
Scene Reconstruction Using Level Sets and
Graph Cuts

Master of Science Thesis in Applied Mathematics

Ørjan Knudsen

Department of Mathematics

University of Bergen

May 30, 2008

Preface

Apart from numerous moments of hair-pulling frustration, this thesis has
been a labour of love. I enjoy the wide gamut of applied mathematics, from
the hands-on modelling of real-world phenomena to the icy pinnacles bor-
dering the sunless lands of pure mathematics. But I could not make this
journey alone.

First, I would like to thank my supervisor Xue-Cheng Tai, for proposing
an interesting subject for my thesis, for efficient help with technical details
and for his faith in my ability to work autonomously. Also, proper recognition
to Egil Bae for our numerous discussions of the minutiae of surface repre-
sentation, edge weights and Cauchy-Crofton formulas and for his pointers to
useful papers.

Cheers to the people who helped proof-read my thesis, for pointing and
laughing at my most embarrassing errors so I would never make them again,
and for their persistence and attention to detail. Chiefly, Kristine, Eirik and
Øystein.

A raised hat to all that make life worth living and put a smile on my
face: friends, lovers, colleagues, dance partners, family, vintners and cheese-
makers, strangers who smile at me on the street and all the rest. You know
who you are.

Finally, to the warmest and driest spring in Bergen for decades: You have
tried to draw me away from my studies, but I have persevered. Try harder
next time!

Ørjan Knudsen

Bergen, May 2008

Contents

Preface 3

1 Introduction 9

2 Mathematical Tools 11

2.1 Image representation . 11

2.2 Statistics . 11

2.2.1 Probability distributions 12

2.2.2 Mathematical expectation 12

2.2.3 Examples of distributions 13

2.2.4 Bayes’ Law . 14

2.2.5 Maximum likelihood estimation 14

2.3 Flow networks . 15

2.3.1 Ford-Fulkerson algorithm 16

2.3.2 Boykov-Kolmogorov algorithm 16

2.4 Discretization . 17

2.5 Function spaces . 18

2.5.1 Completeness . 19

2.5.2 Lp spaces . 19

2.6 Distributions . 20

2.6.1 Derivatives of distributions 21

2.7 Total Variation . 22

2.7.1 Bounded variation spaces 23

2.8 The Fréchet derivative . 23

2.9 Integration by parts . 24

2.10 Constrained extremum problems 24

2.10.1 Extension to function spaces 25

2.11 Calculus of variations . 26

5

6 CONTENTS

3 Surface Reconstruction 27
3.1 Well-posedness . 27

3.1.1 Constraints . 28
3.2 Forward model . 28

3.2.1 Reflectance models . 29
3.2.2 Light models . 30
3.2.3 Camera models . 31

3.3 Summary . 33

4 Level Set Methods 35
4.1 Level sets . 35

4.1.1 Signed distance function 35
4.1.2 Piecewise constant function 36

5 Probabilistic Surface Reconstruction 39
5.1 Probabilistic functional . 39
5.2 Implementation . 41

6 Graph Cuts 47
6.1 Relation to reconstruction problem 48
6.2 Edge weights . 48

6.2.1 Representing surface area 48
6.3 Graph construction . 50
6.4 Pseudocode . 50
6.5 Implementation . 51

7 Results 53
7.1 Gradient descent version . 54

7.1.1 PCLSM test 1: Temple dataset, high resolution 54
7.1.2 PCLSM test 2: Heavy Gaussian noise 56
7.1.3 PCLSM test 3: 4 temple images 58

7.2 Graph cut version . 60
7.2.1 GC test 1: 6-n surface measure, varying w. 60
7.2.2 GC test 2: Gaussian noise 61
7.2.3 GC test 3: 4 temple images 62
7.2.4 GC test 4: 26-n surface measure 62

8 Discussion 65
8.1 Future work . 66

8.1.1 Visibility . 66
8.1.2 Multiple object reconstruction 66

8.1.3 Automatic camera calibration 67
8.1.4 Volumetric reconstruction 67
8.1.5 Moving volume tracking 68

Chapter 1

Introduction

Image processing is the branch of data analysis that concerns itself with visual
data. Either images are processed prior to inspection by a human observer,
or the act of observation itself is emulated. In either case, a thorough under-
standing of the mechanics of vision is required. For instance, the knowledge
that a high contrast and dynamic range makes it easier to pick out details in
an image might motivate contrast-boosting preprocessing. When trying to
implement machine vision, knowledge of the process that formed the input
images is critical.

Vision in nature The human vision system is the result of millions of years
of evolution. The earliest vision system was simply a patch of photosensitive
cells that could distinguish light from dark. This area then became more
and more recessed, leading to crude directional vision as light would hit
different parts of the pit from different angles. Also, the front opening of
the pit shrank in size, yielding a crude pinhole camera. The aperture was
subsequently covered by a clear layer that protected the cells within. This
layer then grew into a full-blown lens, allowing clearer definition of shapes.
The photoreceptors diversified into rods and cones, respectively providing
low-light and colour vision. To match this sophisticated sensory equipment,
a significant part of the brain is dedicated to low-level and high-level vision.
Low-level tasks include finding edges and shapes and tracking movement.
On a higher level, the vision center maintains a persistent model of the area
around us, updating it continually from eye input and experience. It is part of
this higher-level vision that the field of computer vision seeks to emulate.

Computer vision The human vision center is highly specialized and draws
upon a lifetime of experience. Computer vision programs are often run on

9

10 CHAPTER 1. INTRODUCTION

general-purpose computers and draw only on the priors that their program-
mers give them. These limitations, along with the inherent complexity of the
task, make the problem of vision one of the most challenging in image pro-
cessing. The field is not yet mature, and algorithms are typically tailored to
their specific application. Few general-purpose computer vision algorithms
exist.

Applications Computer vision can be applied to a diverse set of prob-
lems: Organ or pathology recognition in medical imaging, whether aris-
ing from X-rays, ultrasound, computer tomography (CT), nuclear magnetic
resonance imaging (MRI), microscopy, angiography, positron emission to-
mography (PET) or other sources; industrial automation, where machines
and robots can be guided by machine vision and defective products can
be detected; military applications such as missile guidance, detection and
early warning systems and unmanned aerial vehicles (UAV); surveillance,
where machine vision can point out regions of interest to a human operator;
augmented reality, where real-time video is “augmented” with computer-
generated imagery appropriate to the view angle; 3-D graphics and cine-
matic effects, archaeological reconstruction and autonomous cars are some
examples.

This thesis concerns itself with the problem of scene reconstruction,
which is the task of recovering 3-D models of objects seen in images. We
define this problem and our approach to it in Chapter 3. Starting with an
existing algorithm introduced by Kolev et.al. in [9], we modify it to use two
very different frameworks: the piecewise constant level set method and
the method of graph cuts. The former, introduced by Tai et.al. in [11],
has several important advantages over the more common signed distance
level set method; we will take a closer look at these in Chapter 4. The
graph cut method is an emerging and exiting tool in the minimization of
certain functionals in image processing. It has the advantage of speed and
guaranteed minimization, though it is less general than other methods and
great care has to be taken in converting problems to graph form. We explore
this method in Chapter 6. We test the performance of our algorithms in
Chapter 7. Finally, we summarize the thesis and outline some avenues for
future work in Chapter 8. Before we turn our attention to these advanced
topics, however, we introduce the mathematical tools we will be using in
Chapter 2.

Chapter 2

Mathematical Tools

In the course of this thesis we will be employing various mathematical tools.
Some may be trivial, others harder to comprehend. Which tools fall into
which of these categories varies with the background of the reader. We have
chosen to include a liberal amount of background matter; the reader is free
to skip any part that is instantly familiar. We have tried to keep this section
concise yet clear.

2.1 Image representation

It is not surprising that the field of image processing deals extensively with
images. Ideally, a gray-scale image is a function I : D ⊂ R2 → R giving a
real value to the observed intensity I(x, y) at each point (x, y) in the image
domain D. The meaning of the term intensity depends on the nature of the
image; for instance, a black and white photography measures the incident
light at a point. We shall deal with discrete digital images with a slightly
different definition: I : [1,m] × [1, n] → [0, 255] where [a, b] is the range of
whole numbers from a to b, inclusive. A point x, y is called a pixel. A color
image is a set of three grayscale images R,G, B giving the intensity of red,
green and blue light respectively. A total of 2563=16,777,216 colors can be
represented in this way. Typical values of m and n are such that the aspect
ratio m/n ≈ 4/3 and m times n is about a few millions (megapixels).

2.2 Statistics

Computer vision aims to estimate the state of real-world objects given a set
of observations. It is thus an example of parameter estimation or inductive
reasoning. Due to the uncertainty inherent in such a process, a very natural

11

12 CHAPTER 2. MATHEMATICAL TOOLS

idea is to try to apply statistical theory. We will therefore include a short
introduction to some statistical concepts here. A basic statistical textbook
such as [16] will expand endlessly upon these subjects; we shall therefore be
brief.

2.2.1 Probability distributions

When we make a measurement of a real-world phenomenon we are making
a statistical experiment. The set of all possible measurements is called
the sample space. A random variable is a function that associates a real
number with each element in the sample space. If the sample space has a
finite or countably infinite number of elements, it is called a discrete sample
space. Otherwise, it is a continuous sample space. A discrete random
variable assumes each of its values with a certain probability. If the discrete
random variable X takes the value x with probability f(x) = P (X = x), the
function f(x) is called the probability distribution of X. It is nonnegative
and sums to 1. A continuous random variable, by contrast, has a probability
of zero of assuming exactly any of its values. Instead of exact values, we
must deal with intervals. If a continuous random variable X assumes a value
in the interval (a, b) with probability

∫ b

a
f(x)dx = P (a < X < b), f(x)

is called the probability density function of X. It is nonnegative and∫∞
−∞ f(x)dx = 1. The function F (x) = P (X ≤ x) =

∫ x

−∞ f(t)dt is called the
cumulative distribution of X.

2.2.2 Mathematical expectation

The mean or expected value of a continuous random variable X is

µ = E(X) =

∫ ∞

−∞
xf(x)dx.

Similarly, the variance

σ2 = E[(X − µ)2] =

∫ ∞

−∞
(x− µ)2f(x)dx

is simply the expected squared deviation from the mean. The positive square
root σ of the variance is called the standard deviation of X. These two
variables tell us a lot about a distribution. For instance,

σ2 =

∫ ∞

−∞
(x− µ)2f(x)dx

≥
∫ µ−kσ

−∞
(x− µ)2f(x)dx +

∫ ∞

µ+kσ

(x− µ)2f(x)dx

2.2. STATISTICS 13

since the integrand is everywhere positive. Since |x − µ| > k2σ2 in the
remaining regions,

σ2 ≥
∫ µ−kσ

−∞
k2σ2f(x)dx +

∫ ∞

µ+kσ

k2σ2f(x)dx

1

k2
≥

∫ µ−kσ

−∞
f(x)dx +

∫ ∞

µ+kσ

f(x)dx.

