
Development and Integration of

on-line Data Analysis

for the ALICE Experiment

Matthias Richter

Dissertation for the degree philosophiae doctor (PhD)

at the University of Bergen

February 06, 2009

Abstract

The ALICE detector setup is a dedicated experiment in Heavy Ion Physics,
located at the Large Hadron Collider (LHC) at the European Organization
for Nuclear Research (CERN)/ Geneva. Its various sub-detectors are elec-
tronically read out by a few millions of channels and are expected to provide
a huge sample of data for the investigation of strongly interacting matter. A
data rate of up to 25 GByte/s imposes a challenge to both storage facilities
and subsequent data analysis. On-line data processing is applied in order
to reduce the data volume and selection of interesting events is suggested to
increase the valuable information in the recorded data.

In general, trigger systems cover the task of event selection. As the first
signal needs to be available immediately after the collision, often a multi-level
triggering scheme is applied. Fast detectors are deployed to generate different
levels of hardware triggers. Subsequent software triggers accomplish event
selection on the basis of on-line analysis.

A High-Level Trigger (HLT) system has been implemented in ALICE which
provides sufficient computing resources and infrastructure. It allows on-line
event reconstruction at the full data rate and generates trigger information
based on reconstructed events. HLT combines efficiently the communities
of computing and physics. It thus requires a modular design for optimized
workflows and well defined interfaces for exact communication as an integral
part of the project. The ability of selection and rejection of events has di-
rect impact on the data analysis performance and physics results. On-line
algorithms have therefore to be evaluated and compared to the results of the
general analysis.

This thesis has contributed to the overall design of on-line data processing
with ALICE HLT. Data flows have been developed and implemented, and a
modular concept based on a common HLT analysis framework and abstract
interfaces has been established. HLT on-line analysis has been integrated into
the ALICE computing model. The work describes in particular the important
aspects which have been considered during the design of modularity, the HLT
analysis framework and related software, as well as the application of all new
developments for one specific sub-detector.

Acknowledgments

Now the time has come to hand in my thesis. I am happy to arrive at this
point and I am grateful to many people supporting me and helping to get here.
I joined the ALICE collaboration and the experimental nuclear physics group
in Bergen in 2004 in a very important period of development and detector
commissioning. I was lucky to participate in the exciting phase of commis-
sioning of the today’s most powerful particle accelerator, the Large Hadron
Collider, and one of the experiments build in conjunction with its develop-
ment.

First of all, I want to express my gratitude to my supervisors at the University
of Bergen, Prof. Dieter Röhrich and Prof. Kjetil Ullaland. Dieter after all is
one of the reasons which led me to Bergen, I still remember his reply on my
formal application in 2003. I came into an environment which gave me best
chances for development in all directions. Thank you for the establishment of
a unique group covering research reaching from physics to electronics, detector
development, and software engineering. The nice discussions, social and pro-
fessional input have been an irreplaceable guidance. I appreciate the excellent
financial backup which allows and encourages to present results at conferences.

Kjetil has been a good adviser at all times, and last but not least a perfect
teacher in Norwegian by consequently challenging me in talking Bergensk. He
provided me with interesting tasks of software development and gave me the
opportunity to learn more about hardware and electronics. I like his straight
forward get-to-the-point philosophy which helped me a lot also in the final
phase of this thesis. Last but not least we share a similar understanding of
humor.

I am grateful to all my colleagues at the Department of Physics and Tech-
nology, especially Hongyan Yang, Kalliopi Kanaki, H̊avard Helstrup, Johan
Alme, Ketil Røed, Dominik Fehlker, Dag Larsen, Sebastian Bablok, Kenneth
Aamodt, Gaute Øvrebekk, Boris Wagner, Agnes Nyiri, and Sven Zschocke.
Thank you all for a nice time in Bergen and at places around the world.

I also would like to thank our close collaborators at the Kirchhoff Institute for
Physics at the University of Heidelberg, especially Prof. Volker Lindenstruth
for support in the startup phase of my work in Bergen. Timm Steinbeck,
Jochen Thäder and Torsten Alt have been excellent partners to work with. I
appreciate all the nice discussions and constructive development. Thanks for
keeping the computing cluster running at CERN.

III

This work would not have been possible without the support from my family
I am in love with. My wife Maria had to carry a huge portion of the load
and deserves my deepest gratitude. You perfectly managed to tackle daily
life with two small kids and my physical and mental absence. Thank you for
always keeping up the atmosphere in our family and believing in me, and so I
do. Both my parents and my parents-in-law have been helpful all the time and
I want to thank them for stepping in whenever a babysitter or any help was
urgently needed. I thank my kids teaching me the relevance of things. There
is certainly a world beyond physics, although Hanna, now at the age of three,
will soon ask more about what I am doing. Clemens, not older than 7 months
now, always motivated me with his smile and incredibly rapid development.

I am in debt to Jochen Thäder and Dr. Kurt Richter for reading my thesis
carefully and helping to get rid of that number of little misprints and incon-
sistencies one gets blind about over time.

I want to thank the University of Bergen for financial support and the four-
year stipend allowing me to accomplish the presented work.

Certain moments in life are unpredictable and have a remarkable impact de-
spite of seeming to be incidentals. So I finally want to thank my good friends
and tour mates Halvor and Karsten for various lessons in the norwegian moun-
tains and telemark backcountry skiing. Sitting on top of a mountain in the
Bernina Alps in 2003, Karsten eagerly encouraged me to apply for a position
in Norway. A short discussion of big consequences, and with a good outcome.

Matthias

Bergen, February 2009

IV

Contents

List of Figures IX

List of Tables XI

1 Introduction 1

2 ALICE and the Large Hadron Collider 5
2.1 Physics Motivation . 6
2.2 Quark Gluon Plasma . 7
2.3 ALICE - A Large Ion Collider Experiment 10
2.4 Event Reconstruction Paradigms 12
2.5 Operation of the ALICE experiment 12

3 High-Level Trigger 15
3.1 Conceptual Design . 15
3.2 Processing Methodology . 16
3.3 Data Processing Scheme . 20

3.3.1 The Concept of Components 21
3.3.2 Data Input of the HLT on-line System 22

3.4 Data Transport . 23
3.4.1 Data Transport Framework 23
3.4.2 Memory Management 25
3.4.3 Data Abstraction . 26
3.4.4 Intrinsic Data Properties 27

3.5 HLT Configurations . 29
3.6 Integration into the ALICE experiment 30
3.7 Development Methodology . 30

3.7.1 Software Compatibility 32
3.7.2 Development Environment 33
3.7.3 Unit tests and Functional Verification 35
3.7.4 Component Development Cycle 36
3.7.5 Automated Verification 36

3.8 Output of the High-Level Trigger 38
3.8.1 Trigger . 38
3.8.2 HLT Output Payload 38
3.8.3 Calibration Data and Off-line Storage 39

3.9 Detector Monitoring . 40
3.9.1 Monitoring strategies 40
3.9.2 HLT On-line Monitoring Environment 40

V

VI CONTENTS

3.9.3 Monitoring Back-end 42

4 HLT Analysis Framework 43

4.1 Interface Methodology . 45

4.2 HLT Modules and Libraries 46

4.2.1 General Concepts of Modularity 46

4.2.2 Framework Organization 48

4.2.3 Features and Functional Units of an HLT Module . . . 49

4.2.4 Module Agents . 50

4.3 HLT Analysis Component Interface 53

4.3.1 Characterization of HLT Analysis Components 54

4.3.2 Running Environment 56

4.3.3 Initialization and Cleanup 57

4.3.4 Data Processing . 59

4.4 Component Handler and External Interface 65

4.4.1 Overview . 65

4.4.2 Component Registration 66

4.4.3 Utilization in the On-line System 68

4.5 Integration into the ALICE Software Framework 73

4.5.1 AliRoot Data Processing Flow 74

4.5.2 The Off-line HLT System 78

4.5.3 AliRoot HLT Simulation 83

4.5.4 AliRoot HLT Reconstruction 87

4.5.5 Event Summary Data (ESD) 90

4.6 HLT Data Exchange . 92

4.6.1 C Data Structures . 92

4.6.2 ROOT Objects . 93

5 Global HLT data flow and processing scheme 99

5.1 Data Flow during Operation of ALICE 99

5.2 Generating the Event Summary Data 100

5.3 High-Level Trigger output - HLTOUT 101

5.3.1 Generation of HLT Output 102

5.3.2 Decision List . 102

5.3.3 HLT Output Payload 103

5.4 HLTOUT processing . 103

5.4.1 Overview . 103

5.4.2 Classification of HLTOUT data blocks 105

5.5 Common Handling of ESD objects 108

5.6 Data redirection . 110

CONTENTS VII

6 Integration of the Analysis Framework 115

6.1 Test Suite . 115

6.1.1 Data Load Simulation 116

6.1.2 Analysis Component Statistics 116

6.1.3 Collection of Component Statistics 117

6.1.4 Dummy Data Sources 118

6.2 Data Transport Performance 119

6.3 Component Fan-In . 122

6.4 Transportation of ROOT Objects 124

7 Integration of TPC On-line Analysis 127

7.1 TPC on-line Event Reconstruction 128

7.2 TPC Raw Data . 130

7.2.1 TPC Data decoding and processing 131

7.3 TPC on-line Data Transport and Specification 134

7.3.1 Data Types . 136

7.3.2 Cluster Data . 136

7.3.3 Track Data . 137

7.3.4 Data Specification . 137

7.4 Further TPC On-line Applications 138

7.4.1 Zero Suppression . 138

7.4.2 Selective Channel Readout 138

8 Conclusion and Outlook 141

A List of Publications 145

A.1 Related Publications Significantly Contributed To 145

A.2 Related Publications Contributed To 145

A.3 Further Publications . 146

B Software Appendix 147

B.1 The AliHLTComponent interface 147

B.1.1 Public external methods 147

B.1.2 Private internal methods 148

B.1.3 Example Implementation of Low-Level Processing . . . 151

B.1.4 Example Implementation of High-Level Processing . . . 152

B.1.5 Return and Error Code Scheme 153

B.2 Common HLT Data Types . 154

C Benchmark Environment 155

Glossary 159

VIII CONTENTS

Bibliography 162

Index 166

List of Figures

2.1 Outline of the Large Hadron Collider at CERN/Geneva 5
2.2 Phase diagram of strongly interacting matter 8
2.3 Azimuthal anisotropy parameter v2 of heavy flavor electrons in

minimum bias Au-Au collisions (Phenix) 9
2.4 Jet correlation functions for Au Au collisions (Phenix) 10
2.5 Sketch of the ALICE detector. 11
2.6 On-line systems of ALICE . 13

3.1 Sub-systems of ALICE HLT 15
3.2 Data flow of sequential event reconstruction 17
3.3 Data flow of parallel event fragment reconstruction 18
3.4 Reduced processing time in pipelined event processing 19
3.5 General HLT processing scheme 21
3.6 HLT processes and interconnects 22
3.7 High-Level Trigger system in the ALICE data stream 23
3.8 Working principle of the HLT data transport framework. . . . 24
3.9 Block descriptor references to memory objects. 26
3.10 State diagram of the HLT system 31
3.11 Development cycle of HLT components. 37
3.12 The HLT monitoring data format 41
3.13 Data flow of the HLT monitoring interface 42

4.1 Modular organization of the HLT analysis framework 49
4.2 HLT component workflow . 55
4.3 Redirection of Logging messages via the running environment 58
4.4 Inheritance diagram for AliHLTComponent base class 60
4.5 High- and low-level component processing interfaces 62
4.6 Abstract access of components through the ComponentHandler 65
4.7 Utilization of the C wrapper interface by the on-line HLT . . . 68
4.8 Component registration and initialization from the external in-

terface . 71
4.9 Overall AliRoot processing sequence. 74
4.10 HLT simulation in AliRoot. 75
4.11 Common Data Header (CDH) 77
4.12 The AliRawReader interface. 77
4.13 HLT analysis chains in the on-line and off-line system 78
4.14 Simple example of an off-line HLT chain 81
4.15 Inheritance Diagram for the AliHLTOfflineInterface class . 83
4.16 Inheritance diagram for the AliHLTOfflineDataSource class . 83

IX

X LIST OF FIGURES

4.17 HLT reconstruction embedded into AliRoot simulation 86
4.18 HLT reconstruction embedded into AliRoot reconstruction . . 88
4.19 Structure of the AliESDEvent class 90
4.20 Data exchange by using C data structures 94
4.21 Serialization of objects into a buffer 95
4.22 Compression ratios for serialization of ROOT objects 97

5.1 Raw data flow during data taking 99
5.2 Work flow for the generation of HLT Event Summary Data . . 101
5.3 Constituents of HLT output payload 104
5.4 Transparent data flow for module developers 105
5.5 Sequence of HLT output payload processing 106
5.6 Schematic data flow for individual HLT ESD objects 109
5.7 HLT data redirection by the AliRawReaderHLT 111

6.1 Sequence of component statistics data blocks 117
6.2 Component statistics viewer 118
6.3 Chain topology of HLT performance test 120
6.4 Performance of HLT hierarchy. 121
6.5 Performance impact of component fan-in. 123
6.6 Performance of object serialization with respect to object size 125
6.7 Comparison of compression ratio and computing time of object

serialization . 126
6.8 Performance of various data exchange approaches. 126

7.1 The ALICE Time Projection Chamber. 127
7.2 Topology of the TPC on-line data analysis chain. 129
7.3 The ALTRO format . 131
7.4 TPC raw data access by DigitReaders 135
7.5 Data flow of TPC raw data access paradigms 135
7.6 Working principle of Selective ALTRO Channel Readout . . . 139

List of Tables

4.1 The main classes of the AliRoot HLT environment. 79
4.2 Common HLT data sources. The table shows the ComponentId

which can differ from the actual class name. 82
4.3 Data sizes of the serialized AliExternalTrackParam object. . 96

6.1 Performance measurements of HLT hierarchy 119
6.2 Performance measurements of component fan-in 122

7.1 HLT data types defined for TPC on-line analysis data exchange 136

B.1 Common data origins defined for HLT data exchange 154
B.2 Common data types defined for HLT data exchange 154

XI

XII LIST OF TABLES

1. Introduction

High energy nuclear physics studies matter in extreme conditions. The main
idea is the exploration of the phase diagram of strongly interacting matter.
Phenomena in this field are usually studied by investigation of collisions of
accelerated particles. The decay products of the generated intermediate state
of matter are detected and allow us to gain knowledge about the properties
of the medium. Many particle accelerators of different scale and performance
have been built in the past decades and new ambitious projects are currently
underway. The Large Hadron Collider at CERN/Geneva will provide several
experiments with proton and heavy ion beams for particle collisions at energies
of

√
s = 14 TeV and 5.5 TeV respectively per nucleon-nucleon pair. The

presented work has been accomplished in conjunction with the development of
the ALICE experiment, a unique and in many aspects innovative experimental
setup dedicated to heavy ion physics.

Due to the scale of the experiment and its high readout granularity, the pro-
duced data volume imposes a challenge to computing systems. For our ex-
periment, data rates can peak at 25 GByte/s, producing a data volume both
difficult to store and to analyze if not pre-selected and treated directly during
the process of data taking. Fast on-line data analysis at the full input rate
allows to reconstruct all events and to reduce the data rate by using e.g. data
compression techniques.

The necessity of on-line analysis is furthermore motivated by the nature of
the collision process itself. Rare processes are the main target of investigation
of new phenomena but are often embedded into a huge number of background
events. As one possible solution for this problem, on-line selection of inter-
esting events allows the efficient collection of data. It helps to sharpen the
results of the experiment, and thus increasing the benefit-cost ratio which is a
relevant question in fundamental research. For this purpose, the ALICE High-
Level Trigger (HLT) provides a powerful computing resource and dedicated
infrastructure for the task of on-line analysis.

The past five years have been spent on the final commissioning of the detector.
It was in particular a phase of final implementation of detector electronics
and control systems, as well as design of the data reconstruction scheme.
Naturally, such a phase is not a distinct and straight road, but more a path
to be followed in a slightly known and sometimes completely new terrain.
Based on experience made so far during the development, the decision where
to continue had to be evaluated on a short timescale, sometimes on a monthly

1

2 CHAPTER 1. INTRODUCTION

or even daily bases. However, all development pointed into one direction, the
final commissioning of the accelerator and the experiments.

Consequently, also the scope of the presented work was not a fixed and rigid
task. Algorithms and software prototypes have been developed before and
in parallel to this work. Critical evaluation of the project made it evident to
the group that emerging solutions and implemented prototypes needed a solid
foundation. As a result of this, the focus of this work has been set to be a
project study for integrated software solutions and abstraction layers for data
readout and processing of detectors in ALICE. The design and development
is motivated by the integration of on-line analysis for one particular sub-
detector. Understanding the full scale of the ALICE HLT system was the
requirement for implementation of analysis components. The new design of
the HLT software modules is a direct outcome of the presented work and makes
it possible for the user to integrate the desired physics analysis and algorithms
with minimal effort. A dedicated interface hides all complex processes and
inter-process communication.

Other important aspects, quality assurance and reliability of the trigger, re-
quire the HLT analysis to be part of the off-line data processing environment.
The ALICE off-line project provides a complete framework for the simulation
and reconstruction of events, as well as the subsequent physics analysis. In
order to evaluate the selectivity and performance of the High-Level Trigger,
algorithms must be compared with the standard analysis and with respect to
simulated data. This requirement motivates the complete separation of the
actual HLT analysis from the data transport functionality.

One major challenge of the project turned out to be the efficient combination
of different communities and sub-systems. Success is achieved by efficiently
combining skills of scientists and developers from different communities, which
requires optimized work-flows for cross-subject working groups. A major part
of the work is related to system design and interface implementations, enabling
each side to work as efficient as possible. This paradigm also takes the value
and cost of human resources into account.

Due to the nature of the project, this thesis covers in a large part compu-
tational aspects. The reader is expected to be familiar with the principles
of object oriented programming or a basic understanding of object oriented
approaches. Though, the concept of base classes and overloading of virtual
function will be introduced shortly. An appropriate software design and tools
for the purpose of on-line data analysis with the ALICE High-Level Trigger
are the major outcome of this work and will be described in detail in chapters
4 and 5. All development has been carried out under the aspect of the real

3

application of the framework and chapter 7 is dedicated to concrete realization
and integration of appropriate on-line analysis for one particular sub-detector,
the Time Projection Chamber (TPC).

Although finally this work could not use any real physics data due to the
delay in the LHC startup phase, the operation of ALICE in 2008 provided
a huge sample of data to study detector properties and system integration.
The detector system was running continuously for about 7 months, delivering
various data sets like e.g. cosmic ray and noise measurements. Detailed tests
have been accomplished in order to commission not only the different sub-
systems stand-alone, but also the interplay and communication in between.
After a long phase of development and final commissioning, the ALICE High-
Level Trigger is ready for on-line data analysis and is awaiting first data from
LHC operation.

4 CHAPTER 1. INTRODUCTION

2. ALICE and the Large Hadron Collider

The field of sub-atomic physics studies the fundamental interactions between
elementary particles and the properties of strongly interacting matter. Though
many particles of elementary nature have been discovered and studied in the
past decades, a lot of effects and aspects remain uncertain. Among the de-
veloped theories, Quantum Field Theories have been very successful in de-
scribing a large number of experimental observations.

Most of the experiments in this field entail very large experimental setups.
The most powerful tools are provided by particle accelerators which have been
continuously developed to allow acceleration of particles to higher and higher
energies including a broad variety of particles, e.g. electrons, protons and
heavy ions. Particle accelerators of many different scales have been developed
and operated so far. The currently largest machine of such type is the Large
Hadron Collider at CERN/Geneva ([1], Figure 2.1).

Figure 2.1: Outline of the Large Hadron Collider at CERN/Geneva [2]. The
ALICE experiment is located at Point 2, lower left.

The accelerator finished its final commissioning in September 2008 and was
inaugurated in autumn 2008. A tunnel with circumference of 26.7 km hosts
the apparatus intended to accelerate protons to the energy of 7 TeV. In two
adjacent beam lines particles circulate in opposite direction. The two beam
lines intercept at four experimental areas and allow to collide the particle
beams. At the four interactions points, the main experiments are located.

5

6 CHAPTER 2. ALICE AND THE LARGE HADRON COLLIDER

Primarily built for the acceleration of protons, LHC also has a Heavy Ion
research program which includes experiments with lead (Pb) ion beams. Col-
lisions of heavy ions allow a different kind of physics with focus on the prop-
erties of a very dense medium.

ALICE - A Large Ion Collider Experiment is located at Point 2 of the LHC
ring. The experiment is especially designed for the investigation of collisions
of heavy ions creating a hot and dense matter. In particular, the properties of
a special phase of matter will be studied. The so called Quark Gluon Plasma
(QGP) will be introduced in Sec. 2.2.

2.1 Physics Motivation

Colliding beam or fixed target experiments have been built for various energy
regions. The construction of bigger accelerators was always motivated by the
wish of increased energy liberated in a collision.

Continuous theoretical and experimental investigation allow to establish mod-
els which describe the observed processes sufficiently within a certain energy
scale. The so far most successful model describing sub-atomic interactions
and processes is the so called Standard Model. It is a gauge theory describ-
ing the 16 known elementary particles, their anti-particles and interactions
unifying three of the four fundamental interactions, Electromagnetic, Weak,
and Strong interaction. Though, not free of contradictions, Standard Model
describes many of the observed processes. The model has been probed in the
current experimental energy scale and predictions are made for an extended
energy scale. Still there are many aspects to be proven and physicists expect
new phenomena at many frontiers.

One of the fundamental questions not answered by the Standard Model is the
existence of massive gauge bosons. Gauge bosons are the quanta of the gauge
field of a quantum field theory and are understood to mediate the interaction
between elementary particles. One of the important aspects of a gauge theory
and the understanding of nature is Gauge Invariance of the theory, meaning
the theory is invariant under a certain symmetry transformation group, which
is a property of the theory. For technical reasons, the gauge bosons are mass-
less in this description and this is in contradiction with the observation of the
massive exchange bosons of Weak interaction, the Z and W± bosons.

In theory, masses of those two elementary particles are introduced ad hoc by
adding a Higgs field with the property of Spontaneous Symmetry Breaking.
This phenomenon occurs in gauge symmetric system with a non-symmetric
vacuum state. In the mathematical description, the bosons get mass through
their coupling to the Higgs field which also exhibits another fundamental par-

2.2. QUARK GLUON PLASMA 7

ticle, the Higgs boson. Whether this mathematical formalism can sufficiently
describe nature beyond the so far investigated energy scale needs to be proven.
Search for the Higgs boson is number one priority of today’s particle physics.

Also, the nature of mass is unclear. A striking observation was the discov-
ery of constituents of hadrons, the quarks, and an appearing lack of mass.
Masses of individual quarks have been measured, and the effect has been
observed that hadrons are often much heavier than the sum of their con-
stituents. Quarks and Gluons, the gauge boson of the Strong Force mediating
the interaction, are subject to strong interaction and its theory, Quantum
Chromo Dynamics (QCD), which has been incorporated into the Standard
Model. Under normal condition, quarks are confined in hadrons and cannot
be observed freely in nature. Recently a new state of matter has moved into
focus, a dense and energetic state where quarks seem to exist freely, the so
called Quark Gluon Plasma produced in ultra-relativistic heavy ion collisions.
Quark Gluon Plasma is expected to have existed in a very early phase of the
evolution of the universe. Its investigation is of special interest because it
can illuminate regions of QCD, difficult to handle numerically, and helps to
understand the fundamental principle of strong interaction.

2.2 Quark Gluon Plasma

The main goal of heavy ion physics is investigation of strongly interacting
matter. The collision system under investigation possesses a very high energy
density which is reached by colliding heavy nuclei at ultra-relativistic energies.
Quarks and Gluons as the elementary particles of nuclear matter are confined
within hadrons and cannot be observed independently. Theories in the 1980s
predicted the possible deconfinement [3] and have triggered the search for
observables appropriate for the study of this effect. Especially the phase
transition between the bound hadronic phase of quarks and the deconfined
phase has become of interest since the region of the unstable phase is very
sensitive to new physics.

In the 1990s first signs of a new phase have been found at the CERN Super
Proton Synchrotron (SPS) in which quarks and gluons can exist freely within
a dense and continuous medium and can undergo direct interactions because
of their deconfinement. The idea of the Quark Gluon Plasma was discussed
in various publications, e.g. [4]. Research has focused on the verification of
this discovery and the study of the properties of the created medium. The
current understanding of the phase diagram of strongly interacting matter is
outlined in Figure 2.2.

8 CHAPTER 2. ALICE AND THE LARGE HADRON COLLIDER

Though the existence of a Quark Gluon Plasma was still in question in the
beginning of this decade, recent experimental data from RHIC1 show strong
evidence for the existence of the QGP and the community meanwhile is con-
vinced of its existence. The investigation of its properties and in-medium
effects have moved into focus. Formerly considered to be a state like a gas
where particles are loosely bound, QGP turned out to have more the character
of a fluid.

Figure 2.2: A schematic phase diagram of strongly interacting matter. The di-
rection of exploration is depicted for facilities like RHIC, LHC, and
upcoming FAIR3. From [5].

