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Chapter 1IntrodutionOne of the oldest topis of omplex analysis, is the study of the lass S of univalent (holomor-phi and injetive) funtions f : D → C normalised by
f(z) = z +

∞
∑

n=2

an−1z
nHere, and in the rest of this thesis, D represents the unit disk D = {z ∈ C

∣

∣ |z| < 1} and wewill denote the exterior of D in the Riemann sphere C̄, by D∗ (i.e. D∗ = C̄\ D̄, where D̄ is thelosure of D). Let f be a map in S, with the image f(D) = Ω, suh that ∂Ω splits C̄ into twodomains Ω and Ω∗ = C̄\Ω̄, with∞ ∈ Ω∗. By the well known Riemann mapping theorem, thereexists a unique univalent mapping g of D∗ onto Ω∗, �xing the inequality limx→∞ g(z)/z > 0.This funtion has an expansion
g(z) = b1z + b0 +

b−1

z
+ ...about ∞, where b1 > 0. We say that the mappings f and g are mathing. In this thesis,we will be foused on how the properties of f in�uene properties of the adjoint funtion gmathing it, and vie versa.The relationship between these two mappings are poorly understood. Knowledge aboutone of the maps, for instane f , does not give us any lear analyti harateristi of the otherone exept for the knowledge of the existene of g, and even less hope of onstruting g asan expliit funtion. This problem beomes even more di�ult by a general impression thatif either one of the funtions is given by a seemingly simple formula and is not the identity,then the mathing funtion is rather ompliated. Let us onsider, as an example, the asewhere Ω is an ellipse with foi at ±1. The map from D∗ to the exterior of Ω is given by theJoukowski map

z 7→ 1

2

(

cz +
1

cz

)

c > 1The mathing funtion from D to Ω, however, is given by di�ult ellipti integrals, as we willshow in setion 2.3. Sine the problem is so omplex, any partial result in this diretion wouldbe an asset. 7



8 Introdution1.1 Conformal radii of mathing domainsWe onsider a property that seems to be obsure by some geometri reasons. Let γ be asimple losed, analyti ontour, splitting C̄ into two domains Ω and Ω∗, neighbourhoods of 0and ∞, respetively. How is the onformal radius of Ω with respet to the origin ontrolledby the logarithmi apaity of γ or equivalently by the oe�ient b1 in the expansion of
g : D∗ → Ω∗? This question is addressed in setion 3.5, where we look at a speial ase where
γ is quasisymmetri, whih for example guarantees that Ω and Ω∗ are both domains.1.2 Connetions to mathematial physisReently several modern developments in the theory of onformal maps in relation with math-ematial physis have been seen. This, in partiular, applies to onformal �eld theory (CFT),where onformal maps and Riemann surfaes play an important role in parametrisation ofa string worldsheet. Non-linear physis is a natural user of onformal maps. Suh samplenon-linear proesses as Laplaian growth, KdV and mKdV hierarhies use mathing funtionsas `oordinates' on a phase spae. The mathing funtions appear also in the inverse potentialproblem of onstrution of a domain by its harmoni moments. If we alulate the interiormoments of Ω, given by

Cn =

∫∫

Ω
wndu dv w = u+ iv , n ∈ N,it turns out that the orresponding exterior moments

C−n =

∫∫

Ω∗

w̄ndu dv w = u+ iv , n ∈ Nan (under some normalisation) be embedded into the Toda (dispersinless) hierarhy, or morepreisely, their derivatives with respet to Cn. This integrable hierarhy, solvable by theso-alled τ -funtion, is important in the study of integrable models in CFT. The embeddingbeomes possible, due to the fat that if γ is an analyti ontour, then there exists the Shwarzfuntion S(w), analyti in a neighbourhood of γ and satisfying the ondition S(w) = w̄ on γ.This funtion glues Ω with Ω∗ through γ and the harmoni moments Cn, are oe�ient in theformal Laurent expansion of S(z).Another formulation of CFT is based on the path integral and leads to the Lagrangianand Hamiltonian formulations. The Virasoro algebra plays an important role in this model.It arises as an operator algebra in the formal Laurent expansion of the analyti omponentof the momentum-energy tensor. Its mathematial representation is based on the Kirillovhomogeneous manifold
Diff+S

1/RotS1where Diff+S
1 is the Lie group of orientation preserving di�eomorphism of S1, and RotS1is the subgroup of sense preserving rotations. The Virasoro algebra is the entral (C or R)extension of the Lie algebra of the vetor �elds on S1, the tangent algebra to Diff+S

1.The Kirillov manifold has many equivalent representations (in the spae of unitary proba-bilisti measures, the Teihmüller spae, et.). We will be foused on the representation givenby the mathing funtions f and g disussed earlier. We have that
f−1g|S1 ∈ Diff+S

1



1.3 Preognitions 9and every element from Diff+S
1/Rot S1 an be represented by suh a omposition of mappingsin a unique way. In this model, the link between f and g are given impliitly by positive andnegative indexed Virasoro generators onsidered in setion 4.1.Reently, it beame lear that the Virasoro generators appear in the Löwner theory as the�rst integrals of a partially integrable Hamiltonian system for the oe�ients of the Taylorexpansion of f ∈ S.1.3 PreognitionsThe reader is assumed to be familiar with theory of real manifolds and onstrutions on them,as well as some representation theory, in partiular the Lie theory. Useful information anbe found in, e.g., [8℄, [32℄, [17℄, [13℄. Apart from this, and some basi properties taken fromtopology and omplex analysis, we tried to keep the thesis as self-ontained as possible. Somelanguage from ategory theory, and the notion of sheaf will be used, but the thesis is easilyunderstood without any knowledge of these.1.4 Some notationsWe will denote the omposition of two funtions without ◦ (i.e. f ◦g is written fg). When twofuntions are multiplied, we will expliitly denote it by f · g. If U is a subset of a topologialspae X, then the losure, interior and exterior of U will be denoted by Ū , intU and extU .For a mapping f : X → Y , then the omposition U ⊆ X

f→ Y , is written f |U . If X =
∏

αXα,then prXα denotes the projetion from X onto Xα. The identity map from X to itself isdenoted idX . If A is a matrix, the transpose is denoted AT .IfM is a manifold, then we denote the (real) tangent spae at r ∈M by TrM , the tangentbundle by TM and otangent bundle by T ∗M . If f : M → N is a smooth mapping, we write
Tf and T ∗f for the indued mapping on tangent and ontangent bundles respetively. If
ξ : E → X is a smooth vetor bundle, then Γ(E) is the spae of smooth setions on thebundle. If V is a vetor spae, then V ∗ is the dual spae,

k
∧

V = V ⊗k/{v1 ⊗ · · · ⊗ vk|vj = vl for some l 6= j}is the exterior produt and
SymkV = V ⊗k/{v1 ⊗ · · · ⊗ vk − vσ(1) ⊗ · · · ⊗ vσ(k)}is the k'th symmetri produt, where vi ∈ V and σ is a permutation. We will use the samesymbols for the orresponding ation on bundles.We denote the integers by Z , positive integers by N , non-negative integers by N0 , realnumbers by R, and omplex numbers by C . D will be the unit disk in C and C̄ will be theRiemann sphere. Sn = {x ∈ Rn+1

∣

∣ |x| = 1} is the n-sphere, and unless otherwise is mentioned,
S1 is viewed as a subset of C. Apart from that, we de�ne

Rn
+ = {x = (x1, x2, . . . , xn) ∈ Rn|xn ≥ 0}

Cn
+ = {ζ = (ζ1, ζ2, . . . , ζn) ∈ Cn| Im ζn ≥ 0}The projetion from either Rn or Cn to its k'th oordinate is denoted prk . If ζ ∈ C, then ζ̄is its omplex onjugate. If Ω ⊆ C̄, then we use Ω∗ = ext Ω.A omplete index of notation is found at the end of this thesis.



10 Introdution1.5 Purpose and own resultsThe present thesis ontains an overview of some speial topis of Complex Analysis andDi�erential Geometry, e.g., Chapter 2, some advaned and modern known results onerningHamiltonian systems, Virasoro algebra as well as our own results. In partiular, we onsiderin details the simplest non-trivial model of mathing univalent funtions whih map D and
D∗ onto interior and exterior of an ellipse. The onformal radius of an ellipse with respetto its entre is alulated in terms of ellipti integrals. The problem of the range of theonformal radius of a domain whose exterior has �xed apaity is onsidered and partialresults are obtained for quasionformal ase in setions 3.3 and 3.5. In partiular, we useda version of Löwner theory developed by Beker for quasionformally extendable onformalmaps. Then we onsidered appliations of mathing univalent funtions to the representationof the Virasoro algebra. In partiular, we alulate an element of in Diff+S

1 orrespondingto the ellipse. Considering manifolds of oe�ients in S, a Hamiltonian interpretation of theLöwner equation is given in setion 4.4. Further, the group ation of the non-ommutativegroup Diff+S
1 indues a non-Riemannian geometry on the manifold of univalent funtions,whih is best desribed through Sub-Riemannian geometry. Generalising results by Markina,Prokhorov, and Vasiliev [25℄ we onstrut a sub-Riemannian manifold based on a distributiongenerated by more than two of the trunated Kirillov operators (setion 4.7).



Chapter 2Complex manifolds and RiemannsurfaesThis hapter is dediated to some theoretial bakground about spaes and some onstrutionson them. Our intention is not to go deeply in the theory of omplex manifolds, but only toget some lear de�nitions and notions for further use. Espeially we will be interested in theone-dimensional ase, i.e. Riemann surfaes. We end this hapter with a whole setion onquadrati di�erentials. They are onneted to problems regarding moduli of families of urves,whih will be treated in the next hapter. Using these, we will also onstrut a onformalmapping from the disk D onto an ellipse, that will reapear as an example in the later theory,and will also be used in hapter 3.Thoughout this hapter ζ will denote a point in Cn, r and s will always be points on amanifold, and z and w will denote harts (this reservation of haraters will not be kept inlater hapters).2.1 Complex manifoldsWe will all a mapping biholomorphi, if it is both holomorphi and bijetive (this impliesthat the inverse is holomorphi too).De�nition 2.1. Let M be a real, di�erentiable manifold, on whih there exists an open over
{Uα} with homeomorphisms zα : Uα → zα(Uα) ⊆ Cn, suh that for any pair of these mappings

zβz
−1
α |zα(Uα∩Uβ) : zα(Uα ∩ Uβ) → zβ(Uα ∩ Uβ)is biholomorphi. The olletion B =

{

(zα, Uα)
} is alled a omplex atlas. This atlas generatesa unique maximal atlas A, and we de�ne the pair (M,A) as a omplex manifold.The maximal atlas of B is generated in the following way:

A = {w : V → w(V ) ⊆ Cn
∣

∣w is a homeomorphism, wz−1|z(U∩V ) is biholomorphic for any (z, U) ∈ B}Suh maximal atlases are alled omplex strutures. As usual, the manifold is denoted onlyby M , and we say that the elements of A are (omplex) harts or loal oordinate systems.11



12 Complex manifolds and Riemann surfaesFrom the de�nition it is lear that M must be a real manifold of even dimension, and italso turns out to be orientable. We de�ne a bordered omplex manifold in a similar way, onlywith harts given by homeomorphisms zα : Uα → zα ⊆ Cn
+. The boundary of M is de�ned as

∂M = {r ∈M | there is a chartw : M → Cn
+, such that prnw(r) = 0}Example 2.2. • Cn and any open subsets of Cn are omplex manifolds. Generally, anyopen nonempty subset of an n-dimensional omplex manifold is an n-dimensional om-plex manifold.

• Mm×nC , the spae of allm×nmatries with omplex entries is a manifold by identifyingit with Cmn. GLnC , the spae of all invertible n× n matries is a manifold beause itis an open subset Mn×nC (sine GLnC = det−1(C \ {0})).
• Let

CPn = (Cn+1 \ {0})/ ∼where r ∼ λr, r ∈ Cn+1 \ {0}, λ ∈ C \ {0}. This is the spae of all (omplex) linesin Cn+1. We denote the equivalene lass of r by [r]. Using the harts {zk : Uk →
Cn}k=1,2,...,n+1, with Uk = {[r1, r2, . . . , rn+1]|rk 6= 0} and

zk([r]) =
1

rk
(r1, . . . , rk−1, rk+1, . . . , rn+1),

CPn beomes a omplex manifold of dimension n. In partiular, CP1 = C̄ is a omplexmanifold.A mapping f : M → N of two omplex manifolds, is holomorphi if, for any harts (z, U)and (w, V ) on M and N respetively, the mapping
wfz−1|z(U∩f−1(V )) : z(U ∩ f−1(V )) → w(f(U) ∩ V )is holomorphi in the usual way. Taking omplex manifolds as objets, and holomorphi map-pings as morphisms, we get a ategory. Isomorphisms in this ategory will be biholomorphimappings, and we write M ∼= N , when suh a mapping exists between M and N . We denote

Hol(M,N) = {f : M → N
∣

∣ f holomorphic},and in partiular, we denote holomorphi funtions by OM = Hol(M,C) . This is a ringunder pointwise addition and multipliation. By de�nition, for any mapping f : M → N ,
Of : ON → OM

ϕ 7→ ϕf,and O beomes a ontravariant funtor. Sine every open subset of a omplex manifold is aomplex manifold, O also forms a sheaf of rings. If r ∈M , we all
lim−−→
r∈U

OU = Or



2.1 Complex manifolds 13the holomorphi funtion germs at r (the limit is taken over all open sets U ⊆M ontaining
r). This is a ring, and we denote its �eld of frations Mr . These are alled the meromorphifuntion germs at r. We say that a meromorphi funtion on M , is a mapping

f : M →
∐

r∈M
Mr

r 7→ [f ]rsuh that [f ]r ∈ Mr for any r ∈ M , and suh that any s ∈ M has an open onnetedneighbourhood U , with the property that there are funtions ϕ,ψ ∈ OU , ψ 6≡ 0 with images
[ϕ]r, [ψ]r in Or, suh that [f ]r = [ϕ]r/[ψ]r for every r ∈ U . Hene, a meromorphi funtion on
M as a funtion that loally an be represented by a quotient of two holomorphi funtions withthe denominator being not identially zero. We denote the set of all meromorphi funtionson M , by MM . This is a �eld if and only if M is onneted [28℄.A subset N ⊆ M is alled a k-dimensional submanifold, if about any r ∈ N , there is ahart (z, U), suh that z(U ∩Y ) ⊆ Ck×{0} ⊂ Cn. A di�erene between the theory of omplexmanifolds and real manifolds, is that there is no theorem similar to the Whitney embeddingtheorem. That is, whereas any real manifold may be embedded as a submanifold of RN , veryfew omplex manifolds may be embedded into CN . For example, by Liouville's theorem, allholomorphi funtions f : M → C for a ompat manifold M , are onstant on eah onnetedomponent, so an embedding an only exist if M is a disrete set.Now let us turn to the omplex vetor bundles, and then in partiular, to the tangentbundles. Observe, that they may exist on any di�erentiable manifold, not just on the omplexones.De�nition 2.3. Let M be a di�erentiable manifold. An m-dimensional omplex vetor bundleof M , is a surjetive ontinuous mapping ξ : E →M , with the following properties

• For any r ∈M , ξ−1(r) has the struture of a omplex vetor spae.
• There is an open over U of M , suh that for any U ∈ U , there is a homeomorphism
h : ξ−1(U) → U × Cm satisfying the following onditions:1. ξ|ξ−1(U) = prUh.2. The map hr := prCmh|ξ−1(r) is an isomorphism of omplex vetor spaes.3. For any other V ∈ U , with g being the assoiated homeomorphism, the mapping

s 7→ gsh
−1
sis a C∞ map from U ∩ V to GLm(C).We will often denote a bundle just by E. Similarly to the real ase, we all ξ−1(r) the �breover r, the (h,U) and (g, V ) are alled (omplex) bundle harts or trivialisations. A olletionof bundle harts overing M and satisfying ondition 1.-3. is alled a (omplex) smooth bundleatlas. A funtion s 7→ gsh

−1
s , for a hosen pair of bundle harts, is alled a transition funtion.A omplex bundle morphisms of omplex bundles ξ1 : E1 →M1 to ξ2 : E2 →M2, is givenby a pair of mappings F : E1 → E2, and f : M1 →M2, suh that fξ1 = ξ2F , and F |ξ−1(r) is a

C-linear map for every r ∈M . If M1 = M2 and f is the identity, we will just think of bundlemorphism F : E1 → E2. In general, a omplex vetor bundle ξ : E → M over a omplexmanifold, does not give E the struture of a omplex manifold. For that, we need some morerequirements.