Hence

P (µ− kσ < X < µ + kσ) =

∫ mu+kσ

µ−kσ

f(x)dx ≥ 1− 1

k2

This result is called Chebyshev’s theorem, see for instance [16]. It tells us
that we can use the mean and standard deviations to estimate probability
without knowing the underlying distribution. In practice, however, it is useful
to assume a known distribution.

2.2.3 Examples of distributions

We shall consider a few simple probability distributions. First off, what if we
have no way of telling which parts of an interval are most likely? All parts
must then be equally likely, yielding the uniform distribution

u(x; A,B) =

{
1

B−A
, A ≤ x ≤ B

0 elsewhere

with mean and variance

µ =
A + B

2
and σ2 =

(B − A)2

12
.

A more common distribution is the Gaussian or normal distribution

n(x; µ, σ) =
1√
2πσ

e
−(x−µ)2

2σ2

which appears in many natural phenomena and the errors of scientific mea-
surements. This is mainly due to the central limit theorem, which states
that the sum of a large number of independent and identically-distributed
random variables will be approximately normally distributed. The fact that
this distribution is conceptually simple and easy to work with only increases
its appeal.

14 CHAPTER 2. MATHEMATICAL TOOLS

2.2.4 Bayes’ Law

The conditional probability of event A given event B is given as

P (A|B) =
P (A ∩B)

P (B)

whenever P (B) is nonzero. If P (B) = 0, P (A|B) is not defined (nor would
it be very useful if it were!). Rearranging the equation,

P (A ∩B) =
P (A|B)

P (B)
.

Applying the same reasoning to P (B|A) yields

P (A ∩B) = P (B ∩ A) =
P (B|A)

P (A)
.

hence

P (A|B) =
P (B|A)P (A)

P (B)
(Bayes’ Law)

which will prove useful in this thesis.

2.2.5 Maximum likelihood estimation

Often, we have a lot of data samples but are not privy to the nature of the
stochastic process giving rise to them. Even if we guess at a particular distri-
bution, we still need to estimate the relevant parameters. A principled way
of doing this is maximum likelihood estimation. Simply put, we choose
the parameters that maximize the probability of the observations we have
made. For instance, let X = X1, X2, . . . , Xn be a set of independent random
variables taken from a probability distribution represented by f(X, θ), where
θ is a set of parameters of the distribution. Now let x be the actual observed
values. The function

L(X; θ) = P (X = x|θ)
is called the likelihood function of the sample. If we consider the sampled
values x as constants and seek to find

θ̂ = max
θ

L(X; θ),

we obtain a logical estimate θ̂ of the distribution parameters. Note, however,
that we need to know or guess the underlying distribution in order to use this

2.3. FLOW NETWORKS 15

method. We extend the concept discussed here to more general optimization
problems, though it this no longer stricly a maximum likelihood estimation.
The basic idea is the same: Given a set of observations x, a model M(θ)
dependent on model parameters θ and a probability function P (M,X), we
find the optimal model

M̂ = M(θ̂), θ̂ = max
θ

P (M(θ),X).

2.3 Flow networks

A network (N ,A) consists of a set of nodes N and a set of directed arcs
A ∈ {(i, j)|i 6= j, i, j ∈ N} connecting them. Suppose we identify a source
node s and a sink node t, both in N . Further, we define an upper bound
uij on the flow through each arc (i, j) in A. A cut C is then a set of nodes
containing the source node but not the sink node. The capacity of a cut is
defined as

κ(C) =
∑
i∈C
j /∈C

uij.

A flow x : A 7→ R+ is a function that details the transport xij along each
arc (i, j) in A. At each node i other than the source or sink the transport
must sum to zero: ∑

j:(i,j)∈A
xij −

∑

j:(j,i)∈A
xij = 0. (flow balance)

The magnitude |x| of a flow is the total amount transported from the source
node to the sink node. Due to the flow balance constraint, for an arbitrary
cut C this is equivalent to:

|x| =
∑
i∈C
j /∈C

xij −
∑

i/∈C
j∈C

xij.

The Maximum-Flow problem is then to find the maximum feasible flow
from the source node to the sink node:

x̂ = arg max |x|.
such that

0 ≤ x̂ij ≤ uij, ∀(i, j) ∈ A (feasibility)

The Minimum-Cut problem is to find the cut C that minimizes κ(C).
An important result from duality theory is that these two problems are equiv-
alent, i.e., the maximum feasible flow is equal to the minimum capacity.
Intuitively, the min cut capacity κ̂ is the bottleneck of the graph.

16 CHAPTER 2. MATHEMATICAL TOOLS

2.3.1 Ford-Fulkerson algorithm

Many algorithms for the solution of the maximum flow problem are descen-
dants of the classical Ford-Fulkerson algorithm introduced in [6]. We shall
outline it briefly before introducing a modification that is very relevant to
our use. A path from node s to node t is a set of arcs forming a connection
between those nodes. The direction of the arcs does not matter, only their
connectedness. An augmenting path with respect to a flow x is a path
from s to t such that x < u on forward arcs of the path, and x > 0 on reverse
arcs of the path. A flow x is maximal if and only if there is no augmenting
path with respect to x. The Ford-Fulkerson has two steps: Finding an aug-
menting path, then pushing the maximum amount of flow through it. These
two steps are repeated until no augmenting path is found, at which point the
maximum flow has been found.

2.3.2 Boykov-Kolmogorov algorithm

The distinguishing factor between different augmenting path algorithms is
the subalgorithm that chooses the order in which augmenting paths are satu-
rated. The shortest-path criterion of the popular Edmonds-Karp or Dinic
algorithm defines a breadth-first search. After all shortest paths of a
fixed length k are saturated, the algorithm starts the search for augmenting
paths of length k + 1 from scratch. The shortest-path method is crucial in
ensuring a low worst-case bound on the running time: the Dinic algorithm
has complexity O(mn2) where n is the number of nodes and m the number
of edges in the graph. This is a useful algorithm for general problems, and
in particular sparse graphs where the number of edges is low. However,
the graphs that arise in image processing in general and in our problem in
particular have a rather peculiar connectivity: Nodes are connected to their
spatial neighbours as well as the source and/or sink nodes. The total number
of edges is not very high, but if a large amount of nodes are connected to
the source or sink, a breadth-first search will be very slow. The algorithm
introduced in [2] is tailored to give good practical results on such shallow
graphs. Note, however, that it has a worse theoretical running time than the
Dinic algorithm. For integer flows, an augmenting path will increase the flow
by at least 1. The worst-case scenario is that all augmenting paths yield no
more than this, meaning that κ̂ augmenting paths have to be found, where
κ̂ is the value of the maximum flow. This yields a complexity of O(mn2κ̂).

2.4. DISCRETIZATION 17

Outline

A tree is a connected set of nodes fulfilling certain criteria. It is either empty
or consists of a root node and zero or more subtrees. Each node apart from
the root is either a leaf or an internal node. An internal node has one or
more child nodes and is called the parent of its child nodes. Leaf nodes have
no children. To any node in the tree there is a unique path from the root
node. The Boykov-Kolmogorov algorithm maintains two non-overlapping
search trees S and T with roots at the source s and the sink t, respectively.
In tree S all edges from each parent node to its children are non-saturated,
while in tree T edges from children to their parents are non-saturated. The
nodes that are not in S or T are called free nodes. Nodes are also classified
as active or inactive. An active node is connected to a node not in the
same tree by a non-saturated arc. A passive node is not, and thus cannot
become a parent. When the two trees “touch” along a non-saturated edge,
an augmenting path is found. The algorithm proceeds in three stages:

1. growth stage: Search trees S and T grow by adopting neighbouring
free nodes (along non-saturated paths) until they touch, giving an aug-
menting path

2. augmentation stage: The maximum possible flow is pushed through
the augmenting path, saturating one or several edges. Each saturated
edge drops out of its tree, possibly splitting the tree into several trees.

3. adoption stage: we try to find a new path from the root to each
node that lost its parent node in the augmentation stage. If this is not
possible, that node is deleted and we try to find paths to the nodes
“orphaned” by this deletion. When no orphans remain, single-tree
structure has been restored and we can go back to the growth stage.

The algorithm terminates when the search trees S and T have no active nodes
and the trees are separated by saturated edges. A maximum flow has been
achieved, with cut sets equal to the sets S and T . Boykov and Kolmogorov
have kindly made available a C++ software library that implements this
algorithm, and we shall use this library to solve our max flow problems later
in this thesis.

2.4 Discretization

Throughout this thesis we use fixed regular grids. The grid spacings 4x,4y
and 4z are in general not equal. In order to numerically solve PDEs we

18 CHAPTER 2. MATHEMATICAL TOOLS

need to discretize them. The purpose of this thesis is not to test out exotic
discretization schemes; rather, we use common finite-difference strategies.
For time marching we use the standard forward Euler method

f ′(t) = g(t) Ã f(t +4t) = f(t) +4t g(t)

and all spatial derivatives are first-order forward differences:

f ′(x) ≈ f(x + h)− f(x)

h

2.5 Function spaces

In applied mathematics, many problems can be formulated as a search for a
function satisfying certain constraints. To find the optimum such function
we much search through the set of feasible functions. To this end, a rigorous
theory of such function spaces is useful. We first introduce the concept of
a vector space. A real vector space is a triple (X, +, ·), in which X is a set,
and + and · are binary operators satisfying certain axioms (see, for instance,
[3]):

1. If x and y belong to X then so does x + y.

2. x + y = y + x.

3. x + (y + z) = (x + y) + z.

4. X contains an element, 0, such that x + 0 = x for all x ∈ X.

5. With each element x there is associated a unique element, −x, such
that x + (−x) = 0.

6. If x ∈ X and λ ∈ R, then λ · x ∈ X.

7. λ · (x + y) = λ · x + λ · y.

8. (λ + µ) · x = λ · x + µ · x (λ, µ ∈ R).

9. λ · (µ · x) = (λµ) · x.

10. 1 · x = x.

We shall forgo the triple notation (X, +, ·), instead referring to the vector
space X for the rest of this thesis. A norm on a vector space X is a real-
valued function, denoted by ‖ · ‖, that fulfills three axioms:

2.5. FUNCTION SPACES 19

1. ‖x‖ > 0, 0 6= x ∈ X.

2. ‖λx‖ = |λ|‖x‖, λ ∈ R, x ∈ X.

3. ‖x + y‖ ≤ ‖x‖+ ‖y‖, x, y ∈ X.

A vector space with an associated norm is called a normed linear space.
For instance, the space of continuous functions on a fixed compact interval
[a, b] with supremum norm:

C[a, b] = {f : [a, b] 7→ R : f continuous}
‖x‖∞ .

= max
s∈[a,b]

|x(s)|.

A normed linear space enables the study of sequences x1, x2, . . . whose
convergence is measured by the norm:

xn → x ⇒ lim
n→∞

‖xn − x‖ = 0.

