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Introduction

Software is a crucial part of the modern infrastructure on which we all rely, and,
therefore, it must be reliable, robust, correct and be able to evolve over time with our
changing needs. Ensuring these properties for the massive amounts of software in use
is considered one of the grand challenges in computer science. This social and tech-
nical challenge is often referred to as “dependable systems evolution” [Som00], “the
software maintenance challenge” [Art88], “the software crisis” [DT96] and “trust-
worthy computing” [MdVHCO03].

Better tools and techniques for processing and manipulating software are likely
to be part of any solution to this challenge. Development of software processing
tools and techniques is studied in the field of program transformation [PS83]. Many
results from this field have proven to be highly applicable for software evolution.
A frequently encountered drawback, however, is that implementations of program
transformation and analysis techniques are often language-specific; they tend to be
tied to the front-end or grammar they were written against, even when the underlying
algorithms are general. This significantly impairs reuse of transformation code and
systems.

This dissertation addresses the reuse limitation by introducing novel techniques
for constructing reusable, language-independent program analyses and transforma-
tions. The proposed techniques include a versatile approach for easily plugging
transformation systems into existing language infrastructures, such as compilers, and
a declarative, aspect-based approach for software practitioners to express transforma-
tion programs for language families, rather than just for a single language. With these
techniques in hand, the dissertation demonstrates how automatic software mainte-
nance tasks can be increasingly expressed in a reusable manner. Case studies illustrate
their applicability to encoding of architecture and design rules as executable program
analyses, expressing control- and data-flow transformations, and interactive code gen-
eration of unit tests from user-written axioms.
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1.1 Software Evolution

Software maintenance and evolution is by far the most expensive and time-consuming
part of the software life-cycle [PHl05]. The trend during the last 30 years shows
that maintenance is an increasing part of the total software cost. Reports from
the 1970s suggest that 60-70% of the total cost went into maintenance and evo-
lution [ZS]JG79]. In the 1980s, this figure crept closer to 70% [McK84] and, during
the 1990s, it reached around 90% [Mo0a90, Erl00]. About 50% of the maintenance
time is spent understanding the existing software [FH83].

Organisations with an investment in software are perhaps affected by this fact
the most when they need to effect substantial changes. The sheer size of the code
bases make radical changes and redesigns prohibitively and increasingly expensive.
Ulrich [Ulr90] estimated that 120 billion lines of code was maintained in 1990. In
2000, the number was at 250 billion lines according to Sommerville [Som00]. Esti-
mates by Miiller suggest that the doubling happens around every 7 years [MWT94].

Software is becoming a limiting factor for progress in all kinds of organisations.
To escape this situation, software needs to be constructed differently, and in ways
which make it possible for small teams of programmers to understand, maintain and
change large projects with millions of lines of code. Large parts of maintenance need
to be done with (semi-) automatic software processing tools. Automation is key, but
automation cannot work until the substrate being processed, the software, is easily
managed by the tools. This means inventing better techniques for analysing and
transforming large code bases.

1.2 Program Transformation

The field of program transformation is concerned with developing theories, tools
and techniques for the analysis and transformation of programs. Typical applica-
tions in this field include transformation of programs to improve a certain metric
such as execution speed, class cohesion or memory footprint; translation between
languages, e.g. compilation, code generation and interpretation; analysis and veri-
fication of program properties such as absence of deadlocks, information leakage or
buffer overflows. Each of these examples constitutes a transformation problem or a
transformation task. A fuller discussion of program transformation is given in Chap-
ter 2.

Program transformation techniques aid in the development of robust language
infrastructures which in turn provide the basic components required for all forms of
language processing. On top of these infrastructures, scalable analyses and transfor-
mations have been realised for many problems such as searching for code defects and
security vulnerabilities. These analyses can handle multimillion line projects. How-
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ever, while these analyses and transformations generally consist of algorithms and
data types that are language independent, their implementation are usually specific
to a given infrastructure. This makes them very difficult to reuse across different
infrastructures, even for the same language. Presently, they are only accessible by a
handful of specialists and have not gained widespread acceptance. This effectively
reduces reuse of both knowledge and tools, and seriously lessens the promise of pro-
gram transformations as an approach for dependable software evolution.
This dissertation focuses on:

e methods for constructing versatile program transformation environments which
aid developers in implementing reusable, language-independent transforma-
tion programs;

e how to express transformation programs, and how to design transformation
languages such that transformations can become reusable across subject lan-
guages and between transformation tasks;

e how to capture subject language constructs, and other entities found in soft-
ware, using transformation functions and abstract data types in the transfor-
mation language; and

e how to manage these transformation functions and data types so that they are
convenient to use by programmers of transformation programs.

This work reuses and expands upon promising techniques that encourage lan-
guage independence and reuse of transformations. The paradigm of strategic pro-
gramming has a central part in this dissertation.

1.2.1 Strategic Programming

Strategic programming [VB98, Vis99, LVV03] is a generic programming technique
for processing tree- and graph-like object structures. The technique separates two
concerns: object transformations and traversal schemes. Strategies are built using
traversal combinators and provide complete control for expressing generic traversal
schemes. These strategies are parametrised with transformations that are responsible
for supplying the problem-specific transformations.

This separation is a particularly powerful approach for building reusable program
transformations. The strategies can be reused across transformation problems and
subject languages, whereas the transformation parameters, expressed as rewrite rules,
are used to adapt the generic strategies to a particular language and problem.

Relatively few programming languages have been built with strategic program-
ming in mind. One example of a “strategic” language is Stratego [BKVVO006], a
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domain-specific language for program transformation based on a sub-paradigm of
strategic programming called strategic term rewriting.

In (strategic) term rewriting approaches to program transformation, programs
are described as terms which in most respects may be considered analogous to trees.
Using terms and rewriting allows the succinct expression of many transformation
problems, but the terms are sometimes also a limitation. The choice of model used
to describe programs in a given transformation system has consequences for which
transformation tasks that system is best applicable to.

1.3 Program Models

The effectiveness and applicability of a software transformation system depends to a
large extent on how its underlying program model has been formulated. The model
determines which transformation tasks will be easy and which will be difficult or
impossible. Particularly, the “abstractness” of the representation determines which
analyses and transformations are possible — if the model is too abstract, refactoring is
not possible, and if the model is too detailed, many analyses become too expensive.
Common representations include Prolog-style fact databases, relational databases,
various forms of graphs, lists of tokens and concrete syntax trees. All of these are
discussed in Chapter 2. One representation, which is noteworthy because it relates
very closely to the representation of programs as terms, is the abstract syntax tree.

Abstract Syntax Trees

Abstract syntax trees (ASTs) contain the essence of programs. They are a minimal
and precise form of syntax trees (sometimes called parse trees). Syntax trees are con-
structed by parsing the source code text. The resulting tree contains all the lexical
tokens of the original source code, possibly also including whitespaces, represented
as a tree according to a' subject language grammar.

For most transformation and analyses tasks, both the tokens and whitespaces are
redundant. Stripping them away is desirable, for efficiency reasons. This stripping
yields an AST which contains the essence of the original textual representation 2.

The AST has numerous appealing advantages:

e itisa high-level, as opposed to machine-level, representation;

'A previous version of this manuscript erroneously used the definite article here. As Peter Mosses
kindly pointed out, multiple variants (implementations) of a language grammar usually exist. Fur-
thermore, it is desirable to keep the AST interface decoupled from the underlying grammar as much
as possible, so that clients to the AST API are insulated from incidental (implementation-specific)
grammar changes.

“McCarthy, the father of Lisp, is generally credited with inventing the term AST.
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o ASTs capture the essence of the language;

e cverything in the source code that contributes to the executed program is in

the AST;

e using maximally shared, directed acyclic graphs, ASTs can be stored and ex-

changed very efficiently [vdBdJKOO00];

o there are a number of established techniques for augmenting ASTs with extra
information such as layout, line number information and traceability.

For these reasons, most of the examples in this dissertation will revolve around
ASTs — since an AST captures the essence of a subject language, abstracting over
languages implies abstracting over ASTs. ASTs also have their limitations. Some of
these will be addressed in Chapter 7 where strategic graph rewriting is discussed. It is
important to keep in mind that the techniques developed herein are not bound to just
ASTs; most will work for any tree or graph-like structures which may be arbitrarily
more or less abstract than ASTs.

1.4 Language Abstractions for Program Transformations

The strategic programming paradigm is an attractive starting point for expressing
reusable, language-independent transformations. This paradigm, and in particular
strategic term rewriting, provides an attractive level of genericity in the formulation
of transformation programs. Certain obstacles remain, however, many of which are
shared with other approaches to program transformation. These must be addressed
if substantially better levels of reuse and language independence are to be achieved.

One of these limitations is the inability of transformation systems to abstract over
its program model implementation. It would be attractive to separate the transfor-
mation engine logic from the program model representation. It should be comple-
mented with a versatile technique for adapting transformation engines to external
program models. This would make it possible to combine transformation engines
with any software development framework that provides a suitable program model.

Another limitation is the severely restricted ability of modern transformation sys-
tems to cope with cross-cutting concerns in transformation programs. Related to this
is the ability to adapt existing transformation programs to new subject languages, or
to changing program models.

A final limitation, particular to strategic term rewriting, is the poor support for
program models that are graph-like in nature, such as program flow graphs.

The strategic programming paradigm has been extended in this work to address
the above limitations using the following abstractions:
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Program Object Model Adapters A program object model (POM) adapter is a
technique for abstracting over implementation details of the program model in a
given language infrastructure. The transformation system is written against the POM
adapter interface. It is a minimal interface for navigating and manipulating tree and
graph structures. By supplying infrastructure-specific adapters that translate oper-
ations on this interface to operations on the internal object model, transformation
engines can be freely reused across language infrastructures, e.g. across compiler
front-ends. A notable feature of the technique is that the majority of the adapter
code can be automatically generated by analysing the object model interface of the
language infrastructure.

Aspects  Aspects extend the strategic programming paradigm with a general ap-
proach to capturing cross-cutting concerns and deal with properties such as traceabil-
ity, type checking and unanticipated extensibility. Using aspects, it becomes easier
to express generic transformation algorithm skeletons and to adapt these to specific
program object models and to specific subject languages.

References References provide an extension to the strategic term rewriting paradigm
for rewriting on graph-like structures. This allows the strategic term rewriting ma-
chinery to be applied to computing on control- and data flow graphs. References
provide a way to turn some global-to-local rewriting transformations into local-to-
local.

It should be noted that these abstractions can be recast for other transformations
languages and programming language paradigms. This will be discussed in the re-
spective chapters.

It must also be noted that the field of software verification and validation, which
is also an important direction for dependable systems evolution, largely falls outside
the focus of this thesis. Software verification and validation typically uses abstract
models of the underlying software. These models are partially or fully extracted from
the existing software using a variety of different tools. The techniques and tools
described in this dissertation can thus complement these approaches.

1.4.1 Extensible Languages

When expressing program transformations, one needs to handle domain abstractions
with cross-cutting properties such as scoping rules, variable bindings and state prop-
agation. The behaviour of these domain abstractions may be very complex. While
manipulating domain abstractions using functions and abstract data types is possible,
it is often notationally inconvenient. They frequently exhibit a cross-cutting nature
which results in cross-cutting concerns in the transformation program.
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In some cases, these concerns can be handled using techniques borrowed from
aspect-oriented programming. By extending the transformation language with sup-
port for aspects, one can modularise some of the cross-cutting concerns arising from
domain-abstractions into libraries. However, not all cross-cutting concerns are ex-
pressible in aspect-languages and many that are suffer from complicated notations.
Some of the proposed abstractions, such as the ones providing graph rewriting, are
therefore realised as active libraries [VG98]. Libraries in this form can interact with
the compiler to provide detailed, library-specific error messages when the abstractions
are misused and may also come with library-specific optimisations and notation.

Active libraries with notation extend the host transformation language with new
language constructs. Each new library thus becomes a small domain-specific em-
bedded language (DSEL). Those libraries with cross-cutting properties are termed
domain-specific aspect languages (DSALs). The extensible transformation language
framework called MetaStratego supports both forms of language extensions. The
framework allows Stratego developers to implement their own active transformation
libraries. To a certain extent, MetaStratego follows the approach to language exten-

sion described in [Vis05b].

1.5 Method

The method employed for arriving at each of the results in this dissertation followed
a simple, four step process:

1. Identify Problem — A specific limitation preventing language independence or
reusability was identified.

2. Formulate Solution — An analysis was conducted to describe the characteristics
of the problem, and then a design was formulated which sought to solve it.

3. Implement Solution — The formulated solution was implemented as a computer
program. In some cases, this led to language extensions, in other cases, it led
to transformation libraries or new infrastructure.

4. Demonstrate Applicability — One or more prototype applications demonstrating
the applicability of the implemented solution were constructed.

This process has been applied to each the proposed abstractions presented herein.

1.6 Contributions

The contributions of this dissertation are:
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e a novel technique for plugging transformations into arbitrary language infras-
tructures;

® anovel extension of the strategic programming paradigm with aspects for han-
dling cross-cutting concerns;

e demonstrating how aspects can be used to adapt strategies and rule sets after-
the-fact, i.e. grey box reuse;

® a novel extension of the strategic programming paradigm for graph structures;

e the construction of a modern, interactive development environment for devel-
opment of and experimentation with interactive strategic programming;

® a state-of-the-art survey of design and architectural features found in contem-
porary program transformation systems;

e the design and implementation of an infrastructure for an extensible program
transformation language;

e avalidation of the proposed techniques and abstractions through the construc-
tion of several prototypes:

— alanguage extensions for alerts;
— an interactive development environment for Stratego;
— a compiler scripting for framework-checking; and

— an interactive generator of unit tests from axioms of algebraic specifica-
tions.

1.7 Outline

This dissertation is divided into five parts, as follows.

1. Software Transformation Systems — provides background material from the field
of program transformation. This introduction chapter is in part based on the
paper Stratego: A Programming Language for Program Transformation [Kal06].
Chapter 2 gives a detailed discussion of the state-of-the-art in software transfor-
mation system design and architectural features, with a focus on the capabilities
for language independence. In Chapter 3, the basic notions from universal al-
gebra and term rewriting are given along with a formulation of the System S
calculus for strategic term rewriting. The Stratego language is an implementa-
tion of the System S calculus.
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2. Abstractions for Language Independence — contains the main contributions of
this dissertation. Chapter 4 introduces the program object model adapter tech-
nique and shows how it allows plugging transformation systems into existing
language infrastructures. This enables large-scale reuse of entire transformation
environments. The chapter is based on the paper Fusing a Transformation Lan-
guage with an Open Compiler [KV07a] written with Eelco Visser. In Chapter 5,
a language extension for capturing cross-cutting concerns in strategic program-
ming languages is introduced based on the paper Combining Aspect-Oriented
and Strategic Programming [KVO05] written with Eelco Visser. The chapter de-
scribes a flexible and declarative technique for adapting and extending general
transformation algorithm skeletons to specific problems and subject languages.

3. Supportive Abstractions for Transformations — provides additional abstractions
which augment the main abstractions proposed in the previous section. Chap-
ter 6 introduces the Stratego programming language and MetaStratego, an ex-
tensible variant Stratego language and its compiler infrastructure. This chap-
ter is partly based on Swarego/XT 0.16. A Language and Toolset for Program
Transformation [BKVVO7] and Stratego/XT 0.16: Components for Transforma-
tion Systems [BKVVO06], both written with Martin Bravenboer, Rob Vermaas
and Eelco Visser. The MetaStratego infrastructure forms the basis for all the
language abstractions proposed in this dissertation. Chapter 7 shows an exten-
sion to Stratego that supports a particular form of graph rewriting and moti-
vates its use by computations on control flow graphs. It is based on the paper
Strategic Graph Rewriting: Transforming and Traversing lerms with References
[KV06] written with Eelco Visser. This extension allows strategic term rewrit-
ing techniques to be applied to other program models than (syntax) trees.

4. Case Studies — discusses several prototypes where the abstractions from the pre-
vious parts have been tested in practise. Chapter 8 gives an application of
the language extension techniques explored in this dissertation to a domain-
specific aspect language for mouldable failure handling. It is based on the
paper DSAL = library+notation: Program Transformation for Domain-Specific
Aspect Languages [BKOG] written with Anya Bagge, but the alert extension was
first explored in Stayin’ Alert: Moulding Failure and Exceptions to Your Needs
[BDHKOG] written with Anya Bagge, Valentin David and Magne Haveraaen.
This chapter is included to demonstrate that the language extension techniques
employed in this dissertation are more generally applicable. Chapter 9 in-
troduces an interactive development environment for (Meta)Stratego called
Spoofax, based on the paper Spoofax: An Extensible, Interactive Development
Environment for Program Transformation with Stratego/XT [KVO07b] written
with Eelco Visser. Parts of the Spoofax infrastructure have served as a testbed
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for many of the other case studies. Chapter 10 demonstrates the applicability
of the proposed abstractions with a case study demonstrating how the Strat-
ego transformation system may easily be plugged into an existing development
framework for Java. This allows library-specific analyses and transformation to
be written by developers of Java frameworks and libraries. Chapter 11 shows
how the transformation infrastructure and language abstraction may be applied
to interactive program generation. A code generator for unit tests from axioms
is presented, based on a testing methodology proposed by Magne Haveraaen.

Conclusion — contains some general reflections over language-independence as
well as the concluding remarks. Chapter 12 is devoted to a summary and
general discussion of the results obtained in this work. Chapter 13 discusses
further work. Chapter 15 summarises. Chapter 14 contains the conclusion.

1.8 Summary

Dependable software evolution is one of the grand challenges in computer science.

Automating maintenance tasks is one key way to tackling this challenge. Program

transformation provides scalable and robust techniques for automatic maintenance,
but is hindered by poor reuse and language-dependence. This dissertation claims that
better reuse and language-independence can be found by abstracting over program
models and by using aspects to adapt transformation algorithms to specific subject
languages and program models. The rest of this dissertation serves to substantiate
this claim.
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Programmable Software Transformation
Systems

This chapter gives an overview of the state-of-the-art in architectures and designs
for programmable software transformation systems. This is highly warranted be-
cause unlike for business systems, compilers and web applications, no books exist
which propose best practises for design and implementation of software transforma-
tion systems. In fact, even the research literature is to a large extent lacking in such
information.

Architectural features and design considerations for these systems are explored
using a formal notation called feature models, and further illustrated with examples
taken from a careful selection of a dozen concrete research systems. The feature
models [Bat05] are used to compare and contrast the design of both architectures
and transformation languages. They give a sense of the complexity and breadth of
the design space for software transformation systems. Special focus is placed on the
program models found in transformation systems, and how these interrelate with the
transformation languages.

2.1 Software Transformation Systems

A software transformation system is an application that takes a source program written
in a source language and transforms this into an target program in a target language,
according to instructions of a transformation program, written in a transformation
language. The source language can be any formal language. What some refer to
as (code) generators are included in the definition. In cases where distinguishing
between the source and target language is not necessary, the term subject language
will be used. It is meant to subsume both. The transformation is implemented by a
transformation programmer and is always designed to preserve certain semantics. The
exact semantics to be preserved are specific to the transformation, however. The goal
of a transformation T is to reduce some cost C,,(p) of some metric 7 on a program

15
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p: we want C,,(T(p)) < C,u(p), i.e. the transformed program should be “better”,
according to some metric [PP96, Pai96, CC02].

A traditional application area for software transformation is zransformation-oriented
programming [Par86, Fea87]. In this approach to software development, an exe-
cutable implementation in the target language is derived mostly automatically from
a formal, non-executable specification in the source language. Each transformation
step is proved correct, either by only applying transformations guaranteed to preserve
the desired semantics, or by manually filling in proof obligations the transformation
system cannot automatically resolve. Here, the metric is executability — eventually an
executable program is obtained, and the property being preserved is the correctness
of the behaviour of the program, with respect to the source specification.

Another important application is source-to-source transformations, where the tar-
get and source language is the same. Typical applications in this area include program
optimisation, where execution speed is the metric; re-engineering, where certain no-
tions of maintainability are used as metrics; and refactoring [Opd92], where (often
very loose) metrics for design quality are used. Software transformation techniques
and systems have also been used to create compilers, source code documentation
systems and program analysers. The survey by Partsch and Steinbriiggen [PS83] con-
tains additional examples of applications for transformation systems.

A note about compilers is warranted. While the general definition above also
treats compiler as software transformation systems, the subject of this survey — pro-
grammable transformation systems — differs from compilers in one crucial aspect:
the transformation programmer can extend and adapt the software manipulation fa-
cility by supplying new transformations. A programmable software transformation
system may be seen as a programming environment built specifically to manipulate
programs, i.e. to implement transformation programs. It is therefore more natu-
ral to compare programmable transformation systems to compiler construction kits,
so-called compiler compilers, rather than directly to compilers. Conceivably, trans-
formation systems could be built directly on top of compilers, however. This is the
subject of Chapter 10.

This chapter will show that software transformation systems are available in many
variants, ranging from extensions to general purpose programming languages, to fully
self-contained and stand-alone transformation environments.

2.1.1 Anatomy of a Transformation System

A common way to think about transformations is to divide them into stages. All
stages taken together is considered a pipeline. The syntax of the input and output
languages are specified by source- and target grammars, respectively. For source-to-
source transformation systems, as illustrated in, Figure 2.1, the source and target
language is the same.
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Figure 2.1: Conceptual pipeline for a source-to-source transformation system.

The process indicated in Figure 2.1 starts with the system parsing the source of the
input language. The format of the input language is described by a source language
grammar. The parsing stage constructs a parse tree, or concrete syntax tree (CST),
from the input text. Layout and unnecessary lexical elements such as parentheses and
keywords are removed from this tree in the abstraction stage, and an abstract syntax
tree (AST) is derived. Semantic analysis is performed and the AST is annotated with
type information. In practise, the AST may be constructed while parsing, and in
some implementations, type checking is also done concurrently with parsing. The
transformation rewrites the AST. After modifications are complete, the tree will be
serialised back to source code, using a code formatter, or prezty printer.

This model is highly conceptual. Many source-to-source transformation systems,
such as TXL [Cor04], transform the CST directly. ASTs are never derived. Some
systems do not support type contexts and the AST in these systems will not contain
type information. Others construct a higher level program model, or an abstract
syntax graph, which is then subjected to graph rewriting techniques.

A complete transformation, from program code to program code, is called a run.
Each of the boxes in Figure 2.1 represents a well-delineated transformation, and is
called a szage. Each stage may internally be split into phases. Each phase consists of a
sequence of rule application szeps. A step, or rule application, is the smallest unit of
transformation. They represent the atoms from which transformations are built.

Other architectural models for transformation systems also exist. A common
example is the incrementally updating system. In these systems, the output of one
run is the input to the next. A human operator is usually involved in adjusting the
transformation parameters between each run.

2.1.2  Features of Software Transformation Systems

A software transformation system may be decomposed into three closely related parts:
a program representation holding the program the system manipulates, a zransforma-
tion language for expressing these manipulations, and an environment which is used
to interact with the developer. Figure 2.2 shows a feature model fragment which vi-
sualises this decomposition. Details of each of these features will be described in the
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‘ Software Transformation System ‘

Program Representation(2.4)» ‘ ‘Environment ‘ ‘ Transformation Language(2.14)»

Figure 2.2: Top-level features of software transformation systems.

following sections. The numbers in parentheses refer to figure numbers for additional
diagrams which elaborate on a particular feature. Not all features will be discussed
in full detail. This dissertation is largely concerned with the interplay between ab-
stract models for programs and transformation languages used to manipulate these.
A full discussion of the user interface, i.e. environments, of transformation systems is
therefore out of scope. Before continuing, the feature model notation is explained.

2.2  Feature Models

Explanation

Solitary feature with cardinality [1..1], i.e., mandatory feature

Solitary feature with cardinality [0..1], i.e., optional feature

R Bl BB R RS

Solitary feature with cardinality [n..m], n > 0 Am > n Am > 1, i.e., mandatory clonable
feature

Grouped feature with cardinality [0..1]

Feature model reference F

v

Feature group with cardinality [1..1], i.e. xor-group

Feature group with cardinality [1..k], where k is the group size, i.e. or-group

Figure 2.3: Symbols used in cardinality-based feature modeling

Feature models [Bat05] provide a graphical notation for describing variation
points found in the design of software systems. The notation is well suited for vi-
sualising the relationship between features using the precise and general kernel lan-
guage described in Figure 2.3. Organising the feature space into hierarchical contexts
helps guide discussions. The application of feature models spans from the purely
conceptual, at the domain concept level, to implementation detail, at the design and
architectural level. This chapter mainly uses feature models for describing architec-
tural variation points.
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By saying that feature models describe the essential variability of software trans-
formation systems, it is meant that they describe the characteristic concepts and fea-
tures for these systems, and that the models show the relationships and interactions
between these. The characteristic concepts and features are described using a design
vocabulary, which is introduced in the boxes of the feature diagrams. It is important
to point out that this chapter is guided by the notion of “characteristicness” a dis-
cussion of features which are also commonplace outside software transformation is
avoided; features which pertain to software systems in general will not be discussed.

Alternative formalisms for describing design knowledge are ontologies [Gru93].
Feature models were chosen here because they are better suited to visualise the vari-
ability and configuration aspects of software designs. For a discussion of the relation
between feature models and ontologies, refer to [CKKO06].

2.3 Program Representation

Software transformation systems operate on formal documents which have a precise
syntax definition and sometimes a detailed, formal semantics. These documents may
be programs or specifications, or simply structured specification documents with lit-
tle semantics. Both specifications and program source are commonly referred to as
program code or subject code in the rest of this chapter. Though programs are formal
documents, models representing programs are referred to as program object models
(sometimes just program models) throughout this dissertation, to distinguish them
from general document object models as found in the field of document processing.
This dissertation takes the stance that subject code usually has an a priori defined
semantics which operations on the program object model must preserve.

Due to its formal nature, program code has a clear structure, but this structure
does not necessarily match how the transformation system represents program code
internally. The choice of internal data structure used to represent programs affects the
ease with which various operations can be performed. For example, if the program
is represented as a control-flow graph, control flow analysis becomes easy, but struc-
tural or syntactic changes, such as refactoring is all the more difficult. The choice
of representation significantly affects the possible applications of a transformation
systems. Specific design and implementation choices for the representation further
influence both performance characteristics and the difficulty of expressing different
kinds of analyses and transformations. This argument also works in reverse: the in-
tended transformations of a system will to a large extent dictate the choice of internal
representation.

As an example, consider software transformation systems intended for source-
based re-engineering. These usually employ a parse tree representation that accurately
captures source code details. This may include layout and comments. On the other
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hand, systems intended for software modelling mostly use graph-like representations
that are far removed from the concrete syntax of the source language.

‘ Program Representation ‘

I

Runtime Representation(2.5)» ‘ ‘ Storage Representation(2.13)» ‘ ‘ Data Exchange

Figure 2.4: Feature decomposition for program representation.
Figure 2.4 shows a decomposition of the feature space for program representations.

® Runtime representation — refers to the data structure and features of how the
program code is represented at runtime. Of all the features related to program
representation, the choice of runtime representation has the largest impact on
the expressiveness and performance of a transformation system, see p. 20.

o Storage representation — refers to the facilities for storing program code on disk at
intermediate transformation stages. Choices pertaining to intermediate storage
on disk affects the interoperability and modularity of a system, see p. 30.

® Data exchange — refers to facilities for loading source code into the system
and produce target code as output. This might be features for parsing and
pretty-printing, used with source-to-source transformations. These features
fall mostly outside the scope of this dissertation.

The following sections discusses each feature in turn.

2.3.1 Runtime Representation

‘ Runtime Representation ‘

N ————

‘ Data Structure(2.6)» ‘ ‘ History(2.12)» ‘ ‘ Interface(*)» ‘ ‘ Syntax(2.10)» ‘ Subject
Language(2.11)»

Figure 2.5: Feature decomposition for runtime representation.

Subject programs are contained in a runtime representation when the software trans-
formation system executes. This may for example be an abstract syntax tree, a graph
model, or a database. Collectively, these are called program object models, and may be
described by the following features.
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® Data structure — refers to the choice of (principal) abstract data type used for
the program object model. This is arguably the most important aspect of the
runtime representation. Common choices are trees and graphs, with various
invariants on the well-formedness of the subject program, see the next section.

® History — the representation may optionally support the notion of transforma-
tion history by keeping a modification history of the program code, see p. 29.

o [nterface — refers to the programming interface available for the runtime rep-
resentation. In many systems, the interface is available as language constructs
in the transformation language. That is, the transformation language is specif-
ically designed with primitive constructs for manipulating the program object
model. For this reason, the interface feature is discussed together with the
other language features, in Section 2.4.

o Syntax — refers to the types of syntaxes available — abstract or concrete — for
writing and reading program code when implementing transformation pro-
grams, see p. 27.

o Subject language — The language in which the program code must be expressed,
i.e. the supported source and target languages, see p. 29.
Data Structure

The feature model for the data structure in Figure 2.6 describes which data types
are used to represent the program code at runtime, and which support exists for
maintaining well-formedness of the program code structure.

Data Structure

‘ Representation(2.7)» ‘ ‘ Invariants(2.8)» ‘ ‘Annotations(2.9)> ‘

Figure 2.6: Feature decomposition for data structure.

® Representation — details the choice of abstract data type for the program code,
ranging from strings and lists to relational databases, see the next section.

® [nvariants — describes how structural and semantical invariants of the program
code can be placed and enforced on the representation, see p. 24

o Annotations — refers to the ability of the representation to handle meta-information
not part of the program code structure, see p. 26.
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Representation

Figure 2.7 describes the features of the data type used to represent the program code.
Under each principal choice (list, tree, graph, etc), the most common variants are

shown.

Representation

<

o o 0
Directed -Factual -Rel ational
Acyclic
o

Figure 2.7: Variants of data structure representations.

o Swring — The simplest choice of data structure for representing program code is

a text (or even binary) string. In this case, the transformation system amounts
to a string rewrite engine, as in the theory of formal languages and automata.
The C/C++ preprocessor is one example of such a “transformation system”.
The trio sed, grep and awk [DR97] of Unix tools is another, based on regular
expressions. Representing programs as strings fails to capture the grammatical
structure inherent in the program code. This quickly leads to subtle bugs for
any non-trivial transformation. String rewriting engines can hardly be called
software transformation systems.

List — A slightly more structured representation than the string is the token
stream output by a lexer, i.e. a /ist of tokens. Each token is marked with a type,
such as keyword, identifier, string literal or parenthesis, e.g:

["if":keyword, "(":left_paren, ..., ")":right_paren]

The ANTLR parser toolkit [PQ95] supports rewriting on token lists. Both
the string and token list representations of program code are useful for limited,
layout preserving rewriting. As long as no context or grammatical information
is needed, the matching can be done reliably at the lexical level.

Trees — Most practical transformations need at least grammatical structure and
most often also context knowledge such as variable binding or type infor-
mation. Extracting the grammatical structure from program code text can
be automated using syntax analysis, i.e. parsing. Syntax analysis produces
trees. Representing program code as trees dates back to the earliest compil-
ers, and multiple variants are possible. In the case of concrete syntax trees, the
tree contains a faithful representation of the source code, possibly excluding
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non-essential whitespace. In the case of abstract syntax trees, all non-essential
nodes, such as whitespace, parentheses, statement and expression separators,
have been removed. These can be automatically regenerated. Normally, com-
ments and documentation are also left out. Trees are often given a textual
syntax, in the form of terms, e.g.:

If(False,Int(1l),Int(2))

The maximal sharing [vdBdJKOOO] technique is a variation of the tree repre-
sentation which improves execution time of matching and memory efficiency
is. The tree is represented as a directed, acyclic graph (DAG), where equal sub-
trees occurring multiple times in the tree are stored only once. This technique
improves the efficiency of term matching significantly. It has been used in
several transformation systems, including ASF+SDF [vdBvDH*01], Stratego,
ELAN [BKK*04], Tom [MRVO03] and derivates of these. It is important to
note that the maximal sharing technique hides the sharing, making the DAG
behave as a tree. This is required for the term rewriting theory. Rewriting on
DAGs, sometimes referred to as term graph rewriting, has different termina-
tion and confluence properties [Plu99, BEG*87]. An example of transforma-
tion system based around term graphs is HOPS [Kah99, KDO01], an interactive
program transformation and editing environment that ensures syntactic and
semantic correctness. HOPS may also be described as a syntax directed editor.

e Graph — Plain trees are not sufficient for explicitly capturing some important
types of context information, such as typing and variable binding. Section 2.4
discusses how tree-based transformation systems deal with this problem. The
program code may be expressed as a graph. This allows additional links (edges)
to be added from, say, a variable use to its definition, or from an identifier
to its type, thus capturing context information. Labelled edges are handy for
distinguishing between kinds of relationships between two nodes, for example,
between a use-def and a type-of relationship. Artributes are named proper-
ties of nodes that contain values. In most graph-based systems, a node may
have a set of named attributes. These can be matched on during rewriting.
Some systems, such as the modelling system MetaEdit [SLTM91], also allow
attributes on edges. Attribute grammar systems are capable of declaring depen-
dencies between attributes across nodes using directed equations. Nodes may
be related using embedded relations, as in PROGRES [Sch04]. These features
are closely tied to transformation language features and are discussed in Sec-
tion 2.4. None of the transformation systems known to the author employs
hypergraphs directly, i.e. graphs where edges connect more than two nodes.
The GAMMA multiset rewriting system [BM91, BM93], seems to come clos-

est in terms of hypergraph semantics. Other works have been derived from this,
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such as [CFGI6]. Neither of the systems is used for program transformation.

® Database — Linking together nodes in a graph or subterms of a term can be
done using a relational database. Transformation systems based on this ap-
proach are comparatively sparse. APTS is the only relational database system
that allows arbitrary transformation. In [SNDHO04], the authors describe an
interactive system focused on the refactoring of Clean programs. The system
described in [CNR90] extracts facts from C code into a database, but only
allows subsequent analysis, not transformation. In all cases, the program code
is expressed in tables with relations between them. Transformations and anal-
yses are expressed as relational queries, in styles similar to normal relational
databases. A feature unique to the database approach is the ability to declar-
atively construct custom views of the program code and do manipulation on
these. In all other approaches, similar functionality must be provided by the
developer, and is highly non-trivial. A related approach is the facrual databases
used in logic programming languages such as Prolog. This is employed by
JTransformer [Win03, KK04]. The structure of the program code is stored as
facts in a database. Questions (queries) may be asked. These are automatically
resolved against the database by the Prolog inference engine. A discussion of
the finer points of different database approaches is beyond the scope of this
chapter, save to point out that while the Prolog model is based on the theory
of predicate calculus, the relational database approach has its roots in relational
algebra.

Perhaps the principal tradeoff in the selection of a suitable representation is be-
tween expressiveness and efficiency. Low-level and simple abstract data types such as
lists and trees are very efficient to transform, but it often becomes difficult to embed
analysis results in flexible ways. That is why annotations (discussed later) are only
found as additions to the more “primitive” representations. The elaborate representa-
tions, such as general graphs and relational databases, are mainly used for high-level
concepts. Models are first extracted from the source code. Queries and computations
are performed on these models. The results are later used to guide transformations
on the low-level representations.

Relational databases are often used for various types of code querying and anal-
ysis, as in the case of CodeQuest [HVdMdVO05]. The program object models used
for this are removed from the primary grammar structure, because encoding recursive
data structures into relational databases (tables) is generally inefficient.

Invariants

The syntax and semantics of the program code, no matter how it is represented, give
rise to a large amount of invariants, see Figure 2.8. These must kept throughout the
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transformation run, but may be lifted temporarily during transformation steps, or
even phases.

Invariants

Semantics

ol

Well-formedness

Constraints
Equality | | Subtypes r—r/o\t—\

Structural ||Handcoded

Declarations

Fixed | | Programmable

Figure 2.8: Feature decomposition for data structure invariants.

Syntactical Invariants

o Arity — A weak variant of typing, found in the term-based system Stratego. For
each type, only the numeric arity, i.e. the number of arguments is enforced.
An if-then-else node may look like If': Expr * Stmt * Stint, thus declaring terms
on the form /f{e,st,st;) where e must be an Expr and sty, st; must be Stz
Stratego only requires that three subterms be attached to /. It does not verify
their types.

o Typing — The most common way for ensuring grammatical well-formedness
on the subject code is to use the type system of a strongly typed transformation
language (not to be confused with the type system of the subject language).
The variants include basic equality-based systems (only terms of type T may be
used where T is expected) and systems which support the notion of subtyping
(any subtype of T may be used where T is expected). In either case, the syntac-
tical correctness of the program code with respect to a grammar can be ensured.
It is worth noting that although token lists discussed above are by definition
typed, they rarely offer any grammatical correctness guarantees. TXL [Cor04]
operates on concrete syntax trees. The language ensures that when a subtree is
replaced on a given node, the new subtree must be of a compatible type, i.e.
the new subtree must parse to the same production as the old. The types are
defined by the grammar for the language.

o Well-formedness constraints — A more powerful approach is to provide a declar-
ative language for expressing structural constraints. It is then possible to either
verify that a given transformation will never violate these constraints, or to in-
sert constraint checking between transformation phases, at declared safe sposs.
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AGG [Tac04] is a graph transformation system which provides structural con-
straints on its graphs. The constraints are specified as part of the graph gram-
mar.

One could consider the structural constraint feature an extension or variant of
user-defined types, but there are some essential differences. Ensuring that each rewrit-
ing step respects a given grammar is computationally feasible, because grammatical
constraints map relatively easily to most strongly typed languages. Checking struc-
tural constraints after a rewrite step may not terminate in the general case (for exam-
ple, if the constraint is given in a Turing-complete formalism). Even when the con-
straint language offers termination guarantees, the computational complexity may be
prohibitive.

Semantical Invariants In addition to syntactical well-formedness, facilities may ex-
ist for defining parts of the semantics of the program code.

® Fixed — The system comes with a fixed implementation that preserves (possibly
a subset of) the semantics of the subject language. In the case where the lan-
guage of the program code is fixed, a complete enforcement of the semantical
invariants is possible thanks to a priori hand coded logic in the system. JTrans-
former provides a library of conditional transformations for Java, many of
which are guaranteed to preserve Java semantics. The FermaT [War02, War89]
transformation library guarantees semantics preservation for FermaT’s fixed

subject language, WSL.

® Programmable — The system supports the programmer in implementing lan-
guage semantics constraints, for example by providing suitable generic libraries
or language constructs for capturing language semantics. Varying degrees of
support for this is present in most transformation systems. Notable features
are discussed in Section 2.4.

Few transformation systems enforce type-correctness of the subject code or sim-
ilar forms of semantical correctness on their transformations. It may be exceedingly
difficult to check for these during the runtime of the transformation, and it is also an
open problem how to efficiently encode semantics for the subject language into the
type system of the transformation language. For this reason, it is not uncommon to
“outsource” questions of correctness to theorem provers.

Annotations

The structure used to represent the program code should be precise and minimal.
This reduces the complexity of the transformation programs: fewer node types means
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fewer patterns for the rules. A minimal structure sometimes conflicts with extensibil-
ity, however. It is often necessary to store intermediate computation results and relate
these to elements in the program code. A common way to handle this at the program
representation level is to store such information as annotations, see Figure 2.9.

Annotations

i

Unrestricted

Declared | | Free Form

Figure 2.9: Feature decomposition of annotations on the program representation.

Restricted

Annotations are (temporary) pieces of meta information that may result from
analyses such as type inferencing, variable scoping or source code metric calcula-
tions. Annotations are also used to retain comments and layout information, without
declaring these as part of the primary program code structure.

® Restricted — Only a limited, pre-defined number of annotations may be placed
on the program code in the runtime structure.

o Unrestricted — Annotations can be freely defined by the programmer. In the
case of free-form annotations, arbitrary meta information is allowed. This is
the case for ASF and Stratego. In the case of declared annotations, syntactical
(and optionally, semantical) restrictions are placed on the annotations. These
must be declared in advance.

Annotations are different from (tree or graph) attributes in several ways. Since
annotations are pieces of meta-information, they can be discarded at any time with-
out changing syntactic or semantic validity. Moreover, even declared annotations are
not part of the program code grammar, so one cannot expect that all transformations
will respect and update them.

Most transformation system support annotations in one way or another. It is
generally the case that strongly typed transformation languages necessitate declared,
as opposed to free-form, annotations.

Syntax

Developers reading and writing fragments of subject language program code do so in
the program code synzax. This syntax may be quite different from that of the subject
language, and is is often influenced by the choice of program representation.
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Figure 2.10: Features for supporting subject syntax in transformation programs.

® Kind — In source-to-source transformation systems such as TXL [CCHO5] and
ASF+SDF [vdBvDH?*01], subject program code fragments are often written in
the syntax of source language called the concrete syntax. The concrete syntax for
the program code is embedded in the transformation program. When concrete
syntax support is not present, program code must be written using the data
types of the transformation language, that is, in an abstract syntax. This is the
case for Tom and ANTLR, where tree nodes and trees are built like any Java
data structure, using object instantiation.

Stratego supports both concrete and abstract syntax, demonstrated in the func-
tionally identical rules shown next, where the concrete syntax fragment is en-
closed in “semantic” brackets:

EvalIf: |[ if(true) ~e® else ~el ]| — |[ ~e® ]|
EvalIf: If(BooleanLiteral("true"),e0,el) — e0

® Presentation — For the systems mentioned above, the syntaxes were all rextual.
Another variation is to represent the program code using a graphical notation,
irrespective of whether the source language is visual or not. This is done in

AGG and PROGRESS which both offer abstract graphical syntax and presen-

tation.

The primary tradeoff between concrete and abstract syntax is readability versus
preciseness. Concrete syntax patterns are mostly easier to read and write for program-
mers. However, extra care must be taken to ensure that the pattern (and the meta
variables) match exactly the types of AST nodes intended. Consider the following
concrete syntax pattern:

| [ boolean equals(Object ~n) { ~stm }]|
It does not match the following declaration, because of the visibility modifier public.
public boolean equals(Object o) { return false; }

The pattern, as written, specifies that only declarations without any visibility mod-
ifiers should be matched. Writing exact pattern matches in abstract syntax is often
easier, though significantly more verbose. On the other hand, code generation usually
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benefits significantly from concrete syntax templates, since such templates are gener-
ally easier to write and maintain compared to equivalent templates in an abstract
syntax.

Subject Language

The possible choices for subject language clearly defines the applicability of a given
transformation system for a concrete problem.

Subject Language

Fixed | | Programmable

Figure 2.11: Feature decomposition for subject language.

o Fixed — The subject language is fixed to a particular language.
o Programmable — The subject language can be freely defined by the programmer.

Both JTransformer and FermaT are fixed to one subject language. This fixedness
gives the systems an advantage in providing a convenient and robust transforma-
tion library. However, FermaT’s subject language is WSL, a wide-spectrum language
designed to capture a large set of source languages. It contains a small kernel of con-
structs to specify (non-deterministic) choice and iteration. Various assembler dialects
have been transformed into it [War99]. Both C and COBOL code is in turn pro-
duced from WSL. The basic transformations in the FermaT library guarantee both
syntactic and semantic correctness. JTransformer also comes with a library of ba-
sic transformations for its subject language, Java. Many of these preserve the Java
semantics and syntax.

The choice of language may be programmable, as is the case for TXL [Cor04],
ASF+SDF [vdBvDH*01], Stratego/XT [BKVV06] Tom [MGRO5], DMS [BPM04],
and Elegant [Aug93]. In these systems, the developer must supply all syntactic and
semantics-preserving logic, using whatever support the transformation system pro-
vides for this. For realistic languages, this is a considerable undertaking. In many
cases, separate projects exist which specialise general systems for a particular language.
These aim to achieve the best of both worlds: a sound library of basic transformations
with full flexibility, e.g. CodeBoost [BKHV03] specialises Stratego for C++.

History

Support for history as part of the runtime representation provides a low-level way
of keeping track of changes to the program code. It complements execution traces,
discussed in Section 2.4.
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Origin || Checkpointing

Tracking

Figure 2.12: Features for history support.

o Origin tracking — A feature that retains tracking information with the program
code elements throughout a complete transformation. It is used to determine
how a code element in the final product relates to the code elements in the
source input, i.e. where a given code element in the result program came from

in the source program. Earlier prototypes of ASF had this feature [vDKT93].

® Checkpointing — Runtime representation support for transaction-like opera-
tions. With checkpointing, a snapshot can be taken of the program code so
that this state can be restored if a transformation sequence fails. Stratego of-
fers full checkpointing support due to the (local) backtracking feature of the
language, as does Tom when rewriting functional terms (Tom also supports
non-functional terms and graphs, where the backtracking is not available).

2.3.2 Storage Representation

Many transformation systems provide special support for storing intermediate forms
of the program code, see Figure 2.13. The code may be stored in a special, efficient
storage format, or as source code in the source or target language. The choice between
a special storage format versus language source code affects how auxiliary information
can be added.

Special storage of the internal data allows bundling of analysis results and con-
straints with the data. This may in turn be used to minimise costly analyses, such
as parsing and type checking, by caching results on disk between executions of the
system. Having a standardised internal storage facility opens up for interchange of
analysis results between components of the transformation system: fragments of code
can now easily be serialised and sent between separate processes, or over a network.

Aside from the size benefit offered by good storage formats, extra information
such as accumulated transformation history can be added in the form of origin track-
ing or execution traces. This is not possible (or at least rather difficult) when the
interchange format is fixed to the source code of the source (or target) language.

The storage representation feature from Figure 2.13 is decomposed into the following
features:

® Extensibility — Either the storage representation is fixed for the transformation
system, or it is programmable. This allows the programmer to extend it. Strat-
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‘ Storage Representation ‘

Artifacts

Extensibility

i

‘ Programmable ‘ ‘ Syntax‘ ‘Annotations ‘ ‘ Invariants

Figure 2.13: Feature decomposition of storage representation.

ego/XT and ASF use a fixed format called ATerm. In the case of Stratego/XT,

additional formats may be added by the user. AGG has a fixed XML-based
format for its graphs.

o Artifacts — The choice of syntax is the most influential design choice of the
storage representation. When concrete syntax (of either the source or target
language) is used for storage, auxiliary information is considerably more diffi-
cult to encode. By using an extensible abstract syntax, a transformation system
provides the transformation programmers with more freedom.

In the case of an abstract syntax, custom invariants concerning the data may
accompany the program code. User-extensible invariants allows the transfor-
mation programmer to express additional invariants that must be respected by
other programs and components processing this program code.

Depending on the choice of syntax, the storage format may support storing an-
notations. There is usually a correspondence between how the runtime repre-
sentation language handles annotations and how these are stored: the runtime
typing and structural constrains must usually be respected.

History — The stored files may contain checkpointing information which may
allow backtracking across saved sessions. Such information allows mid-transaction
saves and rewind. Additionally, origin traces may be included in the saved file
This aids in origin tracking between sessions and between tools.

Storing of concrete syntax captures layout, even for visual languages, where the
graphical objects in saved visual programs retain their user-edited placements. The
GXL [HWS00] language encodes this information in special graph attributes in the
stored files. Storing additional, custom transformation invariants along with the pro-
gram is required if other transformation components are to know about these ad-
ditional constraints. A caveat is that the formats used to store such constrains, and
their meaning, must be known to all components. The AGG system preserves these
constraints by coding both the program model and the constraints into the same unit.
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2.4 'Transformation Language

The transformation language is the centrepiece of any programmable transformation
system. It is the main vehicle for expressing transformations, and should therefore
easily express the kinds of transformations desired by its user. As with any program-
ming language, the degree of expressiveness provided by the language is a double-
edged sword: Having many language features generally increases expressiveness, so
does avoiding usage restrictions on individual features. There is a tension between
expressiveness and how easy proofs of transformations can be done. Usage restrictions
on individual language features, and careful consideration of feature combinations are
required if good provability is desired. However, not all program transformation ap-
proaches are concerned with provability. This has allowed a rich set of transformation
language features to evolve.

‘ Transformation Language

- N

‘ Organization(2.15)» ‘ ‘Transformation Atoms(2.16)» ‘ ‘Typing(2.23)> ‘

Figure 2.14: Feature decomposition of transformation languages.

Given the rich literature and existing surveys on the details of particular feature sets,
such as [Fea87, PS83, Vis05a, vWV03], this section focuses on the broad lines and
the relationship between transformation languages and program models. The features
being considered are shown in Figure 2.14.

® Organisation — refers to the organisation of the rule and data declarations, see
the next section.

o Transformation Atoms — refers to the properties of the units of transformations,
i.e. the functions, rewrite rules, queries and strategies, see p. 36.

o Tjping — describes characteristic features of how typing is realised in transfor-
mation languages, see p. 47.