14 Complex manifolds and Riemann surfaesDe�nition 2.4. Let M be a omplex manifold. Then a omplex vetor bundle is alled aholomorphi vetor bundle if there is a bundle atlas, in whih all transition funtions areholomorphi.The total spae E will now be a n +m omplex manifold of its own right, by using thatif (z, U) and (h, V ) is a hart and bundle hart, respetively, then
(z × idCm)h|ξ−1(U∩V )is a hart on E. The fat that suh harts overlap holomorphially is guaranteed by theholomorphi transition funtions. The most interesting vetor bundles are, of ourse, thetangent bundles. If M is a di�erentiable manifold with TM as a real tangent spae, then theomplex tangent bundle is simply the omplexi�ation of TM . To lear this up, we de�ne

TCM := TM ⊗R (C ×M) ,where C × M is seen as a one-dimensional trivial bundle over M . Complex struture isgiven in a usual way (i.e., TrM ⊗R C beomes a omplex vetor spae by de�ning salarmultipliation with a omplex number by α(X ⊗ ζ) := X ⊗ αζ, and introduing onjugationby X ⊗ ζ = X⊗ ζ̄). An alternative desription of this omplexi�ation, is to let X ∈ TrM aton omplex valued C∞ funtion germs about r. If [ψ]r : (M, r) → (C, ψ(r)) is suh a germ, wede�ne X(ψ) = X(Reψ) + iX(Imψ), and introdue salar multipliation in the obvious way.If M is a omplex manifold and (z, U) is a hart, where z = (z1, z2, . . . , zn), and zj =
xj + iyj, then TM is spanned loally by the vetor �elds

{ ∂

∂x1
,
∂

∂y1
,
∂

∂x2
,
∂

∂y2
, . . . ,

∂

∂xn
,
∂

∂yn

}

.Note that on any omplex manifold, there exists a bundle morphism orresponding to multi-pliation by i
J : TM → TM,suh that

J(
∂

∂xj
) =

∂

∂yj
, J(

∂

∂yj
) = − ∂

∂xj
, (2.1)whih means that being applied twie we get the minus identity: J2|TrM = −idTrM . Ingeneral, any di�erentiable manifold together with a bundle morphism on its tangent bundlewith this property is alled an almost omplex manifold. The operator is alled an almostomplex struture. All almost omplex manifolds are even-dimensional (real dimension) andorientable. An almost omplex struture may be extended to a omplex bundle morphism on

TCM by de�ning J(X ⊗ ζ) := J(X) ⊗ ζ.The omplex tangent bundle is loally spanned by
{ ∂

∂z1
,
∂

∂z̄1
,
∂

∂z2
,
∂

∂z̄2
, . . . ,

∂

∂zn
,
∂

∂z̄n

}

,where ∂
∂zj

= 1
2( ∂
∂xj

− i ∂
∂yj

) and ∂
∂z̄j

= 1
2 ( ∂
∂xj

+ i ∂
∂yj

). The omplex tangent bundle then splitsinto two parts
TCM = T 1,0M ⊕ T 0,1M



2.2 Riemann surfaes 15alled the holomorphi and antiholomorphi tangent bundles, respetively. T 1,0M then isspanned by { ∂
∂zj

}nj=1, and T 0,1M by { ∂
∂z̄j

}nj=1. The extension of J in (2.1) to TCM is givenby
J(

∂

∂zj
) = i

∂

∂zj
J(

∂

∂z̄j
) = −i ∂

∂z̄jThen T 1,0M and T 0,1M are the eigenspaes for J with respet to i and −i respetively (sothat if X ∈ Γ(TCM), then Γ(T 1,0M) = ker{X → X + iJ(X)} and Γ(T 0,1M) = ker{X →
X − iJ(X)}). T 1,0M is a holomorphi vetor bundle, and therefore a omplex manifold.
T 0,1M is not in general a holomorphi bundle, so we an only be sure that is T 0,1M an almostomplex manifold. The dual bundles (T 1,0M)∗ and (T 0,1M)∗ are loally spanned by otangentvetor �elds dzj = dxj + idyj and dz̄j = dxj − idyj for j = 1, . . . , n.IfM is a omplex manifold with a omplex struture J , then there is a Riemannian metri
ρ that satis�es the following relation

ρ(JX, JY ) = ρ(X,Y ), X, Y ∈ Γ(TM)is alled an Hermitian metri, and (M,ρ) an Hermitian manifold. The metri ρ an beextended to TCM , and may be thought of as an element in Γ((T 1,0M ⊗ T 0,1M)∗) (i.e., ρ =
∑

j,k=1,...n ρjkdzj ⊗ dz̄j) with the properties
• ρ(X, Ȳ ) = ρ(Y, X̄);
• ρ(X, X̄) > 0 ,wheneverX 6= 0,forX,Y ∈ Γ(T 1,0M). To eah Hermitian metri we assoiate the fundamental form Φ(X,Y ) =

ρ(JX, Y ). If dΦ = 0, the manifold is alled Kählerian.2.2 Riemann surfaesWe will take a loser look at the one-dimensional ase where we an use some results fromone dimensional omplex analysis.De�nition 2.5. A Riemann surfae is a 1-dimensional, onneted omplex manifold.Sine we are now in the one dimensional ase, all biholomorphi mappings are onformal,and if M ∼= N , we say that the Riemann surfaes are onformally equivalent.Example 2.6. • D,C, C̄, and open onneted subsets of them, are Riemann surfaes. Bythe Riemann mapping theorem, we have that if an open simply onneted subset U ⊆ C̄has more than two boundary points, then U ∼= D. It is alled a hyperboli domain. Moreabout lassi�ation of Riemann surfaes will be found later.
• The domains CR = {ζ ∈ C

∣

∣ 1 < |ζ| < R} , where R > 1, are all Riemann surfaes.Although they are di�eomorphi as real manifolds, CR1
6∼= CR2

, when R1 6= R2. (seesetion 3.1, example 3.3).
• Let M be a ompat Riemann surfae. Sine it is a ompat orientable surfae, it ishomeomorphi to S2 or a sum of tori. We say that a surfae homeomorphi to thesphere has genus 0, and that it has genus g if it is the sum of g tori. S2 admits only



16 Complex manifolds and Riemann surfaesone omplex struture, the one given by C̄. However, there are in�nitely many ompatRiemann surfaes with genus g. If we onsider the ase of ompat Riemann surfaesof genus one (whih we will all omplex tori), then all suh Riemann surfaes areonformally equivalent to a surfae on the form
C/(Z + τZ),where τ ∈ C+ with Im τ 6= 0. Futher more, if τ ′ is another suh element, then

C/(Z + τZ) ∼= C/(Z + τ ′Z)if and only if τ ′ = aτ+b
cτ+d , with a, b, c, d ∈ Z and ad− bc = 1 (see [12℄ for more details).

• A Riemann surfae M is alled �nite if π1(M) , the �rst homotopy group, is �nitelygenerated. Eah �nite Riemann surfae is onformally equivalent to a domain on aompat Riemann surfae. They are lassi�ed in the following way. We generalise thenotion of genus to non-ompat surfaes by saying that a surfae is of genus g if g isthe maximal number, suh that there is a simple losed urve γ1 in M , and urves γj in
M \ (γ1 ∪ · · · ∪ γj−1), suh that M \ (γ1 ∪ · · · ∪ γg) is onneted (i.e., we an make some
g �irular� uts on M , keeping it onneted). An equivalent way of this de�nition is asfollows. If M̄ is the losure of M , as a subset of a ompat manifold and the boundaryof M̄ has d omponents then

g :=
1

2
(2 − χ(M) − d)where χ is the Euler harateristi of M . The orientability of all Riemann surfaesimplies that

g = rankH1(M ; Z) − rankH0(∂M̄ ; Z),where Hj is the j'th singular homology group. A surfae is said to be of type (g, n, l) if� M has genus g;� M has n puntures: M has n disjoint open neighbourhoods onformally equivalentto D\{0}, with only one of its boundary omponents inM , and this one is a urve;� M has l hyperboli boundary omponents: M has l disjoint open neighbourhoodsonformally equivalent to CR (for some R) with only one of its boundary ompo-nents in M .So C̄ is of type (0,0,0), C is of type (0,1,0), D \ {0} is of type (0,1,1) and the CR is oftype (0,0,2).The Riemann mapping theorem has the following generalisation to Riemann surfaes.Theorem 2.7 ([9℄). Let M be a simply onneted Riemann surfae. Then M is onformallyequivalent to either C̄ , C, or D.We want to use this theorem to lassify all Riemann surfaes. First we need some oneptsfrom Topology.De�nition 2.8. Let X and Y be topologial spaes. A ontinuous map p : Y → X is alledovering if, for any x ∈ X, there is an open neighbourhood U of x suh that p−1(U) =
∐

j∈J Vjand p|Vj
is a homeomorphism for any j.



2.2 Riemann surfaes 17The overing map p : Y → X is alled universal if it ful�ls the following property. If
q : Z → X is another overing map, then there is a overing map f : Y → Z, suh that p = qf .The spae Y is then alled the universal over of X, and is unique up to a homeomorphism.If in addition X is Hausdor� and onneted, then it is su�ient to require that Y is simplyonneted for p to be a universal overing map. Suh a over always exists for any Riemannsurfae (see [11℄), and the surfae an be given a omplex struture in order to guarantee thatit is a simply onneted Riemann surfae and p is holomorphi. By theorem 2.7, the followingde�nition is onsistent.De�nition 2.9. Let M be a Riemann surfae and let N be its universal over. Then M isalled

• ellipti if N is onformally equivalent to C̄.
• paraboli if N is onformally equivalent to C.
• hyperboli if N is onformally equivalent to D.If we have two overings p : N → M and q : L → M , then a ontinuous map f : N → Lis �bre preserving if p = qf . We will denote by Deck(N/M) the group of �bre preservingautomorphism on N under omposition, with respet to some overing map p : N → M .The elements of Deck(N/M) are alled dek transformations. If N is onneted, then anynontrivial element ofDeck(N/M) has no �x points. IfN is the universal overing of a Riemannsurfae M , then Deck(N/M) is isomorphi to π1(M), and

N/Deck(N/M) ∼= M.Denote by Aut(M) = {f ∈ Hol(M,M)
∣

∣ f is bijective}. IfM is an ellipti Riemann surfae,then Deck(C̄/M) is a subgroup of Aut(C̄). Aut(C̄) is the group of Möbius transforms
ζ 7→ aζ + b

cζ + d
,where ad− bc = 1, whih may be identi�ed with PGLnC = GLnC/ ∼ , where the equivalenerelation is given by A ∼ λA, for A ∈ GLnC and λ ∈ C\{0}. Sine all nontrivial Möbius trans-forms has at least one �xed point, there is no possibility for any nontrivial dek transformationto exist and hene, C̄ is the only ellipti Riemann surfae.Similar observations for

Aut(C) = {ζ 7→ λζ + κ
∣

∣λ, κ ∈ C, λ 6= 0},show that the only interesting subgroup of dek transformations is the group generated by
ζ 7→ ζ + 1 and the ones generated by ζ 7→ ζ + 1 and ζ 7→ ζ + τ , with τ ∈ C+, Im τ 6= 0 (andgroups generated by a onstant times these elements). It follows that C, C \ {0}, and thetorus with di�erent omplex strutures are the only paraboli Riemann surfaes.The rest are hene hyperboli Riemann surfaes. Aut(D) onsists of Möbius transforma-tions on the form

ζ 7→ λ
ζ − κ

1 − κ̄ζwhere |λ| = 1 and κ ∈ D. This group may be identi�ed with PSLnR = SLnR/ ∼, where
A ∼ −A for A ∈ SLnR. Disrete subgroups G of Aut(D) are alled Fushian. It turns outthat if G is a torsion free Fushian group, then D/G is a hyperboli Riemann surfae, and anyhyperboli Riemann surfae is of this form. See [9℄ for more details.



18 Complex manifolds and Riemann surfaesExample 2.10. For the simplest ase, where π1(M) is abelian, we only have the followingpossibilities.
• If π1(M) = 0, then M is D, C or C̄.
• If π1(M) = Z, then M is D \ {0}, C \ {0} or CR for some value of R. Note that D \ {0}and CR for di�erent values of R, are all given by the quotient of D by a group isomorphito Z, yet none of them are onformally equivalent.
• If π1(M) = Z × Z, then M is a omplex torus.2.3 Quadrati di�erentials on a Riemann surfaeWe remark that for a Riemann surfae M , MM may be identi�ed with Hol(M, C̄) \ {∞},where ∞ denotes a funtion onstantly equal to in�nity.De�nition 2.11. A holomorphi (resp. meromorphi) quadrati di�erential on a Riemannsurfae (M,A), is a mapping φ on A, suh that for every hart (zα, Uα), a mapping φzα ∈

Ozα(Uα) (resp. M zα(Uα) ) is assoiated, so that
φzβ

(zβ(r)) = φzα(zα(r)) ·
(dzα
dzβ

(r)
)2
, ∀ r ∈ Uα ∩ Uβ.We often denote a quadrati di�erential by φ(z)dz2 with respet to some hart z. Aholomorphi quadrati di�erential may also be seen as an element in Γ

(

Sym2(T 1,0M)∗
). Unlessotherwise mentioned, the quadrati di�erentials below are meromorphi. We all points onthe Riemann surfae regular regarding to a di�erential φ, if they are neither poles nor zeroesof φ.De�nition 2.12. A trajetory of a quadrati di�erential φ, is a maximal regular (i.e., C1with non-vanishing derivative) urve γ on M , suh that φ(z)dz2 > 0 on γ, i.e., for any loalrepresentation φzα of φ, we have

φzαzαγ(t) ·
(

(zαγ)
′(t)

)2
> 0.A maximal regular urve η, suh that φ(z)dz2 < 0 on η, is alled an orthogonal trajetoryGeometri interpretation of the behaviour of trajetories is expressed in the followingtheorem.Theorem 2.13. Let φ be a quadrati di�erential on M . For any regular point r ∈ M , thereexists a hart (w, V ) about r, suh that φw ≡ 1. Moreover, if w̃ is another suh hart, then

w̃ = ±w + constant.Proof. Let φz(z)dz2 be a loal representation in a neighbourhood around r. Sine r is regular,there is a neighbourhood V , where we may hoose a single valued branh of √

φz(z) (the sign
± omes from the hoie of a branh). Let w =

∫ √

φz(z)dz be the natural parameter, whihis de�ned up to some hoie of onstant, and independent of the loal parameter z hosen (bythe de�nition of the quadrati di�erential). We know that
φw(w) =

φz(z)

(dwdz )2
=
φz(z)

φz(z)
≡ 1.



2.3 Quadrati di�erentials on a Riemann surfae 19We all a θ-ar a maximal regular urve along whih
arg dw2 = arg φz(z)dz

2 = θ (constant).A trajetory is learly a 0-ar, and an orthogonal trajetory a π-ar, and it is easy to seethat using w as a loal parameter, trajetories and orthogonal trajetories form horizontaland vertial straight lines respetively. Sine the hange of harts is onformal, we get that nomatter what loal parametrisation we use, the orthogonal trajetories are indeed orthogonalto trajetories, whenever they interset. We also remark that orthogonal trajetories beometrajetories when we onsider −φ.Trajetories may be also seen as solutions to the di�erential equation φ(z)
(

dz
du

)2
= 1 for areal parameter u.The following example is important in our further onsiderations.Example 2.14. Let Ea;λ = {ζ ∈ C

∣

∣ (Re
a )2 + ( Im

a
√

1−λ2
)2 = 1} be the ellipse with the majoraxis a along the real line, and with the eentriity λ. We �nd a onformal map from the unitdisk onto this ellipse. Let us onsider the quadrati di�erentials

dz2

(z2 − r−2)(z2 − r2)
and

−dw2

w2 − 1
,where 0 < r < 1, so that the unit irle and ellipses with foi at ±1, respetively, aretrajetories. In order to verify this, let us take z = eiθ, θ ∈ [0, 2π]. Then

dz2

(z2 − r−2)(z2 − r2)
=

−e2iθdθ2

(e2iθ − r−2)(e2iθ − r2)
=

dθ2

(r2 + r−2) − (e2iθ + e−2iθ)

=
dθ2

r2 + r−2 − 2 cos 2θ
≥ 0due to r2 + r−2 − 2 cos 2θ ≥ r2 + r−2 − 2 = (1/r − r)2 > 0. For the other di�erential, let ustake w = a cos θ + ib sin θ, where a2 − b2 = 1. Then

−dw2

w2 − 1
=

(−a sin θ + ib cos θ)2dθ2

1 − (a cos θ + ib sin θ)2
=

(a2 sin2 θ − b2 cos2 θ − 2abi sin θ cos θ)dθ2

a2 − b2 − a2 cos2 θ + b2 sin2 θ − 2abi sin θ cos θ

=
(a2 sin2 θ − b2 cos2 θ − 2abi sin θ cos θ)dθ2

a2 sin2 θ − b2 cos2 θ − 2abi sin θ cos θ
= dθ2Hene we may solve the equation

κ2dz2

(z2 − r−2)(z2 − r2)
=

−dw2

w2 − 1
,where κ ∈ R+ \ {0} and the solution will be the desirable onformal mapping of the unitdisk onto the ellipse. The reason for the onstant κ appearing, is trajetory struture of aquadrati di�erential is invariant under multipliation by suh positive onstants. It will befound when satisfying additional normalising onditions. We solve the equation for w = f(z)with initial onditions f(z) = 0, f(r) = 1. We will let F(x, k) denote the ellipti integral

F(x, k) =

∫ x

0

dt
√

(1 − t2)(1 − k2t2)
,



20 Complex manifolds and Riemann surfaesand let F(1, k) = K(k). We get
∫ f(z)

0

idw√
w2 − 1

= i log(−i(f(z) +
√

f(z)2 − 1) =

∫ z

0

κdz
√

(z2 − r−2)(z2 − r2)

= κ

∫ z

0

dz
√

(r2z2 − 1)(z
2

r2
− 1)