Several theories of the behavior of hot and dense matter have been developed
and established after the discovery of QCD. The energy density and the strong
coupling makes perturbative approaches of QCD inappropriate for theoretical
calculations. The most used method for theoretical calculations and predic-
tions is Lattice Gauge Theory where space-time has been discretized onto a
lattice. Also, hydrodynamic models have been developed based on the as-
sumption of liquid character of the QGP.

Quark Gluon Plasma is nowadays considered to be strongly coupled, motivat-
ing hydrodynamic models [6]. Analysis of data from RHIC is well advanced
and ongoing. It has given answers and raised new questions. The community
is now awaiting data from an extended energy scale at LHC.

Experimental methods to probe the QGP include preferably particles and
processes originating from a very early stage of the collision. As those particles
go through all stages of the evolution, they can provide information on the
interaction of particles with the dense medium. In particular the investigation

1Relativistic Heavy Ion Collider at Brookhaven National Lab
3Facility for Antiproton and Ion Research at GSI Darmstadt/Germany

2.2. QUARK GLUON PLASMA 9

of Elliptic Flow, jets from hard collisions, and the response of heavy quarks
to the medium is of special interest.

Elliptic Flow

Collisions at medium impact parameters create a spatial anisotropy which
leads to a pressure gradient in the medium in an early stage before the evolu-
tion of the created state takes place. In hydrodynamic models the collective
behavior of the medium is described by Flow components of a Fourier de-
composition. The second component v2 represents the spatial anisotropy. It
is called Elliptic Flow because of the shape of the overlapping region of two
colliding nuclei. It can be determined by measuring the azimuthal particle
distribution with respect to the reaction plane.

Recent experimental data show a strong Elliptic Flow in heavy ion collisions
which underlines the fluid-like behavior of the medium under investigation [7].
Figure 2.3 shows recent measurements of Elliptic Flow in Au-Au collisions at
RHIC. The raise of the azimuthal anisotropy of heavy quarks emphasizes the
hydrodynamic model. The medium has properties of an almost ’perfect fluid’.

Figure 2.3: Azimuthal anisotropy parameter v2 of heavy flavor electrons in min-
imum bias Au-Au collisions (Phenix). Data from Run 4 denoted as
boxed dots. From [8].

10 CHAPTER 2. ALICE AND THE LARGE HADRON COLLIDER

Hard Collision and Jets

A collision at small impact parameter is referred to be a hard collision. The
liberated energy reaches its maximum allowing the creation of a parton pair of
high transverse momentum. As the two partons move away from each other, a
fragmentation process leads to the generation of a bunch of particles directed
into the primary direction, which is called a jet. While traversing the medium,
partons are subject to modification due to interaction with the medium.

Figure 2.4: Jet correlation functions for Au Au collisions at
√

sNN = 200 GeV

(Phenix). From [9].

The effect is studied by measuring both jets escaping from the medium in
opposites directions. Correlation functions as shown in Figure 2.4 indicate
an increasing suppression of the jet traversing the medium with increasing
centrality of the collision.

2.3 ALICE - A Large Ion Collider Experiment

ALICE [10, 11] is a multi-purpose experiment involving many different aspects
and interests in Heavy Ion Physics. It consists of a variety of different sub-
detector systems measuring and identifying hadrons, leptons and photons
produced in the interaction.

2.3. ALICE - A LARGE ION COLLIDER EXPERIMENT 11

Figure 2.5: Sketch of the ALICE detector.

The apparatus follows at most the common design of particle detectors, a
multi-layer setup of detectors of different type as outlined in Figure 2.5. The
innermost layers are formed by position and tracking detectors of low material
budget in order to influence particles as little as possible. In the outer layers,
calorimeters finally stop the particles and measure energy.

The barrel section in the central rapidity region (−0.9 ≤ η ≤ 0.9) is imple-
mented inside a solenoid magnet. The magnet of the former L3 experiment at
LEP Point 2 was used for the ALICE experiment with small modifications and
is able to create a moderate magnetic field of up to 0.5T . A silicon tracker of
high resolution and relatively small dimensions - ITS - embeds the interaction
point. A TPC of large dimensions embeds the ITS and is the main tracking
detector in the central region. In the next layer, a TRD can discriminate elec-
trons and positrons from other charged particles. TRD also implements local
tracklet reconstruction in the hardware level and can contribute to the trigger.
Particle identification is provided by detectors such as the TOF system and
the HMPID. A crystal Photon spectrometer (PHOS) is located in the outer
barrel section with limited coverage in rapidity and azimuthal angle. It com-
pletes together with the recently added electromagnetic calorimeter EMCAL
the central section.

Outside of the solenoid magnet on one side of the experiment, a muon spec-
trometer covers a large rapidity range (−4.0 ≤ η ≤ −2.4). It is designed for
the detection of muons originating from decay of the J/ψ and Υ resonances.
For the purpose of event characterization and interaction trigger, a number of

12 CHAPTER 2. ALICE AND THE LARGE HADRON COLLIDER

smaller detectors cover an acceptance region of −3.4 ≤ η ≤ 5.1, such as FMD
and timing and veto detectors (T0/V0).

2.4 Event Reconstruction Paradigms

The ALICE experiment will operate at an event rate of 200 Hz and delivers
a data rate up to 25 GByte/s. Since the event reconstruction and physics
analysis cannot be carried out at this high rate with the desired accuracy,
data is recorded to mass storage from where it is processed after a run has
been accomplished. Since data processing is disconnected from the process of
data taking it is referred to be performed off-line. Off-line computing makes
furthermore use of the availability of the complete data set.

In contrast to that paradigm, on-line data processing is performed attached to
the data taking itself. The overall processing time is reduced by optimization
of algorithms for processing speed rather than providing the highest possible
accuracy. On-line processing is carried out in a serial fashion and does not
require the entire set of data.

The ALICE off-line project implements a comprehensive solution for detec-
tor simulation, event reconstruction, physics analysis and event visualization
under the hood of the software package AliRoot. Design and implementation
of AliRoot follow the concept of Object Oriented Programming (OOP). It is
based on the analysis framework ROOT4 [12] and provides a development
platform for the ALICE community. The computing model is described in
detail in [13].

In order to meet the high demands to computing resources imposed by the
recorded data volume within one run period, AliRoot builds on the distribu-
tion of data processing by utilization of the so called GRID. The term GRID
computing has its origin in the application of a computing grid to a problem
in order to gain more computing resources [14]. The philosophy of GRID
computing entails the abstraction of computing resources and appropriate in-
frastructure. Both data and tasks are distributed transparently for the user.

2.5 Operation of the ALICE experiment

The experiment is divided into four subsystems under the hood of the ECS
as outlined in Figure 2.6. Each of the systems controls a distinct task in the
operation and data flow and implements FSMs on the main and sub-levels.

4http://root.cern.ch

2.5. OPERATION OF THE ALICE EXPERIMENT 13

The structure of the on-line systems is described in detail in [15]. Here it is
introduced briefly for better understanding of subsequent sections.

DAQ HLT TriggerDCS

ECS

Figure 2.6: On-line systems of ALICE. ECS controls all operation and interplay,
while communication between sub-systems is restricted.

Experiment Control System (ECS) [16] forms the main control layer. It
contains the operator interface and allows the operation of the experiment
from the control room. The ECS steers all sub-systems, communication is
carried out as transitions of the implemented state machines.

Trigger deploys a 3 level triggering scheme. A Level 0 (L0) signal reaches
detectors at 1.2 μs. L0 provides a very fast trigger signal. A second one, Level
1 (L1) is issued after 6.5 μs. The third level allows past-future protection and
has been introduced in order to meet the requirements of detectors of slow
readout. The Level 2 (L2) signal is issued after 88 μs and can be either an
L2 accept or L2 reject. Past-future protection has been added for the sake of
overlapping central Pb-Pb collisions which cannot be reconstructed due to the
high particle multiplicity. The common Trigger, Timing and Control (TTC)
project at LHC5 defines a protocol for the transmission of timing and trigger
signals [17] for the LHC and its experiments.

Data Acquisition’s (DAQ) role in the system is the collection of data from
all detectors, building events with respect to trigger classes, and transfer them
to permanent storage.

Although ALICE consists of 18 different sub-detector systems with different
design constraints and physics requirements, all use a common data transport
solution. The Detector Data Link (DDL) is a hardware and protocol inter-
face between the front-end electronics and the data acquisition. DAQ system
deploys a 2-layer structure. The front-end machines, so called Local Data

5http://ttc.web.cern.ch/TTC/intro.html

14 CHAPTER 2. ALICE AND THE LARGE HADRON COLLIDER

Concentrators (LDC), host hardware devices receiving data. LDCs perform
sub-event building on the DDL level. An event building network connects to
the other layer, formed by Global Data Collectors (GDC) carrying out the
final event building according to trigger classes. The GDC layer is connected
to permanent storage. The complete system is described in [15].

According to the ALICE Technical Proposal [10], DAQ was designed to pro-
vide storage bandwidth of 1.25GByte/s. This value has been chosen consider-
ing constraints imposed by technology, cost, storage capacity, and computing
resources.

High-Level Trigger (HLT) is the focus of this work. In ALICE, HLT con-
sists of a separated computing system providing DAQ with the necessary event
selection information. HLT is designed to operate at an input data rate of
25 GByte/s. The layout of HLT will be described extensively in section 3.

The DAQ - HLT interplay implements three running modes:

(A) DAQ is running without HLT,

(B) HLT is fully included into the system, but its decision is not
considered, and

(C) DAQ performs event and sub-event selection based on the
trigger information from HLT.

In modes B and C, HLT is also treated like any other detector and generated
data are stored as part of the event building.

Detector Control System (DCS) covers the tasks of controlling all technical
and supporting systems of the detectors, such as the cooling system and the
ventilation system. It also carries out the configuration and monitoring of the
Front-End Electronics (FEE).

The storage of on-line conditions during data taking has an important role in
the subsequent data analysis. DCS provides on-line measurements of detector
conditions which are important for the event reconstruction. HLT implements
an interface to DCS ([18]) in order to fetch current values of data points and
to provide these data to reconstruction algorithms. For off-line reconstruc-
tion, DCS values are stored in the Offline Conditions Data Base (OCDB).
The computing model and requirements regarding the availability of detector
conditions are explained in [13].

3. High-Level Trigger

This section introduces the concept of the ALICE High-Level Trigger and
its sub-systems. The overall structural design and layout including inter-
communication within the HLT system are a major result of the presented
work.

3.1 Conceptual Design

The ALICE HLT is designed to operate at a data input rate of 25 GByte/s.
In order to meet the high computing demands, HLT entails a large PC farm of
up to 1000 multi-processor computers and several software sub-systems. On
the software side, a versatile on-line Data Transport framework based on the
publish/subscribe paradigm, called PubSub framework (section 3.4.1), builds
the core of the HLT. It interfaces to a complex Data Analysis (section 4)
implementing the actual event reconstruction and triggering calculations. Fig-
ure 3.1 sketches the most important sub-systems and the communication flow
in between.

PubSub

Run Control Configuration

AnalysisOCDB

Cluster
Monitoring

Figure 3.1: Sub-systems of ALICE HLT, the on-line Data Transport Framework
PubSub takes a central role in the system.

A Run Control system interfaces to the ALICE ECS and provides the opera-
tor interface for daily shifts. A stable operation of a computing cluster of that
scale also requires a fail-safe Cluster Monitoring and Management. A
separate project has been launched in the course of ALICE HLT development
and the application System Management for Networked Embedded Systems
and Clusters (SysMes) suited for system management [19] has been created.
HLT on-line processing running during data taking in ALICE is described by
a configuration which is decoupled from the data transport and analysis.

15

16 CHAPTER 3. HIGH-LEVEL TRIGGER

A separate HLT Configuration software package defines the format and no-
tation of configurations, data base, and the transcription into steering scripts
for the on-line system. The OCDB is not an HLT system. It is in general
required for analysis algorithms and allows in addition the transfer of infor-
mation from the RunControl to the algorithm.

Each of the software systems forms a complex system on its own. This thesis
has its focus on the data analysis framework, other sub-systems will be briefly
introduced.

The challenge of ALICE HLT is not only imposed by the requirements in
computing performance but also by the amount of data to be processed. This
makes single high-performance computers inappropriate as those have limita-
tions on the maximum data throughput. ALICE HLT has chosen the approach
of diversified processing levels distributed over many computing nodes. The
system implements a tree-like computing structure which allows to combine
reduced data volume with increasing complexity and causality throughout the
data processing as outlined in section 3.3.

The conceptual design of HLT is influenced by requirements imposed by the
HLT physics program. The primary intention is the full reconstruction of
events at the full data rate. Based on the reconstructed events, advanced
analysis allows event selection by physics criteria. The HLT physics program
includes search for open charm, jet analysis, and triggering on di-muon can-
didates, see also [20, 21, 22].

3.2 Processing Methodology

In order to achieve the desired data throughput, massive parallel computing
is required for ALICE HLT. Parallelism can be applied on various levels in
data processing which implies different architectural computing solutions and
processing performance. In this section, different approaches in parallel com-
puting are introduced in order to motivate the chosen solution for ALICE
HLT.

Sequential Event Processing

Sequential event processing allows a straight forward solution. It is character-
ized by the one-to-one relationship between events and processes: one event
is handled by one process. As a consequence, the smallest entity for parallel
processing is one event and all data of a single event must be available on
the same machine. In order to achieve a high data rate, whole events are
distributed among many machines of a computing cluster or the GRID. The

3.2. PROCESSING METHODOLOGY 17

approach is sketched in Figure 3.2 and comes at the cost of high data trans-
fer. The ALICE off-line event reconstruction makes use of sequential event
processing.

Event 0
70 MByte

Event 1
25 MByte

Event 2
50 MByte

Event n
60 MByte

...

0

2

1

Node 2Node 0 Node 1

4

...

Figure 3.2: Sequential event reconstruction. Full events are shipped to many
computing nodes. Depending on the processing time, the order of
the events is changed.

A typical Pb-Pb event in ALICE has a size of roughly 50 to 100 MByte.
Taking the DAQ bandwidth of 1.25 GByte/s gives a data volume of roughly
100 TByte/d and 20 PByte/running period. For efficient use of computing
resources of a computing GRID data need to be shipped, which imposes obvi-
ous limitations. Even on a local high-performance computing cluster, HLT’s
target bandwidth of 25 GByte/s cannot be reached by a normal network.

Parallel Event Fragment Processing

An important feature of the HLT on-line system is the implementation of
parallelism on the level of reconstruction steps or event fragments. The event
reconstruction is divided into sub-tasks working locally on a sub-set of data.
E.g. cluster finding algorithms processing raw data and searching for space
points in the detector can work locally on the level of sectors and readout
partitions. Space points can be connected to tracks in the next stage on a
sector level, tracks can be merged on the level of the whole sub-detector.

This approach is motivated by the fact that data are received by different
nodes anyhow. The diversification of data transport from the detector front-
end to Data Acquisition and on-line HLT is required by the peak data volume
produced by the detector and the target event rate of the experiment. HLT’s
Front-End processors (FEP) form the receiving nodes and first processing
layer at the same time. The distributed event reconstruction on sub-event
level is illustrated in Figure 3.3.

18 CHAPTER 3. HIGH-LEVEL TRIGGER

......

Event 0
70 MByte

......

Event 1
25 MByte

......

Event 2
50 MByte

......

Event 3
60 MByte

Node 0 Node 1 Node 2

WorkerNode 0WorkerNode 0

1 2 0 3Output Data Stream

Input Data Stream

Figure 3.3: Parallel event fragment reconstruction. Data processing of parts of
the event is distributed over many computing nodes. Data is received
by many nodes and the task distribution follows the natural data
distribution.

Pipelined Data Processing

Pipelined data processing is a second paradigm, HLT on-line system takes ad-
vantage of. Each process immediately gets the next event after it finished the
previous one. The distribution of events to tasks and processes is independent
of other tasks. This technique allows a significantly higher data throughput
due to the fact that the processing time for a task differs from event to event.
In normal processing, all tasks have to wait until the last task has been fin-
ished. For the next event, another task needs the highest processing time.
The pipeline stores finished events for all tasks of one level and propagates
fully finished events to the next stage. On average, the events arrive faster at
the next stage of the reconstruction (see Figure 3.4).

Pipelined data processing can easily be implemented by decoupling the actual
data from the meta information communicated between processes. The con-
cept of data block descriptors is also the foundation for efficient data exchange
and will be introduced in section 3.4.3.

Efficient pipelined processing requires a sufficient number of output buffers
for temporary storage. The number of events in the pipeline is only restricted
by the available memory and the number of output buffers of each process.

3.2. PROCESSING METHODOLOGY 19

Time

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

���
���
���
���
���
���

���
���
���
���
���
���

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

����
����
����
����
����
����

����
����
����
����
����
����

������
������
������
������
������
������

������
������
������
������
������
������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

������
������
������
������
������
������

������
������
������
������
������
������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

��
��
��
��
��
��

��
��
��
��
��
��

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

����
����
����
����
����
����

����
����
����
����
����
����

Task 1

Task 3

Task 4

Task 2

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

(a) Non-pipelined data processing

Time

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

Task 1

Task 2

Task 3

Task 4

0

0

0

0

1 2 3

1

1

2

2

3

3

321

(b) Pipelined data processing

Figure 3.4: Reduced processing time in pipelined event processing. Figure (a)
shows schematically a processing sequence including 3 tasks with
varying processing time for different events. Task 4 waits until all
tasks can provide data for a specific event. The next event can be
processed if task 4 is finished. The upper bar for tasks 1 to 3 illus-
trates the summed processing time and the corresponding displace-
ment. Tasks are idle when waiting for each other to be finished.
Figure (b) shows the same sequence for pipelined processing. Each
task can process events independently of others.

20 CHAPTER 3. HIGH-LEVEL TRIGGER

Shared Memory based Data Exchange

The inter-process communication of HLT is designed to work with a minimum
of overhead. One of the key paradigms is the optimization of data transport.
Copying of data comes at the cost of performance, especially large data vol-
umes need a significant amount of processing time. In order to avoid this,
data are exchanged via Shared Memory. Normally, two processes do not have
access to the same region in physical memory, Shared Memory is a specific
approach to allow processes to use the same physical memory (section 3.4.2).

3.3 Data Processing Scheme

HLT makes use of parallel computing by implementing a processing hierarchy
of independent layers. The first layer of processes receives detector raw data
and extracts cluster and hit information. A subsequent layer reconstructs the
event independently for each detector. A global reconstruction layer combines
all information from the detector-reconstruction and calibration. Based on the
result of the global reconstruction and run specific physics selection criteria,
trigger decisions are calculated resulting in the selection of events or regions
of interest. The general processing scheme is outlined in Figure 3.5

In order to achieve the high data throughput, all nodes within one layer work
independently from each other. This working scheme is based on pipelined
data processing and the fact of uncorrelated data sets on the level of the
processing. E.g. clusters can be calculated from sets of raw data individually
and clusters of disjoint sections of the detector can be connected to tracks
independently. Each layer in the processing hierarchy reduces the data volume
before passing data on to the next layer.

3.3. DATA PROCESSING SCHEME 21

Ti
m

e,
 c

au
sa

lit
y,

 c
om

pl
ex

ity
MUON

RAW data

Clusterer

Tracker

1

2

4

5

6

3 Tracker

Clusterer

TRD
RAW data

TPC
RAW data

Clusterer

Tracker

Primary Vertex
localization

ITS
RAW data

. . .

Global Event Reconstruction

Trigger − Event/Data Selection

Data compression

Figure 3.5: The general architecture of HLT entails a multi-stage processing
scheme where processes of different levels carry out individual pro-
cessing tasks independently. From [11].

3.3.1 The Concept of Components

In order to clarify the terms used throughout this thesis, the concept of HLT
components is described in this section. In particular, what is meant when
the term HLT component is used.

Data treatment within the HLT processing hierarchy is carried out by individ-
ual processes. These separated applications derive from the same base class of
the data transport framework which provides the interface. Following identi-
cal working principles, the processes are referred to be HLT components. This
term is also motivated by the modular concept. Components carry out differ-
ent tasks in the HLT processing hierarchy, treating input data and producing
new data for subsequent components.

Each component is an individual process which is started once at startup of
the processing chain and implements a state logic. The state of the component
can be changed by commands it receives via network ports.

The data transport framework implements in general three types of compo-
nents: data source components load data from the input device or file into
shared memory and create the corresponding data descriptors. Data process-
ing components (Processors) subscribe to data of its parents, process the data
and publish the result to the next level. Finally, data sink components imple-
ment the last stage in the chain, doing the appropriate action on the output
of the chain (Figure 3.6).

22 CHAPTER 3. HIGH-LEVEL TRIGGER

File Publishers

RORC Publishers

PCI
PCI

Processing

HLTOUT

File Writers

Network Dump

Publishing Output

Disk

Disk

Figure 3.6: The three groups of processes in HLT and variable interconnects. The
modular setup motivates the terminology HLT components.

A special group of processing components is formed by HLT analysis com-
ponents. Motivated by the necessity of different running environments, an
approach has been developed which decouples data analysis from transport.
It allows to run the analysis processes in either the off-line environment or
in the on-line HLT environment without any change in the code or the need
of recompilation. The HLT Analysis Framework is an integral part of the
presented work and will be described in detail in section 4. A special com-
ponent of the HLT data transport framework, the AliRootWrapperSubscriber
is the link between analysis components and the on-line environment. The
subscriber implements a processor and integrates external modules in order
to access the analysis algorithm.

3.3.2 Data Input of the HLT on-line System

Figure 3.7 shows the integration of the HLT into the data flow of the ALICE
experiment. The raw data are transferred via optical fibers from the detector
front-end to the DAQ system. The DDL optical link is used commonly for
data readout of all ALICE detectors. The input devices of the DAQ, DAQ
RORCs (D-RORC), send an exact copy of the data to HLT before reading
data into the Local Data Concentrators.

The data stream is received by the HLT RORC (H-RORC). In total, 454
DDLs are forwarded to HLT, including all relevant detectors. The H-RORC
is a Virtex-4 FPGA based PCI-X card ([23]) designed for both (i) receiving
and pre-processing of the detector raw data of all ALICE detectors and (ii)
transmitting processed events out of the HLT computing farm to the DAQ.
The H-RORC therefore implements the interface between the HLT system and

3.4. DATA TRANSPORT 23

Figure 3.7: High-Level Trigger system in the ALICE data stream. The HLT
receives a copy of the detector data and is treated by DAQ as an
additional detector. The specified numbers are upper limits for the
event size delivered by a sub-detector.

the ALICE data transport links. It is interfaced to the FEP nodes through
the internal PCI-X bus.

The trigger decision, reconstructed events, and compressed data are trans-
ferred back to the DAQ via the ALICE standard DDL.

3.4 Data Transport

The concept of individual processes allows a high flexibility in the configura-
tion of a processing chain, failure handling, as well as in development. Because
of the high overall processing rate, data transport plays an important role in
the HLT system. A dedicated data transport framework, the so called PubSub
framework, carries out all data transport and communication [24].

3.4.1 Data Transport Framework

In addition to parallelism on event by event basis, the ALICE HLT’s approach
and its data transport framework allow to split and distribute single events
over the cluster nodes. Splitting of the processing reduces the amount of
data to be copied dramatically as the first step of the reconstruction can be
performed already on the Front-End Processors.

24 CHAPTER 3. HIGH-LEVEL TRIGGER

Usually, in this first step of the analysis, clusters and/or space points are
reconstructed from the raw data. The resulting data volume is already signif-
icantly smaller than the raw data.

The entire communication mechanism is designed for a low processing over-
head. Figure 3.8 shows the working principle of the on-line framework. On
one node, the data are exchanged via shared memory, a publisher can write
the data directly to memory and makes it available for subscribers without
any intermediate copying. All processes communicate via named pipes1 and
exchange small data description information. The data transport framework
takes care of data transport among the nodes transparently. Solutions for
shared memory between nodes have been investigated but are not used. More
details about the on-line framework can be found in [25] and [26].

Distribution of the event processing is most effective on the FEP nodes. Be-
tween HLT computing nodes, copying of data is unavoidable. Here, the Pub-
Sub system ensures a high degree of parallelism. As data are treated in a
tree-like hierarchy, processing along the individual branches does not interfere
with each other and events are collected at a very late stage of the processing
when the data volume is already small.

Su
bs

cr
ib

er

Pu
bl

is
he

r

Processing

Su
bs

cr
ib

er

Pu
bl

is
he

r

Processing
Named

Pipe
Named

Pipe
Named

Pipe

shared memory

Figure 3.8: Working principle of the HLT data transport framework.

For load balancing, the data stream can be split into several data streams
each carrying a smaller data volume, e.g. via a round robin mechanism.
Furthermore, the distribution of the analysis leads to a short processing time
per event and node. If one node fails, the data loss is much smaller than in
a conventional event building and filtering approach where a complete event
or at least the processing time is lost. An intelligent scheduler can restart
processes on another node and resume event processing in case of a severe
failure of a computing node. This subject is not covered by this paper.