2.4.1 Organisation

Features for organising the language declarations are shown in Figure 2.15. This
organisation is necessary for managing the complexity of the transformation program
itself. As transformation programs grow in size, they are subjected to the same issues
of scale which are already seen in constructing other types of software applications.

® Grouping — The feature model suggests the hierarchical organisation of trans-
formation expressions or statements into applications of operations. Operations
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Figure 2.15: Language features for organization of declarations.

correspond to transformation atoms. For textual transformation languages, op-
erations may be placed into sections inside their declaring file. Sections are in
turn grouped into named modules. A module may be a file, or multiple files
may make out one module. Modules may again be composed into components.

® Namespaces - The organisation of namespaces is related to grouping. Scoping
may be done in levels which follow a hierarchy, usually the one provided by the
grouping. Another alternative is no levelling at all. This gives one global name
space for all declarations. In either case, the different types of declarations
may be organised into separate domains, allowing both a rule and a type with
the same name to exist at the same time without causing confusion. A final
consideration is encapsulating names into their respective scope by restricting

visibility.

The basic organisation features are combined in a plethora of ways. The class-
based systems JastAdd and Tom group methods (operations) into named sections
(classes) which become one level in the namespace. The methods reside in a different
namespace domain than the variables and the types. It is possible to have both a type
and a method with the same name without confusion.

For PROGRES, hierarchical visibility is only available for global graph con-
straints, on a per-section basis. For Elegant, a component is either a scanner, trans-
former or code generator, i.e. a phase of a compiler. For APTS, all definitions are
maintained as entries in databases. You can load and store databases, composing
them by merging two databases, thus emulating the concept of components. For
Stratego, each file is a module, divided into sections. Rules and strategies are the only
two types of operations, and both live in the same, global namespace. There is no
visibility control, so rules and strategies with the same name may interfere.

One drawback of the numerous realisations of these basic features is that learning
transformation languages might be daunting. The nuances and novel combinations
serve to increase the learning curve for new developers. Another drawback is that
there are few, if any, standardised ways of organising transformation programs. The
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closest to a de facto standard, at least at the macro level, is perhaps those which mimic
compiler pipelines. This is (mostly) the case for JastAdd, Elegant and Stratego.

A number of noteworthy characteristic organisation features are discussed next.

Rule/Dependency Separation — Attribute grammar systems combine the depen-
dencies between nodes and the directed equations used to compute derived attributes
into one construct. In PROGRES, the rule for computation of the derived attribute
is kept separate from the dependence declaration.

Inheritance — In Tom and JastAdd, both of which are embedded domain-specific
languages for Java, inheritance is used to encode the grammar structure of the sub-
ject language in the type system of the host language. Consider the following the
grammar fragment:

literal| binexpr| . . . ;
literal ©:= string_literal| integer_literal| . . . ;

expr .

This translates into the following (Java) type declarations for JastAdd (the class ASTNode
is always the root of such type hierarchies in JastAdd):

abstract class Expr extends ASTNode { ... }
abstract class Literal extends Expr { ... }
class StringLiteral extends Literal { ... }

The situation is similar with Tom, but the programmer may choose the root class
freely.

In PROGRES, the graph grammar declaration uses subtyping to declare the types
(and attributes) of nodes in the graph, e.g.

node class Root; intrinsic a : = 1; end
node class Childl is a Root; redef b : = 2; end
node class Child2 is a Root; redef c : = 3; end

Transcripts — Transcripts are an organisational unit only found in APTS. A tran-
script implements either a rewrite or an inference rule for a relation. A transcript for a
relation contains one or more inference rules which are used to analyse the CST and
maintain a database of program properties. The rules inside the transcript are applied
non-deterministically until no relations in the program database can be changed, i.e.
until a fixpoint has been reached. Consider the following example, included to pro-
vide some flavour of the APTS language. The example defines the notion of free
variables in a SETL-like subject language [Pag93].

transcript freevar(Q);
rel freevar: [node, tree];
free: [tree];

prompt free: [1, ' is a free variable ’];
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external bvar: [node, tree];
op: [node, node];
key free: [1];
begin
freevar(root(), .x) -> free(.x);
match(¥ expr, .x ¥ ) | isavar(¥% expr, .x% )
-> freevar(¥ expr, .x% , % expr, .x% );
match(¥% lexpr, .x % ) | isavar(®% lexpr, .x% )
-> freevar(% lexpr, .x% , % lexpr, .x% );
op(.x, .y) and freevar(.y, .z) and not bvar(.x, .z) -> freevar(.x, .z);
end;

This transcript, named freevar (), defines the relations freevar and free. It depends
on the external relations bvar and op (defined in other transcripts). The prompt def-
inition specifies how tuples of the relations in this transcript are displayed. The
inference rules of this transcript are specified between begin and end. The rules on
line 10-13 specify that any variable that is an expression on a left or right hand side
of an assignment, is a free variable. match and isavar are builtins of APTS. match
supports non-linear pattern matching (discussed later); here, .x is a pattern variable.
The main inference rule for free variables is given on line 14, and states that a free
variable .z of term .y is a free variable of term .x iff .x contains .y as an immediate
subterm (the op(.x, .y) part) and .z is not a bound variable of .x (the not bvar(.x,
.y) part). These rules are applied non-deterministically until none are applicable any
more. This completes the update of the program database.

Rewrite rule transcripts are similar to relation transcripts. They consist of one or
more rewrite rules, which rewrite the CST, as opposed to the program database.

Transcripts have some properties of modules. There is a simple kind of names-
pacing and visibility for transcripts: rules inside a transcript are not by default visible
outside the transcript. Rules from other transcripts can only be invoked indirectly,
by invoking their transcripts. Transcripts also enforce a special evaluation semantics.
All external relations must have been evaluated before a transcript can be evaluated.
Cyclic dependencies between relations are only allowed within transcripts. Multiple
transcripts may be defined in the same file.

Parametrisation

The different organisation units, such as types, rules, functions and strategies may
for practically all transformation languages always be parametrised with values. In
the transformation languages Elegant, Tom and JastAdd types may be parametrised
with types. Stratego and Elegant offer higher-order operations.

Higher-Order Operations — A catch-all feature for higher-order rules, strategies,
functions and queries. The known benefits from higher-order functions also apply to
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rules, strategies and queries: they aid in parametrisation and subsequent composition
of code, thereby allowing a very flexible, precise and familiar notation for expressing
operations. The following Stratego strategy definition defines a top-down (pre-order)
term (tree) traversal, where the strategy s is applied at every subterm (tree node) before
its children are visited:

topdown(s) = s; all(topdown(s))

Module Parametrisation — Parametrisation of modules, as offered by the ML-
family of languages, is seen in very few of the domain-specific languages provided by
any of the transformation languages. JastAdd and Tom (both based on Java, which
offers parametrised classes) are the only known exceptions. Also, no transformation
system currently offers parametrised components. The absence of parametrisation
at higher levels, and the absence of higher levels of organisation, may be taken as a
sign that issues common to programming in the large have not been addressed for
transformation systems yet.

2.4.2 Transformation Atoms

Transformation atoms are the fundamental building blocks of transformations, see
Figure 2.16. For rule-based languages, they are the rewrite rules. For functional
languages, they are the functions. For relational languages, they are the queries. In
style with modern science, transformation atoms are not indivisible: functions are
made from expressions, rewrite rules from patterns and conditions, and relational
queries from path expressions and statements.

‘ Transformation Atoms ‘

‘Functions ‘Rewrite Rules ‘ ‘ Strategies | | Queries

Figure 2.16: Feature decomposition of transformation atoms.

The following discussion will focus on characteristic properties of the rewrite
rules, as this is arguably one of the most characteristic features of transformation
languages. Functions and queries found in in transformation languages are familiar
from general purpose and relational query languages.

Relations — Multiple variants of the relation feature exist. In APTS, the program
database stores relations extracted from the CST using inference rules. In PROGRES,
relations between nodes and node types are declared using graph queries and path
expressions. In JTransformer, the Program Element Fact (PEF) database contains
relations extracted from the Java AST, e.g.:

importT (10000, 30001, 20003).
importT (10001, 30001, ’java.util’).
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The fact on line 1 represent a Java import statement. Each fact has a unique id. The
fact on line 1 has id 10000. It states that the class corresponding to fact id 20003
is imported by the compilation unit of id 30001. On line 2, another fact states that
the same compilation unit also imports java.util.*, i.e. all classes of the package
java.util.

In all systems, queries can be done on the relations; the relations often encode
“refined facts” that are extracted and analysed from the CST and AST, i.e. informa-
tion that is only implicit in the AST representation, such as the binding from a name
to the actual definition for that name.

Relation Functions — Elegant provides a kind of function with a special semantics,
called a relation. In contrast to functions, relations can have an arbitrary number
of input and output arguments. The arguments are updated by the body in any
order. The effect of a relation is to synchronise all the output domains with the input

domains, [JAM99].

relations

MakeFunctions (NIL : List(Func), out {}, {}) { }

MakeFunctions (funcs : List(Func) out signs, decls) {
MakeOneFunc (funcs.head out s : VOID, d : VOID)
MakeFunctions(funcs.tail out ss : VOID, ds : VOID)

local
signs : VOID = { s "\n" ss }
decls : VOID = { d "\n" ds }
}

The relation MakeFunctions is used to traverse a list (funcs) of functions, and for each
element, call the relation MakeOneFunc to compute its sighature and its complete decla-
ration. This results in two separate lists which are both returned from MakeFunctions,
one for the signatures, in signs, and one for the declarations, in decls. The ab-
straction MakeFunctions therefore returns two values, whereas a function would only
return one. It is possible for the return values to be declared as lazy values. In this
case, they will only be computed if they are used by the caller.

Congruences — Congruences are a language construct for defining data structure
specific traversals. They are described in Chapter 3 in the context of Stratego.

Queries — Queries are expressions for navigating, analysing or modifying the pro-
gram code. In the case of graph queries, the queries are usually only used for analysis.
Modification is done using graph rewrite rules. Queries on relational databases also
allow database updates, which amounts to program code modification. The following

PROGRES code illustrates a query, [Sch04].

query AllConsistentConfigurations(out CNameSet : string [0: n]) =
use LocalNameSet, ResultNameSet : string [0: n] do

ResultNameSet : = nil
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& GetAllConfigurations(out LocalNameSet)
& for all LocalCName : = elem(LocalNameSet) do
choose
when ConfigurationWithMain(out LocalCName)
and not ConfigurationWithUselessVariant(LocalCName)
and for all LocalMName : = elem(LocalCName.-has->.=needs=>) do
ModuleInConfiguration(LocalCName, LocalMName)

end
then ResultNameSet : = ResultNameSet or LocalCName
end
end
& CNameSet : = ResultNameSet
end
end

This query computes all consistent configurations of a software package. It uses
another query, GetAllConfigurations, to obtain its starting point. This is looped
over. For each configuration, a few sanity checks are performed. The inner loop on
lines 9-11 checks all variants that are targets of has edges, and sees if all necessary
modules of these variants are part of the configuration currently selected by line 6
from the set iterated in line 5.

Closures — Closures are a common feature in functional programming languages,
such as Haskell, ML and Elegant. They combine well with data structure naviga-
tion features for writing tree transformations. Dynamic rules, discussed later, share
many properties of closures, but come with some unusual semantics for scoping and
visibility.

Editing Operations — The FermaT language does rewriting using editing opera-
tions such as cut, copy, paste and delete. There is a requirement placed on how these
operations are used. This allows FermaT to guarantee that any editing on the pro-
gram code will always result in a syntactically and semantically valid result, though
not behaviourally equivalent. A few examples of editing operations:

@Cut // delete the current item and store it in the cut buffer
@Paste_Over(I) // replaces the current item with I

@Rename (0ld, new) // renames a variable throughout the current tree
@elete // deletes the current item

@Splice_Over(L) // replaces the current with with the list L of items

Path Expressions — Path expressions are declarations that express paths through
the program code structure. In a sense, it provides a small declarative sublanguage for
navigation and matching. The feature is mostly found in program transformation
systems with graph representations. These are also found in some tree rewriting

languages, such as XSLT. The following PROGRES path expression defines a path
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(i.e. a relation) named needs from one or more ATOM nodes to one or more MODULE
nodes.

path needs : ATOM [®: n] -> MODULE [®: n] =

( instance of VARIANT & -v_uses-> )
or ( <-has- & instance of MODULE & -m_uses-> )
end;

It states that there is a needs path from an ATOM @ to a MODULE 1 if 4 is a VARIANT (a
subclass of the ATOM node type), and there is a v_uses edge from m to a, or if there is
a has edge from 7 to 4, a is @ MODULE and there is also an m_uses edge from a to m.
Logic Predicates, Assertions and Retractions Predicates are used express queries on
the program element fact (PEF) base. A predicate consist of one or more patterns
which will be attempted matched against the facts database using unification. Logic
assertions are used to enter facts in the PEF base. The facts are terms, expressing
relations. Retractions are used in JTransformer to remove facts from the PEF base.

fullQualifiedName(20003, ?7Fqgn)
importT (10000, 30001, 20003).
retract (importT(10000, 30001, 20003)).

The predicate on line 1 instantiates the variable Fqn with the fully qualified name of
the declaration with unique id 20003, which may for example be a class. Line 2 is
an assertion of the relation importT between its three constant values. Its meaning in
JTransformer was discussed in earlier in this section. Line 3 removes the fact asserted
by line two from the PEF database.

A general tradeoff common to many of these features is that of expressiveness ver-
sus efficiency. For example, allowing existential quantification and universal quanti-
fiers in queries may quickly result in even small queries which become prohibitive to
compute on moderately sized graphs.

Rewrite Rules

A rewrite rules is a function r which takes a (fragment of a) program fj to another
(fragment of a) program f1, i.e: 71 fo = f1. fo is referred to as a lefi-hand side
pattern and fi a right-hand side pattern. Determining which fy a rule is applicable
to, and what kind of computational expressiveness is allowed in computing f;, are
fundamental considerations.

® Declaration — refers to properties of the rule declaration. A declaration of a
rewrite rule may keep the domains separate, i.e. the left and right hand side
may be visually separate in the example above. Alternatively, they may be
mixed together, as in the case for congruences. A rewrite rule normally has one
left-hand side and one right-hand side, i.e. two domains, see p. 42. In Elegant,
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Figure 2.17: Feature decomposition of rewrite rules.

a third variation exists where an arbitrary number of domains can be combined
into what is called a relation. Most transformation languages with rewrite rules
support conditions, see p. 40.

o Application— Describes how the application of rules are ordered, see p. 43 , and
also how the programmer can express strategies, see p. 44, for rule application
on top of the evaluation mechanics, see p. 45, provided by the language.

® History — refers to features where the execution #race can be recorded.

The rendition of rewrite rules also varies considerably. The previous sections have
illustrated examples from both APTS and Stratego. The following rewrite rule is from
JastAdd:

rewrite Use {
when(decl() instanceof TypeDecl)
to TypeUse new TypeUse(getName());

Transactions — Transactions provide concurrency and consistency guarantees to a
sequence of transformation operations. The concurrency guarantees allow multiple,
simultaneous accessors to the program code. The consistency guarantees that the
program code is consistent with respect to a set of invariants after the sequence of
operations inside the transaction have been applied. The PROGRES language offers
consistency. Concurrency is also supported by PROGRES at the runtime represen-
tation level but the language is not concurrent.

Dynamic Rules — Dynamic rules are described in Section 3.3.3 in Chapter 3.

Conditions Variation of application conditions for rules, see Figure 2.18, exist in
abundance. For purposes of discussion, the feature spaces is divided into four parts,
described next.

® Predicates — predicates are declarative questions evaluated against the structure
of the code, or against relations constructed from the code.
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Figure 2.18: Feature decomposition of rule application conditions.

® Functions — functions are user-defined algorithms. They may return arbitrary
results and often allow a more flexible way of encoding predicates into several
computational steps.

o Negative application conditions — negative application conditions (NACs) are
worth mentioning in relation to graph rewriting. Positive graph patterns only
pose restrictions on which edges must be exist between nodes. Negative appli-
cation conditions are used to express which edges may nor exit. They may also
be considered as a variant of structural predicates.

® Restrictions — restrictions are a special kind of a pattern found in PROGRES.
Restrictions can be named and reused by rewrite rules. When evaluated, they
can in turn call out to functions (called queries in PROGRES parlance), which
can do arbitrary computations and graph traversals.

Functions and predicates are the primary variation points for conditions. These
general concepts take many shapes, such as the negative application conditions and
restrictions.

Unification — Unification is a generalisation of basic pattern matching. A query
with multiple concurrent patterns can contain reoccurring variables which must be
instantiated to the same value for each pattern, i.e. they must be unified. Unification
is equivalent to instantiation in logic. In logic languages such as Prolog, unification
is done against a set of terms, all stored in a facts database. Pattern matching with
non-linear patterns can be considered a restricted form of unification; the matching is
done against one term, using one pattern, but the recurring variable(s) in the pattern
must be instantiated to the same value in all places.

Node Folding — Node folding provides a unification-like capability to graph pat-
tern matching. It is found in graph rewriting systems where every pattern match is
attempted across all nodes of the graph. In some systems, it is by default required that
two different nodes, 717 and 71y, in the left-hand side pattern match different nodes in
the graph. Node folding allows specifying that 717 and 71; may match the same node.

Reference Attributes — Reference attributes allow placing cross-node links in an
abstract syntax tree, i.e. links which do not go directly to a parent or a child, turning
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it into a abstract syntax graph. In JastAdd, directed equations may be subsequently
be expressed on top of the abstract syntax graph, whereas other attribute grammar
systems such as Elegant only allows directed equations on the AST. The following
JastAdd fragment declares the synthesised (lazily evaluated) attribute booleanType()
on the Program node, which references the definition for the builtin type boolean.

syn lazy PrimitiveDecl Program.booleanType() =

(PrimitiveDecl) localLookup("boolean");

Overlays — Overlays are described in Chapter 3.

Domains Figure 2.19 describes the domains used for pattern matching in rewrite
rules.

Domain

Pattern

Syntax || Linearity

Figure 2.19: Feature decomposition of rule domains.

® Language — Specifies which subject language the pattern must be written in.

® [Pattern — The pattern of the domain is expressed using either abstract or con-
crete syntax, with either a graphical or textual presentation, as discussed in Sec-
tion 2.3.1. When the pattern variables instantiated non-linearly, the semantics
is the same as for unification.

The choice of language may be fixed by the transformation system, or it may be
user-definable. FermaT (fixed to WSL) and JTransformer (fixed to Java) are examples
of fixed systems. Tom, Stratego and Elegant are examples of systems supporing user-
definable subject languages.

List Comprehension — List comprehension is a language feature that improves syn-
tax for list matching, list iteration and list transformations. The list comprehension
syntax is very close to the mathematical syntax and semantics of list (or set) compre-
hension. This feature is also often found in functional programming languages.

Pattern Matching — Pattern matching offers structural matching on program code,
either using abstract or concrete syntax. The patterns may contain pattern variables
which will be bound during the matching process. Transformation programs using
pattern matching on the program model often become tied to the structural details of
that model. For example, rewrite rules in term rewriting systems often become closely
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tied to the signature they were written against. This makes it difficult to switch or
modify signatures, i.e. change or evolve the subject languages, while keeping the
rewrite rules.

Embedding Clauses — Embedding clauses specify how to rearrange the edges in a
graph during a rewrite step once a match has been found. The clauses declare how
edges will be changed in the transition from the left-hand side to the right hand side
in terms of copy, redirect and remove operations.

Ordering  Features for ordering rules are shown in Figure 2.20.

‘ Non Deterministic

Layers || Transcripts

Figure 2.20: Feature decomposition of rule ordering

Declaration
Order

® Deterministic — The selection of rules is completely deterministic.

o Non-deterministic — The selection of rules is non-deterministic.

Deterministic languages mostly use the declaration order of rules to determine the
order, e.g. Elegant, JastAdd . Another alternative is to require explicit priority markers
on the rules, as for example in XSLT.

Directed Equations — Directed equations declare how a given attribute of a node
must be computed from attributes on other nodes in the graph or tree. They give
both a declaration of the attribute dependencies and the expression for computing
the derived attribute value. The following JastAdd fragment declares the attribute
isValue() to be a synthesised attribute of type boolean, and that its value is constantly
true.

syn boolean Exp.isValue(Q);
eq Exp.isValue() = true;

The equation may be any expression (which results in a compatible) type. For exam-
ple, the type of a varDecl may be computed from the type of the declaration of the
type of the current variable declaration node, or more succinctly:

eq VarDecl.type() = getType().decl() .type(Q);

Traversal Strategies — Traversal strategies are declarations for how to traverse trees,
and how rewrite rules should be applied to the tree during traversal, see [Vis05a].
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Backtracking — Backtracking provides the ability to unroll (a series of) changes
made to the runtime representation during transformation, thus reverting to a pre-
vious state. As such, backtracking relates to transactions, discussed later. Efficiency
of implementation rests on how much data needs to be duplicated for rollback to be
possible, whether rollback is local or global, and also the runtime complexity of the
rollback algorithms. The performance can be be improved by use of maximal sharing
techniques [vdBdJKOO00] and lazy evaluation.

Rule Set Layering — Rule set layering is a feature for imposing application ordering
on a set of rules. The rule set is divided into layers. Each layer will be evaluated with
a fixed evaluation strategy, such as fixpoint, until no more rules in that layer apply.
At this point, the next layer will be evaluated in the same fashion. Effectively, this
divides the application of a set of rules into phases. Layering retains the declarative
approach to expressing rewriting systems. It combines well with critical pairs analysis
to prove confluence: confluence must be proven on a per-layer basis.

Tree Cursor — The editing operations of FermaT always take place at the current
position in the tree, maintained by a tree cursor. The cursor can be moved around
with navigation commands such as up, down, left and right. For example, the func-
tion @Parent provides the parent of an item (node), and I"n will give the n-th child of
an item I.

Strategy The application strategy, Figure 2.21, determines how the rewrite rules
will be applied to the runtime representation. Application strategies are very much
related to ordering and scoping; they determine the location in the runtime repre-
sentation an atom is applied, in which order, and how application failures should be

handled.

Programmable

‘ Innermost ‘ Outermost‘ ‘ Fixpoint

Figure 2.21: Feature decomposition of rule application strategies.

® Programmable — The application is programmable by the transformation pro-
grammer. Even when strategies are programmable, a library of ready made
strategies may be available. This is the case with Stratego. Its library provides
over a substantial collection of different application strategies.

® Fixed — The application strategy is pre-programmed into the transformation
language and cannot be changed. Common alternatives are innermost, outer-



2.4. Transformation Language 45

most and fixpoint, but the variation is immense. Refer to [Vis05a] for a broader
catalogue of common evaluation strategies.

There is a tension between provability and flexibility. Having a fixed of a lim-
ited number of evaluation strategies makes analysis of the code possible, for example,
critical pairs analysis. Allowing programmers to freely define custom strategies comes
with Turing completeness. In general, this removes the ability for automatically prov-
ing or guaranteeing termination. It also removes automatic guarantees of confluence.
A substantial survey of strategies in rule-based program transformation systems is
given in [Vis05a].

Relation Calls — Embedded relations provide a limited relational-like functionality
in graph rewriting systems. An embedded relation is placed on a node type to tie it to
a set of other node types. Inferred links are encoded by path expressions which will
be evaluated every time the link is accessed, allowing the members of the relation to

change.
[}
Lazy ‘Recurring ‘Incremental
Figure 2.22: Feature decomposition of rule evaluation.
Evaluation

® Eager — expressions are computed in the order they are seen by the interpreter

® Lazy — expressions are not computed until their result is needed. Once evalu-
ated, the result is memoized and used for all future evaluations of this expres-
sion.

® Recurring — Similar to lazy expressions; the expression is reevaluated every time
the result is needed, taking updated values for all involved variables into ac-
count. Recurring evaluation is equivalent to lazy evaluation without memoiza-
tion.

® [ncremental — attaching a recurring evaluation to a variable gives incremental
evaluation: Whenever such a variable is read, the evaluator is run, potentially
recomputing all dependent variables which are also incremental.

Many transformation systems seem to be rather sensitive to how transformation
algorithms are formulated. As with many high-level languages, developers may in-
advertently write sound and clean transformation programs with prohibitive execu-
tion times. A number of optimisation features have been proposed for improving
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the efficiency of the recommended ways of formulating transformation problems.
It may therefore be no surprise that many of the characteristic features discussed in
this chapter come from the PROGRES language. PROGRES was designed to make
graph transformation practical. It offers a wide range of architectural and language
features that aid in writing general graph transformations efficiently.

Conditional Path Iteration — Conditional path iterations are user-definable itera-
tions over paths, similar to the mathematical notion of transitive closures on a set of
predicates. Conditional paths are found in graph languages, such as PROGRES. In-
stead of returning all visited nodes, they return all possible termination points. This
feature is also found in the tree rewriting language XSLT [Cla99]. An example of this
feature was shown in the needs() example, under path expressions in Section 2.4.2.

Memoization Markers — Memoization makers allow programmers to declare that
results of computations should be stored and reused whenever the same expression is
reevaluated. The feature is found in graph systems with paths and attribute grammar
systems, and is used to control recomputation of dependent values. When rules and
functions are marked with a memoization marker, it implies that they are referentially
transparent. The following JastAdd fragment declares the attribute x() of (node) class
A to be a lazy, synthesised attribute, i.e. that its value should be memoized.

syn lazy A.xQ);

Cycle Detection — In attribute grammar systems, detecting cycles in the dependen-
cies between attributes is necessary for correct evaluation. The job of cycle detection
is to determine whether a given equation directly or indirectly depends on its own
value.

Cycle Breaking — This feature is dependent on cycle detection. Once cycles are
detected, various schemes are possible for breaking them. The simplest is to disallow
the cycle altogether by refusing to compile grammar declarations with cycles. Another
alternative is to ask the user to manually insert lazy evaluation where appropriate. In
some systems, such as JastAdd, cycles are broken with a fixed, but automatic strategy.
The following JastAdd attribute declaration specifies that the value for an attribute
which turns out to be circular should be true.

syn lazy boolean ClassDecl.hasCycleOnSuperclassChain() circular [true];

Derived Attributes — Derived attributes are variables (attributes) inside nodes whose
values depend on the value of other attributes. Updating the value of a dependent
variable automatically recomputes the value of all its dependents. The dependencies
are practically always expressed using directed equations. A typical attribute gram-
mar system will define its attributes using equations, making all attributes derived
attributes (except the ones which are defined by constant expressions). Both synthe-
sised and inherited attributes are kinds of derived attributes.
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Finite Differencing — Finite differencing is a transformation for replacing costly,
repeating calculations with less expensive differential and semantically equivalent
counterparts. The transformation is independent of the subject language, and mostly
useful for algorithms with repeated calculations. A special case of finite differencing
is the strength reduction optimisation found in most compilers. A detailed example
is beyond the scope of this chapter, but refer to [PK82] for an explanation of finite
differencing support in APTS.

2.4.3 Typing

The structure of the program code must be captured by the transformation lan-
guage type system, see Figure 2.23. Transformation languages are primarily meant to
work on a restricted domain of data. This opens up the opportunity for custom, or
domain-specific, type systems. These may sometimes be simpler than ones found in
general-purpose languages.

User-Defined
Types

0
Grammar Ties

[T 7
Embedded || Separate

Structure

S
Subtyping

Figure 2.23: Feature decomposition of typing.

o User-defined types — The system allows the programmer to define new types.

o Checking — Refers to which features exist for checking type correctness.

— Time — Determines when the type checking takes place. For solely dy-
namic type checking, all type checks are performed at runtime, and this
may incurs a performance hit. For solely sztic type checking, the trans-
formation program is guaranteed at compile time to maintain type con-
sistency. Most languages fall in between.

— Degree — Describes the nature of the type checking. The type checking
may ensure structural validity of the program object model, type cor-
rectness or other semantic properties. Fermal, for example, ensures that
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every transformation results in a semantically valid, executable subject
program.

® Grammar ties — For many transformation systems, the data types for the sub-
ject code is derived directly from a grammar. In these cases, it is common
for the type declarations to be embedded in the grammar. For other systems,
the definition of the subject code structure is separate from the grammar, and
grammar-independent.

A characteristic trait of the advanced type systems for transformation languages
is that they offer flexible and powerful features for maintaining data structure consis-
tency. The grammar-dependence of the types for the subject code is a characteristic
feature of both tree- and graph-based systems. In Stratego, the term structure defi-
nition for subject-program terms is usually derived directly from the syntax declara-
tion of a subject language. Some systems completely separate the subject language
grammar from the type declaration of the internal program representation of subject
programs. It is the programmer’s responsibility to convert between the parser output
and the type declaration for the subject code. This is the case for JastAdd, where any
parser may be used, as long as it builds objects from the types declared in a separate,
user-defined JastAdd AST declaration file.

Transformation Invariants — Transformation invariants are invariants on the pro-
gram code which are guaranteed by the transformations. They are encoded as pre
and post conditions on the transformation atoms or transactions. Such invariants are
very useful for conducting proofs on the transformation program. Often, there is a
clear correspondence between the transformation invariants and the data structure
invariants discussed in Section 2.3. The PROGRES language can specify graph in-
variants in its graph grammar, such as the absence of cycles, which must be respected
during graph rewriting:
constraint ACyclicAggregation = not (self in self.-contains-> +)

Meta Attributes — Meta attributes are attributes on node types, offered by the
PROGRES language. They allow parametrisation of grammar declarations and are
similar to (type) parameters on types. Meta attributes confer the ability to compose
types at compile time, much like generic types. Consider the following container

node class, defined in PROGRES.

node class CONTAINER;
meta ElementType : type in ELEMENT;
intrinsic contains: ELEMENT [0: n];
constraint self.contains.type = self.type.ElementType;

end;
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A CONTAINER node holds a list of elements of a given type type. It may be instantiated
for a specific type, such as stmt in the following way:

node type StmtContainer : CONTAINER;
redef meta ElementType : = Stmt;

end;

node type Stmt : ELEMENT end;

This defined the container StmtContainer which may only contain elements of type
stmt. This constraint is ensured by line 4, above, and will be checked at runtime.

2.5 Discussion

This survey described and discussed numerous features characteristic to transforma-
tion system. Its main focus was on the program models and representations used in
transformation systems, and how these relate to the transformation language used to
manipulate the models.

The analysis undertaken behind this survey indicates that high-level program
models support language-independence well. They often achieve this by replacing
language-specific information present at the source code level — such as the difference
between for and while loops in the C-language family — with more general concepts
—e.g. bounded/unbounded loop. The abstracted model may often be easy to trans-
form, but translating the result of a high-level transformation back to the underlying
program is often difficult. As a consequence, if language-independence via abstract
program models is required, many classes of transformations may have to be given up
because required information is not present in the abstract model. Abstract models
are therefore best suited for capturing problem-specific views on software.

There is a second observation related to the use of abstract program representa-
tions. The problem of general graph matching (determining an isomorphism be-
tween two graphs) is in NP It is therefore common for program transformation
systems based on graph to extract smaller, more abstract models from a code base.
Additionally, general graph rewriting systems provide numerous optimisation fea-
tures and language constructs for making graph rewriting computationally tractable.
Some of these were discussed in Section 2.4.

A similar observation may be made for databases. The author has only found a
handful of transformation systems based on relational databases. On the other hand,
many analysis frameworks have been constructed by using databases to represent pro-
grams.

A remark on the use of meta information (annotations) might be in order. The
introduction of meta information often makes transformations easier to write. By
separating the logic for computing the meta information from the logic using this
information, it is sometimes possible to formulate transformation algorithms in a
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more language-independent way. Much of the logic for computing meta-information
remains language-specific. By standardising on a given meta information format,
large parts of the transformation algorithms may be reusable, however. The tradeoff
is that the meta-information may have to be refreshed or recomputed throughout a
transformation. Depending on the nature of the annotation, this may very expensive.
Many systems, especially those based on attribute grammars, employ lazy evaluation
to partly circumvent this problem.

2.6 Summary

This chapter presented a detailed survey of the state-of-the-art in software transfor-
mation systems and showed that this is a very feature-rich domain where many novel
language features have been invented. The survey contained feature models describ-
ing central parts of the design space for transformation system. The models were
supplemented with examples taken from about a dozen research systems.

The survey indicated that several features for abstracting over subject languages
exist, especially for systems with very high-level program representations. A problem
with these models is that transformations are difficult to translate back to concrete
programs. There is therefore a rather clear case for additional abstraction facilities
which provide good language abstraction facilities while simultaneously supporting
easy rewriting of programs. In particular, the program model and language constructs
for manipulating it are the central components that need good abstraction facilities
if one is to attain transformation reuse and language-independence.



— Is it easy for humans to write code using this syntax?
— It depends on how you define “human’.

— Magne Haveraaen asking Valentin David

Strategic Term Rewriting

This chapter recalls some basic elements of term rewriting theory and some support-
ing parts of universal algebra. It proceeds by discussing a programming paradigm
called strategic programming which supports the separation of data traversal con-
cerns from data processing logic — allowing each part to be implemented and reused
separately — and how strategic programming, in the form of strategic term rewriting,
helps expressing reusable term rewriting systems. The chapter describes a calculus for
strategic term rewriting called System S calculus. This calculus provides the basic ab-
stractions of tree transformations and term rewriting: matching and building terms,
term traversal, combining computations, and failure handling. The strategic term
rewriting language Stratego, that implements the System S calculus, is described.

3.1 Term Rewriting

The field of term rewriting studies methods for replacing subterms of terms with
other terms. Techniques from this field are attractive for program transformation
and analysis because every computer program can be represented as a term. The
(abstract) syntax tree of a program can be directly treated as a term. The mathematical
machinery of term rewriting may be brought to bear on analysis and transformation
problems.

Term rewriting theory [Ter03] makes use of basic notions known from universal
algebra [Coh81], a field of mathematics which seeks to describe any mathematical
object by its operations. Objects and operations are described formally using signa-
tures. In term rewriting, one talks of sorts and constructors in lieu of objects (types)
and operations.

3.1.1 Algebraic Signatures and Language Signatures

In both universal algebra and term writing, terms are defined over signatures. Signa-
tures may be considered analogous to the context-free grammars used to describe the
structure of text. Both context-free grammars and signatures describe properties of
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(potentially) recursively defined tree structures. A standard definition of an algebraic
signature is given below.

Definition 1 Algebraic Signature.
An algebraic signature X is a pair (S, Q) of sets, where S is a set of sorts and () a
set of operations. Each operation is a (k + 2)-tuple, k > 0, on the form
0:5,X...X8 =S
where S1,...,5,S € S, 0 is the operation name and 51 X ... X Sy — § its arity. The
sorts S1,...,Sk are argument sorts, and S the target sort. Whenk = 0, 0 1= sisa
constant symbol, or just constant.

The following example of an algebraic signature declares the four basic arithmetic
operations.

signature Arithmetic

sorts Int

ops
plus : Int X Int — Int
minus : Int X Int — Int
divide : Int X Int — Int
times : Int X Int — Int

In this dissertation, algebraic signatures will be used to describe abstract data types.
For example, the above signature partially describes the data type /n# and some of
its operations (plus, minus, divide and times). All operations (and terms involving
operations) will be written in 7za/ics in the main text.

In several traditions of program transformation based on term rewriting there is
second role for signatures: they may be used to declare the abstract syntax of program-
ming languages, akin to document type definitions commonly found for markup
languages like XML [BPSM*] and SGML [sgm86]. Signatures used in this capacity
are referred to as language signatures in this dissertation. They have some minor and
subtle differences compared with the algebraic signatures.

The language signatures described here follow the tradition introduced by the
Stratego rewriting language. Operations are referred to as constructors. In the main
text, constructors (and terms involving constructors) will be written in MixedCase.
Constructors must always start with an uppercase letter. A more important difference
between the two uses of signatures is that in signatures describing languages, the
argument sorts of constructors follow the abstract grammar of the subject language
they define. Consider the signature definition for a minimal language L that supports
variables, assignment and addition operations on floating point and integer numbers:

signature L
sorts Var Exp Stmt String
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constructors
Var : String — Var
: Var — Exp
Int : String — Exp
Float : String — Exp
Plus : Exp X Exp — Exp
Assign : Var X Exp — Stmt

Line 4 declares that variable terms are of sort Var. Line 5 is an injection which declares
that every term of sort Var is also a term of sort Exp, i.e. Var is a subsort of Exp. The
Int and Float constructors describe literals of integers and floats, respectively. In the
abstract syntax, a Plus term is constructed from two terms of sort Exp. Assignments
are statements (of sort Stmt) which assign the result of expressions to variables.

3.1.2 Patterns and Terms

Universal algebra defines the notion of terms over signatures, a traditional definition
of which is given in Definition 3. These terms may contain variables.

Definition 2 (Variables).
Given a signature ©. = (S,Q)) with an associated family V- = (V)ses of disjoint
infinite sets, an element x € V5,5 € S is a variable x of sort s.

Algebraic terms may be recursively constructed from variables and the application
of operations to the result of operations or to variables.

Definition 3 (Algebraic Terms).
Given a signature . = (S, Q) and an associated set of variables X, the set of (alge-
braic) terms for Z, (T'x(x)s)ses are defined by simultaneous induction:

1 X, C T
2. ifo:—>s€Q), theno € Tyxys

3 ifoisiX...Xsp =5 €L, k> 0andift; € Tyxys, for 1 <1 <k, then
o(ty, ..., tx) € Trxys-

An element in Ty xys is called a X.(X)-term of sort s, or just a term. Var(t) denotes
all variables occurring in the X(X) term t. If Var(t) = 0, t is called a ground term.

Every valid algebraic term for a given signature must respect the sorts of the
signature, i.e. the arity of each operation. Algebraic terms may contain variables.
The terms for language signatures, and their nomenclature, behave slightly differently
from algebraic terms.
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pu= c(p,...,p) constructor application
| str string literal
| r real number
| i integer number
| x variable
c = identifier = constructor name
X = identifier  variable name
| wildcard

Figure 3.1: Syntax definition for Stratego (language) patterns. The number of pat-
terns p in a constructor application must correspond to the numeric arity of the
constructor named c¢. Wildcards are “open holes” in patterns, akin to nameless vari-

ables.

The syntax for Stratego language terms is described in Figure 3.1. When language
terms, or just terms, are constructed, the language signature is assumed to be single-
sorted. Only the numeric arity must be respected, i.e. only the number of arguments,
irrespective of the sorts. This is done for practical convenience. Term rewriting ap-
proaches, including that of Stratego, use step-wise substitution of subterms when
going from one signature to another. It is useful to allow intermediate terms which
are not valid according to either the source or the target signature, without having to
explicitly declare a “super-signature” which defines all possible constructor combina-
tions.

Another difference between universal algebra and the nomenclature used in strate-
gic rewriting is the meaning of the word “term”. Language terms are always ground
terms. A language term containing variables will be referred to as a partern, often
written p. Variables in patterns always start with lower case letters, e.g. x. Consider
the example term and pattern:

Plus(Int("0"),Int("1")) Plus(x,y)
(term) (pattern)

The kind of term expression — pattern or ground term — is easily recognised from the
syntax since all constructors start with an uppercase letter and all variables start with
a lowercase letter.

A pattern p may be matched against a term . This matching is purely syntactical.
It succeeds if and only if there exists a valid variable substitution o(p) = t. The
variables Var(p) of p will be bound to their corresponding subterms in £, e.g:

(match Plus(x,y)) Plus(Int("0"),Int("1")) = 0 : [x > Int("0™), Y > Int("1™]
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Conversely, a pattern p may be instantiated into a term £, by replacing all its variables
x with terms:

[x = Int("0™), y = Int("1"] : (build Plus(x,y)) = Plus(Int("0"),Int("1"))

Patterns are used in program transformations to check for structural (syntactic) prop-
erties and to construct new program fragments. By combining pattern matching and
pattern instantiation into one (potentially named) unit, the rewrite rule is obtained.

3.1.3 Rewrite Rules

Rewrite rules are the units of transformation — or the atomic building blocks, if you
will — in term rewriting systems. Each rewrite rule describes how one term can be
derived from another term in a single step.

Definition 4 (Rewrite Rule).

A rewrite rule R : p; — p,, with name R, left-hand side pattern py, right-hand side
pattern p,, and py, p, € Ty (x), reduces the term t to t' if there exists a0 : X — Ty such
that t = o(p;) (p1 matches t) and t' = o(p,) (p, instantiates to t'). The term t is called
the redex (reducible expression) and t' the reduct.

In the context of System S and Stratego, the term variables are variables in the
Stratego program, and the substitution o corresponds to a variable environment ¢.
This is clarified in the next section. A set of rewrite rules R is said to induce a one-step
rewrite relation on terms, written as follows:

t —g t

This says that t reduces to t’ with one of the rules in R. Composing these in sequence,
ie. fgp —r t1 —r ... gives a reduction sequence with —g, where R is repeatedly
applied to the root of a term.

Definition 5 (Conditional Rewrite Rule).

A conditional rewrite rule R : p; — p, where ¢, with ¢ being a logical expression in
some logic, specifies that R is only applicable if, for some o, p; matches t with 0 and o(c)
holds (evaluates to true).

3.1.4 Rewriting Strategies

The rewrite sequence, as defined above, repeatedly applies the rules of R to the root
of a term, i.e. to the top-level constructor and its subterms. The definition does not
describe how rules may be applied to subterms. Nor does it say anything about the
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order in which the rules in R of are applied for each step — it may be the case that
multiple rules are applicable.

Other definitions for rule application exist in term rewriting theory, but for pro-
gram transformation, a flexible and precise way of programming both the application
location (inside a term) and the order of (rule) application is necessary. In this disser-
tation, the System S calculus is used for this purpose.

3.2 System S — Strategic Term Rewriting

Strategic term rewriting extends basic term rewriting with additional constructs that
accurately control the application strategies for sets of rules. These constructs are
used to control the order of rule application, traversal over term structures, and how
to handle rule application failures.

The System S core calculus is a formalism for strategic term rewriting. It pro-
vides the basic abstractions of tree transformations and term rewriting: matching and
building terms, term traversal, combining computations and failure handling. It was
first introduced by Visser and Benaissa [VBT98, VB98]. The programming language
Stratego is directly based on this calculus.

This section contains a slightly modified formulation of the same core calculus
which is more in the style of [BvDOVO06]. The definitions given herein are only those
necessary for later chapters. Compared to the original description, non-deterministic
choice, sy + 51 and the test operator have been dropped. These are now replaced by
a guarded choice combinator. The some(s) traversal primitive has been eliminated.
A syntax of System S is shown in Figure 3.2. For the rest of this section, the word
“program” is taken to mean the transformation program. Terms are used to represent
subject programs.

In Chapter 5 and Chapter 7, the System S calculus and Stratego is extended with
additional constructs that improve the capacity for expressing language independent
transformation programs.

Basic Definitions

The operational semantics of System S is specified using the notation described be-
low. The semantics describes the behaviour of strategies. Rewrite rules are encoded
as strategies (shown later), but are provided with syntactic sugar to give them their
familiar notation.

The domain of strategy applications is the set of terms extended with a special
failure value 7. The notation ¢ is used to indicate terms from this extended domain;
the notation ¢ still refers to terms. Consider the following assertion:

[er(s)yt=>t'T",¢)
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su= id identify
| fail failure
| ?p match term
| p build term
| s;s sequential composition
| s<s+s guarded choice
| where(s) where
| {x,....x: 8} new variable scope
| one(s) | a11(s) generic traversal operators
| f(f,..., flp,...,p) strategy invocation
x = identifier variable names
f = identifier strategy names
¢ == identifier constructor names

Figure 3.2: Syntax for System S. The definition of term patterns p was given in
Figure 3.1. The semantics of strategy invocation is defined in [BvDOV06].

It states that the strategy s applied to term f in context of the system state I" (used to
model dynamic rules) and variable environment ¢ evaluates to the term #’ in a new
system state I and a new environment ¢€’. The variable environment takes on the
role of the o substition previously described for rewrite rules.

Strategies may fail. This is noted with the following assertion:

[eryt=17d7,¢)

Changes to state and variable bindings are preserved in the case of failure.

Variables A variable environment ¢ is a finite ordered map [x; — H,y e, Xy
t,] from variables to terms or failure. A variable x may occur multiple times in
€, in which case the first (leftmost) binding is applicable. The application of an
environment — a variable lookup — is defined as picking out the first binding for x (if

any):

— — toif xi=xAVj<i:x;#Ex
[letl""x”Ht”](x){Tl if Vi<n:xj#x

The variables in ¢ fulfil the role of algebraic term variables. The instantiation &(p) of
the pattern p yields a (language) term, i.e. a ground term, by replacing every variable
x in p with its bound term from ¢. This is identical to variable substitution with o
with the exception that the pattern variables are variables of the System S calculus
(i.e. variables in the Stratego language).
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Environments ¢ are used in the matching process of patterns p. It is convenient to
have a notation stating that the only difference between environments ¢ and ¢’ are the
bindings for the variables of p. The notation &” 3 ¢ declares that the environment &’
is a refinement of the environment €. This means thatife = [x1 — t, ..., X, - b,
then ¢ = [x; E, oo, Xy = t]and foreach i : 0 < i < n, e(x;) = €'(x;) or
€(x;) =T and &'(x;) = t for some term t. ¢’ J, ¢ declares that the environment ¢’ is
the smallest refinement of the environment € with respect to a term pattern p if ¢’ 3 ¢
and for all x not in p, €’(x) = &(x).

Algebraic Properties The notation e; = e; is used to describe algebraic properties
of the defined constructs and to define syntactical shorthands. These equations are
universally quantified unless otherwise stated.

3.2.1 Primitive Operators and Strategy Combinators

System S provides a handful of primitive operators on terms. The most basic of these
are identity (id) and failure (fail) operators. Applying the identity operator to a term
leaves the term unchanged; applying the failure operator signals a failure:

ek GGayt = (I, ¢) [er (fail)t =7 ([T, ¢€)

The operators, such as id and fail, are combined into expressions using strategy
combinators. The purpose of the combinators is to describe control flow. Strategy
expressions are built from primitive operators and combinators. The combinators
are used to express application — evaluation — strategies of transformations in terms
of how strategy application failures are handled. Any System S operator (except
identity) may fail. Strategy combinators are used to specify what should happen
when failures occur.

Sequential Composition The sequential application of two strategies s1 and sy is
expressed using the sequential composition combinator, s3; s».

er(spt=>t'A7,¢") TV, & F{sptf = F(F”, e
T, ek (sy;so)t = t/([7,€”)
[er (st =T (7, ¢)
[ ek (syysopt =T (I7, €)
The assertions describe that strategy s; is first applied to the current term ¢. If it
succeeds, s is applied to its result; the result of the combination is the result of
Sp. If 51 fails, the combination fails. The following equations are consequences of the

definitions above. They show that the id operator is a unit for sequential composition
and that fail is a left zero.
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id;s=s s;id=s fail;s = fail

Not that in the general case, ds : s; fail # fail. This follows from the way the state
and the environment propagates over s: any environment ¢ before s will in general
be ¢’ after s, whereas fail preserves the environment. Because of this, fail is not a
right zero for sequential composition.

Guarded Choice The guarded choice (sometimes referred to as just the choice com-
binator) 51 < 5, + S3 resembles an if-then-else expression, e.g.:

id<Sy+5S3 =8 fail < Sy + 83 =853

First, s1 is applied. If 51 succeeds, sy is applied and the result of s; is the result of the
combined expression; if s, fails, the combination fails. Should s fail, s3 is applied
and the result of s3 is the result of the combination; if s3 fails, the combination fails.

Toer (st =T, ¢") T, e+ ()t = "7, ")
Ier (s;1<sy+s3)t = F(F”, e

Toek (st =7 (T, &) T'ek (sy)t = P, ¢”)
T,eb (51 <sy+s3)t = t/(I",¢e”)

An important feature of the guarded choice is that if s fails, both the effects due to
S1 on the term t are and to the environment (but not the state I') are undone. This
means that the choice combinator implements a notion of (local) backtracking.