= κr

∫ z/r

0

dt
√

(1 − t2)(1 − r4t2)
= κrF(

z

r
, r2)Applying the ondition f(r) = 1, we get that κr = π

2K(r2) . Let ς(z) =
πF( z

r
,r2)

2K(r2) . Then weobtain the equation f(z) +
√

f(z)2 − 1 = ie−iς(z), solving whih we get
f(z)2 − 1 = −e−2iς(z) − 2ie−iς(z)f(z) + f(z)2,and �nally,
f(z) =

1

2i
(eiς(z) − e−iς(z)) = sin

(πF(zr , r
2)

2K(r2)

)This an be easily generalised to that an arbitrary ellipse. Expliitly, let
r−1(x) =

1

sin(
πF( 1

x
,x2)

2K(x2)
)
.Then the univalent mapping of the unit disk onto an ellipse with the major axis a, andeentriity λ is given by

Ea;λ(z) = aλ sin
(πF(zr , r

2)

2K(r2)

)

, where r = r(λ)The di�ult part of this formula, is that, there is no simple way to derive r as a funtion of
λ by an expliit formula. This mapping will be used in further examples.The loal trajetory struture about a regular point is trivial, but an be more omplexabout the ritial points of our di�erential (its zeroes and poles). The natural parameterproved to be useful for study of the trajetory struture about a regular point. We ontinueto use it in a similar way for singular points.Theorem 2.15 ([33℄). Let s ∈M be a ritial point of order n ∈ Z of the quadrati di�erential
φ.a) Let n be odd. Then there exists a hart w̃ about s, suh that φ has the loal representation

φw̃(w̃) =
(n+ 2

2

)2
w̃n.b) Let n be even and positive. Then there exists a hart w̃ about s, suh that φ has the loalrepresentation

φw̃(w̃) =
(n+ 2

2

)2
w̃n.
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Figure 2.1: A graph of r(λ) (blak) ompared to the identity (grey)) Let n = −2. Let z be any hart about s, and let φz(z) = a−2

z2
+ a−1

z + a0 + · · · . Then thereexists a hart w̃ about s, suh that φ has the loal representation
φw̃(w̃) =

a−2

w̃2
.d) Let n ≤ −4 and even. Then there exists a hart w̃ about s, suh that φ has the loalrepresentation

φw̃(w̃) =
(n+ 2

2
w̃n/2 +

b

w̃

)2for some onstant b.Proof. We will use the natural parameter w =
∫

√

φz(z)dz. In the following proof, w willnot always be a single valued funtion, and never a hart, but we will still use it for pratialreasons, sine formally dw2 = φz(z)dz
2 is still valid.a) Let z be some hart about the singular point s. We may assume z(s) = 0. Then φ maybe represented as

φz(z) = zn(an + an+1z + · · · )where n is odd and an 6= 0. We may loally hoose a branh of the square root of
an + an+1z + . . . . Let it be equal to

(an + an+1z + . . . )1/2 = b0 + b1z + · · ·Let us put √

φz(z) = zn/2(b0 + b1z + · · · ), with a hosen branh of zn/2. We integrateand put
w = z

n+2

2 (c0 + c1z + · · · ), ck =
2bk

n+ 2(k + 1)
.



22 Complex manifolds and Riemann surfaesLet d0 + d1z + d2z
2 + · · · = (c0 + c1z + c2z

2 + · · · ) 2

n+2 , and let w̃ = z(d0 + d1z + · · · ).Then w = w̃
n+2

2 , for the hosen branh of the square root. After di�erentiating andsquaring, we end up with a single valued expression
dw2 =

(n+ 2

2

)2
w̃ndw̃2b) We proeed in a similar way to a) without branhing problems on the way.) Assume √

φz(z) = z−1(a−2 + a−1z + a0z
2 + · · · )1/2 = z−1(b0 + b1z + b2z

2 + · · · ), (sinewe may hoose a branh of (a−2 + a−1z + a0z
2 + · · · )1/2 loally). Integrating, we get

w = b0 log z + b1z + b2
2 z

2 + · · · . Let w̃ = z · exp
(

b1
b0
z + b2

2b0
z2 + · · ·

). Then
dw2 =

(b0
w̃
dw̃)2 =

a−2

w̃2
dw̃.d) We may de�ne a single valued branh as before √

φz(z) = zn/2(b0+b1z+ · · · ). Integrating,we get w = zn/2+1(c0 + c1z + · · · ) + b log z, where (b−n/2−1 = b). Choose w̃ = z(d0 +

d1z + · · · ), suh that w = w̃n/2+1 + b log(w̃). This ends the proof.

(a) (b)Figure 2.2: The loal trajetory struture near (a) simple zero, (b) simple pole

Figure 2.3: The loal trajetory struture near a pole of 5-th orderNow let us proeed with the global trajetory struture.



2.3 Quadrati di�erentials on a Riemann surfae 23De�nition 2.16. A onformally invariant metri on a Riemann surfae (M,A), is a mapping
ρ on A, that to every hart (zα, Uα), assoiates a measurable funtion ρzα : zα(Uα) → [0,∞),satisfying the relation

ρzβ
(zβ(r)) = ρzα(zα(r))

∣

∣

dzα
dzβ

(r)
∣

∣ ∀ r ∈ Uα ∩ UβWe often denote a onformally invariant metri by ρ(z)|dz| with respet to some hart
z. To a quadrati di�erential φ, we assoiate a onformally invariant metri √

|φ(z)||dz|. Atrajetory is alled �nite, if it has �nite length in this metri.We say that an oriented trajetory is a trajetory ray.De�nition 2.17. For a trajetory ray γ+ : I →M , where I is an interval with b = sup I, wedenote It = {u ∈ I|u > t} and assoiate the limit set
Aγ+ = lim

t→b
γ+(It)Let γ be a trajetory of a quadrati di�erential on M , with trajetory rays γ+ and γ−.

• If Aγ+ = ∅, then γ+ is alled a boundary ray. If both γ+ and γ− are boundary rays, γis alled a ross ut.
• If Aγ+ = s for some s ∈ M , then γ+ is alled a ritial ray and s is then either a zeroor a pole. If γ+ or γ− are ritial rays, γ is alled a ritial trajetory.
• If Aγ+ onsists of more than one point, then γ+ is alled a divergent ray. If Aγ+ = γ(I),then γ is alled a spiralThese ritial trajetories form di�erent kinds of global struture on the Riemann surfae.De�nition 2.18. Let φ be a quadrati di�erential on a bordered Riemann surfae M , andlet U be a domain in M . Then we de�ne the following types of domains assoiated to φ (alltrajetories and singularities desribed are with respet to φ).Ring Domain: U is a maximal doubly onneted domain, suh that any non-ritial losedtrajetory interseting U , is ontained in U .Cirular Domain: U is a maximal hyperboli domain whih ontains a seond order pole s0,suh that U \ {s0} is a ring domain.Strip Domain: U is a maximal hyperboli domain suh that ∂U ontains two seond orderpoles s1 and s2, and any trajetory passing through some point r ∈ U , onnets s1 and
s2.Ending Domain: U is a maximal hyperboli domain suh that ∂U ontains a third or higherorder pole s0, and any trajetory that starts and ends at s0, and intersets U is ontainedin U .Spiral Domain: U an be desribed in the following way. Let γ be a spiral whih is notlosed. Then U = intAγ+ .



24 Complex manifolds and Riemann surfaesQuadrangle: U is a maximal hyperboli domain suh that it ontains no singularities, anytrajetory that intersets U is in U , and ∂U ontains two non-interseting onnetedomponents that lie in ∂MTriangle: U is a maximal hyperboli domain suh that ∂U ontains a seond order pole s0,and it intersets ∂M . This intersetion is onneted, and any trajetory that intersets
U is in U and onnets s0 and ∂M .

−1 1 c a b

Figure 2.4: The trajetory struture of the di�erential (c−z)dz2
(z−b)2(z2−1)(z−a) on the Riemannsurfae S0 = C \ {−1, 1, a, b}, 1 < c < a < bFrom the de�nitions we know that

• Exept for parts that oinide with ∂M , ∂U onsists of ritial trajetories for any ofthe domains above.
• Ring domains ontain no singularities.
• Ring domains, Cirular domains, Strip domains, and Quadrangles may be onformallymapped on to an annulus, a irle, a strip, and a retangle respetively.If the trajetory struture of a quadrati di�erential gives spiral domains, we say that itpossesses dense struture. Dense struture happens more often than other types.Example 2.19. Consider quadrati di�erential

φα(z) =
eiαdz2

(z2 − 1)(z2 − 2)Then it is known that the set {α ∈ R|φα does not have dense structure} is ountable [34℄.For a general Riemann surfae, we have very little ontrol over the global struture. How-ever, for the ase of ompat and �nite Riemann surfaes (i.e., ompat Riemann surfaes andtheir subsurfaes) we an, by some extra requirement, get some knowledge of what kind ofdomains may our and how many they are.Theorem 2.20 ([34℄). If φ is a quadrati di�erential on a ompat Riemann surfae M , thenall domains mentioned in de�nition 2.18 (exept for quadrangles and triangles) may our.However, if we require that the di�erential
• φ has a �nite L1-norm, then only ring and spiral domains may our.



2.3 Quadrati di�erentials on a Riemann surfae 25
• φ has only �nite trajetories, then only ring, strip, irular, and ending domains mayour.
• φ has a �nite L1-norm and have only �nite trajetories, then only ring domains mayour.Theorem 2.21 (Basi Struture Theorem). Let M be a �nite Riemann surfae, and M̄ itslosure, when seen as a subset of a ompat manifold. Let φ be a quadrati di�erential on M ,suh that its extension to M̄ satis�es φz(z(s)) ≥ 0 for any s ∈ ∂M̄ and some (hene any)hart z. Let C be the union of all ritial trajetories. If (M,φ) is not onformally equivalentto the following ases
• M = C̄ and φz = 1, where z is the identity hart on C.
• M = C̄ and φz = κeiα

z2
, α, κ ∈ R, κ > 0, where z is the identity hart on C \ {0}.

• M is a torus, and φ is regular on M (φ has no singular points).Then1. M - C̄ onsists of a �nite number of ending, strip, irular, and ring domains. Any suha domain, is bounded by the boundary omponents of M and a �nite number of ritialtrajetories. Eah boundary omponent of ritial trajetories ontains a ritial point.2. Every pole of order m > 2 has a neighbourhood overed by the inner losure of m − 2end domains and a �nite number (may be zero) of possible strip domains. A seondorder pole has a neighbourhood whih is ontained in a irular domain or it is overedby int
⋃k
j=1 V̄j , where the Vj are strip domains.3. int C̄ onsists of a �nite number of domains, with a �nite number of boundary ompo-nents.Proof of theorem may be found in [18℄.

a−2 < 0 a−2 > 0 Im a−2 6= 0Figure 2.5: The loal trajetory struture near a double pole illustrates part of 2. in theorem2.21
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Chapter 3Quasionformal mappings and theredued modulusThe famous length-area priniple (see. e.g., [15℄) permits us to onsider families of urvestaking into aount both the length of these urves and the area of the surfae they sweep out.This priniple impliitly formulated by Grötzsh in earlier 30's then took a form of extremallength by Ahlfors and Beurling and of the modulus of a family of urves by Jenkins. The latteronsidered a dual problem of the modulus of a family of urves and the extremal partitioningof a Riemann surfae by non-interseting domains of ertain size. In order to de�ne suh sizeone uses the onepts of the onformal modulus of an annulus and the onformal radius of asimply onneted domain. First they were de�ned for plane domains and then, developed forarbitrary Riemann surfaes. The onformal radius (or the redued modulus) is not a onformalinvariant unlike onformal modulus. But its distortion under onformal map is well de�ned.It hanges proportionally to the derivative of the mapping at the point where we measure thisonformal radius. The distortion of the onformal radius under a quasionformal map is notknown and we will try to lear up this ase. First we will onsider the general ase of moduliof families of urves and onformal maps, and then, turn to the quasionformal mappingsadmitting onformal extension. In partiular, we shall onsider quasionformally extendableonformal maps given by the Löwner-Kufarev equations. These equations where originallyintrodued by Löwner in order to study the behaviour of slit mappings. They were furthergeneralised by Kufarev and later by Pommerenke to study general subordination hains.3.1 Modulus of a family of urvesDe�nition 3.1. Let N be a Riemann surfae and let Γ be a family of reti�able urves in N .Let P be a olletion of onformally invariant metris that are L2 on N and suh that, forany ρ ∈ P , we have that ∫

γ ρ ≥ 1 for any γ ∈ Γ. Then the modulus of N with respet to Γ, is
m(N,Γ) = inf

ρ∈P

∫∫

N
ρ2(z)dσz (3.1)where dσz is an element of area.An alternative way to de�ne the modulus is the following. Let P ′ be the set of onformally27



28 Quasionformal mappings and the redued modulusinvariant metris whih are L2. De�ne Lρ(Γ) := infγ∈Γ

∫

γ ρ(z)|dz|. Then the modulus is
m(N,Γ) = inf

ρ∈P ′

∫∫

X ρ
2(z)dσz

(

Lρ(Γ)
)2 .The �rst de�nition is more onvenient for us to work with, but we mention the seond beauseit illustrates how the length of urves and the area in some metri interplay in the de�nitionof the modulus.Moduli de�ned on Riemann surfaes have the following properties.Proposition 3.2. Let Γ be a family of urves on N , and let P be the olletion of admissiblemetris on Γ1. If Γ ⊆ Γ′, then m(N,Γ) ≤ m(N,Γ′).2. If N ⊆ N ′, then m(N,Γ) = m(N ′,Γ). In this sense, the modulus only depends on Γ.3. If there is an extremal metri ρ∗ ∈ P suh that

m(N,Γ) =

∫∫

N
ρ∗2dσz, (3.2)then ρ∗ is almost everywhere unique, and Lρ∗(Γ) = 1.4. If f : N → L is an injetive onformal mapping, then m(N,Γ) = m(f(N), f(Γ)).Proof. 1. From the simple observation that if P and P ′ are the sets of admissible metrisfor Γ and Γ′, then Γ ⊆ Γ′ implies P ′ ⊆ P .2. Sine all urves are ontained inN , all metris in P an be extended to admissible metrisin N ′ with respet to Γ, by letting them vanish on N ′ \N . Clearly, for determining thein�mum over all integrals ∫∫

N ′ ρ
2, it is su�ient to onsider metris that vanish on

N ′ \N .3. Assume that there are two admissible metris ρ1 and ρ2 satisfying (3.2). Then 1
2(ρ1 +

ρ2)|dz| is admissible, and we have that ∫∫

N (ρ1(z)+ρ2(z)
2 )2dσz ≥ m(N,Γ), but also

0 ≤
∫∫

N

(ρ1(z) − ρ2(z)

2

)2
dσz =

∫∫

N

ρ2
1(z) + ρ2

2(z)

2
dσz −

∫∫

N

(ρ1(z) + ρ2(z)

2

)2
dσz

= m(N,Γ) −
∫∫

N

(ρ1(z) + ρ2(z)

2

)2
dσz ≤ 0whih an only hold if ρ1 = ρ2 almost everywhere.In order to prove the seond statement, let Lρ∗(Γ) = l ≥ 1. Then 1

l ρ
∗(z)|dz| is admissi-ble, and

m(N,Γ) ≤ 1

l2

∫∫

N
(ρ∗(z))2dσz =

1

l2
m(N,Γ) ≤ m(N,Γ)implies that l = 1.



3.1 Modulus of a family of urves 294. Let Q be the set of admissible metris on f(Γ). Then for every µ ∈ Q we assoiate ametri ρ(z)|dz| = µ(f(z))|f ′(z)||dz|. Sine
∫

γ∈Γ
ρ(z)|dz| =

∫

f(γ)∈f(Γ)
µ(f(z))|df(z)| ≥ 1by the hange of variable formula, ρ ∈ P . Sine also

∫∫

N

(

ρ(z)
)2
dσz =

∫∫

f(N)

(

µ(f(z))
)2
dσf(z),we have m(N,Γ) ≤ m(f(N), f(Γ)). Reiproal statement follows from similar argument,by onsidering f−1.We present here some important examples.Example 3.3. • Let Ql = {ζ ∈ C

∣

∣ 0 < Re ζ < l, 0 < Im ζ < 1} be a retangle, and let Γbe the set of urves that onnet its horizontal sides. Then m(Ql,Γ) = l.Proof. The metri |dz| is admissible, so l =
∫∫

Ql
dx dy ≥ m(Ql,Γ). We know that forany ρ ∈ P , ∫ 1

0 ρ(x+ iy)dy ≥ 1, so we have
∫∫

Ql

ρ(z)dx dy =

∫ l

0

(

∫ 1

0
ρ(x+ iy)dy

)

dx ≥ l.Finally,
0 ≤

∫∫

Ql

(ρ− 1)2dx dy =

∫∫

Ql

ρ2dx dy − 2

∫∫

Ql

ρ dx dy + l

≤
∫∫

Ql

ρ2dx dy − l,so we onlude that l ≤ m(Ql,Γ).
• More generally, let V be a simply onneted domain on a Riemann surfae, with ∂Vto be a simple losed urve. Let r1, r2, r3, r4 be four di�erent points on ∂V , indexed inthe ounterlokwise order. Let γij be the part of ∂V onneting ri and rj . We pair
γ12 with γ34. Then (

V, (γ12, γ34)
) is alled a quadrilateral. We will all (γ12, γ34) theprimary sides of the quadrilateral (remark that this is not a standard term). To anyquadrilateral, there is only one Ql, suh that there is an injetive onformal funtionmapping V onto Ql, and the primary sides onto the horizontal edges of the retangle.If Γ is the family of all urves onneting these primary sides, then m(V,Γ) = l. Sinethe modulus of quadrilateral is often in use we shall denote it by M(V ) .

