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1IntrodutionThe theory of partial di�erential equations (PDE) is a subjet that has found its way intoall branhes of siene and engineering due to its wide range of appliations. Numerialalulation is ommonplae today in �elds where it was virtually unknown before 1950.Some onsider the elebrated 1928 paper of Courant, Friedrihs and Lewy as the birthdateof the modern theory of numerial methods for partial di�erential equations. The alge-brai solution of �nite di�erene approximations is best aomplished by some iterationproedure. Finite di�erene approximations for derivatives were already in use by Euler in1768 and various shemes have been proposed to aelerate the onvergene of the iteration.Aurate modelling of the interation between onvetive and di�usive proesses is a hal-lenging task in the numerial approximation of PDE. This is partly beause of the problemsthemselves, their great variety and widespread ourrene. Mathematial models that in-volve a ombination of onvetive and di�usive proesses are among the area of primeresearh interest and widespread in all of siene, engineering and other �elds where math-ematial modelling is important. Very often the dimensionless parameter that measures therelative strength of the di�usion is quite small, so one often meets with situations wherethin boundary and interior layers are present and singular perturbation problems arise.There are many physial systems in whih paraboli equations are oupled to hyperboliequations so that two (or more) transport phenomena must be alulated simultaneously.Problems whih inorporate ideal �uid motion and some other transport proess, suh asheat transfer, have mathematial models whih are oupled equations of mixed paraboli-hyperboli type. In all suh irumstanes di�ulties will be experiened with standardnumerial approximations. Thus a very large literature has built up over the last fewdeades on a variety of tehniques for analysing and overoming these di�ulties.Disontinuous solutions do not satisfy the partial di�erential equation in the lassial senseat all points, sine the derivatives are not de�ned at disontinuities. We have to de�newhat we mean by a solution to a onservation law in this ase.Sine the partial di�erential equation ontinues to hold exept at disontinuities, we sup-ply the di�erential equations by additional �jump ondition� that must be satis�ed arossdisontinuities. We may derive additional onditions using the integral form of the onser-vation law sine the integral form ontinues to be valid even for disontinuous solutions.Unfortunately integral forms are more di�ult to work with than di�erential equations,espeially in terms of disretizations shemes. Another mathematial di�ulty is possiblenonuniqueness of solutions . Often there is more than one solution to the onservationlaw with the same initial data. This is a onsequene due to the physial e�ets ignoredbeause equations are only simpli�ed models of reality. To obtain unique and hopefullyphysial orret solutions, we have to supply an additional ondition. This so-alled en-tropy ondition will help us to pik the orret so-alled weak solution to the originalpartial di�erential equations. In general it is not possible to derive exat solutions to theseequations, so we need to devise and study numerial methods for their approximate solu-



2tion. The general theory of numerial methods for nonlinear PDEs applies in partiularto systems of onservation laws, but there are several reasons for studying this partiularlass of equations. Many pratial problems in siene and engineering involve onservedquantities and lead to PDEs of this lass. As noted above, there are speial di�ultieslike shok formation assoiated with these time dependent systems of nonlinear partialdi�erential equations. When we attempt to alulate weak solutions numerially, we faeseveral problems. Most important, the disretization shemes for the PDE must be ableto handle disontinuities in the solution. Ideally we would like to have a simple numeri-al method produing sharp approximations to disontinuous solutions without exessivesmearing. However, simple methods like the �rst order upwind shemes typially produeexessive numerial smearing.Relaxation approximation to nonlinear partial di�erential equations have been introduedon the basis of the replaement of the equations with a suitable semilinear hyperboli sys-tem with sti� relaxation terms. Relaxation shemes are a lass of nonosillatory numerialshemes for systems of onservation laws proposed by Jin and Xin [22℄. They are moti-vated by relaxation models for �ow whih are not in thermodynami equilibrium, i.e. theyonstitute more general and more aurate models of ertain physial phenomena. Themain advantage of numerially solving the relaxation model over the original onservationlaws lies in the simple struture of the linear harateristi �elds and the loalised lowerorder term. In partiular, the semilinear nature of the relaxation system gives a new wayto develop numerial shemes that are simple, general and Riemann solver free. The Rie-mann solver is more aurate, but the prie to pay is that the numerial methods beomeompliated to implement and time-onsuming. The approah is inspired by relaxationshemes where the nonlinearity inside the equation is replaed by a semilinearity. Thisredution is arried out in order to obtain numerial shemes that are easy to implement,also for more general and omplex problems.In Chapter 1 we start out by looking at the Initial Value Problem for a one-dimensionalsalar nonlinear degenerate paraboli onvetion-di�usion equation. We introdue themixed paraboli-hyperboli problem before moving to the numerial methods we will useto approximate the Initial Value problem. The hapter inludes also some basi de�nitionsand notations, assumptions on the data of the paraboli onvetion-di�usion equation. InChapter 2 we establish the existene of weak solutions. Chapter 3 presents the RelaxationShemes for both the pure hyperboli ase and the di�usion equation. In Chapter 4 wederive L∞ and L1 estimates on the approximate solutions of the relaxation system and westate the Entropy solutions. Then we develop the numerial shemes in Chapter 5, while aonvergene result is proved in Chapter 6. In Chapter 7 we present numerial experiments.Finally, we summarise the onlusions and look at possible improvements and further work.



Chapter 1Initial Value Problem
The aim of this work is to analyse from both a theoretial and omputational point of viewthe relaxation shemes to approximate the Initial Value problem for a one-dimensionalsalar nonlinear degenerate paraboli onvetion-di�usion equations of the type

{

ut + f(γ(x), u)x = B(u)xx, (x, t) ∈ Π
T

= R× (0,T).

u(x, 0) = u0(x) x ∈ R.
(1.1)The speial aspet for this problem is the ombination between the onvetive part and thedi�usion part B(u)xx. The nonlinear onvetive �ux funtion depends expliitly on spatialloation through the oe�ient γ(x), that may be disontinuous. The di�usion funtion

B(u)xx is allowed to be strongly degenerate, in the sense that B′(·) ≥ 0.When we list the assumptions for the problem in setion (1.3), we will see that the loselyrelated hyperboli onservation laws with a disontinuous oe�ient will also be inluded.The purely onvetive version of (1.1) is obtained when B′(u) ≡ 0, whih means that thedi�usion part degenerates, i.e. B'(u) may vanish for some values for u.
ut + f(γ(x), u)x = 0. (1.2)Paraboli Convetion-Di�usion equations (1.1) are of great importane sine they govern avariety of physial phenomena. To name a few of the interesting problems of the type (1.1),we mention �uid mehanis, �ow in porous media, sedimentation-onsolidation proesses.A physial model orresponding to the onvetive version of (1.1) is the model of artra� �ow in a highway. The spatially varying oe�ient γ orresponds to hanging roadonditions. We mention also appliations modeling the displaement of oil in a reservoir bywater and polymer. Multiphase �ow problems in porous materials give rise to somewhatdi�ult systems of onservation laws. One important appliation area is seondary oilreovery, in whih water is pumped down one well in an e�ort to fore more oil out of3



4 Initial Value Problemother wells, see [25℄. The onvetion-di�usion equations also arise in front propagation and�nanial modeling.Computation of ertain physial problems, for example a �uid �ow, requires numerialresolution of the small sales in order to trak the underlying physial properties in greatdetail. This is rather demanding and often annot be done satisfatorily. Thus one wouldbe satis�ed if ritial properties are aptured (at the marosopi level). In suh a ase,it is desirable to design underresolved numerial methods. We aim to develop shemesthat allow the use of underresolved disretization, ∆t >> ǫ. We will develop numerialmethods that are suitable for underresolved alulation, meaning that one an still apturethe marosopi physial behaviour without numerially solving the small sale by usingmesh size and time step muh larger than the small sale parameter. Suh a solution isreferred to as the underresolved solution.Using the same notations as Jin and Xin [22℄, we all the disretization of the Relaxationsystems Relaxing Shemes, whih depends on ǫ and the arti�ial variable v. We also derivezero relaxation limit of these Relaxing Shemes and all the limiting shemes the RelaxedShemes, obtained in the limit ǫ → 0. By applying the Chapman-Enskog expansion tothe relaxing shemes (for �xed grids and ǫ → 0) we an also formally derive the relaxedshemes that are the leading order approximation of the relaxing shemes in the small ǫlimit. These relaxed shemes are onsistent and stable disretizations of the original on-servation laws. Here by Relaxation Shemes we indiate both the relaxing Shemes andthe relaxed shemes. When ǫ is very small the relaxing shemes and the relaxed shemesprodue essentially the same results.We will propose a di�usive relaxation approximation for the nonlinear paraboli di�usiveequation, based on the same idea used on hyperboli onservation laws. A splitting methodapproah to the problem will also be onsidered. Several relaxation approximation to par-tial di�erential equations have been reently proposed. We have seen earlier numerialapproahes that work for relaxation systems where both the relaxation term and the on-vetion term are sti�, shemes that work independently on ǫ.The idea in this work is to study how these di�usive relaxation shemes perform when weuse them on a mixed onvetion-di�usion problem where the �ux funtion has a disontin-uous oe�ient and the di�usion part may degenerate, whih then hanges the problem toa purely hyperboli ase. We will onentrate the study on the sti� regime for the system,where ǫ << 1, and the �ux funtion is onvex. We will also propose the relaxed shemesfor these numerial approximations and ompare their ability to apture the paraboli be-haviour.In the hyperboli ase, we will study a di�erent approah proving the onvergene ofthe approximate solution u(x,t). We attempt to establish onvergene of the relaxationapproximation (3.1) using the Singular Mapping approah. In the literatures analysingnumerial approximations and in some of the papers ited in this work, onvergene ofnumerial methods for onservation laws with disontinuous oe�ients has been estab-



1.1 Basi De�nitions and Notation 5lished by the singular mapping approah and ompensated ompatness method. Hereinwe use instead the singular mapping to study the behaviour of the relaxed sheme sinethe leading order behaviour of the relaxing shemes is governed by the relaxed shemes as
ǫ→ 0+. We will show that the pieewise onstant funtion onstruted by the solution ofthe relaxed sheme onverges to the entropy solution of the problem.1.1 Basi De�nitions and NotationIn this setion we de�ne notations that will be used in the text and we introdue somede�nitions.supp f: The support of a ontinuous funtion f(x) de�ned on Rn is the losure of theset of points where f(x) is nonzero: supp f = x ∈Rn : f(x) 6= 0.A set in Rn is bounded if it is ontained in a ball BR(0) with R su�iently large. Thelosed bounded sets in Rn are the ompat sets. If supp f is bounded, we say f has om-pat support and denote suh funtions by C0(R

n).sup: The supremum norm: ‖v‖∞ = sup|v(x)|.We have a domain Ω ⊂ Rn:
L1(Ω) : A funtion f de�ned on a domain Ω is integrable if ∫

Ω
|f(x)|x is de�ned and �nite.We denote all suh funtions by L1(Ω).

L1
loc(Ω): When we onsider a larger spae. Funtions whih are "loally" integrable: In-tegrable on any ompat subset of Ω, but not neessarily integrable at the boundary of Ωor at in�nity.

L∞(Ω): measurable real valued funtions whih are bounded. C(Ω) and C1(Ω) : Wedenote the ontinuous funtions on Ω by C(Ω), and those whose �rst order derivatives arealso ontinuous by C1(Ω). Similarly Ck(Ω) denotes the funtions having all derivativesup to the order k ontinuous on Ω.Lipshitz ontinuity : We use this property when we require a ertain amount of smooth-ness in the funtion. A funtion f(u, t) is Lipshitz ontinuous in u over some range of tand u, if there exists some onstant L>0 so that
|f(u, t)− f(u∗, t)| ≤ L|u− u∗|for all u and u∗ .This is slightly stronger than mere ontinuity, whih only requires that

|f(u)− f(u∗)| → 0 as u→ u∗.If f(u,t) is di�erentiable with respet to u and the derivative fu = ∂f/∂u is bounded thenwe an take L = max|fu(u, t)|.Lipshitz onstant: The size of the Lipshitz onstant is important when we intend tosolve the problem numerially sine our numerial approximation will almost ertainly pro-due a value un at time tn that is not exatly equal to the true value u(tn). Hene we are



6 Initial Value Problemon a di�erent urve than the true solution.The Lipshitz onstant gives an indiation of whether solution urves that start lose to-gether an be expeted to stay lose together or to diverge rapidly.Nonlinear Stability.When we attempt to solve nonlinear onservation laws numeriallywe run into additional di�ulties not seen in the linear equation. Moreover, the nonlin-earity makes everything harder to analyse. For nonlinear problems the method might be�nonlinearly unstable�, i.e., unstable on the nonlinear problem even though linearised ver-sions appear to be stable. Often osillations will trigger nonlinear instabilities. In order toprove a onvergene result we must de�ne an appropriate notion of stability. Convergenenotions and disussions done by Lax and Wendro� suggest that we an hope to orretlyapproximate disontinuous weak solutions to the onservation law by using a onservativemethod. The theorem does not guarantee onvergene, nontheless, this is a very powerfuland important theorem, for it says that we an have on�dene in solutions we ompute.Theorem 1.1.1. (LAX-WENDROFF) Consider a sequene of grids indexed by l= 1,2,...,with mesh parameters kl, hl → 0 as l →∞. Let Ul(x, t) denote the numerial approximationomputed with a onsistent and onservative method on the lth grid. Suppose that Ulonverges to a funtion u as l → ∞. Then u(x,t) is a weak solution of the onservationlaw.The above theorem suggests that we an hope to orretly approximate disontinuousweak solutions to the onservative law by using a onservative method. Lax and Wendro�proved that this is true, at least in the sense that if we onverge to some funtion u(x,t)as the grid is re�ned, through some sequene kl,hl → 0, then this funtion will in fat bea weak solution of the onservation law. But the Lax-Wendro� [10℄ theorem does not sayanything about whether the method onverges, only that if a sequene of approximationsonverges then the limit is a weak solution. To guarantee onvergene, we need some formof stability.The Lax Equivalene Theorem an no longer be used to prove onvergene sine that ap-proah relies heavily on linearity. For nonlinear problems the primary tools used to proveonvergene is ompatness. We will de�ne this onept and indiate its use for our goalsof de�ning stability and proving onvergene.In relation to our goals of de�ning stability and proving onvergene, we will use the impor-tant property that ompatness guarantees the existene of onvergent subsequenes andombine it with the Lax-Wendro� Theorem. To get onvergene of the whole sequenein question and not just the subsequene, we need to ombine the suitable ompatnessargument with a uniqueness result.If K is a ompat set in some normed spae, then any in�nite sequene of elements of
K,{k1, k2, k3, . . .} ontains a subsequene whih onverges to an element of k. This meansthat from the original sequene we an, by seleting ertain elements from this sequene,onstrut a new in�nite sequene



1.1 Basi De�nitions and Notation 7
{ki1, ki2, ki3, . . .} (i1 < i2 < i3 < . . .), whih onverges to some element k ∈ K.

‖ kij − k ‖→ 0 when j →∞.Total Variation Stability.Let Uk denote the numerial approximation generated by a numerial method in onserva-tive form. We measure the global error in our approximation by the distane from Uk(x, t)to the set of all weak solutions
W = {ω:ω(x, t) is a weak solution to the onservation law}. To measure this distane weneed a norm, for example the 1-norm over the �nite time interval [0,T℄. The global erroris then de�ned by

dist(Uk,W) = infω∈W‖Uk − ω‖1,T .If Uk is generated by a numerial method in onservation form, onsistent with the onser-vation law, and if the method is, stable in some appropriate sense, then dist(Uk,W)→ 0as k → 0. In situations where there is a unique physially relevant weak solution satisfyingsome entropy ondition, we would show onvergene to this partiular weak solution.In order to obtain a ompat set in L1, we put a bound on the total variation of thefuntions.The set
{v ∈ L, TV (v) ≤ R, and supp(v) ⊂ [−M,M ]}is a ompat set, M,R > 0, and any sequene of funtions with uniformly bounded totalvariation and support must ontain onvergent subsequenes.TV denotes the Total Variation Funtion. Per de�nition,
TV (v) = sup

N∑

j=1

|v(xj)− v(xj−1)|where the supremum is taken over all subdivisions of the real line −∞ = x0 < x1 < ... <
xN = ∞. For the total variation to be �nite v must approah onstant values v±∞ as
x→ ±∞.Sine the numerial approximations Uk are funtions of x and t, we need to bound theTotal Variation in both spae and time. De�ning the total variation over the time interval[0,T℄ by
TVT (u) = lim

ǫ→0
sup

1

ǫ

∫ T

0

∫ ∞

−∞
|u(x+ ǫ, t)− u(x, t)|dxdt+lim

ǫ→0
sup

1

ǫ

∫ T

0

∫ ∞

−∞
|u(x, t+ ǫ)− u(x, t)|dxdt.



