggs to use and measuring the correct volume in liter or
deciliter of milk, water and flour and so on . . .

We might even ask ourselves questions like:
in how many ways can one distribute six different flavors of chocolate to three
kids?

These type of questions require that we make use of some mathematical tools so
that we can address them effectively . Let’s introduce some basic principles of
counting.

The Rule of Sum

Definition: If event A can be done in m different ways, while a second event B
can be done in n different ways and the two events cannot be done at the same
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time, then either event A or event B can occur in m+ n ways.

Example:

A local bookstore has 10 books on cryptography and 20 books on cryptanalysis.
In how many ways can you select among those books to learn more about either
cryptography or cryptanalysis?

Solution:

By the rule of sum, you can select among 10 + 20 = 30 books in order to learn
more about either cryptography or cryptanalysis.

The Rule of Product

Definition: If event A can occur in m different ways while event B can occur in
n different ways, then there are m× n possible ways for both events to occur.

Example:

You have just won three roundtrip tickets at the National Lottery to three pres-
elected different cities denoted by A, B and C. In how many ways can you visit
each of these cities?

Solution:

We write ABC when the city A is visited first, then B and finally C. The number
of ways can be calculated as follows: 3 × 2 × 1 = 6. We see that this example
involves the product of consecutive positive integers. This brings us to another
rule known as the Factorial Rule.

The Factorial Rule

Definition: For n different items, there are n! (pronounced n factorial) arrange-
ments. More specifically, for an integer n ≥ 0, n factorial is defined by:

n! = (n)× (n− 1)× (n− 2) · · · 3× 2× 1, for n ≥ 1.

However, we note that 0! (pronounced zero factorial) is given by:
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0! = 1

Example

Suppose you need to arrange in a row and from left to right five distinct objects
colored with red, green, black, yellow and white on a table. How many options do
you have?

Solution

Before making any choice, you have five objects to choose from, If you place the
black object first, then you still have four objects to choose from, namely the red,
the green, the white and the yellow object.
Next, if you pick up the red object, you are left with three objects to choose from
and so on until you place the last object.
Obviously, the number of ways to choose from these five objects can be calculated
as: 5 × 4 × 3 × 2 × 1 = 5! = 120. In this type of arrangement all the items are
arranged. What if we need only arrange some items from a given set? This is
where permutation comes in. It represents any linear arrangement of some objects
of interest. We define perutation in the next section.

2.8 Permutation, Combination and Probability

Permutation

Definition: P (n, r) = n!
(n−r)! , with 1 ≤ r ≤ n and where r is the number of items

to arrange from a collection of n items.

Example

In how many ways can you arrange (or choose) two persons from a set of five?

Solution

P (5, 2) = 5!
(5−2)!

= 5!
3!

= 5× 4 = 20.

Another way to solve this problem is to realize that for the first choice we have
five options, and for the second choice we have 4 options which gives us, by the
rule of product, 5× 4 = 20.
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Note that in this type of arrangements the position taken by each items in the
arrangement matters. We usually assume the items are distinct and replacement
is not allowed, that is, you cannot put back an item before the next choice.

Permutation with replacement

Sometimes it is not possible to distinguish some items from a given collection.
Consequently we no longer have to deal with a collection of distinct objects, but
a collection where some objects are identical.

Example

In how many ways can you arrange the six letters in the word ACCESS?

Solution

If we distinguish to two C’s and the two S’s as C1, C2, S1 and S2, then we can
apply our prior knowledge on permutation of distinct objects to calculate that we
have 6! = 720 permutations.
However, in the event that the two C’s and S’s are by no means distinguishable;
we need to take care such that the same arrangement is not counted twice. The
letters that repeat are C and S. The C’s can be arranged in 2! = 2 ways, and the
S’s can also be arranged in 2! = 2 ways. Thus the number of arrangements is

6!
(2!×2!)

= 6×5×4×3×2×1
4

= 180.

Circular Permutation

Sometimes we need to make circular arrangements instead of linear arrangements
where items are to be arranged around a circle.

Example

Four people are seated around a circular table, how many different arrangements
are possible? Note that arrangements are considered identical if one can be ob-
tained from the other by rotation.

In the figure 3, all arrangements are considered identical because any one can be
obtained from any other by rotation. Then by starting from the upper left corner
and moving clockwise we are able to list the following distinct linear arrangements:
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Figure 3: Circular permutation.

(1) gives DABC
(2) gives ABCD
(3) gives BCDA
(4) gives CDAB

which are all the same circular arrangement. We see that each circular arrange-
ment corresponds to four linear arrangements, so we can conclude that 4 x (number
of circular arrangements) = (number of linear arrangements).
We know that the number of linear arrangements of n distinct objects is n! , so in
this particular case the number of linear arrangements = 4! Hence, the number of
circular arrangements = 4!

4
= 4×3!

4
= 3! = 6.

In general, the number of circular permutations of n distinct objects is (n− 1)!

Combination

Definition: C(n, r) = P (n,r)
r!

= n!
r!(n−r)! , with 0 ≤ r ≤ n. Sometimes, the symbol(

n
r

)
is used as a replacement of C(n, r); they are both read as “n choose r”.

Example

You have a group of ten students in an Art class. In how many ways can you select
two of them to represent the school in the National Art Quiz Contest?

17



Solution

Here, it is obvious that the order is irrelevant, so we can choose two students from
a group of ten in C(10, 2) = 10!

2!(10−2)!
= 10×9

2×1
= 45 ways.

Combination is basically an arrangement of object where the order or position of
objects is irrelevant.

It helps to remember that whenever we deal with a counting problem of these
kinds, the order and position of objects is a relevant piece of information that
will enable us to solve the problem at hand. If order is relevant, then we need to
approach the problem in terms of permutations and arrangement P (n, r). If order
is not relevant, then the problem is likely to be solved if we think of it in terms of
combination C(n, r).

Probability

Probability is the branch of mathematics that studies the likelihood of a given
event to occur.

Example

A spinner has 8 equal sectors alternatively colored black or white and numbered
from 1 to 8. What are the chances of landing on the number 7 after spinning the
spinner? What are the chances of landing on a black sector?

Figure 4: A spinner

Solution

The chances of landing on the number 7 are 1 in 8, or one eighth. The chances of
landing on a black sector are 4 in 8, or one half.
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We define some common terms used in probability.

Experiment: the process of performing one or more trial(s) that can enable us
to measure the possibility of one or more event(s) to occur.

Trial: a unit of an experiment. It is a process by which one outcome is observed.

Event: It is one or more outcomes of an experiment that may or may not occur.

Outcome: It is the result of a single trial of an experiment.

Probability: it is the measure of how likely an event is to occur. And it is fre-
quently expressed on a scale from 0 (impossibility) to 1 (certainty). If an event is
impossible to occur, its probability is 0. However, if an event is certain to occur,
its probability is 1, all other events take on a value between 0 and 1. The following
figure depicts this situation.

Figure 5: Probability scale.

The probability of event A is the number of outcomes involving event
A divided by the total number of possible outcomes.

Example

A glass jar contains 14 red, 11 green, 13 blue and 16 yellow candies. If a single
candy is chosen at random from the jar, what is the probability of choosing a red?
a green? a blue? or a yellow candy?

Solution

In total, we have 54 candies in the jar, and this represents the total number of
possible outcomes. The possible outcomes of this experiment are choosing a red,
green, blue or a yellow candy. Hence we have:

P (choosing a red candy) = number of ways to choose a red candy
total number of candies in the jar

= 14
54

= 7
27
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Figure 6: A jar of candies.

P (choosing a green candy) = number of ways to choose a green candy
total number of candies in the jar

= 11
54

P (choosing a blue candy) = number of ways to choose a blue candy
total number of candies in the jar

= 13
54

P (choosing a yellow candy) = number of ways to choose a yellow candy
total number of candies in the jar

= 16
54

= 8
27

We can easily see that the outcomes in this experiment do not have the same chance
to occur. We are more likely to choose a yellow candy than any other color. And
we are least likely to choose a green candy. These assertions are proven mathe-
matically. In fact the probability of each event enables us to say, for example, that
we are more likely to choose a yellow candy from the jar than we are to choose a
green candy.

2.9 Number Systems

Numbers like 1, 2, 3 and 4 are commodities to almost all societies today. They
are used everyday and almost everywhere. They are used for counting, performing
different calcutations or simply for representing values. A number system is a set
of all symbols used to express quantities.

The Decimal system

The word decimal means ten, the decimal system is a system based on the ten
arabic symbols or decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9).

Example

The number 32 means three tens plus two (or three times ten plus two):
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32 = (3× 10) + 2

The number 1976 means one thousand, nine hundreds, 7 tens, plus 6.

1976 = (1× 1000) + (9× 100) + (7× 10) + 6

The decimal system is said to have a base of 10. This means that every digit in a
decimal number is mulitiplied by 10 raised to the power n, where n is the position
occupied by that digit in the number.

Example

32 = (3× 101) + (2× 100)
1976 = (1× 103) + (9× 102) + (7× 101) + (6× 100)

The position occupied by the digits of a non-fractional number is determined from
right to left starting at position 0 which is occupied by the rightmost digit.

X = (. . . x3x2x1x0)

This way of reading from right to left reminds us of the arabic standard, but then
we recall that the symbols themselves are arabic, so this probably explains why,
and it could not have been done otherwise without complicating something simple.

Fractional numbers are represented in a similar way.

Example

32.76 = (3× 101) + (2× 100) + (7× 10−1) + (6× 10−2)

Generally, decimal numbers are represented as X = (. . . x3x2x1x0x−1x−2x−3 . . .),
and its value can be written in the following general form:

n∑
i∈Z

xi10i

where n is the position of the leftmost digit and i ∈ Z (the set of all integers =
. . . -2, -3, -1, 0, 1, 2, 3 . . . ). We note that the position of digits in a non-fractional
numbers starts at x0 and moves to the left, thus position x−1x−2 . . . are simply
irrelevant when dealing with non-fractional numbers.