• Let Γ be the set of urves in CR, that separate the boundaries. Then
m(CR,Γ) =

1

2π
logR (3.3)



30 Quasionformal mappings and the redued modulusProof. The metri |dz|
2π|z| is admissible, so 1

2π logR =
∫∫

CR

1
(2π|z|)2dxdy ≥ m(CR,Γ). Forany ρ ∈ P and 1 < r < R, we have 1

r < 1 ≤
∫ 2π
0 ρ(reiθ)dθ. So

logR ≤
∫ R

1

(

∫ 2π

0
ρ(reiθ)dθ

)

dr =

∫∫

CR

ρ(z)

|z| dσz,and
0 ≤

∫∫

CR

(
1

2π|z| − ρ(z))dσz =
1

2π
logR− 1

π

∫∫

CR

ρ(z)

|z| dσz +

∫∫

CR

ρ2(z)dσz

≤
∫∫

CR

ρ2(z)dσz −
1

2π
logR.Therefore, 1

2π logR ≤ m(CR,Γ).We observe that CR1
6∼= CR2

whenever R1 6= R2, beause the modulus is a onformalinvariant by Prop 3.2.
• More generally, for any doubly onneted hyperboli Riemann surfae V , there is aunique R ∈ (1,∞], suh that V may be mapped onformally onto CR (note that C∞ ∼=

D \ {0}). Then if Γ is the set of urves that separate the boundaries, then m(V,Γ) =
1
2π logR. This is also one the most used modulus for doubly onneted domains, we willdenote it by M(V ).De�nition 3.4. Let Ω be a simply onneted hyperboli domain in C̄. Let f : Ω → D bethe Riemann mapping of Ω with respet to s ∈ Ω, s 6= ∞ (i.e. f is bijetive and onformal,

f(s) = 0 , f ′(s) > 0). Then we de�ne the onformal radius of Ω with respet to s by
R(Ω, s) =

1

f ′(s)In other words, R(Ω, s) is de�ned suh that there is a bijetive onformal map g : Ω → {ω ∈
C

∣

∣ |ω| < R(Ω, s)}, with the Taylor expansion g(ζ) = (ζ−s)+a2(ζ−s)2 + · · · . We may extendthis de�nition to the ase s = ∞ by de�ning R(Ω,∞) so that there exists a bijetive onformalmap g : Ω → {ω ∈ C̄
∣

∣ |ω| > R(Ω,∞)} with the Taylor expansion g(ζ) = ζ + b0 + b1
ζ + · · · .Conformal radius is onneted with a limiting ase of the modulus of a doubly onneteddomain in the following way.De�nition 3.5. Let Ω be a simply onneted hyperboli domain in C̄. and let s ∈ Ω, |s| <∞.Let Ωε = Ω \ {ζ ∈ C

∣

∣ |s − ζ| ≤ ε} be de�ned for ε small enough, suh that Ωε is doublyonneted. We de�ne the redued modulus of Ω with respet to s by
m(Ω, s) = lim

ε→0

(

M(Ωε) +
1

2π
log ε

)

.If s = ∞ , then we de�ne
m(Ω,∞) = m(ϕ(Ω), 0)where ϕ : Ω → C̄ is given by ζ 7→ 1
ζ .



3.1 Modulus of a family of urves 31Theorem 3.6. Let Ω be a simply onneted hyperboli domain, s ∈ Ω, |s| <∞. If R(Ω, s) isthe onformal radius of Ω with respet to s, then the redued modulus m(Ω, s) exists and
m(Ω, s) =

1

2π
logR(Ω, s).If s = ∞, then

m(Ω,∞) = − 1

2π
logR(Ω,∞).Proof. We have to prove the theorem only for |s| <∞. Let ζ = f(z) = z− s+ b2(z− s)2 + · · ·be the Riemann mapping from Ω onto the disk of radius R(Ω, s). Then

{ζ ∈ C
∣

∣ ε(1+|b2|ε+o(ε)) < |ζ| < R(Ω, s)} ⊆ f(Ωε) ⊆ {ζ ∈ C
∣

∣ ε(1−|b2|ε−o(ε)) < |ζ| < R(Ω, s)}.From (3.3) we have that
1

2π
log

R(Ω, s)

ε(1 + |b2|ε+ o(ε))
≤M(Ωε) = M(f(Ωε)) ≤

1

2π
log

R(Ω, s)

ε(1 − |b2|ε− o(ε))
.Adding 1

2π log ε to all sides of this inequality and taking the limit as ε → 0, this leads to theresult.From these results, it follows immediately that the redued modulus is not onformallyinvariant.Corollary 3.7. Let f : Ω → C̄ be an injetive onformal map. Let s ∈ Ω be suh that
|s| <∞ , |f(s)| <∞. Then,

m(f(Ω), f(s)) = m(Ω, s) +
1

2π
log |f ′(s)|.We use this formula to de�ne the redued modulus for a general simply onneted domainon a Riemann surfae.Example 3.8. • Clearlym(D, 0) = 0. For any other s ∈ D, we an use a Möbius transform

τs(z) = z+s
1+s̄z of the unit disk, mapping 0 to s. Sine τs(z)′ = 1−|s|2

(zs̄+1)2
, we onlude that

m(D, s) =
1

2π
log |τ ′s(0)| =

1

2π
log(1 − |s|2). (3.4)

• Let us onsider the redued modulus of the ellipse with the major axis a, and theeentriity λ. From (3.4) we get that
m(Ea;λ, s) =

1

2π
log(1 − |ω|2)E ′

a;λ(ω)

=
1

2π
log a+

1

2π
log

πλ(1 − |ω|2)
2rK(r2)

∣

∣

∣

cos
(

πF(ω
r
,r2)

2K(r2)

)

√

(1 − (r−2 + r2)ω2 + ω4)

∣

∣

∣,where ω = E−1
a;λ(s) and r = r(λ). Note that given s in the expression above, the �rst termdepends only on a and the seond one only on λ. In partiular, the redued moduluswith respet to the entre and foi (ω equal to respetively 0 and r) beomes

m(Ω, 0) =
1

2π
log a+

1

2π
log

πλ

2rK(r2)
,



32 Quasionformal mappings and the redued modulusand
m(Ω, aλ) =

1

2π
log a+

1

2π
log

( π

2K(r2)

)2 λ

r(1 + r2)
.We inlude here, one of the most important tools when working with moduli.Theorem 3.9 (Grötsh Lemmas). 1. Let V1, ..., Vn be non-interseting quadrilaterals in Qlwith primary sides on the opposite horizontal sides of V . Then,

M(Ql) ≥
n

∑

j=1

M(Vj).The equality is attained if and only if ⋃n
j=1 Vj = Ql and every Vj is a retangle.2. Let V1, ..., Vn be non-interseting doubly onneted domains in CR, separating the bound-ary omponents of CR. Then

M(CR) ≥
n

∑

j=1

M(Vj).The equality is attained if and only if ⋃n
j=1 Vj = CR, and all ∂Vj are onentri irlesfor any j.The proof an found, e.g., in [34℄ . Letting R→ ∞ in the seond Grötsh Lemma, we geta orollary.Corollary 3.10. Let V be a disk entred at the origin, split into domains V1, ..., Vn by urvesseparating the boundary and 0. Let V1 be the domain whih ontains 0. Then,

m(V, 0) ≥ m(V1, 0) +

n
∑

j=2

M(Vj).The equality is attained if and only if ∂Vj are onentri irles for 2 < j < n.The de�nition of the modulus an also be extended to several families of urves. We willuse the sign ≃ to denote free homotopy of urves.De�nition 3.11. Let N be a (bordered) Riemann surfae, with ∂N onsisting of hyperboliboundaries. Then:
• A urve γj in N is said to be of type I if it is a simple loop not null homotopi.
• A urve γj in N is said to be of type II if it is a simple ar ending on boundary and notnull homotopi.
• A olletion of urves γ = {γ1, ...γn} is said to be an admissible system of urves, if allurves are disjoint, γj 6≃ γk for any j 6= k, and all urves are either of type I or type II.



3.2 Quasionformal mappings 33Given suh an admissible system, and a non-zero vetor α = (α1, . . . , αm), let Γj = {η|η ≃
γj}, and let Γ = {Γ1, . . . ,Γm}. Admissible metris onsist of all L2 metris whih, for all jand any γ ∈ Γj, satisfy the inequality

∫

γ
ρ(z)|dz| ≥ αj .Let P be the olletion of all admissible metris. Then the modulus of Γ with respet to Nand α is de�ned by

m(N,Γ, α) = inf
ρ∈P

∫∫

N
ρ2(z)dσz .Observe that if we let α be a vetor with 1 at the j'th plae, and the resting oordinates zero,then m(N,Γ, α) = m(N,Γj).It is known that in these types of problems, there is always a unique extremal metri. Thismetri is on the form ρ∗(z)|dz| =

√

φ(z)|dz|, where φ(z)dz2 is a quadrati di�erential with�nite trajetories.To eah suh problem, we may assoiate olletions of domains. If N be a Riemann surfaeand if Γ is a olletion of homotopy lasses, as above, then we may assoiate a olletion of non-interseting onneted domains V = {V1, V2, . . . , Vn} whih satis�es the following properties:
• if Γj is of type I, then Vj is a doubly onneted domain with ∂V onsisting of urvesfrom Γj;
• if Γj is of type II, then Vj is a quadrilateral with primary sides on the boundary of Nand the other pair of sides are from Γj.The following important result make a onnetion between two dual problems: the modulusproblem as the in�mum of ertain redued area, and the problem of extremal partition of aRiemann surfae by non-interseting domains of ertain type.Theorem 3.12 ([34℄). If V is any olletion of domains assoiated with Γ and if α =

(α1, ..., αn) is a non-zero vetor, then
n

∑

j=1

αjM(Vj) ≤ m(N,Γ, α).Equality is given by an extremal olletion V ∗, onsisting of domains whih are either ringdomains or quadrangles of the extremal quadrati di�erential.3.2 Quasionformal mappingsWe will give two equivalent de�nitions of a K-quasionformal (shortened to K-q..) mapping,where K ∈ [1,∞).De�nition 3.13. (geometri de�nition) A homeomorphism f : Ω → Ω′, where Ω and Ω′ aredomains in C̄, is alled K-q.. if, for every quadrilateral Q ⊆ Ω, the following inequality
M(f(Q)) ≤ KM(Q) (3.5)holds.



34 Quasionformal mappings and the redued modulusThis de�nition is nie for determining some properties of quasionformal maps.
• Composition of a K1-q.. map and a K2-q.. map, is a K1K2-q.. map.
• The inequality (3.5) implies that K−1M(Q) ≤ M(f(Q)) ≤ KM(Q). This follows fromthe fat that if Q is any quadrilateral and Q̃ is the same quadrilateral, with permutatedprimary sides, then M(Q̃) =

(

M(Q)
)−1. From this, it follows that the inverse to a

K-q.. map is K-q..
• A 1-q.. map is onformal.
• If a mapping f is suh that for every point in Ω there is a neighbourhood where f is
K-q.., then f is a K-q.. map on Ω.

• If V is a doubly onneted domain, then K−1M(V ) ≤M(f(V )) ≤ KM(V ).However, this geometri de�nition an often in pratie, be hard to hek. Let us thereforepresent the notion of quasionformality from a more analyti point of view.De�nition 3.14. A funtion g(x) is absolutely ontinuous on an interval I = [a, b], if forevery ǫ > 0, there exists a δ > 0, suh that for any �nite set of disjoint intervals {(ai, bi)}ni=1in I, we have
n

∑

i=1

(bi − ai) < δ ⇒
n

∑

i=1

|f(bi) − f(ai)| < ǫ.Clearly absolute ontinuity implies ontinuity. Apart from this de�nition, absolute onti-nuity an be heked in the following way.Theorem 3.15 ([30℄). Let I = [a, b], and let f : I → R be ontinuous and non-dereasing.Then the following statements are equivalent:a) f is absolutely ontinuous on I;b) If K ⊂ I has measure 0, then f(K) has measure 0 (both with respet to the Lebesguemeasure);) f is di�erentiable a.e. on I, f ′ ∈ L1(I), and for any x ∈ I,
f(x) − f(a) =

∫ x

a
f ′(t)dtA funtion u(x, y) is alled absolutely ontinuous on lines (ACL) in Ω, if for every losedretangle R ⊆ Ω, with the sides parallel to the x- and y-axes, then u(x, y) is absolutelyontinuous on a.e. horizontal and vertial lines in R. Note that ACL implies the existene ofpartial derivatives a.e. in Ω.De�nition 3.16. (Analyti de�nition) Let Ω and Ω′ are domains. A homeomorphism f :

Ω → Ω′ is a K-q.. map if
• f is ACL in Ω;
• |fz̄|

a.e.
≤ K−1

K+1 |fz|.



3.3 Distortion of the redued modulus under q.. mappings 35The equivalene of these de�nitions is shown in [1℄. It is also ommon to all suh a mapping
k-q.., where k = K−1

K+1 , instead of K-q.. Obviously, k ∈ [0, 1), and k = 0 implies that themapping is onformal. If a mapping is C1, it is quasionformal if |fz̄|
|fz| ≤ k. We say that µf = fz̄

fz(whih is almost everywhere de�ned for a quasionformal mapping) is the Beltrami oe�ientfor the quasionformal mapping. For the omposition of two quasionformal mappings wehave the following relation for the Beltrami oe�ient:
µgf =

∂
∂zf
∂
∂z̄ f̄

· µgf − µf
1 − µf · µgf

. (3.6)If g is onformal (µg = 0), then µgf = µf , so the solution to the Beltrami equation
hz̄ = µf · hz (3.7)is equal to f omposed with a omformal map. Moreover, for any measurable omplex valuedfuntion µ on the domain Ω, with ‖µ‖∞ ≤ k < 1, there is a k-q. mapping of Ω, satisfying(3.7). Quasionformal maps transform in�nitesimal irles to in�nitesimal ellipses with theratio of the major and minor axis less than K.3.3 Distortion of the redued modulus under q.. mappingsLet f be a C1 K-q.. injetive mapping from the unit disk D, onto Ω, with f(0) = 0. Weknow that it is possible to �nd estimates for the modulus of doubly onneted domains underq.. maps, and we also know, that if f is onformal, it is su�ient to know f ′(0), to de�ne

m(Ω, 0). It seems to be reasonable to expet that knowing |fz|(0) or perhaps the Jaobian
Jf (0) = |fz|2(0) + |fz̄|2(0), we will be able to determine an interval for m(Ω, 0), dependingonly on K.We will try to use the Grötzsh Lemma to estimate m(Ω, 0). Let us split D into two parts
Dε = {z ∈ D

∣

∣ |z| > ε} and Eε;0 as de�ned in example 2.14. Let Ωε = f(Dε). The domain
f(Eε;0) approahes an ellipse for small ε. Let K0 = |fz |(0)+|fz̄ |(0)

|fz |(0)−|fz̄ |(0) . As ε beomes smaller,
f(Eε;0) approahes the ellipse with the major axis a0(ε) and the eentriity λ0 =

√

1 +K−2
0 .We an use the fat that the Jaobian is a loal enlargement fator to determine a0(ε). Thisgives us

Jf (0)πǫ2 = (|fz|2(0) + |fz̄|2(0))πǫ2 =
πa2

0

K0
,so that a0 = (|fz|(0)+ |fz̄ |(0))ε and λ0 = 2

√
|fz|(0)|fz̄ |(0)

|fz |(0)+|fz̄ |(0) . Using the Grötzsh Lemma for small
ε, we get

m(Ω, 0) ≥M(Ωε) +m(Ea0;λ0
, 0) = M(Ωε) +

1

2π
log ε+

1

2π
log

πλ0(|fz|(0) + |fz̄|(0))
2r(λ0)K((r(λ0))2)

.We see that the last part is independent of ε. The problem is that log ε−K
−1 ≤ M(Ωε) ≤

log ε−K and we an not ontrol the distortion as ε→ 0.Proposition 3.17. For any non-zero a ∈ R+, any K > 1, and for any κ ∈ R, there is a
K-q.. map f , with |fz|(0) = a suh that m(f(D), f(0)) = κ.