8 Initial Value ProblemThe set K de�ned above an be shown to be a ompat set in L1,T,
K = u ∈ L1,T : TVT (u) ≤ R and (u(·, t)) ⊂ [−M,M ] ∀t ∈ [0, T ]. (1.3)We will say that a numerial method is total variation stable, TV-stable, if all the ap-proximations Uk for k < ko lie in some �xed set of the form (1.3). If Uk is generatedby a numerial method in onservation form with a Lipshitz ontinuous numerial �ux,onsistent with a onservation law, then the method is TV-stable if TV (Un) is uniformlybounded for all n, k with k < ko, nk ≤ T.Total Variation Stability guarantees onvergene in the sense that dist(Uk,W) → 0 as

k → 0. One way to ensure TV-stability is to require that the total variation be nonin-reasing as time evolves, so that the total variation at any time is uniformly bounded bythe total variation of the initial data.1.2 Assumptions on the data of the problem (1.1)Let us detail the assumptions that we need to impose on the data of the the problem (1.1).For the nonlinear degenerate paraboli onvetion-di�usion initial value problem we keeptime T > 0 �xed. u(x, t) is the salar unknown funtion that is sought, and the �uxfuntion f(γ,u), the oe�ient γ(x), the di�usion funtion B and the initial funtion u0are given funtions to be detailed.For the oe�ient γ, we assume that
γ(x) ∈ [γ, γ] ∀x ∈ R, for some onstants γ, γ, |γ(x)| > 0 a.e on R.We assume that γ belongs to the Bounded Variation of R, denoted BV(R), and alsoallowed to be disontinuous. The onvetion part of (1.1) depends expliitly on the spatialloation through γ(x) and this dependeny may be disontinuous. The oe�ient γ(x)varies in spae and is assumed to be pieewise C1 with �nitely many jumps in γ and γ′,loated in ζ1 < ζ2 < . . . < ζM.For the onvetive �ux funtion f, we assume that
f : R→ R; f(γ, 0) = f0 ∈ R ∀γ, f(γ, 1) = f1 ∈ R ∀γ. (1.4)We look in the interval [0,1℄ and the purpose of this assumption is to guarantee that asolution initially in the interval [0,1℄ remains in [0,1℄ for all subsequent times. Assume thatf is Lipshitz ontinuous in eah variable:
|f(γ, u)− f(γ, v)| ≤ ‖fu‖|u− v| ∀γ, ∀u, v ∈ U.For a ompat set U. The solution u is essentially bounded, providing us with
u(x, t) ∈ U, ∀(x, t) ∈ ΠT , f ∈ Lip

(

[γ, γ]× [0, 1]
)

.



1.2 Assumptions on the data of the problem (1.1) 9With this assumption the partial derivatives fγ, fu, exist almost everywhere.
‖fu(γ, u)‖ > 0, ‖fγ(γ, u)‖ > 0 for almost all u ∈ [0, 1],and ‖fγ‖∞ and ‖fu‖∞ are Lipshitz onstants of f w.r.t γ and u. Let
f+

u (γ, u) = max(0, fu(γ, u)), f−
u (γ, u) = min(0, fu(γ, u)).We require the tehnial assumption that fu is Lipshitz ontinuous as a funtion of γ,with Lipshitz onstant Luγ .It follows then that f+

u and f−u are also Lipshitz ontinuous in γ with the same Lipshitzonstant. Lipshitz onstants measure how muh �ux funtions hange. We adopt theassumptions from [14, 15℄.Assume that for eah γ ∈ [γ, γ], there exist a unique maximum u∗(γ) ∈ [0, 1] suh that
f(γ, .) is stritly inreasing for u < u∗(γ) and f(γ, .) is stritly dereasing for u > u∗(γ).We assume that the di�usion funtion B belongs to Lip([0, 1]) with Lipshitz onstant
‖B′‖.The degenerate paraboliity ondition holds:

B(·) ∈ C2[0, 1]; B(·) is nondereasing with B(0) = 0.This ondition is why (1.1) is refered to as a mixed hyperboli-paraboli problem. Theondition is general enough to inlude as a speial ase of (1.1) the hyperboli onservationlaw with disontinuous oe�ient.We make the following simplifying assumption.Suppose B degenerates, is onstant on a �nite set of disjoint intervals:
B′(r) = 0 ∀r ∈

K⋃

i=1

[αi, βi] = Γ where αi < βi i = 1 : K,K ≥ 1.On these intervals, (1.1) ats as a pure hyperboli equation.B is non-degenerate o� these intervals, whih means that B is stritly inreasing and (1.1)behaves as a paraboli problem on
[0, 1] \ Γ. B′(r) > 0 ∀r /∈

M⋃

i=1

[αi, βi].The maximum u∗(γ) is assumed to lie either in Γ, or lies in the losure of [0, 1] \ Γ ∀γ;Max B′(r) > 0, r ∈ [0, 1].



10 Initial Value ProblemAssume that the integrable bounded initial funtion u0 satis�es
u0 ∈ L1(R) ∩BV (R), u0(x) ∈ [0, 1]∀x ∈ R,

B(u0) is absolutely ontinuous on R,

B(u0)x ∈ BV(R).







(1.5)
B(u0) being absolutely ontinuous demands that any jump in u0 must be ontained withinone of the intervals [αi, βi] where B is onstant.Independently of the smoothness of γ , if (1.1) is allowed to degenerate at ertain points,that is, B′(r) = 0 for some values of r, we annot expet the solution to be smooth. Wemust look at weak solutions. On the other hand, if B′(r) is zero on an interval [αi, βi],weak solutions may be disontinuous and they are not uniquely determined by their initialdata. Consequently, an entropy ondition must be imposed to single out the physiallyorret solution. We will here assume that there exist at least one interval [αi, βi] on whih
B′ is zero. Whih means that equation (1.1) may possess disontinuous solutions.



Chapter 2Existene of weak solutions
In this setion we will present the main results that establish the existene of weak solutionsto the Cauhy problem for a one-dimensional salar degenerate paraboli equation with a�ux funtion that depends expliitly on the spatial position trough a oe�ient γ(x) thatmay be disontinuous. The proof an be found in [13℄ .Independently of the smoothness of γ(x), if (1.1) is allowed to degenerate (beome zero) atertain points, that is B′(r) = 0 for some values of r, solutions are not neessarily smoothand we need to �nd weak solutions.The basi idea is to multiply (1.1) by a smooth test funtion, integrate one or more timesover the domain, and then use integration by parts to move derivatives o� the funtion uand on to the smooth test funtion. The result is an equation involving fewer derivativeson u, and hene requiring less smoothness.A weak solution is de�ned as followsDe�nition 2.0.1. A funtion u(x, t) ∈ L1(ΠT )

⋂
L∞(ΠT ) is a weak solution of the InitialValue Problem (1.1) if it satis�es the following onditions:i) B(u) is ontinuous and B(u)x ∈ L∞(ΠT ).ii) For all test funtions φ ∈ D(ΠT ) suh that φ|t=T = 0,

∫∫

Q

T

(

uφt + (f(γ(x), u)−B(u)x)φx

)

dxdt+

∫

R

u0(x)φ(x, 0) = 0. (2.1)On the other hand, if B′(r) = 0 is zero on an interval [α, β], weak solutions may be dis-ontinuous and therefore not uniquely determined by their initial data. As a onsequene,an entropy ondition must be imposed to single out the physially orret solution.If γ(x) is su�iently smooth, a weak solution u(x, t) satis�es the entropy ondition if, see[14, 15℄, all onvex C2 entropy funtions η(u), η : R → R, and orresponding entropy�uxes q(γ(x),u),
η(u)t+(q(γ(x), u))x+r(u)xx+γ′(x)

[

η′(u)fγ(γ(x), u)−qγ(γ(x), u)
]

≤ 0 ∈ D′(ΠT ), (2.2)11



12 Existene of weak solutionswhere (η, q) is is the onvex C2 entropy-entropy �ux pair and r : R → R is de�ned by
r′(u) = η′(u)B′(u).For the hyperboli part, the entropy ondition is given by

η(u)t + q(γ(x), u)x + γ′(x)(η′(u)fγ(γ(x), u)− qγ(γ(x), u)) ≤ 0 (2.3)where qu(γ(x), u) = η′(u)fu(γ(x), u).We an show this inequality.In the �rst part of equation (2.3) we suppose that the entropy funtion η(u) satis�es aonservation law of the form
η(u)t + q(γ(x), u)x = 0, (2.4)for some entropy �ux q.Then we obtain from this, for smooth u,
η′(u)ut + qγ(γ(x), u)γ

′(x)ux = 0. (2.5)In the seond part, we reall that the hyperboli equation (1.2) an be written as
ut + fγ(γ(x), u)γ

′(x)ux = 0. (2.6)We multiply with η′(u),
η′(u)ut + η′(u)fγ(γ(x), u)γ

′(x)ux = 0, (2.7)and ompare with (2.5),
qγ(γ(x), u)γ

′(x)ux = η′(u)fγ(γ(x), u)γ
′(x)ux,

⇒ γ′(x)[η′(u)fγ(γ(x), u)− qγ(γ(x), u)] ≤ 0.Here we �nd again the de�nition for q,
q : R→ R,

qu(γ(x), u) = η′(u)fu(γ(x), u),and we reover the entropy ondition for the hyperboli part. By standard limiting argu-ment, the former entropy ondition implies the Kružkov-type entropy ondition given in,see e.g. [14℄.
|u− c|t+

[

sign(u−c)(f(γ(x), u)−f(γ(x), c))
]

x
+|B(u)− B(c)|xx+γ

′(x)sign(u−c)fγ(γ(x), c) ≤ 0(2.8)



Existene of weak solutions 13holds in D′(ΠT ), for all c ∈ R. The Sign funtion is de�ned by
Sign(s) =







−1 s < 0,
0 s = 0,
1 s < 0.The entropy solution desribed above breaks down when γ(x) is disontinuous. We an usea Kružkov-type entropy inequality, see e.g. [15, 8℄ to �nd a de�nition for entropy solutionfor the situation where γ(x) is disontinuous. This ondition is often more onvenient towork with in the sense that it ombines the de�nition of a weak solution with that of theentropy ondition. The spatially varying oe�ient γ(x) has �nitely many jumps in γ and

γ′, loated at ξ1 < ξ2 < ... < ξM. The following de�nition is suggested in [15℄.De�nition 2.0.2 (Entropy solution). A weak solution u of the IVP (1.1) is alled anentropy solution, if the following Kružkov-type entropy inequality holds for all c ∈ R andall test funtions 0 ≤ φ ∈ D(ΠT ):
∫∫

Q

T

(

|u− c|φt + sign(u− c)(f(γ(x), u)− f(γ(x), c))φx + |B(u)−B(c)|φxx

)

dtdx

−
∫∫

Q

T \ξm
M
m=1

sign(u− c)f(γ(x), c)xφdtdx

+

∫ T

0

M∑

m=1

|f(γ(ξm+), c)− f(γ(ξm−), c)|φ(ξm, t)dt ≥ 0.

(2.9)
As was mentioned in the introdution for this setion, we will only present the existeneresults and the main theorems. The main referene for the existene proof of a weak solu-tion of (1.1) is the reent paper by Karlsen, Risebro and Towers [13℄. They prove also theuniqueness of the onstruted weak solution.They aim at proving existene of a weak solution to (1.1) when γ(x) may depend dis-ontinuously on x. They derive their results using the assumption that f(γ(x),u) is ofmultipliative form γ(x)f(u). This form will simplify slightly some of the formulas.Existene of a weak solution is proved by passing to the limit as ǫ ↓ 0 in a suitable sequene
{uǫ}ǫ>0 of smooth approximations solving the problem above with the �ux γ(x)f(·) re-plaed by γǫ(x)f(·) and the di�usion funtion B(·) replaed by Bǫ(·), where γǫ(·) is smoothand B′

ǫ(·) > 0. In their paper the existene of a weak solution is proved by establishingonvergene of a suitable sequene of smooth funtions solving regularised problems. Let
ωǫ ∈ C∞

0 (R) be a nonnegative funtion satisfying
ω(x) = ω(−x), ω(x) ≡ 0 for |z| ≥ 1,

∫

R
ω(z)dz = 1.For ǫ > 0, let ωǫ(x) = 1

ǫ
ω(x

ǫ
) and introdue the �smoothed� oe�ient

γǫ = ωǫ ⋆ γ.



14 Existene of weak solutionsDe�ne the approximate initial funtion
u0ǫ = ωǫ ⋆ u0.Observe that u0ǫ ∈ C∞(R) and

u0ǫ → u0 a.e in R and in LP(R) for any p ∈ [1,∞) as ǫ ↓ 0.We then let uǫ be the unique lassial solution of the uniformly paraboli problem
{

∂tuǫ + ∂x(γǫ(x)f(uǫ)) = ∂2
xBǫ(uǫ), (x, t) ∈ ΠT ,

uǫ(x, 0) = u0ǫ(x), x ∈ R,
(2.10)where Bǫ(u) = B(u) + ǫu.Roughly speaking, their main theorem an be stated as follows:The sequene of {uǫ}ǫ>0 onverges strongly in L1 to a weak solution u of (1.1). Furthermore,a subsequene of {Bǫ(uǫ)}ǫ>0 onverges uniformly on ompat sets to a Hölder ontinuousfuntion that oinides with B(u) a.e.Sine γ(·) may be disontinuous, the total variation |uǫ|BV annot be bounded uniformlywith respet to ǫ > 0. The lak of variation bound prevents an appliation of the standardBounded Variation (BV) ompatness argument to {uǫ}ǫ>0. To irumvent this analytialdi�ulty, they establish instead strong ompatness of the di�usion funtion {Bǫ(uǫ)}ǫ>0as well as the �total �ux� {γǫ(x)f(uǫ) − ∂xBǫ(uǫ)}ǫ>0. This strong ompatness togetherwith some a priori estimates on the �total �ux� will make it possible for them to use theompensated ompatness method to obtain the desired strong onvergene. The �rstlemma gives uniform L1 and L∞ estimates on uǫ.Lemma 2.0.1. There exists a onstant C > 0, independent of ǫ, suh that ‖uǫ(·, t)‖L1(R),

‖uǫ(·, t)‖L∞(R) ≤ C, for all t ∈ (0, T ).The next lemma provides us with a uniform L2(ΠT) spae and time translation estimateon B(uǫ), and hene strong L2
loc ompatness of {B(uǫ)}ǫ>0. This lemma will be used topass to the limit in the nonlinear di�usion term.Lemma 2.0.2. There exists a onstant C > 0 whih depends on T but not ǫ suh that

‖B(uǫ(·+y, ·+τ))−B(uǫ(·, ·))‖L2(ΠT−τ ) ≤ C(|y|+
√
τ ), ∀y ∈ (R) and ∀τ ≥ 0. (2.11)In partiular, we have that {B(uǫ)}ǫ>0 is strongly ompat in L2

loc(ΠT).Before we an state the fundamental theorem in the theory of Compensated Compatness,we reapitulate the results they use from the ompensated ompatness method used toprove the existene of weak solution. For a nie overview of appliations of the ompensatedompatness method to hyperboli onservation laws we refer to Chen.LetM(Rn) denote the spae of bounded Radon measure on Rn and
C0(R

n) = {Ψ ∈ C(Rn) : lim
|x|→∞

Ψ(x) = 0



Existene of weak solutions 15}. If µ ∈M(Rn),then
〈µ,Ψ〉 =

∫

Rn

Ψdµ, ∀Ψ ∈ C0(R
n).Reall that µ ∈M(Rn) if and only if |〈µ,Ψ〉| ≤ C‖Ψ‖L∞(Rn) ∀Ψ ∈ C0(R

n). We de�ne
‖µ‖M(Rn) = sup{|〈µ,Ψ〉| : Ψ ∈ C0(R

n), ‖Ψ‖L∞(Rn) ≤ 1}.The spae (M(Rn), ‖ · ‖M(Rn)) is a Banah spae and it is isometrially isomorphi tothe dual spae of (C0(R
n), ‖ · ‖L∞(Rn)), while we de�ne the spae of probability measuresProb(Rn) as

Prob(Rn) = {µ ∈M(Rn) : µ is nonnegative and ‖µ‖M(Rn) = 1}.Then we an state the fundamental theorem in the theory of ompensated ompatness.Theorem 2.0.1. Let K ⊂ R be a bounded open set and uǫ : ΠT → K. Then there exists afamily of probability measures {ν(x,t)(λ) ∈ Prob(Rn)}(x,t)∈ΠT
(depending weak-⋆ measurablyon (x,t)) suh that

ν(x,t) ⊂ K for a.e. (x, t) ∈ ΠT .Furthermore, for any ontinuous funtion Φ : K→ R, we have along a subsequene
Φ(uǫ)

⋆
⇀ Φ in L∞(ΠT) as ǫ ↓ 0,where (the exeptional set depends possibly on Φ )