The Binary system

We have seen that ten digits are used to represent numbers in the decimal system.
Therefore the decimal system is said to have a base or radix of 10. Unlike the
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decimal system, the binary system only uses two digits, 0 and 1, to represent all
numbers. Thus, the binary system is said to have a base or radix of 2. This also
means that each digit in a binary number is multiplied by 2 raised to the power
n, where n is the position occupied by that digit in the binary number. To avoid
confusion, let’s we put a subscript on the number to clearly indicate its base. Like
3210, and 7610 are decimal numbers (base 10), wheras 1002 and 1012 are binary
numbers.

Example

The following means that the binary number 10 equals the decimal number 2.

102 = (1× 21) + (0× 20) = 210

The next equality means the binary number 101 equals the decimal number 5.

1012 = (1× 22) + (0× 21) + (1× 20) = 510

Fractional binary numbers are also represented with negative powers of 2.

101.1012 = (1×22)+(0×22)+(1×22)+(1×2−1)+(0×2−2)+(1×2−3) = 5.62510.

Hexadecimal system

This system uses sixteen symbols (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E,
F) to represent numbers. These symbols are the hexadecimal digits. Thus, the
hexadecimal system is usually said to have a base or radix of 16. Recall that
hash values are represented by using hexadecimal digits. This notation is a more
compact and human-friendly way of representing binary numbers. Binary numbers
are grouped into sets of four digits where each possible combination of four binary
digits is assigned to one hexadecimal symbol.

00002 = 016 10002 = 816

00012 = 116 10012 = 916

00102 = 216 10102 = A16

00112 = 316 10112 = B16

01002 = 416 11002 = C16

01012 = 516 11012 = D16

01102 = 616 11102 = E16

01112 = 716 11112 = F16
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Hexadecimal notation can also be used to represent decimal numbers. And the
conversion from hexadecimal to binary is done as follows:

3D16 = (316 × 161) + (D16 × 160)

= (310 × 161) + (1310 × 160)

= 4810 + 1310 = 6110

On the other hand, converting from hexadecimal to binary is as simple as replacing
each hexadecimal digit with its binary equivalent.

Example

00112 = 316

11012 = D16

001111012 = 3D16

We can appreciate the ease of conversion between these two number systems.
Hexadecimal characters are sometimes used to represent a single byte (8 bits) in
the computing environment where each byte is represented as two hexadecimal
characters.

Example

100110012 = 128 + 16 + 8 + 1 = 15310 = 9916

Hexadecimal symbols are also used to encode colors in HTML (Hyper Text Markup
Language) which is the language used to create web page. An HTML file is a text
file containing markup tags which tell the web browser how to display a web page.

2.10 Hash Function, Birthday Paradox

Hashing

Hashing is a process by which one turns a string of characters with variable length
into a fixed-length value which represents the original string.

Hashing versus Encrypting

Sometimes, hashing is being referred to in situations where encryption is the most
appropriate term and vice versa. We clarify this common confusion once and for
all.
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Hashing ,in cryptography, is a one-way operation which transforms a stream of
data into a more compressed form called a message digest. The operation is not
be invertible, meaning that recovering the original data stream from the message
digest should not be possible. All the message digests or hash values generated
by a given hash function have the same size no matter what the size of the input
value is.

Encryption on the other hand, can be thought of as a two-way operation which
transforms a plaintext into a ciphertext and allows for the process to be inverted
by transforming the ciphertext back into its original plaintext via a mechanism
called decryption. Both operations depend on a key.

Encrypting versus Encoding

Encoding and decoding are sometimes used to describe encryption and decryption
respectively. But can we really substitute encoding for encryption without creat-
ing any confusion in most people’s mind?

Encryption, as mentioned above, is a process that transforms information from its
original, and usually comprehensible, form into a more disguised and unintelligible
form. The opposite process of recovering the original message from its disguised
form is called decryption. The driving force behind encryption is to keep a piece
of information secret to all but those authorized to read that information. You
know you are authorized to read an encrypted message if you possess the key that
will allow you to decrypt the ciphertext back to its original form called plaintext.
Thus, the main goal of encryption is to keep data secret by concealing its content.

Encoding, which is sometimes used and accepted as a synonym for encryption, is
more directed at converting some data to a format that will facilitate its efficient
manipulation, transmission and storage in the digital world. Encoding does not
conceal the content of data; it only converts the data to a format that can be
efficiently managed by our electronic devices (computer, mobile phone, television
etc), transmission media (cables and wires), storage devices (hard disk, pen drive),
and applications software (web browser, mail client etc).

There are many encoding techniques used to convert data to different format de-
pending of what we wish to achieve. We list some of them as an example: Char-
acter encoding is a method of converting letters, numbers and other symbols into
integers and 7-bit (a string of 7 0s or 1s) or 8-bit binary versions of those integers.
The ASCII (American Standard Code for Information Interchange) character set
is the most common encoding format for text files in computer.
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Cryptography

Cryptography is one of the two branches that make up cryptology; the other
branch, cryptanalysis attempts to undo what cryptography tries to do.

Cryptography is the science that aims at designing and developing cryptographic
systems, sometimes referred to as a cryptosystems. A cryptosystem is a set of
methods needed to create a particular encryption and decryption scheme. A
typical cryptosystem is made up of three parts: One that generates the encryp-
tion/decryption key, one that performs the encryption process, and one that deals
with the decryption process.

Encryption is the process by which one changes a message (called plaintext) in
order to render it unreadable to all but those possessing the decryption key. The
unreadable message is usually referred to as the ciphertext.

Decryption is the inverse process which recovers the plaintext from the ciphertext.

Cryptographic Hash Functions

A hash function, is a function that takes some message of any length as input and
transforms it into a fixed-length output called a hash value, a message digest, a
checksum, or a digital fingerprint.

A hash function is a function f : D → R, where the domain D = {0, 1}∗, which
means that the elements of the domain consist of binary string of variable length;
and the range R = {0, 1}n for some n ≥ 1, which means that the elements of the
range are binary string of fixed-length. So, f is a function which takes as input a
message M of any size and produces a fixed-length hash result h of size n. A hash
function f is referred to as compression function when its domain D is finite, in
other word, when the function f takes as input a fixed-length message and pro-
duces a shorter fixed-length output.

A cryptographic hash function H is a hash function with additional security prop-
erties:

1. H should accept a block of data of any size as input.

2. H should produce a fixed-length output no matter what the length of the
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input data is.

3. H should behave like random function while being deterministic and effi-
ciently reproducible. H should accept an input of any length, and outputs
a random string of fixed length. H should be deterministic and efficiently
reproducible in that whenever the same input is given, H should always
produce the same output.

4. Given a message M , it is easy to compute its corresponding digest h; meaning
that h can be computed in polynomial time O

(
n
)

where n is the length of
the input message, this makes hardware and software implementations cheap
and practical.

5. Given a message digest h, it is computationally difficult to find M such that
H(M) = h. This is called the one-way or pre-image resistance property.
It simply means that one should not be capable of recovering the original
message from its hash value.

6. Given a message M1, it is computationally infeasible to find another message
M2 6= M1 with H(M1) = H(M2). This is called the weak collision resistance
or second preimage resistance property.

7. It is computationally infeasible to find any pair of distinct messages (M1,M2)
such that H(M1) = H(M2). This is referred to as the strong collision resis-
tance property.

Remarks: property 7 implies both property 5 and 6.

These properties are required in order to prevent or withstand certain types of
attacks which may render a cryptographic hash function useless and insecure. In
addition to producing a “digital fingerprint” of a message M that is unique and to
providing strong collision resistance, a cryptographic hash function should also be
highly sensitive to the smallest change in the input message. Such that a change,
as small as a single digit, in the input message should produce a large change in
the hash value of the message. Note that a message in this context can be a binary
text file, audio file, or executable program.

The security of the hash function does not originate in keeping the hash function
itself secret but comes from its ability to produce one-way hash values alongside
with the property of being collision-free, we talk about collision when two or more
different messages results in the exact same hash value. So far we have talked
about hash functions used without a key, but hash functions can be used with a
key; both symmetric (shared key) and asymmetric keys can be used; in which case
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the function is called a message authentication code or MAC.

The strong collision resistance mentioned above is a necessary security property
that results from a method of finding collision known as the birthday attack based
on the birthday paradox.

The birthday paradox, which we will explain in great detail shortly, states that in
a group of 23 people chosen randomly, the probability that two of them share the
same birthday is at least 1

2
. In fact, if the attacker is not able to find a faster way

to come up with a pair of preimages M1 6= M2 such that H(M1) = H(M2), then he
or she will have to collect a large amount of messages Mi and their corresponding
hash values H(Mi), sort them and look for a match, this is known as a brute-force
search attack. If the size of the hash values is n-bit, then there are 2n possible
hash values and the attacker will have to compute about the square root of this
value, namely 2

n
2 , before he or she can expect to find a match. To understand this

fact, we need to look closer at both the birthday paradox and the birthday attack.

The Birthday Paradox

The birthday paradox is a fascinating problem which demonstrates the nonintuitive
character of probability results. The problem can be stated as follows:

Assume that birthdays are evenly distributed throughout the year and ignore leap
years when February has 29 days, if we have a room with k random people in it,
what is the minimum value of k such that the chances that two of them have the
same birthday is greater than or equal to 0.5?

We know that a non-leap year consists of 365 days, some of us might reasonably
argue that the chances will not reach 100% until there are 366 people in that room.
The birthday paradox tells us that things are not always as simple as they appear
at first glance, and that you can have far less than 366 people in that room and
still achieve the same probability! Let’s go deeper into the paradox to understand
it.

Let D(n, r) = Pr(there is at least one duplicate in r birthdays), with 1 ≤ r ≤ n
and where each birthday is equally likely to take on a value between 1 and n.

In our case, n = 365 and we are trying to find the smallest r which gives us
D(n, r) ≥ 0.5. We define Q(365, r) to be the probability that there are no dupli-
cates in r birthdays. With the r birthdays representing the number of people in
the group under consideration.
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We see that if r > 365 , then it is not possible for all birthdays to be different. We
note that r people can be paired up in r!