Negation, Left and Right Choices For notational convenience, the operators 7oz,
left choice, and right choice may be defined using guarded choice:

left choice  sy<+s1 = Sy < id + 51
right choice  Sp+>$1 = 51 < id+ Sy
not not(S) = S < fail + id
try tryS = S<+id

3.2.2 Primitive Traversal Strategies

The combinators in the previous section addressed the first of the two concerns of
rule application: how rule application failure may be handled. The second concern —
where in a term rules should be applied — is addressed by primitive traversal strategies.
There are two primitive traversal strategies: one and all. They enable term traversal
by local navigation into subterms.
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topdown(s) = s; all(topdown(s)) top-down traversal
bottomup(s) = all(bottomup(s)) ; s bottom-up traversal
repeat(s) = try(s; repeat(s)) ﬂpply s until iz‘ﬁlils
oncetd(s) = s <+ all(oncetd(s)) ﬂpply S once, start at the top
oncebu(s) = all(oncebu(s)) <+ s apply s once, start at the bottom
innermost(s) = bottomup(try(s; innermost(s))) innermost traversal
outermost(s) = repeat(oncetd(s)) outermost traversal

Table 3.1: A selection of frequently used traversal and application strategies.

All Subterms The al1(s) strategy applies the strategy expression s to each subterm
of the current term, potentially rewriting each. all(s) succeeds if and only if s suc-
ceeds for all subterms.

l_‘0/ €k <S> b= ti(rlr 51) v l_‘n—lr Ep-1 F <S> th = t (rn/ en)

n

Lo, €0 + (a11(s)) c(ty, ..., tn) = c(t], ..., £) (L, €0)

Lo, e0 k() 1 = (T, €7) ... Tig, e k() =T (T, €)
Lo, €0 F (a11(s)) c(ty, ..., t,) =T ([, €)

The strategy all(s) behaves as follows with respect to failure, identity and constant
terms:

all(id) = id <all(s)>c() =c() <all(fail)>c(ty,...,t,) = fail (ifn > 0)

One Subterm  The traversal strategy one(s) is similar to all, but applies s to exactly
one subterm. It fails if s does not succeed for any of the subterms.

Loer ()t =T T1) ... Tig, e bty =T (Timg) Tiog, e - ()t = £, €)
I etk (one(S))C(tl, ceey tn) = C(tl, e, ticg, tz,’ tivi, .-, tn)(FZ-, 81')

r/ € F <S>t1 :>T (rlr 51) s l_‘n—lr EFr <S>tn :>T (rn/ en)
[, e+ (one(s))c(ty, ..., ty) =T ([, €,)

The one(s) strategy backtracks (undoes) all modifications to the variable environment

made by failing applications of s, but changes to the system state are kept.

Generic Traversal Strategies

An important feature of System S (and Stratego) is its ability to define signature-
independent (and thereby language-independent) traversal strategies. This support is
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the result of mixing primitive traversal operators and strategy combinators. The mix
yields the notion of generic traversal strategies. Examples of generic traversal strategies
are given in Table 3.1.

Each generic traversal strategy s;(s) is parametrised with a strategy s that is applied
throughout a term according the traversal scheme specified by s;. The argument
strategy s is used to insert language-specific rewriting logic, thereby instantiating the
generic strategy for a specific subject language and signature.

3.2.3 Building and Matching Terms

System S supports two complementary operations for applying patterns to terms:
match and build. Patterns are matched against terms using the match operator (?).
Variables in the pattern are bound to their respective subterms. Terms are instantiated
from patterns using the build operator (!). Variables are replaced by the terms they
have previously been bound to.

Term Matching The assertions for term matching are given below:

de’ e’ Jyene(p) =t A’ (e Ty ene(p)=t)
FerPpyt=tTI,¢) Fer(p)y =TT ¢)

The semantics is compatible with the previously defined notion of match with vari-
able substitution 0, with one exception: variables in p may already be bound. These
variables are not rebound, but the corresponding subterms of t must match the terms
bound by the variables of p. For example, a match of the pattern Plus(x,y) against the
term Plus(Int("0"),Int("1")) (attempts to) bind the variable x to the term Int("0").
The match fails if the variable x is already bound to a term that is not Int("x").

Term Building Term building is, in a sense, the inverse of matching. The build
semantics is defined as:
ek {Ipt = elp)T, )

With the environment € = [x + Int("0"), y = Int("1")], the expression !Plus(x,y)
will result in the the term Plus(Int("0"),Int("1™)).

3.2.4 Variable Scoping

The static scoping of term variables x1,...,x, can be controlled using the scope
operator {x1,...,%, : s}. Given ¢y = [11 »T,...,y, =Tl and &1 = [y1 =
t, oo Yn o Byl
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T, epe b {[y1/x1, -, Yu/Xnls) t = F(I7, €1€")
ek ({xe, ..., x, 8}t = (7, €)

The operator introduces a new scope in which the strategy s is evaluated where the

(y1, ..., Yn fresh)

variables x1,...,x, have been replaced by fresh copies. This results in the usual
notion of variable scoping: After s finishes, any binding for x;, 1 < i < 7 introduced
by s is removed from the environment. The scope operator succeeds if s succeeds and
fails if s fails.

A useful syntactical abstraction over the scope operator is the where clause, later
used for defining conditional rewrite rules. A where(s)-clause temporarily saves the
current term, applies s to it, then restores the current term:

where(s) = {x :?x;s; Ix}

It follows from the previous definitions that all variable bindings due to s are kept if
s succeeds, and that where(s) fails iff s fails.

3.2.5 Rewrite Rules

The System S calculus can express rewrite rules with or without conditions, R, and
Ry, respectively:

Ru ‘P = Pr =E7P5 Py
R. : pi = p, where s = ?7p;; where(s); 'p,

The following is an example of a rewrite rule, named Simplify, defined in Stratego:

Simplify:
Add(Int(x), Int(y)) — Int(z)
where <addS> (x,y) = =z

The condition of this rule consists of the application of the strategy adds to the tuple
(x,y). (This tuple is the application of a nameless constructor with numeric arity
two.) The result is “assigned” to the variable z using another syntactic abstraction,
the = operator, defined as follows:

$;p=s=>p

3.2.6 Additional Constructs

This section defined the core constructs of the System S calculus which are neces-
sary for describing the language extensions proposed later in this dissertation. System
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Strategy Expression | Meaning — (basic constructs)
'p (build) Instantiate the term pattern p and make it the current term
4 (match) Match the term pattern p against the current term
Sp < 81 + 52 (left choice) Apply sy. If s¢ fails, apply s1. Else, roll back, then apply s;.
S0 ; S1 (composition) Apply so, then apply s1. Fail if either sg or s; fails
id, fail (identity, failure) Always succeeds/fails. Current term is not modified
one(S) Apply s to one direct subterm of the current term
all(s) Apply s to all direct subterms of the current subterm

Figure 3.3: Basic language constructs.

S has several additional language constructs. These are presented informally using
examples in the next section. Each of the explained constructs is used in some of
the examples containing Stratego code throughout the following chapters, but un-
derstanding their precise and detailed semantics is not required. For a complete in-
troduction to all of Stratego, refer to the Stratego/XT manual [BKVVO05]. Specific
caveats and considerations are noted along with the examples where pertinent.

3.3 Stratego

Stratego is a domain-specific language for writing program transformation libraries
and components. It is based on the System S rewriting calculus. The language
provides rewrite rules for expressing basic transformations, programmable rewriting
strategies for controlling the application of rules, concrete syntax for expressing the
patterns of rules in the syntax of the object language, and dynamic rewrite rules
for expressing context-sensitive transformations, thus supporting the development of
transformation components at a high level of abstraction. The program object model
used for representing subject programs are terms.

In the next sections, the parts of Stratego which are relevant for comprehend-
ing the remainder of this dissertation are explained in detail. A short description is
given in Figure 3.3 and Figure 3.4 of the core Stratego language constructs offered
to the programmer. The following sections informally describe additional features of
Stratego.

3.3.1 Signatures, Patterns and Terms

Stratego supports the declaration of signatures for describing the abstract (or con-
crete) syntax of subject languages. Stratego signatures are very close to the concept
of language (as opposed to algebraic) signatures described previously. Consider the
following example:
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Strategy Expression | Meaning — (syntacic sugar)
\p1 > pr\ Anonymous rewrite rule from term pattern pj to py
?x@p Equivalent to ?x ; ?p; bind current term to x then match p
<S> p Equivalent to !p ; s; build p then apply s
s =>p Equivalent to s ; ?p; match p on result of s

Figure 3.4: Syntactic sugar.

signature

sorts Exp Stmt

constructors

Var :

Int

String — Var
: Var — Exp
String — EXxp

Float : String — EXxp

Plus

: Exp X Exp — Exp

Assign : Var X Exp — Stmt

This example illustrates the following differences between Stratego and algebraic sig-
natures:

Stratego signatures are not named. A program written in Stratego may have
several signature declarations. The sorts and constructors from all of these
declarations will be combined into one implicit “super signature”.

Only the arity of constructors is guaranteed by the Stratego language, i.e. it
is a one-sorted system which allows synonym names for its sort. Given the
signature above, the constructor Plus may be applied to any two subterms.
Their sorts are never checked. Additionally, sorts need not be declared before
they are used in constructor definitions, e.g. lines 7-8 above, where the sort
var is undeclared. It is considered good form to declare all sorts, however. A
separate tool, called format-check, can be applied to a term to check if it is
valid with respect to a given signature.

Stratego has builtin (primitive) sorts and special term syntax for strings (String),
lists (List(x)), tuples (Tuple(x)), integer (Int) and real (Real) numbers. The
sort Term is used (by convention) to indicate an “any” sort. That is, any term
may be inserted where a Term is expected.

Nameless constructors of arity one are allowed, and these are called injections.
Injections declare the terms of the argument sort may be placed wherever the
target sort is allowed. In effect, injections declare their argument sort to be a
subsort of the target sort, and are used by the format-check tool.
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Strategy Meaning
rules(rdy ... rdy) define rules rdy, ..., rd,
{ry, ..., ry: sl} start new scope for rule names 7y, ..., 7,
S1 /T1,--+, 1\ S2 fork rule sets r1, ..., 7y, apply s1 then sy, intersect rule sets
VP AL apply s until rule sets 4, . .., 7, reach fixpoint
Rule definition (rd) Meaning
R : p1 — p2 wheres introduce rule R
R :+ p1 — pa2wheres | extend rule R with another left-hand side pq (and r.h.s. p2)
R:-p undefine rules R with left-hand side p

Table 3.2: Essential basics of dynamic rules.

3.3.2 Congruences

A feature of System S (but not unique to it) is the combination of term traversals and
rewriting into one compact construct, called congruences. Consider the following
constructor:

C:S81 X ... XSn —> S

A congruence for this constructor is defined as the following rewrite rule with higher-
order parameters Sy, . .., Sy:

c(sl,...,sy) s c(x1, ..., x5) = (Y1, ..., Yn) where (s1)x1 = Y1;...;{s)X = Yy

Given the above definition of a congruence and the previous definition of a rewrite
rule, the expression

Plus(s0®, sl)
syntactically expands to the following:

7Plus(x0,x1) ; where(<s®0> x0 => x0’ ; <sl> x1 => x1’) ; !Plus(x0’,x1’)
While congruences are syntactically succinct, they mix data traversal strategies and

term rewriting logic. This ties rewriting programs to very specific signatures and
impairs reuse across subject languages.

3.3.3 Scoped, Dynamic Rules

Stratego supports the notion of dynamic rewrite rules that may be introduced and
removed dynamically at runtime. These rules are used to capture and propagate
context through the rewriting strategies. Figure 3.2 gives a brief summary of the
dynamic rule basics.
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The expression rules(R: t -> r) creates a new rule in the rule set for R. The
scope operator {| R : S |} introduces a new scope for the rule set R around the
strategy 5. Dynamic rule scopes are dynamic — they follow the flow of the program.
Variable scopes, on the other hand, are static — they follow the grammatical structure
of the program text. Changes (additions, removals) to the rule set R done by the strat-
egy s are undone after s finishes (both in case of failure and success of 5). Sometimes,
multiple rules in a rule set R may match. For example, the rule extension rules(R :+
t -> r) may be used several times with overlapping left hand sides. To get the results
of all matching rules in R, one may use bagof-R. The additional operations relating
to dynamic rewrite rules will be explained in the context of constant propagation, in
Chapter 5.

The following example illustrates an application of dynamic rules to the prob-
lem of propagating variable constants. This example will be expanded upon in later
chapters. The rule PropConstAssign must be applied to terms representing variable
assignments in the subject language. If the right hand side of the assignment is a con-
stant, the dynamic rule PropConst is added. This dynamic rule maps a given subject
language variable to its known constant.

PropConstAssign:
Assign(Var(x), e) — Assign(Var(x), e’)
where
prop-const> e = e’
; 1f <is-value> e’ then rules( PropConst : Var(x) — e’ )
else rules( PropConst :- Var(x) ) end

If the constant is not known, i.e. the term e is not a value, any previous mappings for
this subject language variable is removed.

Concrete Syntax Patterns

Concrete syntax patterns supplement term patterns and may sometimes result in
more succinct transformation programs. Syntax patterns are by convention enclosed
in “semantic brackets” (| [ 11). They will be expanded in-place by the Stratego com-
piler to their equivalent AST term patterns.

?|[ ed := el + e2 ]| = ?Assign(e®, Plus(e®), Plus(e2))

The grammar used to parse the concrete syntax must be specified to the compiler.
The grammar is defined using a parser from the XT collection of transformation
components described below.
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3.3.4 Overlays

Overlays may be thought of as “term macros” and are used to abstract pattern match-
ing over terms. Consider the following overlay declaration:

PlusOne(x) = Plus(x, Int("1"))
When compiling a program where this overlay is defined, the Stratego compiler will
substitute every occurrence of the term PlusOne(X) with the term Plus(xX,Int("1")),
for example:

overlay expansion

?PlusOne(Int("42")) ———— > 7?Plus(Int("42"),Int("1"))

The x in this case is 7ot a Stratego variable. Overlay substitution may be consid-
ered a “meta-rewriting” pre-processor step where all constant terms and patterns in a
given Stratego program are expanded. After this pre-processing is finished, “normal”
compilation resumes.

3.3.5 Modules

Stratego programs are organised into modules. Each module corresponds to a file,
and is divided into typed sections. A module may import any number of other
modules. A module import is (almost) equivalent to textual inclusion of the imported
module’. Circular dependencies are allowed. Each section type, e.g. strategies,
overlays and rules, specifies which declarations are allowed within that section. One
exception exists: both strategies and rules may be declared freely within both rules
and strategies sections.

3.3.6 Stratego/XT

A short note on the name “Stratego/XT” is necessary. The Stratego language was
designed to support the development of transformation components at a high level
of abstraction. It is distributed together with XT, a collection of flexible, reusable
transformation components and declarative languages for deriving new components.
Complete software transformation systems are composed from these components.
The composition of Stratego and XT is named Stratego/XT.

The traditional usage pattern of Stratego/XT is illustrated in Figure 3.5. The de-
veloper starts by constructing or reusing a syntax definition for the subject language
L. This definition is used to automatically derive a language infrastructure, such as
a parser, pretty printer and a signature declaration for the abstract syntax of L. The
developer may then write transformations using the derived infrastructure against
the language L. The robustness and quality of the infrastructure is to a large extent

"The module name and the import declarations are removed.
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syntax
definition

pretty-
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generator
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Figure 3.5: Derivation of language infrastructures from syntax definitions (gram-
mars).

determined by the accuracy and quality of the grammar. For many mainstream lan-
y Y q & y

guages, constructing a solid grammar is highly non-trivial. Consequently, robust and

practical mechanisms for easily reusing existing language infrastructures is therefore

desirable.

3.4 Summary

This chapter discussed the strategic programming methodology, a programming ap-
proach where data traversal patterns are separated from the data processing logic. It
described (a subset of) the System S core calculus which applies the principles of
strategic programming to term rewriting. The result is a clear separation between
rewrite rules, which perform data processing, and generic traversals with combina-
tors, which are used to encode data traversals. In the context of program transfor-
mations, the separation enables independent reuse of language specific rewrite rules
and rule application strategies. This promotes language independence by allowing
generic strategies to be reused across language specific rule sets. Basic elements of
term rewriting theory were also introduced, together with their relation to universal

algebra.
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Program Object Model Adapters

Software transformation systems provide powerful analysis and transformation frame-
works with concise languages for language processing, but instantiating them for
every subject language is an arduous task, often resulting in half-completed front-
ends. A lot of mature front-ends with robust parsers and type checkers exist, but
few of them expose good APIs to their internal program representations. Express-
ing language processing problems in general purpose languages without the benefit
of transformation libraries is usually tedious. Reusing these front-ends with existing
transformation systems is therefore attractive. However, for this reuse to be optimal,
the functional logic found in the front-end should be exposed to the transformation
system — simple data serialisation of the abstract syntax tree is not enough, as this fails
to expose important compiler functionality such as import graphs, symbol tables and
the type checker.

This chapter introduces a novel design for a program object model adapter that
enables program transformation systems to rewrite directly on compiler program ob-
ject models such as ASTs. The design is reusable across language front-ends and
also across program transformation systems based on the term rewriting paradigm.
It provides an efficient and serialisation-free interface between the language-general
software transformation system and the language-specific front-end infrastructure.

Chapter 10 illustrates the applicability of this design using a prototype framework
based on MetaStratego and the Eclipse Compiler for Java. The prototype allows
scripts written in Stratego to perform framework and library-specific analyses and
transformations.

Much of the content of this chapter has been presented in the paper “Fusing a
Transformation Language with an Open Compiler” written with Eelco Visser [KV07a].

4.1 Introduction

Software transformation systems are attractive candidates for implementing program
analyses and transformations because their high-level domain-specific languages and

71
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their supporting infrastructure allow precise and concise formulations of transfor-
mation problems. Unfortunately, transformation systems rarely provide robust and
mature parsers and type analysers for a given subject language. Open compilers are
also attractive because they provide solid parsers and type analysers, but they are
mostly implemented in general-purpose languages. This means that the analyses and
transformations must also be implemented in a general-purpose language without the
benefit of the transformation features covered in Chapter 2. A consequence of this is
that even relatively simple transformation tasks may quickly become time-consuming
to implement.

The design introduced in this chapter aims to obtain the best of both worlds
by combining the expressive power provided by transformation languages with the
maturity and robustness of open compilers using a program object model (POM)
adapter. The POM adapter welds together the transformation system runtime and
the abstract syntax tree (AST) of the compiler by translating rewriting operations
on-the-fly to equivalent sequences of method calls on the AST API. This obviates
the need for data serialisation. The technique can be applied to most tree-like APIs
and is applicable to many term-based rewriting systems. Using this adapter, transfor-
mation languages become compiler scripting languages. Their powerful features for
analysis and transformation, such as pattern matching, rewrite rules, tree traversals,
and reusable libraries of generic transformation functions, are offered to developers.
By instantiating this design with a concrete transformation language and a concrete
compiler, as is shown in Chapter 10, a powerful platform for programming domain-
specific analyses and transformations is obtained. Depending on the transformation
language used, the combined system can be wielded by advanced developers and
framework providers because large and interesting classes of domain-specific analyses
and transformations may often be expressed by reusing the libraries provided with
the transformation system.

The contribution of this chapter is a general technique for fusing domain-specific
languages for language processing with open compilers without resorting to data se-
rialisation. When instantiated, this design brings the analysis and transformation
capabilities of modern compiler infrastructure into the hands of advanced developers
through convenient and feature-rich transformation languages. The technique can
help make transformation tools and techniques practical and reusable both by com-
piler designers and by framework developers since it directly integrates them with sta-
ble tools such as the Java compiler. Developers can write interesting classes of analyses
and transformations easily and compiler designers can experiment with prototypes of
analyses and transformations before committing to a final implementation. In Chap-
ter 10, the system’s applicability is validated through a series of examples taken from
mature and well-designed applications and frameworks.

The rest of this chapter is organised as follows: In Section 4.2, the design of the
POM adapter is explained. Section 4.3 discusses the implementation details of the
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‘Transformation program ‘

‘ Transformation runtime ‘

POM adapter
POM (AsT API)

Compiler ‘

FFI library

Figure 4.1: Program object model adapter archicture.

design. Section 4.4 discusses related work. Section 4.5 discusses tradeoffs related to
the proposed technique. Section 4.6 summarises.

4.2 The Program Object Model Adapter

The program object model adapter fuses together a compiler and a software trans-
formation language. The term program object model is used in this dissertation for
referring to the object model representing a program inside the compiler. This is
typically an AST with symbol tables and other auxiliary data structures such as im-
port graphs. The POM adapter translates the primitive rewriting operations of the
rewriting engine to function calls of the POM API.

4.2.1 Architecture Overview

Consider Figure 4.1 which shows the principal components of the design. There are
three distinct layers in the figure, coded with different shades of grey. At the bottom,
the compiler provides an API for modifying and inspecting its internal program ob-
ject model. It may also provide additional functionality that should be exposed to
the transformation programs such as the ability to manipulate its include paths and
output directories. The language used to implement the compiler will be referred
to as the compiler language. (The source language will, as usual, be the language of
the input programs fed into the compiler.) At the top of the figure, transformation
programs are written in the transformation language. The middle parts of the figure
(white boxes) make out the runtime of the transformation language, also referred to as
the transformation engine. This part is written in (potentially) another language: the
implementation language of the transformation systems, referred to as the runtime
language. This will in practise always will be the same as the compiler language.

The POM adapter design explained in this chapter is discussed using examples of
ASTs implemented in a traditional object-oriented style, but this is not a requirement.
Other styles can also be used, however, a large portion of modern language infrastruc-
tures are implemented in a object-oriented style. Refer to [Jon] for additional abstract
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syntax tree implementation idioms. Irrespective of the implementation language, the
essential requirement for the adapter to work is that there are operations on each node
for obtaining its children, and, if modification is required, to construct new nodes
from existing children.

In the object-oriented style, each node type in the AST, such as CompilationUnit,
is represented by a concrete class. Children of a node can be retrieved using get-
methods and replaced using set-methods. New nodes are typically constructed using
factories such as the method newCompilationtnit() of an AST factory. Constructing
nodes using a new operator is also supported by the adapter technique.

The runtime of the transformation system must execute on the same platform,
and in the same process, as the compiler. Remote procedure calls, possibly across
platforms, is an obvious and a relatively straightforward extension to POM adapter
design, but its performance overhead will most likely be prohibitive. A requirement
on the transformation runtime is that it has a clear interface to its term representa-
tion. Investigations of term rewriting systems suggests that this is the case for a good
number of systems, including ASF+SDF [vdBvDH*01], Tom [MRV03] and Strat-
ego [BKVV06]. Provided such a term interface, the task of the POM adapter is to
translate operations on the term interface to equivalent operations on the AST API.
Any data structure that can provide a suitable interface can be treated as terms and
rewritten. This is done by wrapping a POM in the term interface required by the
interpreter. The adapter translates term rewriting operations to POM API method
calls. These are executed directly on the POM without any intermediate data seriali-
sation.

The transformation runtime would also benefit from a facility for calling foreign
functions, i.e. functions implemented outside the transformation language, but this
is not strictly necessary. Most transformation systems seem to have such a facility. If
a foreign function interface (FFI) facility exists, it may be used to expose native AST
API functions as library functions in the transformation language. For example, type
analysis, type lookup and import graph queries may be exposed to transformation
programs through an FFI.

The design does not place any restrictions on the mode of operation of the trans-
formation system. As was discussed in Chapter 2, several architectures exist for trans-
formation systems, such as pipeline-based and incrementally updating. The POM
adapter design does not dictate any one model.

4.2.2  Design Overview

In binding a transformation runtime to a compiler, two interfaces need to be con-
nected: the term interface of the transformation system and the POM interface of
the compiler. The algebraic concept of a signature is a very good tool for this task.
Based on the signature, adapters can be generated that provide a term interface to the
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POM implementation by translating term interface operations to POM operations.

Signatures for AST Classes

Signatures are fundamental for describing formal languages and very appropriate for-
malisms for describing the abstract syntax of programming languages. The approach
taken by the POM adapter design is to extract an exact signature from the AST class
hierarchy. This is possible because the AST class hierarchy essentially expresses the
signature of the abstract syntax of the language.

Consider the AST class hierarchy in Figure 4.2. The root of this type hierarchy
is the abstract class ASTNode The abstract classes Expression and Type derive from it.
Concrete types like ArrayType and BooleanType exist under Type. Expressions like
ArrayAccess exist under Expression. This design follows the typical AST implemen-
tation idiom found in many object oriented compilers [Jon].

A signature X = (S, () can be generated from a class hierarchy using the follow-
ing algorithm. Assume the root node type of the AST class hierarchy to be 7, the
function s(c) which maps classes ¢ to sorts and the function c(c) which maps classes
C to constructor names.

1. For every abstract class ¢,, add a sort s(c;) to S.

2. If ¢ isadirect subclass of ¢,, then s(c}) is a direct subsort of s(c,). Alternatively,
injections may be used: Given ¢, a direct subclass of ¢,;, add an injection
s(cl) — s(c,) to Q.

3. For every concrete class ., add a constructor with name c(c.) to Q). For every
parameterless method in ¢, returning a subtype ¢’ of 7, add an argument of
sort 5(c’’) (corresponding to a class ¢’’) to the parameter list of ¢(c.). The result
sort of c(c,) is the sort of the direct superclass of c,.

Applying this algorithm to Figure 4.2 gives the following excerpt of a signature with
injections at the bottom.

signature EclipseJava
sorts
ASTNode, Expression, Annotation, Type
constructors
MarkerAnnotation : Name — Annotation
ArrayAccess : Expression X Expression — Expression
ArrayCreation : ArrayType X List(Expression) X ArrayInitializer — Expr’n
CastExpression : Type X Expression — Expression
PostfixExpression : Operator X Expression — Expression

PrefixExpression : Operator X Expression — Expression
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ASTNode

Annotation

MarkerAnnotation ‘

NormalAnnotation ‘

SingleMarkerAnnotation ‘

—{ ArrayAccess

—{ ArrayCreation

—{ CastExpression

—{ PostfixExpression

—{ PrefixExpression

|
|
|
—{ MethodInvocation ‘
|
|
|

—{ ThisExpression

ArrayType

—{ BooleanType

—{ ByteType

|
|
|
—{ ParametrizedType ‘
|
|
|

—{ DoubleType
—{ WildcardType

—{ QualifiedType

Figure 4.2: Excerpt from the AST type hierarchy of the Eclipse Compiler for Java.
Other Java compilers, such as Polyglot and Sun’s javac, have structurally similar ASTs.
Filled arrows indicate inheritance. Names in 7zafics indicate abstract classes.
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ThisExpression : Name — Expression
ArrayType : Type X Int X Type — Type
BooleanType : Type
ParametrizedType : Type X List(Type) — Type
WildcardType : Type — Type
QualifiedType : SimpleName X Type — Type

: Expression — ASTNode

: Annotation — Expression

: Type — ASTNode

Consider the class MarkerAnnotation in Figure 4.2 and its corresponding constructor
definition in the signature above. MarkerAnnotation derives from the abstract class
Annotation, making Annotation the result sort of the MarkerAnnotation constructor.
Further, the class MarkerAnnotation has one method returning a subclass of ASTNode,
Name getName() (not shown), and this gives rise to the single constructor argument of
sort Name.

By processing the source code of the POM, a starting signature is automatically
generated. While immediately usable, the initial result is only a proposal. The order
of the argument list for each constructor may need manual tuning for consistency
among the various constructors. The extracted signature will remain stable as long as
the POM implementation changes only rarely. For many mature compilers, the AST
designs seem to change rather slowly and mostly in response to changes in the subject
language.

Using algebraic signatures, as shown above, is sufficient for capturing precisely
and concisely the relationships between the AST node types (as sorts) and their al-
lowed subnodes (in the constructor declarations). In principle, other abstract syntax
description languages, such as the Zephyr [WAKS97] abstract grammar language,
may be used to represent the abstract syntax. Grammatical formalisms may offer
additional expressiveness, but for the scheme illustrated above, this is not necessary.
For some readers, grammars may present a more familiar notation than signatures,
however.

Term Hierarchy

Terms are recursively built from constructor applications, but as Chapter 2 showed,
term rewriting systems frequently have additional primitive term types used for ex-
pressing transformation algorithms such as integers and real numbers, lists and tuples,
and strings. The terms are available as primitive types in the transformation language,
but the machinery behind the terms is written in the runtime language. That is, the
term library is implemented in the runtime language.

Below is given a signature for term manipulation. It is a generalisation of the
ATerm interface which is used by ASF+SDF, Tom, Stratego and other term rewriting
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systems. The remainder of this chapter will explain how to map operations from this
signature to AST method calls. The mapping goes from functions on objects in the
runtime language to functions on objects in the compiler language. (The compiler
and runtime languages are often the same.)

The term interface is separated into two complementary parts: the inspection
interface and the generation interface. The former provides operations for travers-
ing and decomposing terms and is a read-only interface to the underlying POM.
The generation interface provides operations for constructing POM objects from
the ground up, i.e. from the leaves up. The clear separation into two interfaces is
very useful because not all POM implementations allow modification. Some front-
ends only support inspection of their POM and, using the inspection interface, these
front-ends may be reused for expression analysis, but not for transformations. When
implementing a POM adapter, one can therefore decide whether read-only access to
the POM is sufficient for the problems at hand, or if a full read/write solution must
be instantiated.

Inspection Interface  Figure 4.3 shows the type hierarchy of all primitive term types.
The operations defined on these types comprise the term inspection interface. It
illustrates that numerous subsorts of 7érm may exist. It is not required that the
term rewriting engine supports all these subtypes. A minimal, but still useful, set
would include ZermAppl, Termint, TermList and TermString. This is sufficient for
representing ASTs of many, if not most, compilers.

At the root of Figure 4.3 is the sort Zerm which has the following operations
defined for it:

signature TermInspection

sorts Term Integer TermCtor

ops
get-primitive-type : Term — Integer
get-constructor : Term — TermCtor
get-subterm-count : Term — Integer
get-subterm : Term X Integer — ITerm
is-equal : Term X Term — Term

hash-code : Term — Integer

The get-primitive-type operation returns an integer enumerating which primitive type
a given term is, i.e. whether it is an application term, a string, a list, a tuple, an
integer, a real or a constructor. The ger-constructor returns the constructor for its
given term. Constructor sorts are described later. The subterm-count and get-subterm
operations are used to inspect and decompose a term. The is-equal and hash-code
operations are used to compare terms. They are also used when terms are placed in
collections such as sets and queues.
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TermAppl
ITermint
ITermList
ITermReal

ITermString

ITermTuple

Figure 4.3: Hierarchy of sorts for the low-level term interface.

The various specific term types, such as string, integer and real have a ger-value
operation which returns a string, integer or real number, respectively, using the ap-
propriate type in the runtime language. List term types have operations for obtaining
the head and tail of the list, and a predicate signalling if a list is empty.

Objects of the sort ZermCror describe constructors of a signature. An ZermCtor
object has a name and an arity. The arity can be a list of sorts, or a number. Since
many term rewriting systems are single-sorted, a number (of argument sorts) suffices
to describe the arity of a constructor. This “one-typedness” presents some prob-
lems when rewriting on fully typed structures such as ASTs implemented in strongly
typed languages. It necessitates some form of translation between the type system of
the compiler language and that of the transformation language. This topic will be
returned to later.

Generation Interface A separate generation interface exists which complements the
inspection interface described previously. It consists of the following operations:

signature TermGeneration
sorts

String Int List(s)

{ TermList TermAppl TermInt TermString } < Term //subsorts onZ‘rm
ops

make-appl : TermCtor X List(Term) — TermAppl

make-int : Integer — TermInt

make-list : List(Term) — TermList

make-string : String — TermString

make-real : Real — TermReal
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make-tuple : List(Term) — TermTuple

The make-appl operation is used to instantiate application terms, e.g. Plus(fp,t1),
from a term constructor object (of sort TermCTor) and a list of terms, i.e. [fy,t11. The
operations make-int, make-real and make-string are used to create terms which will
be available as values in the transformation language from integers, reals and strings,
respectively, in the runtime language. The parametrised sort Lisz(s) is assumed to be
a builtin or library type of the runtime language.

For a given POM, some of the term subsorts may be unused. As a result, not all
of the generator operations need to be defined. For example, typical ASTs are con-
structed from named nodes (constructor applications), lists, strings and sometimes
integers. In these cases, the operations make-real and make-tuple are irrelevant.

Translating Operations

Given a formal signature for the POM and the term interfaces described previously,
a POM adapter may be generated. Based on the previously extracted signature, code
generation templates may be used to instantiate the necessary adapter code.

Adapting Inspection  The crux of the inspection interface is the gez-subterm method.
In an object-oriented setting, this method will dynamically dispatch on its first ar-
gument. Assume a class AdaptedCompilationUnit with a field actualCompilationUnit
of type CompilationUnit (from the AST implementation). The ges-subterm method
amounts to a switch:

meth get-subterm(this : AdaptedCompilationUnit, i : integer) =
switch i:
case 0: adapt(this.actualCompilationUnit.get-package())
case 1: adapt(this.actualCompilationUnit.get-imports())
case 2: adapt(this.actualCompilationUnit.get-types())
default: raise ArrayIndexOutOfBounds

The adapt method is overloaded on ASTNode types. For each subclass C of ASTNode,
it instantiates a term adapter object of type AdaptedC. The type of this new object
has get-subterm defined on it similar to the one just shown. The remaining meth-
ods of the term interface are automatically generated using the code templates; for
each AdaptedC class, the corresponding constructor C defines the return values of
get-subterm-count, get-constructor and get-primitive-type. These functions can be gen-
erated automatically from the constructor definitions. The two remaining operations,
is-equal and hash-code are discussed in the next section.

Adapting Generation The make-appl is the core of the generation interface. It
forwards calls to the relevant factory methods of the AST, or instantiates subclasses
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of ASTNode itself, say, via new, if the POM does not provide a node factory.

Based on the extracted signature, a map is constructed which goes from construc-
tor names (and arity) to constructor methods. When the make-app/ receives a request
to construct CompilationUnit, the map is consulted and the request is forwarded to
the (generated) method make-compilation-unit:

fun make-compilation-unit(t : ITermConstructor, kids : List(ITerm)) =
if (is-package(kids[0])
and is-import-list(kids[1])
and is-type-list(kids[2]))
astFactory.newCompilationUnit(as-package(kids[0]),
as-import-list(kids[1]),
as-type-list(kids[2]))
else

raise InvalidArguments

The responsibility of make-compilation-unit is to ensure that the term arguments are
type correct before invoking the relevant factory method (or new expression) in the
POM interface.

With this generation scheme in place, practically all of the adapter is boilerplate
code that can be automatically generated based on two artifacts: the signature dec-
laration and the compiler-specific code templates. Only the order of signature sorts
must be verified and potentially fixed up by hand.

4.3 Implementation

The POM adapter design has been instantiated for the MetaStratego runtime (Strat-
ego/]). This section describes the details of this implementation and how it fuses
MetaStratego with the Eclipse Compiler for Java (EC]).

4.3.1 Term Interface

The term interface described in the previous section has been implemented rather
straightforwardly in Java. A basic, extensible implementation of the various interfaces
is provided by Stratego/]. Its classes and their corresponding sorts (abstract classes) are
shown in Figure 4.4. This implementation provides basic terms: the Basic-terms in
the figure. By deriving from the basic implementation, POM adapters may supple-
ment the primitive term types provided by a POM with the full range of primitive
term types supported by Stratego. This allows reusing generic analysis transformation
algorithms which assume the presence of certain term types, such as tuples or reals,
even though the POM itself does not provide one. This is made possible because the
basic terms can be mixed with the adapted POM terms. More on this later.
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ITermAppl
ITermint
ITermList
ITermReal

ITermString
BasicString
BasicTuple

BasicAppl

ITermTuple

Figure 4.4: The Stratego/] runtime provides a default implementation for the sort
hierarchy in Figure 4.3.
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Inspection Interface The Java interface of the ITerm type is given below:

public int getPrimitiveTermType();

public ITermConstructor getConstructor();
public int getSubtermCount();

public ITerm getSubterm(int index);
public boolean isEqual(ITerm rhs);

public int hashCode();

The basic term implementation always forwards the equals() method to isEqualsQ).
Because of this, terms may be freely used in Java collection classes. As an optimisa-
tion, the method public ITerm[] getAllSubterms() was added to the ITerm interface.
In some POM implementations, children are kept in linked lists. If getSubterm()
is used to traverse these lists, the traversal time will be quadratic in the number of
children. This presents a significant slowdown. The problem occurs whenever the
MetaStratego interpreter needs to traverse all children of a term, for example when it
evaluates a one or an all. By extracting all children at the beginning of the traversal,
this extra cost is avoided.

The following is another excerpt of the signature extracted from the AST class
hierarchy of the Eclipse Java compiler.

signature EclipseJava
sorts Annotation Javadoc Name
constructors

PackageDeclaration : Javadoc X List(Annotation) X Name — ASTNode

The following shows the final code for the corresponding PackageDeclaration adapter:

class AdaptedPackageDeclaration implements AdaptedECJAppl {
private final PackageDeclaration adaptee;
private static final IStrategoConstructor CTOR =
new ASTCtor("PackageDeclaration", 3);

protected WrappedPackageDeclaration(PackageDeclaration adaptee) {
super (CTOR) ;
this.adaptee = adaptee;

public ITerm getSubterm(int index) {
switch(index) {
case 0: return ECJFactory.adapt(adaptee.getPackage());
case 1: return ECJFactory.adapt(adaptee.imports());



0N QNN W~

84 Chapter 4. Program Object Model Adapters

case 2: return ECJFactory.adapt(adaptee.types());
} throw new ArrayIndexOutOfBoundsException();

public PackageDeclaration getAdaptee() {
return adaptee;

}

In the current implementation, AST nodes are wrapped lazily, thus wrapping only
occurs when needed. When AST nodes are traversed by the rewriting engine, the
AST node children are wrapped progressively, as terms are unfolded.

The isEqual ) method performs a deep equality check, but will not result in a re-
cursive adaptation of child objects. Recall that Stratego allows pattern matching with
variables. All the code for handling variable bindings is kept inside the interpreter
implementation. This keeps the POM adapter interface minimal.

Generation Interface The POM adapter technique does not require an implemen-
tation of the generation interface. If one is not provided, only analysis can be done.
For rewriting to be possible, the following factory methods must be available.

public interface ITermFactory { ...
public ITerm makeAppl(ITermConstructor ctor, ITerm[] args);
public ITerm makeString(String s);
public ITerm makeInt(int i);
public ITerm makeList(ITerm[] args);
3

Default implementations exist for strings, lists and integers, provided by a term fac-
tory for Basic terms called BasicTermFactory. Only the makeAppl method must be
supplied by hand. In the prototype, this method forwards constructor requests to the
appropriate factory methods of the ECJ AST. When a request for constructing, say, a
PackageDeclaration node is seen, the request is forwarded to newPackageDeclaration()
of the ECJ AST factory.

public class ECJFactory implements ITermFactory {

public ITerm makeAppl (ITermConstructor ctor, ITerm[] args) {
switch(constructorMap.get(ctor.getName())) {

case PACKAGE_DECLARATION:

return makePackageDeclaration(args);
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private ITermAppl makePackageDeclaration(ITerm[] args) {
if((!isJavadoc(kids[0]) && !isNone(kids[0]))
|| !'isAnnotations(kids[1])
|| !isName(kids[2]))
return null;

PackageDeclaration pd = ast.newPackageDeclaration();
if(isNone(kids[0]1))

pd.setJavadoc(null);
else

pd.setJavadoc(getJavadoc(kids[0]));
pd.annotations().addAll(getAnnotations(kids[1]));
pd.setName(getName(kids[2]));
return adapt(pd);

}

The method makePackageDeclaration first ensures that args contains the correct num-
ber and types of arguments, on lines 13—16. Next, it calls AST.newPackageDeclaration()
on line 18, uses set methods on the resulting PackageDeclaration object on lines 19—
24 to complete the construction. Line 4 is a performance trick for mapping construc-
tor names to constructor methods. Java does not support function pointers directly.
A lookup table (constructorMap) is statically initialised when the factory is created.
This map allows rapid dispatch to the corresponding construction logic for a given
constructor.

Using the Adapter

The Stratego/] interpreter is a Java object of type Interpreter. When it is instan-
tiated, one of its constructors allows the user to specify which term representations
should be used for its programs (the compiled Stratego scripts) and which factory to
use for the data (the terms which it will process). The following code snippet ini-
tialises an interpreter instance that will accept compiled scripts as ATerms and can
rewrite on the Eclipse compiler ASTs.

ITermFactory data = new ECJFactory();

ITermFactory program = new WrappedATermFactory(Q);
Interpreter intp = new Interpreter(data, program);
intp.addOperatorRegistry(new ECJLibrary());
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The Eclipse Compiler FFI (discussed below) is added to the registry of known foreign
functions on the last line.

4.3.2 Design Considerations

Functional Integration — The POM adapter for ECJ provides an FFI library that pro-
vides type checking support for Java subject code. This library exposes type checking
strategies, such as type-of, to the transformation programs written in Stratego. These
strategies will call the ECJ type checker, through the FFI mechanisms provided by
Stratego/]. Invoking type-of on, say, an InfixExpression term, will result in a call to
resolveTypeBinding() on the InfixExpression object wrapped by this term. Stratego
is a single-sorted rewriting language typed, and only the arity of terms is statically
guaranteed. If, say, a SimpleName term is passed to type-of, the FFI stub for type-of
will detect this and fail, just like any expression in Stratego can fail.

Imperative and Functional Data Structures — The rewriting engine assumes a func-
tional data structure. In-place updates to existing terms are not allowed. The gen-
eration interface is designed so that existing terms will never be modified — there
simply are no operations for modifying existing terms. This makes wrapping imper-
ative data structures in such a functional dress relatively straightforward — compilers
need not provide one. The only restriction is that AST nodes must not change be-
hind the scenes; the rewriting engine must have exclusive access while rewriting. For
in-place rewriting systems, e.g. TXL [Cor04], a slight modification of the ITerm
interface would be necessary so that subterms of existing terms can be modified in
place. Instead of a makeAppl method, one would need a ITerm replaceAppl(ITerm t,
int index, ITerm newkid) method. (Support for this already exists in the BasicTerm
implementation, but is not used by Stratego/].)

In imperative data structures, the state of the system may change during matching
because traversal over the data may change the state of the traversed objects — data
may for example be loaded from the disk during traversal. State change always occurs
when the program object model is wrapped lazily: new POM adapter objects will (in
general) be instantiated during matching. Strictly speaking, matching therefore has
“side-effects”. While the POM adapter may technically speaking force a state change,
it will never result in observable differences of terms: all previously bound terms will
remain unchanged (so ¢ remains unchanged). Since it is extremely rare for visitor
interfaces to have harmful state changing behaviour, potential side-effects are of little
practical concern for building and matching.

Efficiency Considerations — Using a functional data structure provides some ap-
pealing properties for term comparison and copying. As described in [BV00], maxi-
mal sharing of subterms (i.e. always representing two structurally identical terms by
the same object) offers constant-time term copying and structural equality checks as
these reduce to pointer copying and comparisons, respectively. This is important for
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efficient pattern matching because term equivalence is deep structural equality, not
object (identifier) equality. The ECJ AST interface provides deep structural match-
ing, but this is not constant-time.

Quick, deep structural matching can be provided in the POM adapter, but then
lazy wrapping must be given up. In this case, hash codes must be computed deeply,
because the hash must reflect the entire structure of the term and not just the object
identity of the AST node. Ideally, only two objects that are structurally equal should
have the same hash code. Once a hash code has been computed, it can be memoized
since the subterms will never change.

Efficiency — The memory footprint of the wrapper objects is small. Each object has
only two fields. By keeping a (weak) hash table of the AST nodes already wrapped,
the overhead is reduced even further. The current implementation takes just over four
minutes on a 1.4GHz laptop with 1.5GB of RAM to run a simple bounds checking
idiom analysis described in Chapter 10 on the entire Eclipse code base (about 2.7
million lines of code). Complicated transformations are limited by the efficiency
of the current Stratego interpreter, not the adapter. Compiling the scripts to Java
byte code, instead of the abstract Stratego machine, should significantly improve
performance for complicated scripts.

Type System Interaction

The type system of Stratego is significantly more dynamic than that of Java. Many
of the usual caveats of integrating a dynamically typed scripting language with a stat-
ically typed “host” language apply. However, a few additional considerations specific
to the current context warrants further discussion.

Strongly vs Weakly Typed ASTs The ECJ AST is strongly typed and the term
rewriting system needs to respect this. Stratego is dynamically typed and would nor-
mally allow the term InfixExpression(1,BooleanLiteral(True),3) to be constructed,
even though the subterms must be String and Expression as declared previously
(making 1, 3 invalid subterms). ECJFactory has two modes for dealing with this.
In strict mode, the factory bars invalid EclipseJava terms from being built. As a re-
sult, the build expression !InfixExpression(l,BooleanLiteral(True),3) fails. Terms
without any Eclipselava terms, such as (1,2,3), can be built freely. These will not
be represented as EclipseJava terms, but by the default internal term library of the
interpreter. Terms without EclipseJava constructors are referred to as basic terms.
In lenient mode, mixed terms consisting of basic and EclipseJava terms are
allowed, such as InfixExpression(l,BooleanLiteral(True),3). The BooleanLiteral
subterm remains an EclipseJava term, but 1 and 3 are basic terms. The root term,
InfixExpression, becomes a mixed term and is also handled by the basic term li-
brary. Since all terms are constructed from their leaves up (ITermFactory forces
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this), ECJFactory can determine inside its makeAppl() method when it can build an
Eclipselava term: if and only if all subterms are EclipseJava terms and are com-
patible with the requested constructor, an EclipseJava term is built. Otherwise, a
mixed term must be constructed. ECJ FFI functions will fail if they are passed mixed
terms. Java programs, such as Eclipse plugins, may embed the Stratego/] interpreter
for rewriting ASTs. The embedding Java code will receive an ITerm as the result
from the interpreter. The actual runtime type of this object can be any subtype of
ITerm. Therefore, if the embedding Java expects an AdaptedASTNode, it must perform
a dynamic type check to ensure this before proceeding.

Subject Language Semantics Rewritings can result in structurally valid but seman-
tically invalid ASTs, for example, by removing from a class a method which is called
elsewhere. Neither Stratego nor the ECJ AST API checks for this. However, a sub-
sequent type reanalysis will uncover the problem. If the type analysis functions are
used as transformation post-condition checks, one can ensure that a transformation
is always type correct.

4.4 Related Work

Language processing is what software transformation systems like Tom [MRV03],
TXL [Cor04], ASF+SDF [vdBvDH*01] Stratego [BKVV06] were designed for. Ex-
cept for Tom, these systems were not designed to work with more than one term
representation. Retrofitting the POM adapter into existing implementations should
not be too difficult provided that there is a clean interface to the terms. In the cases
where the contract of the term interface is similar to that described in Section 4.2,
many details of the implementation used for Stratego/J should be reusable. This is
the case for the ATerm-based approaches such as ASF+SDF and Tom.

Open compilers such as SUIF [WEW*94], OpenJava [TCIK00], OpenC++
[Chi95] and Polyglot [NCMO03] are natural candidates for integration. They have
well-defined APIs to many parts of their pipeline, often including the backend. It is
not necessary for the compiler to be designed as an open platform, however. As long
as the AST API is accessible, a POM adapter can be generated for it. If one accepts
greybox reuse, this is possible for most compilers.

A key strength of Stratego is generic traversals (built with one, some and all)
that cleanly separate the code for tree navigation from the actual operations (such
as rewrite rules) performed on each node. The J]Traveler visitor combinator frame-
work is a Java library described by van Deursen and Visser [vV02] that also provides
generic traversals. Generic traversals and visitor combinators go far beyond tradi-
tional object-oriented visitors. The core term interface required by both approaches
is very similar. Comparing the Visitable interface of J]Traveler, the ATerm inter-
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face found in ASF+SDF and the Stratego C runtime, suggests that the POM adapter
should be reusable for all of these systems, implementation language issues notwith-
standing (C for ASF+SDE and Java for J] Traveler and the MetaStratego runtime).

A related approach to rewriting on class hierarchies is provided by Tom [MRV03].
Tom is a language extension for Java. It provides features for rewriting and matching
on existing class hierarchies. This is done by using a declaration language called Gom
to describe existing classes as abstract data types. Using these descriptions, a pre-
processor will expand matching operations in the Tom language into the appropriate
method calls according to the Gom declaration. Recent versions of Tom also support
generic traversals in the style of JJTraveler, but its library of analyses is still rather
small. Gom and the POM adapter technique are both based on the idea of obtain-
ing an abstract declaration of specific class hierarchy and adapting a term rewriting
program to operate on the class hierarchy. The approach described in this chapter
can extract these descriptions automatically. The POM adapters enable the plugging
into any program model at runtime — the binding between a given transformation
runtime and a given program object model may be deferred until it is needed. The
Tom program is specialised for a given class hierarchy at compile-time. The POM
approach makes very few assumptions about the rewriting language; the term inter-
face provided by the POM adapter can form the basis for most rewriting languages,
including Tom.