Whenever talking about parallel computing, process synchronization plays an
important role. E.g. a consumer must not access data until the producer

1Named pipes implement a method of inter-process communication on Unix/Unix-like systems

3.4. DATA TRANSPORT 25

has announced readiness. The data transport framework carries out all pro-
cess synchronization. This exempts the HLT analysis from any additional
synchronization and liberates resources for the main task, which is efficient
analysis.

3.4.2 Memory Management

For various reasons, an abstraction layer between physical memory and the
application has been introduced in modern computing architectures and op-
erating systems (OS). Individual processes need clearly separated domains
in order to prevent one process from read or alter memory of a second pro-
cess. This abstraction is an obvious requirement both with respect to security
and stability. In practice, each process allocates virtual memory and the OS
handles the mapping between virtual memory pages and physical memory.

Consequently, channels have to be created in order to allow data exchange
between HLT processes. As already mentioned, data exchange over shared
memory is the implemented approach and allows a minimum of communica-
tion overhead as the consumer of data has access to the same physical memory
as the producer.

Operating systems provide different solutions for shared memory. In the
1980s, Unix System V first introduced an API2 for inter-process communi-
cation. This has become a standard in Unix-type operating systems and is
often referred to be sysv shared memory. A process can allocate a shared
memory resource which is identified by a shared memory key. Any process
knowing the key can request access to the shared memory region. The bigphys
kernel extension [27] implements another approach to provide big segments of
physical memory. It allows to reserve at bootup time a certain part of the
physical memory for shared memory applications. Both approaches are used
in the HLT on-line system. The bigphys shared memory extension provides
the manner to transport large data blocks as it does not impose any limita-
tion on the size of the shared memory segment, except the size of the physical
memory and system requirements ([24]).

The advantage of a common memory segment comes at the cost of an open
system. There is no rigid boundary between data segments. Especially the
bigphys memory approach allows basically any process to access and modify
memory in the specified region. The responsibility of memory management
has been transferred from the operating system to the application. In HLT,
the data transport framework implements the corresponding functionality.
However, care has to be taken in the implementation of memory access by

2Application Programming Interface

26 CHAPTER 3. HIGH-LEVEL TRIGGER

processes. Techniques have been implemented in both data transport and
analysis framework to detect potential memory access conflicts and memory
access violations.

3.4.3 Data Abstraction

Instead of sending data directly from a producer to a consumer, HLT makes
use of data abstraction by pointers. The major bulk of data to be exchanged
are written to shared memory by the publisher. The corresponding meta
information is stored in a block descriptor. The block descriptor holds all
relevant information like location, size, data type and specification. Once
data sets are in the system, block descriptors are propagated to subscribers in
the next level. RORCPublishers are the data sources for each analysis chain.
This special type of data source components interfaces the hardware input
device on the FEP nodes and retrieve information about data blocks from
the H-RORC devices. The actual memory transfer though is carried out by
the H-RORC itself using DMA3 transfer, RORCPublishers solely provide the
meta information to subscribers.

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

��
��
��
��
��
��

��
��
��
��
��
��

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

fPtr
fSize

fPtr
fSize

fPtr
fSize

fPtr
fSize

Memory

Descriptor List

Figure 3.9: Block descriptor references to memory objects.

The format of the exchanged data is sketched in Figure 3.9. The sequence
of block descriptors determines the input data, each descriptor points to a
certain region in shared memory. Components only exchange the list of block
descriptors.

Data Identification

The nature of each HLT data block is described by its data type which is in
HLT defined as a combination of data origin and type id. Both properties
are represented by 4- and 8-character arrays respectively in a data structure
AliHLTComponentDataType as shown in Listing 3.1.

3Direct Memory Access

3.4. DATA TRANSPORT 27

Listing 3.1: HLT data type consists of the origin and type id members.
1 /∗∗ l e n g t h o f the o r i g i n member o f AliHLTComponentDataType ∗/
2 const int kAliHLTComponentDataTypefOriginSize=4;
3

4 /∗∗ l e n g t h o f the type id member o f AliHLTComponentDataType ∗/
5 const int kAliHLTComponentDataTypefIDsize=8;

6 struct AliHLTComponentDataType
7 {
8 AliHLTUInt32 t f S t r u c t S i z e ;
9 char fID [kAliHLTComponentDataTypefIDsize] ;

10 char fOr i g i n [kAliHLTComponentDataTypefOriginSize] ;
11 } ;

Data origins follow when ever possible the notation of the sub-detectors in
ALICE and are defined by the framework. HLT Data Types can be defined
as part of a component library. Since the definitions are used only internally,
detector modules are free to define any key describing proprietary detector
data. A list of common definitions can be found in appendix B.2.

Data blocks can thus be specified by combinations of the pre-defined or
module-defined keys like e.g. {DDL RAW :TPC} and {ESD TREE:ANY}.

Data Specification Scheme

The data block descriptor allows an additional characterization of data blocks
by data specification. It allows to classify data blocks of identical data type
by one 32bit word. The specification can be freely chosen throughout the
processing. However for the initial data publishing common rules apply: Each
DDL is identified by a unique id, the so called equipment id. For all sub-
detectors having less than 32 DDL links, the DDL number within the sub-
detector is encoded into a bit pattern. The number of the position of the bit
which is set corresponds to the number of the DDL, e.g. 0000000000001000
specifies DDL no 3 (started counting from 0). Only TPC and TOF exceed the
range of 32 DDLs. Data specification for the TPC is used to specify ranges of
DDLs as explained in Sec. 7.3. By means of the specification, components of
the same type can determine their place in the analysis and load the correct
calibration data sets.

3.4.4 Intrinsic Data Properties

All modern computer architectures organize memory in quantities of bytes.
One byte consists of 8 bits, the smallest entity of information. Data variables
and data structure in software are of arbitrary size and resolution. Conse-
quently, the representation of data in memory needs to be defined, especially

28 CHAPTER 3. HIGH-LEVEL TRIGGER

the sequence of bytes referred to be endianness and the alignment of structure
members in memory. Both represent important properties of the computer
architecture the software is compiled for and the compiler used for the gener-
ation of the software.

Data alignment applies specifically to data structures combining several vari-
ables of varying data types. The compiler places the beginning of a structure
member only at certain multiples of memory addresses, so there might be
gaps between the members. Consequently, structures can occupy different
sizes in different compilation environments. Transferring a piece of memory
to a system with different alignment can lead to mismatches.

Endianness is the second important property of data and determines the se-
quence of bytes how data are stored or sent. There is consensus on the bit-
ordering within a byte on almost all modern computer architectures. A single
byte value is read exactly the same on all architectures. For values requiring
more than one byte, different architectures need to agree on the sequence of
bytes stored in memory or file, or sent over network. Endianness becomes an
important attribute of data.

In particular three definitions are of importance in modern computing archi-
tectures:

(i) Little endian:
The Least Significant Byte (LSB) value is at the lowest address and
other bytes follow in increasing order of significance.

(ii) Big endian:
This format specification starts with the Most Significant Byte
(MSB) at the lowest address and other bytes follow in decreas-
ing order of significance.

(iii) Network byte order:
Endianness has in particular importance for all network transmis-
sion of data. The big endian format is used when sending data over
networks, in this special case it is referred to be network byte order
and the MSB is sent first.

3.5. HLT CONFIGURATIONS 29

3.5 HLT Configurations

The HLT configuration forms an individual group within ALICE HLT and de-
scribes setup and interconnections of components independently of the imple-
mentation. A configuration describes basic properties of the HLT processing
layers

• Type of the component
The configuration specifies the application to run.

• Command line arguments of the component
In order to adapt to different needs, components understand certain
command line parameters. The exact format of parameters depends on
the implementation of the specific component.

• Interconnections of components
The configuration specifies all parent processes the component needs to
subscribe to in order to receive data.

• Reserved output buffer size and number of available buffers
Output data buffers have to be allocated before the processing loop of
the component is invoked. The component has a fixed size of memory
available in order to write its output. The number of available buffers
has an important impact to pipelined processing.

• Process multiplicity
For load distribution, multiple instances of the same component can run
in parallel. The process multiplicity is part of the configuration.

• Fan-in/Fan-out
The configuration defines the topology of the chain which includes merg-
ing of multiple publishers to one consumer (Fan-in) and distribution of
one publisher to multiple consumers (Fan-out)

In the on-line HLT, a configuration is described in XML notation, which
stands for Extensible Markup Language. In general, a Markup Language is an
artificial language adding information on how to deal with a certain type of
text and content. Being used traditionally in publishing by adding printing
and typesetting instructions to the document, such languages have become
very important in computing in recent decades. Markup languages are suited
to categorize properties in an hierarchical way and are easy to parse in order
to build the structure defined by such a document.

The HLT configuration defines the execution sequence of the TaskManager
applications, which run on each node of the computing cluster and supervise

30 CHAPTER 3. HIGH-LEVEL TRIGGER

all processes on one node [28]. Since the HLT chain can easily describe several
hundreds of components on hundreds of nodes, abstractions of configurations
have been introduced and an automated generation of the final configuration
is available [29].

3.6 Integration into the ALICE experiment

HLT is integrated into the ALICE experiment by a couple of interfaces. For
normal operation, HLT requires not only data exchange with the DAQ but
also the availability of calibration data and permanently monitored values
from the detector survey. Thus it has to communicate with all other ALICE
systems, such as the ECS, DCS, and the off-line system. All interfaces are
described in detail in [18].

The ECS has an outstanding role as it controls the experiment. All inter-
actions with the other systems are governed by states and state transitions
issued from the ECS. HLT implements a finite state machine as outlined in
[30] and Figure 3.10.

Each state and transition correspond to certain actions and run conditions of
the different parts of HLT.

(i) The transition from state INITIALIZED to CONFIGURED
entails the PubSub framework compiling all configuration files. At
this stage, no components are yet running, only TaskManagers on
the different nodes.

(ii) The transition from state CONFIGURED to READY by
the ENGAGE command implies start and setup of all components.
After going to state READY, HLT can be started by a short
START command and processes events when in state RUNNING.

3.7 Development Methodology

A software project like data analysis for a physics experiment of the scale
as ALICE naturally evolves quickly during data taking as new phenomena
are observed and experience with the detector setup is gained. The project
has to provide the flexibility for enhancement and correction of functionality
at the same time as it has to assure the quality of the analysis. Also small
modifications in a distinct part of the project can cause malfunctions in other
parts and can have a major impact on the overall performance and operation.

3.7. DEVELOPMENT METHODOLOGY 31

Figure 3.10: State diagram of the HLT system. ECS controls HLT by means of
commands and states. From [30].

32 CHAPTER 3. HIGH-LEVEL TRIGGER

A software project needs development policies in order to establish

• Development synchronization

• Backward compatibility

• Quality assurance.

Modularization is an appropriate technique which supports those three crite-
ria and is extensively used at different levels of ALICE HLT software. The
separation of Data Transport and Data Analysis has already been introduced,
more on modularity can be found in section 4.2.1.

As a general paradigm, HLT software builds upon common Unix applications
for software development. This applies to all aspects like e.g. the overall build
system, source code data base, and source code documentation.

Another paradigm applied for the verification of HLT software is separation
of development and verification. A developer can often only account for a
biased test since conceptual design, thinking and test are not independent of
each other.

This section introduces in particular development methodology designed and
applied for the HLT analysis software project.

3.7.1 Software Compatibility

As the software projects evolves, new formats and functionality are needed
while other parts appear to be deprecated. Compatibility is referred to be the
ability of treating data independently of software version and is a relationship
between software modules. As long as the project is depending solely on its
own, compatibility issues are likely to be ignored. However, this case is rather
theoretical as most of all software projects (i) store data in some format, and
(ii) depend upon third-party modules. The former case directly motivates
the wish to read old data with a newer version and treat data of a new format
with an old version, though likely limited support for new features. The issue
of data formats also applies to the second aspect as data formats define the
interoperability.

Especially backward compatibility, the ability of treating data of an older for-
mat, is an important aspect for rapidly evolving projects. Since malfunctions
can occur at any time in the development process and can be induced indi-
rectly, software needs to be cross-checked with older versions in order to trace
down the reason of malfunction. Design paradigms of HLT analysis include
preservation of backward compatibility.

3.7. DEVELOPMENT METHODOLOGY 33

Forward compatibility is more difficult to preserve as implementation must
take account for changes not known at time of development. HLT aims for-
ward compatibility wherever possible by appropriate design of data formats.

The very strict compatibility requirements imposed on the HLT software in-
clude furthermore binary compatibility. It allows compatibility without the
need of recompilation in contrast to source compatibility where a new build
of the software package is required but without changes. Binary compatibility
is a very important outcome of the presented work and will be introduced in
detail in section 4.

3.7.2 Development Environment

As an important aspect of overall system stability the development environ-
ment must be considered as an integral part. It has to enable the developer of
efficiently add and update functionality of the application. At the same time
it must ensure:

• Internal consistency:
as the source code is divided into many files, the build system must en-
sure that the application is up-to-date and uses only most recent versions
of files.

• Portability:
Software packages need to be compiled and run on various platforms.

• External Dependencies:
Most of modern software applications rely on third-party modules. This
allows efficient re-use of previously developed functionality.

• Code documentation

• Unit and system tests

• Versioning

The make Utility

As early as in the 1970s, software projects already became so large establishing
the need for automatic control of internal consistency. Since than the utility
make is the solution on Unix-like operating systems. make relies on source
file and dependency definitions, so called Makefiles and controls the different
states of compilation. However, a Makefile is often system dependent. Cross-
platform support can be implemented, but is a tedious process. Since system
dependency is common for all applications, another layer was motivated.

34 CHAPTER 3. HIGH-LEVEL TRIGGER

The GNU build system

Unified build systems take account for the requirements of cross-platform de-
velopment and provide an integrated development environment. The GNU
project4 provides a feature-based build system which allows to automatically
generate system-adapted Makefiles. The software package is configured prior
to compilation. During configuration, the system is probed for available fea-
tures like compilers, system functionality, and third-party software and the
Makefile is generated according to the result.

A major feature of the build system is automation of most of the verification
and distribution process. As part of this thesis, the GNU build system has
been applied with benefit to the HLT analysis source code.

The most recent development in terms of build systems is cmake5 which in-
corporates many ideas of the GNU build system and supports all operating
systems. cmake has the potential to replace the GNU build system in the
future.

Version Control

HLT entails a large number of individual processes and applications. The
clear separation of data transport and data analysis allows simple versioning.
All analysis components are developed within the off-line framework. For
production runs, only tagged releases are allowed. Those tags follow the
releases of the off-line code or can be private HLT tags in the common source
code repository.

A network file system on the HLT cluster distributes the current version of
the compiled analysis components and makes sure that the same version is
used on all nodes. AFS6 has been chosen for that purpose. Properties of the
analysis components like version and running conditions are stored in a data
base at the beginning of each run.

4The GNU Project is a mass-collaboration project founded in 1983 devoted to the creation of
a computer operating system and a collection of applications consisting of entirely free software.
http://www.gnu.org

5https://www.cmake.org
6Andrew File System - specific standard for distributed network file systems

3.7. DEVELOPMENT METHODOLOGY 35

Source Code Database

HLT analysis software is maintained within the ALICE off-line software.
Source code is organized in a central database using the tool Subversion7

for version control.

Source Code Documentation

HLT analysis software makes intensive use of C++ classes. The classes pro-
vide natural functional modules with a defined interface to be used by callers.
Consequently, documentation can be divided into external and internal docu-
mentation, the former for the user, the latter only intended for the developer.
Class documentation is part of the class definition. As a general concept, well
documented source code is the best manual and this concept is also applied
to HLT analysis software as a general rule.

Furthermore, common tools are available in Unix/Linux distribution which
parse source code and create a structured documentation directly from the
code. The tool doxygen is widely common and also used for the HLT analysis
software. Generation of documentation is embedded into the build process
and also publicly available on the web8.

3.7.3 Unit tests and Functional Verification

The most successful strategy to build a stable and complex system is extensive
verification of all parts of the system. Furthermore, an even bigger detective
power is achieved by adding automatized verification to the manual one.

Unit tests are small test programs for the verification of a sub-set of the
functionality or a software module. The tests are implemented according to
the interface specification of a module and run independently of each other and
separated from the main application. Unit tests have a remarkable potential
to detect accidentally induced malfunctions during the development process
and are suited for automatized verification.

Unit tests have been applied to many modules of the HLT analysis framework.

7Subversion is an Open Source project designed for version control of software projects,
http://subversion.tigris.org

8http://web.ift.uib.no/∼kjeks/doc/alice-hlt

36 CHAPTER 3. HIGH-LEVEL TRIGGER

3.7.4 Component Development Cycle

HLT components undergo a restricted development scheme in order to assure
quality and stability of HLT operation. The status of a component in the
course of development can be defined as

• EXPERIMENTAL
development and testing is ongoing,

• TESTED
development has been finished; ideally, unit tests for functional groups
are added and executed on a regular basis; at least one test case exists
to run the component in the off-line environment, or

• COMMISSIONED
the component is running successfully and stable in the on-line envir-
onment; a stand-alone test configuration is existing as well as a system
test including the component.

The development cycle is illustrated in Figure 3.11. The implementation up
to status TESTED can be done using the ALICE off-line environment. This
approach has been chosen to allow the flexible development of HLT analysis.
Only the last step requires knowledge of the on-line system and can be done
by users of the analysis component instead of the developer.

For final production runs, only components of status COMMISSIONED are
used.

3.7.5 Automated Verification

Verification of HLT analysis has been automated in order to ensure system
stability and early detection of malfunctions. Every night a test cycle is
executed with the most recent version of the software package. In addition,
every change in the source code data base is cross-checked to be compilable.
The test cycle includes (i) check-out and compilation of the ALICE off-line
package, (ii) compilation of the HLT analysis package, (iii) unit tests of the
HLT analysis package, (iv), execution of test macros, and (v) distribution of
HLT analysis package and documentation.

3.7. DEVELOPMENT METHODOLOGY 37

configuration
on−line

configuration
on−line

Development

test

unit failed

macros

test failed

stand−alone

PubSub failed

test

System failed

minor corrections

COMMISSIONED

Production runs

major corrections

TESTED

EXPERIMENTAL

Figure 3.11: Development cycle of HLT components.

38 CHAPTER 3. HIGH-LEVEL TRIGGER

3.8 Output of the High-Level Trigger

3.8.1 Trigger

The primary intention of HLT is naturally the generation of trigger infor-
mation. Triggering implies the analysis of the event with respect to trigger
criteria such as particle multiplicities, particle energies, certain decay pro-
cesses, and distinct particle concentrations in limited regions of the detector
setup.

Triggering is mostly a yes/no decision, the event is either considered valuable
and accepted or not. Still the result of the on-line reconstruction needs to
be stored together with the trigger information in order to determine the
efficiency and selectivity of the trigger in later off-line stages of the analysis.
In addition, data volume is reduced by selective readout and storing only the
relevant part of data. This technique is called Region Of Interest readout.
ROI criteria can be applied in the first place on the level of DDL inputs and
HLT simply provides a list of DDLs to be included into final event building.
The format is defined in [31] and section 5.3 elaborates more on that topic.

An analysis component has to generate the DDL readout list if it is designed
to contribute to the trigger information. The analysis framework provides
common functionality for triggering components.

All readout lists from the running trigger components are treated by the
processes on the HLTOUT nodes and formatted together with the HLTOUT
payload into the defined DDL format. The HLT-to-DAQ interface ([31] defines
a format on top of the DDL protocol [32].

3.8.2 HLT Output Payload

Beside trigger information, HLTOUT format foresees also payload data which
DAQ just forwards to storage. As a matter of fact, any output of HLT com-
ponents can be directed to the HLTOUT and is included in the payload.

Since HLT is an on-line system, the payload contains information about fully
reconstructed events as part of the normal raw data stream. Beside this
information which is essential for the evaluation of the trigger, data blocks
of varying nature are stored depending on the configuration of the analysis
chain. Strategies on data treatment and extraction have been implemented in
the HLT Analysis framework and the AliRoot binding functionality and will
be described in section 5.

3.8. OUTPUT OF THE HIGH-LEVEL TRIGGER 39

Compressed Raw Data

A special use case of HLT is the reduction of the data volume by applying
appropriate compression techniques. The original data are encoded according
to a compression algorithm and stored as part of the HLTOUT payload. Data
compression has been extensively studied for the Time Projection Chamber
as the biggest contributor to the data volume in ALICE [33, 34].

In general there are two data compression paradigms. Loss-less compres-
sion techniques allow to restore the original data from the compressed data
set. Higher compression ratios can be achieved by applying models especially
suited for the nature of data and omitting irrelevant information. The original
data cannot be restored from the compressed data.

In both cases the off-line reconstruction will treat the compressed instead of
the original data and data flow schemes need to be designed. It is appropriate
to completely separate reconstruction algorithm and data input in order to
handle different types of data. Section 5.6 introduces the developed approach
which allows to transparently run reconstruction algorithms on either the
original or compressed data set.

3.8.3 Calibration Data and Off-line Storage

Besides the normal data output, HLT implements also an interface to the
OCDB which is the central storage for all run related information and condi-
tions needed later for reconstruction. A dedicated synchronization mechanism
is implemented by the ALICE off-line group in order to migrate data after the
end of data taking to the data base ([35, 36]). E.g. calibration data are stored
in the OCDB as well as the magnetic field and temperature measurements.

The OCDB is not a data base in the literal sense of the word but a format
definition and a file catalog structure. The OCDB access framework also
provides a storage abstraction. Data can be stored in local file catalog or a
GRID folder. The latter is the final target as event reconstruction will be
carried out on the GRID making availability of the calibration data and run
related information a crucial prerequisite.

The HLT interface to the OCDB implements both retrieval of important
calibration data and run conditions as well as storage of on-line generated
calibration data. Furthermore, run conditions of the HLT are stored. The
communication between HLT system and OCDB is presented in [18].

40 CHAPTER 3. HIGH-LEVEL TRIGGER

3.9 Detector Monitoring

The ALICE High-Level Trigger provides a powerful data processing facility
working at the full input rate. This real-time capability makes it an excellent
tool for on-line monitoring.

3.9.1 Monitoring strategies

The main purpose of detector monitoring is the survey of data produced
during a run. It provides a fast estimation about the informational content,
data quality, and detector operation. Different running modes are possible
which require different monitoring strategies, e.g. normal data taking will
last for a couple of hours. A quick response is desired to evaluate the quality
of the run and in order to encounter problems and react. In this case, detector
monitoring must not disturb the normal data taking and runs with a lower
priority. On the other hand, detector development requires special runs with
focus on detector properties and calibration. Those runs are a stand-alone
monitoring applications.

Monitoring is accomplished outside the HLT processing chain on an event by
event basis. In that case, data are shipped from the HLT to a monitoring
application and processed and displayed there. The second approach allows
accumulative data processing inside the HLT chain. Histograms are filled and
results for many events are recorded internally. The results are provided on
demand or at a reduced rate. The second approach allows on-line monitoring
of all events.

In either approach it is necessary to access data at an arbitrary point in the
HLT processing chain.

3.9.2 HLT On-line Monitoring Environment

For the purpose of transparent and system independent transport of block de-
scriptions, HLT On-line Monitoring Environment including ROOT (HOMER)
framework has been developed [37]. It provides a simple means to ship out
data from the HLT system to a subscriber application. The framework con-
sists of a core library providing the data formatting functionality and satellite
applications handling the data to be shipped.

The HOMER format consists of (i) a descriptor section containing sizes, types
and meta information in a system independent format, and (ii) a payload sec-
tion. Both are encoded into one single contiguous data buffer or stream (Fig-
ure 3.12). Each entry contains also an offset to the actual payload described

3.9. DETECTOR MONITORING 41

by the corresponding block descriptor. The monitoring framework handles
system architecture dependence only for data block descriptors. The actual
payload is not known to the monitoring framework and such dependencies
must be handled by the producer and consumer application of a certain data
block. The framework however provides system information, i.e. endianness
and data structure alignment of the producer system.

OffsetMeta Descriptor

Data Descriptor 0

Data Descriptor 1

Offset

Offset

Data 0

Data 1

Figure 3.12: The HLT monitoring data format HOMER consists of a meta de-
scriptor, followed by data descriptors. The actual data blocks are
appended at the end, and offset specifiers in the data descriptors
point to the start offset.

Data Access in the On-line HLT Chain

The so called HOMERWriter encodes all block descriptors into the system
independent HOMER format. Two flavors of the monitoring framework have
been implemented; a sink component providing the data via shared memory,
and another one working with a TCP/IP port over network. The exchange
method is transparent for the user. Figure 3.13 illustrates the data flow of
the HOMER framework for the TCP approach. A normal PubSub sink com-
ponent can subscribe to the output blocks of arbitrary components.

The TCP approach has been used extensively. As this approach allows access
via the network from another machine, it disentangles the monitoring back-
end from the actual data processing. A reader library is provided by the
analysis framework to access data blocks. It can be used directly from the
interactive ROOT prompt.

Subscription to Data

The counterpart of the HOMERWriter is the HOMERReader. It can be used
directly from the ROOT prompt to fetch data from an HLT on-line chain.