2!(r−2)!
ways, so 30 people can be paired up

in 435 ways. Thus, we assume that r ≤ 365. The number of different ways that
we can have r birthdays with no duplicates is similar to the number of different
ways that we can arrange r objects from a set of 365 objects where the position
and order is relevant. The solution is given by the rule of permutation, as for the
first birthday we have 365 choices, for the second we have 364 choices and so on.
Hence, the number of different ways to have r birthdays with no duplicates is

365× 364× · · · × (365− r + 1) = n!
(n−r)! = 365!

(365−r)! .

If duplicate birthdays are allowed, then for the first birthday we have 365 choices,
for the second we have 365 choices and so on. And the total number of possible
birthdays is

365× 365× · · · 365 (r times) = 365r.

The probability that there are no duplicates in r birthdays is equal to the number
of different ways that we can have r birthdays with no duplicates divided by the
total number of possible birthdays:

Q(365, r) =
365!

(365−r)!

365r = 365!
(365−r)!365r .

The probability that there is at least one duplicate in r birthdays is equal to:

1 - the probability that there are no duplicates in r birthdays.

D(n, r) = 1−Q(365, r) = 1− 365!
(365−r)!365r .

We find that for r = 23, D(365, 23) = 0.5073, which is greater than or equal to
0.5.

Hence, in a group of 23 randomly chosen people, there is fifty-fifty chance that
two of them share the same birthday. And for r = 100, D(365, 100) = 0.9999997,
meaning that in group of hundred people it is almost certain that at least two of
them have the same birthday.

Before we jump into any conclusion, let’s remind that those probabilities hold
true based on the assumptions made earlier, namely that birthdays are evenly
distributed throughout the year. In reality, birthdays are not distributed perfectly
throughout the year, so depending on the people and the way their birthday is
distributed in a year, these probabilities might vary accordingly.

The Birthday Attack
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The birthday attack is a class of brute-force technique which exploits the idea
behind the birthday paradox to solve the problem of finding collision in some class
of cryptographic hash function faster than by brute-force search attack. Let’s look
at a similar problem first.

Given a cryptographic hash function H, with n possible outputs and a
known hash value H(x), If H is applied to k random inputs, then what
is the smallest k such that the probability of having at least one input
y from the set k satisfying H(y) = H(x) is 0.5?

If k = 1, then the probability of having at least one input y from k such that
H(y) = H(x) = 1

n
. Conversely, the probability of having at least one input y from

k such that H(y) 6= H(x) = 1− 1
n
.

If k > 1 random inputs are generated, then the chances that none of them satisfies
H(y) = H(x) is equal to the product of the probability that each of them satisfies
H(y) 6= H(x) and it is equal to:

(1− 1
n
)(1− 1

n
) · · · (1− 1

n
) (k times) ⇔ (1− 1

n
)k.

Hence, the probability that there is at least one match is

1−Pr(the probability that there is no match) , and it can be written as 1−(1− 1
n
)k

We recall the binomial theorem which states what follows:

(1− a)k = 1− ka+ k(k−1)
2!

a2 − k(k−1)(k−2)
3!

a3 · · ·

When a is very small, this equality can be approximated to (1− ka). Going back
to our problem, we find that the probability of having at least one match can be
approximated to:

1− (1− 1
n
)k ≈ 1− (1− k

n
)

If the probability is 0.5, we find that k
n

= 1
2
⇔ k = n

2

For a hash function with n possible outputs, it is enough to generate the hash
value of n

2
inputs in order to expect to have a match with a probability of 0.5.

This problem can be generalized to the problem of finding the minimum values of
k such that there is at least one duplicate. The following inequality statement will
help us in the generalization of the birthday problem:

(1− x) ≤ e−x ∀x ∈ R

Proof:

we consider the function f(x) = ex − (1 + x) and find its derivative to be f ′(x) =
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ex− 1. Next, we find the minimum of its derivative f ′(x). We note that f ′(x) = 0
gives x = 0. We see that for x ≥ 0, f ′(x) ≥ 0, and for x < 0, f ′(x) < 0, therefore
x = 0 gives the minimum for the derivative f ′(x) of f(x). Hence, f(x) ≥ 0.

We note that for small values of x, (1 − x) ≈ e−x, meaning that (1 − x) can be
approximated to e−x , as shown by figure 7 which represents the graph of both
function g(x) = (1− x) and f(x) = e−x.

Figure 7: Graph of functions f(x) = e−x and g(x) = 1− x

Now, we restate the initial birthday problem to a more general one as follows:

Suppose we have a hash function H, with 2n possible outputs (the hash
function produces an n-bit output). If H is applied to k random inputs,
what is the smallest value of k which will ensure us that there is at least
one duplicate?

We recall that the probability of having at least one duplicate in r birthdays where
each birthday is equally likely to take on a value between 1 and n is given by:

D(n, r) = 1−Q(n, r) = 1− n!
(n−r)!nr

Following the same reasoning, we express the probability of having at least one
duplicate in k random inputs where each input is equally likely to take on an
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output value between 1 and 2n as

D(n, k) = 1−Q(n, k) = 1− n!

(n− k)!nk

D(n, k) = 1− n(n− 1) · · · (n− k + 1)

nk

= 1−
[(n
n

)(n− 1

n

)(
n− 2

n

)
· · ·
(
n− k + 1

n

)]
= 1−

[(
n− 1

n

)(
n− 2

n

)
· · ·
(
n− k + 1

n

)]
= 1−

[(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− k − 1

n

)]

By making use of the above approximation pictorially represented in figure 7 we
have:

D(n, k) ≈ 1−
[
(e−

1
n )(e−

2
n ) · · · (e−

k−1
n )
]

≈ 1− e−[ 1
n

+ 2
n

+···+ k−1
n ]

≈ 1− e−
k(k−1)

2n

We know from of the summation formulas that:

S =
n∑
i=1

i = 1 + 2 + 3 + 4 + · · ·+ n =
n(n+ 1)

2

This can be proven by simply writing the sum forwards and backwards and adding
the two to get

S = 1 + 2 + 3 + · · ·+ (n− 2) + (n− 1) + n

S = n+ (n− 1) + (n− 2) + · · ·+ 3 + 2 + 1

2S = (n+ 1) + (n+ 1) + (n+ 1) + · · ·+ (n+ 1) + (n+ 1) = n(n+ 1)

S = n(n+1)
2

,

therefore, we could write above 1
n

+ 2
n

+ · · ·+ k−1
n

= k(k−1)
2n

.

If we are interesting in knowing the smallest value k for which the probability
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D(n, k) > 0.5, then we just have to replace D(n, k) by 0.5 in the equality that we
just derived, namely,

D(n, k) = 1− e−
k(k−1)

2n ,

which gives

1

2
= 1− e−

k(k−1)
2n

2 = e
k(k−1)

2n

ln 2 =
k(k − 1)

2n

For very large value of k, we can approximate k(k − 1) to k2, so the equation
becomes:

ln 2 =
k2

2n
k2 = (2 ln 2)n

k =
√

(2 ln 2)n = 1.18
√
n

We check that this result holds by replacing n by 365 and find that k = 1.18
√

365 =
22.54 ≈ 23 which is the result we found in the section dealing with the birthday
paradox.

We have shown that with the birthday attack, sometimes called the square root
attack, we only need to apply k =

√
2n = 2

n
2 random inputs to a hash function

which produces 2n outputs in order to expect to find a collision with the probability
greater than or equal to 0.5! This is one of, if not mainly, the reason why the size
of the hash value of modern hash functions is required to be large enough to make
a birthday attack computationally infeasible.

Remarks

Birthday attack is impractical due to the fact that it requires a huge amount
memory space, on the order of 2

n
2 for a hash value size of n. The same running

time with polynomial in n memory requirement is achieved with Floyd’s cycle-
finding algorithm and improvements to it (see [28], chapter 9, p.369-370).
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Part III

Application of hash function in
cryptography

3 Application of hash function in cryptography

Hash functions are used in many situations to support various cryptographic pro-
tocols. Their most common application is the creation and verification of digital
signature (a means to verify the authenticity of an electronic document).

3.1 Digital Signature

We all know what a hand-written signature is and we certainly understand its
purpose. It is a way to prove that a paper document is signed by us and not by
someone else. To prove this, the current hand-written signature is compared with
one or more of our previous hand-written signatures. If there is a match then the
recipient of the document can safely accept that the document could not have been
signed by someone else. In case it is the first time, we have to prove our identity
by means of some identification card, and necessarily by being physically present
to sign the document.

Some properties of the hand-written signatures are:

? The signature should be unique to each person.

? The signature should be verifiable as belonging a particular person.

The digital signature is the electronic equivalent to the hand-written signature
with regard to its purpose. More precisely, a digital signature is a sort electronic
“stamp” or digital “fingerprint” placed on a document that is unique to the signer
of the document and to the signed document. One major difference between a
digital and a hand-written signature is that for every different document, the
digital signature is different even if the signer and the private/public key pair are
the same. We also note that a digital signature scheme provides both data integrity
protection and data origin authentication.

The application of the hash function in a digital signature scheme works as
follows: We consider Sarah as both the sender and the signer of the document.
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Sarah holds a private/public key pair, the hash function used to create the message
digest of the document and the document itself (see figure below).

Sarah private key public key hash function document to sign

Figure 8: Sarah, the signer and sender of the document.

And we take Remy as the recipient of the signed document.
To digitally sign a document, Sarah generates the hash value of the message or
document she wishes to transmit to Remy.

Sarah document to sign hash function message digest

Figure 9: Applying the hash function to the document to generate its message digest.

Next, Sarah encrypts with her private key the message digest to produce the
signature.

Sarah message digest private− key encryption digital signature

Figure 10: Applying the private-key encryption to message digest to generate digital
signature.
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Now, Sarah appends the digital signature to the document.

Sarah digital signature append operation signed document

Figure 11: Appending digital signature to document.

Finally, Sarah encrypts the signed document with her private key and transmits
it to Remy.

Sarah signed document private− key encryption ciphertext

Figure 12: Encryption of the signed document to generate the ciphertext.

When Remy receives the ciphertext, He first decrypts the ciphertext using Sarah’s
public key to obtain the original signed document.

Remy ciphertext public− key decryption signed document

Figure 13: Decryption of the ciphertext to generate the signed document.