36 Quasionformal mappings and the redued modulusProof. Assume a = 1. The K q.. mapping
f(z; ε) = z(

|z|
ε

)K−1 z ∈ Dε,is suh that the image of the domain Dε has modulus −K
2π log ε. It may be extended to thewhole unit disk by

f(z; ε) =

{

z( |z|ε )K−1 if 1 > |z| > ε,
z if |z| ≤ ε,for 0 < ε < 1. We further de�ne f(z; 1) = idD(z), and f(z; 1

ε ) = εK−1f−1(zε1−K ; ε), suhthat for any ε > 0

m(f(D, ε), 0) =
1 −K

2π
log εSo we only need to show that all these mapping are quasionformal, and it is su�ient to provethis for 0 < ε < 1. f(z; ε) is a homeomorphism (may be extended to a bijetive mapping in thelosed unit disk), and |∂f∂z̄ (z; ε)| ≤ K−1

K+1 |
∂f
∂z (z; ε)| where they are de�ned (in D\{z

∣

∣ |z| = ε) . Thefuntion f(z; ε) is learly absolutely ontinuous on line segments lying entirely in Dε or Eε,0.Let I = [a, b] + ic be a horizontal line segment in �rst quadrant, suh that √ε2 − c2 ∈ [a, b],that is, it rosses the irle |z| = ε. Let φ1(x) = Re (f |I) and φ2(x) = Im (f |I). We have
φ1(x) =

{

(
√
x2+c2

ε )K−1x if x >
√
ε2 − c2,

x if x ≤
√
ε2 − c2,and

φ′1(x) =

{

(x2+c2)
K−3

2

εK−1 (Kx2 + c2) if x >
√
ε2 − c2,

1 if x <
√
ε2 − c2.Sine the derivative of φ1 is positive, φ1 is inreasing. We learly have that φ1(x) − φ1(a) =

∫ x
a φ

′
1(t)dt, so φ1(x) is absolutely ontinuous on I. Similar argument works for

φ2(x) =

{

c(
√
x2+c2

ε )K−1 if x >
√
ε2 − c2,

c if x ≤
√
ε2 − c2,and

φ′2(x) =

{

cx(K − 1) (x2+c2)
K−3

2

εK−1 if x >
√
ε2 − c2,

0 if x <
√
ε2 − c2.For I rossing |z| = ε and lying in another quadrant we use the same arguments (swithingorientation on I when neessary). The arguments for vertial lines are similar. Hene all themappings are K-quasionformal.Observe that these maps an even be made C∞ by using a bump funtion.3.4 The Löwner-Kufarev equationWe onsider a hain of simply onneted hyperboli domains {Ω(t)}τt=0 in C, with τ ∈ (0,∞],suh that



3.4 The Löwner-Kufarev equation 37
• t1 < t2 ⇒ Ω(t1) ( Ω(t2) (that is {Ω(t)}τt=0 is a subordination hain)
• 0 ∈ Ω(0)

• R(Ω(t), 0) = et (for an arbitrary subordination hain, this an be ahieved by a repara-metrisation)From Riemann mapping theorem we know, that for any �xed t, there exists a unique holo-morphi univalent f(ζ, t) : D → C,
ζ 7→ et(ζ + α2(t)ζ

2 + α3(t)z
3 + · · · ),suh that f(D, t) = Ω(t). A neessary ondition for for a funtion to represent suh a subor-dination hain, is that there exists an analyti regular funtion

p(ζ, t) = 1 + p1(t)ζ + p2(t)ζ
2 + ... ζ ∈ D,with Re p(ζ, t) > 0 for almost every (ζ, t) ∈ D× [0, τ), suh that f is a solution to the equation

∂f(ζ, t)

∂t
= ζ

∂f(ζ, t)

∂ζ
p(ζ, t) for ζ ∈ D and for almost all t ∈ [0, τ). (3.8)This equation is alled the Löwner-Kufarev equation. Let us denote the lass of all suh p(z, t)by C . We introdue a parameter s, to solve the the above equation by the harateristimethod with the initial ondition f(ζ, 0) = f0(ζ), assoiated to some initial domain Ω(0) = Ω0.Then

dt

ds
= 1,

dζ

ds
= −ζ p(ζ, t), df0

ds
= 0, (3.9)with initial onditions t(0) = 0, ζ(0) = z, f(z, 0) = f0(z) where z ∈ D. Clearly t = s.However, we may only get solutions for ζ in some subdomain of D. We therefore use w(z.t)instead of ζ for solutions of (3.9). We end up with the following di�erential equation

dw

dt
= −wp(w, t) w(z, 0) = z (3.10)Solving this for w, we get that f0(w
−1(ζ, t)), as a solution for (3.8) in parts on the unit disk. Inthe attempts to extend this solutions to the entire unit disk, we may loose injetivity. However,is was shown by Pommerenke [26℄, that for every funtion f ∈ S, there is a p(z, t) ∈ C, suhthat the solution w(z, t) to (3.10) with this p(z, t), we have
f(z) = lim

t→∞
etw(z, t) (3.11)We say in this ase that f is generated by p (this is not a standard term). The hoie of p isnot unique, but every p ∈ C generate a funtion in S. If a funtion f generated by p(z, t), istaken as the initial ondition in (3.8) with the same p(z, t), then the solution is univalent forany t.Example 3.18. Let S′ be the sublass of S, whose image is C \ γ, where γ is a Jordan urvestarting at a point in the omplex plane and ending at in�nity. These mappings are alled slit



38 Quasionformal mappings and the redued modulusmappings and they are dense in S with respet to the loal uniform onvergene. Any f ∈ S′is generated by p(z, t) ∈ C in the form
p(z, t) =

eiu(t) + z

eiu(t) − z
,where u : R+ → R is a ontinuous funtion. (3.8) was originally studied by Löwner [24℄ with

p on this form, and then later generalised Kufarev [22℄. If f is a multislit mapping, whoseimage in the omplex plane has a tree with m− 1 tips as omplement, then it f is generatedby elements from C in the form
p(z, t) =

m
∑

k=1

λk(t)
eiuk(t) + z

eiuk(t) − z
.Here, uk(t) : R+ → R are ontinuous, and λk(t) : R+ → [0, 1] are measurable funtions with

∑m
k=1 λk(t) = 1. For a general mapping f , it is di�ult to know whih p ∈ C that generate it.We de�ne, for k ∈ [0, k) a sublass Sk ⊆ S , extrating the lass of funtions generated bysome p(z, t) ∈ C satisfying

∣

∣

∣

p(z, t) − 1

p(z, t) + 1

∣

∣

∣ ≤ k (3.12)for all (z, t) ∈ D×R+. We denote by S̃ the sublass of S onsisting of funtions whose imageis bounded by a C∞ Jordan urve. If f ∈ S̃, then both f(D), and ext f(D) are domains withthe ommon boundary. Note that Sk ( S̃ for any k ∈ [0, 1).By the analogy with S, we an de�ne the lass of univalent funtions f in D∗ normalisedby g(z) = z + b0 + b1
z + . . . by Σ . We denote the sublass of funtions with b0 = 0 by Σ0,and the sublass of funtions suh that 0 6∈ g(D∗) by Σ′. . Any g ∈ Σ is equal to a onstantplus some element in Σ′ (or Σ0). There is a one-to-one orrespondene mapping Ξ : S → Σ′,whih, for f with the expansion f(z) = z + a1z

2 + a2z
3 . . . , is given by

Ξ : f(z) 7→ 1

f(1
z )
.For this lass we have a similar way to generate its elements. Let C∗ = {p(z, t) : D∗ →

C
∣

∣ p(1
z , t) ∈ C}. Then we have that for any g ∈ Σ, there is p ∈ C∗, suh that

g(z) = lim
t→∞

e−tw(z, t), (3.13)where w is a solution to
dw

dt
= wp(w, t) (3.14)We also de�ne the sublass Σk = Ξ(Sk) .3.5 Conformal maps with quasionformal extensionSine there is no onsistent estimate for the distortion of the onformal radius under generalquasionformal map, we will look at quasionformal funtions in D, that have a univalentextension into the exterior D∗, and use the properties of the exterior funtion, to determineproperties of the interior one.



3.5 Conformal maps with quasionformal extension 39De�nition 3.19. A urve γ is alled a k-quasiirle, if γ = f(∂D) for a k-q.. mapping
f : C̄ → C̄In partiular, a C∞ losed Jordan urve is a quasiirle. We onsider a quasionformalmapping f : C̄ → C̄ suh that f |D∗ is univalent. To normalise, we require that f |D∗ ∈ Σkand f(0) = 0. For any g0 ∈ Σk, there is a k-q.. mapping f : C̄ → C̄, with f(0) = 0 and
f |D∗ = g0 :Theorem 3.20. Let g(z, t) be a univalent solution to

∂g

∂t
= −zp(z, t)∂g

∂z
, (3.15)with the initial ondition g(z, 0) = g0(z), and let

∣

∣

∣

p(z, t) − 1

p(z, t) + 1

∣

∣

∣ ≤ k < 1.Then g(D, t) is a Jordan domain bounded by a k-quasiirle for eah t ≥ 0, and f de�ned by
f(z) =

{

g(z, 0) if z ∈ D∗,
g( z

|z| ,− log |z|) if z ∈ D̄,is a k-q.. extension of g(z, 0) into C̄ with f(0) = 0.This follows from similar theorem for funtions in Sk, found in [4℄. It is important to notie,that although all elements in Σk admits an quasionformal extension, that does not neessarilymean that all funtions that have a k-quasionformal extension is in Σk. For example, themappings later onsidered (3.17), has a k2-q.. extension, but there is no obvious hoie for psatisfying inequality (3.12) for k2. The reason we mention this, is to avoid onfusion, sine inmuh literature on Complex Analysis, the symbol Σk denotes funtions in Σ or Σ0 that admit
k-q.. extension.We will try to look at the distortion of the redued modulus under mapping given by theabove theorem. From the lassial area theorem we have that the area of the omplement to
f(D∗) is less than π. Of all domains of onstant area, the disk has the maximal onformalradius. Atually, for any simply onneted domain Ω, with R = maxs∈ΩR(Ω, s),

πR2 ≤ Area(Ω),with equality if and only if Ω is a disk (see e.g. [16℄). Therefore, m(f(D), 0) ≤ 0. Let f |D∗be generated by p(z, t), with ∣

∣

∣

p(z,t)−1
p(z,t)+1

∣

∣

∣
≤ k for almost every (z, t) ∈ D∗ × R+. From SwartzLemma, we have that

∣

∣

∣

p(w, t) − 1

p(w, t) + 1

∣

∣

∣
≤ k

|w| , (3.16)whih gives
|w| − k

|w| + k
≤ |p(w, k)| ≤ |w| + k

|w| − k
.Using the latter inequality, we get

Re p(z, t) = Re (
∂
∂tw

w
) = Re (

∂

∂t
logw) =

∂

∂t
log |w| =

∂
∂t |w|
|w| ≤ |w| + k

|w| − k
.



40 Quasionformal mappings and the redued modulusRearanging and integrating the inequality with respet to t, we get
∫ t

0
dt = t ≥

∫ |w|

|z|

x− k

(x+ k)x
dx = log

(|w| + k)2|z|
|w|(|z| + k)2

,and further
0 ≥ log

(|w| + k)2|z|
|w|(|z| + k)2

− log et = log
(|w| + k)2|z|
et|w|(|z| + k)2

= log
e−2t(|w| + k)2|z|
e−t|w|(|z| + k)2

.Letting t→ ∞ we get (

|f(z)| = limt→∞ e−t|w(z, t)|
)

|f(z)| ≤ (|z| + k)2

|z|and doing similar operations for the lower estimate, we get
(|z| − k)2

|z| ≤ |f(z)| ≤ (|z| + k)2

|z| z ∈ D∗.From this, we have that f(D) will always ontain (1 − k)2D, and it is always ontained in
(1 + k)2D. If we have equality in (3.16), then, if α ∈ R

f(z) =
(z + eiαk)2

z
z ∈ D∗ (3.17)and we see, that in this ase, f(D) in an ellipse, with the entre at 2keiα, with the major axis

1 + k2, the minor axis 1 − k2, rotated by an angle α. These mappings do appear as extremalfuntions in other areas of omplex analysis (see e.g. [23℄).The mappings have an obvious k2-q.. extension
f(z) =

{

(z+eiαk)2

z if z ∈ D∗,
z + 2keiα + k2e2iαz̄ if z ∈ D̄,but we do not have the normalisation f(0) = 0. We try to �nd another extension by thetheorem 3.20, and solving (3.15) with the initial ondition g0(z) = (z+eiαk)2

z , z ∈ D∗. Thesolution is f(z, t) = (z+eiαk)2

z e−t, and we get the following extension
f(z) =

{

(z+eiαk)2

z if z ∈ D∗

z + 2keiα|z| + k2e2iαz̄ if z ∈ D̄,whih as we an see satis�es the equality
|fz̄|
|fz|

a.e.
= k

∣

∣

k + z
|z|

1 + k z̄
|z|

∣

∣ = k,and f(0) = 0.The investigation above ends up with the following result.



3.5 Conformal maps with quasionformal extension 41Theorem 3.21. Let f : C̄ → C̄ be a quasionformal automorphism with f(0) = 0, f(∞) = ∞.Let f |D∗ ∈ Σk and let f |D be k -q.. Then,
ℓk ≤ m(f(D, 0) ≤ 0,where ℓk is the uniform lower boundary of the modulus of all suh maps and

1

2π
log(1 − k)2 ≤ ℓk ≤

1

2π
log

( π

K(r2)

)2 k

2r(1 + r2)
,where r = r( 2k

1+k2 ).Proof. For ℓk, the left inequality follows beause all suh maps ontain (1 − k)2D, and theright-hand inequality is from the formula for the redued modulus of the ellipse.
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Figure 3.1: The bounds for the onformal radius. The �step down� at the end of the upperbound (ellipse), is beause of numerial error.



42 Quasionformal mappings and the redued modulus



Chapter 4Class S and the oe�ient manifoldWe will now study some properties of the lass S of univalent funtions f : D → C normalisedby
f(z) = z + c1z

2 + c2z
3 + · · ·One of the most important result for this lass is the de Branges theorem proving the famousBieberbah onjeture [7℄. This result states that for any n, |cn| ≤ n + 1 with the equalityonly for rotations of the Koebe funtion. A natural next step is to �nd out what elements of

CN being inside the bounded domain given by the de Branges theorem an be the oe�ientsequene of a univalent funtion. To do this we study manifold of oe�ients of S and S̃.We will begin this hapter with the de�nition of the Witt and Virasoro algebras, as they willlater appear in setion 4.2, when working on a manifold of oe�ients. Then we shall deal inmore details with the oe�ient manifolds by onstruting di�erent Hamiltonian systems forthe oe�ients in S based on the Löwner-Kufarev equation.4.1 Virasoro algebraDe�nition 4.1. The Virasoro algebra vir is a Lie algebra onsisting of a vetor spae over Cspanned by basis elements {Ln}n∈Z and c with Lie brakets de�ned by the relations
[Lm, Ln] = (m− n)Lm+n +

c

12
m(m2 − 1)δ−m,n,

[c, Ln] = 0 ∀n ∈ Z,where δm,n is the Kroneker delta.The element c is alled the entral harge, and in most representations it works as amultipliation by salar. This algebra usually appears as a entral extension of the Wittalgebra.De�nition 4.2. If f, g, h are Lie algebras, then h is the entral extension of g by f, if there isan exat sequene of Lie algebras
0 → f → h → g → 0,suh that f is ontained in the entre of h. 43



44 Class S and the oe�ient manifoldTreated as vetor spaes we an write h ∼= g ⊕ f. If h = g ⊕ f as Lie algebras, (the Liealgebra g ⊕ f is de�ned to be the vetor spae g ⊕ f with brakets given by
[(g1, f1), (g2, f2)] =

(

[g1, g2], [f1, f2]
)and the last brakets will always be 0 in ase of a entral extension, sine f has to be ontainedin the entre) we say that h is a trivial entral extension of g by f.A vetor �eld on a Riemannian manifold, is alled a Killing vetor �eld if it preserves themetri (i.e. given a Riemannian metri ρ, then LXρ = 0, where LX is the Lie derivative). TheWitt algebra is the Lie algebra of holomorphi Killing vetor �elds on C \ {0}, with braketsgiven by the ommutators. This has basis elements {Ln = −zn+1 ∂

∂z}n∈Z of this algebra, andthe brakets of these two vetor �elds are given by
[Lm, Ln] = (n−m)zm+n+1 ∂

∂z
= (m− n)Lm+n.The Virasoro algebra is then a nontrivial entral extension of the Witt algebra by C (atually,there exists no other nontrivial extension by C, see, e.g., [14℄).To get some details on this extension, we �rst need some de�nitions. A Fréhet spae Vis a Hausdor� topologial omplete vetor spae, in whih its topology may be indued by aountable family of seminorms {‖ · ‖k}k∈N (i.e., the sets Ux,k,ε = {y ∈ V

∣

∣ ‖x−y‖k < ε}, where
x ∈ V, k ∈ N, ε > 0 form a basis for the topology). Fréhet spaes are always loally onvex[10℄. Derivation of a funtion between two Fréhet spaes is de�ned by the Gâteaux derivative.A funtion f : U → W , where V and W are loally onvex topologial vetor spaes, and Uis open in V , is said to have Gâteaux derivative in x ∈ U in the diretion y ∈ V if

dfx(y) = lim
t→0

f(x+ ty) − f(x)

texists. If dfx(y) exists for any y ∈ V , then f is said to be di�erentiable at x. A funtion f isontinuously di�erentiable (a C1-mapping) in an open subset U ⊆ V , if df : U × V → W isontinuous. Note that dfx(y) needs not, in general, be linear with respet to y. This de�nitionan easily be extended to Cn -mappings for any n ∈ N ∪ {∞}. A Fréhet manifold M (overa model spae V , where V is a Fréhet spae) is then a topologial Hausdor� spae M witha maximal atlas A = {xα : Uα → V }, (as usual Uα are open sets overing M , and eah xα ishomeomorphi on its image) where x−1
β xα|x(Uα∩Uβ) now is required to be C∞ as mappings ofFréhet spaes for any xα, xβ ∈ A. We further de�ne di�erentiable mappings between Fréhetmanifolds and tangent spaes in an analogous way of what is done for real manifolds. ALie-Fréhet group G, is a topologial group on a Fréhet manifold, suh that multipliationand inversion are C∞-mappings.An important sublass of the Lie-Fréhet groups, are the Lie-Banah groups, de�ned simi-larly, only with �Fréhet spae� interhanged with �Banah spae�, and the Gâteaux derivativeinterhanged with the Fréhet derivative. If V,W are Banah spaes, and U is open in V , then

f : U → V , is Fréhet di�erentiable at x if there exists a bounded linear operator Ax : V →W ,suh that
lim
y→0

‖f(x+ y) − f(x) −Ax(y)‖
‖y‖ = 0,and ontinuously di�erentiable in U , if dfx(y) = Axy is ontinuous in U × V .