4.5 Discussion

Recent research has provided pluggable type systems, style checkers and static analysis
with scripting support. This indicates that there is demand for high-level languages
for expressing both analyses and transformations. The languages should be directly
usable by software developers. The experiences gained in the field of program trans-
formation, and that have gone into the language design for software transformation
systems, are directly applicable for problems of this kind. The tradeoff with using a
domain-specific language for expressing transformations and analysis is that of any
high-level domain-specific language: the same language features that make the lan-
guage powerful and domain-specific also make it more difficult to learn. This can
be offset in part by good documentation and a sizable corpus of similar code to
learn from. In conjunction with the Spoofax development environment, discussed in
Chapter 9, the fusion of Stratego and ECJ described in this chapter becomes easily
accessible to developers. This will become more apparent through the case studies
presented in Part V of this dissertation.

The POM adapter implementation discussed in this chapter, and which is the
basis for Chapter 10, was generated using a custom Stratego program and a collec-
tion of hand-written Java templates. Careful inspection of the AST implementations
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of the Sun Java Compiler, the prototype Fortress compiler, the extensible Java com-
piler Polyglot [NCMO03] and the JastAdd [HMO03] compiler compiler, suggests that
the POM adapter technique is applicable to a wide number of compilers written in
the object-oriented style. Additionally, implementation platform not-withstanding,
investigation of the GNU Compiler Collection (GCC) tree representation API in-
dicates that this technique should also be applicable to GCC. Furthermore, it seems
feasible to write a more general POM adapter generator based on the current proto-
type program which developers with basic knowledge of Stratego should be able to
adapt this generator to process new AST hierarchies — at least those implemented in
Java.

4.6 Summary

This chapter introduced a novel design of a program object model adapter and
demonstrated how this design can fuse rewriting language systems with existing com-
pilers and front-ends. This fusion enables language independence through large-scale
reuse: entire transformation systems may be plugged onto existing language infras-
tructures, such as compiler front-ends. The stability and robustness of mainstream
front-ends is thereby immediately available to transformation programmer who may
express their analysis and transformation problems using high-level transformation
languages which support precise and concise formulations.

This chapter demonstrated that even a relatively small degree of extensibility on
the part of the compiler is sufficient for plugging in a rewriting system. It motivated
that the POM adapter can be reused for other, tree-like data structures and that its
design is also applicable to other rewriting engines. In Chapter 10, the applicability
of the design will be demonstrated through a series of analysis and transformation
problems taken from mature and well-designed frameworks.



— I must say, cracking is much like acupuncrure. It’s
about finding the right spots to insert some NOPs.

— Havard Serbe.

Modularising Cross-Cutting

Transformation Concerns

Properties such as logging, persistence, debugging, tracing, distribution, performance
monitoring and exception handling occur in most programming paradigms and are
normally very difficult or even impossible to modularise with traditional modularisa-
tion mechanisms because they are cross-cutting. Recently, aspect-oriented program-
ming has enjoyed recognition as a practical solution for separating these concerns.

This chapter describes an extension to the Stratego term rewriting language for
capturing such properties. It demonstrates how this aspect extension offers a concise,
practical and adaptable solution for dealing with unanticipated algorithm extension
for forward data-flow propagation and dynamic type checking of terms. The chapter
describes and discusses some of the challenges faced when designing and implement-
ing an aspect extension for and in a rule-based term rewriting system.

The aspect language described in this chapter was first presented in the paper
“Combining Aspect-Oriented and Strategic Programming” written together with Eelco

Visser [KVO05].

5.1 Introduction

Good modularisation is a key issue in design, development and maintenance of soft-
ware. Software should be structured close to how one wants to think about it [Par72]
by cleanly decomposing the properties of the problem domain into basic function
units, or components. These can be mapped directly to language constructs such as
data types and functions. Not all properties of a problem decompose easily into com-
ponents. Some turn out to be non-functional and these frequently cross-cut the mod-
ule structure. Such properties are called aspects. The goal of aspect-oriented software
development [KLM™*97] is the modularisation of cross-cutting concerns. By making
aspects part of the programming language, one is left with greater flexibility in modu-
larising software. The cross-cutting properties need no longer be scattered across the
components. Using aspects, they may now be declared entirely in separate units, one
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for each property. Examples of general aspects include security, logging, persistence,
debugging, tracing, distribution, performance monitoring, exception handling, ori-
gin tracking and traceability. All these occur in the context of rule-based program-
ming in addition to some which are domain-specific such as rewriting with layout.
Existing literature predominantly discusses aspect-based solutions to these problems
for object-oriented languages and the documentation of paradigm-specific issues and
deployed solutions for the rule-based languages is scarce.

This chapter describes the design and use of aspects in the context of rule-based
programming. It introduces the AspectStratego language which enables modular dec-
laration of many separate cross-cutting concerns encountered in rule-based transfor-
mation languages. A discussion of the joinpoint model underlying AspectStratego
is provided. In addition, the practical usefulness of the extension is demonstrated
by three small case studies motivated by the problem of constant propagation. The
contributions of this chapter include:

1. The description of a novel aspect language extension implemented for and in
a rule-based programming language.

2. An example of its suitability for adding flexible dynamic type checking of terms
in a precise and concise way.

3. A demonstration of its application to unanticipated algorithm extension by
showing how aspects can help in generalising a constant propagation strategy
to a generic and adaptable forward propagation scheme using principles of
invasive software composition [Ass03].

This chapter is organised as follows. The next section describes the running
example of this chapter: a simple constant propagator. Section 5.3 introduces an
extension to Stratego which allows separate declaration of cross-cutting concerns and
shows how this extension facilitates declarative code composition. Section 5.4 dis-
cusses three cases where the aspect extension is found to be highly useful: logging,
type checking of terms and algorithm adaptation. Section 5.6 discusses previous,
related and future work. Section 5.7 summarises.

5.2 Constant Propagation

The code in Figure 5.1 shows an excerpt of a strategy for propagating constants ap-
plicable to an imperative language with assignment, While and If constructs. The
example in Figure 5.2 illustrates the application of the constant propagator to a short
program.
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module prop-const
signature
constructors
Var : Id — Var
: Var — Exp
Int : String — Exp
Plus : Exp X Exp — Exp
If : Exp X Exp X Exp — Exp
While : Exp X Exp — Exp
Assign : Var X Exp — Exp
rules
EvalBinOp : Plus(Int(i), Int(j)) — Int(k)
where <addS>(i,j) = k
EvalIf : If(Int("0"), el, e2) — e2
EvalIf : If(Int(v), el, e2) — el where <gtS> (v, "0")
strategies
prop-const =
PropConst <+ prop-const-assign <+ prop-const-if
<+ prop-const-while <+ (all(prop-const) ; try(EvalBinOp))
prop-const-assign =
Assign(?Var(x), prop-const — e)
; 1f <is-value> e then rules( PropConst : Var(x) — e )
else rules( PropConst :- Var(x) ) end
prop-const-if =
If(prop-const, id, id)
; (Evallf ; prop-const <+
(I£(id, prop-const, id) /PropConst\ If(id, id, prop-const)))
prop-const-while =
?While(el, e2)
; (While(prop-const, id)
; EvalWhile
<+ (/PropConst\* While(prop-const, prop-const)))

Figure 5.1: An excerpt of a Stratego program defining an intraprocedural conditional
constant propagation transformation strategy for a small, imperative language.
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x :=1+1;

if x theny :=1 :>|x::2;y::l |

else y := 0 fi

Figure 5.2: Example showing the constant propagation strategy.

The principle of the constant propagation algorithm is straightforward: A traver-
sal through the abstract syntax tree (AST) of a program is done. Whenever an assign-
ment of a constant value to a variable is encountered, this is recorded using a dynamic
rewrite rule set named PropConst. If the variable is subsequently assigned a non-
constant value, the corresponding rule is deleted. This is done in prop-const-assign
defined on lines 19-22. The process results in rule set mapping variable names to
their constant values.

The dynamic rule set is subsequently used to replace every variable with its value
where this is known. This replacement opens up for the elementary evaluation rules
EvalBinOp and EvalIf defined on lines 12—14. These rules simplify some expressions
involving Plus and If, respectively.

The prop-const strategy on lines 16-18 is the top level driving strategy which
takes care of recursively applying the constant propagation throughout a term. It
works by calling the rule PropConst to replaces any variable term for which the value
is known to be constant. If the PropConst rule fails, the current term is not a variable
with a known constant. In that case, the strategy prop-const-assign is attempted.
If the prop-const-assign is applied to an Assign term and the right hand side of the
assignment evaluates to a constant, a new PropConst rule is generated. If the right
hand side of the assignment is not a constant, any previously defined PropConst rule
for this variable is removed since its value is no longer known. Should the strategy
prop-const-assign fail, two other strategies are tried in order, namely prop-const-if
and prop-const-while. These are described below. If all strategies fail, prop-const falls
back to applying itself recursively to all subterms of the current term and finally try
to apply the EvalBinOp rule (lines 12—13) on the result. This ensures that all language
constructs, such as Plus, are traversed.

The prop-const-if strategy on lines 23—-26 matches an If construct using the
congruence operator while at the same time applying prop-const to the condition
expression. If the congruence succeeds, the prop-const-if strategy proceeds by ei-
ther (1) simplifying the If using the Evallf rule and then recursively continuing
the prop-const algorithm on the result, or (2) applying prop-const recursively to the
then-branch and else-branch in turn, keeping only PropConst rules which are valid
after both branches, i.e. those rules that are defined and equal in both branches.

Recall that the dynamic rule intersection operator s1 /PropConst) s2 used on line
26 applies both strategies s1 then s2 to the current term in sequence while distribut-
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ing (clones of) the same rule set for the dynamic rule PropConst to both strategies.
Afterwards, only those rules which are equal in both branches are kept. A similar
explanation applies to prop-const-while, defined on lines 27-31, where the fixpoint
operator /PropConst\* s is used. This operator applies s repeatedly until a stable rule
set is obtained. Each iteration will apply s to the original term and the result of the
final iteration is kept as the new term.

Generalisation and Adaptation

As written, the algorithm already has some extension points the user of the con-
stant propagator may plug into without modifying the algorithm itself. For example,
adding another evaluation rule for EvalIf that deals with non-zero constants is triv-
ially possible. There are also other extensions and adaptations users may want to
apply to this algorithm which are impossible to do without reimplementing the al-
gorithm from scratch. Section 5.4.1 demonstrates that pervasive logging is one such
example. Using aspects, it is possible to extend the code with logging capabilities
to record all rule invocations. Section 5.4.2 shows another problematic case where
pervasive (dynamic) type checking of terms to ensure the result is a correct term is
desired. This is also handled easily with aspects. Finally, Section 5.4.3 shows how the
algorithm can be refactored into a more generalised schema for forward propagating
data-flow transformations. All extensions and adaptations are performed with the
help of the aspect extension to the Stratego language described next.

5.3 AspectStratego

AspectStratego is an extension to the Stratego language which addresses the problem
of declaring cross-cutting concerns in a modular way. The language extension bears
some resemblance to the Aspect] language [KHH*01].

The reader is not assumed be familiar with Aspect], but for readers familiar with
Aspect], some differences and similarities are remarked: Much of the terminology
in this chapter is inherited from Aspect]. The joinpoint model of Aspect Stratego
is somewhat similar to that of Aspect], but has been adapted to fit better within
the paradigm of rule-based rewriting systems. Both Aspect] and AspectStratego pro-
vide the programmer with expressions called pointcuts. In AspectStratego these are
boolean predicates on the program structure unlike the set theoretic approach taken
in Aspect]. Pointcuts are used to pick out well-defined points in the program execu-
tion, called joinpoints, and are available in advice to pinpoint places to insert code
before, after or around. The inserted code is declared as part of the advice. Advice are
in turn gathered in named entities called aspects. The act of composing a program
with its aspects is called weaving.
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module prop-const-logger
imports logging prop-const
aspects
pointcut call = strategies(prop-const)
aspect prop-const-logger =
before : call = log(|Debug, "Invoking constant propagator™)

Figure 5.3: Aspect extending the constant propagation module with logging. The
log is from logging module, part of the Stratego library.

Figure 5.3 shows how one may use an aspect to extend the constant propagator
with trivial logging. It declares a pointcut, call, on line 4 that identifies all strate-
gies named prop-const. The aspect on line 5-6 declares that before every joinpoint
identified by call, the code fragment log(...) shall be inserted.

Section 5.4 will define the give a more advanced example of logging. Next, the
new terminology and language features introduced in this example will be defined.

5.3.1 Joinpoints

A joinpoint is a well-defined point in the program execution through which the con-
trol flow passes twice: once on the way into the sub-computation identified by the
joinpoint and once on the way out. The purpose of the aspect language is allowing
the programmer to precisely and succinctly identify and manipulate joinpoints.

5.3.2 Pointcuts

A pointcut is a boolean expression over a fixed set of predicates, defined in Table 5.1,
and the operators ; (and), + (or) and not. Pointcuts are used to specify a set of
joinpoints. There are two kinds of predicates in a pointcut: joinpoint predicates
and joinpoint context predicates '. A joinpoint predicate is a pattern on the Stratego
program structure used to pick out a set of joinpoints. A joinpoint context predicate is
a predicate on the runtime environment which can be used in a pointcut to restrict
the set of joinpoints matched by a joinpoint predicate.

Table 5.1 lists the supported joinpoint and joinpoint context predicates. A poinit-
cut declaration is a named and optionally parametrised pointcut intended to allow
easy sharing of identical pointcuts between advice. The parameters are used to
expose details about the pointcut to the advice. The declaration pointcut call =
strategies(prop-const) from Figure 5.3 shows a parameterless pointcut named call

"This terminology and implementation differs from the Aspect] language which provides primitive
pointcut designators instead, see [KHH*01].
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Joinpoint

Matches

calls(name-expr = n)
strategies(name-expr = n)
rules(name-expr = n)
matches(pattern = 1)
builds(pattern = t)

fails

strategy or rule invocations
strategy executions
rule executions
pattern matches
term constructions
explicit invocations of fail

Joinpoint context

Matches

withincode (name-expr = n)
args(My,Nn1, ...,My,)
lhs(pattern = 1)
rhs(pattern = 1)

joinpoints within a strategy or rule
joinpoints with given arity
rule left-hand sides
rule right-hand sides

after succeed

around

Advice Action on joinpoint
before run advice before
after run advice after
after fail run after, iff code in pointcut failed

run after, iff code in pointcut succeeded
run before and after

Cloning

Action on declaration

clone kind name-expr = name-expr

clone and rename a named declaration

Table 5.1: Synopsis of the AspectStratego joinpoints, joinpoint context predicates
and advice variants. The name-expr can either be a complete identifier name, such
as EvalBinOp, a prefix, such as prop-*, a suffix, such as *-assign or an infix, such as
*-const-*. The result of a name-expr is a string, and may optionally be assigned to a
variable using the => x syntax. The kind is either of the keywords strategies, rules
or overlays. The pattern is an ordinary Stratego pattern, which may contain both
variables and wildcards. When a name-expr is used for cloning, the literal parts may
be replaced. IL.e., clone *-prop-* as *-myprop-* will rewrite the middle part of the

identifier.
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with the joinpoint predicate strategies and no joinpoint context predicates. It picks
out all definitions of strategies named prop-const.

5.3.3 Advice

An advice is a body of code associated with a pointcut. There are three main kinds of
advice: before, after and around. The different forms of advice specify where the body
of advice code should be placed relative to the joinpoint matched by its pointcut.
Table 5.1 lists the available advice types for AspectStratego. The declaration on line
6 in Figure 5.3 is an example of a before advice. The strategy log is provided by the
library, and will be discussed later. This code will be inserted — weaved — into the
prop-const strategy from Figure 5.1 as follows:

prop-const = log(|Debug, "Invoking const....")
; (PropConst <+ prop-const-assign <+ prop-const-if
<+ prop-const-while <+ (all(prop-const) ; try(EvalBinOp)))

Composing code by inserting advice like this opens up the possibility for manipulat-
ing the current term. Recall that all strategies and strategy expressions in Stratego are
applied to the current term unless they are specifically applied to a variable or pattern
with the application operator (<s> x). Exactly how the strategy or rule invocations
inside the advice body changes the current term can be controlled in two ways: the
advice body is a strategy expression and may be wrapped (entirely or partially) in a
where to control how and if the current term is modified. In the above case, log only
takes term arguments and is designed to leave the current term untouched, making
where superfluous.

This manipulation of the current term turns out to be very useful in around advice
where the implementer of the advice has full control over how the pointcut should be
executed. The placeholder strategy proceed is available for this purpose. By placing
the proceed within a try or as part of a choice (+), it is trivially possible to add
failure handling policies. The flexibility of around allows the aspect programmer to
completely override and replace the implementation of existing strategies and rules
by not invoking proceed at all. This can even be applied to strategies found in the
Stratego standard library.

The usefulness of current term manipulation stems from terms normally being
passed via the current term from one strategy to another, not as term arguments. E.g.,
in the following example, strat2 will be applied to the current term left behind by
stratl:

stratl ; strat2
An alternative, more imperative formulation of the same would be:

stratl = r ; strat2(|r)
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This is not within the style of Stratego as it becomes cumbersome to use when one
replaces sequential composition (;) with the other strategy combinators, such as left
choice («). Current term manipulation is thus mostly analogous to manipulating
input parameters and return values in Aspect].

A note about rule and strategy priority is warranted. Aspects may be used to
modify an existing rule (or strategy), but there is no mechanism by which aspects can
directly change the priority of a rule or an aspect.

5.3.4 Cloning

A very useful feature provided by AspectStratego is the ability to clone existing named
definitions, such as rules, strategies or overlays. For example, the declaration below
will clone all the strategies starting with the name prop-* and, for each, create an iden-
tical copy with the my-prop-* name prefix (the matching value of * will be expanded,
of course).

clone strategies prop-* = my-prop-*

The flat structure of Stratego, with only one global name space for all definitions,
makes cloning straightforward. It is allowed, but generally discouraged, to give the
clone a name which conflicts with existing definitions. In Stratego, multiple strategies
or rules may have the same name, so cloning with a conflicting name must remain
allowed — it is sometimes what the developer intends.

Using the cloning feature, it becomes possible to rewrite the pointcuts to ap-
ply to clones strategies, i.e. to my-prop instead of prop. Cloning enables aspects to
instantiate multiple concurrent variants of existing library functionality in the same
program. This allows existing language-specific transformations to be adapted for
new subject language signatures. New signatures may introduce additional language
constructs. Support for these constructs may be added to an existing (potentially
cloned) transformation using the techniques for unanticipated algorithm adaptation
discussed later.

The cloning feature was, to the knowledge of the author, first proposed (for Java)
in [BBK*05].

5.3.5 Weaving

The pointcuts are designed to be evaluated entirely at compile-time. All cloning
declarations are evaluated and resolved before any pointcuts are matched. Given an
advice declaration, the compiler will interpret its pointcut declaration on the Stratego
abstract syntax tree (AST) to find the location where the advice body must be weaved.
The code in the advice body is then inserted into the AST before, after or around the
joinpoint.
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The body of the advice has a rudimentary reflective capability, which is also re-
solved at compile-time. Table 5.1 indicates that the advice body has access to rule
and strategy names. The Stratego runtime has no reflective nor code-generating ca-
pabilities so these names are mostly useful for logging purposes. Advice body code
also has access to patterns from match expressions, and may evaluate these patterns
at runtime. This is demonstrated in Section 5.4.2.

5.3.6 Modularisation

All AspectStratego code, including aspects, must reside in modules. This seems sen-
sible, since the goal of aspects is to modularise cross-cutting concerns. An aspect or
pointcut can only be declared within an aspects section of a module. This is simi-
lar to how for example overlays must reside in the overlays section. While aspects
sections may be interleaved with the other Stratego sections (e.g., strategies, rules,
signature), it is encouraged that each aspect is declared in a separate module. First,
this helps keep aspects — separate, cross-cutting concerns — truly separate, both in
design and implementation. Second, this also allows them to be selectively enabled
or disabled using compiler flags without any code modification at all. Modules may
be substituted in the build system without source code modification. The mecha-
nisms and language features required for controlling the application of aspects on the
module level are still subject to research; it is currently not possible to restrict the
application of aspects based on the module of a joinpoint.

AspectStratego keeps the pointcut declarations outside the aspect declarations, to
signify that pointcuts may be shared between aspects. In object-oriented renditions
of aspects, such as Aspect], sharing of pointcuts between aspects is captured using
inheritance: a subaspect inherits all pointcuts from its superaspect. The usefulness of
shared pointcuts are demonstrated in Section 5.4.3.

5.4 Case Studies

This section motivates the use of AspectStratego with three case studies relevant to
rule-based programming. The first example is a simple logging aspect which is in-
cluded to show similarities and differences with the Aspect] language. The second is
a dynamic type checker of terms realised entirely as an aspect. It shows how aspects
may sometimes be used as an alternative to compiler extensions. The final case is a
discussion of how aspects may be useful in expressing variation points when imple-
menting generalised adaptable algorithms.
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module simple-logger
strategies
invoked(|s) = ![ "Rule '", s, "’ invoked" ]
aspects
pointcut log-rules(n) = rules(* = n)
aspect simple-logger =
before : log-rules(r) = log(|Debug, <invoked(|r)>)
after fail : log-rules(r) = log(|Debug, <failed(|r)>)
after succeed: log-rules(r) = log(|Debug, <succeeded(|r)>)
after : log-rules(r) = log(|Debug, <finished(|r)>)

Figure 5.4: A complete logging aspect in AspectStratego. The definitions of failed,
succeeded and finished are similar to invoked. The direction of information flow
through the pointcut declaration arguments is somewhat uncommon: they specify
information going out of the declaration.

5.4.1 Logging

Logging of program actions is often useful when developing software and is therefore
a problem one wants to encode in a concise fashion. The program points one wants
to trace frequently follow the program structure, for instance, the entry and exit of
functions. In these cases, the established solution is to wrap the function definitions
in syntactical or lexical macros which perform simple code composition. The nu-
merous shortcomings of this technique, such as decreased code readability, lack of
flexibility, interference with meta-tools (especially for documentation and refactor-
ing) and typographic tedium, are all addressed by aspects. The aspect language also
allows pervasive insertion of logging code in locations unanticipated by the origi-
nal implementer such as inside rule conditions and failures deep inside the Stratego
library.

The code in Figure 5.4 shows an aspect, called simple-logger, that may be used
to insert logging code around all rules in a program by adding it to the imports list of
the main module. The code transformations induced by the weaving are detailed in
Section 5.5.

While the built-in log strategy provides the ability to set the logging level at run-
time (e.g. only errors, and no warning and debug messages), a program with explicit
log calls inserted into its strategy and rule definitions will always take a slight per-
formance hit. Stratego, where the coding style encourages many and small rules and
strategies, is sensitive to any such overhead even with aggressive inlining. Conse-
quently, it is desirable to have the ability to easily remove most or all 1og calls before
final deployment. Aspects make this trivial.



102 Chapter 5. Modularising Cross-Cutting Transformation Concerns

The application of one aspect may open up for further adaptation by another
aspect. For example, the strategy invoked in Figure 5.4 may be the target for further
aspects. Note that these second level — or “meta” — aspects pose a few potential
problems with respect to weaving order that have not been resolved in the imple-
mentation yet. In the current implementation, aspects are weaved in the order of
declaration. Consider the following definition of ext-invoked:

aspects

pointcut invoked = calls(invoked)
aspect ext-invoked =

before : invoked = ...

If this aspect were to be weaved before simple-logger, it would have no effect, as
invoked is not called anywhere at the time ext-invoked is weaved. As long as the user
is aware of this, and manually linearises the dependency chain between aspects by
declaring ext-invoked after simple-logger, the result will match the intention of the
user.

5.4.2 Type Checking

Terms in Stratego are built with constructors from a signature, but the language does
not enforce a typing discipline on the terms: it is a single-sorted rewriting language.
Given the signature in Figure 5.1, a Stratego program may construct an invalid term,
e.g. !'Plus(Int("0"), "0"). As the normal mode of operation for Stratego is local and
piecewise rewriting of terms, possibly from one signature to another, invalid inter-
mediates cannot be forbidden. To debug such problems, it is common to manually
insert debug printing, or weave in a logger to generate a program trace for manual
inspection. This form of manual verification is highly error-prone.

The Stratego/XT environment comes with format checking tools for this pur-
pose. The tools can be applied to the resulting term of a Stratego program, checking
it against a given signature. While all signature violations are caught by these tools,
they cannot help in telling where in your program the actual problem is present
as the check happens entirely after program execution. It is possible to use aspects
to weave the format checker into the rules of our program at precisely the spots
where one would like the structural invariants to hold. The typechecker aspect in
Figure 5.5 makes use of the format checker functionality in Stratego/XT to perva-
sively weave format checking into all rules of a Stratego program. By modifying
the typecheck-rules pointcut, the user can control the exact application of the type
checker. Its usage is similar to the simple-logger: it must be imported, but, in addi-
tion, a typecheck strategy for the relevant signature must be declared in a strategies
section:

typecheck(|t) = format-check-Imp(|t)
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module typecheck-example
aspects
pointcut typecheck-rules(n, t) = rules(n) ; rhs(t)
aspect typechecker =
around(n, t) : typecheck-rules(n, t) =
proceed ; (typecheck(|t)
<+ ( log(lincorrect-term(n) ; fail ))

Figure 5.5: An aspect for weaving simple dynamic type of terms into rules.

Given the signature in Figure 5.1, the Stratego/XT format checker tools generate a
Stratego module containing a complete format checker for that signature. The top
level strategy for this format checker is named format-check. It may be applied to a
term and checks if it is a valid (sub)term of that signature.

As with logging, introducing the checking aspect provides the user with a quick
and concise mechanism to decide which parts (if any) of a program should be type
checked. Its usage can be toggled both at compile- and runtime (the latter always
incurs a small performance hit as previously discussed).

The aspect Figure 5.5 invokes the typecheck strategy. The argument 7 to typecheck
is the pattern matched by the typecheck-rules pointcut, i.e. the pattern is extracted
from the right-hand side pattern of a rule. In the case that t is a term (no variables),
it can in theory be entirely checked at compile time as both the signature and the
term are completely known to the compiler. In the case that # contains variables, the
static parts may be checked at compile time, but the variable part must be evaluated
at runtime.

The type checking aspect is only a partial replacement for a built-in type system.
It performs no type inferencing and can therefore not eliminate redundant checks.
The topic of typed, strategic term rewriting is discussed in [Lim03].

5.4.3 Extending Algorithms

The algorithm in Figure 5.1 is an instance of the more general data-flow problem
of forward propagation examples of which are common subexpression elimination,
copy propagation, unreachable code elimination and bound variable renaming. The
algorithm can be factored into a language-specific skeleton and problem-specific ex-
tensions. The language-specific skeleton must account for control-flow constructs
and scoping rules specific to a given language. In some cases, it is possible to abstract
over subject language differences. Using aspects, additional flexibility is provided and
the skeletons may more easily be reused for similar subject languages. Cases for ad-
ditional language constructs may easily be added to the skeleton using before advice,
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and non-applicable cases may be voided using around advice.

A variation point is a concrete point in a program where variants of an entity
may be inserted. By providing clearly defined variation points, the skeleton is made
adaptable to the specific propagation problem at hand.

Expressing Adaptable Algorithms

There are many well-known techniques for expressing adaptable algorithms. When
providing an algorithm intended for reuse and adaptation by other programmers
(users), the following properties of the technique become important:

® adaptability; one would like maximal freedom in which variation points one
exposes to the users.

o reuse; the users of the algorithm should need to reimplement as little code as
possible. This is especially important in the face of maintenance.

® traceability; when errors (either in the design or the implementation) are dis-
covered in the algorithm, users should be offered an easy upgrade path. Ideally,
the users should only need to replace the library file wherein the algorithm re-
sides. This may not always be feasible, but, at the very least, the users should
know which parts of their system may be affected by the error.

® cvolution; one must be able to change the internals of the algorithm without
disturbing the users.

Boilerplates One of the most popular, but least desirable, techniques for adaptation
is boilerplate adaptation. In this approach, a code template is manually copied then
modified to fit the situation at hand. The approach suffers from high maintenance
costs due to inherent code duplication. It is especially problematic if the original
template is later found to contain grave (security) errors since there is no traceability
of where it has been used. On the other hand, it offers a very high degree of flexibility
as all variation points may be reached. At its most extreme, boilerplate adaptation
allows the applicant to gradually replace the entire algorithm.

Design Patterns Another, popular technique for reuse is the use of design pat-
terns [GHJV95]. A design pattern is a piece of reusable engineering knowledge. For
every case where a design pattern is applicable, it must be implemented from scratch
by the programmer. In the recent years, much research has been into improving reuse
of design patterns, either by providing direct language support [Bos98, Hed98] or by
placing them in reusable libraries [AC98, HK02].
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Hooks and Callbacks Hooks and callbacks are well-known techniques for exposing
variation points through overridable stubs the user of a library or algorithm can ex-
tend. By calling registration functions, the user may add callbacks and hooks which
are called at pre-determined locations in the algorithm or upon particular events in
the program. As long as the contract between the algorithm and its callbacks is main-
tained, the algorithm internals may evolve separately from the adapted hooks and
therefore offers good maintenance properties. Its drawbacks include the fact that not
all variation points may be expressed as hooks, and that it is difficult to adapt an
algorithm with different sets of hooks in multiple contexts within the same program.
In Stratego, this can to some degree be solved using scoped dynamic rules. For other
paradigms, function pointers, closures and/or objects allow multiple contexts to exist.

Higher-order Parameters In functional languages, it is common to expose varia-
tion points through higher-order parameters. The paper [OV05] describes an adapt-
able skeleton for forward propagation using this approach. The technique provides a
precise way for exposing variation points which is both easy to use and allows the user
to adapt the algorithm on a per-context basis within the same program. One draw-
back is the issue of “parameter plethora”, i.e. the number of parameters users must
deal with. In cases where the problem space is large, the algorithm often has many
variation points yielding a long parameter list. A common solution to this problem is
providing multiple entry points into the algorithm, each with an increasing number
of parameters. Another is having parameters with default values where the language
supports this.

Limitations

Boilerplates and design patterns are not really desirable given their poor support for
code reuse and traceability. While the last two solutions discussed above offer both
good reuse and traceability, they suffer from a few additional drawbacks. Over time,
experience with the use of an algorithm may expose a need to extend it with further
variation points unanticipated by the original implementer. Exposing a new variation
point frequently results in a change in the algorithm interface, through the adding
new higher-order parameters, hooks or new parameters to existing hooks. Backwards
compatibility can normally be handled by writing wrappers mimicking the old in-
terface which forwards to the new. The price is the burden of maintaining multiple
versions of the same interface.

Another consideration when extending an algorithm is how to propagate the new
variation point through its internals. Suppose in prop-const (Figure 5.1), one wanted
to add the ability to transform the current term before recursively descending into the
children. With a solution based on higher-order parameters, this transform parameter
would have to be “threaded” through all prop-* strategies as a higher-order parameter,
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and thus result in an intrusive rewrite.

A final consideration is who should be able to perform adaptation and extension
of existing algorithms. It is normally not possible for the user of the algorithm to
extend it outside the exposed variation points even if they can be clearly identified,
unless the user has access to the source code, in which case the boilerplate technique
may be resorted to.

Dealing with Evolution

This section demonstrates a solution to the extensibility problem for handling #nan-
ticipated variation points that is complementary to hooks and higher-order param-
eters. It uses the declarative features of aspects to clearly identify and name the
variation points in the algorithm. The code in Figure 5.6 shows how some of the
variation points already discussed have been exposed through pointcuts. The algo-
rithm provider may decide to add some trivial points, fail in forward-prop and id
in prop-assign to allow the pointcuts and advice to be expressed more clearly. These
are not strictly necessary. The same joinpoints can be identified and used with only
slightly more complicated pointcuts and advice and also by a user of the skeleton
without involving the provider nor changing the code.

The forward-prop pointcut may be used to insert the transformation code before
and after the propagator visits subterms of a given term. The prop-* pointcuts may
be used similarly for inserting code before and after recursive descent into subterms
of their respective language constructs. The prop-rule pointcuts are used for declar-
ing which dynamic rule(s) to use for intersections and during traversal. Note that
the pointcuts have the same names as the strategies they match inside. This makes
it very clear to the user where the advice is applied. Admittedly, this is also a po-
tential source of confusion as the same identifier may refer to either an aspect or a
strategy/rule, depending on context. The pointcut namespace is kept separate from
the other namespaces in Stratego (one for rules and strategies, another for construc-
tor names) because the namespaces in Stratego are global and one-level. There is no
hierarchy of namespaces (c.f. Chapter 2, Section 2.4.1).

By using these variation points exposed through aspects, the code in Figure 5.7
demonstrates how the skeleton may be instantiated with advice to obtain a constant
propagator. After weaving, the result is the exact algorithm presented in Figure 5.1.
around advice is used instead of after advice to properly parenthesise the expressions
and control operator precedence. Consider the weaving of the around advice for
prop-while pointcut. The pointcut matches the following joinpoint code:

/\* While(forward-prop, forward-prop)
By using the around advice, this expression is replaced with:

(While(forward-prop,id); EvalWhile <+ proceed)
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module forward-prop
strategies
forward-prop =

fail <+ prop-assign <+ prop-if <+ prop-while

<+ all(forward-prop)
prop-assign =

Assign(?Var(x), forward-prop = e) ; id
prop-if =

If(forward-prop, id, id)

; (If(id, forward-prop,id) /\ If(id,id, forward-prop))
prop-while =

?While(el, e2)

; (/\* While(forward-prop, forward-prop)))
aspects
pointcut prop-rule(r) =

(calls(dr-fork-and-intersect) ; args(_, _, r))

+ (calls(dr-fix-and-intersect) ; args(_, r))
pointcut prop-rule = fails ; withincode(forward-prop)
pointcut forward-prop = calls(all) ; withincode(forward-prop)
pointcut prop-assign = calls(id) ; withincode(prop-assign)
pointcut prop-if =

calls(dr-fork-and-intersect) ; withincode(prop-if)
pointcut prop-while =

calls(dr-fix-and-intersect) ; withincode(prop-while)

Figure 5.6: Skeleton for forward propagation with variation points exposed as point-
cuts. For a real language, the skeleton is often quite large and often difficult to con-
struct. s1 /Rule\ s2 is syntactic sugar for dr-fork-and-intersect(sl, s2 | [ "Rule"
1), and /Rule\* is sugar for dr-fix-and-intersect. In the above code, the Rule will
be filled in later by aspects, thus the empty fork (/\) and fix (/\*) in prop-if and
prop-while, respectively.
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Since proceed invokes the original (matched) joinpoint code, the end result is the
same code as found in prop-const-while in Figure 5.1, modulo the fact that the driv-
ing strategy is now named forward-prop. Using cloning and renaming, it is possible to
derive a practically identical implementation. Additionally, the patterns and traver-
sals may be adapted for additional signatures, thus easily instantiating the forward
propagator for a family of subject languages.

Evaluation

The proposed solution is now evaluated based on the criteria set out above.

Adaptability Exposing variation points through pointcuts is more adaptable than
higher-order parameters and hooks because it can be done without changing the
algorithm itself. As long as the variation point can be picked out using a pointcut,
an advice may be used to insert a callback into the algorithm at that point. This is
easier with AspectStratego than many other aspect extensions since the data normally
is passed through the algorithm as the current term. It is possible to use pointcuts
to modify the current term before or after any strategy or rule invocation in the
algorithm implementation. Aspects can be viewed as a complementary extension
mechanism to callbacks/hooks since it may be used to add these. Similarly, the aspect
technique is complementary to higher-order parameters. It is also possible to wrap
the entry point to the algorithm in a reparametrised strategy.

Different levels of adaptability may be exposed using aspects. These these levels
are expressed separately from the algorithm skeleton. By choosing between the avail-
able adaptation aspects, the user may select which sets of variation points he intends
to deal with. Assuming white-box reuse, the user may add new variation points to
the algorithm in this fashion.

Reuse Compared to design patterns and boilerplates, much better reuse is obtained.
With a properly designed skeleton, the amount of code needed to adapt the algorithm
is proportional to the extra functionality added.

Traceability It is directly evident from the code both which version of the skeleton
that has been used and how it has been adapted (using which aspects). Traceability is
therefore better than for boilerplates and patterns, and at the same level as parameters

and callbacks.

Evolution As time goes by, new callbacks and higher-order parameters may easily
be added to the skeleton using aspects. Further, aspects may be used internally to
propagate the parameters to all sub parts of the algorithm implementation. Arguably,
extra care must be taken to ensure that the semantics of the pointcuts are kept after
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module forward-prop-usage
imports forward-prop
aspects
aspect prop-const =
around : prop-rule(r) = proceed([ "PropConst" ])
around : prop-rule = PropConst
around : forward-prop = (proceed ; try(EvalBinOp))
before : prop-assign-ext =
?Assign(Var(x), e)
; 1f <is-value> e
then rules(PropConst: Var(x) — e)
else rules(PropConst:- Var(x)) end
around : prop-if = EvalIf ; forward-prop <+ proceed
around : prop-while =
(While(forward-prop,id) ; EvalWhile <+ proceed)

Figure 5.7: Instantiation of the forward-prop to make the constant propagator in
Figure 5.1, using aspects. Admittedly, the example is somewhat contrived, as these
are variation points we normally would anticipate and explicitly parameterize easily.

an algorithm revision since they now are declared separately. This problem is no
different from variation points exposed through higher-order parameters or hooks as
long as the pointcuts are known to the revising party.

In the case where users have identified and extended variation points through
their own pointcuts, the situation is more precarious. This is a known drawback of
white box reuse.

A particularly attractive feature of aspects in the context of this dissertation is
the way they enable the expression of language independent transformations. Gen-
eral algorithm skeletons may be implemented and adapted invasively when they are
instantiated for new subject languages. To some extent, existing language-specific
transformations may in some cases also be adapted to other, similar languages.

5.5 Implementation of the Weaver

The aspect weaver for AspectStratego is realised entirely inside the Stratego compiler
as one additional stage in the front-end. It operates on the normalised AST where the
module structure has been collapsed. All definitions from all included modules are
thereby available for weaving. The weaver is implemented as traversals on the AST.
The full pipeline for compiling — or weaving — the aspect extension into Stratego is
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StrategoSugar
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backend
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c-compile

weave-advice

Figure 5.8: Pipeline for assimilating AspectStratego into StrategoCore

shown in Figure 5.8.

Cloning — All clone expressions are collected and the relevant definitions are du-
plicated and renamed in two-pass top-down traversal called process-clones. First, all
the clone expressions are collected and then to all matches are found and duplicated.

Pointcut collection and evaluation (collect-pointcuts in the figure) is a top down
traversal that collects all pointcut declarations. Every pointcut encountered is essen-
tially a simple logical expression. These expressions are decomposed into conjunctive
normal forms called fragments. A fragment contains one joinpoint and an arbitrary set
of joinpoint context predicates all separated by logical and. For example, the point-
cut (rules(n) + strategies(n)) ; args(y) is split into the two fragments rules(n)
; args(y) and strategies(n) ; args(y). For each named pointcut, a dynamic rule
is generated and used as a map from pointcut names to the fragment set for that
pointcut.

Advice collection and evaluation (collect-advice) is a top down traversal that col-
lects all advice declarations. When an advice is encountered, its associated pointcut
is looked up and one dynamic rule is generated for each fragment of that pointcut.
In a generated rule, the left-hand side matches the term in the Stratego AST corre-
sponding to the fragment’s joinpoint predicate. For example, rules match against
the AST term for rule declaration, RDefT. The generated rule evaluates all joinpoint
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EvalBinOp =
log(|Debug, invoked("EvalBinOp")) ;
if shadowed-EvalBinOp then
if log(|Debug, succeeded("EvalBinOp")) then
try(log(|Debug, finished("EvalBinOp")))
else
log(/Debug, finished("EvalBinOp")) ; fail
end
else
// identical to the then-clause,
// with succeeded replaced by failed

end

Figure 5.9: The declaration of EvalBinOp from Figure 5.1 after weaving in the
simple-logger aspect.

context predicates in its condition. These rules are applied later by the weaver. When
a rule succeeds, it provides the weaver with the context information identified by its
pointcut fragment and the advice body associated with that pointcut.

Weaving — The actual weaving is a bottom up traversal of the AST (weave-advice).
It exhaustively attempts to apply all generated advice rules from the previous step. On
any term where one or more rules match, their associated advice bodies are collected

and applied in place.

5.5.1 A Weaving Example

By weaving the simple-logger aspect (Figure 5.4) into the module in Figure 5.2, all
executions of EvalBinOp and EvalIf are logged. Weaving of this aspect on the rule
EvalBinOp proceeds as follows.

First, the weaver shadows both declarations by adding a new unique prefix to the
existing rule name. Then, a wrapper strategy from the template in Figure 5.10° is
instantiated. It has the name of the original rule (EvalBinOp). The final result of this
weaving for EvalBinOp is shown in Figure 5.9. The wrapper first executes the code
from the before advice followed by the shadowed (original) code. If the shadowed
code fails, the after fail advice is run followed by the after advice. The enclos-
ing try and if-then-else are there to allow after fail and after succeed advice to
change a failure into success or success into failure, respectively. after advice may not
change failure/success but may replace the current term.

?Technically, the actual implementation uses the guarded choice operator. For readability reasons,
the if-then-else is shown in the examples.
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before ;
if pointcut-code then
if after-succeed then try(after) else after ; fail end
else
if after-fail then try(after) else after ; fail end
end

Figure 5.10: Template for advice weaving. Cursive identifiers are insertion sites for
advice code. If a particular advice is not present in a joinpoint, it is replaced by an id
(after-fail is replaced by fail).

5.5.2 Aspects as Meta Programs

When evaluating the pointcuts in the aspect compiler, there is a need to do interpre-
tation of the pointcut expressions. This is realised as interpretive dynamic rules in
the current implementation. Unfortunately, this leads to a rather rigid and tangled
implementation where extending the language with new joinpoint (context) predi-
cates becomes needlessly complex. It is conceptually much more appealing to view
each advice as a small meta program to be executed on the AST. This meta program
must be constructed at compilation time and can therefore not be a fixed part of the
compiler. The current implementation can be seen as a manual specialisation of such
a meta program where the dynamic parts are captured by dynamic rules.

Instead of inventing and maintaining a new interpreter for such meta programs, it
is desirable to generate a small Stratego program for every meta program. This would
be possible in a rewriting language with an open compiler or in a flexible, multi-
staged language. The weaver would generate compiler extensions (meta programs),
then execute these as part of the compilation process. This is now possible with
the MetaStratego infrastructure, but the weaver has not yet been updated to take
advantage of these developments.

5.6 Discussion

There are several documented examples of cross-cutting concerns found in the do-
main of rule-based programming. For example, the problem of origin tracking is
documented in [vDKT93] and the problem of rewriting with layout in [vdBV00].
Both papers present interpreter extensions as the solution to their respective prob-
lems.

In [KLO3], it is argued that both the above cases are instances of the more gen-
eral problem of propagating term annotations — a separate concern which should be
adaptable by the programmer. The solution proposed in [KL03] is to provide the
programmer with declarative progression methods expressed as logic meta-programs.
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It is realised as a research prototype in Prolog. The aspect extension also provides a
mechanism for specifying cross-cutting concerns in a declarative and adaptable way,
but the style proposed herein is very similar to the popular Aspect] language, although
recast for Stratego.

Many other aspect extensions have been documented. The AspectS system for the
Squeak dialect of Smalltalk [Hir03] describes a weaver which works entirely at run-
time using the reflective features of the Smalltalk runtime environment. The Casear
aspect extension for Java [MOO03] brings runtime weaving to Java. In [LK97], the
authors describe a small object-oriented language Jcore and its extension Cool for ex-
pressing coordination of threads. The two are composed using an aspect weaver. As-
pectC++ [SGSP02] is an aspect extension to the C++ language. An aspect extension
for the functional language Caml is described in [HT05]. In [MRB*], the authors
document an aspect extension to the GAMMA transformation language for multiset
rewriting and demonstrates its use to express timing constraints and distribution of
data and processes. AspectStratego attempts to solve many of the same problems as
the languages above because these problems are found in many languages. In addi-
tion, this chapter also motivates how problems specific to rule-based programming,
such as language independence, may have solutions based on aspects.

The implementation of aspect-weavers using rewriting has been documented in
[ALOO] for the context of graph rewriting and in [GR04] using term rewriting. In
both cases, the subject languages were object-oriented. In [Lim99], the authors de-
tail an aspect language for declarative logic programs with formally described seman-
tics, and a weaver based on functional meta-programs. Reflective languages with
meta programming facilities such as Maude [CDE" 03] are alternative implementa-
tion vehicles for aspects. The appeal of aspects is their concise, declarative nature
with their clearly defined goal: identify joinpoints for inserting code. This con-
trasts with the flexibility and complexity offered by general meta programming. The
“general-purposeness” of meta programming may in fact often be a hindrance to
users. Distilling the power of general meta programming into a concise, declarative
aspect language may therefore be worthwhile. While this chapter also describes the
implementation of an aspect weaver using a term-rewriting system, the subject lan-
guage, Stratego, is not a declarative logic nor an object-oriented language. This gives
rise to a different set of joinpoints than considered by the above references.

The algorithm extension technique described in Section 5.4.3 is an example of
compile-time code composition and is thus somewhat related to techniques such as
templates in C++. Unlike C++ templates, the AspectStratego composition language
is purely declarative and new variation points can be exposed retroactively without
reparameterizing.
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5.7 Summary

This chapter presented an aspect extension for the Stratego term-rewriting language,
combining the paradigms of aspect-oriented programming and strategic program-
ming. The implementation of this language was discussed. Several examples of is ap-
plicability were given, including a flexible dynamic type checker of terms as a practical
example of aspects as an alternative to the interpreter extensions in [vDKT93] and
[vdBV00]. The chapter also demonstrated how aspects may be helpful in handling
unanticipated algorithm extension using the technique of invasive software composi-
tion. This form of (potentially retroactive) parametrisation increases the genericity of
(existing) implementations, and thereby improves language independence. Aspects
may be regarded as a declarative mechanism for adding support for subject language
families to transformation libraries and are therefore an attractive language abstrac-
tion for language independent transformations.



Part IV

Supportive Abstractions for
Transformations

115






An Extensible Transformation Language

This chapter introduces new compiler and runtime infrastructure that turns Stratego
into an extensible transformation language. The extensible variant of Stratego is used
throughout this dissertation as a platform for experimenting with language extensions
and abstractions for language-independent transformations. The extensible compiler
reuses most of the Stratego compiler and the Stratego library. It is a strict — or conser-
vative — extension of the Stratego infrastructure. The compiler is complemented by a
versatile transformation runtime designed to abstract over different term representa-
tions. The runtime supports dynamic loading of transformation components during
execution. These components are expressed using a new and light-weight component
architecture for self-contained transformation components.

6.1 An Extensible Compiler

The primary design goal of the extensible compiler, called the MetaStratego com-
piler, is to support the development of language extensions for Stratego. Figure 6.1
illustrates examples of language extensions under development with this compiler.
Developers of transformations may add their own extensions (illustrated with the
stippled box containing your-stratego) as part of a specific transformation project.

6.1.1 Declaring Syntax and Assimilator

The extensible compiler enables programmers to plug in language extensions at com-
pile time. A programmer may do this in either of two ways. Each Stratego module
is implemented in a .str file, for example foo.str. By creating a so-called meta file,
it is possible to give instructions to the compiler about how to treat the contents of
foo.str. The following is an example meta file, foo.meta:

Meta([
Syntax("AspectStratego™),
Assimilator("assimilate-aspects™)

117
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Figure 6.1: Language extensions for Stratego implemented using MetaStratego. This
dissertation discusses GraphStratego and AspectStratego. The reason for the depicted
MetaStratego extension is explained in Section 6.1.1.

D

This file must always accompany foo.str. It declares to the MetaStratego compiler
that the AspectStratego syntax must be used to parse the file foo.str. The meta file
also declares that the AspectStratego language extension is to be translated (assimi-
lated) into plain Stratego using a transformation component called assimilate-aspects.