Φ(x, t) := 〈ν(x,t),Φ〉 =

∫

R

Φ(λ) dν(x,t)(λ) for a.e. (x, t) ∈ ΠT .In the literature, ν(x,t) is often referred to as a Young measure. Theorem 2.0.1 provides uswith a representation formula for weak limits in terms of nonlinear funtions and Youngmeasures. A uniformly bounded sequene {uǫ}ǫ>0 onverges to u a.e. on ΠT if and only ifthe orresponding Young measure ν(x,t) redues to a Dira measure loated at u(x, t), i.e.,
ν(x,t) = δu(x,t). We have the following �redution� result:Lemma 2.0.3. Let K ⊂ R be a bounded open set and uǫ : ΠT → K. Suppose that
uǫ

⋆
⇀ u in L∞(ΠT). Suppose also that for any pair of (not neessarily onvex) C2 funtions

η1, η2 : R→ R, we have for a subsequene
γ(x)q1(uǫ)η2(uǫ)− η1(uǫ)γ(x)q2(uǫ)

⋆
⇀ γ(x)q1η2− η1γ(x)q2 in L∞(ΠT) as ǫ ↓ 0,



16 Existene of weak solutions(2.13)where qi : R→ R is de�ned by q′i(u) = η′i(u)f
′(u), i = 1,2. Then for a subsequene

γ(x)f(uǫ)
⋆
⇀ γ(x)f(u) in L∞(ΠT) as ǫ ↓ 0.Furthermore, if γ(x) 6= 0 for a.e. x ∈ R and there is no interval on whih f(·) is linear,then a subsequene of {uǫ}ǫ>0 onverges to u a.e. on ΠT .Remark. If γ(·) = 0 on a set of non-zero measure, then it is not possible to onlude that( a subsequene of) uǫ onverges strongly to u nor that f(uǫ)

⋆
⇀ f(u) in L∞(ΠT).Theorem 2.0.2. Suppose that {uǫ}ǫ>0 ⊂ L∞(ΠT) uniformly in ǫ. Suppose also that forany C2 funtion η : R→ R, the subsequene of distributions {∂tη(uǫ) + ∂x(γ(x)q(uǫ))}ǫ>0lies in a ompat subset of H−1

loc(ΠT), where q : R → R is de�ned by q′(u) = η′(u)f ′(u).Then along a subsequene uǫ
⋆
⇀ u in L∞(ΠT) as ǫ ↓ 0, γ(x)f(uǫ)

⋆
⇀ γ(x)f(u) in L∞(ΠT)as ǫ ↓ 0. Furthermore, if γ(x) 6= 0 for a.e. x ∈ R and there is no interval on whih f(·) islinear, then a subsequene of {uǫ}ǫ>0 onverges to u a.e. on ΠT .From Lemma 2.0.1 we know that M := ‖uǫ‖L∞(ΠT) ≤ 1 (uniformly in ǫ). Let

K = max
λ∈[0,1]

|B(λ)| = B(1).For any funtion Φ ∈ C([0, K]), we then have
‖Φ(B(uǫ))‖L∞(ΠT) ≤ C,so that along a subsequene
Φ(B(uǫ))

⋆
⇀ Φ in L∞(ΠT),and, from Theorem 2.0.1,

Φ(x, t) =

∫

R

Φ(B(λ)) dν(x,t)(λ), ∀(x, t) ∈ ΠT \NΦ, (2.14)For some exeptional set NΦ that depends on Φ and |NΦ| = 0. One an hoose a sequene
{Φj}∞j=1 ⊂ C([0,K]) that is dense in C([0,K]) and set

N =

∞⋃

j=1

NΦj.Then |N | = 0 and (2.14) holds at any point (x, t) ∈ ΠT \ N for eah Φ ∈ C([0,K]).From Lemmas 2.0.1 and 2.0.2, we have that B(uǫ) onverges along a subsequene to some



Existene of weak solutions 17funtion B a.e. on ΠT . Let u denote the L∞(ΠT) weak-⋆ limit of {uǫ}ǫ>0. We an assumewithout loss of generality that
u(x, t) =

∫

R

λ dν(x,t)(λ) ∀(x, t) ∈ ΠT \N. (2.15)For ξ ∈ [0, K], de�ne the funtions
l(ξ) = min{λ ∈ [0, 1] : B(λ) = ξ}, L(ξ) = max{λ ∈ [0, 1] : B(λ) = ξ}. (2.16)Furthermore,
l(B(λ)) ≤ λ ≤ L(B(λ))for allλ ∈ [0, 1],

l(B(λ)) = λ = L(B(λ)) for a.e.λ ∈ [0, 1].We need also the measurable sets
H := {(x, t) ∈ ΠT \N : l(B(u(x, t))) < L(B(u(x, t)))},
P := {(x, t) ∈ ΠT \N : l(B(u(x, t))) = L(B(u(x, t)))}.The statement that B = B(u(x, t)) for all (x, t) ∈ ΠT \ N implies that {uǫ}ǫ>0 onvergesto u a.e. on P. The proof of this laim is lassial. Let K := P

⋂
[a, b] for any a, b ∈ R,and note that u2

ǫ
⋆
⇀ u2 in L∞(K). Then we have

∫∫

K

(uǫ − u)2dtdx =

∫∫

K

(u2
ǫ − 2uǫu+ u2)dtdx→ 0 as ǫ ↓ 0, (2.17)for whih the laim follows.We sum up the ompatness properties of the di�usion part of (2.10). A subsequene of

{B(uǫ)}ǫ>0 onverges strongly to B(u) in L2
loc(ΠT), where u is the L∞(ΠT) weak-⋆ limitof {uǫ)}ǫ>0. Furthermore, B(u) ∈ L∞(ΠT) ∩ L2(0,T;H1(R)).The next Lemma provides us with a series of priori estimates that imply strong ompatnessof the �total �ux� sequene {γǫ(x)f(uǫ)− ∂xBǫ(uǫ)}ǫ>0. These a priori estimates only holdif the initial funtion u0 satis�es, in addition to (1.5), the stronger regularity ondition

|γ(x)f(u0)− ∂xB(u0)|BV (R) <∞. (2.18)Lemma 2.0.4. Suppose that (2.18) holds and introdue the funtion
vǫ(x, t) = γǫ(x)f(uǫ)− ∂xBǫ(uǫ).There exists a onstant C>0, independent of ǫ, suh that for all t ∈ (0, T )

(i) ‖vǫ(·, t)‖L∞(R) ≤ C,

(ii) |vǫ(·, t)|BV (R) ≤ C,

(iii) ‖vǫ(·, t+ τ)− vǫ(·, t)‖L1(R) ≤ C
√
τ , ∀τ ≥ 0.In partiular, we have that {vǫ}ǫ>0 is strongly ompat in L1

loc(ΠT).



18 Existene of weak solutionsThe main result is the following theorem.Theorem 2.0.3. Suppose that the onditions imposed on the assumptions hold. Thenthere exists a weak solution (in the sense of De�nition 2.0.1) of the Cauhy problem (1.1).Furthermore, u an be onstruted as the strong limit of the sequene {uǫ}ǫ>0, where uǫsolves the regularised problem (2.10).Let v be another weak solution onstruted as the strong limit of the sequene {vǫ}ǫ>0, where
vǫ solves the regularised problem (2.10) orresponding to initial data v0. Then

∫

R

|u(x, t)− v(x, t)| dx ≤
∫

R

|u0(x)− v0(x)| dx. (2.19)Consequently, the onstruted weak solution u of (1.1) is unique. Suppose that the initialfuntion u0 satis�es the additional regularity ondition stated in (2.18). Then the on-struted weak solution u has the following regularity properties:
(i)|(γ(x)f(u)− ∂xB(u))(·, t)|BV (R) ≤ C, ∀t ∈ (0, T ),

(ii)‖u(·, t+ τ)− u(·, t)‖L1(R) ≤ Cτ, ∀τ ≥ 0.In the pure hyperboli ase, Theorem 2.0.3 (i) implies that the total variation of f(u) is�nite if u0 ∈ BV(R), although the total variation of u need not be �nite.It is worthwhile mentioning that if B(·) is stritly inreasing we do not need the ompen-sated ompatness method to get strong onvergene of {uǫ}ǫ>0.



Chapter 3Relaxation Shemes
3.1 Relaxation approximation for the hyperboli aseThe basi idea is based on replaing the nonlinear onvetion-di�usion equation with asemilinear system, using a sti� relaxation term ontaining the disontinuous �ux funtion
f(γ(x),u). The shemes proposed in this work are based on the same idea at the basisof the wellknown relaxation shemes for hyperboli onservation laws by Jin and Xin [22℄.They introdued a prototype model that bears many ritial properties of more generalnonlinear hyperboli systems with relaxation. Before introduing the framework of Re-laxation Shemes for the paraboli equation, we will start with the hyperboli ase. Asmentioned in the assumptions, (1.1) behaves like a hyperboli problem on intervals

B′(r) = 0, ∀r ∈
K⋃

i=1

[αi, βi] = Γ.In these intervals, (1.1) an be approximated by a 2x2 semilinear hyperboli system witha sti� relaxation term ontaining the disontinuous �ux funtion f(γ(x),u).An additional variable v(x,t) and a positive parameter ǫ are introdued and the followingrelaxation system is obtained.






uǫ
t + vǫ

x = 0,

vǫ
t + λ2uǫ

x =
1

ǫ
(f(γ(x), uǫ)− vǫ).

(3.1)� ǫ >0 is the relaxation time.� λ, a positiv onstant, satis�es the subharateristi ondition:
0 < maxγ,u|fu(γ, u)| < λ. 19



20 Relaxation ShemesFrom the given data, the maximum is taken over the set
(γ, u) ∈ [γ, γ]× [u, u].We hoose the initial ondition for the system (3.1)
uǫ(x, 0) = u0(x), vǫ(x, 0) = f(γ(x), u0(x)). (3.2)We an rearrange the seond equation in system (3.1).
ǫ[vǫ

t + λ2uǫ
x] = [f(γ(x), uǫ)− vǫ],And as ǫ→ 0+ we obtain

v = f(γ(x), u). (3.3)Substituting this expression in the �rst equation of the relaxation system (3.1), we reoverthe hyperboli onservation law.
ut + f(γ(x), u)x = 0.The state satisfying (3.3) is alled the loal equilibrium. In the limit ǫ→ 0, solving theRelaxation system is equivalent to solving the hyperboli ase of the problem.The harateristi speeds of the loal system must be interlaed with the harateristispeeds of the relaxing system to ensure the stability of the limit. The same onditionis true for the 2 × 2 semilinear ase to ensure that the loal relaxation approximation isdissipative. This ondition is referred to as the subharateristi ondition.To understand better this approximation, we an present a Chapman-Enskog type expan-sion [17, 18℄ for the relaxation system (3.1).Roughly, the di�erene between this expansion and the lassial Hilbert expansion (alsoasymptoti expansion) lies in that the Hilbert expansion expands the solution, while theCE-expansion expands the equation.Let us do a Chapman-Enskog expansion for the relaxation system. We suppose for themoment that uǫ, vǫ and γ(x) are smooth funtions and make the ansatz
vǫ = f(γ(x), uǫ) + ǫṽǫ + o(ǫ2),for some ṽǫ. We an rewrite the seond equation of the relaxation system (3.1) as
vt + λ2ux =

1

ǫ
[f(γ(x), uǫ)− vǫ],

ǫvt + ǫλ2ux = f(γ(x), uǫ)− vǫ,

vǫ = f(γ(x), uǫ)− ǫ[vt + λ2ux]Whih means that
vǫ = f(γ(x), uǫ) + o(ǫ). (3.4)



3.1 Relaxation approximation for the hyperboli ase 21From the �rst equation of (3.1), we have
∂u

∂t
= −∂v

∂x
. (3.5)Di�erentiating (3.4) with respet to time, ∂

∂t
.

vǫ
t =

∂f

∂u
[γ(x), uǫ]

∂u

∂t
,

vǫ
t = fu(γ(x), u

ǫ)uǫ
t + o(ǫ),then substituting, using (3.5) we obtain

vǫ
t = −fu(γ(x), u

ǫ)vx + o(ǫ).We �nd vx in the former expression using (3.4). We di�erentiate with respet to x.
vǫ

t = −fu(γ(x), u
ǫ) · ∂

∂x
[f(γ(x), uǫ) + o(ǫ)] + o(ǫ),

vǫ
t = −fu(γ(x), u

ǫ)
[∂f

∂γ
γ′(x) +

∂f

∂u
uǫ

x + o(ǫ)
]

+ o(ǫ),

= −fu(γ(x), u
ǫ)

[

fγ(γ(x), u
ǫ)γ′(x) + fu(γ(x), u

ǫ)uǫ
x + o(ǫ)

]

+ o(ǫ),

vǫ
t = −[fu(γ(x), u

ǫ)]2uǫ
x − fu(γ(x), u

ǫ)fγ(γ(x), u
ǫ)γ′(x) + o(ǫ).Inserted into the seond equation of (3.1)

vǫ = f(γ(x), uǫ)− ǫ[vǫ
t + λ2uǫ

x],

vǫ = f(γ(x), uǫ)− ǫ
[

− [fu(γ(x), u
ǫ)2)uǫ

x− fu(γ(x), u
ǫ)fγ(γ(x), u

ǫ)γ′(x) + o(ǫ)] +λ2uǫ
x

]

,

vǫ = f(γ(x), uǫ)− ǫ
[

λ2 − (fu(γ(x), u
ǫ))2uǫ

x − fu(γ(x), u
ǫ)fγ(γ(x), u

ǫ)γ′(x) + o(ǫ)
]

.Plugging into the �rst equation of (3.1), we need ∂

∂x
vǫ :

∂

∂x
vǫ = fγ(γ(x), u

ǫ)γ′(x) + fu(γ(x), u
ǫ)uǫ

x − ǫ[λ2 − (fu(γ(x), u
ǫ))2uǫ

xx

+ǫ[−fu(γ(x), u
ǫ)fγ(γ(x), u

ǫ)γ′(x)]x,

∂

∂x
vǫ = [f(γ(x), uǫ)− ǫfu(γ(x), u

ǫ)fγ(γ(x), u
ǫ)γ′(x)]x − ǫ[λ2 − (fu(γ(x), u

ǫ))2uǫ
x]x,

⇒ uǫ
t +

(

f(γ(x), uǫ− ǫfu(γ(x), u
ǫ)fγ(γ(x), u

ǫ)γ′(x)
)

x
= ǫ

(

(λ2− (fu(γ(x), u
ǫ))2uǫ

x)
)

x
.(3.6)



22 Relaxation ShemesThis is the �rst order orretion to (1.1). The equation (3.6) governs the asymptoti behav-iour of the relaxation system (3.1) either as time approahes in�nity or as the relaxationrate ǫ tends to zero. The right hand side ontains a seond derivative of u and henerepresents a dissipation (visous) term. The oe�ient represents the oe�ient of visos-ity, therefore, the relaxation system provides a vanishing visosity model to the originalonservation law. We observe also that (3.6) ontains an O(ǫ) di�usion orretion as wellas an O(ǫ) onvetion orretion. For the oe�ient to be positive and to ensure that thisequation is paraboli, the following ondition should be satis�ed,
λ2 ≥ (fu(γ(x), u))

2 ⇔ −λ ≤ (fu(γ(x), u) ≤ λ. (3.7)This is referred to as the the subharateristi ondition. The onstant λ in the re-laxation system (3.1) should be hosen in suh a way that the Condition (3.7) is satis�ed.Chen, Levermore and Liu [5] show that if the Subharateristi Condition is always sat-is�ed, then solutions of the system tend to solutions of the equilibrium equation as therelaxation time tends to zero. The fat that the �rst order orretion to the originalsystem has a dissipative struture implies that the numerial solutions to the relaxationsystem should also onverge to the entropy solution of the original system.3.2 Relaxation approximation to the nonlinear onvetion-di�usion equationWe now extend the previous approah to nonlinear paraboli equation. We propose Di�u-sive Relaxation Shemes for the numerial approximation of nonlinear paraboli equations.The shemes proposed here are based on the same idea at the basis of the relaxation shemesfor the hyperboli onservation laws. The relaxation system read






ut + vx = 0,

vt +
1

ǫ2
B(u)x = − 1

ǫ2
(v − f(γ(x), u)).