Then Remy “splits” the signature and the document. This is not an operation
in its own right. The signature is not really physically glued to the signed doc-
ument. And by decrypting the ciphertext, the recipient gets the document and
the signature separated from each other and can simply read one or the other. So
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the split operation can simply be understood as an operation where the recipient
distinguishes unambiguously the signature from the signed document.

Remy signed document split operation document and signature

Figure 14: Distinguishing document from it’s signature.

Next, Remy generates a new message digest of the received document using the
same hash function used by Sarah.

Remy received document hash function new message digest

Figure 15: Generating a new message digest from received document.

Remy may concurrently decrypt the digital signature using Sarah’s public key to
obtain the original message digest of the document previously generated by Sarah.

Remy digital signature public− key decryption message digest

Figure 16: Decryption using public key.

What Remy finally does, is to compare the new message digest he just generated
with the message digest transmitted by Sarah. If there is a match, then Remy can
be assured that the document has been signed by Sarah and that the document
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has not been altered along the way. If there is no perfect match, then authenticity
of neither the document nor the signer nor the signature can be verified.

However, we note in this particular case that if a third person is able to maliciously
intercept the ciphertext and modify both the message and its corresponding hash
value before it gets to Remy, then Remy will have no way of knowing that the
document has been altered in transit.

3.2 File Integrity Verification

Hash functions are widely used to verify file integrity. And in the paragraph on
digital signature above, it is clear that the message digest is used to verify the
integrity of the document. Indeed, it certifies that the document has not been
modified somewhere between the moment it was sent and the moment it was
received. Those who have once downloaded free software on the Internet, have
probably visited websites which publish the checksum of the software near the
hyperlink of the binary executable file or the archived source code of the corre-
sponding software. Without this vital piece of information which is the checksum
of the software, one will have a hard time verifying the integrity of downloaded
software.

Figure 17: File comparison by size.
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Let’s picture an attempt at verifying a file downloaded from the Internet without
the use of its checksum. We download the file twice and compare the bits or the
size of the downloaded files. If they are the same, then we are probably good to
go. Figure 17 depicts a situation where one can presume that the downloaded file
is authentic.

But if they differ by size, then we have a problem. Which one is authentic? To
answer this, we need yet another download and comparison. If all three files are
different from one another, then the situation gets scary if not frustrating. And,
we might quite easily end up with a bunch of files with no clear way of determining
the authentic one. Well, life gets a lot easier when the checksum is published along
with a hyperlink that one can click to download the corresponding file.

We consider the PHP (Personal Home Page) project located at the following
Internet address, www.php.net. PHP is a free cross-platform server-side scripting
language for web development which can be embedded into HTML (Hyper Text
Markup Language) files to dynamically create web pages among other things. At
the download page of the project, the md5 (Message Digest 5 algorithm) checksum
of all downloadable files is unambiguously published under the hyperlink of the
corresponding source code or binary executable file (see figure 18 ).

Figure 18: PHP source code and binary file width corresponding md5 checksum.

All we need to do in order to verify the integrity of the file is to generate the
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md5sum of the file we just downloaded and compare it with the one published at
the project’s website.

Figure 19: Checksum comparison: There is a perfect match.

Note that the two checksums have to match exactly. If the checksums differ by only
one bit or character then the two files are not the same! There is no approximation
when it comes to cryptographic hashes. Either both inputs are identical and their
hash values match perfectly or both inputs differ and so do their respective hash
value.

3.3 Password Hashing

A password, in computer science, is a secret sequence of character that one uses
to gain access to a file, an application or a computer system. Password has been
used long before our time. It used to be a secret word or phrase which enabled
a person to be accepted as a friend by soldiers posted to keep watch and guard.
In our modern and more computerized world, it is a secret data that one has to
input to a computer system in order to be granted access to the resources of that
system.

Password hashing was used since the early ages of the UNIX operating system.
Users of UNIX systems have their password hashed and stored in a password file.
Today, many web applications use a database to store and retrieve a variety of
data including passwords. A poor practice is to store passwords in cleartext (the
original form) wherever they are located in the computer system. If someone can
somehow get to that location then the person will easily possess all passwords
available there. Fortunately, some web applications generate a hash value of all
passwords and store these hash values, rather than the password itself, in the
database.
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Let’s consider a simple example which illustrates how password hashing works
in practice. We consider the open source Content Management System project
called Joomla! (www.joomla.org). Once installed, the application offers a backend
section. This is where users can login by entering a username and password combi-
nation in order to gain access to the resources of the website via an administration
console.

Figure 20: Joomla back-end login window.

All passwords in this application (up to version 1.0.12) are hashed with the md5
algorithm and the resulting hash value is stored in the database.

Figure 21: Hash of password stored in database.

When a user enters his/her credential at the backend login page, the password
entered in cleartext is first hashed with the md5 algorithm and the output is com-
pared against the value of the hashed password stored in the database for which the
usernames are identical. If the two strings match then access is granted, otherwise
access is denied.
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3.4 Key Derivation

Key derivation is the process of deriving various keys from a shared secret password
or passphrase (which typically does not have the desired properties to be used di-
rectly as cryptographic keys) to secure a communication session. For example, two
people can agree on a secret key and pass that key to a key derivation function to
produce keys fro encryption and authentication. This guarantees that an attacker
who learns your authentication key will not have access to your encryption key.

The key derivation function can be expressed as follows:

DK = KDF (SecretKey, Salt, Iterations)

where

DK is the derived key, KDF is the key derivation function, SecretKey is the
original shared secret (password or passphrase), Salt is a random number which
acts as cryptographic salt, and Iterations refers to the number of iterations of a
sub-function.

3.5 Trusted Digital Time-Stamping

Sometimes, it is desirable to bind a time together with a document as to certify
its existence at that particular time. In the matter of intellectual property where
dispute may arise between two or more people about who was the first one to
make a discovery or an invention, time-stamping can play an important role at
determining who is right. Let’s take a closer look at what this is about.

A digital time-stamp is sort of digital “stamp” used to prove the existence of a
digital document at a certain date. The creation date of digital documents can be
modified and go undetected. The figure below illustrates an example a forward-
dated document downloaded from the Internet on November 28th 2007. All we
did was a change to the operating system’s year to 2015 before we downloaded the
file.

Thus, the creation date on a digital document is simply not reliable as a proof of
the document’s existence on the date that document claims to have been created.
However, forward-dating is less attractive than back-dating for the simple fact that
a “conscious” person will not believe that a document presented to him/her today
was in fact created tomorrow!

To avoid date of creation “conflict”, it is required that a Trusted Third Party
(TTP) playing the role of a Time Stamping Authority (TSA) processes all valid
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Figure 22: A forward-dated document.
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digital time-stamping which can be used in a court of law in case of a copyright or
patent dispute. Multiple time-stamping authorities can be contacted to increase
the level of credibility of a document one wishes to time-stamp.

The process of creating a timestamp relies on digital signature scheme and hash
functions, so does its security. This process basically involves two participants, the
requesting entity (which is the person requesting a time-stamp token and initiating
the entire process) and the Time Stamping Authority (which is the company that
issues time-stamp tokens). The creation of a timestamp briefly occurs as follows:

? The requesting entity calculates the hash of the document she/he wishes to
have time-stamped and sends the resulting hash value as a request to the
Time Stamping Authority.

? The Time Stamping Authority appends a timestamp to the received hash
value and calculates the hash of this concatenation. This final hash is dig-
itally signed using the TSA’s private key. Both the signature (the signed
hash generated by the TSA) and the timestamp are sent as a response to
the requesting entity.

? Upon receipt of the response, the requesting entity should verify that the
timestamp received matches perfectly with the timestamp requested. To
verify this, the requesting entity decrypts the signed hash using the TSA’s
public key, let’s call it TSA HASH.

? Next, the requesting entity concatenates the received timestamp to the ex-
act same hash of the original document and calculates the hash of the re-
sult of this concatenation, let’s call it OD HASH. If TSA HASH equals to
OD HASH then everything is alright, the timestamp is correct and was is-
sued by the right Time Stamping Authority. The requesting entity may store
all the data in a safe location.

If TSA HASH is not equal to OD HASH (and provided that the original document
has not been modified since we sent the request) then either one of the following
hypothesis holds true:

? The timestamp was altered along the way.

? We have received the wrong timestamp from the right TSA

? We have received the wrong signature from the right TSA

? The response was simply not issued by the right TSA

In any case, the TSA should immediately be notified of the situation.
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One noticeable advantage of digital time-stamping is that the content of the
original document is never revealed to the TSA. There are additional parameters
included in a request sent to the TSA and in a response received from the TSA,
but for the sake of simplicity there have not been mentioned here. For detailed
information, please read the RFC (Request For Comment) 3161 which can be found
at this Internet address http://tools.ietf.org/rfc/rfc3161.txt as of this writing.

3.6 Rootkit Detection

A Rootkit is a program or a set of programs that a hacker installs on the victim’s
computer in order to cover the tracks of other malicious programs which attempt
to corrupt an operating system. A rootkit will hide its presence on a compro-
mised system. It will replace or alter several legitimate system programs (such as
“ls”, “find”, “locate”, “top”, “kill”, “netstat” found on a UNIX system) by oth-
ers which are specifically designed to prevent the rootkit’s detection and removal.
This means that once a rootkit is installed on a system, none of the programs on
that system can be trusted to give precise information or to act as expected.

Rootkits can be detected in several ways including signature-based detection which
uses scanning tools much like antivirus or antispyware programs that scan the sys-
tem for signs of previously known rootkits patterns.

Another way of detecting the presence of rootkits includes behavior-based detec-
tion. For example, if the system’s hard disk total size is 40 gigabytes and it has
10 gigabytes of files on it while it is reporting less than 30 GB of available free
space. This behavior should raise suspicion about some files that are present on
the system and which are not being reported by the system tool.

A third method of detecting the presence of rootkits which is more of interest
to our subject involves the use of cryptographic hash functions and is called a
hash− based detection. With this method, a fingerprint or message digest of the
filesystem or part of it is generated at regular intervals before and after any legit-
imate action which adds or removes files in the system. This fingerprint is later
compared with the current state of the filesystem to find out if any unauthorized
change has been made.