When the file foo.str is compiled, the MetaStratego compiler will search the
include path for the AspectStratego syntax and the assimilate-aspects assimilator
program. For convenience, it is also possible to specify the language extension inside
the module. This is done in a separate meta section:

module foo
meta
syntax = "AspectStratego"
assimilator = "assimilate-aspects”
imports

The meta section must always appear immediately after the module declaration. A
small pre-processing step will read the top of the file and extract the meta informa-
tion. The choice between meta files and meta sections is a matter of programmer
preference.

Extending Stratego with a given language extension results in an extended Strat-
ego language. For example, extending Stratego with support for aspects results in
AspectStratego. The term plain Stratego will be used to refer to Stratego without any
language extensions.
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A short note on the meta section may be warranted. Meta sections are not part
of plain Stratego. Support for meta sections is due to a tiny syntax extension pro-
vided by the MetaStratego compiler. It will by default parse all source files using
this MetaStratego syntax. Technically speaking, all language extensions are therefore
extensions of MetaStratego, not plain Stratego.

6.1.2 Language Extensions

The language extensions presented in this dissertation are all composed of two parts;
a notational component, which extends the Stratego syntax, and a transformation com-
ponent which provides the semantics of the extension. A language extension may be
deployed separately from the compiler. The build system of a given project must
declare the relevant paths of all necessary syntax extensions to the MetaStratego com-
piler.

The notational component of a language extension reuses the syntax extension
mechanisms provided in [Vis02, BV04]. By composing grammar modules for the
syntax extensions with the base grammar for Strategol, an extended Stratego lan-
guage is obtained. Programs in the extended language are parsed with the parse table
generated from this extended grammar. The compiler front-end will produce a cor-
responding extended AST which contains extension-specific nodes.

The semantics of the extension is expressed as a transformation from the extended
AST into the plain Stratego AST. These transformation are called assimilators [BV04]
because they assimilate (embed) the extension into plain Stratego. Developers imple-
menting assimilators make use of the standard Stratego library, the Stratego compiler
library and the MetaStratego compiler library as shown in Figure 6.2.

6.1.3 Compiler Pipeline
The MetaStratego compiler pipeline is depicted in Figure 6.3. The MetaStratego

compiler reuses most of the standard Stratego compiler, but supplements it with
a some new functionality and extension points. The standard compiler provides
a mechanism for embedding concrete syntax patterns into the transformation pro-
gram [Vis02]. It essentially provides the compiler user with an option to specify
which grammar should be used to parse a given source file. MetaStratego relies on
this mechanism for providing the additional syntax offered by the language exten-
sions.

Many assimilators may be formulated so that they only interact with the com-
piler at one point: in the process-metas stage. All the language extensions proposed

!Strictly speaking, the grammar for MetaStratego which, except for meta section support, is iden-
tical to the Stratego grammar.
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Figure 6.2: Transformation libraries available for implementing language extensions.

stratego-1ib is the Stratego standard library, 1ibstrc is the Stratego compiler library
and libmstrc is the MetaStratego compiler library.
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6.3:  The extensible MetaStratego pipeline. The component

assimilate-aspects is the assimilator for the AspectStratego language described
previously. Using the extension points, the assimilators can hook into the various
stages of the compiler.
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signature StrategoCore
sorts Env Strat Var Pat
ops
GChoice : Env X Strat X Strat X Strat — Env
Match : Env X Pat — Env
Build : Env X Pat — Env
Scope : Env X List(Var) X Strat — Env
Seq : Env X Strat X Strat — Env
One : Env X Strat — Env
All : Env X Strat — Env
Call : Env X Var — Env
Fail : Env — Env
Id : Env — Env

Figure 6.4: Signature for the StrategoCore language. The semantics of most operators

were described in Chapter 3.

in this dissertation are able to translate the entire extension into plain Stratego be-
fore the front-end stage. This may not always be possible. For example, additional
optimisation opportunities may arise as a result of the extension. Plugging into the
optimize stage may therefore be desired. For this reason, MetaStratego pipeline ex-
poses new extension points into the compiler pipeline. New transformations may be
added before or after each compiler stage shown in Figure 6.3.

A given extension may attach several assimilators to the various stages in the com-
piler. When a given extension point is reached, all registered assimilators for that stage
will be executed. A limitation of the current extension scheme is that all extensions
must be serialisable. That is, the order of all assimilators must be linearised and they
must be executed sequentially. Multiple and co-existing language extensions are still
possible, but they are difficult to use because the user must ensure that the assimila-
tors are listed in the correct order in the meta file (or section).

6.1.4 StrategoCore

The output at the end of the backend stage in Figure 6.3 is a program in a minimal
core language called StrategoCore. This language, specified in Figure 6.4, is the
very close to the barest minimum required for implementing System S. Translating
plain Stratego into StrategoCore is a stepwise process. It is complete at the end of
the front-end. Various optimisations in the optimize stage, such as optimisation of
pattern matching, are performed on the core format.

Both the MetaStratego and the Stratego compiler have an option to output pro-
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grams in the core format. The core format is independent of any operating environ-
ment or hardware architecture. It is therefore a good candidate format for represent-
ing Stratego programs in a portable manner which can be loaded dynamically on a
sufficiently capable transformation runtime.

6.2 An Extensible Runtime

The extensible compiler is complemented with an extensible runtime for Stratego.
This runtime is designed around the general term library interface described in Chap-
ter 4. It allows the runtime to perform rewriting on any data structure which can be
mapped to this interface. The primary motivation for constructing this runtime was
to enable large-scale reuse of transformation systems by plugging them into develop-
ment environments, compilers and other language infrastructures.

To support these experiments, the runtime has been implemented in Java. Java
is the lingua franca of modern software development and a substantial collection of
front-ends and compilers for various languages have been implemented in Java, for
C, C++, SQL, Python, Ruby, Fortress and others. Integrated development environ-
ments, like NetBeans and Eclipse, are frequently implemented in Java.

An additional feature of the runtime is its ability to load Stratego programs (in
the StrategoCore format) dynamically at runtime. This feature makes it possible to
extend a transformation system dynamically with new functionality. This is used in
the Stratego development environment described in Chapter 9.

6.2.1 Design

The runtime provides an interpreter for StrategoCore files and extension facilities for
plugging in new program object models and foreign function libraries. The inter-
preter is called Stratego/]J, but is sometimes referred to as the MetaStratego runtime.
An example instantiation of this runtime is shown in Figure 6.5.

In this diagram, two program object model adapters have been plugged into the
interpreter (org.spoofax.interpreter). Program object models for the Eclipse Com-
piler for Java are adapted by the org.spoofax.interpreter.adapter.ecj. The compo-
nent org.spoofax.interpreter.adapter.aterm adapts the ATerm library. Additional
foreign functions for calling into the Eclipse platform — e.g. for opening windows in
Eclipse and hooking into menus — are provided by org.spoofax.library.eclipse.

The runtime is supplemented with a scannerless GLR parser implemented in Java
by the author. This parser, called jsglr, is compatible with the SGLR [Vis97] parser,
developed at CW1I, The Netherlands. It enables complete systems with the complete
transformation cycle (parse-transform-unparse) to run on the Java platform and be
plugged into development environments.
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org.spoofax.interpreter

org.spoofax.interpreter.adapter.ecj org.spoofax.interpreter.adapter.aterm

org.spoofax.library.eclipse

org.eclipse.jdt.core org.spoofax.aterm

org.eclipse.<platform>

Figure 6.5: Components of the Stratego/] runtime.

6.2.2 Implementation

The implementation scheme of the interpreter engine is largely unremarkable. It
follows the semantics of System S [BvDOVO00] closely. A choice point stack [Mor98]
is used to support backtracking. Some minor optimisations have been added to keep
the stack depth at a minimum by throwing away stack frames whenever possible. This
is an important consideration because Stratego programs are often deeply recursive.

6.2.3 Performance

The current performance of the interpreter is significantly slower, around 10-20
times, than that of natively compiled Stratego code. Additional optimisations are pos-
sible, especially in the pattern matching code, but it is unlikely that the interpreted
code will ever perform on par with the natively compiled output of the Stratego
compiler. The interpreter is capable of executing the Stratego (and the MetaStratego)
compiler, thereby completely hosting Stratego on the Java Virtual Machine (JVM).

An attractive future direction for the Stratego compiler would be to add support
for compiling strategy definitions to Java bytecode. It may also be worthwhile to ex-
periment with an incremental (just in time) compilation scheme so that compilation
only happens for frequently used strategies.
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6.3 Light-Weight and Portable Transformation Com-
ponents

The Stratego/XT environment provides a conceptually attractive component system
called XTC [BKVV06], but this system suffers from some rather severe performance
issues. It is based around the concept that every component runs in its own process.
These processes are composed using (UNIX) pipes. Each component is a console
application that reads its input from the standard input stream and returns its result
on the standard output stream. All data is thus serialised from one component to
another via a the operating system file API and this incurs considerable performance
penalties both because of serialisation and because of process startup. A significant
advantage of the model is that composition can be done at deployment time, instead
of at compile-time — components may easily be swapped in and out after they are
compiled.

Because of its performance limitations, XTC is currently being phased out of
Stratego/XT and replaced by more traditional, dynamically linked libraries. This
resolves the performance issues, but all components must be linked into the transfor-
mation pipeline statically. Also, the build processed is complicated slightly because of
this fact since all components must be accounted for ahead-of-time. There is still a
place for easily deployable transformation components, however, and especially when
integrating transformation systems with interactive environments. This is why the
light-weight transformlet component system presented next was designed. It should
not be considered a full replacement for XTC, however.

6.3.1 Transformlets

A transformlet is a small, self-contained transformation component produced from a
Stratego module (program) using the MetaStratego compiler. Figure 6.6 shows an
example transformlet. A transformlet must declare information about itself, called
meta information. It may also declare that it is capable of extending specific hooks in
the environment that it will be loaded into.

The meta information must be declared using the strategy xlet-meta-info, as
shown in the example. Deployment of the transformlet requires this meta infor-
mation for packaging the transformlet into a deployable transformation component
called an .xlet file.

When a transformlet (an .x1let file) is loaded into the runtime environment it un-
dergoes activation. The runtime actives a transformlets by querying the transformlet
for the presence of hooks. This is done by calling a strategy provided by the trans-
formlet named xlet-define-hooks. The developer of a transformlet must know the
names of the available hooks in the deployment environment when the transform-
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lets is written. Extension of hooks are declared in the strategy xlet-define-hooks.
This strategy will be invoked when the transformlet is loaded into its environment
and must produce a list of tuples. Each tuple contains the name of a hook and the
strategy that should be invoked when the hook is invoked.

Using this hook mechanism, it is possible to express open-ended callbacks. This
is useful for interactive environments. When the runtime is asked to execute actions
for a given hook, all registered strategies will be executed. This mechanism is used
internally by the interactive development environment described in Chapter 9 to
provide extensibility via user-written scripts.

6.3.2 Implementation

Each transformlets is composed of two parts: the package descriptor and the core
program. It is represented as a (possibly compressed) ATerm. Consider the code
in Figure 6.6. A valid transformlet is obtained by first compiling this module into
a StrategoCore file. This file is a term representing the entire transformation pro-
gram. A program called xlet-make is then applied to this term. xlet-make extracts
and removes the meta information embedded in the core file. That is, the strategy
xlet-meta-info is removed from the StrategoCore file. Finally, the extracted meta
information and modified StrategoCore file are composed into a term corresponding
to the signature in Figure 6.7. The root of the transformlet is an XLet term. The
Specification subterm is the top-level StrategoCore term; this is where the modified
program is placed. The meta information becomes the package descriptor.

6.4 Summary

This chapter described an extensible compiler for the Stratego transformation lan-
guage together with a versatile and extensible transformation runtime. The platform
supports dynamic loading of light-weight and portable transformation components
called transformlets.

The basic infrastructure introduced in this chapter has been used as an experi-
mentation platform for all the abstractions and case-study prototypes presented in
this dissertation.
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module example
imports

spoofax/transformlet/-
strategies

xlet-meta-info =
1XLet(
PackageDescriptor(
Name ("example")
, Version("0.1.0")
, [APIVersion("0.1.0")]
, Dependencies([PackageRef(Name("spoofax"), APIVersion("0.1.0"))]1)
, [ License("GPL-2")
, Author(
AuthorName("Karl Trygve Kalleberg™)

, AuthorEmail("karltk@stratego.org")
)

, None

xlet-define-hooks = ![("hello-action", "hello")]

hello = <debug> "Hello, World"

Figure 6.6: Example transformlet.  The meta information is defined by

xlet-meta-info. The strategy xlet-define-hooks defines that if the hook
hello-action is invoked, the hello strategy should be called.
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signature
sorts
XLet Name Version APIVersion Dependencies VersionRange
MetaInfo AuthorName PackageDescriptor
constructors
XLet : PackageDescriptor X Specification — XLet
PackageDescriptor: Name X Version X APIVersion X Dependencies X
List(MetaInfo) — PackageDescriptor
Name : String — Name
Version : String — Version
APIVersion : String — APIVersion
Dependencies : List(PackageRef) — Dependencies
PackageRef : Name X List(APIVersoin) — PackageRef
VersionRange : Version X Version — VersionRange

Author : AuthorName X AuthorEmail — MetaInfo
AuthorName : String — AuthorName
AuthorEmail : String — AuthorName

License : String — Metalnfo
Homepage : String — Metalnfo
BugTracker : String — Metalnfo

Figure 6.7: Signature for the transformlet programs.
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Strategic Graph Rewriting

This chapter introduces GraphStratego, a prototype extension to the Stratego pro-
gramming language for rewriting on terms with references. The main motivation
behind GraphStratego is to extend the Stratego language with support for the notion
of cycles in its program model. Many abstract program models require support for
circular structures. Perhaps the most commonly used are the various flow graphs,
such as for control- and data-flow, employed in compilers and program analysers.
These models are often language independent.

GraphStratego improves the language independence for transformations in the
sense that the abstract program models mentioned above may now be captured na-
tively and processed using new language constructs. The extended language allows
succinct formulations of transformation programs which traverse and rewrite graph-

like models.

This chapter is a verbatim reprint of the paper Swrategic Graph Rewriting: Trans-
Jforming and Traversing Terms with References]KV06] written with Eelco Visser, with
the exception of some minimal formatting changes.

7.1 Abstract

Some transformations and many analyses on programs are either difficult or unnatu-
ral to express using terms. In particular, analyses that involve type contexts, call- or
control flow graphs are not easily captured in term rewriting systems. In this paper,
we describe an extension to the System S term rewriting system that adds references.
We show how references are used for graph rewriting, how we can express more trans-
formations with graph-like structures using only local matching, and how references
give a representation that is more natural for structures that are inherently graph-
like. Furthermore, we discuss trade-offs of this extension, such as changed traversal
termination and unexpected impact of reference rebinding.

129
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7.2 Introduction

Strategic programming is a powerful technique for program analysis and transforma-
tion that offers the separation of local data transformations from data traversal logic.
The technique is independent of language paradigm and underlying data structure,
but is perhaps most frequently found in functional and term rewriting languages.
Much of its power comes from the ability to define complex traversal strategies from
a small set of traversal combinators. Traversal strategies are often used to traverse
terms.

Terms, when implemented as maximally shared, directed acyclic graphs, have
many desirable properties for representing abstract syntax trees (ASTs) as used in
program transformation. In the ATerm model [vdBdJKOO00], maximal sharing of
subterms means that all occurrences of a term are represented by the same node in
memory. Consequently copying of terms is achieved by copying pointers, and term
equality entails pointer comparison. The model ensures persistence; modifying a term
means creating a zew term, the old term is still present. This makes it easy to support
backtracking. Destructive updates of term references are not permitted, which allows
efficient memory usage.

A consequence of the DAG representation is that terms cannot have explicit back-
links, i.e. references to arbitrary subterms elsewhere in the same term. Such references
to other parts of the AST, including an ancestor of a term, are useful for expressing the
results of semantic analyses as local information for rewrite rules. Turning ASTs into
terms with references can turn some transformation problems from global-to-local
into local-to-local. By adding explicit references in the terms, we arrive at a variation
of term graphs [Plu01]. The added expressivity gained from term references allows
us to encode graphs rather succinctly, and therefore also express structures that are
inherently graph-like more naturally, such as high-level program models and many
intermediate compiler representations, including call-, control flow- and type graphs,
thus setting the stage for implementing transformations such as constant and copy
propagation, type checking and various static analyses. We conserve the ability to ex-
press program transformations using local rewrite rules together with generic traversal
strategies, obtaining a form of strategic graph rewriting. By adding explicit references,
we also give up some of the desirable properties of terms mentioned above, as the ref-
erences allow destructive updates, change the termination criteria for traversals, alter
the matching behavior of rewrite rules and exhibit side effects due to reference re-
binding.

In this paper, we explore the design of a strategic rewriting language on terms
with references, and discuss the tradeoffs found in this design space. We will show
that we can arrive at a practical and useful variation of term graphs that allows us to
express graph algorithms and rewriting problems rather precisely.

The paper is organized as follows: In Section 7.3, we introduce basic term rewrit-
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ing with Stratego, show new primitives for manipulating references and how existing
constructs extend to handle terms with references. In Section 7.4, we show how the
new language features are used to compute various common graph representations
for programs from ASTs. In Section 7.5, we implement two basic graph algorithms:
depth first search and strongly connected components, and their application to find-
ing sets of mutually recursive functions. We also discuss an implementation of lazy
graph loading. In Section 7.6, we discuss notable aspects of our implementation. In
Section 7.7, we discuss related work. In Section 7.8, we discuss design tradeoffs and
future work. We conclude in Section 7.9.

7.3 Extending Term Rewriting Strategies to Term Graphs

We now present the extension of the strategic term rewriting language Stratego with
term references. First, we give an overview of the basic concepts of Stratego. Next,
we extend terms to term graphs, i.e. terms with references, by introducing primitives
for references. Finally, we discuss rewrite rules and generic traversals on term graphs.

7.3.1 Term Rewriting Strategies

The Stratego program transformation language [BKVV006] is an implementation of
the System S [VB98] core language for term rewriting. We will not discuss all the
features of System S and Stratego in this paper, but restrict ourselves mainly to con-
ditional rewrite rules, strategies, traversals, and scoped, dynamic rules.

Terms A term t is an application c(ty,...,t,) of a constructor ¢ to zero or more
terms ;. There are some special forms of terms such as lists ([t1,...,#,]) and integer
constants, but these are essentially sugar for constructor terms. A term pattern is a
term p with variables x, written on the form p(x).

Rewrite Rules A conditional rewrite rule, R :  pj(x) -> p,(x) where c, is a rule
named R that transforms the left-hand side pattern p; to an instantiation of the right-
hand side pattern p, if the condition ¢ holds. The following rule can be used to
simplify addition expressions.

Simplify: Add(Int(x), Int(y)) -> z where <add> (x, y) => z
When applied to the term Add(Int(1),Int(2)), it will execute the condition <add>

(x,y), which is a strategy expression for computing the sum of two integers. The
resulting term, 3, will be bound to the variable z using the operator => as assignment.
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Strategies  Strategies are used to implement rewriting algorithms. A strategy is built
from primitive traversals (one(s), all(s), some(s)), combinators (s1 <+ s2 (left choice),
sl ; s2 (strategy composition)), identity (id), failure (fail) and invocations of rewrite
rules or other strategies. The following strategy will attempt to apply the rule Simplify
to all subterms of the current term. If Simplify fails, either because the left hand side
pattern does not match, or because the condition does not hold, the strategy id will
be applied instead. id always succeeds, and returns the identity (i.e. same term).

try-simplify = all(Simplify <+ id)

When applied to Sub(Add(Int(1),Int(2)),Int(4)), the first subterm of Sub will be
rewritten to 3, but Simplify will fail for the second subterm (Int(4)), and id will be
applied instead. The end result is the term Sub(Int(3),Int(4)).

Strategy Expression | Meaning
1p(x) (build) Instantiate the term pattern p(x) and make it the current term
?p(x) (match) Match the term pattern p(x) against the current term
So <+ S1 (left choice) Apply s. If s fails, roll back, then apply s1
So ; S1 (composition) Apply so, then apply s1. Fail if either sp or s1 fails
rec x(s(x)) (recursion) Strategy X may be called in s for recursive application
id, fail (identity, failure) Always succeeds/fails. Current term is not modified
one(S) Apply s to one direct subterm of the current term
some(S) Apply s to as many direct subterms of the current term as possible
all(s) Apply s to all direct subterms of the current subterm
\pi(x) -> p(x)\ | Anonymous rewrite rule from term pattern p;(x) to pr(x)
2xap(y) Equivalent to 2x ; ?p(v); bind current term to x then match p(y)
<s> p(x) Equivalent to !p(x) ; s; build p(x) then apply s
s = p(x) Equivalent to s ; ?p(x); match p(x) on result of s

Generic Traversal Strategies The primitive traversals one(s), some(s) and all(s)
can be composed using the strategy combinators to obtain generic traversal strategies,
which are used to control the order of rewrite rule applications throughout a term.

topdown(s) = s ; all(topdown(s))
bottomup(s) = all(bottomup(s)) ; s

The strategy topdown(s) will apply the strategy s to the current term before recur-
sively applying itself to all the subterms of the new current term. bottomup(s) works
similarly: s is applied to all subterms before the current term (with freshly rewritten
subterms) is processed by s.

Build and Match  Pattern matching is also available independently of rewrite rules
by the match operator strategy, written ?. The expression ?Add(Int(x),Int(y)) when
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applied to the term Add(Int(1),Int(2)), will bind x to 1 and y to 2. The inverse oper-
ator of match is build, written !, which will instantiate a pattern. Given the previous
bindings of x and y, 1Add(Int (x),Int(y)) will instantiate to Add(Int(1),Int(2)). Fig-
ures 7.1(a), and 7.1(b) show simple ground terms and their corresponding ATerms.

7.3.2 References

Thus far, the language we have presented only operates on plain terms. We now
extend terms with references. That is, in addition to a constructor application, a term
can now also be a term reference 7. A reference can be thought of as a pointer to
another term. It is a special kind of term that our language extension knows how to
distinguish from other terms (refer to Section 7.6 for implementation details).

We conceptually extend the language with three new operators for operating on
references: create new reference, dereference, and bind reference. The creation of a new
reference produces a fresh, unbound reference with a unique identifier. The identifier
is used to compare references with each other. Like terms, references may be passed
around as parameters, copied, matched, and assigned to variables. Additionally, ref-
erences may be bound. Binding a term to a reference is similar to binding a value
to a variable. After binding, a reference may be dereferenced. A deference will pro-
duce the term which was previously bound. These conceptual operators are available
inside pattern expressions in three different forms, giving us term graph patterns.

Build and bind: 'r~p(x) will instantiate the term pattern p(x) and bind the re-
sulting term to a new, unique reference which will be bound to the variable r. If the
variable 7 is already bound to a reference, a new reference will not be created. Instead,
the reference of 7 will be rebound to the new term.

Bind or match: ?r~p(x) matches a reference r bound to a term that matches the
term pattern p(x). More specifically, to succeed, this expression must be applied to a
reference 77, ¥’ must have the same reference identifier as r, and 7" must be bound to
a term which matches the term pattern p(x). If the variable 7 is unbound, r will be
bound to 7" before the matching starts.

Dereference: “r will dereference the reference 7, i.e., if r is bound to the term t, "r
will produce t. With r bound to t, ?°r is equivalent to 7t and ! “r is equivalent to !t.

With these operations, we can instantiate the term graph in Figure 7.1(c): 'r"Int(2);
ISub(r,r). Or more succinctly as one term graph pattern: !Sub(r"Int(2),r). In the
following we use some idioms: When we need a reference, but do not yet have its
term, we use the expression !r™() to create a new reference bound to the “dummy”
term (). If we want to match a reference, but do not care what it is bound to, we
write ?r”_.

General Graphs Term references may also be used to construct more general graphs,
such as those shown in Figures 7.1(d) and 7.1(e). When constructing mutually de-
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pendent graphs, such as the £O and g() nodes in Figure 7.1(d), term graph con-
struction must always be split into two stages. First, one half must be built with an
unbound reference, e.g. !£ FunDef("f",[g”()1), then the graph is connected when
the other half is built: g Funpef("g", [£]). Note the use of the idiom g~ () to break
cycles.

7.3.3 Rewrite Rules and References

Conditional rewrite rules on term graphs, R:  gi(x) -> g,(x) where ¢, mirror rewrite
rules on terms. gj(x) and g,(x) are term graph patterns, as described previously and
c is the rule condition. Simplify can now be reformulated to work on term graphs:

Simplify: r0~Add(rl~Int(x~_), r2~Int(y~_)) -> r®~Int(r3)
where !r3~Int(rd4~<add> (Ax,Ay))

Rewrite rules on term graphs will not maintain maximal sharing unless the program-
mer takes explicit care. This leads to differences in the equality checking of term
graphs compared to equality checking of term. For efficiency, the built-in compari-
son of term graphs only exists in a “shallow” form, i.e. identity checking: Two terms
with references are equal iff all subterms are structurally equal, and all references have
the same identity. This means that terms may now in fact be structurally equal, but
differences in their reference identities will prevent the shallow equality test from
uncovering this.

Rebinding of References For terms, maximal sharing and constant time equality
checking is always guaranteed by the ATerm library. When matching a regular vari-
able against a term, the pointer to that term gets copied when it is used in a build.
If the original term is later modified, copy-on-write is performed behind the scenes
to ensure referential transparency. For term graphs, this is no longer the case, as
references may be rebound at any time. Consider the graph building expression
ISub(r~Int(2),r) => a ; !'r~Int(3). Here, we assign the graph from Figure 7.1(c)
to the variable a, but subsequently change the binding of the references contained in
the term graph of a. Effectively, this will change the value of a after a was bound.
This may seem dangerous, as it opens up for problems related to lack of referen-
tial transparency. Certainly, these issues must be managed, but it is important to
note that the binding of terms to references is always done explicitly. It is not possi-
ble to retroactively create a reference to a subterm of another term. E.g., if the term
Sub(Int(2),Int(2)) from Figure 7.1(a) is bound to the variable v, it can never change,
as it does not contain any references.

If side effects are unwanted, in the sense that references in the term of an already
bound variable should never change, assignments of term graphs should be coupled
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Figure 7.1: Examples of graphs supported by our language. References are shown as
stippled edges.
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with a call to duprefs, e.g. !r~Int(2); !Sub(r,r); duprefs => a; !r~Int(3). Here,
the references in the term graph sub(r,r) will be replaced with new, unique references
before the assignment, so that subsequent rebindings cannot affect the value of a.

7.3.4 Term Graph Traversal

We will now show how generic traversals are adapted to work on term graphs through
an example of term graph normalization. Our goal is to use Simplify, shown earlier,
to simplify the term graph Sub(r~Add(r’“Int(1),r’), r). Specifically, we only want
to simplify each referenced term once. This illustrates how “side-effects” can be used
beneficially, and how term graph rewriting can be more efficient than term rewriting:
we only need to consider identical terms once, because we can recognize them by their
reference identifiers. This argument is only valid once a proper term graph has been
constructed, however. Our current implementation makes no attempt at maintaining
such term graph properties globally during arbitrary rewriting sequences.

Phased Traversals To manage termination of graph traversals, we introduce a con-
cept of phases. Phases are used to ensure that each reference is only visited once, so
that loops in the graph do not result in non-termination. We do this by introduc-
ing a new primitive strategy, phase(s), and new variants of the primitive traversal
operators: wone(s), wsome(s) and wall(s).

When applied to a reference 7, wall(s) will first dereference 7, obtaining the
term £, then apply s to all subterms of . The resulting term is rebound to r. If any
subterm of # is also a reference, it will be dereferenced before s is applied, and rebound
afterwards. wone(s) and wsome(s) are similar.
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phase(s) will internally instantiate a new, globally unique marker and then ap-
ply s to the current term. Any invocations of wone, wsome and wall in s will take
the marker into consideration. As each reference is dereferenced during the traversal,
using wone, wsome or wall, the marker is placed on the reference. Any subsequent
attempt at dereferencing will not yield a term result, thus making the reference un-
traversable. When the phase is exited, all markers for that phase are removed. It is
possible to nest phases. The inner phase will instantiate a new, unique marker and
can revisit references already visited by its enclosing phase.

During a phased traversal, it is sometimes necessary to control whether the deref-
erences due to matching or the ~ operator should be marked with the current phase
marker or not. This can be controlled by using wrap-ref(s), which dereferences, ap-
plies s, then rebinds, irrespective of any phase markers. Analogously, wrap-phase-ref(s)
can be used to only visit unmarked references, and mark the reference after a visit.

Reference Expression | Meaning

trp(x) (Build and bind) Instantiate term pattern p(x) and bind result to .
?r°p(x) (Bind or match) See text in Section 7.3.2.

r (Dereference) Look up term for . Fail iff 7 is unbound.

duprefs Replace all references in the current term with new, unique ones
phase(s) For traversals done by s, visit each reference at most once
wrap-ref(s) Apply s to reference and rebind, irrespective of phase
wrap-phase-ref () Apply s to reference and rebind, while respecting phase

Generic Graph Traversals The following traversal strategies are adaptations of the
generic traversals for terms. They use phase markers to avoid visiting the same ref-
erence more than once. These strategies use wall and will rebind references they
encounter to rewritten terms.

wtopdown(s) = phase(rec x(s ; wall(x)))
phase(rec x(wall(x) ; s))

wbhottomup(s)

wdownup(sl,s2) phase(rec x(sl; wall(x); s2))

Term Graph Normalization With the phasing and generic graph traversals in place,
we can now express term graph normalization simply and precisely as:

simplify = wbottomup(try(Simplify))

When applied to the term Sub(r"Add(Int(1),Int(2)), r), the result of simplify is
Sub(0"Int(3), 07). Here, 07t indicates that the reference 0 is bound to the term t.
Bindings of references are only shown once, the first time they are encountered.

For more general rule sets, it may be necessary to exhaustively apply rules using
a fixed-point strategy. The following strategy follows the same definition pattern as
innermost for plain terms [JVO01, JVO03]:
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winnermost(s) = phase(rec x(wall(x); try(s; x)))

The difference is that the phase mechanism ensures that a node in a term graph
(where all subterms are references) is visited only once. Thus the strategy performs a
bottom-up traversal and tries to apply the normalization strategy s to each node. If
that succeeds, the result is transformed by a recursive call to itself. This would entail a
complete bottom-up traversal of the resulting term. However, the subterms that have
already been visited, i.e., normalized, will not be visited again. This property ensures
efficient implementation of the strategy, a result that was obtained in the term case
only through a specialization of the strategy to its argument rules [JVO1, JV03].

7.4 From Terms to Term Graphs

In this section, we describe how ASTs can be turned into various types of graphs
commonly found in compilers, such as use-def chains, call graphs and flow graphs.
First, however, we turn our attention to the problem of computing term graphs from
terms with maximal sharing. This is done using dynamic rules.

Dynamic Rules A dynamic rule S is a rewrite rule which is defined and possibly
undefined at runtime, see [BKVVO06]. The expression rules(S: t -> r) creates a
new rule in the rule set for S. The scope operator {| S : s |} introduces a new scope
for the rule set S around the strategy s. Changes (additions, removals) to the rule set
S done by the strategy s are undone after s finishes (both in case of failure and success
of 5). Sometimes, multiple rules in a rule set S may match. To get the results of all
matching rules in S, we can use bagof-S.

Computing Term Graphs The following strategy implements a top down traversal
with a memoization scheme to efficiently construct term graphs from terms. For
each term it encounters, the strategy checks if this term has been memoized in the
dynamic rule S. If so, the term is replaced with its corresponding reference. If not, all
its subterms are replaced with references recursively, then a new reference is created
and recorded in S.

term-graph = {|S: rec x(S<+all(term-graph); ?t; !r~t; rules(S: t->r)|}

Applied to ACA(B) ,ACA(B) ,A(B))), We get 3"A(17A(07B),27A(1™,17)).

7.4.1 Use-Def Chains

The use-def chain is a data representation found in most compilers for recording
links from the use of a variable to its closest definition or assignment. Such data flow
information is the basis for many program optimizations, in particular constant and
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copy propagation. A variable is said to be used when its value is read; it is said to
be defined when it is assigned to, either at its declaration or by a later assignment
statement. Def-use chains are links from the definition of a variable to all its uses.
The algorithm we present below will record both def-use and use-def chains.

use-def = {| Use, Def: def-to-use ; use-to-def |}
def-to-use = Var <+ VarRef <+ Assign <+ If <+ wall(def-to-use)
use-to-def = topdown(try(add-ref-to-var <+ add-ref-to-assign))

new-def(|v,r) = rules(Def : v -> r)

add-use(|d,u) rules(Use :+ d -> u)

add-ref-to-var

?r~Var(v,e,_); !r~Var(v,e, Uses(<bagof-Use> r))
add-ref-to-assign = ?r~Assign(v,e,_); !r~Assign(v,e,Uses(<bagof-Use> r))

If: If(c,t,e) -> If(c’,t’,e’) where <def-to-use> c => ¢’
; <def-to-use> t => t’ \Def/ <def-to-use> e => e’

Var: Var(v, e) -> r where <def-to-use> e => x

i Ilr~Var(v,x,Uses([])); new-def(|v, r)

VarRef: VarRef(v) -> r where <bagof-Def> v => defs
; !r~VarRef(v, Defs(defs)); <map(add-use(|<id>, r))> defs

Assign: Assign(v, e) -> r where <def-to-use> e => x

; !lr~Assign(v, x, Uses([])); new-def(]v,r)

The use-def algorithm assumes the existence of the following term constructors: If,
for if constructs, Var, for variable definitions, VarRef for variable (de)references and
Assign for assignments. It is divided into two parts, def-to-use and use-to-def. For
def-to-use: If a definition of a variable is seen, i.e. an Assign or Var term, this term
is replaced with a reference to itself, and a mapping from the variable name to the
reference is recorded in the dynamic rule Def using new-def. This is done in the
Var and Assign rules. When a variable use is subsequently seen, it is also replaced
by a term to itself by the varRef rule. Its name is looked up in the Def rule, and
references to the closest definitions are added using bagof-Def, see VarRef. The Use
rule is updated to record the reference to this use, using add-use. Special care must be
taken in the case of control constructs. We only show the case for 1f. Here, one rule
set is computed for each branch, and the rule sets are joined afterwards, using the
rule set union operator, \Def/. This ensures that new definitions from both branches
are kept.

For use-to-def: In this pass, each FunDef is updated to contain references to the
uses recorded by the previous pass, in the Use rule. When applied to a term for the
program
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var x (= 0; if x> 0) { x :=1+x } else { x :=2 + x } ; print x
we get (read Asn as Assign and VRef as VarRef):

Block([~5,If(Int(0),Block([~1]),Block([~3])),Print(~0)1)

~0 = VRef("x",Defs([~3,~1])) ~1 = Asn("x",Add(Int(1),~2),Uses([~0]))
~2 = VRef("x",Defs([~5])) ~3 = Asn("x",Add(Int(2),~4),Uses([~0]))
~4 = VRef("x",Defs([~5])) ~5 = Var("x",Int("10"),Uses([~4,~2]))

7.4.2 Call Graphs

Another common program representation in modern compilers is the call graph. It
records the interrelationships between the functions of a program, i.e. which func-
tions call which, and is used for various static analyses such as reachability analysis,
optimizations such as dead code removal and by documentation generation tools.
The following code transforms an AST into a call graph by introducing references
from all call sites (Call terms) to the corresponding function definition (FunDef)
terms, and by adding a reference from the FunDef being called (callee) to the FunDef
of the calling function (caller). Figure 7.1(d) illustrates the forward direction.

compute-call-graph = {| FunLookup: add-refs ; add-call-markers |}
introduce-references = topdown(try(AddFunRef))

with-fundefs(s) = Program(map(s), id)

register-fun = ?r; ?r~FunDef(_,_,_,_); rules(CurFun: _ -> r)
AddFunRef: x@FunDef(n,_,_,_) -> r where !r~x; rules(FunLookup: n -> r)

add-call-markers = {| CalledBy, CurFun:
with-fundefs(wdownup(try(register-fun), try(AddCallRef)))
; with-fundefs(wrap-ref(AddCalledByRef)) |}

AddCallRef: Call(n, xs) -> Call(n, xs, r)

where <FunLookup> n => r ; CurFun => z ; rules(CalledBy :+ n -> z)

AddCalledByRef: FunDef(n,a,t,b) -> FunDef(n,a,t,ns,b)

where <bagof-CalledBy> n => ns

Three dynamic rules are used in this algorithm. FunLookup is used to map names of
functions to their corresponding FunDef. CurFun is used to keep a reference to the
FunDef we are currently inside. CalledBy is used to accumulate a set of callees for a
given function name.

The algorithm works as follows. First, we replace every FunDef 7 node with a
reference to 711, and record the function name in the FunLookup rule set. This is done
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by add-refs. Second, we do a downup traversal, where the current function is kept in
the dynamic rule CurFun on the way down. On the way up, we add a reference to the
destination FunDef f for any Call encountered, and register the current function in
the calledBy set for f. This is the first part of add-call-markers. Third, we place the
callee sets collected in the CalledBy dynamic rule set on the corresponding FunDefs,
finally obtaining a bidirectional call graph.

7.4.3 Flow Graphs

Flow graphs are used to represent the control flow of a program, analogously to the
way use-def chains represent data flow. Flow graphs, along with use-def chains, are
at the heart of many flow-sensitive optimizations, such as constant folding, loop
optimization, and jump threading. We can compute a flow graph from the various
statements in the AST as follows. In If(c,t,e), flow goes from the condition ¢ to
both branches, ¢ and e, which in turn go to the successor block of if. In While(c,b),
flow goes from the condition ¢ to the body b, and from c to the successor block. The
body b always flows back to the condition c. All other statements correspond to basic
blocks: the flow from one statement goes directly to the successor block.

We show a three pass algorithm, ast-to-flow-graph. First, we do rewrites of
control flow constructs locally, as described above, with the MarkControlFlow rule
set. In the case of If and While, temporary FlowT blocks are inserted with dummy
references, since the successor block is not known locally yet. Second, AST statement
blocks are split into basic blocks, with SplitBlocks. Each non-control statement
is rewritten to a Flow block. Third, the FlowT blocks are connected to the Flow
blocks produced in (2), and rewritten to Flow, resulting in a flow graph, as seen in
Figure 7.1(e).

ast-to-flow-graph = bottomup(try(MarkControlFlow))
; bottomup (try(SplitBlocks))
; whottomup (try (\ FlowT(x,y) -> Flow(x,y) \))

SplitBlocks: Block(xs) -> r where
<map(?FlowT(_,_) <+ {r: \ t -> Flow(t, r) where !r~(0) \})> xs => xs’
; foldr(\ (f@Flow(tl, n), t2) -> f where !n~t2 \
<+ \ (f@FlowT(tl, n), t2) -> f where !n~t2 \ |[None)
; <Hd> xs’ => hd ; !r~hd

MarkControlFlow: If(cond, thn, els) -> FlowT(If(cond’, thn’, els’), next)
where !next~(); ; !thn’'~Flow(thn, [next])

; lels’~Flow(els, [next]); !cond’~Flow(cond, [thn’, els’])

MarkControlFlow: While(cond, body) -> FlowT(r, next)



7.5. Graph Algorithms and Applications 141

where !body’~(); 'next~(); !cond’~Flow(cond, [next, body’])
; !'body~Flow(body, [cond’]); !r~While(cond’, body’)

7.5 Graph Algorithms and Applications

In this section, we show how some basic graph algorithms can be implemented using
the reference mechanism we have described in Section 7.3.

Depth First Search  Our depth first search implementation works on graphs where
each node is a term. The algorithm takes two parameters, 1 and es. es will be used
to compute the outgoing edges from each node. dfs keeps track of the current depth
during visits. On a visit to a node, the strategy 1 will be called with the current depth
value as parameter, so that it can be used to compute the label for the current node,
or for other transformations.

dfs1 : a * a -> a, es) phase(wall(dfs(1l, es | 0)))

dfs(l : a *a ->a, es | n) =
wrap-phase-ref(where(es => edges)
; where(l(|n) => label)
; where(<wall(dfs(l, es | <inc> n))> edges) ; !label)

The traditional depth first search, as described in for example [CLR97], is applied
initially to the set V of a graph G = (V, E). We get the same behavior by applying
dfs to a list of references to all nodes in the graph. We will demonstrate the use of
the dfs strategy next, when we discuss strongly connected components.

Strongly Connected Components The basic algorithm for strongly connected com-
ponents (SCC) is also described in [CLR97], and consists of four steps: First, call
DFS(G) to compute finishing times £[u] for each vertex u. Second, compute the trans-
posed graph GT=transpose(G). Third, call DFS(GT), but in the main loop of DFS, con-
sider the vertices in order of decreasing £[u]. Fourth, produce as output the vertices
of each tree in the DFS forest formed in point 3 as a separate strongly connected
component.

In our implementation of SCC, shown below, we avoid actual graph transposition
by requiring one strategy, es for computing forward edges from a node, and another,
res, for computing reverse edges. We also combine the third and fourth step by using
a modified dfs, called, dfs-collect, which collects each set of SCCs into a list during
the third step.

dfs-collect(l : a * a -> a, es) =
phase(all({|C: dfs-collect(l,es|®) ; bagof-C|}))
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dfs-collect(l : a * a -> a, es | n) = ?r~_
; wrap-phase-ref(where(es => edges) ; where(1(|r) => label)
; where(<all(dfs-collect(l, es | <inc> n))> edges) ; !label)

sort-fundefs =

sort-list(LSort(where((?r;!Ar; FinishTime,?r’;!Ar’; FinishTime); gt)))
collect-components(|r) = rules(C :+ _ -> r)
inc-time = (Time <+ !0) => n ; where(inc => n’; rules(Time: _ -> n’))
time-count(|n) = ?x; where(inc-time => n’); rules(FinishTime: x -> n’)
scc(l : a *a->a, es, res) = {|FinishTime, Time:

dfs(l, es)

; sort-fundefs

; dfs-collect(collect-components, res)

; filter(not(?[1)) |}

The current time is maintained in the Time dynamic rule, and the finishing time in
FinishTime. Our scc should normally be called with the time-count strategy as its
first argument, but the user is free to adapt this.

7.5.1 Finding Mutually Recursive Functions

Suppose we want to use SCC to compute sets of mutually recursive functions. Then,
each node in the graph is a function f. The outgoing edges of f are references to the
functions called by f. The incoming edges of f are references to the functions calling
f. This graph is what was computed by call-graph, discussed in Section 7.4.2. The
following strategies may used for edge computations.

calls-as-outbound = collect(\ Call(_,_,x) -> x \)
calledby-as-outbound = collect(\ FunDef(_,_,_,x,_) -> x \) ; concat

Applying scc(time-count, calls-as-outbound, calledby-as-outbound) toa list of ref-
erences to all functions in a program, say Figure 7.1(d), will produce the cliques

(a,b,e), (f, g) and (c,d, h).

7.5.2 Lazy Graph Loading

Instead of binding terms to references, strategies may be bound instead. When a
reference 7 with the strategy s bound to it is dereferenced, s is invoked, and the
resulting term is taken as the term value for . We call this an active reference since
it has a strategy (i.e., function) attached to it that is activated and executed upon
dereference. Active references are useful for term (graph) rewriting of larger terms,
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especially when doing sparse analyses on larger bodies of program code. With active
references, terms for programs can be loaded as skeletons. For example, all bodies of
functions or classes may be left out, and be parsed and loaded, or even generated, on
demand.

7.6 Implementation

We have implemented a prototype of the language extension described in this paper.
Our implementation is a conservative extension to the existing Stratego infrastruc-
ture: Every valid Stratego program retains its behavior and terms without references
are still represented entirely as ATerms. References are introduced as a special kind
of term, Ref, and we have modified the language implementation to recognize and
treat terms of this type specially. Refs are closely related to pointers, as found in C,
and to references, as found in Java. Unlike pointers and Java references, a Stratego
Ref always starts out as bound. It may subsequently be rebound to another term.
The bindings from references to terms are maintained in a global table, or more pre-
cisely, in a global, dynamic rule set. When a new reference is bound, a new rule is
added to the set. When an existing reference is rebound, its corresponding rule is
changed. Using dynamic rule sets aids in implementing backtracking behavior. For
left- and guarded choice, references rebound or introduced by a failed strategy should
be backtracked before the program proceeds. This is implemented in our compiler
by rewriting every left choice operator to

start-ref-cs ; sl ; commit-ref-cs <+ discard-ref-cs ; s2

Here, start-ref-cs will make a change set for the global rule set. If s1 succeeds, the
change set is committed and changes are kept. If s1 fails, all changes to the reference
rule set by s1 are undone.

Managing the revisitation of references in term graphs is crucial for ensuring
termination. The wrap-phase-ref mentioned earlier is responsible for this.

wrap-phase-ref(s) = ?r@Ref(_) < seen-before < id

+ where(<phase-deref> r; s; bind-ref(|r)) + s

wrap-phase-ref is implemented using guarded choice 51 < s, + s3, which works as
follows. If s1 succeeds, s will be applied to the resulting term. If it fails, s3 will be
applied to the initial term. If wrap-phase-ref(s) is applied to term, s is applied and
we are done. When at a reference 7, we first use seen-before to check if we have seen
1 before. If so, we ignore s (by applying id, then returning). If not, r is dereferenced
and marked, using phase-deref, s is applied to its term, and 7 is rebound by bind-ref.

Using wrap-phase-ref, we can now implement new traversal primitives on refer-
ences. Let us consider wall(s):
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wall(s) = is-ref

< wrap-phase-ref(all(wrap-phase-ref(s))) + all(wrap-phase-ref(s))

If we are not at a reference, all will be applied to the current term and any references
it has as direct subterms will be marked. If we are at a reference, we will mark,
transform then rebind it. The markers used by wrap-phase-ref can be managed using
phase(s), given next:

phase(s) = where(local-phase-ctr => pc; inc-phase-ctrs)
; start-seen-cs; s; discard-seen-cs

; where(restore-local-phase-ctr(|pc))

phase(s) works as follows: Before s is applied, a new, unique, internal phase marker
is produced using local-phase-ctr, then the counter is increased, preparing for the
next invocation. start-seen-cs enters a new “scope” for this marker. The counter is
maintained in a dynamic rule defined inside increase-phase-ctrs, and is later used
by phase-deref and seen-before. Once s completes, all markers will be discarded.

Our implementation has not yet been tuned for performance. While we have
used Stratego’s dynamic rules for implementation convenience, we only rely on the
ability of dynamic rules to provide hash tables with change sets. In the current im-
plementation, reference lookup time is linear in the depth of choices on the stack.
A more efficient implementation of hash tables with change sets is likely to improve
performance.

7.7 Related Work

Term graph rewriting theory is an active field. For an introduction and summary,
see [Plu01]. A calculus for rewriting on cyclic term graphs has been proposed by
Bertolissi [Ber05]. Many systems exist for general graph rewriting, such as PRO-
GRES [Sch04] and FUJABA [NNZ04]. Few term graph rewriting systems for prac-
tical applications exist. HOPS [Kah99] and Clean [PvE98] are a notable exceptions.
Claessen and Sands [CS99] describe an extension to the Haskell language which
adds references with equality tests. Their goal is to better describe circuits, which
are graph structures with cycles, in a purely functional language. Their references are
immutable once created, unlike ours, making rewriting more difficult express. Lim-
mel et al [LVVO03] discusses how strategic programming relates to adaptive program-
ming, a technique found in aspect-oriented systems for traversing object structures.
They show how traversal strategies may be implemented for cyclic structures, such
as graphs, by keeping record of visited nodes. Our phased traversals expand upon
this by allowing nested, overlapping traversals and fine-grained control of visitation
marking. Our implementation shares some features with monadic programming,.
Monads are sometimes described as patterns for using functions to transmit state
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without mutation, and are described by Wadler [Wad92]. In our implementation,
dynamic rules are the functions used to transmit the state, namely the internal graph
references. Some functional languages, such as Clean [PvE98], are implemented as
rewriting systems with implicit term graphs. Functions in Clean are graph rewrite
rules on the underlying term graph. In our language, the choice between term and
term graph rewriting and their corresponding tradeoffs is not fixed, but rather left to
the programmer. An important goal for our language extension is to better capture
graph-like program representations, and to offer convenient transformation capabili-
ties for these. Many excellent and general graph libraries exist, and we are not aiming
to replace these.

To the best of our knowledge, no other term graph rewriting system supports
strategic term graph rewriting, using rewriting strategies and generic traversals.