(3.8)With initial data
uǫ(x, 0) = u0(x), vǫ(x, 0) = f(γ(x), u0(x)). (3.9)The positive parameter ǫ has physial dimensions of time and represents the so-alledrelaxation time for the system and the limit problem for ǫ → 0 is alled di�usive limit.The relaxation term is sti�, whih means that ǫ << 1. That is, the relaxation time is muhshorter than the time it takes, for example, for the hyperboli wave to propagate over agradient length.The study is onentrated on the sti� regime. It is immediately reognisablethat system (3.8) has the form used to onstrut relaxation shemes for onservation lawsby Jin and Xin [22℄. Theoretial justi�ation for the passage from (3.1) to (1.2) was made



3.2 Relaxation approximation to the nonlinear onvetion-di�usion equation 23in [5, 16℄, while the numerial disretization for suh problems was studied in [9℄. In suha problem only the soure term is sti�, thus a proper splitting of an expliit onvetionand an impliit soure term su�es to give a sheme with a formal uniform auray in
ǫ. The new formulation (3.8), due to its lose relation with (3.1), allows us to use some ofthe numerial tehniques used to solve (3.1). However, we fae additional di�ulties herebeause the onvetion step is also sti�, e.g.see [3, 2℄.In the small relaxation limit, ǫ → 0, the relaxation system (3.8) an be approximated toleading order by

{

v = f(γ(x), u)− B(u)x,

ut + f(γ(x), u)x = B(u)xx.
(3.10)The state satisfying the �rst equation of (3.10) is alled loal equilibrium. The relaxationsystem (3.8) has two harateristi variables

v +

√

B′(u)

ǫ
, v −

√

B′(u)

ǫ
,that travel with harateristi speeds

±
√

B′(u)

ǫ
.Sine the equilibrium equation is of paraboli type, the main stability ondition for therelaxation system is, see [3℄,

|f ′(γ(x), u)|2 ≤ B′(u)

ǫ2
, (3.11)whih is the subharateristi ondition, a neessary ondition for onvergene to equi-librium. We expet to �nd ondition (3.11) veri�ed in the relaxation limit. As long asthe solutions for the limit equation are smooth, the stability in a suitable norm and theonvergene of the problem as the relaxation parameter ǫ tends to zero an be ompletelyjusti�ed. Unfortunately, in the general ase the solutions of the equilibrium equation (3.10)may beome disontinuous in a �nite time. For the system B′(u) > 0, f ′(γ(x), u) is theharateristi speed, suh that (3.11) reeds

−
√

B′(u)

ǫ
< f ′(γ(x), u) <

√

B′(u)

ǫ
. (3.12)Note that the loal equilibrium approximation (3.10), whih has the harateristi speed

f ′(γ(x),u), will exeed the harateristi speeds of the original system unless (3.12) is sat-is�ed.The onsisteny of the approximation would be satis�ed, if only to preserve the properausality. Hene (3.12) will be referred to as a Stability Criterion. By onsidering a



24 Relaxation ShemesChapman-Enskog expansion for the relaxation system, we get a better understanding ofthe argument.Let (

uǫ(x, t), vǫ(x, t)
) be a family of solutions to







uǫ
t + vǫ

x = 0,

vǫ
t +

1

ǫ2
B(uǫ)x = − 1

ǫ2
(vǫ − f(γ(x), uǫ)).

(3.13)From the seond equation of (3.13),
ǫ2vǫ

t +B(uǫ)x = −(vǫ − f(γ(x), uǫ)),

vǫ − f(γ(x), uǫ) = −ǫ2vǫ
t − B(uǫ)x,

vǫ = f(γ(x), uǫ)− ǫ2vǫ
t − B(uǫ)x,

vǫ = f(γ(x), uǫ)− B(uǫ)x − ǫ2vǫ
t , (3.14)We start with the usual ansatz:

vǫ = f(γ(x), uǫ)− B(uǫ)x + o(ǫ2), (3.15)di�erentiating with respet to time,
vǫ

t = fuǫ(γ(x), uǫ
t − Bxt(u

ǫ) + o(ǫ2).From the �rst equation of (3.13), we have
uǫ

t = −vǫ
x, then

vǫ
t = fuǫ(γ(x), uǫ)(−vǫ

x)− Bxt(u
ǫ) + o(ǫ2). (3.16)We �nd vǫ

x from (3.15).
∂

∂x
vǫ =

∂

∂x
[f(γ(x), uǫ)−B(uǫ)x + o(ǫ2)],

vǫ
x =

∂f

∂γ
(γ(x), uǫ)γ′(x) +

∂f

∂uǫ
(γ(x), uǫ)uǫ

x − Bxx(u
ǫ) + o(ǫ2).Substituting into (3.16).

vǫ
t = fuǫ(γ(x), uǫ)[fγ(γ(x), u

ǫ)γ′(x) + fuǫ(γ(x), uǫ)uǫ
x − Bxx(u

ǫ) + o(ǫ2)]− Bxt(u
ǫ) + o(ǫ2),

vǫ
t = −fuǫ(γ(x), uǫ)fγ(γ(x), u

ǫ)γ′(x)− fuǫ(γ(x), uǫ)2uǫ
x + fuǫ(γ(x), uǫ)Bxx(u

ǫ)−Bxt(u
ǫ) + o(ǫ2),Put into (3.14).

vǫ = f(γ(x), uǫ)− B(uǫ)x + ǫ2fuǫ(γ(x), uǫ)fγ(γ(x), u
ǫ)γ′(x)

+ ǫ2fuǫ(γ(x), uǫ)2uǫ
x − ǫ2fuǫ(γ(x), uǫ)Bxx(u

ǫ) +Bxt(u
ǫ) + o(ǫ2).



3.2 Relaxation approximation to the nonlinear onvetion-di�usion equation 25We di�erentiate now with respet to spae.
∂

∂x
vǫ = fγ(γ(x), u

ǫ)γ′(x)+fuǫ(γ(x), uǫ)uǫ
x−Bxx(u

ǫ)+ǫ2
∂

∂x
[fuǫ(γ(x), uǫ)γ′(x)]+ǫ2

∂

∂x
[fuǫ(γ(x), uǫ)2uǫ

x]

−ǫ2 ∂
∂x

[fuǫ(γ(x), uǫ)Bxx(u
ǫ)] + ǫ2

∂

∂x
(Bxt(u

ǫ)) + o(ǫ2),

∂

∂x
vǫ =

[

f(γ(x), uǫ)−ǫ2fuǫ(γ(x), uǫ)fγ(γ(x), u
ǫ)γ′(x)

]

x
−Bxx(u

ǫ)+ǫ2
∂

∂x

[

fuǫ(γ(x), uǫ)2uǫ
x

]

−ǫ2 ∂
∂x

[

fuǫ(γ(x), uǫ)Bxx(u
ǫ)

]

+ ǫ2
∂

∂x
(Bxt(u

ǫ)) + o(ǫ2).Using this in the �rst equation of (3.13), dropping higher order terms leads to the seondorder orretion O(ǫ2) to the loal equilibrium approximation in the form
uǫ

t+[f(γ(x), uǫ)−ǫ2fuǫ(γ(x), uǫ)fγ(γ(x), u
ǫ)γ′(x)] =

∂

∂x
[B′(uǫ)−ǫ2f ′(γ(x), uǫ)2]uǫ

x. (3.17)The right hand side represent a dissipation. For the equation to be dissipative, followingondition should be satis�ed:
|B′(uǫ)− ǫ2f ′(γ(x), uǫ)2| ≥ 0,

|f ′(γ(x), uǫ)|2 ≤ B′(uǫ)

ǫ2
. (3.18)This inequality is naturally veri�ed in the limit ǫ → 0. The equation (3.10) will alwayspossess the positive visosity if the stability ondition (3.18) is satis�ed. Thus, in the regimewhen ǫ2 is small, the behaviour of the solution to (3.8), the di�usive relaxation system, isgoverned by (3.10). We all this kinds of relaxation limits the di�usive relaxation limits andwe emphasise the fat that the equations of (3.10) provide a link between the relaxationparameter ǫ of the system and the physial visosity of the limiting equilibrium equations.



Chapter 4
L∞ and L1 Estimates
4.1 L∞EstimatesIn this setion we shall establish a uniform supremum norm bound for the solution (uǫ,vǫ)of the Cauhy problem (3.8)− (3.9), we onsider the following assumptions.(A1) f is loally Lipshitz ontinuous funtion with f(0) = f ′(0) = 0.(A2) The funtions (uǫ, vǫ) are uniformly bounded in L∞(R2) by

N0 = max
(

sup
ǫ>0
‖ uǫ

0 ‖∞, sup
ǫ>0
‖ vǫ

0 ‖∞
)

.Moreover, the sequene (uǫ
0, v

ǫ
0) onverges in L1

loc(R)2 to some (u0, v0) ∈ L∞(R2) as
ǫ→ 0+.We will also use the following supplementary assumption on the initial data:(A3) For any bounded losed interval K ⊆ R, it holds

lim
ǫ→0+

‖ vǫ
0 − f(γ(x), uǫ

0) ‖L1(K)= 0.We de�ne for any N > 0,
F (N) := sup

|ζ|N
|f(ζ)|, (4.1)

B(N) := 2N + F (2N), (4.2)and
M(N) = sup

|ζ|B(N)

|f ′(ζ)|.we state the global existene and boundedness result for problem (3.8), similar to that in[16℄. 26



4.2 L1Estimates 27Lemma 4.1.1. Assume (A1) and (A2). For any N0 > 0, and ǫ > 0, if
√

B′(u)

ǫ
> M(N0), (4.3)then there exist a unique, globally bounded solution (uǫ, vǫ) to the relaxation system in

C([0,∞);L1
loc(R

2)) suh that
‖vǫ ±

√

B′(uǫ)

ǫ
uǫ‖L∞(R×(0,∞)) ≤

√

B′(uǫ)

ǫ
B(N0). (4.4)The subharateristi inequality

|f ′(γ(x), uǫ)| ≤
√

B′(uǫ)

ǫ
(4.5)holds for all ǫ > 0 and for almost every (x, t) ∈ R(0,∞).Some remarks based on the L∞ a priori estimate. Consider uniformly bounded solutions

uǫ = (uǫ,vǫ) ∈ L∞ of the 2 × 2 system satisfying the entropy inequality. Assume thatthe strit stability ondition holds and the subharateristi speed is monotone almosteverywhere for the loal variable u ∈ R. The stability theory ensures the existene ofsuh a stritly onvex entropy. Then uǫ strongly onverges to (u,v) and the limit fun-tions(u(x,t),v(x,t)) are on the equilibrium urve for almost all (x,t), t > 0, where u(x,t)is the solution of the Cauhy problem. The initial data may be far from equilibrium butthe onvergene result indiates that the limit funtions (u,v) ome into loal equilibriumas soon as t>0. When we an show the ompatness of the zero relaxation limit, we alsothen have an indiation that the sequene uǫ is ompat no matter how osillatory theinitial data are.4.2 L1EstimatesWe derive some a priori uniform stability estimates in L1
loc for the solutions of the relaxationsystem (3.8). The main goal is to establish ompatness properties of the approximatingsequenes. Under the assumptions of Lemma 4.1.1, let √B′(uǫ)

ǫ
> M(N0) and ǫ > 0. Let

(uǫ,vǫ) be the solution of the Cauhy problem (3.8)-(3.9). The statements from [16, 19℄onlude that for any interval (a, b) ⊆ R and for any T > 0 there exists a ontinuousnondereasing funtion w ∈ C([0,T]), not depending on ǫ and with w(0) = 0, suh that,for every t ∈ (0, T )

∫ b

a

|uǫ(x+ h, t)− uǫ(x, t)|+|vǫ(x+ h, t)− vǫ(x, t)|dx ≤ w(|h|), for any|h| ≤ h0. (h0 > 0).



28 L∞ and L1 Estimates(4.6)Under these assumptions, suppose further that the initial data (uǫ
0,v

ǫ
0) are loally ofbounded variation. Then there exist a onstant , not depending on ǫ, suh that forany interval (a,b) ⊆ R and for every t ≥ 0

‖uǫ(·, t), vǫ(·, t)‖BV ((a,b)) ≤ c‖uǫ
0, v

ǫ
0‖

BV

(

(a−
√

B′(u)
ǫ

t,b+

√
B′(u)

ǫ
t)

). (4.7) is a generi onstant and may hange due to alulations. As a onsequene, we havethat the sequene (uǫ,vǫ) lies in a ompat set of L
1
loc for all t ≥ 0. We an now state thefollowing. The proof for similar statement an be found in [16℄.Theorem 4.2.1. Under the assumptions of Lemma 4.1.1, let √B′(uǫ)

ǫ
> M(N0) and ǫ > 0.Let (uǫ,vǫ) be the solution of the Cauhy problem (3.8)-(3.9). Then for any interval (a, b) ⊆

R and for any T > 0 there exists a ontinuous nondereasing funtion w̃ ∈ C([0,T]), notdepending on ǫ and with w̃(0) = 0, suh that for every 0 ≤ t ≤ t+ τ ≤ T , (τ > 0) it holdsthat
∫ b

a

|uǫ(x, t+ τ)− uǫ(x, t)| dxw̃(τ). (4.8)It turns out that, as ǫ→ 0+, the sequene (uǫ) onverges towards the entropy solution
u = u(x, t), in the sense of Natalini [19℄. More preisely:Theorem 4.2.2. Assume A1-A3 and (4.3). And let (uǫ, vǫ) be the global solution to prob-lem (3.8). Then there exists a weak solution u to (1.1) and a subsequene, still denoted
(uǫ(x, t), vǫ(x, t)) suh that

uǫ → u in C
(

[0,∞);L1
loc(R)

)

, as ǫ→ 0+, (4.9)
vǫ → f(γ(x), u) in C

(

[0,∞);L1
loc(R)

)

, as ǫ→ 0+. (4.10)4.3 Entropy solutionsWe know that weak solutions to the Cauhy problem (1.1) are in general not unique and,to selet a reasonable solution, we have to restrit the lass of admissible solutions givingthe so-alled entropy ondition.In this setion we shall show that the limit funtion obtained in setion (4.2) when ǫ→ 0+is atually an entropy solution. Let us state some subtle details involved in the analysis ofthe behaviour of entropy pairs of system (3.8). Similar but more omplex analysis an befound in [16, 19, 5℄.We assume (A1) and (A2). Then there exists N0 > 0 suh that the stability ondition(4.3) holds. We also assume one of the following hypotheses



4.3 Entropy solutions 29(i) supu∈R |f ′(u)| <∞;(ii) f ∈ C2 and there is M > 0 suh that if |u| ≥M then |f ′′(u)| > 0.Then for every N0 > 0 the weak solution u of (3.8)-(3.9) given by Theorem 4.2.2 is anentropy solution for the same problem. We observe that under these assumptions and dueto the uniqueness result for the entropy solutions, the whole sequene (uǫ,vǫ) in Theorem4.2.2 is atually onverging. We aim to show in this setion that limit solutions (uǫ,vǫ)are entropy solutions to (3.13). We reall from previous setion that (η,q) is the onvex
C2 entropy/entropy �ux pair for the system (1.1).For any given entropy pair (η,q) for (1.1), we onstrut an C2 entropy/entropy �ux pair
(χ,Ψ) for the system (3.13) on some open onvex set Ω, suh that for all funtions

χ,Ψ : [γ, γ]× Ω→ R,

(χ(γ(x), uǫ, vǫ),Ψ(γ(x), uǫ, vǫ))satisfy the ompatibility onditions
Ψu(γ, u, v) = λ2χv(γ, u, v), Ψv(γ, u, v) = χu(γ, u, v). (4.11)In addition, on the equilibrium urve v = f(γ(x),u), we require that the entropy-entropy�ux pair (χ,Ψ) redues to entropy/entropy �ux pair (η,q) for (1.1),
χ(γ, u, f(γ, u)) = η(u) and Ψ(γ, u, f(γ, u)) = q(γ, u), ∀u ∈ Ω. (4.12)We an extend an arbitrary entropy/entropy-�ux pair (η,q) for (1.1) to an entropy/entropy-�ux pair for (3.13) by viewing (η,q) as an �equilibrium�entropy/entropy-�ux pair for (3.13).The idea goes bak to [5℄. We let (η,q) be a stritly onvex entropy pair for the loal equi-librium equation (3.10). Assume that the stability riterion (3.12)
−

√

B′(u)

ǫ
< f ′(γ(x), u) <

√

B′(u)

ǫholds on v = f(γ(x),u), then there exists a stritly onvex entropy pair (χ,Ψ) for the sys-tem (3.13) over an open onvex set Ω ontaining the loal equilibrium urve v = f(γ(x),u), along whih it satis�es (4.12). Smooth solutions (uǫ,vǫ) of (3.13) satisfy
∂tχ(γ(x), uǫ, vǫ) + ∂xψ(γ(x), uǫ, vǫ) =

−1

ǫ2
∂vχ(γ(x), uǫ, vǫ)(vǫ − f(γ(uǫ, uǫ)), (4.13)by Theorem 3.2 in [5℄.If γ(x) is smooth, a weak solution (uǫ,vǫ) of (3.13) is said to satisfy the entropy onditionif

χ(γ(x), uǫ, vǫ)t + ψ(γ(x), uǫ, vǫ)x + r(u)xx − γ′(x)(ψγ(γ(x), u
ǫ, vǫ)) ≤

1

ǫ
χv(γ(x), u

ǫ, vǫ)(f(γ(x), uǫ, vǫ)− vǫ) in D′,
(4.14)



30 L∞ and L1 Estimateswhere
r′(u) = η′(u)B′(u). (4.15)As a onsequene of these estimates and result, we an state the following result of relax-ation, see [5, 16℄.Assume B ∈ C2, B′(u) > 0 ∀u ∈ R.

f ∈ C2, f(u) = 0.And the stability ondition
B′(u)− ǫ2f ′(γ(x), u)2 ≥ 0. (4.16)Assume the initial data (uǫ

0,v
ǫ
0) ∈ L∞ ∩ L2 and verify (A2). Then there exists a onstant

N0 > 0, suh that if
‖(uǫ

0, v
ǫ
0)‖L∞ ≤ N0, (4.17)there exists a subsequene, denoted (uǫ,vǫ), of global weak solutions to the Cauhy problem(3.8)-(3.9) that onverges pointwise almost everywhere,

(uǫ(x, t), vǫ(x, t))→ (u(x, t), v(x, t)), as ǫ→ 0+. (4.18)The limit funtion u(x,t) satis�esi) v(x,t) = f(u(x,t)) for almost all (x, t) ∈ R× (0,∞) andii) u is a weak entropy solution of Cauhy problem (1.1).To sum up. In the stability theory, the onvexity of entropy χ is essential. The existeneof stritly onvex entropy χ implies the following:-The loal equilibrium system is hyperboli with a stritly onvex entropy pair (η,q) = (χ,Ψ)|v=f(γ,u).-The harateristi speeds of the loal system are interlaed with the harateristi speedsof the original system (1.1).-The �rst order orretion is loally dissipative with nonnegative di�usion B(u).