Suppose that as a system administrator of a web server, you decide to take fin-
gerprint of a limited amount of carefully preselected “static” directories (by static
we mean directories which do not house system log files that are being written to
regularly by the system). Thus, you take a fingerprint or digest of those directories
before leaving work every evening and when arriving at work every morning. You
compare to check if the fingerprint taken the day before matches the one taken the
day after. This routine is efficient at revealing any change made to the file system,
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since the fingerprints won’t match even if a change was made to a single bit in a
file.
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Part IV

Standards cryptographic hash
functions

4 Standards cryptographic hash functions

Cryptographic hash functions come in different shape and size. There are basically
two main categories of hash functions. Hash functions that depends on a key for
their computation, usually known as Message Authentication Code or MAC and
hash functions that do not depend on a key for their computation, generally known
as un-keyed hash function or simply hash function.

All well known hash functions are either based on a block cipher or on modular
arithmetic. But before stepping into their details, we study a well known method
used to build the most popular hash functions, the Merkle-Damg̊ard construction.

4.1 The Merkle-Damg̊ard Construction

Named after its two inventors, the American Ralph C. Merkle and the Danish Ivan
Damg̊ard, the Merkle-Damg̊ard structure defines a generic step by step procedure
for deriving a fixed-length output value from a variable-length input value. The
process is depicted in figure 23.

Figure 23: [5] The Merkle-Damg̊ard hash construction.

The main building blocks of the Merkle-Damg̊ard structure are:
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IV: Initialization Vector or Initial Value is a fixed value used as the chaining vari-
able for the very first iteration.

f : the compression function or one-way hash function which is either specially de-
signed for hashing or based on a block cipher. The compression function generally
takes an input of fixed length and produces an output of fixed length.

Finalisation: an output transformation function which usually reduces further
the length of the output value of the last iteration.

Hash: the message digest or the hash result.

As we can see from the figure 23, the entire message to be hashed is first divided
into n blocks of equal length. The actual length of the message blocks depends on
the requirements set by the compression function f. The message is then padded,
always, such that its length is a multiple of some specific number. The padding is
done by adding after the last bit of the last message block a single 1-bit followed
by the necessary number of 0-bits. The length padding which consists of append-
ing a k-bit representation the length in bits of the original message (that is, the
message before any padding has been applied) takes place in such a way that the
padding length bits are added as the last bits of the padded message block prior
to being processed by the compression function. Every block is processed by the
compression function in the same iterative manner.

The compression function always takes two inputs in each step or iteration, a
message block and a chaining variable.
In the first iteration, the chaining variable is the IV or Initialization Vector. It
is given, together with the first block of message, as inputs to the compression
function. The output of the compression function f in the first iteration is the
chaining variable in the second iteration. The output of the compression function
f in the ith iteration is the chaining variable in the (i + 1)th iteration and so on
until we reach the last iteration.
In the last iteration, the output of the compression function is used as an input to
a finalization function which reduces further the length of the final output value
from the compression function (however, in some cases the finalization function is
not present and the output value of the compression function f in the last iteration
is used as the final hash result).
In general, for a message M consisting of t blocks M0,M1, ...,Mt−1, the computa-
tion of the message digest can be defined as follows:
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H0 = IV,
Hi+1 = f(Hi,Mi) for 0 ≤ i < t
H(M) = Finalisation(Ht)

In a pseudo code, the same computation can be defined as follows:

computeDigest(M) {
M0···t−1 = divBlock(M)
H0 = IV
for(i = 0; i < t; i+ +) {
Hi+1 = f(Hi,Mi)
}
H(M) = Finalisation(Ht)
return H(M)
}

Here the function computeDigest() takes the message M as input and returns
as output the hash result H (M). The inner function divBlock() breaks up the
message M into t blocks of equal length and returns an array consisting of the t
message blocks. The details of these functions are deliberately overlooked for the
sake of simplicity. We now examine some of the standards hash functions in more
details.

4.2 The MD5 hash Algorithm

The MD5 (1992) message-digest algorithm was designed as a strengthened exten-
sion of the MD4 (1990) message digest algorithm. MD5 is slightly slower than
MD4; this is a classical example where security is favoured at the expense of
speed. Both algorithms were developed by Ron Rivest who is the “R” in the RSA
[Rivest-Shamir-Adleman] public-key encryption algorithm.

4.2.1 Description of the MD5 algorithm

The algorithm accepts an input message of arbitrary length and produces a 128-bit
“message digest”, “fingerprint” or “hash result”. Figure 24 depicts the way the
input message is turned into a 128-bit message digest.

The actual processing of the MD5 algorithm consists of the following 5 steps:

Step 1: Append padding bits
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Figure 24: The MD5 algorithm.

During this step, the message is extended or padded in such a way that its total
length in bits is congruent to 448 modulo 512. This operation is always performed
even if the message’s length in bit is originally congruent to 448 modulo 512. We
notice that 448 + 64 = 512, so the message is padded such that its length is now
64 bits less an integer multiple of 512.

Padding is done by appending to the message a single “1” bit followed by the
necessary amount of “0” bits so that the length in bits of the padded message
becomes congruent to 448 modulo 512. For example, if the message is 447 bits
long, it is padded by 1 bit to a length of 448 bits (the single bit 1 is appended to
the end of the message in this particular case). On the other hand, if the message
is 448 bits long, it is padded by 512 bits to a length of 960 bits. Thus, at least 1
bit and at most 512 bits are appended during this step.

Step 2: Append length

A 64 − bit representation of the length in bits of the original message M (before
the padding bits were added) is appended to the result of step 1. Here, there is a
little trick in representing the length of message M in the case where it is greater
than 264. If the length of the original message is indeed greater than 264 (= 184
467 440 73 709 551 616), then only the low order 64− bits of the length of message
M are used. Hence, the field contains the length of the original message M modulo
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264. These bits are appended as two 32− bit words and appended low-order (least
significant) word first.
The result of step 1 and step 2 is a message with a length in bits that is an integer
multiple of 512 bits. Consequently, the result has a length that is also a multiple
of 16 32 − bits word. In the figure above, the padded message is represented as
a sequence of t 512− bit blocks M0,M1, · · · ,Mt−1. Therefore, the total length in
bits of the expanded message is t× 512. Let M [0 · · ·N − 1] denotes the words of
the resulting message where t is a multiple of 16. This means that N = t × 16.
This is easily appreciated when we know that in each block, there are 16 32− bit
words and that we have t blocks in total.

Assuming that we are given a message M with a length in bit of 447. Step 1 tells
us that a single bit will be added to that message to bring its length to 448. Step 2
appends a 64-bit representation of the length of the original message (447) which
is less than 264 and we append the following 64− bit representation of the decimal
number 447: 0000000000000000000000000000000000000000000000000000000110111111

Step 3: Initialize MD buffer

A 128 − bit (4 × 32 − bit) buffer (A, B, C, D) is used to hold intermediate and final
result of the MD5 hash algorithm. These registers are initialized to the following 32−bit
values in hexadecimal:

A = 67 45 23 01
B = ef cd ab 89
C = 98 ba dc fe
D = 10 32 54 76

These values are stored in little-endian format, meaning that the low -order bytes of a
word is placed in the low-address byte position. The initialization values appear then as
follows:

word A = 01 23 45 67
word B = 89 ab cd ef
word C = fe dc ba 98
word D = 76 54 32 10

These four variables (they are indeed variables since they change value) are copied
into different variables: A is saved as AA, B as BB, C as CC and D is saved as DD.

Step 4: Define four auxiliary functions and process message
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This step consists of sixty-four (64) steps divided into four (4) rounds of processing. The
four rounds are almost identical, with the main difference being that each round uses a
different primitive logical function, denoted by F, G, H, and I in the specification. Let
us first define the four functions. We note that each of them takes three 32-bit words as
input and yields one 32-bit word as output.

Round Primitive function Steps(64)
1 F (X, Y, Z) = (X ∧ Y ) ∨ (¬X ∧ Z) 0 ≤ j ≤ 15
2 G(X, Y, Z) = (X ∧ Z) ∨ (Y ∧ ¬Z) 16 ≤ j ≤ 31
3 H(X, Y, Z) = X ⊕ Y ⊕ Z 32 ≤ j ≤ 47
4 I(X, Y, Z) = Y ⊕ (X ∨ ¬Z) 48 ≤ j ≤ 63

Table 1: The primitive functions of the MD5 compression algorithm.

where

∧ = AND, ∨ = OR, ⊕ = XOR, ¬X = NOT (X)

Each round takes as input the current 512-bit message block Mk and the 128-bit buffer
value ABCD and produces as output an updated value of the buffer earlier referred to as
the chaining variable CVk. In addition, each round also uses one-fourth of a 64-element
table denoted T [1 · · · 64] which is constructed from the sine function. It is constructed
such that the i− th element of the table T , denoted T [i], is equal to the integer part of
232× abs(sin(i)), where i is in radian. Since abs× (sin(i)) is a number between 0 and
1, the elements of the table T are numbers less than or equal to 232, Hence, they can be
represented in 32 bits. The values in 32-bits representation are listed in the table below:

Step 5: Output

The output from the very last round is the 128-bit hash result or message digest we
obtain after we have incrementally processed all t 512-bit blocks of the message. The
entire process can be summarized as follows:

CV0 = IV
CVk+1 = SUM32(CVk, RFI [Mk, RFH [Mk, RFG[Mk, RFF [Mk, CVk]]]])
MD5SUM = CVt

where

IV = the initial value of the ABCD buffer, defined by step 3
Mk = the k − th 512-bit block of the message
CVk = the chaining variable processed with the k − th block of message
RFx = the round function using primitive logical function x
MD5SUM = the final hash result or message digest
SUM32 = addition modulo 232
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T [1] = d76aa478 T [17] = f61e2562 T [33] = fffa3942 T [49] = f4292244
T [2] = e8c7b756 T [18] = c040b340 T [34] = 8771f681 T [50] = 432aff97
T [3] = 242070db T [19] = 265e5a51 T [35] = 6d9d6122 T [51] = ab9423a7
T [4] = c1bdceee T [20] = e9b6c7aa T [36] = fde5380c T [52] = fc93a039
T [5] = f57c0faf T [21] = d62f105d T [37] = a4beea44 T [53] = 655b59c3
T [6] = 4787c62a T [22] = 02441453 T [38] = 4bdecfa9 T [54] = 8f0ccc92
T [7] = a8304613 T [23] = d8a1e681 T [39] = f6bb4b60 T [55] = ffeff47d
T [8] = fd469501 T [24] = e7d3fbc8 T [40] = bebfbc70 T [56] = 85845dd1
T [9] = 698098d8 T [25] = 21e1cde6 T [41] = 289b7ec6 T [57] = 6fa87e4f
T [10] = 8b44f7af T [26] = c33707d6 T [42] = eaa127fa T [58] = fe2ce6e0
T [11] = ffff5bb1 T [27] = f4d50d87 T [43] = d4ef3085 T [59] = a3014314
T [12] = 895cd7be T [28] = 455a14ed T [44] = 4881d05 T [60] = 4e0811a1
T [13] = 6b901122 T [29] = a9e3e905 T [45] = d9d4d039 T [61] = f7537e82
T [14] = fd987193 T [30] = fcefa3f8 T [46] = e6db99e5 T [62] = bd3af235
T [15] = a679438e T [31] = 676f02d9 T [47] = 1fa27cf8 T [63] = 2ad7d2bb
T [16] = 49b40821 T [32] = 8d2a4c8a T [48] = c4ac5665 T [64] = eb86d391
Round 1 Round 2 Round 3 Round 4

Table 2: The 32-bit word matrix T and the round in which its values are used

The final message digest is stored in the ABCD buffer (see figure 25). It is output by
beginning with the low order byte of A and ending with the high order byte of D.

The output of round 4 is added to the chaining variable of the previous round to produce
the next chaining variable. The addition is modulo 232 and it is performed separately
on each of the four words in the buffer.
We now look at the inner structure of the MD5 compression function labelled MD5 in
figure captioned The MD5 algorithm.

4.2.2 The MD5 Compression Function

We have just mentioned that the entire MD5 algorithm consists of four rounds and each
round, in turn, consists of 16 steps which give us 64 steps in total. Each step takes the
following general form:

A← B + [(A+ PF (B,C,D) +M [k] + T [i]) <<< s]

with
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A,B,C,D = the four words of the buffer
PF = one of the primitive functions F, G, H, I
M [k] = the kth 32-bit word in the 512-bit message block
T [i] = the ith 32-bit word in table T
+ = addition modulo 232

<<< s = the circular left shift of the 32-bit argument by s bits

Figure 25: The MD5 compression of a single 512-bit message block.

The four words A, B, C, D of the buffer are used in such a way that produces a word-level
circular right shift of one word after every step. After each step, we update one of the
4 bytes of the ABCD buffer. Knowing that we have 16 steps, it results that each 32-bit
word of the buffer is updated four times at the end of the fourth round and an additional
fifth time to produce the final output (chaining variable) for the current block.

In round 1, the primitive function F is used. The 16 32-bits words of the 512-bit
message block are use in their original order M [0] through M [15]. Each of the 16 words
is used only once in each step.

In round 2, the primitive function G is used. The 16 32-bits words of the 512-bit message
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block are used in the following order:

p2(i) = (1 + 5i)mod 16

In round 3, the primitive function H is used. The 16 32-bits words of the 512-bit message
block are used in the following order:

p3(i) = (5 + 3i)mod 16

In round 4, the primitive function I is used. The 16 32-bits words of the 512-bit message
block are used in the following order:

p4(i) = 7i mod 16

We note that every element of the table T is used exactly once during one MD5 round
which consists of four rounds where each of the four primitive function is used.

Figure 26 shows a single step of the MD5 operation. As we can see, one of the buffers
gets updated after every step. This basically means that each of the four buffer A, B,
C, D changes its content as each of them moves to the left side of the general form
A← B + [(A+ PF (B,C,D) +M [k] + T [i]) <<< s] in turn after every single step.

4.2.3 Security of MD5

The MD5 algorithm has one interesting property that every bit of the output is a function
of every bit of the input. The complexity in the repeated use of the primitive functions
and the additive constant T [i] together with the circular left shifts unique to every round
produce a well mixed hash result.
This procedure makes it very unlikely that two messages that show a similar regularity
will have the same hash result.

Ron Rivest conjectures that MD5 is as strong as possible for a 128-bit hash code.
What Rivest means is that finding two messages having the same hash value requires 264

operations. This is due to the birthday paradox explained earlier; and finding a message
given its corresponding message digest will take 2128 operations, this is known as the
pre-image attack.
However, this is only an opinion which is not proven and any mechanism which takes less
operations than that will prove the MD5 algorithm less secure than originally believed.
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Figure 26: A single MD5 step operation.

4.2.4 Attacks on MD5

More generally, we can distinguish three main categories of attacks on cryptographic
hash function which are pre-image attacks, second pre-image attacks and colli-
sion attacks. In one way or another, all kind of attacks fall into either one of these
categories. This is the main reason why one-way hash functions are required to be pre-
image resistant and second pre-image resistant while in addition to these two properties,
collision-resistant hash function need to exhibit the property of being collision-resistant.
We take a look at some commonly known attacks.

Collision attack in MD5 cryptographic hash function

In August 2004 Xiaoyun Wang and Hongbo Yu of Shandong University in China pub-
lished an article[15] in which they describe an algorithm that can find two different
sequences of 128 bytes with the same MD5 hash. Their research was motivated by
the possibility of finding a colliding pair of messages, each consisting of two blocks.
The attack revolves around finding two distinct message blocks (M0, N0) and (M1, N1)
where the first blocks differ only in a predefined constant vector cv1 such that M1 =
M0 + cv1 and the second message blocks differs in a predefined constant vector cv2
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(cv2 = −cv1 modulo 232) such that N1 = N0 + cv2 and MD5(M0, N0) = MD5(M1, N1).

However, there is a considerable amount of conditions that have to be met for the
attack to be successful. Basically, the attack makes use of differential or differences in
message that are spread over a length of two message blocks. The first block’s difference
introduces a small difference in the original state or initialization vector whereas the
second block’s difference cancels out the difference introduced by the first block. We
also note that finding the first blocks (M0,M1) takes about 239 MD5 operations, and
finding the second blocks (N0, N1) takes about 232 MD5 operations. The application of
this attack on IBM P690 takes about one hour to find M0 and M1, where in the fastest
cases it takes only 15 minutes. Then, it takes only between 15 seconds to 5 minutes to
find the second blocks N0 and N1.

Pure Brute-force Attack

The pure brute-force attack is one in which all possible words of a certain length are
tried until the correct one is found. This attack is guarantied to work, that is why one
ususally chooses the length of the hash result in such a way that the brute-force attack
becomes impractical or too slow and thus less attractive.

4.3 The Secure Hash Algorithm - SHA

The Secure Hash Algorithm (SHA) was developed by the National Security Agency
(NSA) and published in 1993 by the National Institute of Standard and Technology
(NIST) as a U.S. Federal Information Processing Standard (FIPS PUB 180). SHA is
based on and shares the same building blocks as the MD4 algorithm. Unlike the MD4
algorithm, the design of SHA introduced a new procedure which expands the 16-word
message block input to the compression function to an 80-word block among other things.
In 1994, NIST announced that a technical flaw in SHA was found. And that this flaw
makes the algorithm less secure than originally believed. No further details were given
to the public, only that a small modification was made to the algorithm which was now
known as SHA-1 and published in FIBS PUB 180-1.

The SHA-2 family of hash algorithm consists of five cryptographic hash functions
denoted by SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512. The last four variants
are sometimes collectively referred to as SHA-2. In fact, NIST updated its hash function
standard to FIPS PUB 180-2 in 2002. This update specified three new hash functions,
next to SHA-1, known as SHA-256, SHA-384, and SHA-512. SHA-1 is designed to
produce a 160-bit message digest. The other hash functions have the length of their
message digest indicated by the number following prefix “SHA-”; thus SHA-256 produces
a 256-bit message digest, whereas SHA-384 produces a 384-bit hash value and so on.
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SHA-224 which produces a message digest of 224-bit was added to the standard in 2004.
We describe in more details the SHA-1 algorithm.

4.3.1 Description of the SHA-1 algorithm

The SHA-1 algorithm accepts as input a message with a maximum length of 264−1 and
produces a 160-bit message digest as output. The message is processed by the compres-
sion function in 512-bit block. Each block is divided further into sixteen 32-bit words
denoted by Mt for t = 0, 1, · · · , 15. The compression function consists of four rounds,
each round is made up of a sequence of twenty steps. A complete SHA-1 round consists
of eighty steps where a block length of 512 bits is used together with a 160-bit chaining
variable to finally produce a 160-bit hash value. The processing works as described in
the following steps:

Step 1: Append padding bits

The original message is padded so that its length is congruent to 448modulo512. Again,
padding is always added although the message already has the desired length. Padding
consists of a single 1 followed by the necessary number of 0 bits.

Step 2: Append length

A 64-bit block treated as an unsigned 64-bit integer (most significant byte first), and
representing the length of the original message (before padding in step 1), is appended
to the message. The entire message’s length is now a multiple of 512.

Step 3: Initialize the buffer

The buffer consists of five (5) registers of 32 bits each denoted by A, B, C, D, and E.
This 160-bit buffer is used to hold temporary and final results of the compression func-
tion. These five registers are initialized to the following 32-bit integers (in hexadecimal
notation).

A = 67 45 23 01
B = ef cd ab 89
C = 98 ba dc fe
D = 10 32 54 76
E = c3 d2 e1 f0

We can see that the registers A, B, C, and D are exactly the same as the four registers
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used in MD5 algorithm. But in SHA-1, these values are stored in big-endian format,
which means that the most significant byte of the word is placed in the low-address byte
position. Hence the initialization values (in hexadecimal notation) appear as follows:

word A = 67 45 23 01
word B = ef cd ab 89
word C = 98 ba dc fe
word D = 10 32 54 76
word E = c3 d2 e1 f0

Step 4: Process message in 512-bit blocks

The compression function is divided into twenty sequential steps composed of four rounds
of processing where each round is made up of twenty steps. The four rounds are struc-
turally similar to one another with the only difference that each round uses a different
Boolean function, which we refer to as f1, f2, f3, f4 and one of four different additive
constants Kt (0 ≤ t ≤ 79) which depends on the step under consideration. The values
of the four dictinct additives constant are given in table 3 below.