7.8 Discussion and Further Work

The construction of use-def chains, call- and flow graphs shows how global-to-local
problems are now local-to-local, as the remote context is available locally for rules to
match on. The addition of references for this purpose also introduces the problem of
traversal non-termination in the presence of cycles. We have shown how this can be
managed by phases. Another issue of term references is the unexpected impact of ref-
erence rebinding, in the loss of referential transparency. The code !Sub(r~Int(2)) =>
v ; !'r"Int(3) will alter the value of v after it is bound. Judicious use of duprefs can
control this. Comparison of term graphs is currently done using weak equality; i.e.,
comparison references in terms is done based on identity, not structure, which allows
constant time comparison. Deep comparison is available through the library, and is
linear in the size of the term graphs. The pattern-based language constructs intro-
duced in this paper for reference manipulation came about after trying to program
with only the primitive operators create reference, bind reference and dereference.
While these primitives are still at the heart of the implementation, the notation pre-
sented in this paper make them more convenient to use. Further exploration of the
design space is warranted. One attractive extension is matching modulo references,
which allows term patterns to be matched directly on terms with references, by im-
plicitly visiting references during matching.

7.9 Conclusion

We have presented the design and implementation of an extension to the Stratego
term rewriting language for rewriting on terms with references, and demonstrated
its practical application through the construction of several common graph-based
program representations found in compilers. The contributions of this paper include
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the introduction of language abstractions for dealing with references within a rule-
based term rewriting language, a demonstration of how term matching, building
and rewrite rules can be combined with term references, how benefits of generic
term traversal can be kept by using phased traversals to deal with non-termination
due to cyclic graphs, and how backtracking can be combined with destructive graph
updates to retain the strategic programming flavor of Stratego. We showed how our
language can be used to implement some basic graph algorithms and how these can
be applied to graph-based program representations. We discussed design tradeoffs
related to introducing references in terms, including traversal termination and impact
of reference binding.



Part V

Case Studies

147






Language Extensions as Transformation
Libraries

The language abstractions proposed on this dissertation are provided in form of ex-
tensions to Stratego that were built as transformation libraries using the MetaStratego
framework. There is little specific to Stratego that makes it an inherently extensible
language. It is, however, extremely well suited for implementing language extensions.

This chapter contains a case study which serves to illustrate that some of the ex-
perience gained while conducting the primary investigation — language-independent
software transformations — is also easily applicable to language extension in general.
The language extensions proposed in this dissertation are formulated as transforma-
tion libraries complemented with a convenient notation, in the form of a syntax
extension to Stratego, using some of the techniques introduced in [BV04]. The
same techniques can be applied easily to any language. To further illustrate this,
the author implemented a small language extension to the small toy language called
TIL [Vis05b] for handling alerts.

The underlying extension technique was subsequently presented and discussed
in the paper DSAL = library+notation: Program Transformation for Domain-Specific
Aspect Languages [BKO6] written with Anya Bagge. The paper distills and discusses
the principal details of this approach to language extension. It follows the tradition of
language embedding suggested in [Vis02, BV04] but focuses the non-local effects of
the language embeddings due to the cross-cutting nature of the embedded language.

This chapter is a verbatim reprint of the above-noted paper with the exception of
some minimal formatting changes.

8.1 Abstract

Domain-specific languages (DSLs) can greatly ease program development compared
to general-purpose languages, but the cost of implementing a domain-specific lan-
guage can be prohibitively high compared to the perceived benefit. This is more
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pronounced for narrower domains, and perhaps most acute for domain-specific as-
pect languages (DSALs).

A common technique for implementing a DSL is writing a software library in
an existing programming language. Although this does not have the same syntactic
appeal and possibilities as a full implementation, it is a technique familiar to most
programmers, and it can be done cheaply compared to developing a full DSL com-
piler. Subsequently, the desired notation may be implemented as a simple syntactic
preprocessor. The cross-cutting nature of DSALs, however, makes it difficult to en-
capsulate these in libraries.

In this paper, we show a technique for implementing a DSAL as a library+notation.
We realize this by implementing the library in a program transformation system and
the notation as a syntactic extension of the subject language. We discuss our experi-
ence with applying this technique to multiple kinds of DSALs.

8.2 Introduction

The implementation of domain-specific abstractions is usually done by way of li-
braries and frameworks. Although this provides the semantics of the domain, it
misses out on good notation and many optimisation opportunities. Implementing
domain specific languages by adding notation (syntax) to a library, and then program-
ming a simple compiler that translates from the notation into equivalent library calls
is an easy and powerful technique, which is cost-effective in many larger domains.
Both the libraries and the simple compiler can be implemented in general purpose
languages without too much effort, and it is important to note that the library need
not be implemented in the same language as the compiler. If the “library” language
supports syntax macros, like Scheme [DHB92], or has a sufficiently powerful meta-
programming facility, like C++ templates [AGO05], the translation task may be accom-
plished through the inherent meta-programming constructs of this language. Oth-
erwise, a stand-alone preprocessor is commonly used. For example, adding complex
numbers or interval arithmetic to Java, with an appropriate mathematical notation,
can be accomplished by writing or reusing a Java library, and writing a simple trans-
lator from the mathematical notation into OO-style calls. The approach of adding
notation to (object-oriented) libraries was explored in the MetaBorg project [BV04],
where the subject language Java was extended in various ways using Stratego as the
meta-programming language.

For domain-specific aspect languages, the translation story is different. Behind
the notation visible to the programmer lie cross-cutting concerns which may reach
across the entire program, possibly requiring extensive static analysis to resolve. The
straight-forward translation scheme into library calls for the subject language is not
applicable as we are no longer dealing with basic macro expansion. Instead, we shall
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view aspects as meta-programs that transform the code in the base program. These
meta-programs may be implemented with transformation libraries in a transforma-
tion language (which may be different from the subject language). This allows us to
consider DSALs as syntactic abstractions over transformation libraries, analogous to
the way DSLs are syntactic abstractions over base libraries in the subject language.
That is, we do not translate the DSAL notation into library calls in the subject lan-
guage, but rather to library calls in the transformation language. Provided that the
transformation language has a sufficiently powerful transformation library for the
subject language, writing a transformation library extension for a domain-specific as-
pect is an easy task. We will demonstrate this technique by example, through the
construction of Alert, a small error-handling DSAL extension to the Tiny Imperative
Language (TIL).

The main contributions of this article are: A discussion of how the library + no-
tation method for DSLs can be applied to DSALs, if the library is implemented in a
meta-language; an example of the convenience of employing a program transforma-
tion language in the implementation of DSALSs, compared to implementation in a
general-purpose language; and a discussion of our experience with this technique for
several different subject languages and aspect domains.

The paper is organised as follows. We will begin by briefly introducing our DSAL
example and the TIL language (Section 8.3), before we discuss the implementation
of our DSAL using program transformation (Section ??). Finally, we discuss our ex-
periences and related work (Section 8.5), then offer some concluding remarks (Sec-
tion 8.6).

8.3 The Alert DSAL

Handling errors and exceptional circumstances is an important, yet tedious part of
programming. Modern languages offer little linguistic support beyond the notion of
exceptions, and this language feature does not deal with the various forms of cross-
cutting concerns found in the handling of errors, namely that the choice of how
and where errors are handled is spread out through the code (with ifs and try/catch
blocks at every corner), leading to a tangling of normal code and error-handling code.
Also, the choice of how to handle errors is dependent on the mechanism by which a
function reports errors—checking return codes is different from catching exceptions,
even though both may be used to signal errors. Confusingly, even the default ac-
tion taken on error depends on the error reporting mechanism, from ignoring it (for
return codes and error flags) to aborting the program (exceptions).

The Alert DSAL allows each function in a program to declare its alert mecha-
nisms—how it reports errors and other exceptional situations that arise, and allows

callers to specify how alerts should be handled (the handling policy), independent of
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the alert mechanism. We use the word alert for any kind of exceptional circumstance
a function may wish to report; this includes errors, but may also be other out-of-
band information, such as progress reports. Typical examples of alert mechanisms are
exceptions, special return values (commonly ¢ or -1) or global error flags (errno in
C and POSIX, for instance). Ways of handling alerts include substituting a default
value for the alerting function’s return code; logging and continuing; executing re-
covery code; propagating the alert up the call stack; aborting the program, or simply
ignoring the alert.

The alert extension is a good example of a domain-specific aspect language. It
allows separation of several concerns: the mechanism (how an alert is reported) is
separated from the policy (how it is handled), and code dealing with alerts is separated
from code dealing with normal circumstances. The granularity of the policies (i.e.,
to what parts of the code they apply) can be specified at different scoping levels, from
expressions and blocks to whole classes and packages.

Separating normality and exceptionality has already been demonstrated with As-
pect] [LLOO], but the Aspect] solution is less notationally elegant, and fails to separate
mechanism from policy (it only deals with exceptions).! Using domain-specific syn-
tax makes the extension easier to deal with for programmers unfamiliar with the full
complexity of general aspect languages. Our alert extension is described in full in
[BDHKOG]. Here, we will look at the implementation of a simplified version for the
Tiny Imperative Language.

8.3.1 The TIL Language

The Tiny Imperative Language (T1IL) is a simple imperative programming language
used for educational [BKVV05] and comparison purposes in the program transfor-
mation community. The grammar for TIL is given in the appendix (Section 8.7). A
TIL program consists of a list of function definitions followed by a main program.
TIL statements include the usual if, while, for and block control statements, vari-
able declarations and assignments. Expressions include boolean, string and integer
literals, variables, operator calls and function calls. We will use the name TIL+Alert

for the extended TIL language.

8.3.2 Alert Declarations and Handlers

An alert declaration specifies a function’s alert mechanisms. Our simple extension
allows two ways of reporting alerts; via a condition which is checked before a call, or
via a condition checked after a call. The pre-checks allow a function to report invalid

"We are not experts on aspect orientation, but we believe that the full separation of concerns
available with our alert system is difficult if not impossible to achieve with existing general aspect
languages.
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Alert declaration.  Alert declarations are given after the regular function declaration.
Actual arguments and the function’s return value are available in the alert condition ex-
pressions.  Pre-alerts have a condition that is checked before a call to the function and
typically involve checks on the arguments; post-alerts are checked after the call has re-
turned, and typically involve the return code (accessible as the special variable value, legal
only in alert conditions and handlers.).

FunDecl AlertDecl -> FunDecl

"pre" Exp "alert" Id -> AlertDecl
"post" Exp "alert" Id -> AlertDecl

"value" -> Exp
Figure 8.1: Grammar for TIL function declarations with alert extension.

parameters (before the call, avoiding the need for checks within the function itself),
while the post-checks can be used for testing return values. The syntax for alert
declarations is given in Figure 8.1. As an example, the following function definition
declares that the function lookup raises the alert Failed if the return value is an empty
string:

fun lookup(key : string) : string

post value == alert Failed

begin ... end

The following declaration specifies that a ParameterError occurs if f is called with an
argument less than zero, and that if the return value is -1, an Aborted alert was raised:

fun f(x : int) : int
pre x < 0 alert ParameterError
post value == -1 alert Aborted

A handler declaration specifies what action is to be taken if a given alert is raised in
a function matched by its call pattern (the syntax is shown in Figure 8.2). The call
pattern can be either * (all functions) or a list of named functions, possibly with
parameter lists. This corresponds to the pointcut concept in Aspect] [KHH*01].
The handler itself is a statement; it can reference the actual arguments of the call (if a
formal parameter list is provided in the handler declaration), names from the scope to
which it applies, and value—the return value of the function for which the handler
was called. For example, this handler declaration specifies that the program should
abort with an error message in case of a fatal error:

on FatalError in * begin
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Handlers. A handler associates a statement with an alert condition; the statement is
executed if the alert occurs. The use statement substitutes a value for the return value of
the alerting function.

"on" Id "in" {CallPattern ","} Stat -> Stat

use" Exp "; -> Stat

Call patterns. A * matches a call to any function. The second form matches a call ro

a named function; the third form makes the actual arguments of the call available to the
handler.

e -> CallPattern
Id -> CallPattern
Id "(" {Id ","}* ")" -> CallPattern

Figure 8.2: Grammar for handler declarations. The notation {X Y}* means X repeated
zero or more times, separated by ¥s.

print("Fatal Error!");
exit(l);
end

The use statement is used to “return” a value from the handler; this value will be
given to the original caller as if it was returned directly from the function called:

on Failed in lookup(k) begin
log("lookup failed: ", k);
use "Unknown";

end

The on-declaration is a statement, and applies to all calls matching the call pattern
within the same lexical scope. If more than one handler may apply for a given alert,
the most specific one closest in scoping applies.

TIL+Alert does not add anything that can not be expressed in TIL itself, at the
cost of less notational convenience. For example, given the above alert and handler
declarations, a call

print (lookup("fo00"));
would need to implemented somewhat like

var t : string;
t = lookup("foo");
if t == "" then t = "Unknown"; end

print(t);
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This cumbersome pattern should be familiar to many programmers (programming
with Unix system calls, for instance, or with C in general): save the result in a tem-
porary variable, test it, handle any error, resume normal operations if no error was
detected or if the error was handled. Exceptions alleviate the need to check for errors
on every return, but writing try/catch blocks everywhere a handler is needed is still
cumbersome, and changing handling policies for large portions of code is tedious and
error-prone.

8.4 Implementation of TIL+Alert

We have several possibilities when faced with the task of implementing a DSAL, or a
language extension in general:

1. Compile to object code—write an entirely new compiler for the extended lan-
guage.

2. Compile to unextended language—write an aspect-weaving preprocessor for
an existing compiler.

3. Compile to aspect language—write a preprocessor for an existing aspect weaver.

The first choice is typically the most costly, and therefore also the least attractive.
The second option is a common technique for bootstrapping new languages, and
was used for both C++ and Aspect]. The third option is only possible if the subject
language we are extending already supports a form of aspects which can be suitably
used for writing implementing (most of) the semantics of our DSAL. We will discuss
this option in more detail in Section 8.5.

DSALs are almost by definition extensions of existing languages, and we can
therefore expect to have at least some language infrastructure. In other words, we
need only consider the latter two situations above. In our experience, implementing
the aspect extension as library + notation in a program transformation system is a
very efficient approach in terms of development time.

8.4.1 DSAL = library + notation

We have said that (alert handling) aspects are meta-programs, then showed the pro-
grammer notation for these in Section 8.3.2 where we discussed the alert grammar.
This covers the “notation” half of our equation. Now we will discuss how the seman-
tics are implemented as a transformation library written in a program transformation
system.

Stratego/XT [BKVV06] is our implementation vehicle of choice. Stratego is
a domain-specific language for program transformation based on the paradigm of
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strategic programming [LVV03] and provides many convenient language abstrac-
tions for our problem domain. The language is bundled with XT, a set of reusable
transformation components and generators—in particular a formalism for defining
language syntax, called SDF [Vis97]—that support the development of language pro-
cessing tools. In Section 8.5 we will discuss some of the benefits and drawbacks of
using program transformation systems for implementing aspect weavers.

An existing language infrastructure for TIL exists that provides a grammar, a rudi-
mentary compiler that does type checking and optimization, and finally a runtime
that executes the compiled result. Together, these components make out a general-
purpose transformation library for TIL. Using it, we can implement any program
analysis and transformations on TIL programs [BKVV05]. The Alert grammar is im-
plemented as a separate grammar module of about 30 lines of SDF code. Composit-
ing this with the basic TIL grammar results in the complete syntax for the TIL+Alert
language, c.f. the first step in Figure 8.3. We then use the TIL transformation li-
brary to implement a new Alert transformation library. Based on this, we can run
meta-programs which perform the semantics of the alert constructs, i.e. the on and
pre/post declarations: At compile-time, an abstract syntax tree for TIL+Alert is con-
structed and the corresponding meta-program for each alert construct is executed.
Once all alert constructs in the program have been handled, the base program will
have been rewritten. This completes the aspect weaving.

Ideologically, our approach can be considered an example of the “transformations
for abstractions”-philosophy described by Visser [Vis05a] — we are effectively extend-
ing the open TIL infrastructure with transformations (our meta-programs) that pro-
vide new abstractions (the alerts). Next, we will describe the principles behind the
implementation of the alert extension, and pay particular attention to the weaving
done by the meta programs.

8.4.2 Type Checking

The constructs of the Alert language (pre, post, on and use) require their own type
checking. To do this, we exploit the construction of the basic TIL type checker. It
is a rule set. By adding new type checking rules to this set, we can easily extend
its domain (i.e. the ASTs it can process), as we do here for use. The following is a
Stratego rewrite rule:

TypecheckUse: Use(e) -> Use(e){t}
where <typecheck-exp ; typeof> e => t

This rule, named TypecheckUse, says that if we are at a Use node in the AST with one
subnode called e (this happens to be an expression), then we reuse the typecheck-exp
function from the TIL library and annotate the Use node with the computed type t.
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TIL + Alert
syntax syntax
l
TIL + Alert
typecheck typecheck

Alert weave

TIL optimize

TIL runtime

Figure 8.3: Implementation schematics. The Alert weave step implements the inter-
preter for the Alert meta-language and transforms a TIL+Alert program into a valid
TIL program.

The ; operator works as function composition. The cases for pre and post are very
similar. For type checking purposes, we define an on declaration to be a statement,
thus having the void type. These few rules implement the “Alert typecheck” box in
Figure 8.3.

8.4.3 Alert Weaving

The compilation flow in Figure 8.3 shows that after type checking, the DSAL meta-
program parts of a TIL+Alert program are executed, effectuating the weaving. Once
weaved, the Alert constructs are gone and the rest of the pipeline will process a pure
TIL program. This program is optimised and compiled using unmodified steps of
the TIL compiler.

The DSAL notation can be expanded using the simple translation scheme for
we DSLs, described in the introduction, i.e. basic macro expansion, but with one
crucial difference: whereas the DSL notation is expanded to library calls of a subject
language library, the DSAL notation is expanded to library calls of a zransformation
language library, and the transformation language is generally different from the sub-
ject language. Here, TIL is our subject language and Stratego is our transformation
language. Essentially, the DSAL notation is a syntactic abstraction over the Alert
transformation library. This notation is embedded in the subject language (TIL),
providing a distilled form of meta-programming inside TIL for managing the error
handling concern.

When weaving Alert, we have to consider three constructs: the modified function
definitions which now have pre/post conditions, the on handler declarations, and
function calls. The code for the following cases are all part of the Alert transformation
library where they are are implemented as Stratego rewrite rules. When the DSAL
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notation is expanded, it results in calls to these rules.

Pre/Post Conditions on Function Definitions Pre/post conditions are easy to pro-
cess. They are merely markers, or annotations, on the functions. The expression of
a pre/post condition can only be activated by an on-handler, so the meta-program
processing the pre/post conditions has two tasks: first, to store the alert declaration
for later use, and second, to remove it from the AST so that we may eventually reach
a pure TIL AST. The following rewrite rule, WeaveFunDef, does this:

WeaveFunDef:
FunDef (x@FunDeclAlert (fd@FunDecl(n, _, _), _), body) ->
FunDef(fd, body)

where rules( Functions: n -> x )

It takes a function definition (a FunDef node) that has a subnode which is a pre/post
condition (a FunDeclAlert) and rewrites the FunDef node to a pure TIL FunDef by
removing the FunDeclAlert node. Further, WeaveFunDef creates a new, dynamic rule
called Functions that records a mapping from the name of this function to its com-
plete pre/post alert declaration. A dynamic rule works exactly like a rewrite rule, but
can be introduced at runtime, much like closures in functional programming lan-
guages. This is done with the rules construct. After WeaveFunDef has finished, the
pre/post condition is removed, and the Functions rule can now be used as a mapping
function from the name of a TIL+Alert function to its declaration.

In the code above, _ is the wildcard pattern (matches anything) and vep(x) means
bind the variable v to the AST matched by the pattern p(x).

On The processing of on itself is also easy. Its node is removed from the AST and
we add it to the current set of active on-handlers, maintained in the dynamic rule on.
On maps from the name of an alert to the call patterns and handler for it.

WeaveOn: On(n, patterns, handler) -> None

where rules(On : n -> (patterns, handler))

Function Calls Rewriting function calls to adhere to the new semantics is the crux
of the Alert DSAL, and is done by WeaveFuncall. This rule implements the following
translation scheme. Consider the pattern for functions f in the following form, where
f is the function name, f; are the variable names, f; are the corresponding types, tr is
the return type, and the precondition is as explained earlier:

fun £(£f0 : t0®, ...) : tr
pre exp alert signal

begin ... end
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Whenever we see the declaration of an on handler, we need to process the subsequent
calls in the same (static) scope, since these may now need to be transformed. We are
looking for patterns on the form:

on signal in pattern handler;

z = f(e®, ...);

When we encounter an instance of this pattern, we may need to replace the call to f
by some extra logic that performs the precondition check and, if necessary, executes
the relevant on-handler according to the following call template?.

z := begin
var r : tr;
var a_0 : t_0 := e_0;
if exp then handler
else r := f(a_0, ...) end
return r;

end

WeaveFunCall will perform the aspect weaving. We will now describe the principles
behind it, but not present the full source code, as this is available in the downloadable
source code for TTL+Alert (see Section 8.6).

The weaving of WeaveFunCall can only happen at FunCall nodes, i.e. nodes in the
TIL+Alert AST that are function calls. Assume WeaveFunCall is applied to a func-
tion call of the function f. First, it will check that f signals alerts by consulting the
Function dynamic rule that was produced by WeaveFunDef. If indeed f has a declared
alert, then the set of active on handlers for the current (static) scope is checked by con-
sulting the on dynamic rule that was initialized by Weaveon. Multiple on handlers can
be active, so another Alert library function is used to resolve which takes precedence
(the closest, most specific). Once the appropriate handler is found, the function call
to f is rewritten according to the call template shown above, i.e. the FunCall node
is replaced by an expression block (an EBlock) which does the precondition check
before the call.

Extra care must be taken in the handling of variable names during this rewrite.
The precondition expression is formulated in terms of the formal variable names of
f, so we cannot insert that subtree unchanged. We must remap the variables, and this
is done by a function called remap-vars. As the call template shows, for each formal
parameter f; of f, we create a local variable g; that is assigned the actual value from

?The begin/end block here is called an expression block. It is effectively a closure that must always
end in a return. It will be removed by a later translation step that lifts out the variables contained
within it, finally giving a valid TIL program.
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the call site. We rename the variables in the precondition expression of f, from f; to
a;, and insert the rewritten expression as exp in the call template.

8.4.4 Coordination

The meta-programs induced by the on, pre and post declarations are dispatched by
a high-level strategy that can be likened to an interpreter for the Alert aspect exten-
sion. This strategy is implemented as a traversal over the TIL+Alert AST. It contains
the logic responsible for translating the Alert notation into calls to the Alert transfor-
mation library, and in that capacity, it corresponds to the DSL macro expander. Its
execution will coordinate the meta-programs for the various alert constructs. Once
the traversal completes, all the Alert-specific nodes will have been excised from the
tree, and the result is a woven TIL AST that can be optimized and run.

8.5 Discussion

While DSLs can often be implemented as rather simple macro expanders, the same
translation scheme is apparently not applicable for DSALs. The cross-cutting nature
of DSALs means that statements or declarations in a DSAL usually have non-local
effects. A single line in the DSAL may bring about changes to every other line in the
program, and this is not possible to achieve using macro expanders. However, the
translation scheme offered by the macro expansion technique is appealing both be-
cause of its simplicity and its familiarity; we already have ample experience and tools
which may be brought to bear if we could reformulate the DSAL implementation
problem to be a DSL implementation problem. This is what our technique offers, by
using a program transformation system to implement the library (semantics) for the
DSAL notation (syntax). Here, we perform a brief evaluation of our approach.

8.5.1 Program Transformation

Program transformation languages are domain-specific languages for manipulating
program trees. Stratego and other transformation language such as TXL [CHHP91]
and ASF [vdBHKOO2] all have abstract syntax trees as built-in data types, rewrite
rules with structural pattern matching to perform tree modification, concrete syntax
support and libraries with generic transformation functions. The advantage to using
such languages for program transformation is that the transformation programs gen-
erally become smaller and more declarative when compared to implementations in
general-purpose languages, be they imperative, object-oriented or functional.

High-level Transformations In our experience, when doing experiments with as-
pect language and aspect weaving, working on high-level program representation
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such as the AST is often preferable to lower-level representions traditionally found in
compiler-backends. The AST provides all the information from the original source
code and is together with a symbol table a convenient and familiar data structure to
work with. When working with ASTs, it is important for the transformation lan-
guage to have good support for both reading and manipulating trees and tree-like
data structures.

Generic Tree Traversals Many program transformation languages and functional
languages, especially members of the ML family, have linguistic support for pattern
matching on trees. We have already seen pattern matching in Stratego in the rewrite
rules in Section 8.4. Using recursive functions and pattern matching, tree traversals
are relatively simple to express, e.g.:

fun visit(Or(e, e)) = ..
| visit(And(e, €)) = ..

In object-oriented (OO) languages, the Visitor pattern is a common idiom for tree
traversal, but compared to pattern matching with recursion, it is very verbose. Both
techniques perform poorly when the AST changes, however. Introducing a new AST
node type requires changes to all recursive visitor functions, or in the OO case to the
interface of the Visitor (and thus all classes implementing it). There is, however, an
aspect-oriented solution to the cross-cutting-concern part of this problem [?].

Generic programming [LVV03] in functional languages and generic traversals, as
offered in Stratego, provide a solution. Generic traversals also allow arbitrary compo-
sition of traversal strategies.

bottomup(s) = all(bottomup(s)); s

This defines bottomup (post-order traversal) of a transformation s as “first, apply
bottomup(s) recursively to all children of the current node, then apply the trans-
formation s to the result”. Once defined, this function can be used to succinctly
program the variable renaming needed by the WeaveFunDef in Section 8.4.3:

remap-vars(|varmap) =

bottomup(try(\ Var(n) -> Var(<lookup> (n, varmap)) \))

Syntax Analysis Support Program transformation languages typically come with
parsing toolkits and libraries for manipulating existing languages, reducing the effort
needed to create a language infrastructure. Also, there is often a tight integration be-
tween the parser and the transformation language in transformation systems. Among
other things, this allows expressing manipulations of code fragments from the subject
language very precisely, using concrete syntax.
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Rewriting with Concrete Syntax Another important task is tree manipulation.
Rewrite rules provide a concise syntax and semantics for tree rewriting, but rewrit-
ing on ASTs can of course be expressed in any language. In program transformation
languages, rewriting with concrete syntax, i.e. using code fragments written in the
subject language is often provided, and this may improve the readability of rewrite
rules considerably, e.g.:

Optimize: |[ if O then ~e® else ~el end ]| -> |[ ~el ]|

Here, e and ~el are a meta-variables, i.e. variables in the transformation language
(Stratego) and not the subject language (TIL).

Generic Transformation Libraries  Libraries for language processing are not unique
to program transformation systems, but transformation libraries often contain quite
extensive collections of tree traversal and rule set evaluation strategies not found else-
where. Also, some transformation systems provide generic, reusable functionality for
data- and control-flow analysis, as well as basic support for variable renaming and
type analysis. However, the libraries of transformation systems are often less com-
plete than that of general purpose languages, when it comes to typical abstract data

types.

Maturity and Learning Curve A clear disadvantage of contemporary program trans-
formation systems is their relative immaturity when compared to implementations of
mainstream, general-purpose languages. The compilers are usually slower, the de-
velopment environments are not as advanced, and fewer options for debugging and
profiling exist. Further, the same domain abstractions that make domain-specific
transformation languages effective to use, also make them more difficult to learn, a
tradeoff that must be evaluated when considering the use of a transformation lan-

guage.

8.5.2 Program Transformation Languages for Aspect Implementa-
tion

The stance we take in this paper is that a aspect languages are a form of domain-
specific transformation language; they provide convenient abstractions (join points,
pointcuts, advice) for performing certain kinds of transformations (aspect weaving—
dealing with cross-cutting concerns). They hide the full complexity of program
transformation from programmers. Domain-specific aspect languages are even more
domain-specific, and hide the complexities of general aspects from their users.

As domain-specific transformation languages, DSALs are conveniently imple-
mented as libraries in a program transformation language. We make this claim based
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on our experience with the DSAL = library+notation method from constructing the
following systems:

e A domain-specific error-handling aspect language [BDHKO06]—a simplified
version of this is used as an example in this paper. Our current implemen-

tation is for C, and is implemented in the Stratego program transformation
language [BKVV06] using the C Transformers framework [BDDO06].

e A component and aspect language for adaptation and reuse of Java classes. An
early version of this is described in [BBK*05]; it is implemented by translation
to Aspect] [KHH*01], using Stratego.

o AspectStratego [KV05]—an aspect-language extension to the Stratego pro-
gram transformation language; implemented in Stratego itself, by compilation
to primitive Stratego code.

e CodeBoost [BKHV03]—a transformation system for C++ that provides user-
defined rules; an aspect language that allows users to declare library-specific
optimization patterns inside the C++ code. The patterns are simple rewrite
rules, executed at compile-time. User-defined rules is implemented with the
library+notation technique, with the library written in Stratego.

Part of the design goals for many of these experiments was harnessing the expressive
power of general program transformation systems into “domain-specific transforma-
tion languages” that the programmers of the subject languages could benefit from. In
a word, these domain-specific transformation languages are DSALs. For most of our
systems, the transformations underlying these extensions, i.e. the implementation of
the DSAL semantics, are reusable Stratego libraries, and form the basis for further
extensions and experiments.

Experiences One lesson learned from the construction of these DSAL:s is that good
infrastructure for syntax extensions of the subject language is important. Reusing
frontends from existing compilers usually precludes extending the syntax, as that
would require massive changes to the frontend itself (and for mainstream languages,
this is a substantial task). Implementing robust grammars for complicated languages
like C++ and Java is infeasible, so language infrastructures provided by program trans-
formation systems were of great help to us. Another lesson is that familiarity with lan-
guage construction is crucial. Extending a subject language with an arbitrary DSAL
may be very complicated, depending on what the DSAL is supposed to achieve. It
may therefore be premature to expect regular developers to be able to design their
own DSAL language extensions. This is often in more due to the complex semantics

of the subject language itself, than the complexity of the DSAL.
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8.5.3 Related Work

JTS, the Jakarta Tool Suite [BLS98] is a toolkit for developing domain-specific lan-
guages. It consists of Jzk, a DSL-extension to Java for implementing program trans-
formation, and Bali, a tool for composing grammars. Jak allows syntax trees and
tree fragments to be written in concrete syntax within a Java program, and provides
abstractions for traversal and modification of syntax trees. Bali generates grammar
specifications for a lexer and parser and class hierarchies for tree nodes, with con-
structor, editing and unparsing methods. Bali supports composition of grammars
from multiple DSLs. DSL development with JTS is much like what we have de-
scribed here; an existing language is extended with domain-specific syntax (in Bali),
and a small tool is written (in Jak), translating the DSL to the base language.

XAspects [SLS03] is a system for developing DSALs. It provides a plug-in archi-
tecture supporting the use of multiple DSALs within the same program. Declarations
belonging to each DSAL are marked syntactically, picked up by the XAspects com-
piler and delivered to the plug-ins. The plug-ins then perform any necessary mod-
ification to the visible program interface (declared classes and methods). Bytecode
is then generated by the Aspect] compiler; the plug-ins then have an opportunity to
perform cross-cutting analysis and generating Aspect] code which is woven by the As-
pect] compiler. Thus, implementation of a new DSAL is reduced to creating a plug-in
which performs the necessary analyses and generates Aspect] code. Our method, with
program transformation, can either complement XAspects, as a way of implementing
XAspects plug-ins, or replace it, by developing a libraries for Aspect] manipulation
in a program transformation language. The plug-in architecture of XAspects is ap-
pealing, as it forces possibly conflicting DSALSs to conform to a common framework,
making composition of DSALs easier. Both XAspects and our implementation can
be seen as library+notation approaches. However, since domain-specific aspects in
XAspects can only modify existing code using Aspect] advice and intertype declara-
tions, there are limits to the invasiveness of the DSAL expressed with XAspects. Our
implementation strategy has no such constraint since Stratego supports any kind of
code modification.

The AspectBench Compiler [AAC*05] provides another open-ended aspect com-
piler, but is more focused on general aspect languages. It implements the Aspect]
language, but is also intended as research platform for experimenting with aspect
language extensions generally.

Logic meta programming (LMP) is proposed as a framework for implementing
DSALs in [BMVO02], because expressing cross-cutting concerns using logic languages
is appealing. We believe that our approach could be instantiated with an LMP system
as well: the DSAL notation may be desugared into small logic meta-programs which
perform the actual weaving. Depending on the logic language, constructing and
compositing logic-based transformation libraries may be possible.
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In [CBE*00], the authors argue that AOP is a general discipline that should be
confine itself in a domain-specific language, but rather be addressed with a general,
open framework for composing all kinds of aspects. Such an infrastructure, should it
be constructed, would be an interesting compilation target to expand DSAL notation
to.

Gray and Roychoudhury [GR04] describe the implementation of a general aspect
language for Object Pascal using the DMS program transformation system. They
conclude that since transformation systems often provide good and reusable language
infrastructure for various subject languages, they are good starting points when devel-
oping new aspect extensions. We are of the same opinion, and advocate a disciplined
approach where the aspect extensions themselves are implemented as reusable trans-
formation libraries that may in turn be used a substrate for later extensions.

Assman and Ludwig [ALOO] describe the implementation of aspect weaving us-
ing graph rewrite systems. The authors express the weaving steps in terms of graph
rewrite rules, similar to how we describe them as tree rewrite rules. In principle,
transformation libraries could be constructed from the sets of graph rewriting rules,
but the rule set appears to always be evaluated exhaustively. This makes rule set com-
position (i.e. library extension) problematic, since two rule sets that are known to
terminate may no longer terminate when composed. In Stratego, there is no fixed
normalization strategy; the transformation programmer may select one from the li-
brary or compose one herself, which in practice adds a very useful degree of flexibility.

8.6 Conclusion

In this paper, we have discussed the /ibrary+notation method for implementing DSLs:
building a library that implements the semantics of the domain, a syntax definition
for the desired notation, and a simple translator that expands the notation into library
calls. We showed how this method can also be used effectively for implementing
DSALs by writing the library part in a program transformation system, expressing
the notation as a syntax extension to a subject language, and translating the notation
of the DSAL into library calls in the transformation system. This makes the DSAL
a meta-program that is executed at compile-time, and that will rewrite the subject
program according to the implemented DSAL semantics. Our illustrating examples
were based around a small imperative language with an aspect extension for separately
declaring error handling policies.

We argued that, based on our experience, program transformation systems are
ideal vehicles for implementing such libraries because they themselves come with
domain-specific languages and tools for doing language processing, which greatly
reduces the burden of implementation when compared to general purpose languages.

The complete implementation of TIL+Alert is available at www. codeboost .org/alert/til.
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8.7 TIL Grammar

Programs. A program is a list of function definitions, followed by a main program
(a list of statements).

FunDef* Stat* -> Program

Functions. A function definition defines is function with a given signature (FunDecl)
and body (a list of statements).

"fun" Id "(" {Param ","}* ")" ":" Type -> FunDecl

FunDecl "begin" Stat* "end" -> FunDef

Id ":" Type -> Param
Statements:

"var" Id ";" -> Stat

"var" Id ":" Type ";" -> Stat

Id ":=" Exp ";" -> Stat

"begin" Stat* "end" -> Stat

"if" Exp "then" Stat* "end" -> Stat

"if" Exp "then" Stat* "else" Stat* "end" -> Stat

"while" Exp "do" Stat® "end" -> Stat

"for" Id ":=" Exp "to" Exp "do" Stat* "end" -> Stat

Id "(" {Exp ","}* ™" ";" -> Stat

"return" Exp ";" -> Stat
Expressions:

"true" | "false" -> Exp

Id -> Exp

Int -> Exp

String -> Exp

Exp Op Exp -> Exp

"(" Exp ")" -> Exp

Id "(" {Exp ","}* ")" -> Exp

Lexical syntax:
[A-Za-z] [A-Za-z0-9]* -> Id
[0_9]+ -> Int
"\"" StrChar® "\"" -> String

~IN"\\\nl | [\\II\"\\n] -> StrChar



There’ kind of a drop&drag interface.

— Eelco Visser

Interactive Transformation and Editing
Environments

Many programmable software transformation systems are based around novel domain-
specific languages (DSLs) with a long and successful history of development and de-
ployment. Despite their reasonable maturity and applicability, these systems are often
discarded as esoteric research prototypes partly because their languages are frequently
based on less familiar programming paradigms such as term and graph rewriting or
logic programming, and partly because modern development environments are rarely
found for these systems. The basic and expected interactive development aids, such as
source code navigation, searching, content completion, real-time syntax highlighting
and error checking, are rarely available to developers of transformation code.

This chapter describes Spoofax, an interactive development environment based
on Eclipse for developing program analyses and transformations with Stratego/XT.
The chapter illustrates how the new language and system abstractions introduced
in Part IIT and Part IV of this dissertation are useful when constructing interactive
editing and transformation environments. Spoofax provides, in addition to the aids
mentioned above, a code outliner and incremental building of projects. This signifi-
cantly eases the development of language processing tools using Stratego/XT. More-
over, Spoofax is extensible with scripts written in Stratego that can be executed within
Eclipse and allow live analyses and transformations of the code under development.

This chapter is based on the the paper “Spoofax: An Interactive Development En-
vironment for Program Transformation with Stratego/XT”, written together with Eelco

Visser [KV07b].

9.1 Introduction

Developing and maintaining frameworks and libraries is at the core of any modern
software development project and the development of transformation programs is no
different. When the code size creeps over a certain limit, it becomes difficult to keep
track of, and navigate the source, without reasonable editor support. Unfortunately,
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Figure 9.1: Screenshot showing Syntax Definition Formalism (SDF) and Stratego
editors with outline view.

most editing tools for domain-specific software transformation languages offer little
assistance for editing larger programs. The basic and expected interactive develop-
ment aids, such as source code navigation, content completion, syntax highlighting
and continuous error checking, are rarely available to developers of transformation
code.

This lack of development aids keeps the entry barrier for new developers high;
DSLs for program transformation use their own syntax and language constructs
which may be unfamiliar to many. In addition, most editing environments sup-
port these languages rather poorly, providing only limited syntax highlighting. Even
skilled developers may be less effective because errors are reported late in the edit-
compile-run cycle; that is, only after compiling. It is generally held that errors should
be reported immediately after a change has been made while the human programmer
is still in a relevant frame of mind. Also, error reporting should ideally be customis-
able and check project-specific design rules, where possible. This problem also exists
with Stratego/XT. Until recently, a good editing environment did not exist for Strat-
ego. This made development with Stratego/XT harder than necessary.

This chapter describes Spoofax, an extensible, interactive environment based on
Eclipse for developing program transformation systems with Stratego/XT. Spoofax
supports Stratego/XT by providing modern development aids such as customisable
syntax highlighting, code outlining, content completion, source code outlining and
navigation, automatic and incremental project rebuilders.

Spoofax is a set of Eclipse plugins — a Stratego and an Syntax Definition For-
malism (SDF) editor, a help system and the Stratego/] interpreter from Chapter 6.
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It supplements Stratego/XT, which must be installed separately, by providing an ex-
tensible, interactive development environment. Figure 9.1 shows an example session
with an SDF editor (top right), a Stratego editor (top middle), a list of pending tasks
extracted from all project files (bottom), and a code outline view (left) displaying
all imports, rules and strategies defined in the edited file. The popup is a content
completer showing alternatives for the tc- prefix.

In this dissertation, the contributions of the Spoofax environment include user
extensibility with scripts written in Stratego that allow live analyses and transforma-
tions of the code under development; syntax highlighting, navigation and content
completion that eases the learning curve for new users of Stratego; and, integration
into a mainstream tools platform that is familiar to developers and that runs on most

desktop platforms.

9.2 Core Functionality

The Spoofax environment is built around a program model of a Stratego project.
This model is called a build weave and is discussed below. An important task of
the core functionality of Spoofax is to maintain this build weave as users and tools
modify the various artifacts that make up the Stratego project including: Stratego
files, syntax definitions and build files. Another task of the core functionality is to
provide support for user preferences and project-specific settings, and make certain
that these are saved across editing sessions in the Eclipse preference store.

9.2.1 Architecture

As depicted in Figure 9.2, Spoofax is divided into a handful of separate components
called plugins. Each plugin provides a specific piece of functionality. Some plugins
depend on others as indicated in the figure by directed arrows. The full composition
of all plugins provides the Spoofax “feature”; that is, an Eclipse-specific term for a set
of plugins that together provide a well-defined tool or application.

The editor plugin (org.spoofax.editor) provides the interactive editors for Strat-
ego and SDF as well as other interactive capabilities such as configuration menus and
various views (shown later). The Stratego/] plugin (org.spoofax.interpreter) pro-
vides the execution engine for running all the user-provided Stratego scripts. The jsglr
parser plugin (org.spoofax.jsglr) is used to produce ASTs from the editor buffers.
Both the compiled scripts and the ASTs are represented as terms using a slightly
modified version of the ATerm [vdBdJKOOO] library (org.spoofax.aterm). The plu-
gin org.spoofax.help provides a manual for Stratego/XT. It may be accessed and read

through the Eclipse help system.
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O feature
W Pplugin

org.spoofax.editor, org.spoofax.help org.spoofax.interpreter

org.spoofax.jsglir lorg.spoofax.interpreter.adapter.aterm;

org.spoofax.aterm

Figure 9.2: Relationship between the plugins that make up Spoofax.

9.2.2 Build Weave

The build weave is essentially a module dependency graph. Each graph node corre-
sponds to a Stratego module. A module, in this case, is either a Stratego source file
with the .str suffix or a compiled module with the .rtree suffix. Each directed edge
corresponds to an import declaration in a module. The build weave also contains
information about how to resolve import names to actual files on disk using the in-
clude paths defined in the project build system. The main purpose of the build weave
is to provide searching capabilities to the editor so that the user can search a project
for definitions, e.g. find definition locations for a given identifier. It is also used for
incremental project building, as discussed below.

The weave is constructed by parsing all .str files of a Stratego project and the
build system (in the form of Makefiles). The build system declares all include paths.
There are for resolving module import names to actual files from the file system.
Once constructed, the build weave activates logic which listens for events pertaining
to the modules or build system files. When a relevant change event is seen, the
affected parts of the build weave are marked dirty. These parts will be lazily updated
when subsequent requests require updated information. For example, the source code
navigation feature of the editor may ask for the list of all visible definitions from a
given module. If this module is marked dirty (or depends on nodes marked dirty),
then the dirty nodes will be reparsed (possibly adding new nodes and edges in the
graph). The weave will be marked as up to date. Only after this update process is
finished will the list of visible definitions be computed.

9.2.3 Project Rebuilding

Whenever a module is changed that is referenced by the build system, i.e., it con-
tributes to the final deployable program, the build weave will signal the project
builder to commence a rebuild of the project. The current Stratego compiler is a
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whole-program compiler. This means that a project rebuild may take several min-
utes. For convenience, it is possible to turn off automatic project rebuilding,.

9.3 Editor

The principal user-interface component provided by Spoofax is the Stratego editor. It
is built on top of the Eclipse editor framework and provides a range of editor features
from syntax highlighting to source code navigation.

9.3.1 Content Completion

The purpose of content completion is to help the developer writing source code
by suggesting possible textual completions based on the surrounding source code
context. For example, if a developer asks for a completion for the prefix “fi1” in a
location where a strategy or rule is applicable, then the strategy filter(s) may be
suggested, provided that the current module imports the standard library where the
filter(s) strategy was defined. See Figure 9.3(b).

The Spoofax content completer is not perfectly context-aware. For example, it
cannot always guess whether a strategy, variable or constructor name is expected. In
these cases, it will suggest all possible choices. However, the completer is aware of
sections in a Stratego module. If completion is requested in the imports-section,
only valid module names are suggested. Further, in the rules and strategies sec-
tions, constructor, strategy, rule or overlay names are in general possible. Only closer
inspection of the context can determine which is applicable. The Spoofax content
completer will automatically suggest overlays and constructors if the prefix before the
cursor is a ! (a build operator), since that uniquely identifies the expression which
follows as a term. Similarly, if the immediate prefix before the cursor is a <, the fol-
lowing expression must be a strategy expression, so strategies and rules are the only
possible choices.

9.3.2 Syntax Highlighting

Perhaps the most basic development aid expected by an editor is the proper syntax
highlighting of source code. Spoofax provides syntax highlighting for both SDF
and Stratego. The user can configure the visual attributes, such as slant, boldness
and colour, of the different syntactical categories, which includes keywords, rule or
strategy declarations, comments, documentation and built-in primitives. Due to the
flexible syntax definition formalism used for Stratego, some uncommon corner cases
must be dealt with. One of these is the multiple meanings of the character ’. It
may be the start(and end) of a character literal, e.g. ’a’. It is also a valid suffix of
an identifier, e.g. decl’. Fortunately, it is possible, though a bit complicated, to
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Figure 9.3: Outline and script views, and a content completion popup.

distinguish between these cases purely at the lexical level. Figure 9.1 shows syntax

highlighting for both Stratego and SDE

9.3.3 DParenthesis Highlighter

The job of the parenthesis highlighter is to find a matching parenthesis for any paren-
thesis next to the cursor. By convention, most editors (including Spoofax) will first
check to see if there is a closing parenthesis before the cursor and, if so, find the
first opening parenthesis of the same type at the same nesting level. If there is no
closing parenthesis in front of the cursor, an opening parenthesis is looked for im-
mediately after the cursor. This logic accounts for the different allowed parenthesis
types in Stratego ({,[,( and <), and will indicate a mismatch by colouring the of-
fending match red. In the case of a good match, a pink outline is used to highlight
the matching parenthesis.

nasty = id < id + id ; <id> < <id> + Hid ; <id> +> id S(); (("(",")")

A noteworthy complication is the meaning of the character <, which is allowed as
both a (nested) application operator, e.g., <s1 ; <s8> > and in the choice, e.g. s0 <
s1 + s2 as well as part of the left (<+) and right (+>) choice.

9.3.4 Outline

The Outline View, Figure 9.3(a), is a helper view which, when open, always applies
to the currently active editor. It shows all definitions found in the module being
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edited. The definitions are sorted under their respective types including rules, strate-
gies, module, imports and constructors. The purpose of the Outline View is to allow
quick navigation inside larger modules, and to show the structure of a module at a
glance. By clicking on any of the defined names, the cursor is moved to the corre-
sponding definition inside the module.

9.3.5 Source Code Navigation

In any non-trivially-sized project, developers spend a lot of their time navigating the
source code to find, understand and fix existing definitions or to add new definitions.
Cross-module source code navigation is supported by Spoofax due to the build weave
discussed in Section 9.2.2. By placing the cursor under an identifier, the “go to defi-
nition” action can be invoked. This action will compute the possible definition sites
for the identifier requested and, if multiple applicable locations are found, produce
a popup window to ask the user to select which definition location to go to. This
mechanism allows the user to easily navigate to rule, strategy, overlay and constructor
definitions.

A complementary action, “open definition”, allows the user to open a popup
listing all definitions visible from within a module. This list may be searched by
prefix and wildcard strings, e.g. fi*ter. It is only populated with definitions which
would be visible through the import graph of the current module. A final action,
“open module”, allows the user to open any module visible from the import graph of
the current module.

9.3.6 Build Console

Whenever a project (re)build is started, all output from the build process is redirected
to a special Build Console as shown in Figure 9.4. This console keeps the history of
all output messages from all previous builds until the user explicitly resets the log.

Build Console ¥ ¥ =08

Using makefile ' /homeskarltk/source/workspaces/runtime-New_configurationy/2checkFormMain/m

[ strc | info 1 Compiling 'src/check-for-main.str

[ strc | warning ] Nullary constructor MNone used without parentheses

[ stre | warning 1 Mullary constructor start used without parentheses

[ stre | warning 1 Nullary constructor start used without parentheses

[ strc | warning ] Nullary constructor start used without parentheses

[ strc | warning 1 Nullary constructor start used without parentheses

[ strc | warning 1 nullary constructor start used without parentheses

[ strc | warning 1 nNullary constructor start used without parentheses =
[ 2

Figure 9.4: The build console shows an example output from the Stratego/XT build
system.
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9.4 Scripting

Software transformation systems such as Stratego/XT are powerful vehicles for imple-
menting program analyses and transformations. Spoofax offers this power to Stratego
programmers in the form of user-supplied editor scripts. By writing a script in Strat-
ego using a few hooks provided by Spoofax, users can extend Spoofax with custom
functionality. These scripts run on the Stratego/] execution engine and are used to
rewrite ASTs obtained from Stratego source code using the jsglr parser. Scripts may be
loaded into Spoofax and executed later by invoking them from a catalogue of scripts
found in the scripts view, as discussed below.