Chapter 5Numerial shemes
5.1 Disretization of the relaxation systemWe onsider in this setion the disretization of the proposed relaxation system (3.8).Using the same notations as Jin and Xin [22℄, we all the disretization the RelaxingShemes. We will also derive the zero relaxation limit for the sheme. This limit shouldbe a onsistent and stable disretization of the equation (1.1), the original onservationlaws. Sine here, in addition to the sti� soure term, the onvetion term is also sti�, it isneessary to overome the di�ulty with the sti� soure term. Speial are must be takento ensure that the shemes possess the orret zero relaxation limit, in the sense that theasymptoti limit that leads from system (3.8) to (3.10) should be preserved ( at a disretelevel). When we now onentrate on the sti� regime, ǫ << 1, we also fae the type ofproblems for underresolved numerial methods. They are well known to be stable, butmay result in spurious numerial solutions totally unphysial. To overome the di�ultywith the di�usive limit we need numerial shemes with the orret di�usive limit. Fromknown numerial methods, when the onvetive part is kept expliit and the relaxationpart impliit, the Courant-Friedrihs-Levy(CFL) Condition is like ∆t ≈ ǫ∆x. Resultsfrom [21, 3℄ state that this is too restritive and unneessary near the paraboli(di�usive)regime where ǫ < ∆x. A �-ondition of di�usive type ∆t ∼ (∆x)2 is expeted.5.2 Upwind based disretizations.The spatial domain R is disretized into ells Ij = (xj−1/2, xj+1/2), spatial grid points
xj+1/2, with mesh width hj = xj+1/2 − xj−1/2.Similarly, the time interval (0,T):The disrete time level tn, spaed uniformly with spae step ∆t = tn+1− tn for n = 0,1,2,...We will all Un

j the ell average and Un
j+1/2 the nodal (point) value of U at x = xj+1/2, t = tn.31



32 Numerial shemes
Un

j is de�ned by:
Un

j =
1

∆x

∫ xj+1/2

xj−1/2

U(x, tn)dx.In order to write a stable disretization to system (3.8) we an use impliit temporalintegrators on the sti� terms. The simplest way to do this is to use bakward Eulermethod for both the onvetion and the soure term. In onservative form, the relaxingsheme may take the semi-impliit form, see e.g. [4℄,






un+1
j − un

j

∆t
+
vn

j+1/2 − vn
j−1/2

∆x
= 0,

vn+1
j − vn

j

∆t
+

1

ǫ2
B′(u)ux

(un+1
j+1/2 − un+1

j−1/2)

∆x
= − 1

ǫ2
(vn+1

j − f(γj, u
n+1
j )).

(5.1)Finding upwind relaxing �uxes. With the aim to expose the basi ideas more learly,we need to speify the sheme by relating the nodal �ux values (numerial �uxes) un+1
j±1/2, v

n+1
j±1/2to the ell averaged values uj, vj, also in order to have an eonomial disretization proe-dure.To determine the nodal values for the system (5.1), we apply the �rst order upwind shemeon the variables u and v at the generi time tn, see [21℄. We obtain

vn
j+1/2 = vn

j+1, un
j+1/2 = un

j , u
n
j−1/2 = un

j−1, v
n
j−1/2 = vn

j .The values un
j−1/2, v

n
j−1/2 are obtained by translating j to j-1.The upwind seletion tehnique in [3℄ gives the nodal values for system (5.1).

un
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1

2
(un

j + un
j±1)±

ǫ

2
(vn

j − vn
j±1),

vn
j±1/2 =

1

2
(vn

j + vn
j±1)±

1

2ǫ
(un

j − un
j±1).

(5.2)With these hoies of relaxing �uxes, we then propose the following �nite di�erene sheme






un+1
j − un

j

∆t
+
vn

j+1 − vn
j−1

2∆x
− 1

2ǫ∆x
(un

j+1 − 2un
j + un
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j

∆t
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B′(u)

2ǫ2∆x
(un

j+1 − un
j−1)−

B′(u)

2ǫ∆x
(vn

j+1 − 2vn
j + vn

j−1) = − 1

ǫ2
(vn+1

j − f(γj, u
n+1
j )).(5.3)As ǫ→ 0, we obtain the equilibrium �uxes

vn
j =

B′(u)(un
j+1 − un

j−1)

2∆x
.
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{

vn
j+1 = B′(un

j+1)(u
n
j+2 − un

j ),

vn
j−1 = B′(un

j−1)(u
n
j − un

j−2).We an verify that the use of (5.2) in the disrete equations, for small values of ǫ, leads tothe sheme of leading order
un+1

j − un
j

∆t
+
B′(un

j+1)(u
n
j+2 − un

j )

(2∆x)2
−
B′(un

j−1)(u
n
j − un

j−2)

(2∆x)2
−

(un
j+1 − 2un

j + un
j−1)

2ǫ∆x
= 0. (5.4)5.3 Modi�ed ShemesIn this setion we show how it is possible to modify the upwind shemes in order to havethe orret asymptoti behaviour and to apture the proper paraboli behaviour. The ideafrom [3, 4], is to use the upwind seletion to the system on the variable (u± j)/2 insteadof the harateristi variables (u± ǫj)/2. This hoie leads to the �uxes

vn
j±1/2 =

1

2
(vn

j + vn
j±1)±

1

2
(un

j − un
j±1). (5.5)Applying these �uxes, the equilibrium of the relaxation system (5.1) now reads

un+1
j − un

j

∆t
+
B′(un

j+1)(u
n
j+2 − un

j )

(2∆x)2
−
B′(un

j−1)(u
n
j − un

j−2)

(2∆x)2
−

(un
j+1 − 2un

j + un
j−1)

2∆x
= 0, (5.6)whih is a onsistent approximation of the equilibrium equation with an auray of

O(∆x/2). So, the disretization de�ned by (5.5) applies to the disrete equation (5.1)and has the orret di�usion limit.5.4 Reformulation of the problemIn the previous setions, we have studied the di�usive behaviour of upwind shemes. Inpartiular we saw how it is possible to onstrut upwind shemes whih are also able toapture the orret asymptoti behaviour. We proposed a possible solution to this problembased on upwind �uxes. However, in pratie, the impliit time integrator may presentseveral limitations like the gain of stability is partially o�set by the loss of auray, typialof impliit shemes in the ontext of wave propagation phenomena. On the ontrary, theuse of expliit shemes leads to a Courant-Friedrihs-Levy (CFL) ondition of the type
∆t ∼ ǫ∆x whih is to restritive when the equilibrium equations are of the hyperbolitype and unneessary near the paraboli regime where we expet a stability ondition like
∆t ∼ (∆x)2. Sine both the above options have advantages as well as drawbaks, it isnatural to look for a sheme with mixed harater. We will in this setion look for a re-formulated problem and ompare the results with the our proposed relaxing sheme (5.3).



34 Numerial shemesIn partiular, the speial struture of the reformulated problem enables one to solve itnumerially without using either modi�ed upwind shemes spatially or nonlinear systemsof algebrai equations solvers at eah time step.We will disuss further the additional problem due to the sti� onvetion term. The ideais to reformulate the problem for the relaxation shemes to onservation laws by properlyombining the sti� omponent of the onvetion term into the relaxation term. We needto overome this di�ulty with an adequate and eonomial disretization proedure. Wewant the shemes also to have the orret di�usion limit. The strategy is based on splittingthe equations into a hyperboli onservation law for onvetion and a possibly degenerateparaboli equation for di�usion. We de�ne a hyperboli solver for the onservation law,while the di�usion equation is solved impliitly. We need a splitting method that is un-onditionally stable in the sense that the splitting time step ∆t is not limited by the spaedisretization ∆x. And �nally, we want our approah to handle the onvetion-di�usionombination, inluding the purely hyperboli ase.5.4.1 Operator splitting methodsFirst it is interesting to point out how earlier numerial approahes that work for relaxationsystems with sti� soure terms apply to these problems. We demonstrate the popularoperator splitting method where we do a proper splitting of an expliit onvetion stepfrom an impliit soure term.I. The usual splitting applied to system (3.8). We split into onvetion part






ut + vx = 0,

vt +
1

ǫ2
∂xB(u) = 0,

, (5.7)and the relaxation part






ut = 0,

vt = − 1

ǫ2
(v − f(γ(x), u)).

(5.8)In the zero relaxation (or di�usion) limit, ǫ → 0+, the system (3.8) is approximated toleading order by
v − f(γ(x), u) = 0,

∂u

∂t
= 0,

∂v

∂t
= 0⇒ ∂u

∂x
= 0. (5.9)We obtain the equilibrium equations







f(γ(x), u)x = 0,

∂u

∂x
= 0.

(5.10)



5.4 Reformulation of the problem 35We an see that this splitting is inonsistent with (3.10). So this splitting will give poorresults near the paraboli region. The usual splitting do not su�e to give a sheme withuniform auray in ǫ.II. We try to overome this problem. As disussed in the introdution of this setion, thekey idea is to write (3.8) in the form, see [3, 21, 1℄,






∂tu+ ∂xv = 0,

∂tv + ν∂xB(u) = − 1

ǫ2
(v − f(γ(x), u)),

(5.11)A suitable parameter ν is introdued, where ν ≤ 1/ǫ2 is a nonnegative parameter. Theparameter ν allows to move the sti� terms without losing the hyperboliity of the system.It is immediately reognisable that system (5.11) has the form known from usual hyperbolisystems with sti� relaxation term. This new formulation allows us to try the numerialtehniques already developed for hyperboli problems with sti� relaxation [22, 18, 9℄. Oneof the tehnique in those problems is to split the system into an expliit onvetion stepand an impliit soure term. We treat the relaxation step impliitly for better numerialstability.We split our model (5.11) into two subproblems:






∂u

∂t
= 0,

∂v

∂t
= − 1

ǫ2
(v − f(γ(x), u)).

(5.12)And






∂u

∂t
+
∂v

∂x
= 0,

∂v

∂t
+ ν

∂

∂x
B(u) = 0.

(5.13)Now we have a pure nonsti� onvetion step (5.13) and a sti� soure step (5.12), sti�relaxation part.But at this stage, it is not obvious that this splitting provides any simpli�ation to thehallenging numerial solution of the problem (3.8).The idea now is to solve (5.13) using upwind approximations and (5.12) with a numerialmethod that possesses the proper di�usive limit.We will use an expliit sheme for the onvetion step and solve the soure term impli-itly. As demonstrated in previous setion, when ǫ→ 0, the relaxation step (5.12) alwaysprojets the solution to the orret loal equilibrium, whih is a su�ient ondition to



36 Numerial shemesguarantee that the splitting preserves the asymptoti limit from the relaxation system tothe onvetion-di�usion equation.A �rst order splitting sheme for the model problem (5.11) is de�ned by
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j

∆t
= 0,

vn+1
j − vn

j

∆t
= − 1

ǫ2
(vn+1

j − f(γ(j), un+1
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(5.14)And
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j − vn

j
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B(un
j+1/2)−B(un

j−1/2)

∆x
= 0.

(5.15)The �rst step here is fully impliit, so in the small relaxation limit, we get the orretloal equilibrium vn+1
j = f(γ(j),un+1

j ), independent of ν. We apply this equilibrium stateinto the seond step. Then it an be upwinded by using a shok-apturing sheme for theomputation of vn
j±1/2 and B(un

j±1/2) in (5.15). In order to satisfy the subharateristiondition, we have to impose the stability riteria
νB′(u) ≥ f ′(γ, u)2. (5.16)To de�ne the sheme we need to relate the equilibrium �uxes B(un

j±1/2) to the nodal valuesfor u and v. First, due to the struture of problem (5.14) and in order to avoid solvingsystems of algebrai equations in v, we seek for a seond order aurate de�nition of these�uxes independent of the nodal values for v. In fat, this permits one to evaluate therelaxation step expliitly beause u does not hange in time in (5.14) .So we propose to de�ne the equilibrium �uxes B(un
j±1/2) of entred form
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(5.17)To de�ne the sheme, we an apply the omputations
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2
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(5.18)We selet nodal values by entred shemes to avoid solving nonlinear systems of algebraiequations. In (5.14), we an evaluate the relaxation step expliitly beause u does not



5.4 Reformulation of the problem 37hange in time, i.e. un+1
j = un

j during the step. Previous numerial results also show thata robust, eonomial disretization for the orret numerial behaviour near the paraboliregime should be based on impliit entred shemes. The solution proedure is split intothe following two steps.5.4.2 Convetion stepWe present the disretization of the onvetion step (5.15). Sine this step is now nonsti�and hyperboli, a natural hoie is to use expliit upwind shemes. We solve (5.15) for
un+1

j and vn+1
j . We now have

un+1
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j = vn
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∆t
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j+1/2)− B(un
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(5.19)We apply straightforward the upwind shemes (5.18) and the proposed entred �uxes(5.17), the �nal upwind shemes in the onvetion step an be written as
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2∆x
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j+1 − vn
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j+1 − 2un
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vn+1
j = vn

j − ν
B′(un

j )

2

∆t

∆x
[un

j+1 − 2un
j + un

j−1].

(5.20)The parameter ν an be used as a weight funtion in the nonsti� regime and an behosen to depend on the disretization parameters. However, numerial experiene, seee.g. [3, 21, 2℄, shows that in most pratial situations the simple hoie ν = 1 for ǫ ≤ 1su�es to give aurate and stable disretizations. With the simplest hoie of ν = 1, wede�ne µ = ∆t
∆x
. The CFL number satisfying µ ≤ 1.5.4.3 Relaxation stepOur goal is to develop a sheme where the soure term is treated impliitly for betternumerial stability. We take into aount that u does not hange in time during this step.We use a linear sheme in this step.

un+1
j = un

j ,

vn+1
j = vn

j −
∆t

ǫ2
(vn+1

j − f(γ(j), un+1
j )).

(5.21)Although we have an impliit relaxation term, the new values un+1 and vn+1 an beupdated expliitly sine the values of un+1
j an be omputed from the �rst equation in



38 Numerial shemes(5.14) and the term in vn+1
j is linear. In addition, as ǫ→ 0 in (5.21), it projets over theorret loal equilibrium

vn+1
j = f(γ(j), un+1

j ).If we use an impliit di�usion solver, our operator splitting method is unonditionallystable in the sense that the time step ∆t is not limited by the spae disretization ∆x.5.4.4 Splitting Proedure.An underlying design priniple for many suessfull numerial methods for equations suhas (1.1), is visous operator splitting. That is, one splits the time evolution into two partialsteps in order to separate the e�ets of onvetion and di�usion. The above strategy ofsplitting the method into a relaxation step and onvetion step involves a splitting errorwhih makes the method �rst order aurate in time, irrespetive of whatever higher orderdisretization is used in time and spae in both steps.We shall desribe the operator splitting. That is, we will obtain the solution of (1.1)through a omposition of solution operator for the onvetion step and for the degenerateparaboli problem.Before desribing the splitting algorithms in more detail, we de�ne the solution operatorsfor our two di�erent equations. We all H(t) the approximate solution operator for theonvetion part, and S(t) denotes the solution operator for the relaxation step. The visoussplitting method is then based on the following approximation
u(x, n∆t) ≈ [S(∆t)H(∆t)]nu0(x).We �x T>0 and ∆t > 0, and let N be suh that N∆t = T. Let un denote the approx-imate solution to (1.1) at �xed time tn = n∆t(n = 0, ..., N − 1), u0 = u0. We onstrutapproximation un+1 from un by the produt formula
un+1 = [S∆t ◦ H∆t]u

n.In appliations, the exat solution operators H(t) and S(t) are replaed by numerialmethods to fully propose a disrete splitting method. Here the solution operator for theonvetion part is replaed by a solution generated by the upwind shemes (5.20) and thesolution operator for the relaxation part is replaed by an impliit entred sheme.We remark that in appliations, Strang splitting tehnique is often used, e.g. see [22, 12,9, 18, 21, 20℄. In Strang splitting, the relaxation step is solved for a half time step (∆t
2

),followed by a onvetion step for full time step (∆t) and then again by a relaxation stepfor a half time step(∆t
2

). Resulting in
Un+1 = S(

∆t

2
)H(∆t)S(

∆t

2
)Un. (5.22)



5.4 Reformulation of the problem 39But Jin [9℄ demonstrated that even the Strang splitting degenerates to �rst order aurayin the limit ǫ→ 0. Even higher order Runge-Kutta methods in the onvetion step annotimprove the result.In order to improve the order of auray we desribe a seond order TVD Runge-Kuttasplitting sheme introdued by Jin [9℄ for the Euler saling. We will apply the seondorder extension diretly for our onvetion-di�usion splitting approximation. This splittingsheme takes two impliit sti� soure steps and two expliit onvetion steps alternatively.Various appliations an be found in [20, 21, 18, 22, 3℄. We then apply the seond ordersplitting sheme to the di�usive relaxation system. The seond order result is as follows:Given (un
j , v

n
j ) , (un+1

j , vn+1
j ) are omputed by
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1

2
(vn

j + v2
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(5.23)
The onvetions terms are keeped expliit beause, �rst, one does not need to solve systemsof linear algebrai equations that will arise if the onvetion terms are impliit. Seondly,due to the speial struture of the soure term, one does not need to solve any systemsof nonlinear algebrai equations, in spite of the impliit nonlinear soure terms. Sine thesoure terms are treated impliitly, this disretization is stable independent of ǫ, so thatthe hoie of ∆t is based only on the usual CFL-ondition,
CFL := ∆t

∆x
≤ 1.We reall that we de�ned the initial state as the loal equilibrium, namely

v(x, 0) = f(γ,u(x, 0)), then Jin and Xin [22℄ show that the variables v∗
j and v∗∗

j in (5.23)approximate the loal equilibrium f(γ,u∗
j ) and f(γ,u∗∗

j ) respetively when ǫ→ 0. Thenapplying v∗
j = f(γ,u∗

j ) and v∗∗
j = f(γ,u∗∗

j ) in u1
j and u2

j respetively, a seond order relaxedsheme is obtained
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2
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j + u2
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(5.24)



40 Numerial shemesTo de�ne the shemes expliitly, we use the �nite di�erenes
Dxu

∗
j =

u∗j+1/2 − u∗j−1/2

∆x
,

Dxv
∗
j =

v∗j+1/2 − v∗j−1/2

∆x
.