Step number Hexadecimal notation
0 ≤ t ≤ 19 Kt = 5a827999
20 ≤ t ≤ 39 Kt = 6ed9eba1
40 ≤ t ≤ 59 Kt = 8f1bbcdc
60 ≤ t ≤ 79 Kt = ca62c1d6

Table 3: The four additive constants used in SHA-1 algorithm

Every step updates two of the five registers. The step operation which updates the value
of the E register and rotates the value of the B register by 30 bit position to the left is
of the following form:
A,B,C,D,E ← (E + fr(t, B,C,D) + [A <<< 5] +Mt +Kt), A, [B <<< 30], C,D

where

A,B,C,D,E = the five registers of the SHA-1 buffer
t = the step number, 0 ≤ t ≤ 79
fr = the primitive logical function used in step t and round r
<<< s = the circular left shift of the 32-bit word by s bits
Mt = a 32-bit word derived from the current 512-bit input block
Kt = one of four additive constants
+ = addition modulo 232
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Each Boolean function takes three 32-bit words as input and produces a 32-bit word as
output. Each function performs a different set of bitwise logical operation on its inputs
such that the nth bit of the output is a function of the nth bit of all three inputs.

We have said earlier that SHA-0 is similar to SHA-1 with the only difference residing in
the procedure which expands the 16-word message block input to an 80-word message
block. This procedure is defined in SHA-0 as:

Mt = Mt−16 ⊕Mt−14 ⊕Mt−8 ⊕Mt−3

whereas it is defined in SHA-1 as:

Mt = (Mt−16 ⊕Mt−14 ⊕Mt−8 ⊕Mt−3) <<< 1

As it can be seen, SHA-1 adds a left circular shift by 1 bit position “<<< 1”.

Step 5: Output

After processing the last 512-bit message block t (assuming that the message is divided
into t 512-bit blocks), we obtain a 160-bit message digest. The compression function
uses a feedforward operation where the chaining variable CVk input to the first round
is added to the output obtained after execution of step 80 to produce the next chaining
variable CVk+1. This addition is performed modulo 232 and independently for each of
the five words in the buffer. We describe this operation as follows:

CV0 = IV

CVk+1 = S32 (CVk, f4 [M60···79, f3 [M40···59, f2 [M20···39, f1 [M0···19, CVk,K0···19] ,K20···39] ,K40···59] ,K60···79])

Hr = CVt

where

IV = initial value of the ABCDE buffer, used to deal with the first block in a chaining mode
f1[· · · ] = output of the first round consisting of 20 steps
f2[· · · ] = output of the second round
f3[· · · ] = output of the third round
f4[· · · ] = output of the fourth round
S32 = addition modulo 232

Hr = the final hash result or message digest

The primitive logical functions fr are defined as shown in table 4.

with the following correspondence between the logical operators as shown in ta-
ble 5
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Step Function Value
0 ≤ t ≤ 19 f1 = f(t, B, C,D) (B ∧ C) ∨ (¬B ∧D)
20 ≤ t ≤ 39 f2 = f(t, B, C,D) B ⊕ C ⊕D
40 ≤ t ≤ 59 f3 = f(t, B, C,D) (B ∧ C) ∨ (B ∧D) ∨ (C ∧D)
60 ≤ t ≤ 79 f4 = f(t, B, C,D) B ⊕ C ⊕D

Table 4: The four primitive logical functions used in SHA-1 algorithm

Operand Name Description
∧ AND Is true if both values are true
∨ OR Is true if either value is true
⊕ XOR Is true if either value is true, not both
¬ NOT Is true if the value is not true

Table 5: The description of the logical operators

As compared to MD5, only the function used in the first round has not changed.
Otherwise, the remaining three functions for the last three rounds of SHA-1 are
not the same as the one used in the MD5 compression algorithm. We notice that
in the SHA-1 algorithm, the functions f2 and f4 have the same structure and are
used respectively in round 2 and 4. These two functions are structurally equivalent
to the function H used in the round 3 of the MD5 compression function. However,
the function f3 of the SHA-1 algorithm is entirely new. We now take a closer look
at the way SHA-1 expands the 16 block words to 80 words used by the compression
function.

Deriving 80 32-bit word values from one 512-bit message block

Each 512-bit message block comprises 16 32-bit words (16 × 32 = 512). During
the step which processes the message in 512-bit blocks, the first 16 words of every
message block is taken and used directly as it appears. The additional 64 blocks
are derived by following the algorithm given by:

Mt = (Mt−16 ⊕Mt−14 ⊕Mt−8 ⊕Mt−3) <<< 1

This means that if we assume that word M0 through M15 represent the first 16
words (used in the first 16 steps), then for the step 17 the word M16 is given by:

M16 = (M0 ⊕M2 ⊕M8 ⊕M13) <<< 1
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Up to step 80 where M79 is given by:

M79 = (M63 ⊕M65 ⊕M71 ⊕M76) <<< 1

As we can see, the value of all subsequent 16 words block Mt are obtained by
XOR-ing four of the preceding values of Mt and by applying a circular left shift
by one bit to the resulting value.

Compared to MD5, this procedure is entirely new. Recall that in the MD5 algo-
rithm, an array of 32-bit words M [0 · · · 15] holds the value of the current 512-bit
input block being processed. In each round, which consists of 16 steps, each of the
16 words of M [0 · · · 15] is used exactly once. Hence, each step uses one of the 16
32-bit words of the current 512-bit input block. The order in which these words is
used varies from round to round except that in the first round the words are used
in their original order, that is the 32-bit words M [0],M [1], · · · ,M [15] are used
respectively in step 1, 2, · · · , 16 . For round 2 through round 4, MD5 introduced
a special permutation which assigns each of the sixteen 32-bit word M [0 · · · 15] to
a particular step within the remaining rounds.

The word expansion introduced by SHA-1 augments the interdependency between
every message block and the final message digest. Together with the longer output
of 160-bit message digest, SHA-1 simply strengthens the one-wayness, pre-image
resistance, second pre-image resistance and collision resistance of the SHA-1 viewed
as cryptographic hash function.

4.3.2 Security of SHA-1

Pre-image resistance

The difficulty of producing any message having a given message digest is of the
order of 2160.

Second pre-image resistance

The difficulty of producing two distinct messages having the same message digest
is of the order of 280 operations.

Speed, simplicity and architecture

Addition in SHA-1 is perfomed modulo 232, thus it is well suited for a 32-bit
architecture. Because SHA-1 involves 80 steps and must process 160-bit buffer
(five 32-bit registers), it is slower than MD5 on the same architecture. SHA-1 is
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also simple to describe and to implement in both software and hardware. Finally
SHA-1 uses a big-endian scheme for interpreting a message as a sequence of 32-bit
words.

4.3.3 Attacks against SHA-1

We know that SHA-1 produces a 160-bit message digest. If one cannot find collision
in less than 280 operations, then SHA-1 is considered secure and can still be used.
But recently, a group of chinese cryptographers[21] were able to find collisions
in SHA-1 in 269 calculations. This is about 2000 times faster than a brute-force
search attack.

4.4 The RIPEMD-160 Algorithm

The first RIPEMD hash function was degined in 1992 under the European RIPE
(RACE Integrity Primitives Evaluation) project. It is a function that produced a
128-bit hash value and had its design based on the MD4 algorithm. In constrast to
MD4, RIPEMD’s compression function consists of two slightly modified versions
of the MD4 compression function which are executed in parallel.

Due to a successful attack on two rounds of the RIPEMD by an outsider (a person
not member of the RIPE project group), namely H. Dobbertin, some members of
the RIPE consortium decided not only to upgrade RIPEMD, but also to include
H. Dobbertin in the team!

4.4.1 Description of RIPEMD-160 Algorithm

The algorithm takes as input a message of arbitrary length and computes a hash
result of 160 bits. The input message is processed 512-bit block at a time. The
compression function consists of two parallel trails of a modified version of the MD5
algorithm. Each trail consists of five rounds, whereas each round is composed of
sixteen sequential steps. A complete RIPEMD-160 round consists of eighty paral-
lel steps where a message block of 512 bits is used together with a 160-bit chaining
variable to finally produce a 160-bit hash value. The processing works as described
in the following steps:

Step 1: Append padding bits

The message is padded such that its length is congruent to 448 modulo 512. The
process of padding consists of appending a single 1-bit followed by the necessary
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number of 0-bit right after the last bit of the original message. Padding is always
added, even if the message’s length is already congruent to 448modulo 512. Thus,
the number of padding bits ranges from 1 to 512.

Step 2: Append length

A block of 64 bits representing the length of the original message (before padding
step) is appended to the message after the last bit of the padded message. This
block is treated as an unsigned 64-bit integer (least signicant byte comes first).
RIPEMD-160 adopts the little-endian convention for interpreting a message as a
sequence of 32 bit words.

Step 3: Initialize the RIPEMD-160 buffer

A 160-bit buffer is used to hold intermediate and final results of the RIPEMD-160
hash function. The buffer consists of five 32-bit registers (A, B, C, D, and E). The
registers are initialized to the following hexadecimal values.

A = 67 45 23 01
B = ef cd ab 89
C = 98 ba dc fe
D = 10 32 54 76
E = c3 d2 e1 f0

The values are the same as those used in SHA-1, but in contrast to SHA-1, they
are stored in little-endian format which means the low-order byte (least significant
byte) of a word is stored in the low-address byte position. Hence, the registers
appear in memory as follows:

word A = 67 45 23 01
word B = ef cd ab 89
word C = 98 ba dc fe
word D = 10 32 54 76
word E = c3 d2 e1 f0

Step 4: Process message in 512-bit blocks

The RIPEMD-160 algorithm comprises ten rounds of sixteen steps each. The ten
rounds are arranged as two separate trails (left and right) of five rounds each. The
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ten rounds have a similar but not an identical structure. Each round uses one
of five primitive logical functions (Boolean function) denoted by f1, f2, f3, f4, f5.
The functions are used from f1 through f5 in the left trail and in reverse order
from f5 through f1 in the right trail. We denote the registers of the left trail by
AL, BL, CL, DL, EL and the registers of the right trail by AR, BR, CR, DR, ER. The
initial chaining variable is denoted by A0, B0, C0, D0, E0.
Each round takes as input the current 512-bit block and the 160-bit buffer value
AL, BL, CL, DL, EL (left trail) or AR, BR, CR, DR, ER (right trail) and updates the
value of the register in the left or right trail respectively. An additive constant Kr

which depends on the round and on the trail is also used. There are nine distinct
additive constants in total, including zero which is used in round 1 on the left trail
and in round 5 on the right trail. Table 6 summarizes the values of the additive
constants in hexadecimal.