2.5.1 Completeness

When approximating some desired solution iteratively, we want to be able to
make statements about the limit which our iteration is approaching. Even
though every approximation we make has some desirable property (such as
being a rational number), it is not certain that the limit has this property.
For instance, it is possible to create a sequence of rational numbers that
converges to π (just keep adding digits). Yet π itself is not a member of the
set of rational numbers. What is missing from the space of rational numbers
is completeness. A sequence [xn] in a normed linear space X is a Cauchy
sequence if

lim
n→∞

sup
i≥n
j≥n

‖xi − xj‖ = 0.

If every Cauchy sequence in a space X is convergent, then X is said to be
complete. A complete normed vector space is called a Banach space.

2.5.2 Lp spaces

For 1 ≤ p ≤ ∞, Lp(Ω) denotes the space of all measurable functions on Ω
that are pth-power integrable on Ω. The norm on Lp(Ω) is given by

‖u‖p =

(∫

Ω

|u|pdx

)1/p

20 CHAPTER 2. MATHEMATICAL TOOLS

for finite p or

‖u‖∞ = ess sup |u|
for p = ∞. The term “function” is used slightly loosely here - members of
Lp are equivalence classes of functions. In particular, ‖v − w‖p = 0 does
not imply v(x) = w(x),∀x.

2.6 Distributions

The theory of partial differential equations is, understandably, focused on the
study of differentiable functions. On the other hand, functions represented
on a computer are often piecewise constant on some appropriate grid. To
reconcile these paradigms in a mathematically stringent way, we introduce
the notion of distributions. To make this section as clear as possible, we need
to introduce some tight notation. A multi-index is a n-tuple of non-negative
integers

α = (α1, α2, . . . , αn).

Its order |α| is the sum of these integers. Given a multi-index α, we define
the differential operator Dα as

Dα =
n∏

i=1

(
∂

∂xi

)αi

.

The vector space C∞(Rn) is defined as

C∞(Rn) = {f : Rn → R|Dαf ∈ C(Rn),∀α} .

It is thus the space of all functions defined on Rn whose partial derivatives
all exist and are continuous.

The support of a function f is the closure of {x : f(x) 6= 0}. The
space D of test functions is the set of functions in C∞(Rn) having compact
support. This means they are zero outside a finite region in Rn.

A distribution is a continuous linear functional on D. The space of such
distributions is denoted D′. We shall introduce some important distributions.

The Dirac distribution δx : D 7→ R is given as

δx(f) = f(x)

that is, it takes as its argument the function f and returns the function value
f(x). Simply writing δ without a subscript refers to δ0.

2.6. DISTRIBUTIONS 21

The Heaviside distribution on D(R) is defined as

H(f) =

∫ ∞

0

f(x)dx

and similarly in n-D (integrating over the values of x = (x1, x2, ..., xn) where
xi ≥ 0,∀i ∈ [1, n]).

Let f : Ω ∈ Rn → R be a locally integrable function, i.e.
∫

K
|f |dx < ∞

for all compact subsets K in Ω. To each such function, we can associate a
distribution f̃ :

f̃(g) =

∫
f(x)g(x)dx (g ∈ D).

This will be useful in extending the notion of the derivative to functions that
are not differentiable in the classical sense.

2.6.1 Derivatives of distributions

We have seen that there is an injective mapping from the set of integrable
function to the set of distributions. Our goal now is to extend the notion
of differentiation to the latter, so that we may in a sense speak of PDEs
operating on piecewise constant functions. First, we will need to lay some
foundations.

If T is a distribution and α is a multi-index, the distributional deriva-
tive ∂αT is the distribution defined by

∂αT = T ◦ (−D)α.

Let f be a function on Rn such that Dαf exists and is continuous. Define
the corresponding distribution f̃ . Then

∂αf̃ = (̃Dαf).

That is, the notion of distributional and standard derivative coincide when
both are meaningful. This is heartening.

We often say in a loose sense that the Dirac delta “function” is the “deriva-
tive” of the Heaviside function. In the distributional sense, we can make this
rather handwaving argument a lot more precise: Let H̃ be the 1-D Heaviside
distribution, and δ be the Dirac distribution at 0. Now for any test function
g,

(∂H̃)(g) = −H̃(Dg) = −
∫ ∞

0

g′dx = g(0)− g(∞) = g(0) = δ(g),

22 CHAPTER 2. MATHEMATICAL TOOLS

i.e., ∂H̃ = δ.
A piecewise constant function f can be seen as a sum of shifted and scaled

Heaviside functions and a constant:

f =
N∑

i=1

aiH(x− bi) + c.

Applying the distributional derivative of H̃,

∂f̃ =
N∑

i=1

aiδbi
(x).

This is not immediately useful unless we find a way to return it to the space
of piecewise constant functions. To do so, we must approximate the Dirac
distribution with some aptly chosen function.

2.7 Total Variation

It is often useful to define a measure of the complexity or tendency to oscillate
of a function. An important tool to this end is the total variation (TV)
norm. For a one-dimensional function f(x), this is defined as

TV (f) = sup
N∑

j=1

|f(xj)− f(xj−1)|,

where the supremum is taken over all subdivisions of the real line −∞ =
x0 < x1 < · · · < xN = ∞. For the total variation to be finite, f must
approach a constant as x → ±∞. Two simplifying cases are available. If f
is differentiable, the TV norm becomes

TV (f) =

∫ ∞

−∞
|f ′(x)|dx (2.1)

whereas for a piecewise constant grid function F we have

TV (F) =
∞∑

i=−∞
|Fi − Fi−1|.

Even if f is not differentiable in the classical sense, we can use (2.1) if we
interpret f ′(x) as the distribution derivative, including delta functions at
points where f is discontinuous. The multi-dimensional equivalent is

TV (f) =

∫

Ω

|∇f(x)|dx.

2.8. THE FRÉCHET DERIVATIVE 23

2.7.1 Bounded variation spaces

A function f ∈ L1(Ω) whose partial derivatives in the sense of distributions
are measures with finite total variation in Ω is called a function of bounded
variation. The class of all such functions is denoted BV (Ω). This space is
endowed with the norm

‖f‖BV = ‖f‖1 + ‖f‖TV ,

see, for instance, [18]. The space BV0(Ω) is the restriction of BV (Ω) to
functions that are zero on the boundary ∂Ω.

2.8 The Fréchet derivative

Having defined spaces of functions, we would like extend our calculus toolbox
to these spaces. First, we need a definition of the derivative. Let f : D → Y
be a mapping from an open set D in a normed linear space X into a normed
linear space Y . Let x ∈ D. If there is a bounded linear map A : X → Y
such that

lim
h→0

‖f(x + h)− f(x)− Ah‖
‖h‖ = 0

then f is said to be (Fréchet) differentiable at x. Furthermore, A is called
the (Fréchet) derivative of f at x. The next theorem, as found in [3], links
the idea of the Fréchet derivative to the gradient.

Theorem 1. Let f : Rn → R. If each of the partial derivatives Dif = ∂f/∂xi

exists in a neighborhood of x and is continuous at x then f ′(x) exists, and a
formula for it is

f ′(x)h =
n∑

i=1

Dif(x) · hi h = (h1, h2, . . . , hn) ∈ Rn

Speaking loosely, we say that the Fréchet derivative of f is given by the gra-
dient of f .

Several results from classic calculus can be extended to functional analy-
sis. For instance,

Theorem 2. Let f : D → Y, g : E → Z, where D is an open set in a
normed linear space X, E is an open set in a normed linear space Y , and Z
is a third normed space. If f is differentiable at x and g is differentiable at
f(x), then g ◦ f is differentiable at x, and

(g ◦ f)′(x) = g′(f(x)) ◦ f ′(x) (Chain Rule)

24 CHAPTER 2. MATHEMATICAL TOOLS

2.9 Integration by parts

We shall require the use of the general integration-by-parts formula. Turning
to the excellent textbook [5], we find the classical theorem:

Theorem 3. Let f, g ∈ C1(Ω̄). Then
∫

Ω

figdx = −
∫

Ω

fgidx +

∫

∂Ω

fgn(i)dS (2.2)

where subscripts denote partial derivatives, dS is the surface element and
n(i) is the ith part of the outward normal vector on ∂Ω.

2.10 Constrained extremum problems

Elementary calculus deals extensively with extremum problems. Given a
function f(x) defined on some domain Ω, we wish to find the points where
it takes its minimal and maximal values. If Ω is an open set, any extremum
x0 must satisfy f ′(x0) = 0, provided f ′(x0) exists. If f ′(x0) 6= 0, we can
move in/against the direction of the derivative and arrive at a point with
a higher/lower value of f . If we move a sufficiently short distance, we will
still be in Ω and f will be continuous, by the definition of open sets and
derivatives. If we are not in an open domain, extrema can occur at the
boundaries as well as in critical and non-differentiable points. This will tend
to complicate matters somewhat, as we have to check the boundaries as well
as the derivatives. We would like to handle this process in a more implicit
manner. First, we will introduce some more precise definitions. Let Ω be
an open set in a normed linear space, and let f, g : Ω 7→ R be continuously
differentiable functions. We define the set M = x ∈ Ω : g(x) = 0 and seek
extrema of f restricted to M , f |M . A maximization problem can be viewed
as a minimization problem of the negative of a function, thus we will simply
look at minimization from now on. Our problem reads

minf(x) subject to g(x) = 0. (2.3)

To make our lives simple, we want to frame this as an unconstrained mini-
mization instead. The toolbox for doing so is called the method of Lagrangian
multipliers. We introduce the Lagrangian function Λ as:

Λ(x, λ) = f +
∑

λkgk

where λ = (λ1, λ2, . . . , λm) is a vector of m scalars corresponding to the m
constraints embodied in the vector-valued function g = (g1(x), g2(x), . . . , gm(x)).

2.10. CONSTRAINED EXTREMUM PROBLEMS 25

We assert that solving the problem

∇Λ = 0

is equivalent to solving the constrained problem 2.3. Splitting the operator

∇ = ∇x +∇λ

so that ∇x and ∇λ represent the gradient with respect to x and λ, respec-
tively, we have:

∇Λ = 0 ⇐⇒ ∇xΛ = 0 ∧∇λΛ = 0.

Now

∇λΛ = 0 ⇒ g = 0

and

∇xΛ = 0 ⇒ ∇xf = −
∑

λk∇xgk ⇒ ∇xf = 0

thus proving the assertion.

2.10.1 Extension to function spaces

Let X and Y be real Banach spaces. Let U be an open subset of X and
introduce the functionals f : U → R and g : U → Y . We seek the minimum
of f subject to g being the zero element in Y :

min f(x) subject to x ∈ {U |g(x) = 0}. (2.4)

We extend the notion of Lagrange multipliers to function spaces:

λ : Y → R

and

Λ(x, λ) = f + λ(g).

An element x̂ minimizing (2.4) is then equivalent to

DΛ(x̂, λ) = 0

where D is the derivative with respect to x and λ.

26 CHAPTER 2. MATHEMATICAL TOOLS

2.11 Calculus of variations

The calculus of variations is a natural extension of extremum problems to
function spaces. Instead of finding the maxima and minima of functions over
a domain of numbers such as R3, we look for critical points of functionals
defined on function spaces. Define f : U → R as in the previous section. We
want to solve the minimization problem

x̂ = arg min
x∈U

f(x).