42 CHAPTER 3. HIGH-LEVEL TRIGGER

P/S Bridge

P/S BridgeP/S BridgeP/S BridgeP/S BridgeP/S BridgeP/S BridgeP/S BridgeP/S BridgeP/S BridgeP/S BridgeP/S BridgeP/S BridgeP/S BridgeP/S BridgeP/S BridgeP/S BridgeP/S BridgeP/S Bridge

Pub/Sub
Analysis

n
o
d
e

H
L
T

P/S Bridge ROOT Analysis

TCP Tap
P/S

TCP
Reader

Data
Decoder

HOMER

Figure 3.13: Data flow of the HLT monitoring interface. The HLT cluster node
to the left, a separated monitoring node to the right. The publish/-
subscribe sink component (P/S TCP Tap) subscribes to arbitrary
data in the stream and provides them over network. The depicted
P/S Bridge components are part of the data transport framework
and responsible for data exchange between computing nodes.

A HOMERReader can handle different types of input. The class provides
different constructors for the purpose of initialization. Once the reader is
created, access to data blocks is transparent and independent of type of input.
Data transport is done on event basis. As soon as the event buffer of the
HOMER interface is empty, the next event is prepared for transmission. On
the receiver side, the event is fetched by means of the ReadNextEvent function.

The HLT block data type and origin as introduced in chapter 3.4.3 are only
encoded into 64 and 32 bit words respectively. The generic design of the
HOMER interface makes it stand-alone and without any library dependency.
The 8 and 4 byte character arrays of data type and origin are stored in reverse
order in the HOMER block descriptor.

3.9.3 Monitoring Back-end

For the sake of simplicity it was decided to use the off-line monitoring frame-
work AliEve as a back-end also for on-line monitoring applications. This
reduces redundant development and allows users to work with a coherent set
of tools. AliEve is based on ROOT Eve and part of AliRoot [38, 39]. It com-
bines an event display including 3D visualization with tools for investigation
and browsing of ROOT data structures and histograms.

The actual treatment of data is responsibility of the module library. Macros
are used to bind the processing functions into AliEve.

4. HLT Analysis Framework

A well-defined segmentation of the project effort ensures system
modularity. Each task forms a separate, distinct program module.
At implementation time each module and its inputs and outputs
are well-defined, there is no confusion in the intended interface
with other system modules. At checkout time the integrity of the
module is tested independently; there are few scheduling problems
in synchronizing the completion of several tasks before checkout can
begin. Finally, the system is maintained in modular fashion; system
errors and deficiencies can be traced to specific system modules,
thus limiting the scope of detailed error searching.
From R. Gauthier, Designing Systems Programs [40]

This very descriptive statement from the early years of software development
in 1970 has not suffered any loss of its philosophical depth concerning software
projects. It describes very shortly all issues which are also addressed by the
design of the HLT project. The previous section has outlined the complex
structure of the ALICE HLT. The HLT analysis framework is an integral
element of the ALICE High-Level Trigger and has been accomplished as part
of this thesis. Before introducing it in detail, general design considerations
are presented which have been the motivation for its definition and design.
The general requirements for a system can be summarized as follows:

• Efficient use of development resources.
The system naturally needs to address different problems both in tech-
nical and physics aspects. Reuse of project internal source code is sug-
gested as well as the utilization of third-party implementations.

• Efficient implementation of the application.
HLT aims to provide a high-speed on-line computing cluster. The im-
posed performance requirements make optimization a fundamental part
of the design.

• Well documented source code.
Functional units and the interplay of units must be documented consis-
tently.

• Long term maintainability.
The life time of ALICE makes maintainability an important aspect

43

44 CHAPTER 4. HLT ANALYSIS FRAMEWORK

• Extensibility of the system.
As new functionality is desired and new requirements are imposed by
the evolution of the experiment, the system must be easy extensible
without potentially harming other parts of the system. Also, developers
of various skills must be enabled to add new modules in an easy and
intuitive way.

• Quality assurance.
The correct and smooth operation must be assured for the whole life
cycle of the system. Test cycles must be applied on a regular basis.

Some more requirements are specific to HLT and already motivated by the
issues above:

• Separation of Data Transport Framework and HLT Analysis.

• Uniform HLT Analysis for different environments.

• Low threshold for contributions from all users of the ALICE community.

The tangling problem is the obvious dependency and even contradiction of
those requirements. An easy understandable implementation is often ineffi-
cient. In contrast to that, an efficiency oriented implementation of a complex
application naturally obscures the functional flow and maintainability.

In the evolution of programming techniques there have been different solu-
tions addressing this issue. The traditional Procedural Programming straight
forwardly encapsulates functional units into procedures and organizes them
in a flow graph. Approaching more complex applications, Object Oriented
Programming (OOP) has been considered to be the better approach because
the object abstraction fits the underlying problem much better. The OOP
approach works well as long as the issues to be implemented do not cross-cut
the systems basic object decomposition. Optimized memory access and the
efficient utilization of temporary data often imply constraints on the appro-
priateness of the object oriented decomposition.

However, Object Oriented Programming has many advantages in terms of
modularization of development and maintainability. Especially inexperienced
developers can benefit from OOP concepts which hide the actual implemen-
tation from the user and assign functional units to objects.

4.1. INTERFACE METHODOLOGY 45

4.1 Interface Methodology

In any case decomposition of a system into smaller functional units - software
modules - is an important part of the solution. Decomposition of complex
software systems has been investigated already in the early 1970s. The basic
principles apply today even more as the complexity of systems has increased
remarkably.

A system is decomposed by design decisions whereas the decisions have to be
taken before the work on individual modules can start. It is of great impor-
tance that the decisions include all system levels. As a result of the decom-
position, self-consistent software modules hide information by encapsulating
it into a unity or other construct. This technique is in software engineering
often referred to be encapsulation or information hiding. Interfaces between
modules allow well defined communication.

An interface is usually formed by a set of functions accessible from the outside
of the module. Following the concept of information hiding, a module pos-
sesses internal private and external public data and function members. Object
oriented languages like C++ support this classification by defining members
public or private/protected.

Depending on the application, modules can be linked together at compile/link
time. Execution of such a program requires availability of all modules. Dy-
namic loading of modules at run time allows an even more abstract implemen-
tation of modularization. The application does not need the specific module
for start up, instead the module is loaded on demand. All HLT analysis
components are based on this concept.

Finally, the domain of the interface is of great interest as this allows to separate
application and module system wise. ALICE HLT implements an abstract C
interface between data transport framework and analysis framework in order
to allow the maximum of flexibility. The abstract interface is introduced in
section 4.4.3.

The benefits and properties of a modularization can be summarized as follows:

• Encapsulation hides the implementation details of a class from the ex-
ternal world. In this way the implementation can easily be modified
without affecting any other modules.

• Encapsulation can avoid mistakes by consequently hiding internal data
members, referred to be data hiding. Access to data members is encap-
sulated in a method and validation checks can be added.

46 CHAPTER 4. HLT ANALYSIS FRAMEWORK

• Encapsulation reduces debugging time in large applications because the
outer world can only access a well defined interface. Hence the state of
variables can only be altered internally and better controlled in debug-
ging.

• Encapsulation leads to better documentation and long term maintain-
ability.

• Encapsulation allows one module to be written with little knowledge of
the code in another module

• Encapsulation allows modules to be reassembled and replaced without
reassembly of the whole system.

4.2 HLT Modules and Libraries

4.2.1 General Concepts of Modularity

An application which is designed without modularity is referred to be mono-
lithic. This is often a fast approach for a small application of distinct purpose.
However, the program grows as new aspects come into play and new features
are required. It is often difficult to determine the turning point when a mono-
lithic application is no longer an appropriate solution.

Modularity is desirable, as it supports reuse of parts of the application logic
and also facilitates maintenance by allowing repair or upgrade of parts of the
application without requiring complete replacement. Another important as-
pect is testing and quality assurance. Modular applications are easier to test
as they allow dedicated checks of the functionality of parts of the project.
The third aspect addresses the development in a multi-user environment. In-
terference between the various developers involved in the project can widely
be excluded by an appropriate modular concept.

Different approaches are used to various extents in order to achieve modular-
ity. The main aspect of reuse and repair of parts of the project is addressed by
code based modularity. However, development tools are required to perform
these maintenance functions. The application may need to be recompiled and
the developer needs all the development tools and the complete source code.
Object based modularity often allows a smarter solution as it provides the
application as a collection of separate executable files. In this approach, the
various parts can be independently maintained and replaced without rede-
ploying the entire application. This approach is widely used in most of the
computer architectures like e.g. shared object files on Sun/UNIX or dll files
on other architectures. Some object messaging capabilities allow object based

4.2. HLT MODULES AND LIBRARIES 47

applications to be distributed across multiple computers. Service oriented
architectures use specific communication standard/protocols to communicate
between modules.

Traditional software development has focused on decomposing systems into
units of primary functionality, while recognizing that there are other issues of
concern that do not fit well into the primary decomposition. The traditional
development process leaves it to the programmers to code modules corres-
ponding to the primary functionality and to make sure that all other issues of
concern are addressed in the code wherever appropriate. Programmers need
to keep in mind all the things that need to be done, how to deal with each
issue, the problems associated with the possible interactions, and the execu-
tion of the right behavior at the right time. These concerns span across the
primary functional units within the application, and often results in serious
problems faced during the application development and maintenance. The
distribution of the code for realizing a concern becomes especially critical as
the requirements for that concern evolve - a system maintainer must find and
correctly update a variety of situations.

Aspect Oriented Programming (AOP) as presented in [41] is in contrast to
traditional Procedural Oriented Programming a different approach addressing
the mentioned issues. However, aspect oriented programming languages are
still less common to be used than OOP languages. The community of nuclear
and particle physics is furthermore influenced by the ROOT analysis platform,
which entails object oriented strategies at all levels.

Aspects in the Design of HLT

Aspects in software engineering are defined as cross-cutting concerns, i.e. con-
cerns which are not reflected by the primary separation according to modu-
larization decisions.

Several studies have been carried out in order to develop a modular concept
for the HLT analysis framework. The deployed concept of components and
separate processes ensures a high modularity. The development of the var-
ious components is to first extent independent from each other. However,
all analysis components are based on the same processing strategy and sug-
gest a common interface and module. Components can benefit from common
functionality if an object based modularity is deployed.

One major characteristic of AOP is to relieve the developer from the respon-
sibility of implementing all issues of concern. This idea has been considered
into the HLT analysis framework, though primarily being of object oriented
nature.

48 CHAPTER 4. HLT ANALYSIS FRAMEWORK

4.2.2 Framework Organization

Modularization of the HLT analysis framework is deployed at different levels.
Following the concept of object based modularity, functional units and the
analysis component implementations are realized in UNIX shared object files,
often referred to as libraries.

An important aspect in library design is imposed by library dependencies.
Since the functionality is implemented in separate executable files, there are
cross-dependencies between libraries. If liba implements an application call-
ing a function implemented in libb, the latter library needs to be loaded in
order to resolve this dependency. Usually one is confronted with the following
dependency problems:

• long chains of dependencies
An application depends on lib1, which depends on lib2, ..., which
depends on libn. In order to avoid manual resolving of dependencies,
the library lib1 should be linked at compile time to all others it depends
on and so on. Package managers can help to install the necessary libraries
from external repositories.

• conflicting dependencies
It is important to allow simultaneous installation of different library
versions. Otherwise two applications depending on different versions of
the same library cannot run at the same time. A rigid library version
scheme is deployed on most UNIX/Linux systems and also for ALICE
HLT.

• circular dependencies
If a library lib1 depends on lib2 depending on lib3 containing a de-
pendency back to lib1 one speaks of a circular dependency. Circular
dependencies are often a sign for bad code design.

The HLT analysis framework aims to follow a clear dependency tree in order
to avoid the quoted problems. The organization is outlined in Figure 4.1. The
libraries fall in 3 categories, (i) Framework Layer, (ii) Service Layer, and (iii)
Module Layer.

In the Framework Layer, a base library, libHLTbase, provides all function-
ality needed for HLT analysis. Apart from system libraries, it only depends on
ROOT. This is a clear design goal which reduces dependencies of libHLTbase
to a minimum and allows to implement common interfaces and functionality
independent of AliRoot. The base library defines all interfaces of processing
plug-ins of the different stages. It contains furthermore a simple stand-alone

4.2. HLT MODULES AND LIBRARIES 49

libHLTbase libHLTInterfaceFramework layer

libAliHLTTPC

libAliHLTMUONlibAliHLTPHOS

libAliHLTITS libAliHLTTRD

Module layer

libHLTshuttle

libHLTsim

libHLTrec

libAliHLTUtil

libHLTpendolino

Service layer

Figure 4.1: Modular organization of the HLT analysis framework. External de-
pendencies to system libraries, ROOT, and AliRoot have been omit-
ted for the sake of simplicity.

running environment for HLT chains, AliHLTSystem, which is introduced in
section 4.5.2. The second library of the Framework Layer, libHLTinterface,
implements an abstract interface intended to allow utilization of HLT compo-
nents in external applications.Details can be found in section 4.4.3.

The Service Layer contains a couple of libraries with AliRoot binding func-
tionality, libHLTsim and libHLTrec for simulation and reconstruction in the
off-line environment respectively. Other supporting functionality is related
to the interface to OCDB and DCS. A utility toolbox, libAliHLTUtil, im-
plements both supporting classes and utility components. Libraries of the
Service Layer depend upon AliRoot and need the corresponding libraries.

In the category of the Module Layer fall all libraries implementing HLT
analysis. All libraries depend on the Framework Layer and occasionally on
libAliHLTUtil. As the libraries of the module layer implement HLT analysis
components, they are often referred to be component libraries.

4.2.3 Features and Functional Units of an HLT Module

HLT module libraries for detectors or distinct purposes can be loaded dynam-
ically into the framework. Each module implements all functionality related
to the same issue, e.g. components to be run on-line on the HLT cluster, and
the treatment of the produced data in other stages of the processing chain.

50 CHAPTER 4. HLT ANALYSIS FRAMEWORK

For the time being, there are five groups of different plug-ins realized by a
module:

• Analysis components to be run in the on-line environment,

• PredictionProcessors allow components to predict the value of on-line
data points provided by DCS,

• PreProcessors prepare certain data output blocks of the component for
storage in OCDB,

• HLTOUT handlers supposed to treat data of the components during off-
line processing of HLT output, and

• monitoring plug-ins preparing data for visualization.

Following the basic requirements for the HLT system as presented in the
beginning of this chapter, the user must be allowed to implement a new unit
without the need of adding new functionality into other units. The plug-in
concept is realized by interface classes defined in the libHLTbase and concrete
implementations in the module. The resulting encapsulated functionality can
be integrated dynamically into the system by simply loading the library.

4.2.4 Module Agents

Still, the new functionality needs to be announced to the system. For the
purpose of fully dynamic registration of module functionality at run time,
each module library implements a so called agent. The agent defines the
properties of the library which are explained in detail below.

The automatic registration of module agents in the system is the fundamen-
tal feature which ensures the on-demand modularity of the HLT Analysis
framework.

Module agents inherit from the base class AliHLTModuleAgent and are in-
tended to be singletons in the running environment, meaning there is only
one instance of each module agent at any time. In order to make the agent
available to the system, one global object of the particular agent implemen-
tation has to be specified in the source code. Since all global variables are

4.2. HLT MODULES AND LIBRARIES 51

allocated when the library is loaded, this trick ensures the automatic creation
of the object. Functionality of the base class carries out registration and inte-
gration into the HLT system automatically. Once the agent is available in the
list, the system will query its features on demand. New units can be added
without intervention in other functional units.

Component Registration

Components are the worker plug-ins for HLT analysis and are created dy-
namically according to the configuration. As a prerequisite, components must
be known to the system. The analysis framework implements a registration
scheme which is the backbone for the realization of modularity. Details will
be presented in section 4.4. The agent needs to implement the function

1 int RegisterComponents (AliHLTComponentHandler∗ pHandler) const ;

which is invoked by the system after the library has been loaded.

HLT Configurations

Following the described processing methodology, the HLT analysis hierarchy
is described by configurations. In the on-line system, configurations are fully
separated from the actual implementation of both data transport and analysis.

The off-line environment as the counterpart also requires mechanisms to de-
scribe an HLT chain and run components in an analysis hierarchy, both for
the sake of simulation and utilization of AliRoot as a development envir-
onment. The AliRoot binding functionality of the HLT analysis framework
provides simple notations to specify hierarchies of component processing (see
section 4.5.2). The module agent is allowed to specify HLT configurations
supposed to run as default configurations in the different steps of AliRoot by
means of the functions

1 int CreateConf igurat ions (AliHLTConfigurationHandler∗ handler ,
2 AliRawReader∗ rawReader ,
3 AliRunLoader∗ run loader) const ;
4 const char∗ GetReconstruct ionChains (AliRawReader∗ rawReader ,
5 AliRunLoader∗ run loader) const ;

The full integration of HLT into the ALICE software framework is described
in section 4.5.

52 CHAPTER 4. HLT ANALYSIS FRAMEWORK

PreProcessor

The propagation of data to OCDB, implies the existence of so called PrePro-
cessors which are executed in the course of data and statistics collection after
the end of a run. An asynchronous link between data producing facilities in
the detector and the OCDB is provided by the so called Shuttle [36].

The Shuttle is a stand-alone application started immediately after the run
has been stopped. It fetches data designated for storage in OCDB. Each de-
tector implements one PreProcessor which treats corresponding data blocks
and prepares them for storage. As HLT adds another layer of modularity,
an additional abstraction is required. The modularization of HLT PrePro-
cessors for different types of data must follow the diversification of analysis
components as producers of data. That is, a component library containing a
producer component must also contain the corresponding PreProcessor. The
module agent provides worker plug-ins for the overall HLTPreProcessor which
is included into the off-line Shuttle framework.

PredictionProcessor

The HLT on-line calibration framework [18] also implements the interface to
DCS on-line data points. E.g. the temperature measurements of the TPC
are relevant for on-line TPC event reconstruction as it affects the drift ve-
locity. For on-line analysis, measurements are always in the past and the
current value must be estimated which is the task of the PredictionProcessor.
A similar scheme applies for off-line reconstruction where all measurements
are available but values must be interpolated. The HLT PredictionProcessor
framework is described in [42], the module agent provides appropriate binding
functionality.

Handling of HLT output

The output of the HLT is processed as part of the normal AliRoot event
reconstruction. The analysis framework has the capability to handle common
data blocks in the HLT output payload (HLTOUT payload). On the contrary,
proprietary data produced by a component/module during the on-line analysis
is often understood only by the module itself. A modular plug-in mechanism
allows to organize the treatment of HLT payload in a flexible way. In order to
bind a module into the standard treatment of HLTOUT payload, its module
agent needs to specify the type of data it can process and methods to actually
do the processing. The treatment of HLTOUT payload is described in detail
in section 5.3

4.3. HLT ANALYSIS COMPONENT INTERFACE 53

4.3 HLT Analysis Component Interface

This sections introduces the AliHLTComponent base class, which provides the
common interface for HLT analysis components. Main objective of the inter-
face is a unified utilization from the on-line and off-line systems. Both have
different requirements and constitute two completely different running envi-
ronments for the HLT event reconstruction and physics analysis. In order to
study the impact of high-level trigger information on the off-line reconstruc-
tion performance, HLT algorithms must be part of the off-line simulation
process, as well as evaluated and compared to the off-line algorithms. Fur-
thermore, a coherent development environment is highly desirable in order to
simplify the work for developers.

As an important outcome of the presented work an approach has been de-
veloped which allows to run the analysis components in either the off-line
environment AliRoot or in the on-line HLT environment without any change
in the source code. The interface ensures also binary compatibility, mean-
ing that the same compiled library can be used from both frameworks. The
benefits can be summarized as

• A high degree of flexibility.
Development of analysis components is independent from the data trans-
port framework and thus easier to handle.

• Quality of the analysis.
Analysis components can be run within the off-line analysis without
changes. The results are directly comparable.

• Clear development framework and policies.
Developers of physics analysis components can use the AliRoot environ-
ment they are familiar with.

• Reproducibility of trigger decisions
The analysis components are literally part of the off-line framework, only
tagged releases will be used in on-line production runs.

The component interface makes use of function overloading supported by
C++ classes. A couple of member functions of the base class are defined
virtual, indicating the compiler that those functions can be overloaded by
child classes. The analysis framework always uses references to objects of
type AliHLTComponent for each instantiated object of component implemen-
tations. If an overloaded function is present in the child class, it is invoked
instead of the base class method. The ability to treat derived class members
just like their parent class’ members in software engineering is referred to be

54 CHAPTER 4. HLT ANALYSIS FRAMEWORK

Polymorphism. The concept of class inheritance and function overloading in
OOP is fundamental for the understanding of the component interface and
the reader is directed to literature.

The actual analysis code is implemented in one or more distinct class(es).
The component implements the interface and calls the analysis code for data
processing. An important aspect of this approach is the availability of any
part of the off-line code for on-line components. The other way around a step
of the off-line reconstruction can be run on-line by simply adding a wrapper
component which implements the interface.

An HLT analysis component can be in one of five processing states depicted
in Figure 4.2. The bare component which has been created using the C++
constructor must be initialized according to some configuration. Different
schemes apply for this stage depending on the availability of component argu-
ments. The event processing loop as the most important state for the analysis
is steered from an external application on an event by event bases. Three entry
points are available provided by interface functions of the base class:

• DoEvent function: called to process one event.

• Reconfigure function: called when re-configuration has been triggered
by the framework during the run.

• ReadPreprocessorValues function: indicates the availability of updated
data from DCS.

4.3.1 Characterization of HLT Analysis Components

Each component is uniquely identified by the ComponentId, a character string
of arbitrary length and content. It is used by the ComponentHandler later
introduced in section 4.4 to register the component and to create instances on
demand. For practical reasons, a descriptive name is used, like e.g. TPCClus-
terFinder. The data processing carried out by the component is characterized
by the data types of input and output blocks and the amount of data going
to be produced with respect to the input data volume. A component is fur-
thermore classified by the amount of memory it uses for data processing and
the overall processing time.

4.3. HLT ANALYSIS COMPONENT INTERFACE 55

External event processing loop

Memory allocation
Internal setup

Memory cleanup
Internal cleanup

Reconfigure Reconfigure (opt)

Parse arguments

yes

arguments?
haveno

ReadPreprocessor

Reconfigure

DoEvent

Environment

Create

Init

CDB access

Delete

Event Processing

DoDeinit

DoInit

Constructor

Destructor

Figure 4.2: The HLT component workflow includes five stages. The processing
loop has a central role and is preceded by appropriate initialization.

56 CHAPTER 4. HLT ANALYSIS FRAMEWORK

Component ID The function GetComponentID is mandatory and required
to retrieve the components identification.

1 virtual const char∗ GetComponentID () ;

Component Data Types HLT data types consisting of type id and origin
(see 3.4.3) are used to describe the exchanged data blocks in both HLT data
transport framework and analysis. By means of HLT data types the compon-
ent can identify data blocks it is able to process. It has to announce the data
types it understands and produces to the frameworks by implementing the
mandatory interface methods GetInputDataTypes and GetOutputDataType.
The optional method GetOutputDataTypes can be used in case of multiple
output data types.

1 virtual void GetInputDataTypes (AliHLTComponentDataTypeList&);
2 virtual AliHLTComponentDataType GetOutputDataType () ;
3 virtual int GetOutputDataTypes (AliHLTComponentDataTypeList&);

Data Size The shared memory approach used for data exchange in HLT
requires providing the output memory prior to data processing. Thus, the
framework roughly needs to know how much memory it has to provide for
the component output data. An upper estimation must be provided by the
GetOutputDataSize function. A constant offset and a multiplier per block
can be set.

1 virtual void GetOutputDataSize (unsigned long& cons tOf f s e t ,
2 double& inpu tMu l t i p l i e r) ;

Component Creation The function Spawn needs to be implemented in order
to allow the ComponentHandler to create a new instance. As seen from the
function definition, the return type of the function is a pointer of the general
type AliHLTComponent even though the created object inside the function is
an instance of a specific child. The child class inherits all functionality of the
base class and only these methods are available through the interface.

1 virtual AliHLTComponent∗ Spawn () ;

4.3.2 Running Environment

In order to adapt to different environments, i.e. on-line or off-line, compo-
nents get an environment structure with function pointers as shown in listing
4.1. The reason for a classification of the running environment is imposed
by the possibly different execution domains of application and component.

4.3. HLT ANALYSIS COMPONENT INTERFACE 57

Some communication between the component and the application is realized
by callback functions. For instance, the treatment of logging messages is very
important for the operation of a system and each application might imple-
ment its own handling. This is in particular important for the on-line setup
of the HLT. A multi-process system on a multi-machine architecture requires
a central collection of logging messages. Every component sends logging mes-
sages through a defined logging mechanism rather than just printing to the
standard output channels on screen. AliRoot also provides its own logging
and filtering functionality.