4.1 Virasoro algebra 45Going bak to the general ase, if G is a Lie Fréhet group (over model spae V ), TGis a Fréhet manifold (over model spae V × V ), and if e is the identity element in G, themultipliation on G, indues a braket operation on g = TeG in the usual way, and g isalled the Lie algebra of G. A Fréhet (resp. Banah) spae with a skew symmetri bilinearontinuous map [·, ·], satisfying the Jaobi identity is alled a Lie-Fréhet (resp. Lie-Banah)algebra. While the Lie algebra of a Lie-Fréhet or Lie-Banah group, is a Lie-Fréhet or Lie-Banah algebra, respetively, the onverse is not neessarily true (both in Banah and Fréhetase). For instane, ifM is a real nonompat manifold, then Γ(TM) is a Lie-Fréhet algebra,but it is not the Lie algebra of any Lie-Fréhet Group.The ase of Lie-Banah groups is mostly studied, sine its Lie-algebra always have anexponential map to a loal Lie-Banah group. We have no suh knowledge of the existeneof a exponential map from any general Lie algebra of a Lie-Fréhet group. Studies are oftentherefore restrited to Lie-Fréhet group that are regular, where some sort of exponential mapmay be de�ned. For the de�nition of a regular Lie-Fréhet group, and more details, see [21℄.If M is any real ompat manifold, then Γ(TM) is a Fréhet spae with seminorms givenby supremum over partial derivatives. The spae of di�eomorphism of M , Diff M , is then aFréhet manifold over model spae Γ(TM), and it is a Lie-Fréhet group under omposition(in fat, a regular one). Its Lie algebra will be Γ(TM). The simplest ase of this, but also oneof the most important, is Diff+S
1 , the olletion of C∞-sense preserving di�eomorphisms ofthe unit irle. These are all of the form

γ : eiθ 7→ eiα(θ),where α : R → R is a monotonially inreasing funtion, with α(θ + 2π). We denote its Liealgebra by VectS1 , whih is just Γ(TS1) with usual ommutator brakets. This Lie algebrahas a non-trivial unique entral extension by R with brakets given by
[X1 + ac,X2 + bc] = [X1,X2] +

c

12
ω(ϕ1, ϕ2) ,where Xi(θ) = ϕi(θ)

d
dθ ∈ VectS1, a, b ∈ R, c is a basis vetor for R, and ω is the so-alledGelfand-Fuhs oyle

ω(ϕ1, ϕ2) =
1

2π

∫ 2π

0
(ϕ′

1 · ϕ′′
2 − ϕ′′

1 · ϕ′
2)dθ.Note that integration by parts, gives the 2-yle ondition:

ω(ϕ1, [ϕ2, ϕ2]) + ω(ϕ2, [ϕ3, ϕ1]) + ω(ϕ3, [ϕ1, ϕ2]) = 0and a reformulation of ω
ω(ϕ1, ϕ2) = − 1

4π

∫ 2π

0
(ϕ′

1 + ϕ′′′
1 ) · ϕ2dθ.This will be a real version of the Virasoro algebra whih we denote virR . Complexi�ationof virR gives us vir. To see that this is indeed the ase, we write VectS1 as S1 × Vect0S

1,where here S1 represent the onstant vetor �elds on S1, Vect0 S
1 is the quotient of all vetor�elds out by these ontant elements. All elements in Vect0 S

1 we may identify with with



46 Class S and the oe�ient manifold
C∞ funtions ϕ : S1 → R of vanishing mean value over S1. This gives for eah funtion anexpansion

ϕ(θ) =
∞

∑

n=1

(

an cosnθ + bn sinnθ
)

.We an de�ne almost omplex struture by operator
J : ϕ =

∞
∑

n=1

(

an cosnθ + bn sinnθ
)

7→
∞
∑

n=1

(

− an sinnθ + bn cosnθ
)

.Clearly, J2 = −idVect S1 . Holomorphi elements are are of the form
1

2
(ϕ− iJ(ϕ)) =

∞
∑

n=1

(an − ibn)e
inθ ,whih an be extended to holomorphi funtions into the unit disk. The antiholomorphielements are of the form 1

2 (ϕ+ iJ(ϕ)) =
∑∞

n=1(an + ibn)e
−inθ.We hoose the basis {Ln = −ieinθ ∂∂θ}n∈Z of VectC S

1, given by the restrition of the basiselements in the Witt algebra to the unit irle. By the above disussion, we know that theseelements does in fat span VectS1 ({Ln}n≥1 for the holomorphi elements, {Ln}n≤−1 for theantiholomorphi elements, and L0 for the onstant elements). Computing the brakets for thisbasis, we have the following
[Lm + ac, Ln + bc] = [Lm, Ln] +

c

12
ω(−ieimθ,−ieinθ)

= (m− n)Ln+m +
c

12
m(m2 − 1)δ−m,n,whih shows that this is indeed the Virasoro algebra.

Diff+S
1 also has a unique nontrivial entral extension by R, whih has the Virasoro algebraas Lie algebra (the de�nition of entral extension for Lie groups, or any group, is de�ned similarto that of Lie algebras). This entral extension is alled the Virasoro-Bott group V ir and itis given by the manifold Diff+S

1 × R equipped with the produt
(γ1, a)(γ2, b) =

(

γ1γ2, a+ b+
c

12
Ω(γ1, γ2)

)where γ1, γ2 ∈ Diff+S1, a, b ∈ R, and Ω is the Thurston-Bott oyle
Ω(γ1, γ2) =

1

2π

∫ 2π

0
log((γ1γ2)

′) d log(γ′2).

V ir is a regular Lie-Fréhet group, so there exists an exponential map exp : virR → V ir,however, this is not a loal di�eomorphism (in fat, there are points arbitrary lose to identityelement, whih are not in the image of the exponential map, see [6℄ Appendix C).4.2 The Coe�ient manifold and onnetions to Kirillov's man-ifoldLet us onsider the lass S and its sublass S̃ from a more geometrial point of view. For any
f ∈ S and for 0 < κ < 1, 1

κf(κz) is in S̃. We may therefore look at any f , as a limit of funtions



4.2 The Coe�ient manifold and onnetions to Kirillov's manifold 47in S̃, by letting κ→ 1. Let us embed S and S̃ in CN by identifying f(ζ) = ζ +
∑∞

n=2 cn−1ζ
nwith the point (c1, c2, c3, . . . ). We will denote these embeddings by N and M respetively.They an be seen as limits of oe�ient bodies

Mn =
{

(c1, c2, . . . , cn)|∃f ∈ S̃, with f = ζ +

∞
∑

n=2

cn−1ζ
n
}

Nn =
{

(c1, c2, . . . , cn)|∃f ∈ S, with f = ζ +

∞
∑

n=2

cn−1ζ
n
}Naturally, Mn is dense in Nn. Generally, for oe�ient bodies it is known that

• Nn homeomorphi to D2n−2 = {r ∈ R2n−2
∣

∣ |r| ≤ 1}.
• ∂Nn homeomorphi to S2n−3.
• Any x ∈ ∂Nn orresponds to exatly one f ∈ S, whih is alled a boundary funtionfor Nn. All boundary funtions map. D onto C minus a pieewise analyti Jordanars forming a tree with a root at in�nity and having at most n tips. It follows that
∂Nn ∩ Mn = ∅.

• With exeption for a set of smaller dimension, for any x ∈ Nn, there is a normal vetorsatisfying Lipshitz ondition .
• There is a onneted open subset X1 on ∂Nn, suh that ∂Nn is an analyti hypersurfaeat every point of X1. Points of ∂Nn, orrespond to funtions giving extremum to alinear funtional belonging to X̄1.
• By the de Branges theorem Nn ⊆ ∏n

i=1(i+ 1)D̄.Not very muh else is known exept of the simplest ases:
• N1 = 2D̄, that is an losed disk of radius 2. M1 = 2D.
• N2 was in 1950 ompletely desribed by Sha�er and Spener [31℄.We also have an alternative desription of the manifold M. Given any mapping f ∈ S̃,it has a ontinuation to the unit irle. Sine the exterior of f(D) = Ω is also a domain, bythe Riemann mapping theorem, there is a onformal map of D∗ onto Ω∗ with g(∞) = ∞, andthis mapping also has an extension to the unit irle. Let

f−1g|S1 ∈ Diff+S
1 (4.1)and we will denote this di�eomorphism by γ. Given any mapping f ∈ S̃, the di�erent hoiesof g di�er only by rotation (in the sense that g̃ is any other suh funtion, then g̃(z) = g(eiαz),with α ∈ R), thus, by di�erent hoies of g, f generates a subgroup γRotS1. RotS1 heredenotes the subgroup of Diff+S

1 by sense preserving rotations. De�ne funtion
K : S̃ → Diff+S

1/RotS1

f 7→ [γ] = γRotS1



48 Class S and the oe�ient manifoldwhere γ is onstruted as in (4.1). Kirillov [19℄ showed that K bijetion, and this givesidenti�ation
M = Diff+S

1/RotS1.The inverse map may be onstruted in the following way.
• Given equivalene lass γRotS1, pik a representative. De�ne w : D∗ → D∗ by

w(ζ) = |ζ|γ( ζ|ζ|).

• We onstrut a quasionformal mapping f : C̄ → C̄ in the following way� f |D and fw has to be onformal.� f |D ∈ S̃ and f(∞) = ∞.
• [γ] 7→ f |D is then the inverse of F (the funtion mathing f |D will be fw).The above mapping f is a quasionformal automorphism of C̄. Using that fw is onformal,the relation (3.6) for the mapping f = fww−1, tells us that

µf = µw−1.in D∗. Note that, if we denote z = reiθ, then w−1(reiθ) = rγ−1(eiθ), and from ∂
∂z = z̄

2|z|
(

∂
∂r −

i
|z|

∂
∂θ

) and ∂
∂z̄ = z

2|z|
(

∂
∂r + i

|z|
∂
∂θ

) we get that f is the solution to a Beltrami equation, withBeltrami oe�ient
µf (z) =







∂
∂z̄
w−1

∂
∂z
w−1

= z2

|z|2 · 1−Vγ−1( z
|z|

)

1+Vγ−1( z
|z|

)
z ∈ D∗

0 z ∈ Dand initial onditions f(0) = 0, f(∞) = ∞ and fz(0) = 0. Here we de�ne the operator V by
Vγ(eiθ) = 1

iγ(eiθ)
d
dθγ(e

iθ). Note that if γ(eiθ) = eiα(θ), then Vγ(eiθ) = α′(θ).This manifold Diff+S
1/RotS1 is alled Kirillov's manifold, and it is a homogeneous (ho-mogeneous means that Diff+S

1 at transitively) Kählerian omplex manifold.Example 4.3. Let us onsider, as an example, the mapping from the unit disk D onto anellipse. From earlier, we know that
E ′
a;λ(0) =

πaλ

2rK(r2)
.To get a normalised mapping, let a = a(λ) = 2r(λ)K(r2(λ))

πλ . fλ := Ea(λ);λ is then a mapping in
S, and the mathing mapping is given by

gλ(z) =
λa(λ)

2

(1 +
√

1 − λ2

λ
z +

λ

1 +
√

1 − λ2
z−1

)

.Sine these are one of the few nontrivial examples of mathing funtions, we try to do the or-respondene with di�eomorphisms of the irle in this ase. We will look at the image γλRot S1



4.2 The Coe�ient manifold and onnetions to Kirillov's manifold 49of fλ under K, and then try to use the onstrution above for K−1 on the di�eomorphism γλ.We note that gλ(z)−1 =
z+

√
z2−λ2a(λ)2

a(λ)(1+
√

1−λ2)
, so if we let ς(z) = πF(z/r,r2)

2K(r2)
then

γ−1
λ (z) := (g−1

λ fλ)(z) =
λa(λ) sin ς(z) +

√

λ2a(λ) sin2 ς(z) − λ2a(λ)2

a(λ)(1 +
√

1 − λ2)
.

=
λ

1 +
√

1 − λ2
ei(ς(z)−π/2).The di�eomorphisms are therefore of the form

γ−1
λ (eiθ) =

iλ

1 +
√

1 − λ2
eiς(e

iθ) .Using that γλ(1) = 1, we get
γ−1
λ (eiθ) = exp

( iπ

2

F̃(θ + π
2 ,

2r
1+r2

) − K( 2r
1+r2

)

K(r2)(1 + r2)

)

,where F̃(θ, κ) =
∫ θ
0

dθ√
1−κ2 sin2 θ

= F(sin θ, κ). In the above formula, we have used that
F̃(π2 , κ) = K(κ). Using relation K(2

√
κ

1+κ ) = (1 + κ)K(κ) and alulating the inverse, we�nd
γ−1
λ (eiθ) = exp

( iπ

2
(
F̃(θ + π

2 ,
2r

1+r2
)

K(r2)(1 + r2)
− 1)

)

= −i exp
( iπF̃(θ + π

2 ,
2r

1+r2
)

2(1 + r2)K(r2)

)

,

γλ(e
iθ) = exp

(

− i cos−1
sn

(

(1 + r2)(
2

π
θ + 1)K(r2),

2r

1 + r2

)

)

.

sn(ω, k) is here the inverse funtion of ω = F(x, k) with respet to x (sn is alled the Jaobi'sellipti sine). Now assume that we know γλ, and try to �nd the Beltrami oe�ient of thequasionformal extension of fλ
Vγ−λ 1 =

π

2(1 + r2)K(r2)
√

1 − ( 2r
1+r2 )2 cos2 θ

,

µfλ
(z) =

z

z̄
·

√

(1 + r2) − (2rz+2rz̄
|z| )2 − π2

2K(r2)
√

(1 + r2) − (2rz+2rz̄
|z| )2 + π2

2K(r2)

z ∈ D∗.To in pratie solve this Beltrami equation with this oe�ient (whih has solution fλ(z) in Dand gλ(|z|γλ( z|z|) outside) is very hard, and we an probably not expet that it is muh easierfor a general di�eomorphism of the irle. However, if the Beltrami equation was solved forsome γ ∈ Diff+S
1, it has the advantage, that the solution would give us a pair of mathingfuntions simultaneously.The ation of Diff+S

1 on itself, indues a left ation on S̃. That is, if we denote K−1(γRotS1) =
fγ , we an de�ne γ1 · fγ2 = fγ1γ2 . Again, it is hard to see what this ation does expliitly, butthe orresponding in�nitesimal ation is given by variation

δνf(z) =
f(z)

2πi

∫

S1

(ζf ′(ζ)
f(ζ)

)2 ν(ζ)dζ

ζ(f(ζ) − f(z))
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1 [20℄. The in�nitesimal ation of the basis vetors {Lk}k∈Z, whihwe will denote by the same letter, is for k > 0

Lk(f)(z) = δ−izkf(z) = zk+1f ′(z)whih means that Lk work on M with the ation
Lk =

∂

∂ck
+

∞
∑

j=1

(j + 1)cj
∂

∂ck+j
∈ Γ(T 1,0M). (4.2)For k = 0

L0(f)(z) = zf ′(z) − f(z) or L0 =

∞
∑

j=1

jcj
∂

∂cj
∈ Γ(T 1,0M)re�eting that L0 is a rotation (we have variation eiεf(e−iεz) = f(z)+ε(zf ′(z)+f(z))+o(ε)).The ation of Lk for k < 0 is muh more ompliated [2℄. As an example

L−1(f)(z) = f ′(z) − 1 − 2c1f(z)

L−2(f)(z) = z−1f ′(z) − 1

f(z)
− 3c1 + (c21 − 4c2)f(z)However, they all may be desribed by elements in Γ(T 1,0M). {Lk}k≥1 forms a basis for thisspae. Their ation restrited to Mn is given by the trunated Kirillov's operators

Lk =
∂

∂ck
+
n−k
∑

j=1

(j + 1)cj
∂

∂ck+j
∈ Γ(T 1,0Mn). (4.3)4.3 Hamiltonian mehanis on a omplex manifoldWe will �rst reall the de�nition of a Hamiltonian system for real manifolds based on [3℄, andthen generalise it to omplex manifolds. A motion in a real manifold M is a smooth funtion

ζ : I → M , where I is a interval in R. Dot will indiate partial derivative with respetto real variable t (i.e. ζ̇ = ∂ζ
∂t ), whih we will all time. To avoid onfusion in the followingpresentation, the image of a setion η at r, is denoted η|r (so for example, the otangent vetor�eld dxj ∈ Γ(T ∗M) evaluating tangent vetor X ∈ Tr(X), is denoted dxj |r(X)). If M is an

n-dimensional real manifold, then it has loal oordinates x = (x1, . . . , xn). This indues loaloordinates (x, p) on T ∗M , that is η ∈ T ∗M has oordinates (x̃, p̃) if η =
∑n

j=1 p̃jdxj |x̃ ∈ Tx̃M .De�ne one-form on T ∗M by
ϑ =

n
∑

j=1

pjdxj .By the hange of variable formula this is independent the hart x, and is therefore ϑ may bede�ned as a global setion on the bundle T ∗T ∗M → T ∗M . ϑ is alled the anonial one-form.If we let ω = dϑ ∈ Γ(
∧2 T ∗T ∗M), then the pair (T ∗M,ω) beomes a sympleti manifold(an even-dimensional manifold with a losed nondegenerate two-form). For any two funtions



4.3 Hamiltonian mehanis on a omplex manifold 51
f, g : T ∗M → R, we may de�ne the Lie-Poisson brakets, by [f, g] = ω(Tf, Tg). Expliitely,in loal oordinates

ω =
n

∑

j=1

dpj ∧ dxj ,

[f, g] =

n
∑

j=1

( ∂f

∂pj

∂g

∂xj
− ∂f

∂xj

∂g

∂pj

)

.