(5.25)And the numerial �uxes in (5.25) are obtained by using an upwind sheme to the hara-teristi variables v ±
√

B′(u)

ǫ
,







(v +

√

B′(u)

ǫ
)j+1/2 = (v +

√

B′(u)

ǫ
)j,

(v −
√

B′(u)

ǫ
)j+1/2 = (v −

√

B′(u)

ǫ
)j+1.

(5.26)To serve our purpose in the numerial omputation, we may use that Jin and Xin [22℄and Jin [9℄ proved that the orresponding seond order relaxed sheme to the splittingalgorithm is onsistent and TVD provided that the subharateristi onditions and CFL-ondition are satis�ed.Consisteny and TVD-property imply onvergene, and onverges to the limit funtionu(x,t) whih is the weak entropy solution of the onvetion-di�usion problem.5.5 Pseudoode for the Di�usive Relaxation Sheme (5.3)In The following pseudoode we propose the proedure to implement the di�usive relax-ation sheme for onvetion-di�usion problems. The method an be solved expliitly sinethe values of un
j an be updated and omputed from the �rst equation and the soure termin vn+1 is linear.program paraboliinitial u0, v0 = f(u0)integer parameter m, Nreal parameter h, eps, k, 1, 2h ← (2pi)/Nk ← (h)2

c1← ǫ/(ǫ+ k)2 ← ǫk/(ǫ+ k)x = 0:h:2pi-hdi�erentiation matries M1, M2M1 ← [vj+1 − vj−1]; [uj+1 − uj−1]M2 ← [vj+1 − 2vj + vj−1]; [uj+1 − 2uj + uj−1]



5.5 Pseudoode for the Di�usive Relaxation Sheme (5.3) 41assigne initial ondition U1 = u(x, 0);V 1 = f(u(x, 0))olleting values for U MM = zeros(N,m− 1);MM(:, 1) = U1loop with time stepoutput Un+1t=0for nx= 2 to N dot = t+kU(n+1) =un − kM1(vn) + (k/ǫ)M2(un)V(n+1) =c1vn −B′c2M1(un) + ǫB′c2M2(vn) + c2f(U(n+ 1))update V and Uend forollet U-values MM(:, nx) = U(n + 1)



Chapter 6Convergene
6.1 The redued problemAs a motivation for the omplex analysis of the paraboli problem, we will look loser to thehyperboli ase inorporated in our onvetion-di�usion problem, and present some analyt-ial results. We present the underresolved numerial shemes for hyperboli onservationlaws with a disontinuous oe�ient and the orresponding relaxed sheme.In hapter 3, we presented a relaxation system for the hyperboli ase of the IVP, that iswithout the di�usion term B(u) and the equation is of the form

ut + f(γ(x), u)x = 0.Now we onsider the relaxing sheme for the redued problem, a �rst order upwind ap-proximation to the relaxation system (3.1) is given by
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ǫ
(f(γj, u
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j ).(6.1)We an start the iteration by
u0

j =
1

∆x

∫

Ij

u0(x)dx, v0
j =

1

∆x

∫

Ij

f(γ(x), u0(x))dx. (6.2)The method is impliit but an be solved expliitly, sine the values of un
j an be updatedand omputed from the �rst equation and the soure term in vn+1 is linear. We do nothave to solve a system of equations in order to update un and vn.42



6.2 Singular Mapping 43The limiting shemes are alled relaxed shemes. The omputational results availableindiate that the relaxed sheme obtained in the limit ǫ→ 0 provide a quite promisinglass of new shemes. Sine the leading order behaviour of the relaxing shemes is governedby the the relaxed shemes as ǫ→ 0+, we study the behaviour of the relaxed sheme usingSingular Mapping.The relaxed sheme for the redued problem takes the form






vn
j = f(γj, u

n
j ),

un+1
j = un

j −
µ

2
[f(γj+1, u

n
j+1)− f(γj−1, u

n
j−1)] +

µλ

2
(un

j−1 − 2un
j + un

j+1).
(6.3)This is the leading order equation as ǫ→ 0+. For the relaxed sheme (6.3), we assume thefollowing CFL-ondition:

µλ ≤ 1,where µ =
∆t

∆x
. (6.4)And the Subharateristi Condition:

0 < maxγ,u|fu(γ, u)| < λ. (6.5)Our understanding of the zero relaxation limit of the relaxing sheme is that poor numerialresults may be generated if the numerial sheme does not have the orret asymptotilimit.A sheme for the relaxation system (3.1) is said to have the orret asymptoti limit if,for �xed ∆t and ∆x as ǫ→ 0+, the limiting sheme is a good (onsistent and stable)disretization of the system (1.2).6.2 Singular MappingIn this setion, we attempt to establish onvergene of the relaxation approximation (3.1)using the singular mapping approah.We present the de�nition for the approximate solutions.Let ∆x > 0 and ∆t > 0 be the spatial and temporal disretization parameters. The spatialdomain R is disretized into ells
Ij = [xj−1/2,xj+1/2),where xk = k∆x, for k = 0,±1/2,±1,±3/2....Similarly, the time interval [0,T℄ is disretized via tn = n∆t for n = 0,...,N. The integer Nis hosen suh that N∆t = T , resulting in the strips
In = [tn, tn+1).



44 ConvergeneWe de�ne χj(x) and χn(t) to be the harateristi funtion for the intervals Ij and Inrespetively.Let χn
j (x, t) = χj(x)χn(t) be the harateristi funtion for the retangle Rn

j = Ij × In.The di�erene solution un
j generated by the sheme (6.3) is extended to all of ∏

T byde�ning
u∆(x, t) =

∑

n∈Z+
N

∑

j∈Z

χn
j (x, t)un

j , (x, t) ∈
∏

T

.Where ∆ = (∆x,∆t). Z+
N = 1, .., N. (6.6)For the disontinuous oe�ient γ,

γ∆(x) =
∑

j∈Z

χj+1/2(x)γj+1/2 x ∈ R.

γ∆(x) is approximated at eah ell boundary, resulting in a disretisized version of γ
γj+1/2 =

1

∆x

∫ xj+1

xj

γ(x)dx.This analytial problem is solved (hopefully) by using a transformed variableΘ∆ = ψ(γ∆,u∆).The idea is to show that the relaxed sheme onverges along a subsequene to a weak so-lution of the IVP by onstruting a singular mapping
ψ : (γ, u)→ (γ,Θ)suh that strong ompatness for the sequene of transformed funtions
Θ∆(x, t) = ψ(γ∆(x), u∆(x, t))an be obtained. We are in intervals where B′(r) = 0, ∀r ∈

⋃k

i=1[αi, βi] = Γ. S is the har-ateristi funtion for ui ∈ [αi, βi].The singular mapping is de�ned by
ψ(γ, u) =

∫ u

0

S(r)|fu(γ, r)|dr. (6.7)We know from [14℄ that the singular mapping is designed to be Lipshitz ontinuous andstritly inreasing as a funtion of u. ψ belongs to Lip([γ, γ]× [0, 1]). One the existeneof a subsequential limit Θ has been established, the invertibility of ψ then allows theorresponding weak solution u to be reovered from the limit Θ, with u∆ → u guaranteedby the ontinuity of ψ.Assumptions: Assume the given data are satis�ed, and the sheme (6.3) is applied withthe parameter µ hosen so that the following CFL-ondition is satis�ed for eah sueedingtime step,
µλ ≤ 1then the omputed solution remain in the interval [0,1℄ and the sheme (6.3) is monotone.



6.3 Monotoniity 456.3 MonotoniityA useful property of the entropy-satisfying weak solution is, if we take two sets of initialdata u0 and v0, with
v0(x) ≥ u0(x) ∀x,then the respetive entropy solutions u(x,t) and v(x,t) satisfy
v(x, t) ≥ u(x, t) ∀x, t.In numerial appliations, if the analogous property
V n

j ≥ Un
j ∀j ⇒ V n+1

j ≥ Un+1
j ∀jholds, then the numerial method Un+1

j = H(Un; j) is alled a monotone method.To hek that the relaxed sheme is monotone, it su�es to hek that
∂

∂un
j

H(Un; j) ≥ 0 for all i, j, Un.This means that if we inrease the value of any Un
j then the value of Un+1

j annot dereaseas a result.The relaxation sheme de�nes Un+1
j as a funtion

Un+1
j = H(Un; j),

Un+1
j = Hj[u

n
j+1, u

n
j , u

n
j−1, γj+1, γj−1].� i= j+1.

H(Un; j) =
−µ
2

[f(γj+1, u
n
j+1)] +

µγ

2
(un

j+1),

∂H

∂Un
j

=
−µ
2

[f ′(γj+1, u
n
j+1)] +

µγ

2
.� i = j - 1.

H(Un; j) =
−µ
2

[−f(γj−1, u
n
j−1)] +

µγ

2
(un

j−1),

∂H

∂Un
j

=
−µ
2

[−f ′(γj−1, u
n
j−1)] +

µγ

2
.



46 Convergene� i = j.
H(Un; j) = un

j −
µ

2
[f(γj+1, u

n
j )− f(γj−1, u

n
j )] +

µγ

2
(−2un

j ),

∂H

∂Un
j

= 1− µ

2
[f ′(γj+1, u

n
j )− f ′(γj−1, u

n
j )]− µγ.The CFL-ondition (6.4) and the subharateristi ondition (6.5) guarantee that

∂

∂un
j

H(Un; j) ≥ 0 for all i, j.The relaxed sheme (6.3) is a monotone sheme.The major drawbak with a monotone sheme is that it is at best only �rst orderaurate even in regions where the solution is smooth. In the ase where γ is onstant,monotoniity implies that the sheme is Total Variation Dereasing(TVD).6.4 Compatness of approximate solutions u∆We assume that initial data and γ satisfy given assumptions, with the CFL-onditionmentioned above.We will use the L1-ontrative property in the subsequent analysis. Meaning that therelaxed sheme is L1-ontrative if the inequality
∑

j

|V n+1
j − Un+1

j |∆x ≤
∑

j

|V n
j − Un

j |∆x (6.8)holds for a pair of approximate solutions un
j and vn

j generated by the sheme. Towers [23℄propose and proves the following inequality for the related problem:
u0, v0 ∈ L1 ∩ L∞,
∑

j

|un+1
j − un

j |∆x ≤
∑

j

|u1
j − u0

j |∆x. (6.9)Computed solutions u∆(·, tn) satisfy a uniform L1(R) bound for tn ∈ [0,T].
L1-ontration property:If v∆ is another solution, we have that

‖u∆(·, tn)− v∆(·, tn)‖
L1(R)≤‖u∆(·,0)−v∆(·,0)‖

L1(R)
.Taking into aount the jumps in Θ at ell-boundaries, due to jumps in u∆ and jumps atell entres, due to jumps in γ∆.



6.4 Compatness of approximate solutions u∆ 47Total Variation of Θ is de�ned by
TV(Θ) =

∑

j

|∆u
+Θj|

︸ ︷︷ ︸

cell−boundaries

+
∑

j

|∆γ
+Θj−1/2|

︸ ︷︷ ︸

jumps−at−centres

. (6.10)The seond sum , due to jumps in γ∆, is bounded by TV(γ), using
|ψ(u, γ1)− ψ(u, γ2)| ≤ |γ1 − γ2|,sine Lipshitz ontinuity relationships in u and γ follow diretly from the de�nition of ψand onditions imposed on the �ux f.For eah value of γ in [γ, γ],

ψ(·, γ) : [0, 1]→ [−γ, γ] is an inreasing 1-1 mapping.We reall that γ is assumed to be bounded and stritly positive, 0 < γ ≤ γ(x) ≤ γ.Let Θn(x) = ψ(u∆(x, tn), γ∆(x)). We then de�ne the following
∆u

+Θj = ψ(uj+1, γj+1/2)− ψ(uj, γj+1/2); ∆γ
+Θj−1/2 = ψ(uj, γj+1/2)− ψ(uj, γj−1/2). (6.11)Summing over all the jumps:

∑

j

∆u
+Θj +

∑

j

∆γ
+Θj−1/2 = ϕ, (6.12)

∑

j

|∆u
+Θj | =

∑

j

(∆u
+Θj)+ −

∑

j

(∆u
+Θj)−, (6.13)

∑

j

(∆u
+Θj)+ −

∑

j

(∆u
+Θj)− +

∑

j

∆γ
+Θj−1/2 = ϕ, (6.14)

∑

j

(∆u
+Θj)+ = ϕ−

∑

j

(∆u
+Θj)− −

∑

j

(∆γ
+Θj−1/2). (6.15)From Lipshitz identity above, jumps in γ∆ is bounded by TV (γ), suh that

∑

j

∆γ
+Θj−1/2 ≤ TV (γ), (6.16)

⇒
∑

j

(∆u
+Θj)+ ≤ ϕ−

∑

j

(∆u
+Θj)− + TV (γ). (6.17)Now, applying the identities proven in [23℄, modi�ed for our purpose, we an estimate

−
∑

j(∆
u
+Θj)−.



48 ConvergeneFrom (6.11)
−

∑

(∆u
+Θj) =

∑

j

ψ(uj, γj+1/2)− ψ(uj+1, γj+1/2),

−
∑

(∆u
+Θj)− =

∑

j

(ψ(uj, γj+1/2)− ψ(uj+1, γj+1/2))+.
(6.18)We inlude L1-ontrativeness and f∗, the single maximum at u∗ ∈ (0, 1), and from theassumptions, we get

−
∑

(∆u
+Θj)− ≤

1

µf ∗

∑

|u1
j − u0

j |+ TV (γ). (6.19)We need to bound ∑

j |u1
j − u0

j |,
∑

j

|u1
j − u0

j | ≤ 2µγ‖f ′‖∞TV (u0) + µf ∗TV (γ). (6.20)We substitute into (6.19), to get
−

∑

(∆u
+Θj)− ≤

2γ

f ∗ ‖f
′‖∞TV (u0) + 2TV (γ). (6.21)These statements in plae we have essentially bounded TV(Θn) uniformly for all n ≥ 0,and all ∆ > 0. Establishing L1 ompatness of Θ∆.Appliation of propositions

R× [0,∞)→ [0, 1] and 0 < γ ≤ γ(x) ≤ γgives uniform bounds on ‖Θ∆(·, t)‖∞ and ‖Θ∆(·, t)‖L1 for any ompat interval,providing a uniform bound on TV(Θ∆(·, t)).By standard ompatness arguments applied to the sequene Θ∆, there is a subsequene,also denoted Θ∆, whih onverges in L1
loc

∏

T to some funtion
Θ ∈ L1

loc(
∏

T)
⋂

L∞(
∏

T), Θ∆ → Θ.Let u(x, t) = ψ−1(γ(x),Θ(x, t)).Due to strit monotoniity of ψ(·, γ), the funtion u is well de�ned a.e., u ∈ [0, 1] a.e.,and u ∈ L1
loc(

∏

T
)
⋂

L∞(
∏

T
).We will now use the fat that u∆ = ψ−1(γ∆,Θ∆), to show that u∆ → u. An estimate of

|u− u∆| is neessary, requiring a bound for |ψ−1(γ,Θ∆)− ψ−1(γ∆,Θ∆)|.Due to the ontinuity of ψ−1 as a funtion of its seond argument, we an write the resultas
|ψ(γ, u∆)− ψ(γ, u)| ≤ |ψ(γ, u∆)− ψ(γ∆, u∆)|+ |ψ(γ∆, u∆)− ψ(γ, u)|,

≤ ‖ψγ |γ − γ∆|+ |Θ∆ −Θ|.Sine γ∆ → γ a.e. and Θ∆ → Θ a.e. ψ(γ,u∆)→ ψ(γ,u) a.e. in ∏

T.And sine ψ(γ, ·) is stritly inreasing, it follows that u∆ → u boundedly.The CFL-ondition guarantees that the omputed solutions u∆ remain within [0,1℄.Convergene in L1
loc(

∏

T) follows, and u is a weak solution of the onservation law.