Listing 4.1: Definition of the running environment for HLT components
1 struct AliHLTAnalysisEnvironment
2 {
3 /∗∗ s i z e o f the s t r u c t u r e ∗/
4 AliHLTUInt32 t f S t r u c t S i z e ;
5

6 /∗∗ the component parameter g iven by the framework on crea t i on ∗/
7 void∗ fParam ;
8 /∗∗ a l l o c a t e d memory ∗/
9 void∗ (∗ fAllocMemoryFunc) (void∗ param , unsigned long s i z e) ;

10 /∗∗ a l l o c a t e an EventDoneData s t r u c t u r e . ∗/
11 int (∗ fGetEventDoneDataFunc) (void∗ param , AliHLTEventID t eventID ,
12 unsigned long s i z e ,
13 AliHLTComponentEventDoneData∗∗ edd) ;
14 /∗∗ l o g g i n g c a l l b a c k ∗/
15 int (∗AliHLTfctLogging) (void∗ param ,
16 AliHLTComponentLogSeverity s ev e r i t y ,
17 const char∗ o r i g i n ,
18 const char∗ keyword ,
19 const char∗ message) ;
20 } ;

The AliHLTComponent base class provides member functions for those en-
vironment dependent functions. The member functions are used directly by
the component implementation and are re-mapped to the corresponding func-
tions. For the component, the whole process of adaption to the running en-
vironment is carried out transparently. Figure 4.3 illustrates the utilization
of the environment definition and a call-back function.

4.3.3 Initialization and Cleanup

The handlers defined by listing 4.2 can be implemented for the purpose of
component initialization and cleanup. During invocation of DoInit, the com-
ponent arguments can be scanned and the components behavior initialized
according to the provided component arguments. Furthermore, all internal
structures have to be created in DoInit. This takes account of the fact that

58 CHAPTER 4. HLT ANALYSIS FRAMEWORK

Environment

Application
PubSub

CB Logging callback

Application
AliHLTSystem

CB

Logging callback

Component

Logging

Set Environment

Figure 4.3: Redirection of Logging messages via the running environment. The
host application initializes the call-back function (CB) as part of the
environment. Calls to the logging method are redirected by the call-
back to the application. A second application initializes its own en-
vironment and uses a different redirection.

the initialization of the component might take longer and should not be part
of the event processing. In the on-line HLT controlled by ECS, component
creation and initialization takes place during the ENGAGE sequence in the
HLT state diagram Figure 3.10. A relatively short START sequence then
starts the run and data processing.

Listing 4.2: Optional initialization and cleanup functions

1 virtual int DoInit (int argc , const char∗∗ argv) ;
2 virtual int DoDeinit () ;

Command line arguments have been introduced to component initialization in
order to adapt at run time to different conditions. The arguments are imple-
mented by the component and specified in the chain configuration. Scanning
of component arguments is responsibility of the component. Arguments are
provided as an array of strings. By choosing a similar approach as for the
main() function of every application, the argument list is simple to parse
and easily extensible. E.g. the FileWriter component as introduced later
understands the arguments “-datafile myfile -directory /a directory”, where
arguments start with the ’-’ character followed by parameters for the specific
argument.

During initialization, the component also needs to load calibration data from
the OCDB. Initialization, either from OCDB entries or command line argu-
ments, or both is inherently component specific and falls into responsibility
of the developer.

A component has to implement a standard behavior if no arguments have
been provided. Ideally this also represents the most probable use case.

4.3. HLT ANALYSIS COMPONENT INTERFACE 59

4.3.4 Data Processing

Once the component has been set up it is ready for data processing. This
section describes the two types of data processing interfaces and the three
types of components which are known to the system.

Component type

Components can be of type

• kSource components which only produce data

• kProcessor components which consume and produce data

• kSink components which only consume data

where data production and consumption refer to the analysis data stream. For
each type a standard implementation is available as outlined in Figure 4.4.

• AliHLTDataSource for components of type kSource

All types of data sources can inherit from AliHLTDataSource and must
implement the AliHLTDataSource::GetEvent method. The class also
implements a standard method for GetInputDataTypes as data sources
do not expect any input data.

• AliHLTProcessor for components of type kProcessor

All types of data processors can inherit from AliHLTProcessor and must
implement the AliHLTProcessor::DoEvent method.

• AliHLTDataSink for components of type kSink

All types of data processors can inherit from AliHLTDataSink and must
implement the AliHLTDataSink::DumpEvent method. As sink compo-
nents do not produce output, the class also implements standard meth-
ods for GetOutputDataType and GetOutputDataSize.

Out of those, only the AliHLTProcessor is relevant for on-line processing.
The two others are mainly intended to be used within the AliRoot framework.
The on-line system always expects the component to be a processor. Literally,
kSink components can also be considered processors, just without output.
There are several utility components which can be used on-line in order to
collect data. kSource components cannot be used in the on-line environment
as initial data sources because the data transport framework does not provide
a corresponding DataSource wrapper component. A data source in the on-line
system must always be an appropriate component out of the PubSub package.

60 CHAPTER 4. HLT ANALYSIS FRAMEWORK

AliHLTLogging

AliHLTComponent

AliHLTSource AliHLTProcessor AliHLTDataSink

AliHLTRootFileSreamer

AliHLTCalibrationComponent

AliHLTBlockFilterComponent

AliHLTDummyComponentAliHLTFilePublisher AliHLTFileWriter

AliHLTOfflineDataSinkAliHLTOfflineDataSource

Figure 4.4: Inheritance diagram for base class AliHLTComponent and derived
standard implementations for data sources, sinks and processors, and
examples components for each of the three types. The base class in-
herits common logging functionality from the class AliHLTLogging.

Data exchange

Fundamental concepts of data exchange in the HLT have been presented in
section 3.4. Descriptors contain all relevant information like data type, data
specification, data buffer and data size. The component gets a list with all
available descriptors for one event and can access data from memory by means
of the descriptor members as illustrated in Figure 3.9 of section 3.4.3. The
corresponding data structure is defined in listing 4.3

Listing 4.3: Definition of the data block descriptor. The size of the structure is
used as version identifier

1 struct AliHLTComponentBlockData
2 {
3 /∗ s i z e and ver s i on o f the s t r u c t ∗/
4 AliHLTUInt32 t f S t r u c t S i z e ;
5 /∗ shared memory key , ignored by proce s s ing components ∗/
6 AliHLTComponentShmData fShmKey ;
7 /∗ o f f s e t o f output data r e l a t i v e to the output b u f f e r ∗/
8 AliHLTUInt32 t fO f f s e t ;
9 /∗ s t a r t o f the data f o r input data b l ock s , fO f f s e t to be ignored ∗/

10 void∗ fPt r ;
11 /∗ s i z e o f the data b l o c k ∗/
12 AliHLTUInt32 t f S i z e ;
13 /∗ data type o f the data b l o c k ∗/
14 AliHLTComponentDataType fDataType ;
15 /∗ data s p e c i f i c a t i o n o f the data b l o c k ∗/
16 AliHLTUInt32 t f S p e c i f i c a t i o n ;
17 } ;

4.3. HLT ANALYSIS COMPONENT INTERFACE 61

One descriptor object of this definition occupies minimum 50 Bytes in mem-
ory, depending on alignment and bit width of the architecture it might be a
few bytes more. In contrast to that, data blocks can reach arbitrary sizes. This
approach ensures minimization of computing resources spent on information
exchange.

Each HLT module can define its own data exchange structures and corres-
ponding data type ids. Usually, the first steps of the analysis hierarchy are
self-consistent for each detector and the components just need to recognize
the private data type ids of the HLT module. For merging of data blocks and
track matching among sub-detectors, common data types and data structures
have to be used.

A data format for exchange between components can be a simple C structure.
The exchanged data consist of an array of such C structures in memory and
a variable containing the number of such structures in the beginning. This
approach provides the most effective method to transfer data, it is reduced to
the minimal necessary information. Since system architecture properties are
not stored within the data structure, it can only be used between components
running on machines of the same architecture. As soon as the system archi-
tecture is changed, data exchange must be carried out with respect to data
properties as outlined in section 3.4.4. This is in particular important for the
output of HLT, no matter if it is data for monitoring, designated to be stored
in the OCDB or reconstructed events to be stored in the data stream.

The ROOT framework provides functionality to carry out data exchange be-
tween different computer architectures transparently for the user. A ROOT
object is derived from the base class TObject and can be serialized and op-
tionally compressed into a buffer. Increased flexibility comes at the cost of
increased overhead in terms of data size and/or processing time due to seri-
alization and compression. This topic is investigated in detail in section 4.6.

Data Processing Interface

A processing function is the heart of the data treatment and must be imple-
mented by each component. It is called once per event. Based on the data
types, the component selects the input data blocks it can treat from the input
stream. Calculated output data are stored in the provided buffer and the
corresponding block descriptors are inserted into the output stream.

Each of the component base classes AliHLTProcessor, AliHLTDataSource

and AliHLTDataSink provides its own processing method, which splits into
a high and a low-level method respectively. For the low-level interface, all
parameters are shipped as function arguments, the component has access to

62 CHAPTER 4. HLT ANALYSIS FRAMEWORK

the output buffer and handles all block descriptors. This interface allows full
flexibility and is used for performance critical algorithms.

For the sake of simplicity and usability, the high-level interface has been in-
troduced. It is the standard processing method and will be used whenever
the low-level method is not overloaded. The high-level interface simplifies the
implementation of the processing function by moving common functionality
often repeatedly implemented by components to the base class. It is also
suited for the data exchange of complex ROOT objects like histograms, ob-
ject arrays and TTree objects. The data access paradigms are illustrated in
Figure 4.5.

Input Block
Iteration

Output Block
ManagerROOT

serialization

High−level processing
method

Low−level processing
method

��
��
��
��
��

��
��
��
��
��

AliHLTComponent

shared memory

Figure 4.5: The high- and low-level processing interfaces allow implementation
of processing based on different paradigms. The high-level interface
inserts an abstraction layer into the data access. The component base
class controls access and provides common functionality for simplified
handling of e.g. ROOT objects. The low-level processing function
allows direct access to data.

In both cases it is necessary to calculate/estimate the size of the output buffer
before the processing. Output buffers can never be allocated inside the com-
ponent because of the push-architecture of the HLT. For that reason the
GetOutputDataSize function has to return a rough estimation of the data
to be produced by the component. Based on the estimation, the framework
provides an output buffer big enough to receive the complete output. The
component writes output data to the buffer and creates new block descrip-
tors.

Low-level Interface

The low-level component interface consists of the specific data processing
methods for AliHLTProcessor, AliHLTDataSource, and AliHLTDataSink, an
example is shown in listing 4.4 for the processor.

4.3. HLT ANALYSIS COMPONENT INTERFACE 63

Listing 4.4: Definition of the low-level version of the DoEvent processing method
for the AliHLTProcessor class.

1 int AliHLTProcessor : : DoEvent (const AliHLTComponentEventData& evtData ,
2 const AliHLTComponentBlockData∗ blocks ,
3 AliHLTComponentTriggerData& trigData ,
4 AliHLTUInt8 t∗ outputPtr ,
5 AliHLTUInt32 t& s i z e ,
6 vector<AliHLTComponentBlockData>& outputBlocks)

The base class passes all relevant parameters for data access directly on
to the component. Input blocks can be accessed by means of the array
blocks. Output data written directly to shared memory provided by the
pointer outputPtr. Output block descriptors are inserted directly to the list
outputBlocks. Appendix B.1.3 sketches an example implementation of the
low-level processing method. AliHLTDataSource and AliHLTDataSink com-
ponents have similar methods, however parameters concerning input or output
data access are omitted respectively.

High-level Interface

The processing methods are simplified by cutting out most of the parameters.
For processors, the function prototype looks like outlined in listing 4.5.

Listing 4.5: Definition of the high-level version of the DoEvent processing method
for the AliHLTProcessor class.

1 virtual int DoEvent (const AliHLTComponentEventData& evtData ,
2 AliHLTComponentTriggerData& tr igData) ;

In contrast to the low-level interface, a couple of functions can be used to
access data blocks of the input stream and send data blocks or ROOT TObject

instances to the output stream. In particular the following functions are
available:

• GetNumberOfInputBlocks

return the number of data blocks in the input stream

• GetFirstInputObject/GetNextInputObject

Iteration over ROOT objects of a specific data type. If the data block
describes a serialized ROOT object it is extracted and made available.

• GetFirstInputBlock/GetNextInputBlock

Iteration over data blocks of a specific data type

64 CHAPTER 4. HLT ANALYSIS FRAMEWORK

• PushBack

Insert an object or data buffer into the output. The framework carries
out all necessary operations to serialize the ROOT object and/or writes
the data to the output buffer. Block descriptors are inserted to the
output stream.

An example implementation of a high-level processing function is given in
appendix B.1.4.

Exchange of ROOT Objects

Based ROOT’s TMessage class, the high-level component interface provides
functionality to exchange ROOT structures between components. The trans-
port of ROOT object is the foundation for re-use of part of the off-line algo-
rithms in on-line applications and the simplified realization of monitoring and
calibration algorithms based on histograms. It is a direct achievement of the
component interface implementation which has been accomplished as part of
the presented work. Data exchange will be described in detail in section 4.6.

4.4. COMPONENT HANDLER AND EXTERNAL INTERFACE 65

4.4 Component Handler and External Interface

The ComponentHandler is an important part the modular concept of the
HLT analysis framework. It provides an abstraction layer between applica-
tions going to instantiate and use components, and the actual implementation
of components. On the side of the application, the chain configuration de-
termines the types of components to run and the interconnections between
those. In the HLT framework, the described task is carried out by the class
AliHLTComponentHandler.

4.4.1 Overview

By making a clear separation between ’users’ of components on the appli-
cation side and ’developers’ of components, the whole system can be im-
plemented with a minimum of cross-dependencies and without the need of
adapting source code and functionality of the base system whenever a new
module is added. Figure 4.6 sketches the role of the ComponentHandler in
the HLT analysis framework.

HLT ITS module library

HLT MUON module library

C++ class

Tracker

C++ class

Merger

C++ class

Finder
Cluster

Component
Processing
Wrapper

Component
Processing
Wrapper

Component
Processing
Wrapper

Component
Processing
Wrapper

PubSub HLT TPC module library

AliRoot

On−line Off−line environment

HLT Base library

C++ class
Handler

Component

C++ class
Base

Component

C Wrapper
interface
(pure C)

Figure 4.6: The ComponentHandler provides the interface between an applica-
tion and the component implementation in a module library. Figure
depicts the utilization of analysis components in the on-line HLT.

An application queries the ComponentHandler for the existence of a certain
component by means of the ComponentId. The handler checks whether the
component is available and creates an instance of the component. Availability
of components is based on registration.

66 CHAPTER 4. HLT ANALYSIS FRAMEWORK

Components are registered automatically at load-time of the component shared
library under the following suppositions:

• the module library has to be loaded from the AliHLTComponentHandler
using the AliHLTComponentHandler::LoadLibrary method,

• the component implementation defines one global object of each com-
ponent class, or

• the module library implements a module agent (AliHLTModuleAgent)
which supports registration of components of the module.

4.4.2 Component Registration

An HLT analysis component can be used in the system after registration,
which is responsibility of the module library. Two methods are available.

Registration from the Module Agent

The more advanced approach makes use of an AliHLTModuleAgent imple-
mentation in the module library by overloading the RegisterComponents()

base class function. This function is invoked for each library loaded by the
component and allows the agent to register all components implemented by
the module. All necessary source code is in the scope of the module, listing 4.6
shows an example. The source code has been taken from the libAliHLTUtil

which implements a toolbox of common components.

Listing 4.6: Sample implementation of the RegisterComponents method.
1 /∗∗ @f i l e AliHLTAgentUtil . cxx
2 @author Matthias Rich ter
3 @br ie f Agent o f the l i bA l iHLTUt i l l i b r a r y
4 ∗/
5

6 //
7

8 // header f i l e s o f l i b r a r y components
9 #include "AliHLTDataGenerator.h"

10 #include "AliHLTRawReaderPublisherComponent.h"

11 #include "AliHLTLoaderPublisherComponent.h"

12

13 //
14

15 int AliHLTAgentUtil : : RegisterComponents (AliHLTComponentHandler∗ pHandler) const
16 {
17 // . . .
18 pHandler−>AddComponent(new AliHLTDataGenerator) ;

4.4. COMPONENT HANDLER AND EXTERNAL INTERFACE 67

Listing 4.7: Implementation of a class using component registration via a global
object.

1 /∗∗ @f i l e AliHLTSampleOfflineSinkComponent . cxx
2 @author Matthias Rich ter
3 @br ie f A sample o f f l i n e s ink component .
4 ∗/
5

6 #include "AliHLTSampleOfflineSinkComponent.h"

7 // . . .
8

9 /∗∗ g l o b a l in s tance f o r agent r e g i s t r a t i o n ∗/
10 AliHLTSampleOfflineSinkComponent gAliHLTSampleOfflineSinkComponent ;
11

12 /∗∗ ROOT macro f o r the implementat ion o f ROOT s p e c i f i c c l a s s methods ∗/
13 ClassImp (AliHLTSampleOfflineSinkComponent)
14

15 AliHLTSampleOfflineSinkComponent : : AliHLTSampleOfflineSinkComponent ()
16 {
17 // . . .
18 }

19 pHandler−>AddComponent(new AliHLTRawReaderPublisherComponent) ;
20 pHandler−>AddComponent(new AliHLTLoaderPublisherComponent) ;
21 // . . .
22 return 0 ;
23 }

Registration by Global Objects

The component registration via global static objects follows the same idea as
the registration of module agents as described in section 4.2.4. This simple and
quick approach makes use of the fact that all global static objects of a library
are instantiated when the library is loaded for the first time. Consequently,
the library must not be loaded before. This can accidentally be the case when
the module library is explicitly linked to the application or loaded before
dynamically, e.g. in the course of the rootlogon1 procedure. Both cases must
be avoided for a correctly working registration. Listing 4.7 shows an example
of a class implementation with global object registration.

The utilization of global objects is often considered bad programming style.
In the presented case it does not cause any problems since the object itself

1rootlogon denotes the customization script for ROOT startup. If existent, the macro root-
logon.C is automatically executed. The macro is used to set up the environment for a ROOT
session

68 CHAPTER 4. HLT ANALYSIS FRAMEWORK

is not used for data processing at all. However, for a smooth operation the
component should not allocate memory in the constructor.

4.4.3 Utilization in the On-line System

The interface between the on-line data transport framework and the HLT
analysis components is provided by a C-interface. In dynamic libraries, func-
tions in the source code correspond to entry pointers in a compiled library.
During program execution, all parameters are stored on the stack2 and the
program jumps to the address in the library. A C-interface makes use of that
execution sequence by providing the entry pointers to the external applica-
tion. Figure 4.7 sketches the entry points of the interface used by the on-line
HLT system.

functions
C −wrapper

Handler
Component

C++ class

Handler
Component

LoadLibrary
GetComponent
Init Component
Process Event

Component

Processing
Wrapper

C++ class

Tracker

Tracker

global object

Finder
Cluster

global object

C++ class

Finder
Cluster

LoadLibrary

Register

ProcessEvent
Init

PubSub

libHLTbase TPC module library

Figure 4.7: Utilization of the C wrapper interface by the on-line HLT. The Wrap-
per Processing Component of the data transport framework has access
to the analysis component through methods of the C interface.

During initialization of the interface, the internal ComponentHandler and the
execution environment is set up. Subsequently, component libraries can be
loaded, components be created and events processed.

Care has to be taken with all memory allocation and data processing as the two
frameworks run in different domains. E.g. a memory buffer allocated inside
the HLT analysis cannot be freed in the PubSub system without introducing
a potential source for memory corruption. Depending on the compilation
and running environment, memory management might be different in the
two domains. As a consequence, the interface contains functions allocating
memory on the side of the external application.

The interface consists of a couple of functions and data structure definitions
provided by the HLT analysis framework and known to the external appli-

2In computing architectures, a stack is a special kind of data storage based on the Last-In-First-
Out paradigm

4.4. COMPONENT HANDLER AND EXTERNAL INTERFACE 69

cation. The definitions contain three parts, which will be described in the
following.

• Common data structures for data exchange

• Definition of interface functions to be called by external applications
(listing 4.8)

• Definition of call-back functions implemented by the external application
and called by the interface (already introduced in listing 4.1)

The HLT analysis framework implements the corresponding functions in the
libHLTinterface library. The defined entries correspond to addresses in the
compiled library. Common functionality of the operating system can be used
to retrieve the address for a function entry.

Data Structures

Several data structures are defined to organize data exchange between the two
participants of the interface. Although data processing entirely takes place
on the HLT analysis framework’s side and the on-line system manages data
exchange between processes without touching data payload, a minimum of
common data structures is required for the interplay. In particular the data
block descriptor as introduced in section 4.3.4 needs to be known to both sides
of the interface. The on-line system retrieves type and size of the data block
from the block descriptor in order to handle payload in the shared memory
correctly. The AliHLTComponentBlockData structure has been presented in
listing 4.3.

Interface Functions

The names of the functions are self-explanatory and some of the functions can
be recognized as counterparts of the presented AliHLTComponent interface.

Environment Functions

The external interface utilizes the environment definition as presented in list-
ing 4.1. The role of the running environment has been pointed out in sec-
tion 4.3.2.

70 CHAPTER 4. HLT ANALYSIS FRAMEWORK

Listing 4.8: Definition of interface functions of the HLT external interface
1 int (∗AliHLTExtFctInitSystem) (unsigned long vers ion ,
2 AliHLTAnalysisEnvironment∗ externalEnv ,
3 unsigned long runNo ,
4 const char∗ runType) ;
5 int (∗AliHLTExtFctDeinitSystem) () ;
6

7 int (∗AliHLTExtFctLoadLibrary) (const char∗) ;
8

9 int (∗AliHLTExtFctUnloadLibrary) (const char∗) ;
10

11 int (∗AliHLTExtFctCreateComponent) (const char∗ ,
12 void ∗ ,
13 int ,
14 const char∗∗ ,
15 AliHLTComponentHandle ∗ ,
16 const char∗ d e s c r i p t i o n) ;
17 int (∗AliHLTExtFctDestroyComponent) (AliHLTComponentHandle) ;
18

19 int (∗AliHLTExtFctProcessEvent) (AliHLTComponentHandle ,
20 const AliHLTComponentEventData ∗ ,
21 const AliHLTComponentBlockData ∗ ,
22 AliHLTComponentTriggerData ∗ ,
23 AliHLTUInt8 t ∗ ,
24 AliHLTUInt32 t ∗ ,
25 AliHLTUInt32 t ∗ ,
26 AliHLTComponentBlockData ∗∗ ,
27 AliHLTComponentEventDoneData∗∗) ;
28 int (∗AliHLTExtFctGetOutputDataType) (AliHLTComponentHandle ,
29 AliHLTComponentDataType∗) ;
30 int (∗AliHLTExtFctGetOutputSize) (AliHLTComponentHandle ,
31 unsigned long ∗ ,
32 double∗) ;

4.4. COMPONENT HANDLER AND EXTERNAL INTERFACE 71

Using the interface definition, the wrapper processing component of the data
transport framework initializes the analysis framework and a component as
summarized in the flow diagram of Figure 4.8.

Figure 4.8: Component initialization and registration from the on-line wrapper
processing component. Component is registered by using global ob-
jects.

Interface Implementation

The interface information is defined in the header file AliHLTDataTypes3.
This file contains the common denominator for HLT analysis and external
application and is maintained in the AliRoot repository. The file defines
the interface version, data types, common data origins, data structures and
interface functions together with callback functions. A copy of the file in
the PubSub project allows to compile the latter independently of AliRoot.
The versioning scheme allows to check whether the definition of the interface
on both sides are compatible. All changes of the interface must be backward
compatible in order to allow older versions of either analysis or data transport
framework to work with newer versions of the other.

In the evolution of software projects, new functionality needs to be added,
other functionality becomes deprecated. Also the communication between
interface provider and user needs to be extended and adapted to emerging
features. Usually, an interface client knows a list of function names and can
query the function entry points by means of dlopen/dlsym4. One has to keep

3http://alisoft.cern.ch/viewvc/trunk/HLT/BASE/AliHLTDataTypes.h?root=AliRoot&view=log
4available on all Unix-type operating systems, similar methods exist for other OS

72 CHAPTER 4. HLT ANALYSIS FRAMEWORK

in mind that the returned pointer does not have any attributes. The interface
approach only works under two assumptions: (i) the name of a function must
be unique and known to the client. (ii) the number and types of parameters
must be known to the client. In such an interface approach, there is no
semantic check possible.

Regarding function names, compilers impose another restriction caused by
Name Mangling. This technique provides a way of encoding additional in-
formation about the function in the functions name. This is of importance
for programming languages like C++ which support overloading of functions
and coexistence of functions of identical name but different parameters. In
such a case, the final unique function name encoded in the library cannot be
directly derived from the function name in source code. Moreover, different
compilers use different mangling techniques and formats. It is of great im-
portance to define function names in a universal way which allow clients to
retrieve the entry. This is the reason why a C-interface has been chosen. The
C programming language does not support overloading of functions, thus no
name mangling is necessary. The encoded name in the library is in plain text
and can directly be derived from the name in source code. Functions must be
defined using the attribute extern "C" in order to indicate a C-style function
when using a C++ compiler.