ω also indues an isomorphism Ψ given by
Ψ : TT ∗M

∼=→ T ∗T ∗M

X → ηXwhere ηX(Y ) = ω(X,Y ).De�nition 4.4. A (real) Hamiltonian funtion on a manifold M is a di�erentiable funtion
H : T ∗M → R. A motion ζ : I →M is the solution to a Hamiltonian system if

ζ̇ = Ψ−1(TH)|ζfor any t ∈ I. We all suh a urve a geodesi.If we again look at this loally, we notie that
Ψ−1

(

n
∑

j=1

(ajdxj + bjdpj)
)

=

n
∑

j=1

(bj
∂

∂xj
− aj

∂

∂pj
)and letting ζ = (x1, . . . , xn, p1, . . . , pn) and ζ̇ =

∑n
j=1(ẋj

∂
∂xj

+ṗj
∂
∂pj

), we get the more lassialformulation
ẋj =

∂H

∂pj
, ṗj = −∂H

∂xj
j = 1, . . . , n . (4.4)IfM is an n-dimensional omplex manifold, thenM is a 2n-dimensional real manifold, andwe may de�ne a Hamiltonian funtion H : T ∗M → R mentioned above. We give T ∗M omplexoordinates formally, by denoting (xn+1, . . . , x2n) = (y1, . . . , yn) and similarly pn+j = qj, andlet zj = xj + iyj , and ψj = pj + iqj. Then the equations above beomes

ż = 2
∂H

∂ψ̄
˙̄ψ = −2

∂H

∂z
(4.5)and, o� ourse also, ˙̄z = 2∂H∂ψ , ψ̇ = −2∂H∂z̄ .A omplex Hamiltonian funtion, is a funtion H ∈ O(T 1,0M)∗. If we let (z, ψ̄) be o-ordinates on the holomorphi otangent bundle (to denote the last n oordinates by ψ̄j , isjust a matter of onvention, we ould also have used ψ). De�ning omplex sympleti 2-formform by ω =

∑n
j=1 ψ̄j ∧ dzj , and using similar tehnique as in the real ase, we an �nd ananalogous de�nition of geodesi. In loal oordinates

żj =
∂H
∂ψ̄j

˙̄ψj = −∂H
∂zj

, (4.6)



52 Class S and the oe�ient manifold(and o� ourse, ∂H∂ψ = ∂H
∂z̄ = 0). We all z generalised oordinates and ψ̄ generalised momenta.The Lie-Poisson brakets assoiated to ω loally given by

[f, g] =

n
∑

k=1

( ∂f

∂ζk

∂g

∂ψ̄k
− ∂f

∂ψ̄k

∂g

∂ζk

)

.A funtion I : (T 1,0M)∗ → C is alled a �rst integral if [I,H] = 0. From (4.6) Hamiltonianfuntion will always be a �rst integral.De�nition 4.5. A Hamiltonian system is ompletely integrable (in sense of Louville) if wean �nd n funtionally independent �rst integrals I1, I2 . . . , In whih are pairwise involuntary(i.e. [Ii, Ij ] = 0).If the system admits only 1 ≤ k < n independent involuntary integrals, then it is alledpartially integrable.The Hamiltonian funtions we have desribed above are independent of time. In this ase,the value of the Hamiltonian funtion is onstant along geodesis. We will later also onsiderHamiltonian funtions on the form H(z, ψ̄, t), and in this ase, H hanges with ∂
∂tH alonggeodesis.4.4 Hamiltonian interpretation of the Löwner equationIn setion 3.4 we looked at the Löwner-Kufarev equation, and how every funtion in S isrepresented as a limit

f(z) = z + a1z
2 + a3z

3 + · · · = lim
t→∞

etw(z, t),where w(z, t) is the solution to
dw

dt
= −wp(w, t), w(z, 0) = 0 (4.7)for some p ∈ C. Surprisingly, there is a onnetion with this more �lassial� method andthe ation of the Kirillov operators on M. This onnetion �rst appeared in an artile onslit mappings (p as in example 3.18) by Prokhorov and Vasiliev [27℄, and a more generalase was onsidered by Markina, Prokhorov and Vasiliev in [25℄. The onnetion omes fromHamiltonian systems on the oe�ient bodies, in whih geodesis give solutions to (4.7).Expliitely, let g(z, t) = etw(z, t) = z + c1(t)z

2 + c2(t)z
3 + · · · . This will be a urve in S,with g(z, 0) = z and limt→∞ g(z, t) = f(z), and inserted in (4.7), with p(z, t) = 1 + p1(t)z +

p2(t)z
2 + · · · , we have the following

ġ = g − gp(e−tg, t) (4.8)or as a series
∞
∑

m=1

ċmz
m+1 = −

∞
∑

m=1

pme
−mtgm+1 = −

∞
∑

m=1

(

m
∑

j=1

pje
−jtdj+1,m+1

)

zm+1
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(
∑∞

j=1 cj−1z
j
)m

=
∑∞

j=1 dm,jz
j . If we de�ne the oe�ients are given by:

dm,j =
∑

k1+k2+···+km=j−m−1

ck1ck2 . . . ckm
,where we de�ne c0 ≡ 1 and k1, . . . , km are all required to be nonnegative integers (note that thesum over the empty set is 0, so this equation holds also for m > j). For the �rst oe�ients,for example

ċ1 = −p1e
−t

ċ2 = −2c1p1e
−t − p2e

−2t

ċ3 = −(2c2 + c21)p1e
−t − 3c1p2e

−2t − p3e
−3t .If we identify z with

Z =















0 0 0 0 . . .
1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .... ... ... ... . . .













then
G :=

∞
∑

n=1

cn−1Z
n =



















0 0 0 0 . . .
1 0 0 0 . . .
c1 1 0 0 . . .
c2 c1 1 0 . . .
c3 c2 c1 1 . . .... ... ... ... . . .



















(4.9)we get a matrix formulation
Ġ = −

∞
∑

m=1

pme
−mtGm+1 .Both sides are uniquely determined by their �rst olumn, so we get

ċ = −
(

∞
∑

m=1

pme
−mtGm

)

cwhere cT = (0, 1, c1, c2, . . . ). The latter formula are pratial for omputations in onreteases.We introdue formal variables {ψk}k∈N as generalised momenta, and make an Hamiltoniansystem, suh that the equations for ċ are solutions. We restrit ourself to a �nite number ofoe�ient, and de�ne the following Hamiltonian on Mn:
H(c, ψ̄, t) = −

n
∑

j=1

(

j
∑

m=1

pme
−mtdm+1,j+1

)

ψ̄j = −ψ̄T
(

∞
∑

m=1

pme
−mtGm

)

c (4.10)and we de�ne a vetor ψT = (0, 0, ψ1, ψ2, . . . , ψn).



54 Class S and the oe�ient manifoldThe Hamiltonian give the following derivatives of the generalised momenta
˙̄ψk =

n
∑

j=1

(

j
∑

m=1

pme
−mt(m+ 1)dm,j+1−k

)

ψ̄j = ψ̄T
(

n
∑

m=1

(m+ 1)pme
−mtGm−1Zk

)

c . (4.11)For instane, for three oe�ients
˙̄ψ1 = 2e−tp1ψ̄2 + (2e−tp1c1 + 3e−2tp2)ψ̄3

˙̄ψ2 = 2e−tp1ψ̄2

˙̄ψ3 = 0 .Now let us de�ne a series in the following way
n−1
∑

j=0

vn−jz
j = g′

(

n−1
∑

j=0

ψ̄n−jz
j +

∞
∑

j=n

bj(t)z
j
) (4.12)where the oe�ients bk depends on t, suh that all derivatives of higher order than n− 1 onthe right-hand term vanish. Using that

ġ′ = g′(1 − p(e−tg, t) − e−tgp′(e−tg, t) = −g′
∞

∑

m=1

(m+ 1)pme
−mtgm,we get that

d

dt

n−1
∑

j=0

vn−jz
j = g′

(

−(

∞
∑

m=1

(m+1)pme
−mtgm)(

n−1
∑

j=0

ψ̄n−jz
j+

∞
∑

j=n

bj(t)z
j)+

n−1
∑

j=0

˙̄ψn−jz
j+

∞
∑

j=n

ḃj(t)z
j
)

= g′
(

n−1
∑

j=0

( ˙̄ψn−j − ψ̄n−j

∞
∑

m=1

(m+ 1)pme
−mtgm)zj +

∞
∑

j=n

(ḃj(t) − bj

∞
∑

m=1

(m+ 1)pme
−mtgm)zj

)From (4.11) we know that the terms of degree less or equal to the n−1 �rst terms vanish, andthe rest vanishes from the de�nition of the series. If we view the vk as funtions of c, ψ̄ and t,we see that terms 0 to n− 1 depend only on c and ψ̄, so ∂
∂tvk = 0. From this we get that

[vk,H] =
n

∑

j=1

(∂vk
∂cj

∂H
∂ψ̄j

− ∂vk
∂ψ̄j

∂H
∂cj

)

=
n

∑

j=1

(∂vk
∂cj

ċj +
∂vk
∂ψ̄j

˙̄ψj
)

= v̇k = 0So all vk are the �rst integrals of the Hamiltonian system (4.10). Expliitly, they are given by














v1
v2
v3...
vn















= (ψ̄1, ψ̄2, ψ̄3, . . . , ψ̄n)















1 0 0 . . . 0
2c1 1 0 . . . 0... ... . . .

. . . 0
(n− 1)cn−2 (n− 2)cn−3 (n − 3)cn−4 . . . 0
ncn−1 (n− 1)cn−2 (n − 2)cn−3 . . . 1















(4.13)



4.5 Hamiltonian with pj as generalised momenta 55Note that the matrix given here is the restrition to the n �rst rows and olumns of thematrix orresponding to the funtion g′ in the way of (4.9). If we take the brakets fordi�erent ombinations of vk, we obtain
[vj, vk] =

{

(j − k)vk+j when k + j ≤ n
0 else

, (4.14)similar to that of the Witt algebra. This makes the Hamiltonian system partially integrablesine (v[n+1/2], . . . , vn) are pairwise involuntary ([ · ] means integer part). The brakets from
(v1, . . . v[n−1]/2) generate all the other �rst integrals. Notie that if we identify ψ̄j with ∂

∂cj
,then vi orrespond to the trunated Kirillov operators in (4.3). It is not known why there issuh a onnetion.Generally, it is very hard to �nd any solutions to this system, beause of the ompliatedformula for ˙̄ψ.4.5 Hamiltonian with pj as generalised momentaPart of the reason for introduing the Hamiltonian system mentioned above, was to get abetter understanding of the problem of, for a given f ∈ S, �nding p ∈ C whih generate

f . The idea that this should appear as geodesis of a Hamiltonian systems, omes from theonnetions of univalent funtions with Diff+S
1, whih is important in mathematial physis.Another motivation is that urves in N that arises from the Löwner-Kufarev equation, neverleaves oe�ient manifold, so if a Hamiltonian system was onstruted with suh urves assolutions, we would be able to study N through geodesis. The Hamiltonian system in theprevious setion has the weakness that it depends on pk, however, these are neither generalisedoordinates or momenta. In some sense, we get one Hamiltonian for every hoie of p. It wouldbe better if we ould �nd a system, in whih the oe�ients of p are generalised momenta.O� ourse, it will not be possible to put pj = ψj in (4.10), sine H = −p̄

(
∑∞

m=1 pme
mtGm

)is obviously not holomorphi with respet to p̄.We will make an attempt to make another Hamiltonian system, by hoose di�erent oor-dinates on Mn. In simplest ase when n = 2, the system above is atually integrable, and wetake advantage of this. Let q1 = c1 and q2 = c2 − c21. This gives derivatives
q̇1 = −p1e

−t ,

q̇2 = −p2e
−2t ,and taking p as generalised momenta in a real Hamiltonian system, we obtain the Hamiltonian

H(c, p̄, t) = −1

2

(

e−t|p1|2 + e−2t|p2|2
)

.This gives ṗ1 = ṗ2 = 0. If we denote ṗj = bj, and solve the system for initial onditions
c(0) = 0, limt→∞ c(t) = (a1, a2), we obtain

q1 = −b1(1 − e−t)and then taking the limit, we get that b1 = −a1, and similar alulation gives that q2 =
− b2

2 (1 − e−2t), with b2 = −2(a2 − a2
1). Hene the solutions to the system is given by
c1 = a1(1 − e−t)
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c2 = a2(1 − e−2t) − 2a2

1e
−t(1 − e−t)whih if a1 6= 0, gives c2 = (2 − a2

a1
)c21 − 2(a1 − a2

a1
)c1Does these solutions orrespond to an atually hoie of p? Even if this is the ase, wehave no diret way ontinue this to more than two oe�ients. For instane, there exist nohoie of q = (q1, q2, q3) as ombinations of c1, c2, c3 (and not their derivatives), suh that

q̇j = −ejtpj. However, we will investigate if this is possible to extend this Hamiltonian tomore oe�ients using Sub-Riemannian geometry.4.6 Sub-Riemannian geometryLet M be a n-dimensional smooth manifold. We say that a distribution D of a M (i.e. asubbundle of it's tangent bundle) ful�ls the braket generating ondition if there exist vetor�elds X1, . . . ,Xk, with k ≤ n in D, suh that they and their brakets generate TM . By �theirbrakets�, we mean not only [Xi,Xj ], but also [Xi, [Xj ,Xk]] and so on.De�nition 4.6. Let M be an n-dimensional di�erentiable manifold, then a sub-Riemannianmanifold is a triple (M,D, ρ), where D is a distribution of M satisfying the braket generatingondition, and ρ is a Riemannian metri on D (i.e. a positive de�nite setion on the bundle
Sym2D∗ →M)As usual, we will only denote the sub-Riemannian manifold by M . We have the followingnotions onneted to sub-Riemannian manifolds:

• ρ is alled a sub-Riemannian metri. We will use the usual inner produt notation 〈·, ·〉for ρ.
• If the D is a k-dimensional distribution, we say that M has dimension (k, n). If M hasdimension (n, n), then it is o� ourse just a Riemannian manifold.
• A horizontal path is an absolutely ontinuous path γ : [0, 1] →M suh that γ̇ is in D
• If r, s ∈M , we de�ne the Carnot-Caratheodory distane by

d(r, s) = inf
γ∈Γr,s

∫

[0,1]

√

〈γ̇(t), γ̇(t)〉dtwhere Γr,s = {γ : [0, 1] →M | γ is a horizontal path, γ(0) = r, γ(1) = s}.If a manifold is onneted, then there always exist at least one smooth horizontal path on-neting any two points (this is alled Chow's theorem, see [5℄ and [29℄).4.7 Results for sub-Riemannian HamiltonianWe onsider the trunated Kirillov's operators
Lj =

∂

∂cj
+
n−m
∑

m=1

(m+ 1)cm
∂

∂cj+m
∈ Γ(T 1,0Mn).From the relations in (4.14) and the fat that {Lj}nj=1 form a basis for T 1,0Mn, we get that

D = span(L1, L2, . . . , Lk) is a braket generating distribution for k = 2, 3, . . . , n. This will



4.7 Results for sub-Riemannian Hamiltonian 57enable us to to den�ne sub-Riemannian geometry on Mn, whih in turn will be used this tode�ne a Hamiltonian, requirering that any geodesi has to be horizontal, with respet to thisgeometry. Some results for k = 2 was done in [25℄, and we try to generalise this to arbitrary
k, and look at the geodesis for some values (k, n).Proposition 4.7. A path γ(t) = (c1(t), . . . , cn(t)) in Mn is horizontal with respet to distri-bution D as desribed above, if and only if

ċj =
k

∑

m=1

(j + 1 −m)cj−mum j = k + 1, k + 2, . . . , n ,where
uj = ċj −

j−1
∑

m=1

(j + 1 −m)cj−mum j = 1, 2, . . . k .Proof. The whole result is done by hanging basis from ∂j = ∂
∂cj

to Lj by formula
∂m = Lm −

n
∑

j=m+1

(j −m+ 1)cj−m∂j .We obtain
γ̇ =

n
∑

j=1

ċj∂j

(u1 = ċ1) = u1L1 +

n
∑

j=2

(ċj − jcj−1u1)∂j

(u2 = ċ2 − 2c1u1) = u1L1 + u2L2 +
n

∑

j=3

(ċj − jcj−1u1 − (j − 1)cj−2u2)∂j

. . .