For v ∈ U such that ‖v‖ = 1, define the weak derivative of f in the direction
v as

df(x; v) = lim
ε→0

f(x + εv)− f(x)

ε
.

For a function x̂ to be a minimizer of f , a neccessary condition is the Euler-
Lagrange Equation:

df(x̂; v) = 0 ∀v ∈ U, (2.5)

x̂ is then a critical point of f .

Chapter 3

Surface Reconstruction

Scene reconstruction is the problem of inferring the scene that has resulted
in a set of observations. A scene consists of some incident light and a
number of objects interacting with the light. Interactions can be reflection,
refraction, occlusion, diffraction and so on. All of these interactions are well
understood and the problem of generating images of a given scene, known
as computer-generated imagery (CGI), is rather simple. The inverse
problem that we study, however, is not. In fact it is by nature ill-posed,
and additional conditions must be applied to remedy this.

3.1 Well-posedness

A problem is well-posed if it satisfies these criteria (see [5]):

1. There must exist a solution

2. The solution must be unique

3. The solution must be stable under small perturbations of the data

If our data is aquired from the real world, it would seem obvious that condi-
tion 1 is fulfilled. After all, some scene must have yielded the data. However,
even if a real answer exists, an algorithm designed to attain that answer may
not be solvable. If our method seeks the minimum of some functional, we
should first ascertain that such a minimum exists. As for the other condi-
tions, the nature of the problem gives cause for concern. Anyone who has
been to a house of mirrors or been fooled by an optical illusion knows that
a given observation can give rise to different interpretations. Also, matching
points between images is very sensitive to errors in the positions and values
of the points. In order to find a meaningful solution to our problem, we must
first make it well-posed. We do this by imposing additional constraints.

27

28 CHAPTER 3. SURFACE RECONSTRUCTION

3.1.1 Constraints

A very natural candidate is the celebrated Occam’s Razor. It states that
when several hypotheses explain our observations equally well, we should se-
lect the simplest one. In our case this means we should seek scenes made of
few and simple objects. Instead of finding scenes that exactly match our ob-
servations, we seek the scene that maximizes a combined score of data fidelity
and object simplicity. Data fidelity is measured as the distance between
the observed images and those predicted by our reconstruction. Object
simplicity is enforced by minimizing some relevant measure on the surfaces,
such as total variation (TV) or surface area. Judiciously chosen, the simplic-
ity constraint will make the problem satisfy both the latter well-posedness
criteria. Several scenes may fit the data, but selecting the simplest such scene
yields a unique solution. Stability comes from the neighbourhood effects of
the constraint. For instance, minimizing surface area will penalize outliers,
thus making the reconstruction less sensitive to noise. Once we know that
our problem is well-posed, we can get down to the business of solving it.

3.2 Forward model

The key to any inverse problem is an understanding of the processes that
formed the observations we have made. We thus need a model of the for-
mation of images from a scene. As mentioned earlier, this is a very common
problem and many different models exist. At the most general level, we
assume that the scene has an impulse response function and that this
function is linear. What this means is that a ray of light of a certain wave-
length and incident direction into the scene yields a certain illumination of
pixels in the observed images. Scaling the input intensity changes output
intensities by the same factor. Different wavelengths may have different im-
pulse response functions (for instance, the angles of refraction are different).
Knowing the impulse response of the scene thus amounts to knowing the re-
sponse at every pixel (2D) to incident light from any direction (2D) and any
wavelength (1D) for a total of 5 dimensions of data needed. We would like to
simplify our model greatly to make the inverse problem tractable. A model
can be formed from three parts: Reflectance, light and camera models.

3.2. FORWARD MODEL 29

3.2.1 Reflectance models

Bi-directional reflectance distribution function

If we disregard transparent volumes, the interaction between light and ob-
jects is simply a matter of reflection and absorption at each point of the
surfaces in the scene. Ideal, mirror-like surfaces will simply reflect light as
a ray at the same angle to the surface normal. However, most real-world
surfaces reflect light in a more complex manner. In general, for every inci-
dent angle, the light will be reflected in several directions. To completely
describe the reflectance of a surface point, we need to know the amount of
light reflected in every direction for every possible incident direction. Both
incident and reflected ray directions are described by two angles (azimuth
and elevation). A total description of the reflectance properties of a surface
is called the Bi-directional reflection distribution function (BRDF).
This function defines the amount of reflected light in a given direction (2D)
as a result of incident light from a given direction (2D) at a certain point on
the surface (2D). Thus, the BRDF is a 6-dimensional function. Depending
on the discretization size of surface and angle elements, storing the BRDF on
a computer can take up a prohibitive amount of space. Further simplification
is required.

Specular+diffuse

A popular model for the BRDF is the Specular+Diffuse model. The re-
flectance of a surface is the sum of a specular (mirror-like) and a diffuse
(cloth-like) term. Part of the light is absorbed, part spread equally in all
directions, and part reflected like from a mirror. At each point we now have
five scalar quantities to keep track of: Diffuse reflectance, specular reflectance
and RGB absorption values. This BRDF model is thus only 2-dimensional,
realizing huge storage savings. In his Ph.D. thesis, Hailin Jin[8] performs
surface reconstruction using this BRDF. However, this model may be overly
complicated in the case of Lambertian surfaces.

Diffuse only

A Lambertian surface exhibits only diffuse reflectance. This means that
any point on the surface has the same appearance from all angles. Obviously,
this property is helpful when trying to match points in different images of the
object. We now only need to store the colour (RGB) or intensity (grayscale)
of each point. This is known as a texture map.

30 CHAPTER 3. SURFACE RECONSTRUCTION

3.2.2 Light models

Raytracing

A classic but computationally expensive lighting model, raytracing is the
process of tracing rays of light from visible points to light sources to determine
illumination. Intuitively, one might want to reverse this, tracing the rays
from the light sources, but a large number of these rays never hit a visible
surface element and should be ignored. Using a raytracing model is very
ambitious - if successful, we would reconstruct not only the solids, but also
the light sources themselves. On the other hand, we would have to select
our constraints very carefully to ensure a well-posed problem. The use of
raytracing in scene reconstruction is a tempting avenue for future work, but
for now we focus on simpler models.

Figure 3.1: Rays are traced from the camera centre through every pixel. When
a ray hits a scene object, new rays are traced toward light sources to determine
illumination. Image: Wikimedia Commons.

Light map

If our surface is Lambertian, we can simplify our light model greatly. We
simply specify the total intensity of the incident light at each point. The
surface now supports a texture map and an intensity map. The observable
intensity at a point is the product of these functions. One challenge is now
to separate light effects from texture effects. For instance, a picture of a
globe could either be a globe-textured ball in neutral light, a white ball with
globe-textured light projected onto it, or anything inbetween. To make our

3.2. FORWARD MODEL 31

problem well-posed, we need to impose constraints on our maps. In typical
real-world scenarios, light sources are relatively smooth, while fine detail
comes from surface texture. To capture such scenes, we require the light
map to be smooth.

Intensity map

A less ambitious route is to combine the light and reflectance map into a single
intensity map. We consider only the intensity of a point, and not whether
it is due to light or texture. This simplified model has been very popular,
see for instance [8] and [4]. Once a surface model and intensity map have
been reconstructed, we can approximate the original scene by reprojecting
the intensity map onto the surface.

Statistical distribution

Finally, we can abandon all thoughts about texture and instead see the in-
tensity values on a surface as samples from a stochastic function. The surface
and background support distinct stochastic functions, giving the likelihood
of observing each intensity value. These functions can form the basis for an
a posteriori maximum likelihood estimate. We outline the use of this model
in surface reconstruction in Chapter 5.

3.2.3 Camera models

Having chosen our model for the interaction of objects and light, we need
to understand the process of image formation. In this section we will first
introduce a simplified but unrealistic model, and then build upon it to correct
for its shortcomings.

Pinhole camera

The word camera means “room”. The origin comes from camera obscura, a
“dark chamber” illuminated by a small aperture into a neighbouring room.
Light passing through the aperture would form an image of the next-door
scene on a sheet of canvas, and an artist could use this image as a guide to
more easily paint realistic portraits. Reducing the size of the chamber and
substituting photosensitive film for the painter yields the pinhole camera. In
the ideal case, the pinhole is just a point about which the scene is reflected
(Fig. 3.2) . In reality, pinhole sizes are restricted by diffraction. Light,
being an electromagnetic wave, spreads when passing through small open-
ings. See, for instance, the groundbreaking double-slit experiment of Thomas

32 CHAPTER 3. SURFACE RECONSTRUCTION

Young[17]. We appear to be at an impasse. Large apertures allow light from
a single point in the scene to illuminate a large region of the sensor, smearing
the image. On the other hand, small apertures spread the light, causing the
same problem. How can we remedy the situation? A humble piece of glass
may be the answer.

Figure 3.2: A pinhole camera. Light rays pass through the aperture, creating an
upside-down image of the object on the opposite wall. Image: Wikimedia Com-
mons.

Lens-based imaging

A convex lens focuses light, sending all rays of a given wavelength through one
point (called the optical centre). Points in the scene are mapped to points
on the sensor, creating sharp images. The downside is that only points at a
certain range are in focus. By adjusting the aperture we can change the size
of this depth of field (DOF). As long as the entire region of interest is within
the DOF, we can ignore the effects of lens focus. When our scene is in focus,
it is possible to create a one-to-one correspondence between camera pixels
and the closest surface points. This is needed in reconstruction. Although
the lens helps us get sharper images than with a pinhole camera, it introduces
some new problems of its own, all maneagable:

• Spherical aberration. When using spherical lens elements, light hit-
ting the edge of the lens has a different optical centre than light hitting
the centre. More advanced aspherical lenses seek to correct this.

3.3. SUMMARY 33

• Image distortion. Some lenses distort the geometry of scenes, map-
ping lines to curves. This distortion can be modelled and corrected in
post-processing.

• Chromatic aberration. Lenses use refraction to focus light. Unfor-
tunately, the refractive index of a lens is dependent of the wavelength
of light passing through it, causing the red, blue and green parts of an
image to be differently focused and shifted in relation to each other.
This can be fixed by the use of an apochromatic lens, by using only one
of the RGB channels (grayscale imaging), or in post-processing.

The process of determining an imaging system’s distortion parameters and
correcting for these is called camera calibration. When this has been done,
it should be possible to model the imaging system’s projection from scene co-
ordinates to camera coordinates by a projection matrix, and to account for
camera positions by a rotation matrix and a translation vector. Find-
ing these values is called camera resectioning. For a description of camera
calibration and resectioning, see [7]. A useful tool is the Camera Calibration
Toolbox for Matlab by Klaus Strobl et al. However, for the numerical exper-
iments in this thesis, we prefer to use datasets where camera calibration and
resectioning have already been performed, both to save time and to avoid
introducing additional error sources in our tests.