Left trail Right trail
Step number Hexadecimal value Hexadecimal value
0 ≤ t ≤ 15 K1 = 00000000 K1 = 50a28be6
16 ≤ t ≤ 31 K2 = 5a827999 K2 = 5c4dd124
32 ≤ t ≤ 47 K3 = 6ed9eba1 K2 = 6d703ef3
48 ≤ t ≤ 63 K4 = 8f1bbcdc K2 = 7a6d76e9
64 ≤ t ≤ 79 K5 = a953fd4e K2 = 00000000

Table 6: The four additive constants used in RIPEMD-160 algorithm

Every step updates the value of two of the five registers. Five consecutive steps
update the value of the registers A,E,D,C,B in this order and also rotate respec-
tively the values of the registers C,B,A,E, and D by ten bit positions to the left.
Thus, in both trails, the five registers are updated sixteen times after the last step
of the last round.
The output value of the fifth round is added to the input of the first round (CVq)
to produce CVq+1. The addition is perfomed modulo 232 and involves three words
coming from the chaining variable CVq, the left trail and the right trail as follows:

CVq+1(0) = CVq(1) + CL +DR

CVq+1(1) = CVq(2) +DL + ER

CVq+1(2) = CVq(3) + EL +AR

CVq+1(3) = CVq(4) +AL +BR

CVq+1(4) = CVq(0) +BL + CR
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where

AL = value of the register A in the left trail. It also applies to BL, CL, DL, and EL

that is BL denotes the value of register B in the left trail.
AR = value of the register A in the right trail. It also applies to BR, CR, DR, and ER

that is BR denotes the value of register B in the right trail.
CVq(0) = A0, the value of the register A in the chaining variable input to round 1
CVq(1) = B0, the value of the register B in the chaining variable input to round 1
CVq(2) = C0, the value of the register C in the chaining variable input to round 1
CVq(3) = D0, the value of the register D in the chaining variable input to round 1
CVq(4) = E0, the value of the register E in the chaining variable input to round 1
CVq+1(0) = the value of the register A in the next chaining variable
CVq+1(1) = the value of the register B in the next chaining variable
CVq+1(2) = the value of the register C in the next chaining variable
CVq+1(3) = the value of the register D in the next chaining variable
CVq+1(4) = the value of the register E in the next chaining variable

Step 5: Output the message digest

The message digest is the final output after the last 512-bit message block has
been processed.

4.4.2 The RIPEMD-160 compression function

We have mentioned above that the RIPEMD-160 algorithm consists of two paral-
lel lines or trails. Each trail is made up of five rounds which in turn consist of a
sequence of 16 steps each. Thus, the compression function in each trail comprises
eighty sequential steps. Each round, in both the left and the right trail, uses one
of five primitive logical functions in such a way that the order in which they are
used in the left trail is reversed in the right trail as shown in the table 7 :

Trail Round 1 Round 2 Round 3 Round 4 Round 5
Left f1 f2 f3 f4 f5

Right f5 f4 f3 f2 f1

Table 7: The order and round in which the primitive functions are used in both trails

Like in the MD5 and the SHA-1 algorithm, each primitive function takes as input
three 32-bit words and produces one 32-bit word as output. The five functions are
summarized in the table 8:

As before, every 512-bit message block is held in an array of sixteen 32-bit words
represented by M [0 · · · 15]. Each of these 16 words is used simultaneously in both
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Step Function Value
0 ≤ t ≤ 15 f1 = f(t, B, C,D) B ⊕ C ⊕D
16 ≤ t ≤ 31 f2 = f(t, B, C,D) (B ∧ C) ∨ (¬B ∧D)
32 ≤ t ≤ 47 f3 = f(t, B, C,D) (B ∧ ¬C)⊕D
48 ≤ t ≤ 63 f4 = f(t, B, C,D) (B ∧D) ∨ (C ∧ ¬D)
64 ≤ t ≤ 79 f5 = f(t, B, C,D) B ⊕ (C ∨ ¬D)

Table 8: The four primitive logical functions used in RIPEMD-160 algorithm

the left and the right trail during every step. However, the 16 words are not used
in the same order, neither in each round nor in each trail. The order in which the
words are used relies on two permutations and depends on the round and on the
trail under consideration.
We define the permutation ρ as follows:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ρ(i) 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8

We define the second permutation π which is given by π(i) = 9i + 5(modulo 16)
as follows:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π(i) 5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12

And the order of the message, depending on the round and on the trail, is sum-
marized in table 9:

Trail Round 1 Round 2 Round 3 Round 4 Round 5
Left Identity ρ ρ2 ρ3 ρ4

Right π ρπ ρ2π ρ3π ρ4π

Table 9: Permutation of message words in RIPEMD-160 algorithm.

This simply means that for the first round and in the left trail, the 16 32-bit words
are use from 0 through 15 in that order. While at the same time in the right trail,
the order in which the words are used is governed by the values of π(i) where i is
the step within the round and ranges from 0 to 15 (16 steps). Hence, in the right
trail and during the first step of round 1, the value of M [5] is used. In step 2, the
value of M [14] is used and so on.
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The permutation ρ has the effect that two message words which are close in one
round are relatively far apart in the next. Similarly, the permutation π has the
effect that two message blocks which are contiguous in the left trail will always be
at least 7 positions apart in the right trail.

We now summarize the left circular shifts used in each round in table 10 be-
fore presenting the details of what happens during a single step operation of the
RIPEMD-160 algorithm.

Message blocks Round
1 2 3 4 5

M0 11 12 13 14 15
M1 14 13 15 11 12
M2 15 11 14 12 13
M3 12 15 11 14 13
M4 5 6 7 8 9
M5 8 9 7 6 5
M6 7 9 6 5 8
M7 9 7 8 5 6
M8 11 12 13 14 15
M9 13 15 14 12 11
M10 14 11 13 15 12
M11 15 13 12 14 11
M12 6 7 5 9 8
M13 7 8 5 9 6
M14 9 7 6 8 5
M15 8 7 9 6 5

Table 10: Circular left shift of the 16 message words in each round.

Note that the order in which the shifts are used depends on the order in which the
words are used; which in turn depends on the two permutations ρ and π which
differ based on the round and on the trail under consideration.
The details of a single step operation of the RIPEMD-160 compression algorithm
can be resumed as follows:

A← (A+ f(B,C,D) +Xρ(j) +K(j)) <<< s(j) + E

C ← C <<< 10
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where

A,B,C,D,E = the five words of the buffer
f(B,C,D) = primitive logical function used in the current step
<<< s(j) = circular left shift of the 32-bit argument
s(j) = the function which determines the amount of rotation for step j
Xρ(j) = a 32-bit word from the current 512-bit input block
ρ(j) = permutation function that selects the word to be used in step j
K(j) = the additive constant used in step j
+ = addition modulo 232

After each step and independently of the trail under consideration, the buffer is
updated by the following rule:

A← E,E ← D,D ← C,C ← B, and B ← A

However, Let’s underline that the value of the register C is rotated by 10 bits
position to the left prior to being assigned to D.

4.4.3 Security of RIPEMD-160 Algorithm

Pre-image resistance

The difficulty of producing any message having a given message digest is of the
order of 2160, the same as in SHA-1.

Second pre-image resistance

The difficulty of producing two distinct messages having the same message digest
is of the order of 280 operations.

Speed, simplicity and architecture

The addition operation in RIPEMD-160 is perfomed modulo 232, thus it is well
suited for a 32-bit architecture. RIPEMD-160 also relies on simple bitwise logical
operations, just like MD-5 and SHA-1.

RIPEMD-160 involves 80 steps times two (left and right trails) and must process
160-bit buffer (5 32-bit registers) times two again, it is therefore naturally slower
than both SHA-1 and MD5 on the same architecture. But its significant increase
in security justifies the reduced performance, and the resulting speed is somewhat
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acceptable.

RIPEMD-160’s two parallel trails increase considerably the complexity of finding
collision between two rounds. This technique usually serves as a basis for finding
a collision of the entire compression function.

We also note that RIPEMD-160 resists to known cryptanalysis against both MD5
and SHA-1. This is mainly due to the introduction of the two parallel trails which
literally doubles the number of steps performed in the RIPEMD-160 compression
algorithm.

RIPEMD-160 is simple to describe and to implement in both software and hard-
ware. RIPEMD-160 uses a little-endian scheme for interpreting a message as a
sequence of 32-bit words.

4.4.4 Attacks against RIPEMD-160

As with the SHA-2 family of hash functions developed by NIST, no successful
attacks against RIPEMD-160[13] is known. However the designers of RIPEMD-
160 envisage that in the next years it will become possible to attack one of the two
lines and up to three rounds of the two parallel lines, but that the combination of
the two parallel lines will resist today’s attacks.
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5 Conclusion

We have presented cryptographic hash functions and their main area of applica-
tion. The focus has been on explaining in great detail what hash functions are,
where they can be used and how they are constructed.

As of this writing, a lot is happening in this field. Many recent successful attacks
on cryptographic hash functions (including SHA-1[21] and MD5[15]) have urged
the U.S. NIST[20] (National Institute of Standards and Technology) to launch
a competetion, where public input is sollicited for the development of new hash
functions.

Does it mean that these cryptographic hash functions should no longer be used?
Maybe not yet, but very soon these cryptographic hash functions will be totally
discontinued in favor of stronger ones. In any case, the NIST is already discourag-
ing the use of SHA-1 for certain applications such as digital signature and digital
timestamping. The same applies for the usage of MD5 in digital signature scheme.
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