In order to overcome the mentioned issues and to support the desired flexibil-
ity in the interface design, a technique called Function Signature Query has
been developed for ALICE HLT. The interface implements its own scheme
to retrieve library entry addresses. A general function definition as given in
listing 4.9 is supposed to be constant throughout the whole live cycle of the
project. It can be utilized by external applications to get the corresponding
function pointer. The existence of a function is queried by passing a unique
signature consisting of a string with the following attributes:

• the name of the function,

• the return type of the function, and

• the number and types of parameters.

Listing 4.9: The general interface call allows to query function entries by means
of the function signature.

1 extern "C" void∗ Al iHLTAnalys i sGetInter faceCal l (const char∗ f unc t i on) ;

The interface implementation on the HLT framework side checks function
signatures for existence and returns the pointer to the function if the signature
is known. This scheme allows any extension in the future by defining new
functions and signatures. At the same time it solves the problem of preserving

4.5. INTEGRATION INTO THE ALICE SOFTWARE FRAMEWORK 73

backward compatibility when new function parameters are added. Backward
compatibility of the interface implementation can easily be preserved by just
keeping older function signatures, calls to the old functions are redirected to
the new version using default values for the newly added parameters. More
details can be found in the daily updated ALICE HLT analysis framework
on-line documentation5.

4.5 Integration into the ALICE Software Framework

In the previous sections, HLT analysis has been described for the on-line sys-
tem. The modular concept based on library plug-ins and components allows to
build a distributed analysis chain with a high degree of flexibility. New mod-
ules can be implemented and added to the analysis framework by utilization
of module agents and component interface introduced earlier in this chapter.
For the full integration into the ALICE software framework, an appropriate
HLT running environment is required.

A broad community of physicists develops analysis tools and algorithms for
the ALICE experiment and is familiar with the off-line data processing frame-
work. In order to gain from that knowledge, this community must be enabled
to develop HLT algorithms within the off-line framework. Furthermore, as-
surance of trigger selectivity and performance requires comparison of HLT
components to the off-line reconstruction and analysis. Since the off-line al-
gorithms are tested in extensive simulation cycles, the obvious approach for
HLT analysis is the integration into the already existing procedure. Here it
is important to run on-line analysis components without any change in the
source code. Customizations of software to the needs of a certain framework
is an erroneous and tedious process, which must be avoided. The objective
is to run HLT analysis chains in AliRoot in the same way as in the on-line
framework, i.e. the full components are run also from the off-line framework
rather than just the algorithm hooked on by a special interface class.

Encapsulation of HLT analysis has been considered an important capability
already from the beginning of the development. We think of the HLT as a
’black box’ with certain data input and output. In addition there is access
to calibration data from a data base. Data processing inside components is
restricted to input data. As the different detector algorithms/components will
run in separate processes and even on different machines, no data exchange is
possible via global data structures and variables. This section describes the
binding AliRoot functionality of the ALICE HLT which has been developed
in the course of the presented work. After a brief introduction into the overall

5http://web.ift.uib.no/∼kjeks/doc/alice-hlt-current/group alihlt wrapper interface.html

74 CHAPTER 4. HLT ANALYSIS FRAMEWORK

data flow, the AliHLTSystem steering class will be described, followed by
concrete examples how to run HLT analysis during AliRoot simulation and
reconstruction.

4.5.1 AliRoot Data Processing Flow

Data processing in AliRoot is mainly divided into three major parts: simu-
lation, reconstruction and analysis ([13]). There is also satellite functionality
like e.g. event visualization. The overall data flow is sketched in Figure 4.9.
Within that scheme, the reconstruction step takes its input either from sim-
ulation of the detector response or real data. Event reconstruction is a cen-
trally managed layer which usually hides all detector raw data, calibration
and alignment processes from the end-user doing the subsequent analysis. It
produces a detailed summary of the event, the Event Summary Data (ESD),
containing all information on particles found in the event. The last step, the
actual physics analysis is naturally distributed and diversified as it depends
on many different interests. Based on the ESD, any physics analysis can be
run independently of both simulation and reconstruction.

AliRoot simulation

Event reconstruction Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

ESD

Figure 4.9: Overall AliRoot processing sequence. Event reconstruction is per-
formed on either real raw data or simulated data and produces Event
Summary Data (ESD) which is the input to the subsequent analysis.

In a complex data analysis system it is important to study the behavior of
the different modules and the system response with respect to known input
separately in order to assure the result of the entire analysis. This is in
particular important in an experiment like ALICE where the physics going
to be studied can only be ’seen’ through secondary processes and require a
complex data processing. The impact of the measuring apparatus and the data
processing on the measured quantity needs to be studied carefully. Usually in
electronics engineering, the input to a certain signal processing unit is known
and can be compared directly to the output. This is not the case for the
considered type of experiment.

Analysis of simulated events is thus required to study the behavior and per-
formance of the detector reconstruction. Only after evaluation of the algo-

4.5. INTEGRATION INTO THE ALICE SOFTWARE FRAMEWORK 75

rithms with high statistics it makes sense to process real data. For simulated
events, the result of the reconstruction and analysis can be compared to the
original simulated events. This approach is similar to signal response studies
used in electronics engineering.

HLT has a special position within the described AliRoot processing chain.
As a matter of fact, HLT always runs event reconstruction since it is not a
sub-detector delivering data. Consequently, it needs to run at the end of the
AliRoot simulation when data for all sub-detectors has been generated. Em-
bedded into AliRoot simulation, this reconstruction is performed on simulated
data. It is often referred to be HLT simulation. Figure 4.10 sketches the data
flow for HLT simulation.

Figure 4.10: HLT simulation in AliRoot.

The lower block denoted HLT system in Figure 4.10 implements an encap-
sulated HLT analysis with well defined input and output. It is important to
notice that the placement of HLT analysis is flexible and just depending on
the availability of customized input data sources and output data sinks. This
concept follows the High-Level Trigger design as outlined in Sec. 3.3.1.

Since HLT reconstruction has already been executed either as part of simu-
lation or on-line data processing, the result just needs to be extracted during
AliRoot reconstruction and stored appropriately. The treatment of HLT out-
put is described in chapter 5.

76 CHAPTER 4. HLT ANALYSIS FRAMEWORK

Abstract Data Access

The AliRoot software package is organized into steering libraries, providing
common functionality, and detector module libraries. Two abstraction layers
form the foundation of the modular AliRoot data processing architecture:

• The detector modules follow a plug-in concept in order to provide the
detector specific simulation and reconstruction.

• AliRoot provides abstract interfaces for data access which disentangle
data processing and all necessary steps of data storage and transporta-
tion.

The exact format of data in the different steps of the processing chain will be
explained later in the corresponding sections 4.5.3 and 4.5.4. However, the
two interfaces for data access in AliRoot will be introduced already here for
better understanding.

The RunLoader Interface

In the course of AliRoot simulation, first particles are “generated” and the
response of the detector to those virtual events is simulated. Data of inter-
mediate stages are stored in a tree structure in proprietary ROOT files. The
common denominator for all detector modules is a naming scheme for trees,
branches and files. The AliRunLoader provides the interface to the data sets
of the different stages.

The RunLoader concept is not of major importance for the ALICE HLT and
is mentioned here for completeness.

The RawReader Interface

Each detector defines its own raw data format. Because of that, data trans-
portation and storage treats detector raw data as payload. Following the
hardware solution of DDLs as described in section 3.3.2, the data flow is
grouped in entities of DDL blocks. Each data block has a Common Data
Header (CDH), which contains all relevant properties of the block like, e.g.
size and trigger information. The format of the CDH is described in [32] and
sketched in figure 4.11. Out of the eight 32ḃit words, word 0 containing the
block length and the Error and Status bits in word 4 are of interest for the
HLT. Furthermore the event id and trigger information is used by the data
transport framework for data flow control.

4.5. INTEGRATION INTO THE ALICE SOFTWARE FRAMEWORK 77

word #3

word #2

word #1

word #0

word #4

word #5

word #6

word #7

Block Length [31−0]

Format Version [31−24] L1 trigger [21−14]

Status and Error bits [27−12]

Trigger classes [31−0]

ROI [31−28]

ROI cont’d [31−0]

Trigger classes cont’d [17−0]

Mini Event ID [11−0]

Sub−detectors [23−0]

Event ID 2 [23−0]

Event ID 1 [11−0]

31 0

Figure 4.11: The Common Data Header (CDH) consists of eight 32ḃit words.

Access to raw data is generalized by the AliRoot class AliRawReader Raw
data are formatted in various representations throughout the processing. Fig-
ure 4.12 illustrates the implementations for different formats.

raw DDL buffers

AliRawReaderMemory AliRawReaderFile AliRawReaderDate AliRawReaderRoot

AliRawReader

DATE file RAW file
rootified

Digits

Application

raw DDL files

Data Taking

Simulation

Figure 4.12: The AliRawReader interface. Different implementations of readers
fit different raw data representations.

The ALICE DAQ formats DDL data blocks as received from the Detector
Data Links in a proprietary data format, a so called Date file. For final
storage, those files are converted into the ROOT file format. In the particular
case of ALICE, payload of each DDL is stored in branches of a tree6. On the
way to the Date file, raw data first exists in the form of raw data blocks. In
case of simulation, these raw data blocks are written to disk in separate files.
For all those formats, the class AliRawReader provides an abstract access
layer. Applications just use the interface, the actual access details are hidden

6The TTree concept is a fundamental feature of the ROOT storage

78 CHAPTER 4. HLT ANALYSIS FRAMEWORK

(Figure 4.12). For HLT, the AliRawReaderMemory has been implemented in
the course of the presented work. It allows to feed a number of data blocks
into the RawReader and make the payload accessible for the application. It
is the prerequisite for both (i) utilization of raw data decoding classes from
the off-line project and (ii) running off-line detector algorithms embedded in
an analysis component.

4.5.2 The Off-line HLT System

In order to run analysis components in a chain-like fashion, the behavior of
the on-line data transport framework is modeled by the HLT AliRoot inte-
gration. The AliHLTSystem class together with a few satellite classes steers
HLT analysis chains running embedded into AliRoot.

Seen from outside, AliHLTSystem is like a black box processing some input
data with a certain response and follows strictly the principle of information
hiding. The processing is determined by a configuration describing different
components connected to each other. Even though AliHLTSystem is running
in the same process as the aliroot executable, accessibility to data is strictly
limited. As outlined in Figure 4.13, apart from data input and output data
processing is exactly identical in both on- and off-line environment. Together
with binary compatibility of the HLT libraries, this is an important achieve-
ment of the presented work.

AliHLTSystem is able to parse a configuration, build a task list from the entries
in the configuration and connects them forming an HLT analysis chain. It
also carries out memory allocation and organizes data transport between the
components of the chain. The entity of AliHLTSystem can be plugged into
the AliRoot processing stream at different places. Some exemplary case like
e.g. AliSimulation, AliReconstruction, or the treatment of HLT output
payload are described in the next sections.

HLT chain

Detector algorithms

HLT processors/

RORC

Publishers

offline source
interface

offline sink
interface

HLTOUT Data to DAQ

AliHLTRec/SimAliHLTRec/Sim

Data from DAQ

Off−line

On−line

Figure 4.13: HLT analysis chains in the on-line and off-line system.
AliHLTSystem provides the integration into the off-line data pro-
cessing flow.

4.5. INTEGRATION INTO THE ALICE SOFTWARE FRAMEWORK 79

AliHLTSystem Steering class of the whole environment

AliHLTTask Task describing a step in the off-line HLT
analysis chain. Holds information about
the type and arguments of the HLT com-
ponent and its connections to other com-
ponents. Organizes data exchange with
other components.

AliHLTConfiguration Helper class for the description of one
task in an off-line analysis chain. It con-
tains the meta information which allows
AliHLTSystem to create the list of tasks

AliHLTConfigurationHandler Registry of available configurations.

AliHLTOfflineInterface Component interface to internal AliRoot
data.

Table 4.1: The main classes of the AliRoot HLT environment.

The implementation of the HLT bindings into AliRoot is separated by func-
tionality into a couple of classes. Table 4.1 shows an overview of the most
important ones. This whole group is referred to be the AliHLTSystem classes.

Usage of AliHLTSystem

The class aims to provide an easy-to-use interface. As a matter of fact, the
system can be set up and run with only a few commands (see listing 4.10).

Listing 4.10: Execution of an off-line HLT chain with the AliHLTSystem.

1 {
2 // . . . i n s tance o f AliRunLoader runLoader pre sen t
3 AliHLTSystem gHLT;
4 gHLT. ScanOptions ("libAliHLTUtil.so loglevel=0x7c"

5 "config=<config-file> chains=<mychain>") ;
6 gHLT. Conf igure () ;
7 gHLT. Reconstruct (1 , runLoader) ;
8 }

This little programming sequence is just exemplary and does not implement
any handling of error conditions. As already mentioned, this module is usually
run embedded into other processes and the user does not need to worry about
data input and data access via AliRunLoader or AliRawReader as described
in Sec. 4.5.1. For most of the applications, AliHLTSystem is hidden from the
end user.

80 CHAPTER 4. HLT ANALYSIS FRAMEWORK

The important line here is the ScanOptions function, AliHLTSystem can be
configured by the following optional arguments:

• Detector libraries
a sequence of detector libraries to be loaded in the course of configuration
can be specified. Libraries are recognized by the .so suffix. If no library
is specified, a list of default libraries will be loaded automatically.

• config=<config-file>

allows to specify a file from which the configuration will be read.

• chains=<mychain,yourchain>

a list of comma separated chain identifiers to be run during the recon-
struction.

• loglevel=0x7c

logging level for the filter of log messages. In the particular case, only
messages of level Info and higher will be propagated.

This options will also be recognized later in the following sections. Arguments
of this form directly point to utilization of AliHLTSystem behind the scene.
Chains to be run are specified by the identifier of the topmost configuration.
The format of the configuration will be explained in the next section.

HLT Configurations in AliRoot

In the on-line HLT, a configuration is described in XML notation (section 3.5).
Though, writing a configuration in XML notation is straight forward it re-
quires experience and some effort. A simplified solution has been imple-
mented for the definition of off-line HLT configurations, based on the fact
that the ROOT physics analysis framework uses C++ as a scripting language
and suited for the target community of the AliRoot HLT functionality. An
AliHLTTask is described by the following parameters:

1. Configuration id, a unique identifier of the entry within the analysis
chain,

2. Component id, describing the type of the component to run,

3. Parents, describing the data sources of the task,

4. Component arguments, specifying the optional initialization of the com-
ponent, and

5. Size of output data buffer, which is an optional property.

4.5. INTEGRATION INTO THE ALICE SOFTWARE FRAMEWORK 81

Those properties form a minimum description of a component and have been
incorporated into a class, AliHLTConfiguration, which is sufficient to fully
describe the task.

AliHLTConfiguration (const char∗ id , const char∗ component ,
const char∗ sources , const char∗ arguments ,
const char∗ bu f s i z e=NULL) ;

Using this class, configuration entries are simply added by creating an object
of this class, specifying all properties within the constructor. An example
defining a chain consisting of one publisher, one processing and one data sink
component can simply look like illustrated in listing 4.11.

Listing 4.11: A sample configuration describing a chain of two publishers, one
processor component and a sink component.

1 {
2 AliHLTConfiguration pub l i she r1 ("fp1" , "FilePublisher" , NULL,
3 "-datatype ’DUMMYDAT’ ’SMPL’"

4 "-datafile some-data.dat") ;
5 AliHLTConfiguration pub l i she r2 ("fp2" , "FilePublisher" , NULL,
6 "-datatype ’DUMMYDAT’ ’SMPL’"

7 "-datafile some-data.dat") ;
8 AliHLTConfiguration copy ("cp" , "Dummy" , "fp1 fp2" ,
9 "output_percentage 80") ;

10 AliHLTConfiguration s ink ("sink" , "FileWriter" , "cp" , NULL) ;
11 }

The corresponding analysis chain is depicted schematically in Figure 4.14. All
configuration entries are automatically registered with the configuration man-
ager, AliHLTConfigurationHandler. The manager makes the entries avail-
able to the system for later parsing and building of analysis chains. Complex
configurations can include loops in order to build hierarchies. More examples
can be found in the on-line ALICE HLT analysis framework tutorial [43].

fp1

fp1

cp sink

Figure 4.14: Simple example of an off-line HLT chain described by Listing 4.11.

Data Input and Output

As shown in figure Figure 4.13, data source and sink components implement
the binding to either on-line or off-line system. The task of a data source is

82 CHAPTER 4. HLT ANALYSIS FRAMEWORK

FilePublisher Simple publisher for files

RootFilePublisher Dedicated publisher for ROOT files and
objects from those

AliRawReaderPublisher Publisher for DDL data from an Ali-
RawReader, used both in reconstruction
and simulation

AliHLTOUTPublisher Publisher for data blocks from HLT out-
put payload

AliLoaderPublisher Publisher for digit tree objects from the
simulation.

Table 4.2: Common HLT data sources. The table shows the ComponentId which
can differ from the actual class name.

to read data going to be published from file are another source into memory
and to create the corresponding block descriptor.

In the on-line HLT, the task of data sources and sinks is carried out by specific
components of the data transport framework as described in section 3.4.3. In
the off-line environment, data sources and sinks depend on the host appli-
cation of AliHLTSystem. The framework provides some common publishers
to be used in different situations (table 4.2). The simplest case is a stand-
alone program or macro where AliHLTSystem is used directly without any
embedding functionality. In this case, file publishers are often the appropriate
method. Depending on the type of the file, the FilePublisher or RootFilePub-
lisher components can be used.

Running HLT analysis embedded into AliRoot requires special publishers to
get hold on internal data of the processing loop. There are different use cases,
like simulation, reconstruction and AliRoot analysis framework, but all have
in common the separation of the event loop and steering from the actual
detector code. Access to data and incrementation of the event position is
provided by steering classes calling the detector processing for each event.

In addition, each detector can define and implement its own data sources in
order to provide a better suited translation of data into formats understood
by the components of the analysis chain.

In all cases, source and sink components need access to the internal AliRoot
data handlers, the RunLoader and RawReader as described in Sec. 4.5.1. The
HLT analysis framework implements a base class for that kind of data access,
the AliHLTOfflineInterface class, Figure 4.15 shows its dependency tree.

Two child classes are especially designed for the purpose of data sources and
sinks. In order to combine functionality of a data source with access to internal

4.5. INTEGRATION INTO THE ALICE SOFTWARE FRAMEWORK 83

TObject

AliHLTOfflineInterface

AliHLTLoaderPublisherComponent AliHLTRawReaderPublisherComponent

AliHLTOUTPublisherComponent

AliHLTOfflineDataSource AliHLTOfflineDataSink

AliHLTSampleOfflineSinkComponent

AliHLTOUTComponent

Figure 4.15: Inheritance Diagram for the AliHLTOfflineInterface class and the
common data sources and sinks provided by the HLT analysis frame-
work.

AliRoot data, the AliHLTOfflineDataSource and AliHLTOfflineDataSink

classes inherit from two base classes as demonstrated in Figure 4.16 for the
former. In the event handler methods of the off-line data source and sink
implementations, AliRoot data handlers are accessible through methods of
the AliHLTOfflineInterface:

AliRunLoader∗ GetRunLoader () const ;
AliRawReader∗ GetRawReader () const ;
AliESDEvent∗ GetESD() const ;

AliHLTComponent

AliHLTDataSource

TObject

AliHLTOfflineInterface

AliHLTOfflineDataSource

AliHLTLoaderPublisherComponent AliHLTOUTPublisherComponentAliHLTRawReaderPublisherComponent

Figure 4.16: The AliHLTOfflineDataSource class inherits functionality from
both the AliHLTDataSource and AliHLTOfflineDataSource

classes in order to combine functionality of a data source with access
to internal AliRoot data.

4.5.3 AliRoot HLT Simulation

In order to simulate the behavior of HLT analysis chains, HLT reconstruction
can be embedded into AliRoot simulation.

AliRoot simulation is steered by the AliSimulation class. The normal pro-
cedure includes the simulation of events by various event generators, simu-
lation of the detector response and the resulting signals, and the generation

84 CHAPTER 4. HLT ANALYSIS FRAMEWORK

Listing 4.12: Manual intervention regarding HLT setup in AliRoot simulation.
1 Al iS imulat ion sim ;
2 . . .
3 sim . SetRunHLT("libAliHLTSample.so loglevel=0x7c") ;

of data in raw format. A complex configuration stored in a macro Config.C
determines the exact process and the parameters like e.g. magnetic field, the
generator and its settings to be used, the included sub-detectors, and decay
processes.

Since HLT requires all other detector data to be simulated, HLT simulation
is run as the last step of AliSimulation. Depending on the configuration,
simulation can stop at the level of generated Digits which are the format
of simulated detector response signals. Optionally, those signals can be con-
verted into simulated raw data of exactly the format delivered by the detector
front-end electronics. Event reconstruction can be run either from digit data
or raw data. This separation is necessary as many of the data productions on
the GRID skip the raw data generation at the end of the simulation. Con-
sequently, input to HLT chains must be provided for both alternatives and
depending on the availability of simulated raw data or just digit data, the
input to the HLT chains is chosen. The actual analysis is designed to be
independent of the type of input.

In the default configuration of AliSimulation the HLT analysis chain to be
run depends on the available plug-ins as described in Sec. 4.5.2. HLT simula-
tion is controlled by the class AliHLTSimulation which loads default libraries
and runs chains according to the available agents. Figure 4.17 illustrates the
whole process.

For the development process and debugging, manual intervention is pos-
sible and the options for the HLT simulation can be set by means of the
AliSimulation::SetRunHLT function (listing 4.12). It allows to specify sin-
gle module libraries as well as options like the logging level. The options are
propagated to AliHLTSystem and have already been introduced in chapter
4.5.2. An example macro for AliRoot simulation is shown in listing 4.13.

Default HLT Chains in AliSimulation

Currently, default HLT simulation includes TPC reconstruction and MUON
reconstruction. As soon as other detector modules are ready for productions,
chains can be defined by means of the AliHLTModuleAgent as described in
chapter 4.2.4.

4.5. INTEGRATION INTO THE ALICE SOFTWARE FRAMEWORK 85

Listing 4.13: Example macro for AliRoot-embedded HLT simulation, building
on already simulated detector data. Example taken from AliRoot
distribution (HLT/exa/sim-hlt-rawddl.C)

1 void s im h l t rawdd l () {
2 Al iS imulat ion sim ;
3

4 // sw i t ch o f s imu la t i on and data genera t ion
5 sim . SetRunGeneration (kFALSE) ;
6 sim . SetMakeDigits ("") ;
7 sim . SetMakeSDigits ("") ;
8 sim . SetMakeDigitsFromHits ("") ;
9 sim . SetMakeTrigger ("") ;

10

11 // wr i t e HLT raw data s ince we want to r ep l a c e the o r i g i n a l
12 // d e t e c t o r data from the HLTOUT
13 sim . SetWriteRawData ("HLT") ;
14

15 // s e t the op t i ons f o r the HLT s imu la t i on :
16 // l i bA l iHLTUt i l . so libAliHLTSample . so
17 // loads the s p e c i f i e d l i b r a r i e s s ince the HLT chain w i l l use components
18 // from those two
19 // l o g l e v e l=
20 // the i n t e r n a l l o g g i n g l e v e l in the HLT, use 0x7c f o r h i ghe r v e r b o s i t y
21 // con f i g=< f i l e >

22 // the con f i g u ra t i on to be run
23 // chains=<chain>

24 // run the s p e c i f i e d chains , d e f ined in the con f i g u ra t i on macro
25 sim . SetRunHLT("libAliHLTUtil.so libAliHLTSample.so loglevel=0x7c "

26 "config=\$ALICE_ROOT/HLT/exa/conf-hlt-rawddl.C "

27 "chains=publisher") ;
28 sim .Run () ;
29 }
30

31 void con f h l t r awdd l () {
32 ///
33 ///
34 //
35 // the con f i g u ra t i on
36 TString arg ;
37

38 // pu b l i s h e r con f i g u r a t i on
39 // see AliHLTRawReaderPublisherComponent f o r d e t a i l s
40 arg . Form("-detector ITSSDD -skipempty -datatype ’DDL_RAW ’ ’SMPL’ -verbose") ;
41 AliHLTConfiguration pubconf ("publisher" , "AliRawReaderPublisher" , NULL ,
42 arg . Data ()) ;
43

44 // curren t l y , no more components in the chain , the o r i g i n a l data i s j u s t
45 // forwarded to the HLTOUT
46 }

86 CHAPTER 4. HLT ANALYSIS FRAMEWORK

AliHLTModuleAgentAliHLTSystemAliHLTSimulation Component LibrariesAliSimulation

processing
Component

− Monte Carlo simulation
− ...
− Digitization

Add HLT digit and DDL raw data

Init Load Libraries Register

Reconstruct

Query Configurations

Run chains

RunHLT

E
ve

nt
 L

oo
p

InitHLT

Detector RAW DDL data

Create RAW date/root files

AliHLTOUTComponent

Figure 4.17: Sequence of HLT reconstruction embedded into AliRoot simulation
(AliSimulation). After the simulation process for the sub-detectors
has been finished, HLT simulation runs over all events. Depending
on the defined output, the HLT digit file and raw data are generated.