3.3 Summary

Having thus outlined the available models for reflectance, lighting and imag-
ing, we are ready to embark on the problem of scene reconstruction. Having
restricted ourselves to opaque objects, so that a scene can be described as
a collection of surfaces, our first order of the day is to find a suitable way
to mathematically describe surfaces. Our solution is the use of level sets,
defined in Chapter 4.

Chapter 4

Level Set Methods

In image processing, we often want to track moving regions and boundaries
such as curves and surfaces. This can be done explicitly, by defining and
tracking control points on the region and using some form of interpolation
to define the area between control points. However, this can require rather
complicated housekeeping (adding and removing control points as needed,
checking for self-intersections and so on). If the object changes significantly,
or undergoes topological changes such as merging or splitting, there are much
simpler options.

4.1 Level sets

For the above reasons, a static grid is desirable. However, we are trying to
track a moving region. If our object is an N -dimensional object embedded in
N+1-dimensional space, our grid must now cover at least those parts of RN+1

through which the object is expected to move. This added dimension is the
price we must pay for not having to track regions explicitly. Following Osher
and Sethian[12],we track our object as the zero level set of some function
defined in our region of interest Ω ∈ RN+1. I will outline two candidates for
such a function.

4.1.1 Signed distance function

A classical function used in level set methods is the signed distance func-
tion, defined as

φ =

dist(ξ, S) ξ outside S
0 ξ ∈ S
−dist(ξ, S) ξ inside S

,

35

36 CHAPTER 4. LEVEL SET METHODS

for ξ ∈ Ω. The volume of the region enclosed by S is defined as
∫

Ω

1−H(φ)dξ ,

where H is the Heaviside function. To define a measure on S itself, we
differentiate the Heaviside function with respect to spatial coordinates.

d

dξ
H(φ(ξ)) =

d

dφ
H(φ)∇φ(ξ) = δ(φ(ξ))∇φ(ξ)

in the distributional sense. The surface area of S is then

|S| =
∫

Ω

δ(φ(ξ))∇φ(ξ)dξ .

The good news is we’re still integrating over our entire grid and don’t have
to trouble ourselves with changing regions. The bad news is that we have
to make a discrete approximation to the impulse function δ, see for instance
[15]. Typically, these approximations tend to smear boundaries somewhat.
Another challenge is the fact that evolutions of the function tend to make it
stray from the ideal signed distance function, and it must be reinitalized. As
evidenced by the very common usage of this formulation, these problems are
manageable. But is it possible to introduce a framework that avoids these
issues altogether?

4.1.2 Piecewise constant function

In [11],the idea of using a piecewice constant function φ(ξ) to track regions
was introduced. The interior of each region is assigned a unique constant
value. A single function can define any given number of regions. For a set of
regions {Ωi}, i = {1, 2, . . . , n}, each region is defined as follows:

Ωi = {ξ : φ(ξ) = i}.

To each region we associate a characteristic function

ψi(ξ) =

{
1 ξ ∈ Ωi

0 elsewhere
.

These functions are defined as

ψi =
1

αi

n∏
j=1
j 6=i

(φ− j) and αi =
n∏

k=1
k 6=i

(i− k).

4.1. LEVEL SETS 37

Integrals over subregions can now be taken over the entire domain:

∫

Ωi

f(ξ)dξ =

∫

Ω

ψif(ξ)dξ.

The task of tracking the changing regions has been delegated to the basis
functions, which in effect become masks limiting the region of our integrals.
The area of the surfaces bounding the regions is

|Si| =
∫

Ω

|∇ψi|dξ. (4.1)

The volume of an object is easy to find:

|Ωi| =
∫

Ω

ψidξ.

Having defined our objects implicitly, verifying that basic properties such as
area and volume are readily available, we have developed a natural framework
for studying evolving surfaces. We will be testing this framework on a real-
world problem in Chapter 5.

Chapter 5

Probabilistic Surface
Reconstruction

Having laid out our toolbox in the previous Chapters, we are ready to begin
the task of computer vision proper. We want to test the PCLSM on the task
of surface reconstruction, using the pinhole camera model and stochastic
surface texture. Kolev[9] implemented such a scheme using signed distance
level sets; we will modify his algorithm to use the PCLSM instead.

5.1 Probabilistic functional

Our scene Ω consists of a solid region Ωobj and a transparent region Ωbck.
A background, which we shall not treat explicitly, exists outside Ω and is
visible through Ωbck whenever it is not occluded by Ωobj. A closed surface
S bounds Ωobj, separating it from Ωbck. A set of images {I1, . . . , In} with
associated perspective projections {π1, . . . , πn} detail the scene. We want to
find the surface Ŝ that best describes what the cameras see. This optimality
is framed as a maximum a posteriori likelihood:

Ŝ = arg max
S∈Λ

P (S|I)

where Λ is the set of closed surfaces in Ω, P (S|I) is the conditional probability
of S given I, and I

.
= {I1, . . . , In}. From Bayes’ formula we have

P (S|I) =
P (I|S)P (S)

P (I)
.

P (I) does not depend on S, and we can ignore it in the arg max problem. We
now need explicit functions P (I|S) and P (S). If we assume that the voxels

39

40 CHAPTER 5. PROBABILISTIC SURFACE RECONSTRUCTION

are independent, we arrive at

P (I|S) =

[∏

ξ∈Ω

P (I(π(ξ))|S)

]dξ

where I(π(ξ))
.
= {Ii(πi(ξ))}, i = 1 : n and dξ is one divided by the number

of voxels in Ω. Since a surface S defines a partitioning of Ω, we see that

P (S|I) ∝

 ∏

ξ∈Ωobj

Pobj(ξ) ·
∏

ξ∈Ωbck

Pbck(ξ)

dξ

· P (S)

where P(·)(ξ)
.
= P (I(π(ξ))|ξ ∈ Ω(·)). If we could assume independence be-

tween images, we could further specify these functions:

Pobj(ξ) =
n∏

i=1

P (Ii(πi(ξ))|ξ ∈ Ωobj)

Pbck(ξ) = 1−
n∏

i=1

[1− P (Ii(πi(ξ))|ξ ∈ Ωbck)].

The assymetry between the expressions is because a point on the object will
be observed as on the object by all cameras, whereas an point in the trans-
parent region around the object will be observed as background by at least
one camera, provided we have enough cameras to fully resolve the object.
These equations look promising, but they are based on a flawed assumption.
The images are all of the same object, and will obviously be highly corre-
lated. In fact, our problem would be impossible to solve otherwise! Instead,
we take the geometric mean of the individual probabilities, in effect giving
each image an equal “vote” on the true grayscale value of a point:

Pobj(ξ) = n

√√√√
n∏

i=1

P (Ii(πi(ξ))|ξ ∈ Ωobj)

Pbck(ξ) = 1− n

√√√√
n∏

i=1

[1− P (Ii(πi(ξ))|ξ ∈ Ωbck)].

For the conditional probabilities of intensity observations, we assume the
object and background support distinct stochastic functions. More precisely,
we posit Gaussian distributions of greyscale values on each region:

P (Ii(πi(ξ))|ξ ∈ Ω(·)) = f(Ii(πi(ξ)); µ(·), σ(·))

5.2. IMPLEMENTATION 41

where f is the probabiltity density function of the normal distribution:

f(x; µ, σ) =
1√

2π · σ · e
− (x−µ)2

2σ2 .

The mean and standard deviation parameters of the distributions can be set
manually or updated adaptively. If we are using an iterative algorithm to
approach Ŝ, we can update the values from the actual observations of the
current regions:

µ(·) = mean
ξ∈Ω(·)

(I(π(ξ))), σ(·) =
√

var
ξ∈Ω(·)

(I(π(ξ))).

Having defined a model for P (I|S), we choose a measure for P (S) that
maintains well-posedness (see Chapter 3). We consider complicated surfaces
to be less likely than simple ones:

P (S) = e−ν|S|

where ν is a positive constant that can be tuned to produce smoother sur-
faces at the expense of poorer data fitting. Putting the pieces together, our
problem reads

Ŝ = arg max
S∈Λ

 ∏

ξ∈Ωobj

Pobj(ξ) ·
∏

ξ∈Ωbck

Pbck(ξ)

dξ

· P (S).

Since all probabilities are nonnegative and the logarithm function is mono-
tonically rising, maximizing this functional is equivalent to maximizing its
logarithm. We take its negative to convert it into an energy minimization
problem:

Ŝ = arg min
S∈Λ

Ed(S)
.
= −

∑

ξ∈Ωobj

log(Pobj(ξ))dξ +
∑

ξ∈Ωbck

log(Pbck(ξ))dξ + ν|S|.

(5.1)
In the continuum limit the sums become integrals, and we will use this no-
tation for the rest of the Chapter, though the calculations are of course on a
finite grid.

5.2 Implementation

We wish to formulate (5.1) in the PCLSM framework. Following our discus-
sion in Chapter 4, we get:

E(φ) = −
∫

Ω

[ψobj log Pobj(ξ) + ψbck log Pbck(ξ)]dξ + ν

∫

Ω

|∇ψobj|dξ.

42 CHAPTER 5. PROBABILISTIC SURFACE RECONSTRUCTION

Since we are only dealing with two regions, we can simplify our level set
framework by apt choices of the constant values:

φ(ξ) =

{
1, ξ ∈ Ωobj

0, ξ ∈ Ωbck

The final version of the functional reads

E(φ) = −
∫

Ω

[φ(ξ) log Pobj(ξ) + (1− φ(ξ) log Pbck(ξ)]dξ + ν

∫

Ω

|∇φ(ξ)|dξ

subject to
K(φ)

.
= φ(φ− 1) = 0

to keep the piecewise constant level set function φ valued either 0 or 1 at each
point. We recognize this as a constrained minimization problem amenable
to the method of Lagrangian multipliers. We augment the functional with a
Lagrangian term:

Λ(φ, λ) = E(φ) + λ̃(K(φ))

where

λ̃(K) =

∫

Ω

λK(φ)dξ

is the distribution corresponding to λ ∈ BV0(Ω). To find a minimum point
we need to solve the Euler-Lagrange equation:

dΛ(φ, λ; u, v) = 0 ∀u, v ∈ BV0(Ω),

cf. (2.5). Splitting the operator, we have

dE(φ; u) + d

[∫

Ω

λK(φ)dξ

]
(φ; u) = 0

and

d

[∫

Ω

λK(φ)

]
(λ; v) = 0.