Consider the example script in Figure 9.5. Line 4 imports the Stratego syntax
and lines 5 and 6 are required for hooking into Spoofax. The strategy main on line 15
defines a trivial Stratego program which first obtains the AST for the current editor
buffer (line 17), then traverses this AST and collects all definitions of a main strategy
using the rule from line 22 (here, concrete syntax is used). The resulting list is printed
to the script console on line 19. On line 20, a popup is displayed if the list is empty.

9.4.1 Script View

All scripts loaded by the user are visible in the Script View, as shown in Figure 9.3(c),
and may be invoked from this view by double-clicking on the script’s name. Each
script is classified under a category. This aids in organising the script collection. Re-
ferring back to Figure 9.5, line 12 declares a user-visible name, which will be shown
in the Script View. On line 13, the category is declared. Line 16 declares to the trans-
formlet infrastructure that the strategies xlet-script-name and xlet-script-category
are meta information, not part of the script logic. Additional meta-information defi-
nitions, such as author and license, are also possible and will be extracted and placed
in a cache. This means that all script definitions need not be reloaded upon every
restart of Eclipse for the Script View to be populated.

9.4.2 Script Console

All scripts executing inside Spoofax will have their output redirected to the Script
Console. For editor scripts, this console is mainly useful for debugging and simple
logging of non-essential information. On line 18 in Figure 9.5, the current term
(a [possibly empty] list of strategy definitions) will be printed to the Script Con-
sole. This console is visually very similar to the Build Console that was shown in

Figure 9.4.
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module check-for-main

imports
stratego-lib
Stratego-Sugar
org/spoofax/editor/editor-common
org/spoofax/editor/transform
org/spoofax/xlet/core
org/spoofax/bindings/eclipse/eclipse-ui

rules
xlet-script-name = !"Check For Main"
xlet-script-category = !"Analysis"
main =

xlet-meta(xlet-script-name ; xlet-script-category)
; spoofax-current-ast
; collect(FindMain)
; where(spoofax-debug)

; try(?[] ; <eclipse-ui-show-popup> ("Malformed", "Missing main"))
FindMain = ?|[ main = s ]|

Figure 9.5: Simple analysis script that checks for the presence of main in a module
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9.4.3 Analysing and Transforming Source

Analysis and transformation of Stratego code takes place on the AST associated with
the current program being edited. In other editors, such as Emacs, code trans-
formation is purely textual, which severely limits the possible transformations and
analyses. An AST is obtained from the current editor buffer using the strategy
spoofax-current-ast. Internally, the source code is parsed using the jsglr parser and,
if successful, the AST is returned. A limitation of the current implementation is that
the source code must be syntactically correct, since the standard grammar for Stratego
does not have any error-correcting productions. The resulting AST can be analysed
and modified by the user scripts. Once modification is done, the result can be pretty
printed back to the buffer. Layout is not currently preserved well enough for everyday
use, but known techniques, such as those explained in [BV00] could be applicable.

9.4.4 Transformation Hooks

In addition to user-initiated execution, scripts can be triggered to automatically exe-
cute when certain events in Eclipse are seen. Currently, three events are supported.

OnLoad — Whenever a Stratego file is loaded, a script can execute before the
editor displays the file. It is generally recommended, though not required, that the
script only performs analysis and the results of this analysis be made visible in the
default Eclipse Problems View with other compiler errors and warnings.

OnSave — Scripts can also execute when files are saved. This is frequently useful
for (re)generating dependent — or derived — files.

OnTimer — At intervals determined by the script meta information, a script may
be executed. These scripts cannot expect any editors to be open, but may query for
their existence and should gracefully fall asleep if none are found.

9.5 Implementation

Spoofax is implemented as an Eclipse plugin, written in Java and Stratego. The
interfacing between Java and Stratego is handled using the Stratego/J interpreter in-
troduced in Chapter 6. The user-provided extensions are written as transformlets,
using the transformlet infrastructure also introduced in Chapter 6.

In the current release, most of the core functionality from Section 9.2, and the
editors in Section 9.3, are written in pure Java. The scripting support is mostly writ-
ten in Stratego (except for the Stratego/] interpreter). Since the editor code is heavily
dependent on the libraries and abstractions provided by Eclipse (especially for actions
and callbacks using inner classes) it is unlikely that Stratego can provide a worthwhile
alternative here. The build weave implementation, however, would clearly benefit
from being reimplemented using GraphStratego presented in Chapter 7. The current



9.6. Related Work 177

implementation predates Stratego/], and was therefore written in Java. The propaga-
tion rules for change events and the graph navigation code are prime candidates for a
rewrite.

Parsing — The editor is built on top of three different parsers of Stratego. The ones
used for syntax highlighting and code outlining are hand-written in Java because they
must work work well for syntactically incorrect programs. A scannerless GLR parser
(jsglr) is used to extract the abstract syntax tree from source files and are available
for user scripts to inspect. Modification is also possible, but layout is not (yet) al-
ways properly preserved. Most contemporary syntax highlighters are written using a
mishmash of regular expressions and state-keeping helper code. The Stratego syntax
highlighter is, sadly, no exception. It is especially important that the highlighting
works well when the program is syntactically incorrect, thereby aiding the program-
mer when needed the most. The Stratego syntax highlighting is context-dependent,
so using a purely declarative tokeniser is not feasible.

Help — The help system is a packaging of the official Stratego/XT reference man-
ual, along with the official Stratego tutorial, and a collection of detailed examples

[BKVVO05].

9.6 Related Work

Many program transformation systems provide some form of interactive environ-
ments. The paragraphs which follow briefly discuss some program transformation
systems that are advanced and actively developed.

The Meta-Environment is an open and extensible framework for language devel-
opment, source code analysis and source code transformation based on the ASF+SDF
transformation system [vdBvDH*01]. The environment provides interactive visu-
alisations, editors with error checking and syntax highlighting. 7om is a software
environment for defining transformations in Java [MRV03] and comes with a basic
Eclipse editor plugin that provides syntax highlighting, context-specific help, error
checking and automatic compilation, but no source navigation. [Transformer is a
Prolog-based query and transformation engine for Java source code, based on Eclipse.
It provides a Prolog editor with syntax highlighting, auto-completion, code outlin-
ing, error checking and context-specific help. HATS is an integrated development
environment for higher-order strategic programming [Win99]. HOPS is a graphi-
cally interactive program development and program transformation system based on
term graphs [Kah99]. The environment is a mix between literal and visual program-
ming. ANTLRWorks [BP] is a graphical development environment for developing
and debugging ANTLR grammars, with an impressive feature list that includes code
navigation, visualisations, error checking and refactoring.

All these systems have feature sets overlapping with Spoofax, but to my knowl-
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edge, only the Meta-Environment was also designed to be extensible using a trans-
formation language.

9.7 Summary

This chapter introduced and described an extensible, interactive development envi-
ronment for Stratego/XT that provides modern development aids like content com-
pletion, source code navigation, customisable syntax highlighting, automatic and in-
cremental project building. Users can extend the environment with scripts written
in Stratego, and these can perform analysis and transformation on the code under
development.

The transformlet techniques introduced in Chapter 6 enabled the extensible script-
ing features.

Spoofax is still evolving and maturing, but already over a dozen of active Strat-
ego programmers are using it. The feedback so far suggests that the environment
lowers the entry level for new users and makes existing developers more productive.
Increased productivity comes both from offering source code navigation for Strat-
ego and from the close integration with editors for other (subject) languages that are
already available for Eclipse.



— Eventually, you'll be famous enough to ramble about
stuff you don’t know.

— I do thar all the time, but the compiler is my audi-
ence. ..

— Qyvind Kolis replies.

Extending Compilers with
Transformation and Analysis Scripts

Efficient and robust tool support for domain abstractions is crucial for effective soft-
ware development, but implementing such domain-aware tools using current lan-
guage infrastructures is very difficult. Expressing framework and library-specific anal-
yses for design rules, bug pattern finding or protocol checking, as well as transforma-
tions for library-specific optimisation, is a goal strived for by implementers of plug-
gable type systems, defect checkers, code smell detectors and framework migration
tools. Domain-specific transformation languages hold the promise that language pro-
cessing problems may be expressed succinctly and precisely, but this depends on the
availability of robust language front-ends that can parse and type check large amounts
of source code robustly.

This chapter demonstrates how the general transformation language abstractions
introduced in Part III may be applied to building a scriptable analysis and trans-
formation framework. The framework consists of a compiler, a transformation lan-
guage and a program object model adapter for the abstract syntax tree (AST) of the
compiler. The adapter fuses the Eclipse Compiler for Java with the Stratego/]. This
enables Stratego scripts to be written which rewrite directly on the compiler AST.
The applicability of the system is illustrated with user-definable scripts that perform
framework and library-specific analyses and transformations.

The case study found in this chapter is a significantly expanded version of the
one found in the paper “Fusing a Transformation Language with an Open Compiler”
written with Eelco Visser [KV07a].

10.1 Introduction
Stringent use of domain abstractions is key to efficient and maintainable software.

The compiler cannot optimise, nor check the correct usage of, domain abstractions
because the rules governing the abstractions are part of the application domain and
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not the programming language. As a result, domain abstractions are often used incor-
rectly or inefficiently. Various techniques have been devised to combat this, such as
typestate analysis [SY86, SY93], pluggable type systems [ANMMOG], code smell de-
tectors, defect analysers [Cop05] and other static analysis tools. For the most part, de-
velopment and maintenance of these tools is so costly that their construction can only
be afforded for the most used domains. For example, common static analysis tools for
Java support only the standard library [HP04] and Enterprise JavaBeans [CNFP0G6].
The situation is similar for domain-specific optimisation: high-performance compil-
ers may come with extensions and directives which improve performance for certain,
general numerical computation problems [CDK"01]. Other domains receive little
Or NO SUppOrt.

The state-of-the-art is that existing analyses and optimisations only serve a very
restricted set of domains and the needs of most other projects and frameworks are
largely left unattended. The absence of solid and adaptable tools has led to the pro-
liferation of ad-hoc techniques that are often brittle and text-based [DR97]. For-
tunately, it has become more common to expose at least some API to the com-
piler internals in the recent years, in particular to the abstract syntax tree. This
presents a significant opportunity for providing good domain support for a much
wider range of domains. It is now possible to leverage the maturity and robust-
ness of the parsers and type analysers available in mainstream compilers. Previ-
ously, such infrastructure could only be reused from selected, open research com-
pilers [WEFW*94, TCIK00, NCMO03].

The framework presented in this chapter takes advantage of the recent opening
of mainstream compilers. It is a fusion between the Stratego rewriting language and
the Eclipse Compiler for Java (EC]) based on the program object model adapter
technique described in Chapter 4.

The composed system provides a powerful framework that allows framework de-
velopers to implement domain-specific transformations and analysis for Java frame-
works in Stratego. Developers may take advantage of pattern matching, rewrite rules,
generic tree and graph traversals as well as a reusable library of generic transformation
strategies and data-flow analyses.

The contributions of this chapter include:

® Bringing the analysis and transformation capabilities of modern compiler in-
frastructure into the hands of advanced developers via a convenient and mature
program transformation language.

e Making program transformation tools and techniques practical and reusable
for framework developers by integrating directly with stable tools like the Java
compiler. This lowers the entry barrier for developers wanting to write library-
specific program analyses and transformations.
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o A discussion of the design and implementation of a prototype tool for domain-
specific analysis and transformation.

o A validation of its applicability through a series of examples taken from mature
and well-designed applications and frameworks.

The remainder of this chapter is organised as follows: Section 10.2 motivates
the need for domain-specific analysis and transformation and why scripting these
with a language-independent transformation system is useful. Section 10.3 shows
the practical applicability of the prototype on a series of commonly encountered
framework-specific analysis and transformation problems. Section 10.4 discusses im-
plementation details of the prototype. Section 10.5 covers related work. Section 10.6
discusses some tradeoffs related to the technique.

10.2  Scriptable Domain-Specific Analysis and Transfor-
mation

The main motivation for extending compilers with scripts is the lack of domain
knowledge possessed by traditional compilers. This domain ignorance bars compilers
from providing detailed errors and warnings about the usage of domain abstractions
and from automatically optimising the usage of domain abstractions. For example,
the compiler will not warn if a function is written so that a file may be read before it
is opened nor will it remove a call to close () on a file that is known to be closed. This
is reasonable, given that the semantics of library objects is, in general, not known to
the compiler writer.

A compounding problem is the lack of any general facility of adding such knowl-
edge by the user. As a consequence of the closedness of compilers, many domain-
specific language processing tools are constructed from scratch, duplicating substan-
tial parts of compiler infrastructure that could and should have been reused. Because
implementing and maintaining robust language infrastructures for mainstream lan-
guages is very laborious, many stand-alone language processors are often brittle or
incomplete. This is clearly an unfortunate situation. Finding good approaches to
compiler infrastructure reuse of is a worthwhile topic of study, and relates closely to
the topic of language-independent transformations explored in this dissertation.

All compilers have an internal program object model. For most compilers, the
abstract syntax tree (AST) forms the core of this model and is supplemented with
additional data structures (such as a symbol table) and functionality (such as type
analysis, code searching, and pretty-printing). Some modern compilers, such as the
Sun Java Compiler, expose AST programming interfaces that allow developers to
implement custom language processing tools based on the compiler. Another exam-
ple is the Eclipse compiler for Java, which has APIs that are used to implement the
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interactive source code refactorings in the Eclipse Java development environment.
Compared to implementations with general purpose languages like Java, implement-
ing language processing with transformation languages usually results in smaller and
more readable programs, which are quicker to change and maintain. The downside is
that their infrastructure for processing mainstream subject language code is generally
not as robust, optimised nor up to date as that available in mainstream compilers.
This is not likely to change. The massive user base served by mainstream compiler
serves to weed out bugs and easily justifies investments for hand-optimising core parts
of the infrastructure.

Recent research and industry practise is rife with examples where domain-specific
transformations and analyses play an important role, such as framework-specific
refactoring, optimisation of library abstractions [GL00, Kal03], advanced style and
type checking [ANMMOG] and framework-specific code smells [VEMO02]. These
domain-specific language processing problems are different from their general coun-
terparts in at least four ways.

1. They are often less performance-critical because they only apply to small amounts
of code and they can be targeted and applied only to the relevant parts of the
code, whereas the general compiler analyses and transformations are applied
exhaustively.

2. They may have a much higher degree of variability. The conditions they check
for, the locations they should be applied to and the point in the software life
cycle they should be applied vary even between individual projects using the
same domain abstractions.

3. They have a much higher rate of change. Whenever the framework changes or
is rearchitected, the domain-specific analyses and transformations must follow
suit.

4. They occur across programming languages, and any one system may involve
the combination of many languages which have clear project-specific rules for
how they should interoperate.

Being able to attack this problem with a high-level, language-general transfor-
mation system coupled with stable and robust language processing foundations is
appealing because the combination is likely to provide an effective and expressive
platform.

10.2.1 Architecture

The Java transformation framework proposed in this chapter is available as a stand-
alone command-line application and as a reusable Eclipse plugin.



10.2. Scriptable Domain-Specific Analysis and Transformation 183
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file

Eclipse Command Line App

Figure 10.1: Command-line based transformation.

In stand-alone mode, as shown in Figure 10.1, the system performs fully automatic
source-to-source transformation. The user supplies the path of a project and a script
to execute, or the path to a single source file and a transformation script. The script
may use a file API to traverse the project directories and to parse source files to obtain
their AST. After rewriting, the script may use the file API to write modified ASTs
back to disk in the form of formatted (pretty-printed) source code.

editor § § ECJ

Eclipse interactive app

Figure 10.2: Interactive transformation.

In plugin mode, as shown in Figure 10.2, interpreter objects may be instantiated with
arbitrary scripts. These objects may be handed individual ASTs obtained from live
documents. Strategies may be invoked via the interpreter objects to perform AST
rewrites. The editing framework provides logic for synchronising the text with the
modified AST. This allows scripts to be used for very fine-grained source code queries
and transformations on the source code alongside the programmer’s manual editing
of the source code.

10.2.2 MetaStratego as a Scripting Engine

The combination of the Stratego/] runtime and the transformlet lightweight com-
ponent system is very handy for deploying interactive transformation scripts. The
framework supports the loading and execution of transformation scripts in the form
of transformlets. As each transformlet is loaded, it registers new actions with the
framework. These actions become available through a separate menu in the user
interface. The programmer may invoke the script actions from this menu. The
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transformlets may be implemented with any of the language extensions introduced
in previous chapters of this dissertation.

10.3 Examples of Domain Support Scripting

This section describes analyses and transformations that are specific to a given project
or framework. Some analyses check that domain abstractions provided by the frame-
work or library are used properly. They apply to the clients of the libraries, but not to
the library code itself. Other analyses check for a consistent realisation of the domain
abstractions. These apply to the implementation of the library. Additional examples
will demonstrate how the results of these analyses may be used to perform source
code transformations.

The examples have been chosen to demonstrate how the (extended) Stratego
language can handle syntax-, type- and flow-based analyses, and what an advanced
framework developer with a good working knowledge of language processing and
Stratego could implement. However, Stratego is capable of performing significantly
more advanced analyses and transformation than shown here. See [OV05, BKVVO06,
Kal03] for some examples. It is also important to note that with a program object
model (POM) adapter for another front-end, for example a C or C++ compiler, the
same techniques are directly applicable to libraries written in C or C++.

10.3.1 Project-Specific Code Style Checking

Software projects of non-trivial size always adopt some form of (moderately) consis-
tent code style to aid maintenance and readability. Maintainers of such systems may
be concerned with checking for proper implementation and proper use of domain
abstractions. Consistency of implementation can be improved by encouraging sys-
tematic use of particular idioms. The following idioms are taken from the internal

AST implementation of the Eclipse Compiler for Java and from the graphical user
interface library Standard Widget Toolkit (SWT).

Equality Test Idiom. A common idiom when implementing equals() methods on
objects in Java is to start with an instanceof check. The internal AST classes of the
Eclipse Java compiler follow this idiom. For the CompilationUnit class, the idiom

looks like this:
public boolean equals(Object obj) {
if(!(obj instanceof CompilationUnit))
return false;

IPart of Eclipse.
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The idiom is simple to implement, but consistently applying it requires a degree of
fastidiousness best left to the computer. It is easy to miss a spot when performing
maintenance, and new maintainers to an existing code base may not be aware of the
idiom. The pattern matching capabilities of Stratego can be used to verify that the
code for equals() is of the correct form:

check-equals-method =
?MethodDeclaration(_,_,SimpleName("equals"),object(),_,Block(stmts))
; where(not(<Hd> stmts ; ?IfStatement(e, _, _) ; <check-expr> e)
; emit-warn(|"equals() does not start with instanceof check"))

check-expr =
?PrefixExpression(
wyn

PrefixExpressionOperator(

, ParenthesizedExpression(InstanceofExpression(_, _)))

The check-equals-method strategy should be applied to the method declaration of
an equals() method. It starts with a pattern match (on line 2) to verify this. In
the process, it binds the variable stmts to the list of statements of the method body
of equals(). The subterm object is an overlay that matches an argument list of in
parameter of type Object. The first statement of the body is retrieved with Hd (on
line 3) and matched against a pattern for if. On a successful match, the condition
of the if is checked with check-expr which will only match expressions on the form
I (_ instanceof _), where _ is any expression. Should the if be omitted, or not
follow the required idiom, emit-warn (on line 4) will display a warning. When run
in command-line mode, this warning will be displayed on the console. In interactive
mode, it can appear in a window containing compile-time warnings. The code above
is purely syntactical. It does not know anything about the Java type context in which
it is applied. It would be reasonable to add additional context information so that the
instanceof check was verified to check for an appropriate type, i.e. the type in which
the equals() method is defined. To improve analysis accuracy and the expressive
power, type checking can be employed, as shown next.

Field Type Restriction Idiom. The choice between LinkedList, ArrayLists or prim-
itive arrays is often a source of contention. Once the selection has finally been made
for a particular group of classes, it serves to be consistent. The internal AST of EC]
uses the primitive array type pervasively, e.g.:

class TypeDeclaration ... {

public FieldDeclaration[] fields;
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3

The following strategy can be applied to a type declaration and will verify that none
of the fields are of the type forbidden-type, or any subtype thereof:

check-type-decl(|forbidden-type) =
?TypeDeclaration(_, _, _, _, _, body)
; where(<map(try(check-field(|forbidden-type)))> body)

check-field(| forbidden-type) =
?FieldDeclaration(_, field-tp, _)
; <type-of ; is-subtype-of(|forbidden-type)> field-tp
; emit-warn(|"Field is of illegal type!")

The strategy check-type-decl should be applied to a type declaration term, and will
use check-field to iterate over its fields. The strategies type-of and is-subtype-of are
used to retrieve the type of each field and test if these are subtypes of forbidden-type.
Applying check-type-decl(|"java.util.List") to a type declaration with, say, a List
field results in a warning,.

Next, an example shows how generic traversals can control which AST nodes a
strategy should apply to.

Context-Specific Visibility Idiom. Decomposing abstractions into namespaces may
pose significant challenges for the visibility mechanism of the namespace system when
constructing large libraries. Consider the placement of classes into Java packages for
the graphical widgets found in SWT. Each graphical element, such as a button, text
area, or check box, is encapsulated in its own subclass of Widget. Most widget classes
in SWT are not intended to be subclassed by the user. However, for implementation
purposes, the final keyword was not used and the subclassing prohibition is only
mentioned in the source code documentation of the individual classes.

check-illegal-swt-subclass =
?TypeDeclaration(_, _, _, —, —, _)
; type-of ; supertype-of ; dotted-name-of = stp
; <list-contains(?stp)> restricted-swt-types

; emit-warn(|"Illegal subclass of org.eclipse.swt.widgets.Widget!")

This code snippet will check that a given type declaration is not a subtype of any
of the “inheritance restricted” SWT classes. The list of these widgets is kept in the
(global) variable restricted-swt-widgets. The strategy should be applied a type dec-
laration term. If the initial pattern match succeeds, the dotted name (for example,
"java.lang.String") of the super type of this type declaration is computed and stored
in stp. If the super type is contained in the restricted-swt-types list, the current type
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declaration inherits a subclass-restricted widget and the warning at the bottom line
is emitted. Arguably, with a sufficiently complicated regular expression, violations of
the inheritance restriction may often be found using purely text-based approaches.
Unfortunately, should programmers insert comments at unexpected places, this ap-
proach is sure to break.

Warnings will be emitted if the strategy is applied to the code of the SWT widget
library. The strategy should therefore only be applied to code wusing SWT. It can
be applied easily to a Java project using the following a two-level generic traversal
scheme:

analyse-package(|project) =
dir-topdown(parse-and-resolve(|project)
; topdown(try(check-illegal-swt-subclass)))

At the outer level of the traversal, dir-topdown will recurse through a directory struc-
ture and call parse-and-resolve to construct the corresponding compilation unit
(AST) for each .java file. Once constructed, topdown will recurse over it, in pre-
order, and apply the check-illegal-swt-subclass strategy to all terms. This ensures
that all contained top-level, local, anonymous and inner type declarations inside each
compilation unit are visited and checked. Multiple checks can easily be composed
into one pass using the topdown generic traversal:

topdown(try(check-illegal-swt-subclass) ; try(check-equals-method))

Bounds Checking Idiom. Consider the following code for iterating over x:
for(int i = 0; i < x.size(); i++) { ... }

If x is a value object of type T, i.e. happens to be immutable, then the size() method
will be invoked needlessly for every iteration. The JIT may possibly inline this call
but only if the code is executed frequently enough. One might like to encourage a
coding style that is also efficient with the bytecode interpreter:

{ final sz = x.size(); for(int i = 0; i < sz; i++) { ... } }

This idiom is used throughout the implementation of the internal AST classes of ECJ]
and may be checked for using the following strategy:

check-for =
?ForStatement(_, e, _, _)

; <topdown(try(call-to-immutable))> e

call-to-immutable =
?MethodInvocation(_, _, _, _, _, [D
; binding-of — MethodBinding(class-name, _, _, _)

; <list-contains(?class-name)> immutable-classes
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; emit-warn(|"Call to method on immutable object in loop iteration'")

The strategy check-for should be applied to a for-statement. If any of the condition
expressions are calls to methods without parameters of objects of an immutable type,
a warning is emitted. The list of known non-mutating methods is given in the list
immutable-classes.

Using data-flow analysis, method calls on objects which are not immutable could
also be considered. As long as the body of the for-loop does not invoke any mutating
operation and does not pass x as an argument to another method, immutability can
be assumed. By keeping (typename,methodname) pairs in an immutable-methods
list, the immutability property can be looked up, much like the subclass restriction
property was looked up.

The field type restriction and the bounds checking idioms show how analy-
ses requiring type information can be expressed. The type analysis functionality is
provided by ECJ, and made available to scripts through the strategies subtype-of,
supertype-of, is-subtype-of. These strategies connect to the compiler via the for-
eign function interface introduced in Chapter 4.

10.3.2 Custom Data-Flow Analysis

Totem propagation is a kind of data-flow analysis where variables in the source code
are marked with annotations called totems [Kal03]. These assert properties on the
variables which are later used by other analyses and transformations. A meta-program
will perform data-flow analysis and propagate the asserted totems throughout the
code, following the same principles as constant propagation.

Totem propagation is in many ways similar to typestate analysis, which is “a data-
flow analysis for verifying the operations performed on variables obey the typestate
rules of the language” [SY93]. Typestate analysis is mostly concerned with verifying
protocols such as ensuring that files are opened before they are read. Totem prop-
agation uses the same data-flow machinery to discover opportunities for optimising
away unnecessary calls (such as a call to sort() on a sorted list) or replacing costly
operations with cheaper ones (such as binary search instead of linear search on sorted
lists). Meta-programs performing these forms of data-flow analyses must be aware of
the propagation rules for each kind of totem.

A totem propagator could be useful for removing dynamic boundary checks in a
library for matrix computations. Consider the following matrix interface defined in

the Matrix Toolkits for Java (MT]) library [mtj06]:

public interface Matrix {
public Matrix add(Matrix B, Matrix Q);
public Matrix mult(Matrix B, Matrix Q);
public Matrix transpose();
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These operations have certain well-defined requirements. Two matrices, A and B,
may only be added if they have the same dimensions, i.e. A has same number of
rows and columns as B. Two matrices, A and B, may be multiplied and placed into
C if the number of columns of A equals the number of rows of B. The dimensions
of C must be equal to the number of rows of A and the number of columns of B.
Transposition of a matrix swaps the row and column dimensions. These rules are
violated by the following code:

Matrix m = new DenseMatrix(5,4);
Matrix n = new DenseMatrix(4,6), z = new DenseMatrix(5,6),
w = new DenseMatrix(3,5);

m.mult(n,z); z.transpose(); z.mult(m,w); //m and w incompatible

In the above example, all matrix dimensions are compatible with respect to the first
two operations but not for the final expression z.mult(m,w). The matrix operations
in MT]J will verify dimensions before calculating and throw exceptions if the precon-
ditions are not met. Performance-wise, this is costly and latent mismatches may lurk
in seldom used code.

To alleviate this problem a totem propagator may be applied which knows how to
propagate and verify the dimension of matrix operations. Initial dimensions can be
picked up from programmer-supplied assertions (in the form of an assert statement,
assert Matrix.dimensions(m,4,3)) or from the variable initialisation. Whenever a
dimension is asserted for a variable in the code, a new, dynamic rule Dimensions:
name -> dim is created that remembers the asserted dimensions dim for a variable
name. If an existing rule for the variable already exists, it is updated. This rule
can then be applied (and updated) when propagating the dimension totem across a
transposition:

PropTotem =
?MethodInvocation(src, SimpleName("transpose"), _, [1)
; <type-of ; dotted-name-of> src = "no.uib.cipr.matrix.Matrix"
; <Dimensions> src — [rows, columns]

; rules(Dimensions : src — [columns, rows])

Here, the old dimensions (if they are known) will be swapped and the Dimensions
rule updated. There are other (overloaded) PropTotem rules which deal with addition
and multiplication. The propagator core is based on the general constant propa-
gation framework proposed by Olmos and Visser [OV05] but is adapted to allow
propagating arbitrary data properties and not just constants:

prop-totem =

PropTotem



190 Chapter 10. Extending Compilers with Transformation and Analysis Scripts

<+ prop-totem-vardecl
<+ prop-totem-assign

<+ all(prop-totem)

The prop-totem strategy should be applied to a method body where it will recurse
through the subterms. At each term, a series of strategies is tried in order. If all fail,
the recursion continues into the children of the current term. The first strategy ap-
plied is PropTotem. This is a set of overloaded rules for the add, mult and transpose
cases. The rule with the matching pattern will be applied. If none of the rules suc-
ceed, the current term is not method call to add, mult or transpose. In this case, the
prop-totem strategy continues by calling the prop-totem-vardecl strategy. This will
try to infer totems from variable declaration terms. If the current term is an assign-
ment (v = e), the totem of e is inherited by v. This is handled by prop-totem-assign.
Additional cases deal with control flow constructs like if and while, as described in
[OVO05]. These extra cases may retroactively be added to the algorithm using the
aspect mechanism described in Chapter 5.

Once the correctness of the dimensions can be guaranteed, based on the user
assertions and propagation, the runtime dimension checks can be removed by source
code transformation.

10.3.3 Domain-specific Source Code Transformations

Results of analyses can be used to perform source code transformations either as
part of the compilation process or as refactorings on the source code. Such code
transformations could aid in framework migration and may perform pervasive style
changes or remove code smells.

Optimising Matrix Dimension Checks Using totem propagation described pre-
viously, matrix operations can be rewritten to remove runtime dimension checks,
provided that the matrix dimensions can be determined statically (at compile time)
to be correct. In that case, the following substitution is applicable:

A.mult(B,C) -> A.uncheckedMult(B,C)

The following rewrite rule captures the necessary conditions and can be plugged
directly into the totem propagator to achieve a correct substitution:

PropTotem:

MethodInvocation(srcl, SimpleName("mult"), x, [src2, dst])
—> MethodInvocation(srcl, SimpleName("uncheckedMult"), x, [src2, dst])
where

<type-of ; name-of> dst = "no.uib.cipr.matrix.Matrix"

; <Dimensions> srcl = (slr, slc) ; <Dimensions> src2 — (s2r, s2c)
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; <Dimensions> dst = (dr, dc); !slc = s2r; !s2c = dc; !slr = dr

The where clause is a rewriting condition which ensures that the mult call is on the
correct data type and that the dimensions are compatible.

Optimising Loop Boundary Checks The bounds checking idiom from the previ-

ous section can also be turned into a code transformation:

OptimizeFor:

ForStatement(init, cond, incr, body)
— Block(<concat> [vdecls, [ ForStatement(init, cond’, incr, body) 11)
where

<collect(is-immutable-call) ; new-names> cond — call-var-pairs
; <map(\(e, v) — vardecl(<type-of> e, v, e)\)> call-var-pairs
= vdecls
; <bottomup (try(RewriteImmutable(|vars)))> cond = cond’

The generic collect strategy is used with is-immutable to find all invocation of get-
like methods in the condition expression. For each expression, a new uniquely named
variable is created (by new-names) and a variable declaration for it is created that gets
added before the for loop. Each expression is replaced with its corresponding, freshly
named, temporary variable using the RewriteImmutable strategy. This avoids name
capture in the generated code.

10.4 Implementation

The analysis framework presented in this chapter reuses the Eclipse Compiler for Java
viaa POM adapter. The compiler is available as a plugin for the Eclipse development
platform [Ecl]. Although most users encounter Eclipse as a graphical application, it is
possible to create so-called headless applications using the Eclipse infrastructure that
have no graphical interface. The command line application depicted in Figure 10.1
is an example of a headless application.

10.4.1 Analysis Architecture

The principal components of the transformation framework are shown in Figure 10.3
The plugin org.spoofax.eclipsetrafo contains both the application which can be
invoked from the command-line and a plugin class which may be used as part of a

graphical application.
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org.spoofax.eclipsetrafo

org.spoofax.interpreter.adapter.ecj org.spoofax.interpreter

org.spoofax.library.eclipse

org.eclipse.jdt.core org.spoofax.interpreter.adapter.aterm

org.spoofax.aterm

Figure 10.3: Principal components of the analysis and transformation framwork in-
troduced in this chapter. The org.eclipse. jdt.core provides the Java compiler, and

org.eclipse.<platform>

the org.eclipse.<platform> represents the collection of plugins that comprise the
Eclipse runtime and necessary support plugins for the Java compiler.

10.4.2 Transformlet Repositories

The analysis and transformation scripts shown in the previous section can be com-
piled into standalone transformlets. This facilitates sharing of analyses and transfor-
mations between developers. Since transformlets are fully self-contained, it is easy to
upload them into online repositories and distribute them to other users. However,
there is currently no easy-to-use graphical interface for subscribing to repositories and
downloading transformlets, but simple command-line tools are available.

10.5 Related work

Programmable static analysis tools, such as CodeQuest [HVdMdV05], PQL [MLLO5],
and CodeSurfer [AT01], all support writing various kinds of flow- and/or context-
sensitive program analyses, in addition to (sometimes limited) queries on the AST.
Pluggable type systems, an implementation of which is described by Andreae et
al [ANMMOG6], also offer static analysis capabilities. Developers can express custom
type checking rules on the AST that are executed at compile-time so as to extend
the compiler type checking. Programmable analysis frameworks like PMD [Cop05]
provides a good collection of standard analyses that are specific to a given program-
ming language, in this case Java, and where the user can implement additional ones
using an analysis API. Neither programmable static analysis tools nor pluggable type
systems support source code transformations, however.

Languages for refactoring such as JunGL [VEAMO06] and ConTraCT [KKO04] pro-
vide both program analysis and rewriting capabilities. JunGL is hybrid between an
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ML-like language (for rewriting) and Datalog (for data-flow queries) whereas Con-
TraCT is based on Prolog. JunGL supports rewriting on both trees and graphs, but
is a young language and does not (yet) support user-defined data types. Stratego is
a comparatively mature program transformation language with sizable libraries and
built-in language constructs for data- and control-flow analysis, handling scoping and
variable bindings, and pattern matching with concrete syntax (not demonstrated in
this chapter). It comes with both a compiler and interpreter and has been applied to
processing various other mainstream languages such as C and C++ [BDDOG].

Open compilers, such as the SUIF [WFW*94] project, Polyglot [NCMO03], Open-
Java [TCIKO00], and OpenC++ [Chi95], offer extensible language processing plat-
forms. In many open compilers, the entire compiler pipeline, including the backend,
is extensible. Constructing and maintaining such an open architecture is an arduous
task. As demonstrated in this chapter, many interesting classes of domain-specific
analyses and transformations require only the front-end to be open. Exposing just
the front-end is less demanding than maintaining a fully open compiler pipeline.
Transformation systems may be plugged into either of these open compilers using
the POM adapter technique.

The research on active libraries [VG98] has largely focused on performance op-
timisation for example using pre-processors and library annotations [GL00, Kal03].
Compiler scripts are useful for exploring other topics of library design such imple-
mentation consistency, contract checking and sensible idiom or pattern usage.

10.6 Discussion

Program analysis tools have a long history, preceding even the venerable 1int [Joh78].
Recent research has to a certain extent focused on scriptable frameworks for express-
ing extensible analysis tools. Scripts allow developers to adapt, for example, pluggable
type systems, style checkers and static analysis to their specific frameworks or libraries.

The appealing feature of the system described in this chapter, and that of JunGL
and ConTraCT, is that in addition to scripting syntax-, type- and flow-based anal-
yses, it also allows scripting of source code transformations based on the analysis
results. Transformation languages are good candidates for compiler scripting lan-
guages. New transformations and analyses may be expressed quickly due to their
high-level domain-specific language constructs. This makes them an appealing part
of a testbed for prototyping language extensions as well as new compiler analyses and
optimisations.

The plethora of custom analysis and transformation tools suggests that compiler
writers should cater for potential extenders in their infrastructure design. As this
chapter shows, even the rather simple and minimal inspection interface of the POM
adapter is sufficient for expressing powerful program analyses. General code transfor-
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mation can be scripted if functionality for building AST nodes is also exposed by the
compiler.

A limitation of ECJ, and of many other compilers, is that rewriting the AST will
invalidate the type information. Type analysis is often done during or just after pars-
ing. The typical usage scenarios for ASTs inside compilers do not make incremental
reanalysis of types necessary. Incremental reanalysis would be very useful for POM
clients that perform rewriting. Without such support, complete type reanalysis must
be performed to restore accurate type information. This often involves unparsing and
subsequent reparsing of text.

Stratego does not have any fundamental limitations on the types of analyses and
transformations it can express. The language is Turing-complete, and can express
both imperative and functional algorithms for program analysis and transformation.
Special support exists, in the form of reusable strategy libraries and language con-
structs such as dynamic rules, for performing control- and data-flow analysis over
subject programs represented as terms, i.e. abstract syntax trees. Refer to [OV05] for
more details on these features. In practise, the current performance of the interpreter
may be a limiting factor for particularly resource-intensive analyses and transforma-
tions. In these cases, the C-based Stratego/XT infrastructure [BKVV06] may be an
alternative. Certain whole-program analyses may require very efficient implementa-
tions of specific data structures, such as binary decision diagrams (BDDs). Stratego
does not currently have a library providing BDDs.

10.7 Summary

This chapter presented a powerful framework for scripting domain-specific analyses
and transformations for Java based on the Stratego rewriting language and the Eclipse
Compiler for Java. The examples, all taken from what is considered to be mature and
well-designed frameworks, illustrate the usefulness of the domain-specific abstrac-
tions for program analysis and transformation provided by the MetaStratego system.
The framework was made possible in particular by the program object model adapter
technique (described in Chapter 4) which enabled the quick and large scale reuse of
the Eclipse compiler front-end. The fusion between the Stratego/] runtime and the
EC]J compiler is very efficient: it can apply the bounds checking idiom to around 2.7
million lines of Java code in just over four minutes on a low-end laptop.
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Code Generation for Axiom-based Unit
Testing

This chapter presents a case-study of how the abstractions and infrastructure dis-
cussed in Part Il and Part IV of this dissertation may be applied to source code anal-
ysis and interactive code generation. The motivation for the case study prototype, an
interactive unit test generator, is that current unit testing methodologies often result
in poor test coverage due to rather ad-hoc approaches.

Developers are encouraged to always write test cases, often as a driving force
for new software features, or for systematic regression testing to avoid reintroducing
known errors during software maintenance. This easily results in a development
process focused around the individual test cases, rather than addressing the general
requirements the cases are intended to represent. By expressing expected behaviours
as axioms written in idiomatic Java code, it may be possible to improve the quality
of the test code. Each axiom captures a design intent of the software as a general,
machine checkable rule, rather than an individual case, and may be used to generate
unit tests.

The quick and easy construction and integration of the test generator into an
interactive development environment was made possible mainly due to the POM
adapter technique described in Chapter 4 and the transformation runtime from
Chapter 6. This chapter illustrates the applicability of the abstractions proposed in
this dissertation, and, to a lesser degree, the workings of the generator tool. However,
a detailed motivation and a discussion of the principal elements of the underlying
test methodology are necessary before a detailed account of the transformation tool
can be provided.

The results in this chapter were obtained in collaboration with Magne Haveraaen.
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11.1 Introduction

Testing has gained importance over the past decade. Agile methods see testing as
essential in software development and maintenance. Testing is given many different
roles, from being the driving force of software development, to the somewhat more
modest role of regression testing.

The most influential of these is probably Beck’s extreme programming (XP) method
[Bec98], giving rise to the mind-set of test-driven development (TDD) [Bec02].
TDD assumes that every software unit comes with a collection of tests. A new feature
is added by first defining a test which exposes the lack of the feature. Then the soft-
ware is modified such that all (both old and new) tests are satisfied. The process of
extending software with a new feature can be summed up in five steps: (1) Add a test
for a new feature which is written against the desired future API of the feature. (2)
Run all tests and see the new one fail, but making certain that the unrelated features
remain correct. (3) Write some code implementing the new feature, often just focus-
ing on the minimal logic necessary to satisfy the tests written previously. (4) Rerun
the tests and see them succeed. (5) Refactor code to improve the design.

A problem with a strict TDD approach is that each test is often casewise, i.e., it
only tests one case in the data domain of a feature. While this opens up for imple-
menting the logic of a new feature in small steps — or to insert dummy code for just
passing the test — it does not to ensure that the full feature will be implemented. For
these reasons, refactoring assumes a prominent place. Using refactoring techniques,
the feature implementation may be incrementally generalised from the pointwise de-
pendencies required by the tests to the full logic required by the intended application.

Many tools have been developed to support TDD. In Java, test-driven develop-
ment is most often done using JUnit [BG], a Java testing framework for unit tests.

Arguably, the focus on agile methods has taken the focus away from formal meth-
ods at large. This is somewhat unfortunate, as a substantial amount work has been
done on effectively using formal methods as a basis for testing. For example, in
1981, the DAISTS system [GMHS81] demonstrated that formal algebraic specifi-
cations could be used as basis for systematic unit testing. DAISTS identified four
components of a test: Conditional equational axioms that serve as the test oracle; the
implementation which must include an appropriate equality function; the zest data
cases, and a quality control of the test data (at least two distinct values). The Dais-
tish system [HS96] took these ideas into the object-oriented world by providing a
DAISTS like system for C++. The notation used for the axioms were also condi-
tional equational based, giving a notational gap between the specification functions
and the C++ methods. A more recent approach which also maintains this distinc-
tion is JAX (Java Axioms) [SLA02], which merges JUnit testing with algebraic style
axioms. An automation was later attempted in AJAX using ML as notation for the
axioms. These experiments suggest that an algebraic approach to testing may result
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in much more thorough tests than standard hand-written unit testing. The emphasis
on general axioms rather than specific test cases is the key to better unit tests.

This chapter builds on these above-noted ideas by introducing and describing
several novel improvements which lead up to a tool-assisted method for implement-
ing modular axiom-based testing for JUnit and Java. The two main contributions of
this chapter include:

e A case study of the practical application of program object model adapters,
transformlets and the other infrastructure (Chapter 6) for expressing interactive
program generation tools.

® The detailed discussion of a generator tool, JAXT (Java Axiomatic Testing) [KH],
which automatically generates JUnit test cases from all axioms related to a given
class.

Additionally, the tool construction resulted in several new techniques and devel-
opments related to the research in testing pursued by Haveraaen [HBO5], including
(1) a technique for expressing as reusable axioms the informal specifications provided
with the Java standard API; (2) a flexible structuring technique for implementing
modular, composable sets of axioms for an API, which mirrors specification compo-
sition, as known from algebraic theory; and, (3) a discussion of practical guidelines
for writing test set generators that exercise the axioms.

11.2 Expression Axioms in Java

In the proposed approach, axioms are expressed as idiomatic Java code, not in a sep-
arate specification language, as is common with other approaches based on algebraic
specifications. There are several benefits to this: First, the developers need not learn a
new formal language for expressing the properties they want to test. Second, the ax-
ioms will be maintained alongside the code and restructuring of the code, especially
with refactoring tools, will immediately affect the axioms. This reduces or prevents
any “drift” between the implementation and the specifications. Third, code refactor-
ing, source code documentation and source navigation tools may be reused as-is for
expressing and developing axioms. Fourth, it becomes easy to write tools to auto-
matically produce test cases from the axioms. This is important because axioms may
easily contain errors. This makes early and frequent testing of axioms desirable.

11.2.1 JUnit Assertions

The approach discussed here uses axioms to express invariants — assertions — about
desired properties for an abstraction. The Java assert mechanism allows these prop-
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erties to be stated as boolean expressions. If the expression evaluates to false, the
assert mechanism will fail the program by throwing an AssertionError exception.

For testing purposes, the JUnit system provides a wider range of assertions than
what assert offers. A notable difference is that the failure of one assertion terminates
the immediately surrounding test, but not the remainder of the test suite. This allows
a full set of tests to run, even if the first test fails. In addition, the JUnit assertions
provide a detailed account of the error if the assertion does not hold, making it
significantly easier to trace down what the problem can be.

11.2.2  Java Specification Logics

In standard specification theory, such as that used in [GMH81], axioms are formed
from terms (expressions) with variables (placeholders for values or objects). If a vari-
able is not given a value in the axiom, e.g., by quantification, it is said to be free.
Interpreting this in the context of a programming language, free variables of a term
can be viewed as parameters to the term. This leads to the following definition:

Definition 6 An axiom method, or axiom, is 2 public, static method of type void,
defined in an axiom class. The method body corresponds to an axiom expression (term),
and each method parameter corresponds to the free variables of that expression (term).
When evaluated, an axiom fails if an exception is thrown, otherwise it succeeds.

It is recommended, but not required, that axioms use assertion methods in the
style of JUnit, e.g.:

public static void equalsReflexive(Object a) { assertEquals(a,a); }

This axiom states the reflexive property for any object of class Object (or any of
Object’s subclasses). The method assertEquals(Object a, Object b) is provided by
JUnit and checks the equality of the values of the two objects using a.equals(b). The
axiom will also hold if a is the null object, since assertEquals safeguards against this
case.

Specifying the desired behaviour of exceptions is also straightforward, albeit sig-
nificantly more verbose:

public static void equalsNullFailure(){
Object a = null, b = new Object();
try {
a.equals(b); // calling equals on the null reference
£ailQ; // exception should have been raised
} catch (NullPointerException e) {
// OK
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Here, the effect of applying equals to a null reference is written as an axiom, named
equalsNullFailure, with no free variables. The axiom states that, for any a and b
where a is the null object, the expression a.equals(b) must raise an exception of
type NullPointerException. (This is the Java semantics for invoking methods on null
references.)

Expressive Power

In specification theory, one often asserts the expressive power of a specification logic
[MM95]. The simpler logics have less expressive power, but have better meta-properties
than the more powerful logics, i.e. reasoning about the logic is less difficult. It is be-
yond the scope of this chapter to provide a detailed classification and comparison of
Java versus other specification logics, except for the following brief remarks.

Equational Logic — The simplest logic for the specification of abstract data types
— classes — is equational logic which asserts that two expressions are equal (for all
free variables). This is intuitively captured using assertEquals based on the equals
method of Java. However, there are several theoretical problems here.

First, in normal logic a term is composed of mathematical functions determinis-
tically relating inputs to outputs. In stateful languages, such as Java, one may modify
one or more arguments rather than returning a value. The function may be (semi-)
non-deterministic or the result of a function may depend on an external state. Such
methods are beyond standard equational logic. As long as a method is deterministic,
it is mostly straight forward to reformulate the terms of an equation as a sequence of
statements computing the two values to be checked against each other.

Second, the equals method, on which assertEquals is based, may not be cor-
rectly implemented. So one should treat equals as any other method, and hence,
also make certain it satisfies certain properties: it should be deterministic; it must be
an equivalence relation (reflexive, symmetric, transitive); and, it should be a congru-
ence relation, i.e., every method should preserve equality with respect to the equals
methods. Fortunately, these are properties that can be written as Java axioms, and
then tested'. For instance, one may repeatedly evaluate equals on two argument ob-
jects and ascertain that the equals should always have the same result as long as one
does not modify the objects. Interestingly, the first two of these requirements are
formulated in the Java API [Jav]. The last requirement will be discussed in section
Section 11.4.

Third, there may be no way of providing a relevant equals method for some class,
e.g., a stream class. This is known as the oracle problem [GA95]. However, using
properly configured test setups, these classes may be made mostly testable as well.

Conditional Equational Logic — A more powerful logic is conditional equational
logic. This allows a condition to be placed on whether an equality should be checked

!"Testing will never prove these properties, but will serve to instill confidence about their presence.
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for. In Java axioms, this is done by using an if-statement to guard whether the
assertEquals should be invoked. Axioms for symmetry and transitivity of the equals
method use this pattern, e.g.:

public static void equalsSymmetry(Object x, Object y) {
if (x != null && y != null)
assertEquals(x.equals(y), y.equals(x));
3
public static void equalsTransitive(Object x, Object y, Object z) {
if (x !'= null && y != null && z != null)
if (x.equals(y) && y.equals(z))
assertEquals(x, z);

}

Here, an explicit null-check is required to avoid problems with null references in the
assertions.

Quantifier-free Predicate Logic — Quantifier free predicate logic is an even more
powerful logic. It permits the expression of negations and conditionals anywhere in
the logical expressions. This is trivially expressed using boolean expressions in Java.