Output of HLT simulation

The High-Level Trigger system establishes 10 DDL connections to the Data
Acquisition. The HLT decision and payload is transported distributed over
the 10 available links. In case of HLT simulation, there is no intermediate
digit file created. HLT only simulates its DDL raw data links. However,
those DDL files are also stored in an HLT.digit file. in order to include HLT
simulation also in simulations skipping the raw data generation. ROOT’s
TTree class provides a versatile tool for storage of repetitive data sets. In the
case of HLT.digits.root, the content of the 10 raw DDLs is stored in branches
of a TTree object named rawhltout. Relying on ROOT functionality has
the advantage of getting tools for data visualization and investigation, and a
graphical user interface. With a minimum effort, handlers for data objects
can be implemented.

All output data blocks generated by the components of the last stage are
collected by a special component, the AliHLTOUTComponent. This compon-
ent is implemented in libHLTsim and is added automatically by the system
whenever the defined chains produce some output. The AliHLTOUTComponent
is a special data sink component which produces the output similar to the
HLTOUT of the on-line HLT cluster. The format will be described in Sec.
5.3.

4.5. INTEGRATION INTO THE ALICE SOFTWARE FRAMEWORK 87

4.5.4 AliRoot HLT Reconstruction

AliRoot reconstruction is steered by the class AliReconstruction. Several
options are possible in order to deactivate certain detectors, choose the in-
put and to define the output. Also AliRoot reconstruction implements a
modular system. The specific detector reconstruction is carried out by detec-
tor plug-ins. The interface for the so called reconstructors is defined by the
AliReconstructor class. At the beginning of the reconstruction, the steering
class carries out the setup of data input, OCDB, and all necessary reconstruc-
tor modules. After the initialization, the event loop is entered which consists
of mainly three steps:

1. Local event reconstruction is usually the place for digit/raw data con-
version to clusters/space points.

2. Event reconstruction accomplishes track and event reconstruction on the
basis of clusters and space points.

3. ESD fill as the last step of reconstruction writes the information to the
ESD.

Like all other detector modules, HLT implements the AliHLTReconstructor

plug-in in order to be hooked up into the event reconstruction loop. How-
ever, all analysis is supposed to run on-line on the HLT farm. Thus, only the
processing of the HLTOUT data is necessary during the default reconstruc-
tion. For a fully reconstructed event, the ESD data block is extracted from
the HLTOUT payload and stored into the HLT tree of the final ESD. Thus,
AliReconstructor::FillESD has turned out to be the natural place to run
HLTOUT processing.

Although only HLTOUT processing is needed in the course of normal re-
construction, AliHLTReconstructor provides the full flexibility to run also
HLT chains embedded into AliReconstruction. This is mainly for the pur-
pose of debugging and the development cycle. HLT chains in the course of
AliReconstruction can only run on raw data. This restriction is imposed by
the design of the AliReconstructor interface. The data flow is illustrated in
Figure 4.18, listing 4.14 shows an example macro.

Any data which are produced by the chain are automatically added to the
HLT output collection. In other words, the actual location of an HLT chain
in the overall data processing flow is irrelevant. It can be processed as part of
the normal on-line processing and the result be added to HLTOUT, it can run
embedded into AliSimulation and the output added to simulated HLTOUT,
or it can run embedded into AliReconstruction and the output is added as

88 CHAPTER 4. HLT ANALYSIS FRAMEWORK

AliHLTModuleAgentAliHLTSystemAliHLTReconstructorAliReconstruction Component Libraries

Event Tracking

processing
Component

Init Load Libraries Register

Event Reconstruction Reconstruct

E
ve

nt
 L

oo
p

ESD preparation Fill ESD ProcessHLTOUT

Query Configurations

Run chains

HLTOUT handlers

Init

Figure 4.18: Sequence of HLT reconstruction embedded into AliRoot reconstruc-
tion (AliReconstruction). Processing of HLT output will be dis-
cussed in section 5.3.

sub-collection to the existing HLTOUT. The developer has the full flexibility
to test and commission a set of components.

Default Reconstruction Chains

All module agents can define default reconstruction chains by means of the
function AliHLTModuleAgent::GetReconstructionChains. The same func-
tion is used for both AliRoot simulation and reconstruction. The two applica-
tions differ by the available parameters. In the former case, the RunLoader is
always available and the RawReader might be optionally provided depending
on whether raw data are simulated or not. In the latter case, the RunLoader
is always NULL and the RawReader is available. Currently, none of the de-
tector modules is using the possibility to run default reconstruction chains in
the course of AliReconstruction. However, there are several use cases for
stand-alone runs and test macros.

4.5. INTEGRATION INTO THE ALICE SOFTWARE FRAMEWORK 89

Listing 4.14: Example macro for AliRoot HLT reconstruction. DDL data blocks
from the RawReader are published, the connected FileWriter com-
ponent writes the blocks to files. The complete macro is part of the
AliRoot distribution (HLT/exa/publish-rawreader-data.C)

1 void pub l i sh rawreade r data (const char∗ input , int iMinDDLno , int iMaxDDLno)
2 {
3 ///
4 //
5 // some d e f a u l t s
6 const char∗ baseName="RAW.ddl" ;
7

8 Al iRecons t ruc t i on rec ;
9 r e c . SetInput (input) ;

10 r e c . SetOption ("HLT" , "libAliHLTUtil.so loglevel=0x7c chains=sink1") ;
11

12 ///
13 //
14 // se tup o f the HLT system
15 gSystem−>Load ("libHLTrec") ;
16 AliHLTSystem∗ pHLT=AliHLTReconstructorBase : : GetInstance () ;
17 i f (!pHLT) {
18 c e r r << "fatal error: can not get HLT instance" << endl ;
19 }
20

21 ///
22 //
23 // the con f i g u ra t i on chain
24 TString wr i t e r Input ;
25 TString arg ;
26

27 arg . Form("-minid %d -maxid %d -skipempty -verbose" , iMinDDLno , iMaxDDLno) ;
28 AliHLTConfiguration pubconf ("publisher" , "AliRawReaderPublisher" ,
29 NULL , arg . Data ()) ;
30 i f (! wr i t e r Input . I sNu l l ()) wr i t e r Input+=" " ;
31 wr i t e r Input+="publisher" ;
32

33 // the wr i t e r c on f i g u ra t i on
34 arg . Form("-specfmt=_%%d -subdir=out%%d -blocknofmt= -idfmt= -datafile %s" ,
35 baseName) ;
36 AliHLTConfiguration fwconf ("sink1" , "FileWriter" ,
37 wr i t e r Input . Data () , arg . Data ()) ;
38

39 ///
40 //
41 // the r e con s t ru c t i on loop
42 r e c . SetRunReconstruction ("HLT") ;
43 r e c .Run () ;
44 }

90 CHAPTER 4. HLT ANALYSIS FRAMEWORK

4.5.5 Event Summary Data (ESD)

As the analysis of experiment data is a multi-stage process, in particular data
formats for intermediate storage and exchange between stages play an im-
portant role. The result of the event reconstruction is stored in the Event
Summary Data (ESD). Although the design and development of the ESD
concept is not part of the presented work, this section introduces the concept
for better understanding of the following sections. The ESD is the input to
the physics analysis and contains all relevant information about the event
such as reconstructed tracks for various sub-detectors, multiplicity informa-
tion, clusters in the calorimeters, raw data error log, and vertex information.
The ESD structure is provided by the AliESDEvent class and is sketched in
Figure 4.19.

Figure 4.19: Structure of the AliESDEvent class. From [44].

The ESD is considered the container for all relevant data of a reconstructed
event. Different members take account for the various types of information,
e.g. vertex, multiplicity, deposited energy, and reconstructed tracks. The
following description refers to the members of AliESDEvent shown in Fig-
ure 4.19.

Reconstructed Tracks

One major contribution to the ESD are arrays of reconstructed tracks. Due
to the multi-purpose nature of the ALICE detector there are several types of
reconstructed tracks foreseen. Tracks for the barrel part of the detector (ITS,
TPC, TRD) are stored in the Tracks array, tracks for the MUON spectrometer

4.5. INTEGRATION INTO THE ALICE SOFTWARE FRAMEWORK 91

are stored in the MUONTracks member. All ESD members of this type are
stored as arrays, namely the TClonesArray container provided by ROOT (see
Sec. 4.6.2). Different types of tracks are reconstructed by the various modules
of the reconstruction also in on-line analysis. Following the reconstruction
hierarchy described in Sec. 3.3, each detector reconstruction ends up with the
relevant information. Converting it to ESD format allows to easily exchange
those information between modules. E.g. tracks found in TPC and TRD
must be matched to produce combined barrel tracking information, and ITS
reconstruction needs seeds form the TPC.

However, there is a big impact on the performance when using ESD objects
for data exchange. The multi-purpose design of the AliESDEvent class comes
at the cost of introduced overhead in memory consumption and processing
time (see section 4.6).

Vertex Information

There are several sub-detectors producing a vertex information which all are
stored in members of type AliESDVertex. Currently, vertex information
produced by TPC and ITS is stored separately (members fTPCVertex and
fSPDVertex) as well as a combined information (members fPrimaryVertex).

Multiplicity Information

Multiplicity information is retrieved from FMD, VZERO, and SPD and stored
in corresponding objects.

Calorimeter Information

There are two calorimeters in ALICE contributing with energy and trigger
information. It is stored separately (members fPHOSCells and fEMCALCells)
and combined (member fCaloClusters).

Error Log

Raw data can be corrupted due to various reasons. As a consequence, events
might not be reconstructed or only partially. Incomplete and missing events
have a significant impact on statistics and analysis. Processing failures must
be collected and taken into account when normalizing physics results. The
error log is produced at the level of reading raw data, the AliRawReader class
provides appropriate functionality for efficient archiving of raw data errors.

92 CHAPTER 4. HLT ANALYSIS FRAMEWORK

4.6 HLT Data Exchange

Beside the actual processing of data, the total processing cost in the High-
Level Trigger system is also heavily influenced by two more contributions,
memory access and data exchange. Memory access within an algorithm is
very important for its performance. All modern microprocessors implement
a caching mechanism in order to reduce memory access latency. The cache
is a small but fast memory which stores a copy of the most frequently used
data. The memory is organized in so called pages and the cache holds copies
of pages of the main memory. An indexing scheme allows the localization.
As long as data are mirrored in the cache, the processor can read and write
memory with very short latency. Every access to data not currently stored
in cache requires more clock cycles. As a consequence, algorithms reach their
maximum performance when memory access is local and contiguous within a
few pages possible to be mirrored in cache.

A second important role plays data exchange between different stages of the
reconstruction. Regardless the fact of distribution of data processing, data
need to be exchanged. That holds for data treatment in one single process as
well as for distributed processing as utilized in the ALICE HLT. Intermediate
data need to be stored in memory, on hard disk, or have to be transferred
via network. In any case, data formats must be defined and understood by
producers and consumers.

This section investigates different possibilities for data exchange between pro-
cesses running on different nodes by means of the example of storing track
parameters.

4.6.1 C Data Structures

Proprietary Data Structures in C allow the most efficient data exchange due
to a minimized overhead. A C-structure is simply a collection of member
variables of varying data types. Listing 4.15 gives an example of a structure
describing tracks in a specific parametrization. The structure is motivated
by the class AliExternalTrackParam, base class for tracks parametrization
in AliRoot, and describes tracks in a local coordinate system rotated by the
angle alpha. The track model has 5 parameters (Y, Z, 1/Pt, sine of the
azimuthal angle and tangent of polar angle) and thus 15 members in the co-
variance matrix. The coordinate of the last point assigned to the track is
stored as well as an optional index list all points assigned to the track. The
data format consists just of an array of such C-structures in memory and a
variable containing the number of such structures in the beginning. This ap-
proach provides the most effective method to transfer data, it is reduced to

4.6. HLT DATA EXCHANGE 93

Listing 4.15: The AliHLTExternalTrackParam C-structure as used for exchange
of track information between HLT components.

1 struct AliHLTExternalTrackParam
2 {
3 F loa t t fAlpha ;
4 F loa t t fX ;
5 F loa t t fY ;
6 F loa t t fZ ;
7 F loa t t fLastX ;
8 F loa t t fLastY ;
9 F loa t t fLastZ ;

10 F loa t t fq1Pt ;
11 F loa t t f S i nPs i ;
12 F loa t t fTgl ;
13 Double t fC [1 5] ;
14 UInt t fNPoints ;
15 UInt t fPointIDs [0] ;
16 } ;

the minimal necessary information.

In order to understand the design of cross-platform data exchange approaches,
data storage in memory has been introduced in section 3.4.4. Endianness and
structure alignment directly influence the computing scheme of the ALICE
High-Level Trigger. C/C++ provides different basic data types of varying
sizes, e.g. a floating point variable of single precision is 32 bits long, a short
integer occupies 16 bits, and a character variable 8 bits. The concept of data
types of different sizes is not restricted to the C/C++ language.

Figure 4.20 sketches utilization of a C-structure for data transport between
two processes. In this approach, no data format and system information is
shipped together with the data. This does not impose a problem on homoge-
neous processing architectures where every machine uses the same computing
architecture. An image of the memory segment used by one component and
holding the relevant data can simply be provided to a consumer component,
either via shared memory or copying data over network.

4.6.2 ROOT Objects

Appropriate handling of changes in data alignment, endianness and other
system properties is in particular important for the output of the HLT, no
matter if it are data for monitoring, designated to be stored in the OCDB or
reconstructed events to be stored in the data stream. This section describes
the approach provided by the ROOT framework.

94 CHAPTER 4. HLT ANALYSIS FRAMEWORK

Pr
oc

es
si

ng
 A

lg
or

ith
m

Processing A
lgorithm

Transmission

Data Buffer

Figure 4.20: C data structures are allocated in memory and can be directly ac-
cessed from the algorithm. Shared memory allows data transport to
the next algorithm without copying of data.

Whenever a complex object in its representation in memory is going to be
saved into a file for later use or sent over network it needs to be translated
into a binary format. The translation is carried out using a serialization
format. Reading the resulting series of bytes according to the format allows
the consumer to restore an exact clone of the original object for its own use.

Serialization of data and transparent storage and transmission of objects is
a very effective method of simplifying development. ROOT has an inbuilt
serialization mechanism for its objects. The approach is based on the so
called C Interpreter (CINT) dictionary generator, an automatic code parser
and generator of, besides other functionality, object serialization methods.
The methods are called Streamers and are widely used within the ROOT
framework allowing the user cross-platform data storage and transmission.
The process is sketched in Figure 4.21. An algorithm cannot directly work on
the transmitted data buffer but has internal objects for its calculations. The
streamer of the object is called in order to prepare data for transmission. The
consumer needs to rebuild a clone object from the serialized information.

However, the versatile and transparent serialization of objects comes at the
cost of performance. Data need to be copied several times, bytes swapped,
etc, which all consume a share of the available processing time. The transport
of ROOT object needs to be evaluated with care for each single application
taking into account all constraints in order to find the optimum between
performance and uniform data storage.

4.6. HLT DATA EXCHANGE 95

member

member

member

Object, V1 Transmission

Class Description Data member Data member Data member

...

...Data Buffer

Serialization fomat
− byte order
− data alignment

− class description
− member size

Processing Algorithm

...

member

member

member

member

Clone, V2

Processing Algorithm

Figure 4.21: Serialization of objects into a buffer. Data members are saved ac-
cording to a serialization format which determines byte order, align-
ment and size of data members. If the class description in the con-
sumer application is different, new members are initialized with de-
fault values from the class description.

Serialization of Single Objects

As an example, the track parametrization class AliExternalTrackParam will
be used. This class is commonly used in AliRoot to store reconstructed tracks.
It describes tracks in terms of 5 parameters and associated 15 covariance
matrix elements (listing 4.16), in total 20 double precision float members.
The parametrization is with respect to a starting point and angle.

AliExternalTrackParam inherits through AliVParticle from TObject and
gets additional member variables from this base class.

Listing 4.16: The AliExternalTrackParam class, used for common track
parametrization in AliRoot

1 class AliExternalTrackParam : public Al iVPar t i c l e {
2 public :
3 //
4

5 private :
6 Double32 t fX ; // X coord ina te f o r the po in t o f parametr i za t i on
7 Double32 t fAlpha ; // Local <−−>g l o b a l coor . system ro t a t i on ang le
8 Double32 t fP [5] ; // The t rack parameters
9 Double32 t fC [1 5] ; // The t rack parameter covar iance matrix

10 } ;

A double precision float member is represented by 8 bytes in memory. The
equivalent C-structure needs 8∗22 = 176 bytes to represent this characteriza-
tion in memory. The 53 bit mantissa allows a precision of approximately 16
decimal digits. Since most of the realistic scenarios are not limited by the nu-

96 CHAPTER 4. HLT ANALYSIS FRAMEWORK

Memory Serialization

C-structure double precision 176 176

C-structure single precision 88 88

ROOT object 188 148

Table 4.3: Data sizes of the serialized AliExternalTrackParam object.

merical precision but the detector resolution, single precision float values with
4 bytes are sufficient. ROOT uses double precision for variables in memory
and automatically reduces to single precision when the object is serialized.
Consequently, a reference C-structure would need 88 bytes.

A serialized AliHLTExternalTrackParam objects totals 148 bytes as shown in
Table 4.3. The overhead of two thirds comes from additional data members in
the base class and class information stored as part of the serialization format.
In addition, endianness of all members is eventually changed to network byte
order, where the most significant byte comes first.

Serialization of Arrays of Objects

ROOT provides several types of lists which all can be used to store and
serialize an array of objects. Some of those lists like TList and TObjArray

can be used for objects of different type. This case will not be considered
in the course of this section. TObjArray describes an array of objects with
random access by the array index. The collection basically manages a list of
pointers to objects which are generated at varying locations in memory. The
memory is not contiguous.

The second possibility for an array of identically objects is provided by the
class TClonesArray. The collection class is designed to overcome the problem
of memory fragmentation by allocating and reserving a certain amount of
memory for a limited number of objects. If the number of objects are within
the original limit, memory does not need to be allocated on and on, objects
are just placed at the locations in the reserved memory.

Serialization of arrays of identical objects benefits from a few optimizations.
Class information needs only to be stored once and is valid for all objects.
The resulting buffer can be significantly reduced by applying data compres-
sion algorithms. The compression is more efficient as the number of objects
increase.

ROOT implements a compression technique on the working principle of the

4.6. HLT DATA EXCHANGE 97

deflate7 algorithm. It is based on the search for repetitive patterns. The
length of the pattern is determined by the compression level. Higher lev-
els allow better compression ratios, however processing time and memory
consumption increase as the length of the pattern increases. Figure 4.22 il-
lustrates the achievable ratios for TClonesArray structures of 100 to 10000
AliExternalTrackParam elements. The data is compressed to about 5 to
10 % depending on compression level and number of elements in the array.
Measurements on the processing performance are presented in section 6.4.

Array size [elements]
0 2000 4000 6000 8000 10000

Si
ze

 o
f c

om
pr

es
se

d
bu

ffe
r [

%
]

5.5

6

6.5

7

7.5

8

8.5

9

9.5

Level 1

Level 9

compression ratio of ROOT object compression

Figure 4.22: Compression ratios achieved with the deflate algorithm applied to a
TClonesArray of AliExternalTrackParam objects.

7Deflate is a lossless data compression algorithm, a description can be found in e.g. [45]

98 CHAPTER 4. HLT ANALYSIS FRAMEWORK

5. Global HLT data flow and processing scheme

This chapter introduces the work flow of the ALICE HLT during operation of
the experiment. Besides the generation of trigger information, HLT also pro-
duces data like any other detector. The content of this payload depends on the
HLT configuration. Focus will be put on the on-line generation of HLTOUT
payload and the subsequent processing during off-line event reconstruction.

5.1 Data Flow during Operation of ALICE

HLT entails reconstructed events at the full data rate. The reconstructed
events are stored in ESD format and the basis for on-line physics analysis
producing trigger information. However, due to the optimization for high data
throughput, content of the ESD differs from the off-line reconstructed ESD.
The access to calibration information might be limited for HLT, algorithms
are optimized for high speed processing, and event processing is distributed
on the level of event fragments.

Figure 5.1: Raw data flow during data taking. Beside event selection, HLT stores
fully reconstructed events and proprietary data from the reconstruc-
tion in the raw data stream.

This makes output of the HLT sufficient for trigger algorithms, but not for
sophisticated and accurate off-line analysis. Still, the on-line information is
very valuable since statistics is higher by a factor 10 to 20. This makes
information from the on-line ESD an excellent tool for rough studies and
quick scan through data in order to find interesting aspects in the physics
analysis.

Furthermore, the result of the on-line reconstruction and triggering algorithms
needs to be stored in order to verify the operation of HLT. Detector algorithms

99

100 CHAPTER 5. GLOBAL HLT DATA FLOW AND PROCESSING SCHEME

are also allowed to store proprietary data, which are treated during the off-
line reconstruction. In either case, the design of the HLT data flow and HLT
analysis framework allows for the required flexibility.

The general data flow during operation of the experiment and data taking
is described in the corresponding chapter of [46]. The specific data flow for
HLT is outlined in Figure 5.1. The data path is split and data are provided
to DAQ and HLT in parallel. HLT adds its payload to the raw data stream
according to the chain configuration. In any case, a variety of preprocessed
data are included in the HLT payload. Preprocessed data like the ESD data
set coexists with raw data from detectors in the ALICE raw data stream.

During the off-line event reconstruction, data blocks just need to be extracted
from the HLT payload. Some data blocks might be of proprietary nature and
need special treatment. HLT analysis framework implements the correspond-
ing plug-in infrastructure. For the end user, the overall data flow appears as
a transparent transport layer. This allows to focus on implementation of HLT
components and subsequent off-line treatment of their output.

5.2 Generating the Event Summary Data

Event Summary Data is the storage format of the reconstructed event and
has been introduced in section 4.5.5. The final ESD information is stored in
a ROOT file AliESDs.root. The file contains two TTree objects, one for the
off-line ESD and one for the HLT ESD respectively.

1 root [1] . l s
2 TFile ∗∗ AliESDs . root
3 TFile ∗ AliESDs . root
4 KEY: TTree esdTree ; 1 Tree with ESD ob j e c t s
5 KEY: TTree HLTesdTree ; 1 Tree with HLT ESD ob j e c t s

Figure 5.2 shows the possible reconstruction paths leading to HLT ESD. The
path of standard operation is (c), where detector data are processed by the
on-line farm and the result is part of the HLT raw data. Options (a) and
(b) implement both HLT response for the AliRoot simulation. The post-
processing of detector raw data by HLT algorithms and HLT chains is mostly
a development feature (d).

It is important to notice that the format of the two data sets esdTree and
HLTesdTree is identical. The content of objects of type AliESDEvent is stored
in both cases. This uniform treatment of the two data sets allows detector
algorithms to transparently fill the relevant field of the ESD. The algorithm
does not notice whether it works on an HLT ESD or off-line ESD. This uni-
formity is especially important for running off-line analysis algorithms on the

5.3. HIGH-LEVEL TRIGGER OUTPUT - HLTOUT 101

(d)(c)(b)(a)

DetectorAliRoot Simulation

HLT

HLT
raw data

Detector
raw data

hltESD

HLT data extraction HLT reconstruction

HLT Digits

AliRoot Reconstruction

Figure 5.2: Work flow for the generation of Event Summary Data by the HLT.

HLT farm. As mentioned, HLT analysis framework allows not only to run
HLT components in either on-line or off-line environment, but also to embed
original off-line algorithms into on-line components.

Only at the stage of AliRoot reconstruction on-line and off-line ESD become
separated data sets. One more peculiarity effects the handling of HLT ESDs.
In contrary to off-line reconstruction where the events of the esdTree are
filled one after the other, the on-line ESD contains only one event at a time.
Also, different sub-chains might fill different members of the ESD. At time of
off-line reconstruction, those individual ESDs must be merged and added to
the HLTesdTree, see section 5.5.

In the AliRoot analysis subsequent to reconstruction, input can be easily
switched from off-line to HLT ESD. The same analysis can be applied without
any change in source code.

5.3 High-Level Trigger output - HLTOUT

The output of the ALICE High-Level Trigger consists of a trigger decision
and generated data. Both data blocks are sent over the HLT output DDL to
the DAQs LDCs. HLTOUT data follow the general DDL format. Each DDL
block consists of the Common Data Header (CDH) and the DDL payload
[32]. Normally, DAQ does not touch the data except for the CDH which is an
identifier of the data block within the system and important for redirection
of data and steering of the event building. In the case of HLT however,

102 CHAPTER 5. GLOBAL HLT DATA FLOW AND PROCESSING SCHEME

trigger decision needs to be processed by DAQ and makes the definition of an
appropriate data format necessary. The HLT output format is defined in [31]
and contains the following blocks:

• The Common Data Header is mandatory for all DDL data. For HLT,
it also indicates the existence of an optional HLT data block by setting
corresponding bits in the CDH status and error bits. The indication of
the HLT Decision block is important for the DAQ system to treat trigger
decisions.

• A mandatory HLT Event Header contains all HLT-related information
concerning the event fragment, mainly a version number and an extended
event identification.

• The optional HLT Decision block describes the decision taken by the
HLT farm for the given event. The decision consists of a DDL readout
list. In mode C, DAQ reads only the DDLs which have been flagged by
HLT to be read out.