Solutions of the augmented functional correspond to saddle points. We need
to minimize Λ(φ, λ) with respect to φ and maximize it with respect to λ. To
find this critical point, we use a gradient descent method. The derivatives
of our augmented functional with respect to φ and λ give gradient directions
in function space. Locally, moving φ in the negative of this direction will
decrease the functional value. Similarly, we move λ in the positive gradient
direction. If we repeat this iteratively, using sufficiently small steps, we will
move toward local minima. Starting with a sensible initialization φ0, λ0, we

5.2. IMPLEMENTATION 43

hope to converge to a global minimizer for the constrained problem. To this
end, we introduce an artificial time parameter t, arriving at these PDEs:

∂φ

∂t
=

∂Λ

∂φ
φ|t=0 = φ0

∂λ

∂t
=

∂Λ

∂λ
λ|t=0 = λ0

To find the derivatives of Λ we need to employ weak differentiation. We shall
show the process for the most difficult part of our functional; the other parts
are similar but easier. We need to find the weak derivative d[

∫
Ω
|∇φ|dξ](φ; u)

for an arbitrary u ∈ BV0(Ω).

d[

∫

Ω

|∇φ|dξ](φ; u) = lim
ε→0

∫

Ω

|∇(φ + εu)| − |∇φ|
ε

dξ

=

∫

Ω

lim
ε→0

|∇(φ + εu)| − |∇φ|
ε

· |∇(φ + εu)|+ |∇φ|
|∇(φ + εu)|+ |∇φ|dξ

=

∫

Ω

lim
ε→0

(∇(φ + εu))2 − (∇φ)2

ε(|∇(φ + εu)|+ |∇φ|)dξ

=

∫

Ω

lim
ε→0

ε∇φ · ∇u + ε2(∇(u))2

ε(|∇(φ + εu)|+ |∇φ|)dξ

=

∫

Ω

∇φ

2|∇φ|∇udξ

We now turn to the integration by parts formula (Eq. 2.2). Define the vector

w =
∇φ

2|∇φ| = (w(1), w(2), w(3)).

For each i,
∫

Ω

uxi
w(i)dξ = −

∫

Ω

uw(i)
xi

dξ +

∫

∂Ω

uw(i)n(i)dS.

Since u ∈ BV0(Ω), the last term is zero. Summing over i, we get:

∫

Ω

∇φ

2|∇φ|∇udξ = −1

2

∫

Ω

∇ ·
(∇φ

|∇φ|
)

udξ.

Putting this part in with the rest of the terms in our weakly differentiated
functional, we get that

−
∫

Ω

[
log Pbck − log Pobj − ν

2
∇ ·

(∇φ

|∇φ|
)

+ λ(2φ− 1)

]
udξ = 0

44 CHAPTER 5. PROBABILISTIC SURFACE RECONSTRUCTION

for all u ∈ BV0(Ω). For this to be true for any u, the functional in the
brackets must be everywhere zero. Together with a similar condition from
the weak derivative with respect to λ, this the Euler-Lagrange condition
for our algorithm:

log Pbck − log Pobj − ν

2
∇ ·

(∇φ

|∇φ|
)

+ λ(2φ− 1) = 0 (5.2)

K(φ) = 0 (5.3)

yielding the evolution equations

∂φ

∂t
= − log Pbck + log Pobj +

ν

2
∇ ·

(∇φ

|∇φ|
)
− λ(2φ− 1) (5.4)

∂λ

∂t
= K(φ). (5.5)

To solve these coupled PDEs, we adapt the algorithm from the original
PCLSM paper [11]:

Algorithm. Initialize φ0 and λ0. for k = 1 do:

• Find µobj, σobj, µbck and σbck from

µ(·) = mean

(
n∑

i=1

∫

Ω

Ii(πi(ξ))ψ(·)dξ

)

and

σ(·) = std

(
n∑

i=1

∫

Ω

Ii(πi(ξ))ψ(·)dξ

)
.

• Update the level set:

φk = φk−1 +4t
∂L(φk−1, λk−1)

∂φ

given the statistical parameters.

• Update the Lagrangian multiplier by

λk = λk−1 + rK(φ).

• if not converged: Set k = k + 1 and return to step 1.

5.2. IMPLEMENTATION 45

A few hitches are apparent in this algorithm. First, the means and stan-
dard deviations take into account all points in the relevant volumes, not only
points that are visible from a given camera. This is the best we can do when
not dealing with visibility issues. The effect of this solution will be to give
extra weight to the values of points on the surface where the volume is thick.
We do not suspect that this will be a large problem, but there are other
reasons to consider visibility as well. We will discuss this in the future work
section. Another problem is the fact that while φ will be close to 0 and 1
at convergence, it may stray far from this ideal during iterations. This may
affect the accuracy of the surface measure. We would do well to monitor the
magnitude of K(φ) during iteration.

Chapter 6

Graph Cuts

In Chapter 5 we have seen how our functional can be minimized using an
augmented Lagrangian/steepest descent method. While this method imposes
a heavy computational burden, it is conceptually intuitive and suitable to a
very general class of problems. However, as is often the case in compu-
tational mathematics, we can trade simplicity for computational efficiency.
An emerging field in the image processing community is the use of so-called
graph cuts. Many problems can be interpreted as a labeling problem, i.e. we
want to classify points into one of two groups. To each such assignment is
associated a certain cost, and we want to globally minimize the cost of our
assignments. If this cost functional satisfies certain criteria, it is possible to
establish a one-to-one correspondence between this labeling problem and the
min cut/max flow problem in graph theory. This is a much studied prob-
lem, and highly efficient algorithms exist for its solution. Typically, a speed
increase of several orders of magnitude can be achieved when the graph cut
method is employed. In addition, the method is guaranteed to achieve a
global minimum, and requires less human attention due to the lack of tuning
parameters. Though the speed of computers is still on the rise, we should
not expect the emphasis on efficient algorithms to abate. Typically, faster
machines allow the solution of more difficult problems that were practically
impossible before. Also, many image processing algorithms have their utility
greatly increased if they can be run in real-time on commonplace hardware.
This steady “mission creep” ensures that there will always be a need for
efficiency.

47

48 CHAPTER 6. GRAPH CUTS

6.1 Relation to reconstruction problem

Due to the speed and guaranteed global minimization of graph cut algo-
rithms, we wish to formulate our reconstruction functional as a max flow
problem. Single-object reconstruction can be viewed as a voxel labelling
problem. We seek to label each volume element (voxel) in our region of in-
terest Ω as part of the object or the background. To each voxel in Ω we
assign a node in the graph. A cut C defines a labelling of all voxels, with the
nodes in the source set corresponding to foreground voxels. If we are able
to define edge weights that make the cost of any cut equal to the energy of
the corresponding reconstruction functional, the min-cut algorithm will solve
our problem. The definition of edge weights is the main challenge in graph
cut formulations. A significant part of this chapter will deal with this.

6.2 Edge weights

Let us first review the Kolev functional:

E(S) = −
∫

Vobj

log Pobj(ξ)dx−
∫

Vbck

log Pbck(ξ)dξ + v|S|.

If we fix the mean and standard deviation, the first two integrals are separable
in the sense that the classification of any single point into background or
foreground does not affect the contribution of any other points. This allows
a simple representation in graph cut form. We add an edge from the source
node to each voxel node, and one from each voxel node to the sink node. The
capacities of the source and sink edges is equal to the cost of labelling the
node as background or foreground, respectively. If not for the regularization
term, we would be done now. Adding edge weights that represent this term
will prove to be more difficult.

6.2.1 Representing surface area

We have the choice of two paradigms for surface area representation. Recall
from (4.1) that the area of the surface enclosing a volume is given by the
total variation of its characteristic function:

|Si| =
∫

Ω

|∇ψi|dx.

6.2. EDGE WEIGHTS 49

Ideally, we would like to use the TV2-norm, as it is anisotropic. In our finite
difference framework this becomes

∑

i,j,k

δ
√
|ψi+1,j,k − ψi,j,k|2 + |ψi,j+1,k − ψi,j,k|2 + |ψi,j,k+1 − ψi,j,k|2

where δ is the volume of a grid cell. However, to be graph-representable, the
function must be separable into a sum of functions of two points at a time.
These simple functions can then be represented by weighted edges between
the nodes corresponding to these points. A discussion of this fact and an
extension to functions of three points at a time (though with added ‘dummy’
nodes) can be found in [10]. Obviously, the TV2-norm can not be separated
in this way. We could fall back to the TV1-norm

∑

i,j,k

δ(|ψi+1,j,k − ψi,j,k|+ |ψi,j+1,k − ψi,j,k|+ |ψi,j,k+1 − ψi,j,k|),

but this is anisotropic and would favour blocky surfaces. A solution might
be to use a weighted sum of rotated total variation norms, as outlined for
the 2D case in [13]:

TV1, π
4
(u) =

1

2
(TV1(u) + TV1(Rπ

4
(u)))

where Rπ
4

is the operator which rotates its argument π
4

radians. We need to
generalize this result to three dimensions, and will give more precise defini-
tions in that discussion.

π
4
-isotropic TV1-norm in 3D

In the 2D case, it is possible to make the norm isotropic under any rotation
that is a multiple of π

4
. In 3D, this is impractical because there is an infinite

number of rotation directions. We must settle for making our norm invariant
under a subset of the possible rotations. We base our weights on the dis-
cussion in [1]. This paper discusses norms in rather general 3-D Riemannian
spaces and is a bit too involved to summarize here. We resign ourselves to
merely simplifying their result to our regular 3-D grid:

wk =
4x4y4z4θk

π|ek|3 .

wk is the flow constraint on the arc from a node to its neighbour with rel-
ative position ek. 4x, . . . are the grid size parameters. 4θk = 4ψk4φk is
the angular discretization step of the neighbourhood system. To make this

50 CHAPTER 6. GRAPH CUTS

slightly less obscure, we will take as an example a 6-neighbourhood system on
a Cartesian grid. In this case, 4x = 4y = 4z = δ, all ek are canonical unit
vectors, and 4ψk = 4φk = π/2 for all k. All edge weights are thus equal

to wk = δ3π2/4
πδ3 = π

4
. Since we multiply the surface measure by a smoothing

factor, we can meld it with this factor and thus need not pay much atten-
tion to the discussion here. For other neighbourhood systems, we are not so
lucky. However, if we restrict ourselves to Cartesian grids and discretize the
sphere with equal steps, the non-constant part of the edge weights is simply
a division by the cube of the length of the vector ek. To save ourselves from
headaches, we shall put all other terms into the smoothing parameter w.

6.3 Graph construction

We construct a graph G = (N ,A) thus:

• N consists of a source node s, a sink node t and a node nabc for each
voxel ξabc = ξ0 + a · dx~i + b · dy~j + c · dz~k in the grid.

• A has three types of members:

– An arc (s, nabc) from the source node s to each interior node with
associated flow constraint

usnabc
= Pair(ξabc) = 1− n

√√√√
n∏

i=1

[1− P (Ii(πi(ξabc))|ξabc ∈ Vair)].

– An arc (nabc, t) from each interior node to the sink node t with
associated flow constraint

unabct = Pobj(ξabc)
n

√√√√
n∏

i=1

P (Ii(πi(ξabc))|ξabc ∈ Vobj). (6.1)

– Neighbourhood arcs. In a 6-neighbourhood, arcs from each inte-
rior node nabc to n(a−1)bc, n(a+1)bc, na(b−1)c, . . . , nab(c+1), each with
weight w. For other neighbourhoods, see the discussion in Section
6.2.1.