6.5 Error Estimates 496.5 Error EstimatesIn this setion we will present statements and results about onvergene rates pointed outin [6, 7, 19, 16℄ for the relaxation sheme (6.1) by looking at the auray of relaxationsheme for solving the onservation law (1.2). This is done by studying the error ofapproximation u− uǫ
∆ between the exat solution u and the numerial solution uǫ

∆measured in L1 norm. The parameters ǫ and ∆x determine the sale of approximationand onverge to zero as the sale beomes �ner. They all the order of this error in theseparameters the onvergene rate of the numerial solution generated by relaxationsheme.To make this point preise, we hoose the initial data for (3.1) as
(I1)u

ǫ
0 := u0(x), v

ǫ
0 = f(u0(x)) +K(x)ω(ǫ),where K ∈ L∞ ∩ L1(R) ∩BV(R), ω : [0,∞[→ [0,∞[ is ontinuous, and ω(0) = 0. Herewe allow for an initial error K(x)ω(ǫ) instead of vǫ

0 = f(γ(x),u0) beause we want to seethe ontribution of this error to the global error. It is possible to onsider perturbed datain the u-omponent, then in the �nal result an initial error ‖uǫ
0 − u0‖L1(R) would persistin time and may prevent the onvergene of uǫ to the entropy solution. However, theinitial error in the v-omponent persists only for a short time of order ǫ, thereby it doesnot prevent the onvergene of uǫ.We initialise the relaxation sheme (6.1) by the ell averaging the initial data (uǫ

0,v
ǫ
0) inthe usual way

(u0
j , v

0
j ) =

1

∆x

∫

(uǫ
0(x), v

ǫ
0(x))χj(x)dx. (6.22)

χj(x) denotes the indiator funtion χj(x) := 1{|x−j∆x|≤∆x/2}. We will apply the followingnotations. The L1-norm is denoted by | · ‖1, and The BV-norm is de�ned as
‖u‖BV = ‖u‖1 + TV (u).For grid funtions the total variation is de�ned by
TV (un) =

∑

i∈Z

|un
i − un

i−1|,and ‖ · ‖1 denotes the disrete l1 − norm

‖un‖1 = ∆x
∑

i∈Z

|un
1 |.Taking initial data (6.22), we summarise the main onvergene rate result by stating thefollowing, see e.g.[6℄.



50 ConvergeneTheorem 6.5.1. Take any T > 0 and let the relation T = N∆t be satis�ed for asuitable N ∈ N and time step ∆t. Further, let u be the entropy solution of (1.2) withinitial data u0inL∞(R) ∩BV(R), and let (uN,vN) be a pieewise onstantrepresentation on R× [0,T] of the approximate solution(un
i ),vn

i )i∈Z,0≤n≤N generated bythe relaxation sheme (6.1) with initial data satisfying (I1) and (6.22). Then for �xed
µ = ∆t

∆x
satisfying the CFL ondition µλ < 1, there exists a onstant CT , independent of

∆x,∆t, and ǫ, suh that
‖uN − u(·, T )‖1 ≤ CT [

√
ǫ+
√

∆x]. (6.23)Theorem (6.5.1) suggests that the aumulation of errors omes from two soures: therelaxation error and the disretization error. To explain the struture of the proof, it maybe helpful to onsider that the relaxation sheme was designed through two steps, namelythe the relaxation step and the disretization step. The basi idea is to investigate theerror bound of the two steps separately and then the total onvergene rate by ombiningthe relaxation error and the disretization error.We split the error eǫ
∆ = u(·, T )− uǫ

∆(·, tN) into a relaxation error eǫ with ‖eǫ‖1 ≤ CT

√
ǫ,and a disretization error e∆ with ‖e∆‖1 ≤ CT

√
∆x, i.e., we have the deomposition

eǫ
∆ = eǫ + e∆.

eǫ = u(·, T )− uǫ(·, T ),

e∆ = uǫ(·, T )− u∆(·, tN).We review some assumptions and preliminaries with the spei� initial data (uǫ
0,v

ǫ
0),whih will be of use in the error analysis. We make the following assumptions

(I2) the �ux funtion f is C1 with f(0) = f'(0) = 0;
(I3) the initial data satisfy (uǫ

0, v
ǫ
0) ∈ L1(R) ∩ L∞ ∩ BV (R) and there exist onstants

ρ0 > 0,M > 0 not depending on ǫ suh that
ρ0 = max

(

sup
ǫ>0
‖vǫ

0‖∞, sup
ǫ>0
‖uǫ

0‖∞
)

, ‖(uǫ
0, v

ǫ
0)‖BV := ‖uǫ

0‖BV + ‖vǫ
0‖BV ≤ M,and for the �ux funtion f as well as K given in (I1),

Lip(f) := sup
x 6=y
|f(x)− f(y)

− y | ≤M, ‖K‖1 ≤M. �Equipped with assumptions in (I1)− (I3), it has been proved that, as ǫ→ 0+, our mainresult on the limit ǫ ↓ 0 is summarised in the following theorem.Theorem 6.5.2. Consider the system (3.1), subjet to L∞(R) ∩BV (R)-perturbed initialdata satisfying (I1)− (I3). Then the global solution (uǫ, vǫ) onverges to (u, f(γ, u)) as
ǫ ↓ 0 and the following error estimates hold:

‖uǫ(·, t)− u(·, t)‖1 ≤ CT

√
ǫ, (6.24)

‖vǫ(·, t)− f(γ, uǫ(·, t))‖1 ≤ CT [e
−t
ǫ ω(ǫ) + ǫ(1− e−t

ǫ )], 0 ≤ t ≤ T. (6.25)



6.5 Error Estimates 51Thus, (6.25) re�ets two soures of error whih are the initial ontribution of size ω(ǫ)and the relaxation error of order ǫ. However, we mention that the e�et of the initialontribution persists only for a short time of order ǫ, and beyond this time thenonequilibrium solution approahes a state lose to equilibrium at an exponential rate.The disrete initial data satisfy
max(‖u0

∆‖∞, v0
∆‖∞) ≤ ρ0,

TV (u0
∆) + TV (v0

∆) ≤M,

‖v0
∆ − f(γ, u0

∆)‖1 ≤Mω(ǫ).

(6.26)The grid parameters ∆x and ∆t are assumed to satisfy ∆t
∆x

= onstant. So, sine
µ = ∆t

∆x
is assumed onstant, ∆x→ 0 implies ∆t→ 0 as well.We know the usual projetion error, of order ∆x, see e.g. [11℄.
‖u0

∆ − uǫ
0‖1 ≤ ∆xTV (uǫ

0),

‖v0
∆ − vǫ

0‖1 ≤ ∆xTV (vǫ
0).

(6.27)As was shown by Natalini and Aregba-Driollet,[19℄, for a large enough onstant λ auniform bound for the numerial approximations given by sheme (6.1) an be found.More preisely, there exists a positive onstant M(ρ0) suh that if
λ > M(ρ0),then the numerial solution satis�es
(un

j , v
n
j ) ∈ Kρ0 := {(u, v) ∈ R2, |u± v

λ
| ≤ B(ρ0)}, (6.28)where B(ρ0) is a onstant depending only on ρ0. For the proofs of the error properties forour shemes we refer to [7, 6, 16, 19℄. We summarise:Disretization error.We already have (uǫ, vǫ) as the weak slution of (3.1), the relaxation system, with initialdata (uǫ

0, v
ǫ
0), and let (uN , vN) be a pieewise onstant representation of the data (uN

j , v
N
j )generated by (6.1) starting with (u0

∆, v
0
∆). Then, for any �xed T = N∆T ≥ 0, there is a�nite onstant CT independent of ∆x,∆t and ǫ suh that

‖vǫ(·, T )− vN‖1 + ‖uǫ(·, T )− uN‖1 ≤ CT

√
∆x. (6.29)We remark here that they get an uniform error bound of order √∆x in L1 whih isindependent of the relaxation parameter ǫ.Relaxation error. The global solution (uǫ, vǫ) onverges to (u, f(γ, u)) as ǫ ↓ 0 and thefollowing error estimate holds:

‖uǫ(·, t)− u(·, t)‖1 ≤ CT

√
ǫ. (6.30)This estimate re�ets a relaxation error of order ǫ.



52 ConvergeneIn the studies onerning relaxation shemes, some important properties for thenumerial sheme were obtained through investigating the reformulated sheme using theRiemann Invariants and Maxwellian funtions. We mention properties like the L∞boundedness, the TVD property and the L1 ontinuity in time. So, just for uriosity, wepresent the alternative representation for our equations.
Rǫ

1 =
1

2
(uǫ − vǫ

λ
); Rǫ

2 =
1

2
(uǫ +

vǫ

λ
).

M1(u
ǫ) =

1

2
(uǫ − f(γ, uǫ)

λ
); M2(u

ǫ) =
1

2
(uǫ +

f(γ, uǫ)

λ
).

Mi(u), i = 1, 2.

2∑

i=1

Mi(u) = u;
2∑

i=1

λiMi(u) = f(γ, u).We see that
uǫ = Rǫ

1 +Rǫ
2, v

ǫ = λ(Rǫ
2 −Rǫ

1).Then we an rewrite the system (3.1) into a kineti formulation
∂tR

ǫ
i + λi∂xR

ǫ
i =

1

ǫ
[Mi(u

ǫ)−Rǫ
i ] i = 1, 2.This formulation an be used in the investigation of onvergene rates for the relaxationmodel (3.1) as well as for the orresponding relaxing sheme (6.1).The Riemann Invariants take the form

Rn,ǫ
1,j =

1

2
(un

j −
vn,ǫ

j

λ
);Rn,ǫ

2,j =
1

2
(un

j +
vn,ǫ

j

λ
).And the Maxwellians

M1(u
n
j ) =

1

2
(un

j −
f(γ(j), un

j )

λ
);M2(u

n
j ) =

1

2
(un

j +
f(γ(j), un

j )

λ
).It follows from the above equations that

un,ǫ
j = Rn,ǫ

1,j +Rn,ǫ
2,j ; v

n,ǫ
j = λ(Rn,ǫ

2,j − Rn,ǫ
1,j ).



6.6 Solution proedure for the hyperboli problem 536.6 Solution proedure for the hyperboli problem6.6.1 PseudoodeA pseudoode to arry out the numerial proess is given next. A solution proedure forthe hyperboli problem (6.1) may be aomplished like in the following pseudoode. Weneed to onstrut the �rst order di�erentiation matrix for the di�erene shemes. Thepseudoode for Newthons method is used to �nd the exat solution.program Hyperboli relaxationinteger parameter m,Nreal parameter h, eps, k, 1, 2h ← (2*pi)/Nk ← (h)21 ← (eps/(eps+k))2 ← (eps*k)/(eps + k)x = 0:h:2pi-h)initial u(x, 0) = u0, v0 = f(u0)di�erentiation matries M1,M2M1 ← [vj+1 − vj−1]; [uj+1 − uj−1]M2 ← [vj−i − 2vj + vj+1]; [uj−1 − 2uj + uj+1]loop with time stepoutput u(n+1)for nx = 2 to N dot = t+ku(n+1) = uu − kM1vn + kλM2unv(n+1) = c1vn − epsc2λ2M1un + epsc2λM2vn + c2f(u(n+ 1))end forproedure exat solutionfuntion Newton method
x0 = 0array (xi)1:Nfor kk= 1 to N do
x0 = x0 + h;toll = 1e-10err = toll +1;while err > toll dofx0=x(kk)-x0-tf(x0)dfx0 = (fx0)'xn= x0-fx0/dfx0err = abs(xn-x0)x0 = xnend while



54 Convergeneoutput xi(kk)= xnend for6.6.2 Operator splitting for the First order relaxation shemeWe will in this setion present another implementation for solving the relaxing sheme(6.1) for the hyperboli problem. A solution proedure using operator splitting ispossible. We split into two steps. For the onvetion step, we have the expressions for theupwind shemes.
un+1

j = un
j −

∆t

∆x
[
1

2
(vn

j+1 − vn
j−1)−

λ

2
(un

j−1 − 2un
j + un

j+1)], (6.31)
vn+1

j = vn
j −

∆t

∆x
[
λ2

2
(un

j+1 + un
j−1)−

λ

2
(vn

j+1 − 2vn
j + vn

j−1)]. (6.32)The soure step is solved by an impliit method whih avoids the time step beingdependent on ǫ.
vn+1

j = vn
j −

∆t

ǫ
(vn+1

j − f(γ(j), un+1
j )). (6.33)The implementation of a �rst order relaxation algorithm to solve (3.1) is arried outfollowing the framework of [20, 22, 9, 18℄, based on Runge-Kutta type splitting method.Given (un

j , v
n
j ),

(un+1
j , vn+1

j ) are omputed by
u∗j = un

j , (6.34)
v∗j = vn

j −
∆t

ǫ
(v∗j − f(γ(j), u∗j)), (6.35)

u1
j = u∗j −∆tDxv

∗
j , (6.36)

v1
j = v∗j −∆tλ2Dxu

∗
j , (6.37)

un+1
j = u1

j , (6.38)
vn+1

j = v1
j . (6.39)We de�ne the following �nite di�erenes

Dxu
∗
j =

u∗j+1/2 − u∗j−1/2

∆x
,

Dxv
∗
j =

v∗j+1/2 − v∗j−1/2

∆x
.

(6.40)



6.6 Solution proedure for the hyperboli problem 55We use a �rst order upwind sheme to the harateristi variables v ± λu in order toobtain the numerial �uxes in (6.40), by
{

(v + λu)j+1/2 = (v + λu)j,

(v − λu)j+1/2 = (v − λu)j+1.
(6.41)To obtain







uj+1/2 =
1

2
(uj + uj+1)−

1

2λ
(vj+1 − vj),

vj+1/2 =
1

2
(vj + vj+1)−

λ

2
(uj+1 − uj).

(6.42)Using these shemes, neither algebrai equations nor nonlinear soure terms an arise.The �rst order shemes are stable independent of ǫ, so the hoie of ∆t is based only onthe usual CFL-ondition,
λ2 ∆t

∆x
≤ 1.A splitting method that possesses the disrete analogue of the ontinuous asymptotilimit is able to apture the orret physial behaviours even if the small relaxation time isnot numerially resolved.We demonstrate that the disretizations above have the orret zero relaxation limit.The initial data in loal equilibrium, ǫ << 1, v(x, 0) = f(γ,u(x, 0)).This is how we de�ne the initial ondition to avoid an initial layer where the solutionundergoes sharp hange [24].

vn − f(γ(j), un) = 0 at t = tn, (6.43)
v∗ − f(γ(j), u∗) = 0 at the intermediate step, (6.44)
vn+1 − f(γ(j), un+1) = O(∆t) at t = tn+1. (6.45)From (6.31) and (6.43), we have
v∗ − vn = −∆t

ǫ
(v∗ − vn + vn − f(γ(j), u∗)),

= −∆t

ǫ
(v∗ − vn + vn − f(γ(j), un)),

= −∆t

ǫ
(v∗ − vn).

(6.46)Thus
v∗ − vn = 0. (6.47)



56 ConvergeneApplying this result into (6.31) implies
v∗ − f(γ(j), u∗) = 0.We now apply (6.47) in (6.33) and (6.35),
vn+1 − f(γ(j), un+1) = v∗ − f(γ(j), un+1) +O(∆t). (6.48)We have that un+1 − u∗ = un+1 − un = O(∆t), so
vn+1 − f(γ(j), un+1) = v∗ − f(γ, un) + f(γ, un)− f(γ, un+1) +O(∆t),

vn+1 − f(γ(j), un+1) = O(∆t).
(6.49)This on�rms (6.44) and (6.45).