= u1L1 +u2L2 + · · ·+ukLk +
n

∑

j=k+1

(ċj − jcj−1u1 − (j− 1)cj−2u2 − · · · − (j− k+ 1)cj−kuk)∂j .In order to be horizontal, every term in the last sum must be 0.We makeMn a sub-Riemannian manifold, by restriting the usual Hermitian innerprodutto D, multiplied by 1
2 for simpliity. We let ξ̄j = ∂

∂cj
be the generalised momenta and for

j = 1, . . . , k let lj(ξ̄, c) be the funtion of these variables orresponding to Lj, that is
lj = ξ̄j +

n−j
∑

m=1

(m+ 1)cmξ̄j+m .We obtained the following real Hamiltonian
H(ξ̄, c) =

1

2

(

|l1|2 + |l2|2 + · · · + |lk|2
)

. (4.15)



58 Class S and the oe�ient manifoldSolutions is then given by
ċ1 = l̄1

ċ2 = 2c1 l̄1 + l̄2...
ċk−1 = (k − 1)ck−2 l̄1 + (k − 2)ck−3 l̄2 + · · · + 2c1 l̄k−2 + l̄k−1

ċk = kck−1l̄1 + (k − 1)ck−2 l̄2 + (k − 2)ck−3 l̄3 + · · · + 2c1 l̄k−1 + l̄kand further
ċk+1 = (k + 1)ck l̄1 + kck−1 l̄2 + · · · + 3c2 l̄k−1 + 2c1 l̄k...

ċn = ncn−1l̄1 + (n − 1)cn−2 l̄2 + · · · + (n− k + 2)cn−k+1 l̄k−1 + (n− k + 1)cn−k l̄k .As expeted, the equations for ċj is just the horizontally onditions. From the �rst k termswe obtain that lj = uj, and the n − k next terms just give the statement in proposition 4.7.For the generalised momenta, we have
ξ̇j = −(j + 1)(ξj+1l1 + ξj+2l2 + · · · + ξj+klk) j = 1, 2, . . . , n− kand further

ξ̇n−k+1 = −(n− k + 2)(ξn−k+2l1 + ξn−k+3l2 + · · · + ξn−1lk−2 + ξnlk−1)

ξ̇n−k+2 = −(n− k + 3)(ξn−k+3l1 + ξn−k+4l2 + · · · + ξnlk−2)...
ξ̇n−2 = −(n− 1)(ξn−1l1 + ξnl2)

ξ̇n−1 = −nξnl1

ξ̇n = 0 .In addition we have the following relations with the derivatives of the lj .Proposition 4.8. Let
lj =

n−j
∑

m=0

(m+ 1)cmξ̄j+mfor j = 1, . . . , n, where the derivatives of ξj and cj are given by Hamiltonian system (4.15),and let lj ≡ 0 for j > n. Then
l̇j =

k
∑

ν=1

(ν − j)l̄ν lν+jfor any j ∈ N



4.7 Results for sub-Riemannian Hamiltonian 59Proof. To simplify notation, we will say that any sum ∑b
ν=a βν , with b < a, will be zero (asum over the empty set). Then for any j ∈ N

lj =

n−j
∑

n=0

(m+ 1)cmξ̄j+mDi�erentiating we get
l̇j =

min(k,n−j)
∑

m=1

(m+ 1)ξ̄j+m

m
∑

ν=1

(m− ν + 1)cm−ν l̄ν +

n−j
∑

m=k+1

(m+ 1)ξ̄j+m

m
∑

ν=1

(m− ν + 1)cm−ν l̄ν

−
n−j−k
∑

m=0

(m+1)cm(j+m+1)

k
∑

ν=1

ξ̄m+j+ν l̄ν−
n−j−k
∑

m=max(n−j−k+1,0)

(m+1)cm(j+m+1)

k
∑

ν=1

ξ̄m+j+ν l̄ν

=
k

∑

ν=1

l̄ν

(

n−j
∑

m=ν

(m+ 1)(m− ν + 1)ξ̄j+mcm−ν −
n−j
∑

m=ν

(m− ν + 1)(m− ν + j + 1)ξ̄j+mcm−ν
)

=

k
∑

ν=1

(ν − j)l̄ν

(

n−j
∑

m=ν

(m− ν + 1)ξ̄j+mcm−ν
)

=

k
∑

ν=1

(ν − j)l̄ν lν+jAlthough this system might be interresting, it has its problems. Most importantly, thereis nothing insuring us that a solution to this system will stay in Mn. The desription aboveis therefore merely loal.Example 4.9. We try to get some sense into what the geodesis are for this Hamiltonianwhen Mn is is a (k, n)-dimensional sub-Riemannian manifold. To simplify, we will look at ageodesi c in Mn, from c(0) = 0 to c(τ) = a. We will denote ξ(0) = l̄(0) = b, and if we lookat geodesis with H onstantly equal to 1, this means that |b1|2 + · · · + |bk|2 = 1.
• For k = 2, n = 2, we have the solutions for H given by

c1 = b1t

c2 = b21t
2 + b2t

ξ1 = b1 − 2b2c̄1

ξ2 = b2 .Geodesis are hene on the form c2 = c21 + b2
b1
c21 or straight lines c2 = b2t. From H = 1,we get that b1 = a1√

|a1|2+|a2−a21|
, b2 =

a2−a21√
|a1|2+|a2−a21|

and τ =
√

|a1|2 + |a2 − a2
1|. Thereis hene a unique hoie of geodesis in this ase.

• More generally, geodesis in the ase k = n, cj is given by a j'th order polynomial, andthe there is a unique geodesi from c(0) = 0 to c(1) = a.
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• For k = 2, n = 3, the solutions to H are

ξ3 = b3

ξ2 = b2 − 3b3c̄1

ξ1 = b1 − 2b2c̄1 + 5b3c̄
2
1 − 2b3c̄2 .From this and the fat that c̈1 = ˙̄l1 = l2 l̄3 = b̄2b3 − |b3|2c1, we get that for b3 6= 0

c1 =
1

b̄3
(b̄2 − b̄2 cos |b3|2t+

b̄1
b3

sin |b3|2t)

c2 = c21 +

∫ t

0
l̄2dt = c21 −

1

|b3|2
(b2 sin |b3|2t+

b1
b̄3

cos |b3|2t−
b1
b̄3

)

c3 = 3c1c2 − c31 −
∫ t

0
c1 l̄2dt

= 3c1c2 − c31 +
1

b̄3|b3|2
(1

4
(
b̄1b2
b3

− 3b1b̄2
b̄3

)− |b2b3|2 + |b1|2
2

t+ |b2|2 sin |b3|2t+
b1b̄2
b̄3

cos |b3|2t

−|b2b3|2 − |b1|2
4|b3|2

sin 2|b3|2t−
1

4
(
b̄1b2
b3

+
b1b̄2
b̄3

) cos 2|b3|2t
)and for b3 = 0

c1 = b1t

c2 = b21t
2 + b2t

c3 = b31t
3 +

5

2
b1b2t

2To �nd a general geodesi is hard, so let us pik a point (0,0,a3), with a3 6= 0, as anexample. c1(τ) = c2(τ) = 0 just gives us the information that |b3|2τ = 2πν for some
ν ∈ N (note that b3 must be nonzero). From c3(τ) = a3, we get

4a3b̄3|b3|2 =
b̄1b2
b3

− b1b̄2
b̄3

− 2|b2|2|b3|2τ − 2|b1|2τ +
4b1b̄2
b̄3

− b̄1b2
b3

− b1b̄2
b̄3

= −2|b2|2|b3|2τ − 2|b1|2τ

a3b̄3 must therefore be real negative. Inserting b3 = − a3
|a3|

√

2πν
τ and |b2|2 = 1− |b1|2, wehave the relation

|b1|2 =
2πν(τ3/2 − 2|a3|

√
2πν)

(2πν − τ)τ3/2
, (4.16)whih have a solution for hoies of ν, τ suh that the right hand equation is in theinterval [0, 1]. From this we get that there are unountable many geodesis:� The solution is ompletely independent of the arguments of b1 and b2.



4.7 Results for sub-Riemannian Hamiltonian 61� We may also freely hoose any value of ν > 1 and 0 ≤ |b1| ≤ 1. To see this, let usdenote the right hand side of (4.16) by
bν(τ) =

2πν(τ3/2 − 2|a3|
√

2πν)

(2πν − τ)τ3/2
.This is a ontinuous funtions with respet to τ in (0, 2πν). Sine, we know that

|a3| ≤ 4 < 2π, we get that for any hoie of ν ≥ 2

lim
τ→0+

bν(τ) = −∞ and lim
t→2πν−

bν(τ) = ∞.From this we get that the image of the interval (0, 2π) under bν is the real line, andin partiular, for any hoie of ν > 1 and |b1|, there is a τ suh that |b1|2 = bν(τ).(if |a3| < π, this is also guaranteed when ν = 1).� From the disussion above, it also follows that the geodesi that reah (0, 0, a3) inminimal time, for �xed ν, has b1 = 0 (whih imply b2 = eiα). In this ase
c1 = −a3e

iα

|a3|

√

τ

2πν
(1 − cos

2πνt

τ
)

c2 − c21 = −τe
iθ

2πν
sin

2πνt

τ

c3 − 3c1c2 + c31 =
a3

|a3|

√

πν

2τ
t− 4a3

|a3|

√

τ

2πν
(4 sin

2πνt

τ
− sin

4πνt

τ
)and it follows that τ = 2|a3|2

πν is the minimal time to reah (0,0,|a3|).The general ase is muh more di�ult, sine |b3| appear both inside and outside thetrigonometri funtions. We an however expet there to be fewer geodesis in this ase,sine we get more �information� from c1 and c2 in this ase.Sine there have been very few investigations into this sub-Riemannian Hamiltonian sys-tem, in is still unertain how to interpret solutions. We end this hapter disussing somepossible onnetions.
• Starting with the Löwner-Kufarev equation for subordinationhains

∂

∂t
f(z, t) = zp(z, t)

∂

∂z
f(z, t)for f(z, t) = et(z+ · · · ). Let η(z, t) = e−tf(z, t) = z+ c1z

2 + c2z
3 + · · · be a urve in S.Assume that its image is ontained in S̃. Then, if we denote ∂

∂zη(z, t) = η′(z, t)

η̇ = zη′p(z, t) − η = L0(η) + p1L1(η) + p2L2(η) + · · ·and pj = uj , where uj are the oe�ients in the horizontally ondition (both followfrom the same hange of basis). If η is a also a solution to the (k, n) sub-RiemannianHamiltonian system, this means that ∑k
j=1 |pj|2 is onstant.

• The Hamiltonian system H̃ = e−t|l1|2 + e−2t|l2|2 give the same solutions as the Hamil-tonian desribed in 4.5 for n = 2. This means that, in some sense, we an extend thissimple Hamiltonian using sub-Riemannian geometry. The simpliity will not be kept,thought. For instane, for n = 3, c1 is given by solution
c̈1 − ċ1 − b3b̄2e

−tc1 = |b3|2 .
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Ū , 9
C̄, 7
ζ̄, 9
∧k V , 9

∼=, 12
ζ̇, 50
C, 9
CPn, 12
Cn

+, 9
D, 7
D∗, 7
N, 9
N0, 9
Rn

+, 9
Z, 9
Ea;λ, 20
Jf , 35
K, 47
M, 47
Mn, 47
N , 47
Nn, 47
V, 48
r(λ), 20
vir, 43
virR, 45
Diff M , 45
Diff+S

1, 45
GLnC, 12
Mm×nC, 12
PGLnC, 17
PSLnR, 17
RotS1, 47
SymkV , 9
VectS1, 45
Vect0 S

1, 45
extU , 9
intU , 9
MM , 13
Mr, 13
OM , 12
Or, 1362



INDEX OF NOTATION 63
µf , 35
π1(M), 16
≃, 32
S̃, 38
hr, 13
idX , 9
m(N,Γ), 27
m(N,Γ, α), 33
m(Ω, a), 30
prk, 9
prXα , 9
F(x, k), 19
K(k), 20
F̃(θ, κ), 49
sn(ω, k), 49



64 INDEX OF NOTATION



Bibliography[1℄ Lars V. Ahlfors. Letures on Quasionformal Mappings, pages 5�23. Amerian Mathe-matial Soiety, 1966.[2℄ H. Airlault and P. Malliavin. Unitarizing probability measures for representations ofvirasoro algebra. J. Math. Pures Appl., 80(2):627�667, 2001.[3℄ V.I. Arnold. Mathematial Methods of Classial Mehanis, pages 201�219. Springer,1989.[4℄ Joakim Beker. Conformal maps with quasionformal extension, in: Aspets of ontem-porary omplex analysis. Pro. NATO Adv. Study Inst., Univ. Durham, pages 37�77,1979, Aademi Press, London, 1980.[5℄ W.L. Chow. Über systeme von linearen partiellen Di�erentialgleihungen erster Ordnung.Math. Ann., 117:98�105, 1939.[6℄ A. Constantin, T. Kappeler, B. Kolev, and P. Topalov. On geodesi exponential maps ofthe virasoro group. Ann Glob Anal Geom, 31:155�180, 2007.[7℄ L. de Branges. A proof of the bieberbah onjeture. Ata Math., 154(1-2):137�152, 1985.[8℄ Bjørn I. Dundas. Di�erential Topology. Not in press:,www.uib.no/People/nmabd/pp/070814dt.pdf.[9℄ Hershel M. Farkas and Irwin Kra. Riemann surfaes, pages 151�195. Springer-Verlag,1980.[10℄ Gerald B. Folland. Real Analysis, pages 165�167. John Wiley & Sons, In., 1999.[11℄ Otto Forster. Letures on Riemann Surfaes, pages 1�95. Springer, 1981.[12℄ William Fulton. Algebrai Topology - a �rst ourse, pages 233�242,263�276. Springer-Verlag, 1995.[13℄ William Fulton and Joe Harris. Representation Theory, pages 1�136. Springer, 2004.[14℄ I.M. Gel'fand and D.B. Fuhs. Cohomology of the lie algebra of vetor �elds on the irle.Funt. Anal. Appl., 4(2):342�342, 1984.[15℄ W.K. Hayman. Multivalent funtions, pages 29�32. Cambridge University Press, 1994.65



66 BIBLIOGRAPHY[16℄ J. Hersh. On the torsion funtion, Green's funtion and onformal radius: an isoperi-metri inequality of Pó1ya and Szegrö, some extensions and appliations. J. Anal. Math.,36:102�117, 1979.[17℄ Morris W. Hirth. Di�erential Topology. Springer, 1976.[18℄ James A. Jenkins. Univalent Funtions and Conformal Mapping, pages 37�42. Springer-Verlag, 1958.[19℄ A. A. Kirillov. A Kähler struture on K-orbits of group of di�eomorphisms of a irle.Funt. Anal. and Appl., 21(2):42�45, 1987.[20℄ A. A. Kirillov. Geometri approah to disrete series of unirreps for vir. J. Math. PuresAppl., 77:735�746, 1998.[21℄ Osamuan Kobayashi, Akira Yoshioka, Yoshiaki Maeda, and Hideki Omori. The theory ofin�nite-dimensional lie groups and its appliations. Ata Appl. Math., 3(1):71�106, 1985.[22℄ P.P. Kufarev. On one-parameter families of analyti funtions. Math. Sb., 55(13):87�118,1943.[23℄ Olli Letho. Univalent Funtions and Teihmüller Spaes, pages 73�74. Springer, 1987.[24℄ Löwner, K. Untersuhungen über shlihte konforme Abbildungen des Einheitskreises, I.Math. Ann., 89:103�173, 1923.[25℄ Irina Markina, Dmitri Prokhorov, and Alexander Vasil'ev. Sub-riemannian geometry ofthe oe�ients of univalent funtions. Journal of Funtional Analysis, 245:475�492, 2007.[26℄ Christian Pommerenke. Über die Subordination analytisher Funktionen. J. ReineAngew. Math., 218:159�173, 1965.[27℄ Dmitri Prokhorov and Alexander Vasil'ev. Univalent funtions and integrable systems.Comm. Math. Phys, 262(2):393�410, 2006.[28℄ R. Mihael Range. Holomorphi Funtions and Integral Representations in Several Com-plex Variables, pages 232�235. Springer, 1986.[29℄ P.K. Rashevski. About onneting two points of omplete nonholonomi spae by admis-sible urve. Uhen. Zap. Ped. Inst. K. Libknehta, pages 83�94, 1938.[30℄ Walter Rudin. Real and Complex Analysis, pages 144�147. MGraw-Hill, 1987.[31℄ A.C. Shae�er and D.C. Spener. Coe�ient Regions for Shliht Funtions (with aChapter on the Region of the Derivative of a Shliht Funtion by Arthur Grand). Amer.Math. So. Colloq. Publ., vol. 35, 1950.[32℄ Mihael Spivak. A Comprehensive Introdution to Di�erential Geometry, Volume I. Pub-lish or Perish, in., 2005.[33℄ Kurt Strebel. Quadrati Di�erentials, pages 1�36. Springer Verlag, 1984.[34℄ Alexander Vasil'ev. Moduli of Family of Curves for Conformal and Quasionformal map-pings, pages 13�15,43�46. Springer, 2002.