6.4 Pseudocode

read images and coordinates

6.5. IMPLEMENTATION 51

create grid
while not converged do

create graph
for all voxels in grid do

add node to graph
add edges to source and sink node
add edges to nodes corresponding to neighbourhood
add weight to source node edge: Pbck

add weight to sink node edge: cost of classifying as Pobj

add weights to neighbourhood edges: surface area representation
end for
solve min-cut problem
update mean and deviation from new partitioning

end while

6.5 Implementation

We define the flow constraint in Section 6.3. We use a combination of MAT-
LAB and C++ for this part. MATLAB is useful for its intuitive and powerful
handling of 3D graphics, but is rather slow when running nested for loops
like our code does. Our code constructs the graph whose maximum flow
solves the minimization problem; for the task of solving the max-flow prob-
lem itself we gratefully use the library provided by Boykov and Kolmogorov
[2]. Camera parameters and images are read in MATLAB and processed to
form an k×l×m×n array of intensity values, where k, l and m is the grid size
and n is the number of cameras. For each point x, y, z in the grid and each
camera i, we find the value Ii(πi(x, y, z)) “seen” by camera i at that point.
This array is then written to a file in a format amenable to being read by our
C++ program. Once read, we use these values in the calculation of the Pobj

and Pbck values central to the Kolev algorithm. Finally, we construct a graph
with appropriate weights and solve it using the Boykov-Kolmogorov library.
Since the graph-cut solver is not iterative, we cannot update the statistical
parameters continually like in the gradient descent method. Instead, we run
the graph cut solver, calculate new parameters and feed them back into the
solver. We hope to show experimentally that this method quickly converges
and is still faster than the gradient descent method.

Chapter 7

Results

Having defined and implemented our surface reconstruction algorithms, the
time has come to put them to the test. For the test we need a suitable dataset:
A collection of pictures of an object, with known camera locations. Gener-
ating usable datasets is a meticulous task and well beyond the scope of this
thesis. We have used a dataset provided by the vision group at Middlebury
College as part of a project comparing stereo reconstruction algorithms[14].
This dataset is a plaster reproduction of the temple of the Dioskouroi in
Agrigento, Sicily. We use the 16-image “sparse ring” set; some views are
included in figure 7.1. Since the model has a relatively uniform hue, little
information is lost by using greyscale versions of the images. We choose the
red channel.

Figure 7.1: 3 out of 16 views from the sparse ring temple dataset. The images
have been rotated to be upright.

The camera perspective projection is modelled by a matrix K, equal for

53

54 CHAPTER 7. RESULTS

all images in the set. Each camera view i is also represented by a rotation
matrix Ri and translation vector ti.

t1 R1 K
-0.0727 0.0219 0.9833 -0.1807 1520.4 0 302.3
0.0223 0.9986 -0.0127 0.0520 0 1525.9 246.9
0.6146 0.0488 -0.1816 -0.9822 0 0 1

Table 7.1: Example translation vector, rotation and perspective projection matrices
corresponding to image 1 in the sparse ring temple dataset.

7.1 Gradient descent version

In this section we test the gradient-descent augmented Lagrangian solver for
the PCLSM version of the Kolev algorithm. We want to test the visual qual-
ity of a high-resolution reconstruction, its tolerance to noise and robustness
when faced with sparse datasets.

7.1.1 PCLSM test 1: Temple dataset, high resolution

We define a grid yielding a tight bounding box around the temple. The rel-
atively high resolution of 160x100x70 is chosen, yielding 1,12 million volume
elements (“voxels”). These numbers correspond roughly to the aspect ratios
of the bounding box, yielding roughly cubic voxels. This is not required by
our algorithm, but there seems no reason to use a different resolution in each
principal direction. The initial surface is selected rather carelessly as a prism
at an arbitrary location in the interior of the grid. It is our working hypoth-
esis that the algorithm is quite robust in the face of poor initializations, as
long as we do not create deliberately pathological cases. We run 50 iterations
at a time, recording the updated statistical values and evolved surfaces. As
the evolution of the surface seems to slow down, we increase the value of the
term r pulling the solution toward ±1.

Grid size dx dy dz dt n
160× 100× 70 0.00103 0.00101 0.00109 0.1 16

µobj σobj µbck σbck ν r
0.4538 0.3091 0.3896 0.3215 10−6 10−8

Table 7.2: Initial values for running example 1. The averages and standard devi-
ations have been calculated from the initial surface.

7.1. GRADIENT DESCENT VERSION 55

(a) Initial surface (b) 50 timesteps

(c) 100 timesteps (d) 750 timesteps

Figure 7.2: The evolving surface at t = 0, t = 50, t = 100 and at convergence
(t = 750). Sharp edges near the edge of the grid are due to truncation.

56 CHAPTER 7. RESULTS

We run the algorithm in chunks of 50 timesteps and evaluate the results.
Isosurfaces of the level set function at 0 is shown in 7.2. We see that there is
little change from t = 0 to t = 50 and a comparatively large leap from t = 50
to t = 100. This is because a point in the background set, initialized to −1,
will still register as a background point until it passes 0. We do not know what
values are the best for monitoring convergence; we stopped iterations when
max dL < 0.1, the number of new object voxels after 50 timesteps was less
than 1/1000 the total number of grid cells, and the object showed no visible
evolution. This is probably a conservative estimate. The converged surface
is encouragingly life-like, but we observe a few spurious free-floating voxel
clusters. We know that the temple model is a single compact object, and we
would like our reconstruction to reflect that. Taking the converged surface as
the initial surface of a new evolution, we increase the smoothing parameter
ν from 10−6 to 10−4. As seen in Figure 7.3b, this successfully removes most
outliers, but also seems to have an adverse effect on the reconstruction of one
of the columns. Increasing ν to 10−3 removes remaining outliers, but also
the mentioned column in its entirety.

7.1.2 PCLSM test 2: Heavy Gaussian noise

An advantage of the probabilistic approach as opposed to local correspon-
dence methods is robustness to noise. We want to test the ability of our
algorithm to recover a surface from images that have been heavily affected
by noise. First, we find the average of the standard deviations of our original
images, σ̄I = 0.2608. We corrupt each image with additive Gaussian noise
of the same standard deviation, for a signal-to-noise ratio of 1 : 1. This is
a significant amount that would be devastating to any algorithm depending
on gradients in the image domain.

Our first attempt is to use the same näıve initialization we employed in
example 1. However, the algorithm fails to converge, probably due to the
similarity of the means in the initialized regions. We try another approach.
We manually select two regions in one of the images, one representing the
background and one representing the object, see Figure 7.4a. We calculate
the statistics of these regions and fix them as inputs for our algorithm. We
set the smoothing term ν and constraint term r to zero, allowing us to do
large timesteps. Taking three steps with dt = 1 yields a very rough initial
guess as seen in Figure 7.4b. The method outlined here is akin to a simple
tresholding, which is sometimes used as the initial guess for 2-D segmenta-
tion. Since we want a smooth result, we apply smoothing to the level set
function using MATLAB’s smooth3 and halve the resolution in each direc-
tion. With this degree of noise any high resolution details will be spurious

7.1. GRADIENT DESCENT VERSION 57

(a) ν = 10−4

(b) ν = 10−3

Figure 7.3: Reconstructed surface using gradient descent/PCLSM method. 3-D
view and principal silhouettes for two different values of smoothing parameter ν.

58 CHAPTER 7. RESULTS

at any rate. Finally, we constrain this smoothed function to the values ±1
and use this as our initial surface. Since we are dealing with very noisy data,
we set our smoothing term to ν = 10−3. This requires a short time step, but
since we have a reasonably good initial guess, we hope to see swift conver-
gence nevertheless. We set r = 10−8 and dt = 10−3. In this experiment our
algorithm faces a problem. At low smoothing settings, we do not get a con-
tinuous object. At higher settings, the surface shrinks away. We suspect this
is due to the high standard deviations making it easier for the background set
to aquire the darkest parts of the object set; this in turn increases the mean
and standard deviation of the background set and so on. This feedback loop
eventually causes the surface to shrink away altogether. To remedy this, we
try fixing the statistical parameters at the initial values.This has the added
advantage of increasing the running speed by about 70%, since the statistics
updating subroutine does not fully take advantage of the array optimiza-
tions in MATLAB. By making this change we are straying away from our
true algorithm. Future versions may be made adaptive, updating statistical
parameters less often when noise is high. This will make convergence slower
but increase stability.

7.1.3 PCLSM test 3: 4 temple images

In real scenarios, the number of input images might be small. We want to test
the performance of our algorithm in this case. We manually select 4 out of
the 16 images from the temple sparse ring dataset. We try to select images
with clear silhouettes and from views that are far apart. Our algorithm
does not apply local correspondence and needs such cues to give acceptable
results. With so little data to work with, we need a relatively large smoothing
parameter to make the algorithm stable. The result of running the algorithm
to convergence with the parameter ν set to 2 · 10−4 is shown in Figure 7.5a.
The result looks fairly decent, but we see that the temple now has 6 columns
instead of 4! This is because the locations of the spurious extra columns were
hidden behind or in front of other columns in all our views, and thus were
“seen” as object points by all cameras. Apart from this the reconstruction
has some outliers and artifacts, but is still surprisingly good.

7.1. GRADIENT DESCENT VERSION 59

(a) Regions representative of object and
background.

(b) Crude reconstruction based on statis-
tics from regions in Figure 7.4a.

(c) Smoothed version of 7.4b (d) Surface at convergence of fixed-
statistics iteration

Figure 7.4: Running example with noisy input images.

60 CHAPTER 7. RESULTS

(a) Gradient descent, ν = 2 · 10−4. (b) Graph cuts, w = 5 · 10−4.

Figure 7.5: Recovered surfaces from 4 images.

7.2 Graph cut version

Here we test the graph cut version of our algorithm, using the temple dataset.
The graph cut method is popular mainly for its running speed, but due to
the surface measure challenges outlined in Section 6.2.1, we suspect that
smoothed surfaces will have anisotropic artifacts. We will run a test with
several different values of the smoothing parameter w. As w is increased we
expect to see more anisotropic artifacts as well as slightly increased running
time, since the algorithm is O(mnk̂) where k̂ is the cost of the minimum cut.
Testing shows insignificant change after the second iteration, we shall use 5
iterations in our running examples to be safe.

7.2.1 GC test 1: 6-n surface measure, varying w.

We apply the graph cut solver to the temple sparse ring dataset, using a
6-neighbourhood surface norm and varying values of the smoothing term w.
Reconstructed surfaces for various values of w are shown in Figure 7.6. We
see that this algorithm tends to include more voxels in the object, making it
thicker. Also note the severe anisotropic artifacts as the smoothing parameter
is increased. Reconstructions (e) and (f) are probably unusable for most

7.2. GRAPH CUT VERSION 61

applications. On the bright side, note that the algorithm converges to a
stable result even when w = 0. Given more noise or aberrations in the input
images, this might not be the case.

(a) w = 0 (b) w = 10−6 (c) w = 10−5

(d) w = 10−4 (e) w = 10−3 (f) w = 2 · 10−3

Figure 7.6: Reconstructed surfaces using graph cut solver with 6-neighbourhood
surface measure and varying smoothing parameter w.