Chapter 7Numerial Appliations
We present numerial examples alulated by the relaxation shemes presented here. Wewill use MATLAB to implement the shemes, and we onsider the relaxing shemes andthe orresponding relaxed shemes separately. In the appliations, we will apply themultipliative form of the �ux funtion, namely γ(x)f(u)x instead of f(γ(x), u)x. In thehyperboli problems, we hoose ǫ = 10−08 and λ = 1 in all the omputations, and wesimplify the disontinuous oe�ient to be γ(x) = 1. A omparison between the diretand expliit solving of relaxing sheme (6.1) and the solution proedure using splittingalgorithm is presented. We will also perform some numerial tests with our proposedsheme (5.3) to approximate onvetion-di�usion problems. We have also alulated the
L1 errors between the exat solutions and the numerial solutions. We onsider the errorfor the relaxing shemes and the relaxed shemes. In our test, we use a very smallrelaxation parameter ǫ suh that the ontribution from the relaxation error eǫ is assumedminimal. Therefore, to alulate the error we apply

E = ∆x
N∑

j=1

|u(xj)− uN(xj)|.

7.1 Linear equationIn this setion, we �rst perform auray tests on a linear problem. Numerial examplesalulated by the relaxation shemes for the hyperboli ase are presented. The relaxingsheme (6.1) and the relaxed sheme (6.3). The �rst example is the advetion equation.We will ompare our methods with the exat solution of the problem.Example 1. Let us onsider the salar linear hyperboli equation
ut + aux = 0, (7.1)57



58 Numerial Appliationswith the initial ondition u(x,0) = sin(x). The exat solution of the problem is given by
u(x, t) = sin(x− at). (7.2)We use periodi boundary ondition with varying number of grid points N. We set

∆x = (2π)/N , the length of the spae step, in the numerial tests. We omputed thenumerial solutions at time t = 0.3, 0.5 and t = 2.
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Figure 7.1: Advetion equation, ut + aux = 0. Number of grid points N = 400. m = 200,time steps. ∆t = 0.0015,∆x = 2 ∗ pi/N. Comparing the relaxing sheme (6.1)and the exat solution for a = 1. ǫ = 10−8. Plot at t = 0.3.We an see from the �gures (7.1-7.6) that numerial solutions omputed by the relaxingsheme (6.1) and the relaxed sheme (6.3) approximate very well the exat solution of theadvetion equation. These results demonstrate learly the numerial onvergene of therelaxing shemes to the orresponding relaxed sheme as ǫ→ 0, and the fat that thesolutions of the relaxed sheme presented here onverge to the exat solution of our testproblem.Table 1 and 2 show the omputed L1-error of the di�erene between the numerial andthe exat solution with �nal time t = 0.2, with varying number of grid points N. Theerror dereases for both the shemes but we see that the expeted ratio (about 1.15) isnot reahed. We suspet that we do not reah the predited ratio beause of theimplementation hosen. Nevertheless, further experiments reveal that the methodonverges niely to the orret solution.
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Figure 7.2: Advetion equation, ut + aux = 0. ∆t = 0.0017,∆x = 2 ∗ pi/N. N = 600, m= 300. Comparing the relaxing sheme (6.1) and the exat solution. ǫ = 10−8,
λ = 1, a = 1. Plot at t = 0.5.
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Figure 7.3: Advetion equation, ut + aux = 0. ∆t = 0.004,∆x = 2 ∗ pi/N. N = 1000, m =500. � = 0.6366. Comparing the relaxing sheme (6.1) and the exat solution.
ǫ = 10−8, λ = 1, a = 1. Plot at t = 2.
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Figure 7.4: Advetion equation, ut + aux = 0. N = 400, m = 200. ∆t = 0.0015,∆x =
2 ∗ pi/N. Comparing the relaxed sheme (6.3) with the exat solution. a = 1,plot at t= 0.3.
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Figure 7.5: Advetion equation, ut + aux = 0. ∆t = 0.0017,∆x = 2 ∗ pi/N. N = 600, m =300. Comparing the relaxed sheme (6.3) and the exat solution. λ = 1, a =1 and � = 0.6366. Plot at t = 0.5.
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Figure 7.6: Advetion equation, ut + aux = 0. ∆t = 0.004,∆x = 2 ∗ pi/N. N = 1000, m =500. Comparing the relaxed sheme (6.3) and the exat solution. λ = 1, a =1. Plot at t = 2.
N L1-error Ratio
16 0.1530
32 0.0778 1.9681
64 0.0391 1.9909
128 0.0196 1.9962
256 0.0098 1.9996
512 0.0049 2.0029Table 1. Disretization error in L1-norms for the linear advetion problem (7.1) at t=0.2using relaxing shemes (6.1).
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N L1-error Ratio
16 0.1530
32 0.0778 1.9681
64 0.0391 1.9909
128 0.0196 1.9962
256 0.0098 1.9996
512 0.0049 2.0029Table 2. Disretization error in L1-norms for the linear advetion problem (7.1) at t=0.2using relaxed shemes (6.3).7.2 Invisid Burgers equationNow we will apply the relaxing sheme (6.1) and the relaxed sheme (6.3) to the invisidBurgers equation.Example 2. In this example we approximate solutions to the invisid Burgers equation,

ut + (
u2

2
)x = 0. (7.3)We start with the smooth initial data

u(x, 0) = 0.5 + sin(x), x ∈ [0, 2π]. (7.4)and we use periodi boundary onditions. We reall that the unique entropy solution of(7.3)-(7.4) is smooth up to the ritial time tc = 1. We perform some numerial testswith our relaxing shemes (6.1) and the orresponding relaxed sheme (6.3). We will alsopresent a omparison where we solve the same problem with the �rst order split method(6.34). We apply Newton's method to �nd the exat solution for the Burgers equation.In �gures (7.7-7.11), we present the approximate solutions at the pre-shok times whenthe solution is still smooth. We hoose ǫ = 10−08, and plot at various times. As expetedall the shemes apture well the orret behaviour given by the invisid Burgers equationup to the ritial time t = 1. To see how fast the numerial solution approximate theexat when we inrease the grid points, a small time step is used, ∆t = 6 ∗ 10−5. The
L1-error behaviour is shown in Table 3 for the relaxation sheme (6.1) and in Table 5 forthe split relaxation method (6.34)-(6.39). Again we see that the error dereases but thepredited ratio is only partially reahed in the table. In any ase, we point out that therelaxed sheme proposed is apable of reahing the same auray as the relaxing shemefor this problem, as we an see in Table 4. The L1-error is idential for the methods. Wesee also that the error is redued by inreasing the number of grid points, thus reduingthe time step.We present here a test with the �rst order splitting algorithm to see if the splittingindiates a ertain advantage ompared to the investigated relaxing shemes. We observe
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Figure 7.7: Numerial solution of invisid Burgers equation ut+(u2

2
)x = 0 using the relaxingsheme (6.1), with N=400 spae steps and number of timesteps m = 100,

∆x = 2 ∗ pi/N , ∆t = 0.002. Plot at t = 0.2 with ǫ = 10−8.
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Figure 7.8: Numerial solution of Burgers equation ut+(u2

2
)x = 0 using the relaxing sheme(6.1), with N=800 grid points and m = 200 time steps. ∆x = 2 ∗ pi/N ,

∆t = 0.0025. Plot at t = 0.5 with ǫ = 10−8.
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Figure 7.9: Numerial solution of Burgers equation ut+(u2

2
)x = 0 using the relaxing sheme(6.1), with N=800 grid points and m = 200 time steps. ∆x = 2 ∗ pi/N ,

∆t = 0.005. Plot at t = 1 with ǫ = 10−8 and �= 0.6366.
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Figure 7.10: Numerial solution of invisid Burgers equation ut + (u2

2
)x = 0 using therelaxed sheme (6.3), with N=800 spae steps and m=200 time steps. ∆x =

2 ∗ pi/N , ∆t = 0.0025, �= 0.3183. Plot at t = 0.5.
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N L1-error Ratio
4 0.4577
8 0.2971 1.5407
16 0.1578 1.8828
32 0.0795 1.9843
64 0.0398 1.9984
128 0.0199 1.9993Table 3. Disretization error in L1-norms for the invisid Burgersequation (7.3) at t=0.2 using relaxing shemes (6.1).
N L1-error Ratio
4 0.4577
8 0.2971 1.5407
16 0.1578 1.8828
32 0.0795 1.9843
64 0.0398 1.9984
128 0.0199 1.9993Table 4. Disretization error in L1-norms for the invisid Burgersequation (7.3) at t=0.2 using relaxed sheme (6.1).
N L1-error Ratio
4 0.4577
8 0.2971 1.5407
16 0.1578 1.8825
32 0.0796 1.9838
64 0.0398 1.9973
128 0.0199 1.9972Table 5. Disretization error in L1-norms for the invisid Burgersequation (7.3) at t=0.2 using split method (6.34).



66 Numerial Appliationsthat despite the splitting error, the method produes the same results as the relaxingsheme for this problem. Our omputational results suggest that the shemes onvergewith appropriate rate even if some ombinations in the implementation do not reah thepredited error redution in the tables. Other hoies an be made in the disretizationsdisussed to sharpen the results. Our idea is only to arry out the analysis and toillustrate the basi ideas. We an remark that all the results with ǫ = 10−08 an almostbe reprodued with about equal quality by using the relaxed shemes. Thus for stritlyhyperboli systems and for the purpose of just solving the onservation laws, one an justuse the relaxed shemes, whih are easier to implement with more e�ieny and muhless memory. This onludes also that the relaxing shemes have the orret zerorelaxation limit mentioned in the analysis.7.3 Convetion-Di�usion EquationIn this setion we onsider a numerial example alulated by our proposed RelaxationShemes (5.3) when the di�usion term B(u) is inorporated, the onvetion-di�usionproblem.Example 3. Now we test the relaxing shemes (5.3) for the onvetion-di�usion equation
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Figure 7.11: Numerial solution of invisid Burgers equation ut + (u2

2
)x = 0 using the�rst order split method (6.34), with 200 time steps and N = 800 grid points.

∆x = 2 ∗ pi/N , ∆t = 0.0025, ǫ = 10−08. Plot at t = 0.5 with � = 0.3183.



7.3 Convetion-Di�usion Equation 67on the visid Burger equation
ut + uux = auxx, a > 0. (7.5)It was �rst introdued by J.M.Burgers as the simplest model for the di�erential equationsof �uid �ow. To �nd the expliit solution for a > 0, see e.g. the paper by Eberhard Hopf(1950) on pure and applied mathematis, treating the partial di�erential equation. Weintrodue a new dependent variable q(x,t) into Burgers equation that solves the heatequation qt = aqxx.For t > 0, a is positive and the funtion
u(x, t) = −2a

qx(x, t)

q(x, t)solves the visid Burger equation. More preisely stated: If u solves (7.5) in an openretangle R of the x,t-plane and if u, ux, uxx are ontinuous in R then there exists apositive funtion q that solves the heat equation in R and for whih q, qx, qxx areontinuous in R.In this test we apply the funtion q(x, t) = e−tsin(x) + 2 and a = 1, so that
u(x, t) = −2 e−tcos(x)

e−tsin(x)+2
is an exat solution. We hoose the initial data to be

u(x, 0) = u0(x) = cosx
sinx+2

. We set γ(x) = 1 and the �ux funtion is f(u) = 1
2
u2. We usethe de�nition to initiate v(x,t), v(x,0) = γ(x)f(u0(x)). We hoose ǫ = 0.1 The boundaryonditions are hosen to be periodi.The numerial solutions omputed by our proposed relaxation sheme foronvetion-di�usion equation for di�erent number of grid points are presented in �gures(7.12-7.15). These results demonstrate the performane of our sheme in the rare�edregime where ǫ = 0.1, ǫ > ∆x. The numerial solutions math the exat solution very welland apture the paraboli behaviour when we use very �ne spatial grids. Visually, there isa good agreement in the �gures, but we experiened at t = 1 that the numerial solutionomputed by the sheme is sensitive to the hoie of ∆t and ∆x when we keep ǫ = 0.1.To see if this behaviour persists and to see how the error evaluates, we measure the L1error between the exat solution and the approximated one at time t = 3 in Table 6.
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Figure 7.12: Numerial solution of visid Burgers equation ut + (u2

2
)x = uxx using thedi�usive relaxing sheme (5.3), ∆x = 0.009. ∆t = 0.0002. ǫ = 0.1. Plot at t= 0.1.
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Figure 7.13: Numerial solution of visid Burgers equation ut + (u2

2
)x = uxx using thedi�usive relaxing sheme (5.3), ∆x = 0.003. ∆t = 0.0001. ǫ = 0.1. Plot at t= 0.3.
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Figure 7.14: Numerial solution of visid Burgers equation ut + (u2

2
)x = uxx using thedi�usive relaxing sheme (5.3), with ∆x = 0.003. ∆t = 0.0001. ǫ = 0.1. Plotat t = 0.5.
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Figure 7.15: Numerial solution of visid Burgers equation ut + (u2

2
)x = uxx using thedi�usive relaxing sheme (5.3), with ∆x = 0.006. ∆t = 0.00025. ǫ = 0.1. Plotat t = 1.
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N L1-error Ratio
40 0.1792
80 0.1375 1.30
160 0.0897 1.53
320 0.0534 1.68
640 0.0309 1.72
1280 0.0184 1.67Table 6. The omputed L1 norms of the di�erene between the numerial and the exatsolution of the visid Burger equation at �nal time t = 3. We omputed the numerialsolution with the di�usive relaxation sheme (5.3).



Chapter 8Summary and Conlusion
In this thesis a lass of numerial shemes based on loal relaxation approximation forhyperboli and paraboli equations have been introdued and analysed. The main featureof this lass of shemes is its simpliity and generality. Both numerial experiments andtheoretial analysis indiate that the relaxation shemes proposed have great deal ofadvantages.For these methods, our aim have just been to onentrate on developing the basiframework. We have analysed both from a theoretial and omputational point of viewthe relaxation shemes to approximate the nonlinear degenerate paraboli equations, andwe have inorporated the losely related hyperboli onservation laws.In the hyperboli ase, when there is no di�usion, we onsidered underresolved numerialshemes with a disontinuous oe�ient and the orresponding relaxed sheme. The �rstorder upwind approximation to the hyperboli relaxation system was tested to illustratethe auray and the good properties. Our onlusion is that the relaxation shemesseem to give aeptable results for onservation laws even if we simplify the disontinuousoe�ient to a onstant in the omputations. Inspired from reent advanes indeveloping high order relaxed shemes, a theoretial onvergene analysis for the relaxedsheme is presented. The results indiate that the relaxed shemes obtained in the limit
ǫ→ 0 provide a promising lass of new shemes. We showed that for hyperboli systems,one an just use the relaxed shemes instead of the relaxing version.In the paraboli ase, we extended the approah to nonlinear paraboli equations, and wehave introdued a way of onstruting numerial shemes for equations in the di�usiveregime. In our �rst approah, we onentrate on developing the basi ideas when wepropose a new form of the relaxation sheme based on the same idea used on hyperbolionservation laws sine our approah has the same form. Sine our goal is just to de�nethe onept, more experiments need to be done, and omparison with other methodshave to be made. By using suitable disratization in spae and time, we were able toprodue some numerial results whih indiate the potential of the shemes.We fae additional di�ulties here due to the sti� onvetion part ombined with a72



8.1 Further work 73disontinuous oe�ient in the soure term. A reformulation of the problem is tried tosee if we an improve the results. The analysis for operator splitting is arried out to seeif a higher order of auray an be ahieved. When applying the splitting proedure, wewant to point out a lak of auray in the vn+1-omponent in the onvetion step. Soone need to investigate further the hoie of equilibrium �uxes to retify the problem andrigorous theoretial justi�ation to analyse the behaviour in the di�usive regime. Otherideas ould also be inorporated to give more deliate results, suh as a di�erent hoie ofthe parameter ν that depend on the disretization parameters, or adaptive meshre�nement and shok traking tehniques.Our onlusion is that it is not obvious that this splitting provides any simpli�ation orimprovement to the numerial solution. However, based on experiments with othersplitting methods, we believe this basi framework an be ompetitive to other methods,easier to implement and no Riemann solvers are neessary.8.1 Further workAfter �nishing this thesis, there are still some open questions and room for many furtherdevelopments.The prospets in the numerial experiments and theoretial analysis are veryenouraging. The relaxation formulation an be used as a platform for developingshemes for hyperboli onservation laws. They are simpler ompared to the existingapproahes and are attrative for further researh. One possible future researh is todesign shemes that extends the relaxing shemes with a disontinuous oe�ient tohigher order shemes and more ompliated systems, to demonstrate that the auray ofrelaxations shemes an be inreased. An interesting aspet is to onstrut simplealternative higher order relaxed shemes with appliations to more generalhyperboli-paraboli onvetion-di�usion equations.When solving the paraboli problem, we foused on the sti� regime, ǫ << 1. It isdesirable to develop a lass of numerial shemes that an work with a uniform aurayfor all range of ǫ, an aurate and stable disratization for a possibly degenerateonvetion-di�usion equation with the disontinuous oe�ient and the orrespondingrelaxed shemes.We would like to investigate further the ability of the proposed splitting to aptureshoks with high resolution and avoiding solving nonlinear algebrai systems, but stillmaintaining all the nie properties of those onstruted earlier.
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