Full Predicate Logic — Full predicate logic causes a problem with the quantifiers.
A universal quantifier states a property for all elements of a type. There is no coun-
terpart in programming, although supplying arbitrary collection classes and looping
over all elements will be a crude (testing style) approximation. Existential quantifiers
may be handled by Scholemisation — given that there are algorithms for finding the
value the quantifier provides.

Java-style Axioms Java style axioms have a different expressive power and allow ex-
pressing properties not captured by the standard logic. For instance, the distinction
between an object and its reference is easily handled by JUnit assertions. Excep-
tions and methods that modify their arguments, rather than returning a result, can
also be dealt with easily. Further, statistical properties can be expressed, such as the
well-distributedness requirement on the hashCode() method, or temporal properties
related to processes and timings, even against physical clocks.

The drawback to this extra expressive power is that one cannot immediately ben-
efit from the theoretical results from the more standard specification logics. That is,
the general theoretical results from algebraic specifications are not directly applicable
to specifications written in a “Java logic”.

This chapter will stick to the more value-oriented aspects of Java as a formal
specification language, hopefully giving an indication of the intuitive relationship
between this style and the standard specification logics.
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11.3 Structuring the Specifications

All classes in Java are organised in a strict hierarchy forming a tree with the type
Object at the top. A class may implement several interfaces. An interface may inherit
several other interfaces. Further, a given class should satisfy the (informally stated)
assumptions and requirements of each of its supertypes®. This is illustrated by the
following simple class Position, which is used to index the eight-by-eight squares on
a chess board:

public class Position implements Comparable<Position> {
private int x, y; //range O<=x,y<8
public Position(int a, int b) { x=a % 8; y=b % 8; }
public int compareTo(Position q) {
return x-q.x; // ordering only on X—component }
public boolean equals(Object obj) {
final Position q = (Position) obj;
return x==q.x & y==q.y; }
public int getX() { return x; }
public int getY() { return y; }
public int hashCode() { return 3*x+y; }
public void plus(Position q){ x=(x+q.x) % 8; y=(y+q.y) % 8; }
}

The method plus gives movements on the board, e.g., k.plus(new Position(1,2))
for moving a knight k. The position class is a subclass of object (which is implicitly
inherited) and it implements Comparable<Position>. The intent is that the Position
methods should satisty all requirements given by its supertypes, i.e., those from the
class object and those from the interface Comparable<Position>, as well as any re-
quirements given for Position itself.

Institutions

It would be desirable to write the requirements of classes and interfaces as sets of
axioms, in a modular fashion, and then allow these sets to be composed soundly. The
notion of institution [ST88] provides the mathematical machinery permit expressing
requirements in modules called specifications. Each specification provides a set of
axioms. Operations exist for building larger, compound specifications from smaller
ones. The specification for a type can be extended with new methods, thus dealing
with the extension of classes or interfaces by for example using inheritance. Axioms
may be added to a specification, for example to provide additional requirements for a
subtype. The union of specifications may also be taken. This allows the construction

*In Java terminology a type encompasses both class and interface declarations.
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of a compound specification for all supertype axiom sets.

The theory of institutions shows that one can safely accumulate any axioms from
the supertypes as well as add new axioms for Position. More importantly, it shows
that this accumulation will be consistent and not cause any unforeseen interaction
problems, as often is the case when one considers inheritance among classes. In this
sense, the modularisation and composition properties of specifications are a lot more
well-behaved than that of software code. In addition, framework of institutions pro-
vides a significant freedom in organising axioms so that they become convenient to
work with. The method described in this chapter uses this freedom to allow a flexible
and modular organisation of axioms alongside the class and interface definitions.

11.3.1 Associating Axioms with Types

Axioms, in the form of static methods, are grouped into Java classes. This imme-
diately integrates the axioms with all Java tools. During the development process,
axioms will be refactored along the main code, e.g., when a method is renamed or
the package hierarchy is modified. This is considerably more developer-friendly than
using separate specification languages.

Definition 7 An axiom class is any class A which implements a subinterface of Axioms<T>,
contains only axiom methods, its axiom set, and where T specifies which type the axioms
pertain to.

The name of a class providing axioms may be freely selected and placed in the
package name space, but it must be labelled with an appropriate axiom marker. La-
belling is done by implementing one of the predefined subinterface of Axioms<T> to
signify whether the axiom set is required or optional for T or its subtypes.

Definition 8 Required axioms are defined using the RequiredAxioms<T> marker inter-
face on an axiom class A, and states that all axioms of A must be satisfied by T and and
all its descendants.

Using this structuring mechanism, it is possible to group the required axioms for
equals, introduced in Section 11.2.2, into a class EqualsAxioms which implements
RequiredAxioms<Object>, by defining the methods equalsSymmetry, equalsTransitive
and equalsNullFailure in this class (to complete the specification for equals(), ax-
ioms for testing reflexivity and determinism are also required). Similarly, hash code
axioms may be captured as follows:

public class HashCodeAxioms implements RequiredAxioms<Object> {
public static void congruenceHashCode(Object a, Object b) {
if (a.equals(b)) assertEquals(a.hashCode(), b.hashCode());
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public class PositionPlusAxioms implements RequiredAxioms<Position> {
public static void associativePlus(Position p, Position q, Position r) {
/] compute pc = (p+q)+r;
Position pc = new Position(p.getX(), p.getY());
pc.plus(q);
pc.plus(r);
/ compute p = p+(q+7)
a.plus(r); // destructive update
p.plus(Q); // destructive update
assertEquals(pc, p);
}
public static void commutativePlus(Position p, Position q) {
Position pc = new Position(p.getX(), p.getY());
pc.plus(qQ);
a.plus(p); // destructive update
assertEquals(pc, q);

Figure 11.1: Axioms requiring that plus is associative and commutative.

Figure 11.1 shows some axioms for Position. Since plus modifies its prefix argu-
ment, a separate object pc is necessary to not modify p before it is used as an argument
in the second additions (lines 9 and 15). This is not a problem for g, as it is not mod-
ified in the first additions. These axioms are destructive on the test data: the values
of some of the arguments have been modified when the axioms have been checked

(lines 8, 9 and 15).

The axioms belong to the same package as the type the axiom is associated to,
so PositionPlusAxioms should be in the same package as Position. When axioms
are retrofitted to an existing API, this placement may not be possible. One solution
is to place the new axiom classes in an identically named package, but with jaxt as
a prefix to the package name. Then the axioms for Object would go in a package
jaxt.java.lang and the axioms for the Java standard collection classes would end up
in jaxt.java.util.

Figure 11.2 shows how all the axioms for the supertypes, together with the axioms
for Position, specify the design intent for Position.
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Figure 11.2: Organisation of axiom sets for Position. Boxes with italics represent
interfaces. XAxioms-classes depend on, or pertain to, the classes they describe, marked
by a stippled arrow. Filled arrows indicate inheritance.

11.3.2 Optional and Inherited-only Axioms

A close reading of the Java APl documentation [Jav] shows that it not only contains
requirements — the kind of axioms described in this chapter — but also a multitude
of recommendations and class-specific descriptions. For instance, the description
of Comparable<T> contains the phrase “strongly recommended” and other places use
the phrase “recommended”. In the class Object, and some of its subclasses, such as
enumerations, it is specified that reference equality is the same as value equality.

Definition 9 Optional axioms are defined using the optionalAxioms<T> marker inter-
face on an axiom class A, and states that all axioms of A pertain to T, but are optional
for any descendant of T, unless the programmer of a subtype has requested these axioms
specifically. If A is an optional axiom set of T, this set may be inherited to a descendant
D of T by adding the marker interface AxiomSet<A> to an axiom class pertaining to D.

The optional reference equality of Object is asserted by equalsReference() in the
following axiom class, ObjectEqualsReference:
public class ObjectEqualsReference implements OptionalAxioms<Object> {
public static void equalsReference(Object x, Object y) {
if(x !'= null)
assertEquals(x.equals(y), x == y);

}

This axiom class implements the OptionalAxioms<T> interface, and therefore, the
method equalsReference() will not be required automatically by the subtypes of
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RequiredAxioms<T> | required by type T and all descendants
OptionalAxioms<T> | required by type T, but not its descendants.
SubclassAxioms<T> | required by all subtypes of T but not by T
AxiomSet<Ax> import axiom set Ax

Table 11.1: Summary of axiom structuring mechanisms.

Object unless one of their axiom classes implements AxiomSet<ObjectEqualsReferences>.
Consider the following empty axiom class which states axioms pertaining to the class
EnumDemo(notshovvn)

public class EnumDemoAxioms implements OptionalAxioms<EnumDemo>,
AxiomSet<ObjectEqualsReference>

{1

While the class EnumDemoAxioms does not specify any axioms itself (although it could),
it does activate the axioms from the set ObjectEqualsReference; that is, the op-
tional equality axioms are now required for EnumDemo (but none of its subclasses,
since EnumDemoAxioms is itself marked optional). As expected, even though Position
inherits directly from Object, the object equality axioms (ObjectEqualsReference)
have no relevance since the axiom classes for Position do not implement the type

AxiomSet<ObjectEqualsReference>.

It is sometimes necessary to state axioms that only pertain strictly to subclasses,
and not originating from the base class which is exempt. This is done using subclass
axioms.

Definition 10 Subclass axioms are defined using the SubclassAxioms<T> marker inter-
Jace on an axiom class A, and states that all axioms of A pertain to all subtypes of T, but
not T itself.

Consider a (possibly abstract) class ¢ which contains declarations and common
methods for its subclasses where one may want to check as much as possible of ¢
and be certain that all subclasses satisfy all axioms. By marking some axioms with
SublassAxioms<C>, these will not be tested on class C itself, but will be checked on all
subclasses of c.

Table 11.1 summarises the structuring mechanisms for axioms. These are used
in the small example class hierarchy depicted in Figure 11.3. It is important to note
that as all these relationships are formally marked in the code, they can be discovered
automatically by a tool, see Section 11.6.
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Figure 11.3: Organisation of axioms. The notation X = AxL means that class X satisfies

all the axioms in the axiom list AxL.

11.4 Java API caveats

Capturing the informal requirements described in the Java API documents into machine-
checkable axioms is a non-trivial exercise. This section documents some of the chal-
lenges encountered in this process.

11.4.1 Override and Overload

Most object-oriented languages, including Java, distinguish between overriding a
method and overloading a method. Method overriding occurs when a subclass re-
defines a method defined in one of its superclasses, thus altering the behaviour of
the method itself without changing the class interface. On the other hand, method
overloading allows the same method name to be reused for different parameter lists,
e.g.:
public class Test extends Object {
int x, y;
public boolean equals(Object obj){
return x==((Test)obj).x
&& y==((Test)obj).y;
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public boolean equals(Test obj){
return x==obj.y;
3
3

The class Test provides two overloaded methods where the first overrides the equals
method from Object. Consequently, the axioms for equals(), defined in Object,
will be applied to this method, while the equals method in lines 7-9 will not be
tested. This might be surprising, but follows from the semantics demonstrated by
the following method calls:

Object ol = new Object();
Object cl = new Test(Q);

Test c2 = new Test();
ol.equals(c2); //from Object
cl.equals(c2); //from lines 3—6
c2.equals(c2); //from lines 7—9

The overloaded version will only be called if both arguments have the declared type
Test (or a subclass thereof).

In a language with templates, like C++, one could use genericity to apply the ax-
ioms to any one of such overloaded methods. Unfortunately, this is not possible using
Java generics (since the type erasure of a generic <T> boolean equals(T o) would be
identical to Object equals(Object o) defined in Object. This is forbidden by the type
system.) so the axioms for equals will have to be redeclared for class Test if they are
to be applied to the second equals (line 7-9).

11.4.2 clone and Other Protected Methods

The clone() method is declared as a protected method of oObject. This makes it
problematic to specify axioms because a protected method is only accessible to sub-
classes. Since clone() is protected, it is not possible for an axiom method to invoke
it on an object of type Object and, consequently, it cannot be adequately described.
This is unfortunate, because the API documentation lists an important number of
recommended (optional) axioms for clone().

In principle, the same limitation holds for any protected method and is shared by
any testing approach where the testing methods are defined in a class separate from
the class being tested. In Java, it is possible to circumvent this limitation by declaring
the testing class in the same package as the tested class — classes in the same package
may invoke each other’s protected methods without being in a subtype relationship.

For clone(), which is defined in the immutable package java.lang, axioms must
be written specifically for every class that makes clone() public. The axioms will
then apply to all subclasses of this class, but not to any other class that exposes the
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clone() method. Following the previous remarks, it is not possible to circumvent this
restriction using Java generic method declarations.

In the instance of clone(), another attractive possibility would be to state the
axioms for the interface Cloneable, Cloneable is defined in the Java language speci-
fication as a marker interface used to enable the cloning algorithms encoded in the
clone() method from Object. Unfortunately, Cloneable is an empty interface which
does not (re)declare clone() as a public method.

11.4.3 The equals “congruence” relation

In the standard approaches to equational specifications, the equality test is a con-
gruence relation. This is an equivalence relation which is preserved by all methods.
Preservation means that, for any two argument lists to a method, if the arguments are
pairwise equal, then the results of the two method calls also must be equal.

In Java, the equals method defined in Object is close to, but not entirely, a con-
gruence relation. If it were, for any two objects a and b, a.equals(b), then

® a.hashCode()==b.hashCode(), which is a required axiom in the Java API,

® (a.toString()).equals(b.toString()), but this is not an axiom in the Java

APIL

Unfortunately, this means that one of the central means for closely relating Java
to equational specification theories is unavailable.

For equals to have the congruence property, it would have to be implemented
as a form of “meta property”, requiring axioms to be written for every new method.
Remember that overridden methods inherit such properties from the superclass. A
tool like JAXT could easily handle this by either explicitly declaring the needed con-
gruence axioms, or tacitly assuming them, thus generating the necessary test code
even without making the axioms explicit. Even without tool support in the current
iteration of JAxT, maintaining a congruence relation is a strongly recommend prac-
tise wherever feasible. Future releases may add facilities for handling the congruence

property.

11.5 Testing

The previous section described how to express and organise axioms in and for Java.
These axioms can be used as test oracles for ensuring implementations exhibit the
intended behaviour. For the testing setup to be complete, relevant test data must be
provided. During testing, each data element from the test data set will be provided
for the relevant free variables of the axiom:s.
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11.5.1 Test Data Generator Methods

A test data set may be as simple as the data from a typical test case, as practised by
typical agile or test-driven development. For the many cases where additional testing
is desired, the JAXT framework has an infrastructure that opens up for a much more
systematic approach to test data.

Creating the test is the responsibility of the developer. The first step towards
creating a test set is to implement a test set generator. The JAXT generator wizard,
explained in Section 11.6, will provide a test set generator stub on the following form,
for a class x:

public class XTestGenerator {
public Collection<X> createTestSet()
{ return null; }

3

The developer must fill in the createTestSet () method with code that produces a
reasonable test set of X objects. This can be data from an existing test case, or a static
collection of test values.

For Position objects, the following test set generator method, placed in the class
PositionTestGenerator, produces a collection of random, but valid, Position objects:

public static Collection<Position>
createTestSet() {
final int size = 200;
List<Position> data =
new ArrayList<Position>(size);
Random g = new Random();
for(int i = 0; i < size; i++) {
data.add(new Position(g.nextInt(8),
g.nextInt(8));
}
return data;

}

The random number generator provided by the Java standard library is used to pro-
duce test data. Some authors, such as Lindig [Lin05], have reported that random test
data may be more effective than most hand-crafted data sets in detecting deficiencies.
In a similar approach, discussed by Claessen and Hughes [CHOO], algorithms are
used for deriving random test data sets based on abstract data types.

In the particular case of Position, the complete test data set of the 64 distinct
position values could be provided, but for completeness, distinct objects with equal
values due to the difference between equality on object references with equality on
object values are also needed.
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If the objects of a class X are very time-consuming to instantiate, one might con-
sider implementing a test set generator method that extends IncrementalTestGenerator.
This class provides a ready-made createTestSet() method that returns a collection
which instantiates its elements on demand. The developer must implement the
method X generateNewValue(int index), which must produce random objects of type
X. The IncrementalTestGenerator takes care of memoization.

Using IncrementalTestGenerator will not result in better total running times of
the tests. It may, however, allow the developer to uncover errors earlier in the event of
a failed axiom since no time is spent up front to generate a full test data set which will
never be traversed entirely. A formulation using the generateNewvalue() method may
sometimes be cumbersome. For this reason, the use of IncrementalTestGenerator is
optional.

11.5.2 Determining Test Set Quality

The JAXT library offers a few simple, but powerful checks for properties of test sets.
For example, there is a method that checks whether the provided collection has at
least two distinct data values, similar to the requirements in [GMHS81]. Another
method can test whether there are at least three distinct objects with equal values —
necessary if a transitivity axiom is to be exercised.

The purpose of these checks is so developers can apply them to the test sets pro-
duced by their generators and ensure some degree of test set quality. The quality
assurance of test sets usually occurs during the development of test set generators
themselves. In general, it is not necessary to run test quality metrics as part of a test
suite, provided that the developer has checked and acquired sufficient confidence in
the test set generators.

Additional checks, in particular statistical metrics which can be used to judge
distribution characteristics, are scheduled for inclusion into JAxT, but how to best
integrate existing test generation approaches is still an open problem. There is a
wealth of material to chose from, however, such as [DO91, TL02].

11.5.3 Running the Tests

When combining the test data with the axioms to run the tests, there are several
issues to take into account. Some of the axioms may be destructive on the data sets,
so each test data element must be generated for each use. This is normally handled
by fixtures in unit testing tools, but for efficiency reasons, one may choose to have
test data generation in the test methods themselves. While this entails more verbose
unit test methods, since the test methods will be automatically generated from the
axioms and the test data generator methods, it presents no extra burden on the user.
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With automated test data generation, it becomes very easy to (accidentally) create
large data sets. In general, larger test sets improve the quality of the testing, but
run-times may become excessive when testing axioms with many arguments. In the
example Position class, all tests for axioms with up to three free variables take less
than a couple of seconds and are within the normal time-frame for repeated unit
testing in the TDD approach. For more complicated axioms, such as checking that
equals is a congruence for plus, a quadruple loop on the data set is required and
takes about 30 seconds. While in the the edit-compile-run cycle, regular unit testing
using large data sets is not ideal. The framework currently provides limited support
for adjusting the data set sizes. Additional work independent of JAXT is required to
allow the developer to flexibly tune the size, and to continuously vary the trade off
between thorough testing versus short testing times.

11.5.4 Interpreting Test Results

Writing code and axioms, and their associated tests is error-prone. For this reason,
early and frequent testing is valuable. When a test fails, it only states that there is some
mismatch between the formulated axiom and the implementation of the methods
used in the axiom. It is important to remember that, at least in the beginning, errors
can just as easily be in the axiom as in the code. Therefore, both must be checked
carefully. As always, newly written pieces of code, whether a new axiom or a new
class, are typically more likely to contain errors than legacy pieces that have already
been thoroughly tested.

11.6 Test Suite Generation

The techniques described in the previous sections are structured and formal enough
for a tool to aid the developer in deriving the final unit tests and test set generators.
The author has experimented with such automatic generation of unit tests from ax-
ioms by building a prototype testing tool called JAXT[KH]?. This section describes
the findings from this prototyping experiment.

Below is the test class generated by JAXT for Position, with comments removed:

public class PositionTest extends TestCase {
private Collection<Position> testSetPosition;
public PositionTest(String name)
{ super(name); }
protected void setUp() throws Exception {
super.setUp(Q);
testSetPosition =

3JAXT stands for Java Axiomatic Testing.
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PositionTestGenerator.createTestSet();
3
protected void tearDown() throws Exception {
super . tearDown() ;
testSetPosition = null;
3
public void testObjectReflexiveEquals() {
for (Position a® : testSetPosition)
reflexiveEquals(a0);
3
public void testComparableTransitiveCompareTo() {
for(Position a® : testSetPosition)
for(Position al : testSetPosition)
for(Position a2 : testSetPosition)

transitiveCompareTo(a®, al, a2);

}

The following sections will explain how this test case was derived.

11.6.1 Generating Tests from Axioms

The task of JAXT is to automatically derive unit tests for a given class C using those
axioms from the set of all axioms associated with ¢ — each axiom induces a new
unit test. The set of associated axioms can be found by inspecting the axiom classes
associated with C.

When the axioms were created, the programmer clearly specified which axioms
directly pertained to ¢ by placing C’s axioms into those classes implementing the
interface Axioms<C>. By placing the marker Axioms<C> on the an axiom class AX, all
(static) methods in AX are considered to be axioms for C and must therefore be fulfilled
by an descendant of c.

This implies that C itself may have inherited axioms from a related superclass. For
any (direct or indirect) superclass P of € or (direct or indirect) interface I of ¢, one or
more axiom classes may exist with Axioms<P> or Axioms<I> markers. Methods in these
classes are also considered to be axioms associated with C.

Computing Axiom Sets

In order to produce the final set of test methods for a class ¢, all applicable axiom
methods must be found. As suggested in Figure 11.3, axioms for all named types
provided by ¢, i.e. its superclasses, its or any of its supertypes’ interfaces, are searched.
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The algorithm compute-axioms() detailed in Algorithm 1 produces the final list
of axiom methods for ¢, The resulting list is then fed into a test case generator. The
test generator works as follows:

First, it computes the required axiom sets of C; that is, all classes which implement
RequiredAxioms<C> or OptionalAxioms<C>. Next, the supertypes of C are traversed and,
for each, the set of subclass and required axioms are collected. After this is done, an
initial set of axiom classes (i.e. axiom sets) is given in Z. Note that the axiom classes
themselves may pull in additional (optional) sets, via the implements AxiomSet<AX>
mechanism. These optional sets are then added to Z and the final set of axiom sets is
obtained. The methods of these axioms are the final product of compute-axioms().

Algorithm 1 compute-axioms(C)

E := required-axiom-sets-of(C) U optional-axiom-sets-of(C)
for T € supertypes-of(C) do
E := E U subclass-axiom-sets-of(T) U required-axiom-sets-of(T)
end for
for AX € E do
E := E U super-axiom-sets-of(AX)
end for

return |J,x.z methods-of(AX)

User interaction

Not all the details of the generation can be inferred from the source code, such as
which package the generated test class should be placed in, though reasonable defaults
can be suggested. To support various working styles and project organisations, the
prototype offers a graphical generator wizard that allows user to optionally specify
corrections to the assumed defaults. The user accesses the GUI to select a single class
or multiple classes or packages to invoke the test generator. A wizard appears that
allows the user to select which classes to generate test set generators for and where to
place them. Further, the user can select which package the generated test case should
be placed in and whether to generate a test suite, if tests for multiple classes have been
requested.

The user may also include additional axiom libraries that may contain relevant
axioms for the type hierarchy at hand. For example, the JAXT library already pro-
vides axioms for Object and Comparable that may be reused as desired. This axiom
inclusion feature supports reuse of axiom libraries that may be distributed separately
from existing implementations. A major benefit of this design is that axioms can be
easily retrofitted for existing libraries, such as the Java Standard Libraries, and such
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axiom libraries can be incrementally developed without modification or access to the
source code of the original library.

Thanks to JAXT, users can easily and incrementally update existing test classes,
e.g., when axioms have been added or removed. By reinvoking JAXT, the test classes
will be regenerated and additional test class stubs for new data types will be created.
As Eclipse refactorings carry through to the axioms, the axioms will remain in sync
with the code they test.

Generation of Tests

When the user requests axiom tests for a class X, a corresponding XAxiomTests is
generated (name may be customised). This is a JUnit fixture, i.e. XAxiomTests derives
from junit.TestCase, provides a set of test-methods and may provide a setUp() and
atearDown()Inethod.

The setup() method initialises all necessary test sets, as follows:

setUp() {
testSetT® = TOGenerator.createTestSet();

testSetTn = TnGenerator.createTestSet();

}

The createTestSet () methods return Collections which will be traversed by the tests.
The exact set of T;Generator calls is discovered from the argument lists of the axioms
exercised by this test fixture.

For each axiom ax(Ty, ..., Tj) in axiom class A a testAAx() method is gener-
ated, on the following form:

/% [@link package.of A#ax(T0, ..., Tn)} +/
public void testAAx() throws Exception {
for(T® a® : testSetT®)

for(Tn an : testSetTn)
A.ax(a®, ..., an);

}

This test will invoke the axiom A.ax() with elements from the (random) data sets
testSetTi. The generated Javadoc for testaax() will link directly to the axiom being
tested.

After all tests have been run, the tearDown() method is executed, which takes
care of releasing all test sets:

tearDown() {
testSetT® = null;
testSetTn = null;
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3

For convenience of this example, the pattern above has been idealised. The generator
produces slightly different setUp() and test methods in cases where the data sets are
not shared between all test methods. Consider the situation where a fixture has two
test methods, testA() which uses the data set testSeta only, and testB() which uses
testSetB only. Since setUp() is invoked before every test method, it is wasteful to
initialise both testSetaA and testSetB every time. Therefore, the generator will only
put test sets which are shared among all test methods in setUp(). Local invocations
to createTestSet () will be placed in the test methods for the other test sets.

11.6.2 Organising Generated Tests

The test generator produces two types of generated artifacts: the test set genera-
tor stubs which are meant to be fleshed out by the programmer, and the unit tests,
which are meant to be executed through JUnit and never modified. For this rea-
son, it is recommended that unit tests are generated into a separate package, such
as project.tests, to place them separately from hand-maintained code. If there are
additional, hand-written unit tests in package. tests, placing the generated tests into
a separate package, such as project.tests.generated, is preferred. The test set gener-
ator stubs are clearly marked as editable in the generated comments and the test cases
are marked as non-editable.

As previously stated, the generator can produce a suggested test suite based on a
package or a project that lists all the tests requested in the same invocation of the test
generator wizard. The purpose of these suites is to catalogue tests into categories and
for the developer to be able to execute different categories at different times; some
axioms may result in very long-running tests, others may not be interesting to test at
each test suite execution and others still should be executed very frequently.

Both the test suites and test set generator stubs are freely editable. The generator
will never overwrite these artifacts when they exist, even if the developer accidentally
requests it.

11.6.3 Executing Tests

The current prototype tool supports two primary modes of test execution: from the
command-line and through and interactive GUI.

The command-line mode is intended for integrating the tests into nightly build
cycles, or other forms of continuous integration. We impose no restrictions on the
management of test suites — the tool merely aids in producing suggested starting
points — so varying degrees of testing may be decided on a per-project or per-build
basis. By organising the generated tests into categories, it becomes easy to select
which sets of axioms should be exercised at any given build.
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The interactive mode reuses the JUnit framework. Once a test case (or test suite)
has been generated, it can be immediately executed by the developer like any other
JUnit test. Since there is a direct link in the Javadoc for every generated test method,
it is trivial to understand which axiom is violated when a given test method fails.

JAXT does not provide any test coverage analysis itself, but existing solutions for

JUnit, such as Cobertura [Cob] and NoUnit [NoU], are applicable.

11.7 Implementation

W plugin

feature

no.ii.uib.jaxt

org.spoofax.interpreter.adapter.ecj org.spoofax.interpreter

org.eclipse.jdt.core org.spoofax.library.eclipse

org.eclipse.<platform>
Figure 11.4: Components of the JAXT generator.

The JAXT tool is implemented as a plugin to the Eclipse development plat-
form [Ecl]. It is divided into the component seen in Figure 11.4. The POM adapter
technique, described in Chapter 4, and the Eclipse integration framework provided
by Spoofax, as discussed in Chapter 9, were crucial for its construction.

The test generator wizard is very similar to the one provided by JUnit: The JUnit
test generator is applied to a class C and produces a testing stub for each method in C,
whereas JAXT, when applied to C, produces an immediately executable test for every
axiom pertaining to C. The wizard interface collects all necessary user input. When
the forms are complete, the control passes to a compiled MetaStratego transformlet
which implements all the analysis and generation logic.

The script will use the Stratego/J FFI functionality to call into the Eclipse Com-
piler for Java and query for all necessary compilation units (.java and .class files).
For compilation units that have source code, ASTs are extracted and adapted to terms
using the POM adapter shown in Chapter 10. For “sourceless” compilation units, i.e.
.class files, ECJ provides a read-only, high-level inspection interface. An additional
POM adapter for this interface was implemented during the course of this work.
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With this adapter, the JAXT transformation logic can traverse and inspect these com-
piler objects as well. This adapter provides a small signature for the notions of method
and type bindings and by using it, many computations on the type hierarchy become
very succinct and easy to express, e.g.:

ecj-all-supertypes-of =
?TypeBinding(_,_,_,superclass, superifaces,_,_)
; <collect-all(?TypeBinding(_,<id>,_,_,_,_,_))> [superclass | superifaces]
; map(!DottedName(<id>))

This three-line strategy will compute the transitive closure of all super classes and
super interfaces (i.e. supertypes) of a given class (or interface), using the generic
traversal strategy collect-all provided by the standard Stratego library. The strategy
produces a list of DottedName terms, that contains the dotted names (fully qualified
names) of the supertypes. Note the the super type hierarchy may in the general case
be a directed acyclic graph and is rarely a tree. Even if the plain Stratego language is
used, this presents no problems. Potential problems due to term building in graphs,
discussed in more detail in Chapter 7, are avoided by only providing a read-only
interface. Traversals will always terminate since there are no cycles.

Once the script has extracted the necessary information from the compilation
units, it will will assemble ASTs for what will become the final JUnit test class and
the test generator stub classes. Each of these ASTs will be written to a separate . java
file. The Eclipse code formatter will be used to pretty-print the result. This ensures
that the final result is in accordance with the user-configured settings for the Java

project in which JAXT is applied.

11.8 Discussion and Related Work

The standard Java documentation, and that of many other software libraries, is rife
with examples of formal requirements. These are typically not machine readable, nor
machine checkable. As a result, these requirements are often inadvertently violated,
often resulting in bugs which tend to be difficult to trace. The goal of program
verification and validation techniques, including (unit) testing is to increase developer
confidence in the correctness of their implementations. If a technique for formalising
the library requirements was devised, and tests may be automatically generated from
this formalisation, confidence that the library abstractions were used correctly would
take a significant boost. This is what the JAXT, and other axiom-based techniques for
test generation like JAX [SLA02], DAISTS [GMHS81] and Daistish [HS96] do.
The testing approach sketched in this chapter is a continuation of the JAX tra-
dition [SLAO02] and is, in a sense, a combination of two techniques for ensuring
robustness of software: test-driven development and algebraic specifications. The
ideas of axioms and modular specifications are taken from algebraic specifications as
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a way of succinctly describing general properties of an implementation, as opposed
to the case-by-case approach normally advocated by TDD. Principles for integration
into graphical development environments and the design of practical tools for test
code generation and immediate execution of tests were inspired by TDD approaches.
These principles allow the proposed method to bring instant feedback to the devel-
oper.

Any approach to (semi-)automatic test generation will eventually have to be im-
plemented using some programming language. Experience from this case study sug-
gest that constructing the generator in a language-general, domain-specific transfor-
mation language has several benefits compared to the author’s previous experiences
with implementing language processing using strictly general-purpose languages.

Succinctness — Compared to an implementation in a general programming pro-
gramming, the transformation logic expressed in Stratego becomes compact and to
the point (c.f. more detailed examples in Chapter 10). If care is taken to name the
strategies and rules appropriately, most of the transformations read fairly well.

Infrastructure Reuse — The initial development of JAXT was very quick due to the
reuse of the Eclipse Compiler infrastructure. Even if one accounts for the time taken
to construct the additional POM (for type bindings), and the time spent constructing
the AST POM itself, this was considerably less than the time necessary to construct a
robust Java 1.5 parser from scratch, and much less than a stable type-checking front-
end. The adapters were semi-automatically extracted from APIs in a matter of hours
and, after a few more hours of plugging in the relevant FFI calls, the type checker
was ready to be reused from within Stratego.

Development Tools — A weak point of most non-mainstream languages is the state
of their development tools. This is also the case with Stratego which, for example,
lacks an interactive debugger. The Spoofax development environment (Chapter 9)
helped a lot, but additional work is required if the environment is to have a level of
quality similar to that of the mainstream language environments.

Code Templates — Much of the generated code is composed from pre-defined tem-
plates. These are expressed using the abstract syntax of the ECJ, shown in Chapter 10.
Both readability and maintainability would get a significant boost if these templates
were expressed using concrete syntax, i.e. as concrete Java code. However, depending
on the complexity of the templates, this would require the construction of a full Java
1.5 grammar which is embeddable into the transformation language.

11.9 Summary
This chapter presented a case-study of how the techniques proposed in Part III and

Part IV of this dissertation are applicable to code analysis and interactive code gener-
ation. The study presented a tool-assisted approach for testing general properties of
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classes and methods based on axioms and algebraic specifications expressed entirely
in Java. It provided a detailed description of how desired program properties can be
expressed as axioms written in an idiomatic Java style, including a rich and flexible
mechanism for organising the axioms into composable modules (composable specifi-
cations). The proposed organisation mechanism is structured enough that the testing
tool, JAXT, can automatically compute all axioms pertaining to a given class and gen-
erate JUnit test cases and test suites from the composition of these. By reexecuting
JAXT periodically, the unit tests can trivially be kept in sync with the axioms, as these
change.

The study also discussed design and implementation aspects of JAXT, illustrating
how the techniques proposed in this dissertation may be applied in practise. The
results of the study suggests that language-general, domain-specific transformation
languages provide an attractive vehicle for expressing interactive language processing
problems, but that additional tool support may be necessary before most program-
mers can be expected to benefit from the increased succinctness offered by these
languages.
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Sometimes [ want to run a garbage collector on the in-
ternet.

— Eelco Dolstra

Discussion

This chapter discusses different approaches for achieving language independent trans-
formations and some fundamental tradeoffs related to these. The chapter also briefly
discusses the relation of program transformation to other approaches for software evo-
lution. Additionally, it contains a discussion on the place for open research systems
in the pursuit of better practical transformation techniques.

12.1 Techniques for Language Independence

This dissertation is concerned with the development of techniques for expressing
language-independent program transformations. Its motivation has been to find ways
of making transformations applicable across different subject languages quickly and
easily. The techniques proposed herein are by no means exhaustive. A discussion of
alternative approaches is therefore warranted.

There are several possible directions for achieving language-independent program
transformations. All of them must tackle the tradeoff between two opposing require-
ments: the need to hide language details versus the level of detail required by a given
transformation. Abstracting over language details hides irrelevant differences in sub-
ject languages and enables higher-level program models. Consequently, transforma-
tions written for these models may be applied to languages which are abstractable
into the higher-level models. The requirements placed on the model varies greatly
between transformation tasks, however. The contents of a model used to analyse the
module dependency graph of a program is quite different from one which is used
for intra-procedural control-flow analysis. The combination of several approaches is
therefore more likely to give good results.

12.1.1 Abstracting over Data

Capturing software in a high-level and general program object model (POM) is a
data-centric approach to language independence. The goal of this technique is to
abstract over irrelevant language details and provide a uniform model across subject

223
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languages. Abstract syntax trees (ASTs) may be seen as the first step in this direc-
tion. ASTs abstracts over most of the syntactical “noise” in the subject language, but
may still be used to reproduce the original program faithfully modulo layout and
comments. POMs may be arbitrarily more abstract. The PROGRES example in
Chapter 2, Section 2.4.2 illustrates how the concept of program configurations may
be described abstractly. This abstract model could support transformations, but map-
ping these transformations from the abstract model back to equivalent operations on
the original source code is generally a hard problem to solve.

The fundamental tradeoff for the data-centric technique is the choice of what
should be considered irrelevant language details. This clearly depends on the trans-
formation problem for which the abstract model should be used. Arriving at a final
authoritative language independent program object model is therefore very likely to
be infeasible. A more versatile approach is required which can account for the varied
needs of the transformations.

12.1.2 Expressing Generic Algorithms

Formulating generic and parametrised transformation algorithms, where language
specific components can be inserted, may be considered a “function-centric” ap-
proach to language-independence. The strategic programming paradigm supports
this approach well by dividing transformation programs into general transformation
logic and data processing rules. The principle is that the general transformation logic,
in the form of strategies, is designed for the application of language-specific data pro-
cessing rules. By replacing the rules, the same logic may be applied to different subject
languages.

This approach works well for a good number of problems, but suffers from draw-
backs discussed in Chapter 5, Section 5.4.3. An additional drawback, particular to
program transformation, is that the designer has no abstract signature to write the al-
gorithm against. The model abstracting over subject languages — what may be called
an abstract language — is never defined explicitly in the transformation program. In-
stead, the algorithm is written against a mental model hidden in the rule set. The
model is purely conceptual, but the transformation must nonetheless respect it. The
lack of a clear abstract language definition often makes it very hard to reason about
the transformation. At best, the model exists in the form of well-written documenta-
tion. Accidental violation of the model is easy because the transformation language
compiler cannot check any of its rules. In the course of development, the trans-
formations are often tested against a concrete selection of subject languages to raise
confidence in their correct behaviour. This may easily introduce an unintended bias
in the formulation favouring the example selection.

Describing abstract languages for language-independent program transformation
is still an open research problem. It is possible that the answer may be found from
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studying better and more flexible ways of describing computer languages in general.

12.1.3 Adapting Generic Algorithms

Aspects may further improve the genericity of an algorithm by exposing additional
variation points for the algorithm user. In some cases, accidental implementation
bias may be corrected without changing the algorithm.

12.1.4 Modular Language Descriptions

Finding a good formalism for describing computer languages in small, reusable mod-
ules has been and, many would claim, still is a long-standing goal of computer sci-
ence. The approach taken in this dissertation is to describe the language semantics as
transformation libraries that define how the various languages features are translated
into a minimal core language and, eventually, (via a machine-specific compiler or in-
terpreter) into executable machine code. A clear drawback of this approach is that the
description is very tied to its eventual application: the compilation and execution of
programs. Unless special care is taken during the design of the transformation library,
reusing the implementation for other tasks, perhaps for program validation or defect
checking, may be impossible. Research into modular language semantics holds some
hope that “problem neutral” descriptions may eventually be possible.

The research towards modular language descriptions [Mos04a] is concerned with
capturing the semantics of programming languages into small modules that each
describe a particular language feature. These modules may be composed with other
modules. The final composition describes the entire language and may form the basis
of any language processing tool for the composed language such as a compiler, type
checking front-end, refactorer or defect checker.

Various formalisms for defining modular semantics have been devised including
monadic denotational semantics [Mog91], abstract state machine montages [KP97],
action semantics [DMO03] and modular structural operational semantics [Mos04b].
None of these formalisms have seen significant adoption, unfortunately.

A firm and general basis for describing subject language semantics could be of
great use for transformation developers. For example, determining whether it is pos-
sible to find a reasonable mapping from a given subject language to a given abstract
language could become easier. Additionally, it could improve the means available for
validating (or verifying) that a given transformation respects certain semantics of a
subject language.
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12.2  Other Approaches to Software Evolution

Program transformation is not the only component in a solution toward good soft-
ware evolution. Therefore, it is important that the techniques proposed in this disser-
tation for expressing reusable, language-independent program transformations work
well with the (relatively) new and forthcoming programming and software evolution
methodologies such as refactoring, generative programming, interactive development
environments, extensible languages and aspect-oriented programming. The experi-
mentation performed during the development of the case studies in Part V shows
that the techniques apply well to generative programming and that integration into
interactive development environments is significantly easier due to the POM adapter.
An early prototype for refactoring of Java code has been constructed. This suggests
that implementing refactorings in a “strategic” style using the abstractions proposed
in this dissertation may be very powerful. Additional experiments are necessary in or-
der to gain more experience before a final conclusion can be made. Experience from
the development of the domain-specific aspect language described in Chapter 8 sug-
gests that aspect-oriented subject languages are reasonably well supported. Extensible
languages are discussed in Chapter 13.

12.3 Availability of Research Systems

The investigation and analysis leading to the survey of software transformation sys-
tems in Chapter 2 uncovered that practically all of the (still active) research systems
described in the literature are freely available for download. With only a handful of
exceptions, the full source code for these systems were also provided. In many cases,
the availability of source code proved crucial to understanding the detailed workings
of many features. The availability of source code was also important during the anal-
ysis leading up to the POM adapter (Chapter 4). During this analysis, it became
necessary to consult concrete compilers and transformation systems to account for
design decisions usually glossed over in the literature.

An important theme of the dissertation is to demonstrate that the techniques
proposed herein are applicable in practise. For this reason, all the source code for
the software constructed for this dissertation, including the case study prototypes, is
available for download via www. spoofax.org'.

"The name “Spoofax” was selected because available .org domains are hard to come by.



— Whar if we build this giant trebuchet and lay siege to
the computer science department?

— Anya Helene Bagge

Further Work

This chapter discusses possible future research directions based on some of the unre-
solved problems encountered during this research.

The aspect language (Chapter 5) may benefit from additional pointcuts that iden-
tify program locations based on program flow in the style of [AAC*05]. An addi-
tional extension would be to add support for dynamically weaving aspects into trans-
formlets as these are loaded. For this to be possible, the aspect meta program must be
maintained alongside main program at runtime so that it can be invoked when new
transformlets are loaded. When using the aspect language for algorithm extension
and adaptation of transformation skeletons, the resulting aspect programs sometimes
become difficult to read and understand. There are patterns in these aspect-based
adaptation schemes which may be distilled into new, higher-level language concepts.
It is not yet clear exactly which patterns form the best foundations for a more general
adaptation language.

The current graph language extension (Chapter 7) is minimal enough to capture
cyclic graphs. This is sufficient for capturing the flow-based program models found in
compilers, but may be insufficient for other applications. It may be useful to extend
the language with a more general notation of graphs thus arriving at a more general
concept of strategic graph rewriting. If this path is pursued, a graph visualisation
plugin for Spoofax would be highly beneficial.

The program object model adapter technique (Chapter 4) has been applied for
plugging term libraries, compilers and front-ends into the Stratego transformation
system. Experimentation on higher-level programs, for example, ones based on soft-
ware modelling approaches involving UML, may be fruitful. Together with the graph
extension to Stratego, experiments with combining strategic rewriting with diagram-
matic modelling approaches is possible.

The current selection of case studies demonstrates that the proposed techniques
are applicable to realistic scenarios both for fully automatic and interactive program
transformation. They do not cover the full range of transformations nor the full range
of subject languages, however. Additional experiments involving additional subject
languages are warranted.
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Another area of future investigation is the pursuit of better support for language-
independent transformations applicable to extensible subject languages. Consider a
non-extensible subject language L. The syntax and semantics of L are known to the
transformation developer when a transformation T is adapted to fit L. For an extensi-
ble language E, both the syntax and semantics may later be extended by programmers
of E. These extensions may require additional cases to be added to T. The question
of how these cases may be added requires additional research to answer. This topic is
discussed more thoroughly in [Vis05b].

Additional mechanisms for the modularisation and adaptation of transformations
is likely to be a fruitful topic of further study. Some experiments with a declarative
“view” mechanism, somewhat related to that of Wadler [Wad87], have been con-
ducted in the course of this research. These experiments are based on the concept of
(generalised) signature morphisms. Initial experiments are encouragning, but signifi-
cantly more work (and pages) is required before a conclusion can be reached.



Perfection is achieved on the verge of collapse... so, dont
aim for it.

—Nicolae Vintila

Conclusions

The main contributions of this dissertation are two novel and complementary tech-
niques for improving language independence of program transformations: program
object model adapters for decoupling the transformation engine from the program
model and aspects for adapting generic transformation algorithm skeletons to specific
subject languages.

Survey of Transformation Systems — A detailed survey of the state-of-the-art in soft-
ware transformation systems was presented. It employed feature models and concrete
examples taken from about a dozen research systems for describing central parts of the
design space for transformation system. The survey indicated that good abstraction
facilities for the program model are necessary for language independence.

Program Object Model Adapters — Large-scale reuse of transformations and trans-
formation systems across subject language infrastructures is supported by the pro-
gram object model adapters. They weld together transformation system runtimes
with the abstract syntax tree of an existing language infrastructure such as the front-
end of a compiler. This is done by on-the-fly translation of rewriting operations in
the transformation system to sequences of equivalent method calls on the AST APL
This obviates the need for data serialisation and thus enables efficient integration be-
tween transformation engines and front-ends. The technique can be applied to most
tree-like APIs and is applicable for many term-based rewriting systems.

Aspects — The AspectStratego language offers a declarative mechanism for adding
support for subject language families to transformation libraries. This improves the
genericity and language-independence of transformations. The aspects also capture
many cross-cutting concerns found in transformation programs. Well-defined points
in the execution of a transformation program can be identified, parametrised and
modified using aspects. By extracting and parametrising execution points, a trans-
formations can be formulated, even retroactively in cases where grey box reuse is
accepted.

Strategic Graph Rewriting — The System S rewriting calculus has been extended to
handle graphs. Its implementation, the GraphStratego language, provides new lan-
guage abstractions for capturing graph-like program models while still maintaining
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the benefits from strategic rewriting: the separation of rewrite rules from traversal
strategies, thus providing a language for strategic graph rewriting.

An Extensible Transformation Language Framework — The MetaStratego frame-
work used to prototype the proposed language extensions is available as a general
language prototyping framework. It is provided so that other developers may experi-
ment with new transformation language extensions.

A Flexible Transformation Runtime — The Stratego/] interpreter provides a trans-
formation engine capable of abstracting over term representations. It may easily be
plugged into existing language infrastructures and is supported by jsglr, an imple-
mentation of a scannerless GLR parser.

The main contributions are supported by several case studies which serve to
demonstrate their usefulness. The presented case studies include:

e An implementation of a domain-specific aspect language for alert handling.

e An interactive development environment for program transformations that has
served as a test-bed for the techniques and language abstractions presented in
this dissertation.

® A collection of examples of framework-specific transformation and analysis,
showing that advanced framework developers may benefit from the above con-
tributions since writing custom language processing tools is now fairly simple.

e A generator of executable unit tests from algebraic specifications that demon-
strates how the proposed techniques may be used to extend development envi-
ronments with new, interactive program transformations.

Spoofax — The Spoofax interactive development environment for strategic pro-
gramming is useful in its own right. It provides a modern and effective editing envi-
ronment for transformation developers. Scripts, written in Stratego (with any of the
extensions discussed above), may be used to extend the development environment.



It’s science. I'm nor questioning it.
— Joshua Nichols

Summary

The motivation for this work has been to develop techniques and tools for expressing
reusable, language-independent program analyses and transformations. It has been
a goal that transformation programs should be reusable for language families, across
language infrastructures and, when possible, across language paradigms. The follow-
ing summarises the dissertation:

State of the Art First, a survey of existing software transformation systems is pre-
sented. The focus of the survey is on transformation languages and architectures.
Attention is given to the program models, i.e. the facilities a transformation sys-
tem has for representing and manipulating programs. The survey indicates that the
program model is the central component that needs good abstraction facilities and
a good abstract representation if one is to attain transformation reuse and language-
independence.

Domain Analysis Next, an analysis of the program model is presented to find and
describe the domain objects which must be abstracted over. This analysis suggests
that the necessary abstractions behave in rather complicated ways: capturing them
in traditional transformation libraries is not the best solution. It might be better to
express the abstractions as new language features in the transformation language.

Design  Subsequently, the above-noted abstractions are captured as abstract data
types, and described using basic algebraic specifications. This formalises the ab-
stractions and the rules governing them. Algebraic specifications work well as re-
quirements for implementing the abstractions in transformation libraries. Algebraic
axioms are a good source for deriving both optimisation rules and static checks for
correct usage of the abstractions in the transformation library. This proved very use-
ful in the implementation of the prototypes which were constructed for the Stratego
transformation language. The abstractions are augmented with a domain-specific no-
tation, making them full-fledged language features in Stratego. This provides a more
convenient notation and raises the abstraction level for the programmer.
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Implementation  Finally, an extensible variant of Stratego called MetaStratego is
presented. The prototypes of all the new abstractions were implemented on top of
this extended system. The runtime of MetaStratego has some appealing features: it
can operate on any tree- or graph-like program model, it executes on the Java Virtual
Machine (JVM), it can be easily plugged into interactive development environments
written in Java, and it can plug into compiler front-ends running on the JVM.

Proofs of Concept As proofs-of-concept, several prototypes were constructed, in-

cluding:
e A modern, interactive development environment for (Meta)Stratego.

e A framework for interactive and automatic transformation and analysis of Java
code.

® A code generator for axiom-based unit testing.

o A domain-specific aspect language for alerts.

The conclusion that this dissertation presents a significant step towards language
independence for program transformation systems. It also indicates that there is more
to be done before the goal is finally achieved.
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