7.2.2 GC test 2: Gaussian noise

To check the performance of the graph cut algorithm in the presence of noise,
we run an experiment on the Gaussian-corrupted input images from running
example 2. We test different values of the smoothing parameter w. We hope
that sufficient smoothing will be attained before anisotropic artifacts appear.
The results are shown in Figure 7.7. As can be seen, the last two values yield
decent results, though (c) still has some outliers and (d) is showing mild
anisotropic artifacts. By contrast, the result in Figure 7.4d is pleasingly
smooth but shows some residual noise. Recall that to even get that result

62 CHAPTER 7. RESULTS

we had to fix the statistics at reasonable values. The graph cut method is
commendably stable even in the presence of noise.

7.2.3 GC test 3: 4 temple images

Having tested the gradient descent method on a sparse set of images, we want
to compare its performance to the graph cut method. We use the same input
images, and set the smoothing parameter w to 5 ∗ 10−4. To try to minimize
the anisotropy artifacts, we use a fairly high resolution of 160× 100× 70. As
can be seen in Figure 7.5b, the result is fairly similar. The graph cut method
is a lot more blocky, but it is also more resistant to noise (fewer outliers). It
is also a lot faster.

7.2.4 GC test 4: 26-n surface measure

The blockiness of the graph cut method is a severe disadvantage. In an
effort to remedy the situation, we extend the surface measure from a 6-
neighbourhood to a full 26-neighbourhood. This will make the surface mea-
sure invariant under some fractional rotations, though not fully isotropic.
Also we can expect the method to be a lot slower, since it is of order mnk̂
and we increase the number of edges per node from 8 to 28. We define edge
weights as per the discussion in Section 6.2.1, using all the simplifying as-
sumptions we can. As a result, the value for w here is not directly comparable
to the w-values of the 6-neighbourhood system. The results of this experi-
ment is shown in Figure 7.8. Surprisingly, only the two largest tested values
of w show significant increase in running time over the 6-n system. This
may be because these are the only reconstructions to deviate seriously from
the ground truth; this might make the solutions less “obvious” and prolong
running times.

7.2. GRAPH CUT VERSION 63

(a) w = 0. (b) w = 10−5.

(c) w = 5 · 10−5. (d) w = 10−4

Figure 7.7: Graph cut reconstruction of 1:1 SNR Gaussian-corrupted images.

64 CHAPTER 7. RESULTS

(a) w = 5 · 10−6, T = 295s (b) w = 10−4, T = 316s

(c) w = 2.5 · 10−4, T = 404s (d) w = 5 · 10−4, T = 712s

Figure 7.8: 26-n reconstructed surfaces for different edge weights w, with running
times T .

Chapter 8

Discussion

In this thesis we have looked at two interesting frameworks for representing
surfaces for the purpose of functional minimization. We have implemented
the classic Kolev algorithm using both these frameworks; this allows us to
compare them and elucidate their strengths and weaknesses. To wit:

• The PCLSM is a very general representation that allows very many
different questions to be asked. Combined with the gradient descent
method it shows somewhat slow convergence; this is exacerbated by
factors that require small timesteps, such as a large smoothing term.
On the plus side, it allows for a very natural extension to multiple
volumes.

• The graph cut method is highly specialized; functionals to be minimized
must be framed in a very precise manner to be graph representable.
Many questions can not be posed as graphs at all. The algorithm is
very fast, especially when combined with max flow solvers that exploit
the peculiarities that image processing graphs often share. When a
problem is represented as a graph, it has a very attractive guaranteed
global minimum property. The lack of tuning or “fudge” parameters
means less interaction from the user is needed, which saves work and
increases the repeatability of experiments. Traditional isotropic surface
area measures are not graph representible, and we must resign ourselves
to anisotropic norms. We have tested a simple 6-neighbourhood and a
more complex 26-neighbourhood norm; the latter yields better results
but is slower and requires more thought in its implementation.

It is clear that both of these tools have a future, as they are suited to different
tasks. Though the graph cut solver is attractive in problems where speed is
essential, it is unable to handle global effects such as rotations of objects and
visibility constraints.

65

66 CHAPTER 8. DISCUSSION

8.1 Future work

Though the imagination knows no bounds, a M.Sc. project has a deadline
and we have not been able to pursue all ideas sparked by our research. In
this section we will outline some of the avenues we chose not to go down.

8.1.1 Visibility

Perhaps the greatest flaw in our algorithms is the simplifying disregard for
visibility considerations. When classifying a voxel as object or background,
this is not a big problem - interior voxels are seen as “object-colored” by all
cameras, and are correctly identified as part of the object. However, in the
statistics-updating step, failing to consider visibility means “thick” parts of
the object are given undue weight. Ways of calculating visibility exist - rays
traced through each pixel from the optical centre can find the closest surface
voxel, yielding both a one-to-one correspondence between camera pixels and
object voxels and a depth map for each image. A visibility function
χi(ξ) : Ω → [0, 1] can be associated with each camera i, defined as

χi(ξ) =

{
1 if ξ is visible from camera i
0 otherwise

(8.1)

This function would have to be updated after every iteration of the graph-
cut algorithm or every few iterations of the level set algorithm. Handling
visibility will also allow some other extension to our algorithms.

8.1.2 Multiple object reconstruction

The idea of a single, reasonably homogeneous object surrounded by air and a
simple background is fine in laboratory conditions, but in real-life scenarios
we may need more complex models. If we assume that our object consists
of several object regions Ωj, j = {1, 2, . . . , m} as well as the background
region Ω0, we can define different intensity distributions on each object and
thus capture more complicated scenes. In order to do this, however, we need
visibility tracking. If an object is occluded by another in one image, we can’t
use information from that image to say anything about the occluded object.
We use (8.1) to restrict the images used in the labelling of a voxel. For
instance, refer back to (6.1). Adding a visibility constraint, we get

unabc;mt = Pm(ξabc) = ñ

√√√√√
ñ∏

i=1
χi(ξ)=1

P (Ii(πi(ξabc))|ξabc ∈ Vm)

8.1. FUTURE WORK 67

where ñ =
∑

i χi(ξabc). What we have done here is to take the product and
root over only the pixels where the object is visible. Note also that we speak
of node nabc;m instead of node nabc - in the multi-object case, each voxel needs
to be represented by one node for each object. Instead of an edge from the
source s to nabc and one from nabc to the sink t, we now have a succession of
edges from s to nabc;1, nabc;1 to nabc;2 and so on until the sink. Each edge has
a constraint equal to the cost of assigning the voxel to the relevant object.
Using the PCLSM method, multi-object handling is easier, as has been noted
in Chapter 4.

8.1.3 Automatic camera calibration

One of the greatest problems we faced in testing our algorithm was find-
ing datasets with calibrated camera coordinates. In many situations these
data are incomplete or unavailable. We would like to extend our algorithm
to automatically find camera positions. Given a known object, this would
perhaps not be very difficult. However, since the reconstruction of the ob-
ject depends on the calibration and the calibration depends on the object,
we have to be very careful. A joint minimization may be our best bet. In
addition to minimizing with respect to the surface S, we now also need to
minimize with respect to camera parameters Ki, Ri and ti for each camera i.
We could make our functional explicitly dependent on these parameters and
try to find an Euler-Lagrange condition that would minimize the energy. The
PCLSM method may be able to solve this, but we remain pessimistic that
this can be done using graph cut methods. This is because a small change
in camera coordinates will affect all voxels at the same time, thus violating
the graph representability demands.

8.1.4 Volumetric reconstruction

Since both our algorithm reconstruct complete volumes in order to find sur-
faces, it would be possible to expand them to include volume effects. This
could range from simple things like transparency and different intensities at
different depths to complicated things like sub-surface scattering and refrac-
tion inside the volumes. To deal with transparency we would need to classify
the depth of each voxel relative to a surface, this would be analogous to a
“partial” visibility function that is continuously graded between 0 and 1.

68 CHAPTER 8. DISCUSSION

8.1.5 Moving volume tracking

If our dataset is a movie rather than a set of images taken at the same time,
we need to track object movement and deformation. To make the problem
tractable, we would need to assume that the object is relatively constant
from one frame to the next - that its movement and deformation speed has
a given maximum. The recovered surface from one frame can be used as the
initialization for recovering the surface in the next, and deviations from this
shape and position can be penalized. A simplifying assumption could be that
the camera and background are immobile. Simple image subtraction could
then recover moving objects and give our algorithm a boost.

Bibliography

[1] Yuri Boykov and Vladimir Kolmogorov. Computing geodesics and min-
imal surfaces via graph cuts. International Conference on Computer
Vision, 2003.

[2] Yuri Boykov and Vladimir Kolmogorov. An Experimental Comparison
of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004.

[3] Ward Cheney. Analysis for Applied Mathematics. Springer-Verlag, 2001.

[4] Carlos Hernández Esteban and Francis Schmitt. Silhouette and stereo
fusion for 3d object modeling. Technical report, Ecole Nationale
Supérieure des Télécommunications, 2004.

[5] Lawrence C. Evans. Partial Differential Equations. American Mathe-
matical Society, 1998.

[6] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University
Press, 1962.

[7] Janne Heikkilä and Olli Silvén. A four-step camera calibration procedure
with implicit image correction. Technical report, University of Oulu,
Finland, 1997.

[8] Hailin Jin. Variational Methods for Shape Reconstruction in Computer
Vision. PhD thesis, Washington University, 2003.

[9] Kalin Kolev, Thomas Brox, and Daniel Cremers. Robust Variational
Segmentation of 3D Objects from Multiple Views. Technical report,
CVPR Group, University of Bonn, 06.

[10] Vladimir Kolmogorov and Ramin Zabih. What Energy Functions Can
Be Minimized via Graph Cuts? IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2004.

69

70 BIBLIOGRAPHY

[11] Johan Lie, Marius Lysaker, and Xue-Cheng Tai. A Piecewise Constant
Level Set Framework. International Journal of Numerical Analysis and
Modeling, 2005.

[12] Stanley Osher and James A. Sethian. Fronts propagating with curvature
dependent speed: Algorithms based on Hamilton-Jacobi formulations.
Journal of Computational Physics, 1988.

[13] F. Ranchin, A. Chambolle, and F. Dibos. Total variation minimiza-
tion and graph cuts for moving objects segmentation. Technical report,
Université Paris Dauphine; Ecole Polytechnique; Université Paris 13, 08.

[14] Steven M. Seitz, Brian Curless, James Diebel, Daniel Scharstein, and
Richard Szeliski. A comparison and evaluation of multi-view stereo re-
construction algorithms. Technical report, University of Washington;
Stanford University; Middlebury College; Microsoft Research, 2006.

[15] Xue-Cheng Tai and Tony Chan. A Survey on Multiple Level Set Methods
with Applications for Identifying Piecewise Constant Functions. Inter-
national Journal Of Numerical Analysis and Modeling, 04.

[16] Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, and Keying
Ye. Probability & Statistics for Engineers & Scientists. Prentice Hall,
2002.

[17] Thomas Young. A Course of Lectures on Natural Philosophy and the
Mechanical Arts. Taylor and Walton, 1807.

[18] William P. Ziemer. Weakly Differentiable Functions. Springer-Verlag,
1989.