• HLT optional Payload block contains all data produced by the HLT farm
for the given event.

5.3.1 Generation of HLT Output

Dedicated components of the PubSub framework generate the HLT output.
Those components are running on the so called HLTOUT nodes of the HLT
farm. HLTOUT nodes have H-RORC devices installed which are equipped
with the DAQ SIU. In total, 10 DDL links defined for HLT to be read by DAQ.
The HLTOUTFormatter component at the end of the HLT chain subscribes to
all data blocks to be published including the decision data block, which is
generated by dedicated HLTDecision components. The formatter component
prepares the output to be sent and transfers it via shared memory and the
PCI-X interface to the H-RORC cards.

5.3.2 Decision List

When running in mode C, DAQ includes original DDLs according to the HLT
Decision into the event building. The readout list determines which detector
DDLs are stored. This can reach from full rejection of the detector data links
and just storing a relatively small event summary for the HLT to full readout
of the detectors because of an interesting event.

The HLT Decision List consists of a bit field as described in [31]. The current
version defines 30 words of 32-bits for the Decision List. In order to account

5.4. HLTOUT PROCESSING 103

for extensions, the size of the pattern list is stored in the first word and
allows together with the overall format version identifier the preservation of
compatibility.

5.3.3 HLT Output Payload

Depending on the running HLT chain configuration, data blocks are produced
by HLT components in the last stage of the HLT analysis chain. Examples are
ESD data blocks describing a short summary of the reconstructed event, com-
pressed DDL raw data, and proprietary data from the event reconstruction.
HLTOUT payload contains a collection of all data blocks in the HOMER for-
mat. As described in sec. 3.9.2, HOMER interface aims to provide a system
independent interface for shipping data blocks out of the HLT analysis chain.
Data blocks are identified by HOMER descriptors specifying data type and
specification, system endianness and alignment and other relevant informa-
tion. It is important to notice that the HOMER interface cannot handle the
system dependence of the data blocks itself because the nature of the data is
unknown.

For that reason, care has to be taken concerning the format of data blocks,
in particular whenever the system architecture of the producer and consumer
can be different. This is the case for HLTOUT data blocks which are produced
on the HLT farm and analyzed later on another farm or even the Grid. The
producer and the consumer have to entirely handle the data and necessary
conversions. Methods are provided for the indication of changes in endianness
and alignment.

The origin and arrangement of HLT data blocks in HOMER format is illus-
trated schematically in Figure 5.3.

5.4 HLTOUT processing

5.4.1 Overview

As outlined in section 4.5.4, AliRoot event reconstruction loop consists of three
major steps: (i) Local event reconstruction - clusterization of the detector raw
data, e.g. reconstruction of space points, (ii) Tracking, and (iii) Filling of
ESD.

Some minor steps have been ignored here. Each of the steps is realized as
a method of the AliReconstructor interface. Detector implementations us-
ing this plug-in interface implement the actual processing of one step for a
detector.

104 CHAPTER 5. GLOBAL HLT DATA FLOW AND PROCESSING SCHEME

TPC RAW

Global ESD

TPC COMP

Global
Level

Detector
Level

Detector
Reconstruction

TPC ESD

D
et

ec
to

r i
np

ut

Storage
HLTOUT
payload

Figure 5.3: Constituents of HLT output payload. Different components con-
nected to HLTOUT contribute to the HLTOUT collection. For sim-
plicity, components are sketched in an example hierarchy. Exemplary
content is denoted (i) TPC RAW - TPC raw data, (ii) TPC COMP - TPC
compressed raw data, (iii) TPC ESD - ESD of TPC on-line reconstruc-
tion, and (iv) Global ESD - ESD from global reconstruction.

The modularity of the reconstruction is achieved by common processing of
global event properties and the number of plug-ins defined. In this scheme,
HLTOUT processing takes formally place in the function FillESD of the
AliHLTReconstructor. As already pointed out, there is no HLT reconstruc-
tion to be executed in the normal reconstruction cycle as all HLT reconstruc-
tion has been either (i) carried out on-line on the HLT farm during acquisition
of data, or (ii) embedded into AliRoot simulation. In either case, the result
is already present and stored as part of the HLTOUT payload.

During AliRoot reconstruction, HLT is the first module to be called. This en-
sures that HLT data can be provided to other modules during reconstruction.

Data blocks of the HLTOUT payload are of various origins and the processing
depends on the knowledge of data format. Thus, for most of the data blocks,
specific implementations are required and the developer of a component is
engaged to implement also the corresponding data treatment. An effort has
been made to collect the “thematically” adjacent source code in one place. A
similar modular framework like the component libraries has been developed
for HLTOUT data. For each type of data a handler must be available in the
system. HLTOUT handlers are implemented by the different modules. The
system queries module agents whether a handler can be provided for a certain
data type by its module. In the processing loop, the AliHLTModuleAgent

of the module creates the appropriate handler for a data block. Figure 5.4
illustrates the dependencies of a module library and the transparent data flow.

5.4. HLTOUT PROCESSING 105

DAQ

HLT

Component Data HandlerAgent

Reconstruction
Off−line

Module Library

Storage

Figure 5.4: The complex data transport is transparent for the developer of an
HLT module library.

5.4.2 Classification of HLTOUT data blocks

The data type of the individual blocks is set by the producer components
and specifies the nature of the required data processing. AliHLTOUTHandler

provides the interface for HLTOUT handlers, which consists mainly of one
processing function. The output and interpretation of the data depends on
the type of the handler. Depending on the data type, common functionality
can be classified, e.g. there might be several components producing ESD ob-
jects. The hierarchy of default HLTOUT handlers provided by the framework
enables the developer to add data treatment for specific data blocks with
a minimum of effort. There are 5 groups of HLTOUT handlers, which are
described below in more detail.

• kESD: Output is in ESD format and can be handled by the framework

• kRawReader: Data describes DDL raw format

• kRawStream: Pre-analyzed data to be fed into the normal reconstruction

• kChain: Data blocks to be processed by an HLT analysis chain

• kProprietary: Handler for detector specific data blocks.

The handlers kRawReader and kRawStream have a special role for data re-
placement as described in section 5.6. The processing sequence for the other
handlers is sketched in Figure 5.5. All kChain handlers are processed first.
Since those utilize a normal HLT chain, the output is added to the HLTOUT
collection. This allows kChain handlers to generate an ESD as output and
pipe this into the normal ESD processing just following as the next step.

HLTOUT processing is handler-oriented instead of block-oriented. The same
handler can be defined for more than one block and is called only once.

106 CHAPTER 5. GLOBAL HLT DATA FLOW AND PROCESSING SCHEME

AliHLTReconstructor AliHLTSystem AliHLTOUT AliHLTModuleAgent AliHLTOUTHandler

CreateQueryInit

kChain ProcessSelect
ProcessHLTOUT

kESD ProcessSelect

kProprietary ProcessSelect

WriteESD

AddOutput

Figure 5.5: Processing sequence HLT output payload. Handlers are created
within a modular system and executed in the sequence kChain →
kESD → kProprietary. kChain handlers are allowed to add new
data to the stream and kESD handlers can process the data block
prior to the writing.

ESD HLTOUT data

The framework provides standard handling of ESD data blocks in order to
write entries in the ESD during AliRoot reconstruction. Each ESD block
contains data of only one event. This is in contrast to the AliRoot scheme
where ESDs of the processed events populate a TTree. The collection of the
individual ESDs and merging by a specialized class AliHLTEsdManager are
the main properties of the kESD HLTOUT handler.

It is important to notice that ESDs data blocks do not need an HLTOUT
handler. However, an optional handler can be defined for ESD data blocks
of a certain data origin and specification. This handler is of type kESD. For
the generation of ESD data, several use cases apply. Either the producer
component in the HLT on-line chain already published the data in ESD format
or the handler provides some kind of after burner to pre-processed data and
outputs the ESD. In the first case, data blocks have to be published with data
type kAliHLTDataTypeESDTree {ESD TREE:ANY}. ANY denotes any detector
origin.

The module agent can provide a handler for multiple ESD data blocks, e.g.
for merging within one event prior to the writing. Instead of the individual
ESDs, the one provided by the handler is passed to the AliHLTEsdManager.

5.4. HLTOUT PROCESSING 107

DDL Raw HLTOUT Data

As a common HLT application, a reduced amount of detector raw data can
be produced in the original raw DDL format. The difference is the location
of data in the DDL stream. Instead of the original detector DDLs, the HLT
DDLs now contain detector raw data. Redirection of the input stream to the
off-line reconstruction will be described in section 5.6.

Preprocessed Raw HLTOUT data

Handlers of type kRawStream are foreseen though at the time of writing the
concept is not fixed. Advanced data compression algorithms can produce a
raw data format which is not convertible into the raw DDL data, e.g. lossy
compression techniques storing clusters parametrized with respect to tracks.
A specific RawStream is needed here since the data are detector specific and
the first stage of the off-line reconstruction might need some adaptions.

Adaptive compression of TPC data has been investigated ([34]). Off-line
reconstruction from such a compressed raw data requires the implementation
of a kRawStream HLTOUT handler as the original raw data cannot be restored
from the compressed data.

HLTOUT Data Processing by a Chain

The motivation for kChain HLTOUT handlers is the utilization of normal HLT
components for HLTOUT processing. As a matter of fact, an on-line analysis
chain can be split at an arbitrary stage, adding all data blocks to HLTOUT.
During the off-line reconstruction the remaining part of the analysis chain can
be executed within a kChain handler. For certain time consuming processes,
e.g. the conversion to ESD format, this technique can be an alternative way
to meet the on-line performance requirements. Of course this is only possible
if the trigger to be produced on-line does not require the data produced within
the postponed levels of the analysis chain.

The interface for kChain handlers is implemented by an HLT analysis frame-
work class, AliHLTOUTHandlerChain, which can be used either as a base class
or directly. The behavior is controlled by arguments provided to the construc-
tor. Listing 5.1 illustrates the instantiation of a specific handler as part of the
AliHLTModuleAgent::GetOutputHandler function. The concept implies def-
inition of the appropriate HLT chain (see section 4.5.2) and the handler must
be initialized with the chain id. The AliHLTOUTHandlerChain constructor
accepts arguments which have been introduced for AliHLTSystem.

108 CHAPTER 5. GLOBAL HLT DATA FLOW AND PROCESSING SCHEME

The chain(s) to be run can be defined with the ’chains=...’ argument. In fact,
an AliHLTSystem instance runs under the hood of a kChain handler.

Listing 5.1: Examplary handling of the request for a data handler. A kChain

handler is set up to process blocks of the histogram data type.
1 // a f t e r bu rne r f o r some his tograms
2 i f (dt==kAliHLTDataTypeHistogram | kAliHLTDataOriginSample) {
3 return new AliHLTOUTHandlerChain ("chains=SAMPLE-my-histo-converter") ;
4 }

The configurations can be defined by the module agent as described in Sec.
4.2.4. Alternatively, a class derived from AliHLTOUTHandlerChain can over-
load a virtual function of the base class to specify the configurations.

The HLT chain can either utilize data sink components at the end in order to
write all data appropriately or a processor component to publish data blocks
at the end of processing. All output blocks produced by the analysis chain
are added to the HLTOUT collection and are processed afterwords if handlers
are defined. As a consequence, chains run from a kChain handler can only
produce data blocks handled by kEsd and kProprietary handlers.

Proprietary HLTOUT data

All data which does not fit into one of the other categories can be processed
by handlers of type kProprietary. Such handlers are highly detector specific
and do not have any standard output to the framework. Data can be processed
and stored to files.

5.5 Common Handling of ESD objects

Common handling of HLT ESD data is one of the key-features for the flexible
data processing in HLT. As already pointed out, the exact origin of an ESD
object is fully transparent for algorithms.

ESD merging is carried out during AliReconstruction on the basis of sim-
ple merging of disjoint members. The AliHLTESDManager merges content of
multiple ESDs originating from different HLT chains and stores the result in
the HLTesdTree as illustrated in Figure 5.6.

Default ESD merging is only possible on the level of ESD members. If two
objects have non-overlapping content, e.g. only the Tracks member array is
filled with entries in one object and only the MUONTracks member in the

5.5. COMMON HANDLING OF ESD OBJECTS 109

ESD with Tracks

ESD with MUONTracks

AliESDs.root

MUON

TPC

On−line Analysis Off−line Analysis

esdTree

HLTesdTree

Figure 5.6: Schematic data flow for individual HLT ESD objects.

other object. Content of the same type needs to be matched. E.g. recon-
structed tracks of the TRD and TPC are stored both in the Tracks member.
The tracks need to be matched in order to provide a combined tracking infor-
mation. ESD matching is not part of the standard ESD handling. The task
is carried out by a dedicated component and can be executed on-line, or as
part of a kCain HLTOUT handler.

Dynamic Extension of HLT ESD Content

As outlined in section 4.5.5, the ESD has a fixed content. This is suitable
for off-line reconstruction which follows the default work-flow and produces
standardized event summary. Output of HLT on-line reconstruction depends
on the actual configuration. Furthermore, the result of the on-line analysis
has to be available during off-line analysis in order to estimate HLT triggering
efficiency. Since the ESD is the only input to off-line analysis, this information
needs to be stored in the HLT branch of the ESD.

The required dynamic extension of ESD content has been added to the ini-
tialization procedure of AliReconstruction. Due to the implementation of
the ROOT TTree functionality, the layout of the ESD must be created before
the first event is stored. The layout of the HLT ESD is determined as part
of the on-line analysis and stored into OCDB at end of run. From there it is
loaded from during the initialization of reconstruction, the actual data blocks
are treated by specific HLTOUT handlers and added to the specific entries of
the HLT ESD.

110 CHAPTER 5. GLOBAL HLT DATA FLOW AND PROCESSING SCHEME

5.6 Data redirection

As an important application of the ALICE High-Level Trigger, data rate can
be reduced by replacement of original detector data with pre-processed data
from HLT. Example for this technique are selective readout on the level of
the DDL detector data and generation of compressed raw data by loss less
compression algorithms.

The important fact here is the unchanged off-line reconstruction. Apart from
a dedicated input mechanism, the off-line reconstruction can be run with-
out changes from the corresponding data blocks of HLT payload. The input
redirection is designed to be completely transparent to the user.

The input to any reconstruction is provided by the AliRawReader as intro-
duced in section 4.5.1. The reader class allows transparent access to different
data streams. On the side of the reconstruction, a common interface is used
to access data. This part is detector independent. The decoding of data on
the detector side is done by so called raw streams following the stream model
suggested by the AliRawReader. A raw stream implements data decoding for
the first step of reconstruction.

Simple Redirection by the RawReader

In the simplest use case, an on-line component decodes data, selects some
relevant parts and encodes it back into the original raw data format. The data
block looks like it came from the detector, only the information is reduced.
Selective readout for the TPC as presented in Sec. 7.4.2 deploys this technique
to select only channels contributing to reconstructed clusters or are close by
a contributing channel. There is no loss in information and precision since all
relevant data are kept. The task of the HLTOUT handler is to retrieve the
equipment id from the data type and specification. Eventually, data needs to
be decoded in order to provide the original raw data format.

Compression of raw data is a second group of applications making use of data
redirection. On-line components compress raw data in order to reduce the
data volume. If the compression algorithm is loss-less, original data sets can
be restored. To redirect compressed data to the detector reconstruction, the
handler must not only calculate the equipment id from data specification but
also restore the original data block. The uncompressed data block is redirected
as already described.

It is important to notice that all details of the redirection are hidden from the
user. The HLT analysis framework makes use of the AliRawReader common
interface and implements a specific reader to redirect data from HLT out to

5.6. DATA REDIRECTION 111

Figure 5.7: HLT data redirection by the AliRawReaderHLT. Data of the HLTOUT
block is either passed unchanged to the reconstruction or decoded in
order to be in the format of detector raw data.

the reconstruction as sketched in Figure 5.7. As an example of an kRawReader

HLTOUT handler, loss-less Huffman compression has been applied to TPC
raw data and implemented for on-line processing ([33]). The original raw
data can be restored from the compressed data and no adaption of the off-line
reconstruction is necessary.

Implementation of Data Redirection

In order to announce the ability of redirection of a certain data block to the
framework, an HLTOUT handler must be implemented and provided to the
HLT analysis framework.

• The primary task of HLTOUT handlers of type kRawReader is the trans-
lation of HLT data specification into the equipment id of the original
DDL link.

• An optional task of the handlers is the decoding of the data block and
provision of uncompressed data in the original raw format

• The agent of the HLT module must indicate the availability of a handler.

112 CHAPTER 5. GLOBAL HLT DATA FLOW AND PROCESSING SCHEME

Data blocks in the original raw format and following the general scheme of
data identification on HLT (see Sec. 3.4.3) do not need a specific implemen-
tation of an HLTOUT handler. The framework provides two classes with the
following standard functionality:

AliHLTOUTHandlerEquId Returns data specification of the
HLTOUT block as equipment id

AliHLTOUTHandlerDetectorDDL Extracts equipment id from the bit pat-
tern, position of active bit corresponds to
id

The first is at the same time the base class for all HLTOUT handlers of type
kRawReader. All data blocks containing compressed data must implement
such a handler in order to provide the uncompressed data to the reconstruc-
tion.

The module agent needs to overload two functions of the AliHLTModuleAgent
base class:

1. GetHandlerDescription
The frame work uses that method to query all agents whether handling
of a certain data block is implemented or not.

2. GetOutputHandler
The framework calls the method after the agent announced the avail-
ability of an HLTOUT handler. The handler returns an instance of the
handler. Multiple data blocks can be served by one handler, also across
events.

An implementation of the agent functionality can be seen in the AliHLTSample
module1 as presented in listing 5.2.

Data can be accessed by means of AliRawReaderHLT if the handler has been
implemented. Macro 5.3 illustrates the usage of the reader class although it
does not execute any processing. The AliRawReaderHLT needs two arguments:

1. AliRawReaderHLT does not implement any real data access, only the
access to the HLT data links. The original RawReader must be provided
in order to access the data.

2. A string identifying the detectors for which data redirection has to be
applied.

1http://web.ift.uib.no/∼kjeks/doc/alice-hlt-current/classAliHLTAgentSample.html

5.6. DATA REDIRECTION 113

Listing 5.2: HLTOUT functionality of the AliHLTSample module
1 int
2 AliHLTAgentSample : : GetHandlerDescr ipt ion (AliHLTComponentDataType dt ,
3 AliHLTUInt32 t spec ,
4 AliHLTOUTHandlerDesc& desc)
5 const
6 {
7 // module can handle {DDLRAW ,SMPL} data b l o c k s
8 i f (dt==(kAliHLTDataTypeDDLRaw | kAliHLTDataOriginSample)) {
9 desc=AliHLTOUTHandlerDesc (kRawReader , dt , GetModuleId ()) ;

10 return 1 ;
11 }
12 return 0 ;
13 }
14

15 AliHLTOUTHandler∗
16 AliHLTAgentSample : : GetOutputHandler (AliHLTComponentDataType dt ,
17 AliHLTUInt32 t /∗ spec ∗/)
18 {
19 // crea t e hand ler f o r {DDLRAW ,SMPL} data b l o c k s
20 i f (dt==(kAliHLTDataTypeDDLRaw | kAliHLTDataOriginSample)) {
21 // use the d e f a u l t hand ler
22 return new AliHLTOUTHandlerEquId ;
23 }
24 return NULL;
25 }

Listing 5.3: Example macro using the AliRawReaderHLT for access
of raw data in the HLTOUT payload. This specific
implementation of the AliRawReader is hidden by the
AliRawHLTManager::CreateRawReaderHLT.

1 {
2 AliRawReader∗ orgReader=AliRawReader : : Create (. . .) ;
3 AliRawReader∗ rawReader=NULL;
4 rawReader=AliRawHLTManager : : CreateRawReaderHLT(orgReader , "ITSSDD") ;
5 rawReader−>Se l e c t ("ITSSDD") ;
6 int count=0;
7 while (rawReader−>NextEvent ()) {
8 cout << "scanning event " << count++ << endl ;
9 UChar t∗ pSrc=NULL;

10 while (rawReader−>ReadNextData (pSrc)) {
11 cout << " equipment: " << rawReader−>GetEquipmentId () << endl ;
12 }
13 }
14 }

114 CHAPTER 5. GLOBAL HLT DATA FLOW AND PROCESSING SCHEME

For a normal AliRoot reconstruction, all functionality has been implemented
into the AliReconstruction steering class. Data redirection can be enabled
for a single detector or a group of detectors by a simple switch, the function
AliReconstruction::SetUseHLTData (listing 5.4). It has one single param-
eter, a string containing a blank-separated list of detector Ids. Detector Id’s
for use in AliRoot are defined in the class AliDAQ.

Listing 5.4: Generalized access to raw data from the HLTOUT payload in the
course of AliReconstruction. In this example, redirection is enabled
for the SDD detector.

1 {
2 Al iRecons t ruc t i on rec ;
3 // . . . s e tup r e con s t ru c t i on
4

5 // s e t the r e d i r e c t i o n f o r ITS SDD
6 r e c . SetUseHLTData ("ITSSDD") ;
7

8 r e c .Run () ;
9 }

6. Integration of the Analysis Framework

As one achievement of the presented work, the HLT analysis framework has
been fully integrated into the on-line HLT system and the AliRoot software
environment. Emphasis has been put on the realization of a stable system.
In many cases, optimization for high processing rates has been treated with
lower priority as also the data rate during the first years of LHC is expected
to be reduced. In the course of initial development of the data transportation
framework, detailed measurements in particular on the performance of inter-
process communication have been accomplished [24]. Further measurements
with different chain topologies and the data analysis framework have been
started as part of the presented work, though systematic tests have been
beyond the scope.

This chapter summarizes the current performance status of the HLT, using
benchmark tests of different chain topologies. In particular, the performance
of different data transport approaches has been studied to give an advice for
the implementation of components.

6.1 Test Suite

In order to test the Data Transport Framework, additional functionality has
been added solely for the sake of benchmarking the system. The following
requirements have been set up for the test environment:

• Data Load must be simulated. Since real processing components are not
appropriate as they introduce further degrees of freedom by carrying out
real data processing, dedicated components are required.

• Processing Load must be simulated in a controlled way and as part of
the simulation of data load in order to study cross-cut and dependencies.

• Automatic scan within a range of processing and data load.

• Catching of information from the components of the running chain.

• Negligible impact on the overall processing speed.

115

116 CHAPTER 6. INTEGRATION OF THE ANALYSIS FRAMEWORK

6.1.1 Data Load Simulation

A dedicated HLT component has been implemented for the sake of perform-
ance studies. The component AliHLTDataGenerator is an analysis processor
and creates block descriptors for fake data blocks of different size without
touching or creating physical data. There is no real processing of data, how-
ever, the component can introduce processing load within a certain range.

6.1.2 Analysis Component Statistics

The Performance scan relies on statistics of the input and output for each com-
ponent. The AliHLTComponent base class can optionally generate component
statistics data blocks. The data block stores information on processing time,
input and output size and the level within the hierarchy. The data format
is defined by the structure AliHLTComponentStatistics as shown in listing
6.1.

Listing 6.1: Format of optional component statistics data blocks
1 struct AliHLTComponentStatistics
2 {
3 AliHLTUInt32 t f S t r u c t S i z e ;
4 AliHLTUInt32 t fLeve l ;
5 AliHLTUInt32 t f I d ;
6 AliHLTUInt32 t fTime ;
7 AliHLTUInt32 t fCTime ;
8 AliHLTUInt32 t fInputBlockCount ;
9 AliHLTUInt32 t fTota l InputS i z e ;

10 AliHLTUInt32 t fOutputBlockCount ;
11 AliHLTUInt32 t fTota lOutputSize ;
12 } ;

Each component creates a data block of this format and adds it automatically
to the output with data type {COMPSTAT:PRIV}. If the input contains com-
ponent statistics blocks those are added to the new block. In order to mark
the different levels of the hierarchy, the fLevel member of the structure is set
to the maximum level of the input blocks plus one. A unique id allows to trace
back a certain data block in the final list to a specific component. The id is
derived from the component identifier within the analysis chain by application
of a CRC algorithm1. The algorithm allows to calculate a 32 bit number from
a string of arbitrary length with a low probability of identical ids for different
strings. Especially if the strings follow a certain naming scheme and differ in
just a few letters, the algorithm ensures different ids. The generation of the
list of component statistics is illustrated in Figure 6.1.

1Cyclic Redundancy Check

6.1. TEST SUITE 117

During the Start-of-Data event, each component sends its identifier string
and component arguments together with the corresponding 32bit id from the
CRC calculation in automatically added data blocks of type {COMPTABL:PRIV}
and format AliHLTComponentTableEntry. Furthermore, each component for-
wards every block of this type from input to output and all blocks are propa-
gated through the chain. Subsequent components can subscribe to the blocks
during the SOD event and create a relation between 32 bit id and real com-
ponent identifier in order to link component statistics data blocks to specific
components. The 32bit id has been introduced for performance reasons and
for the sake of fixed data length of the component statistics.

A

B

C D

ID #D

Level 2

ID #C

Level 1

ID #A

Level 0

ID #B

Level 0

Figure 6.1: Sequence of component statistics data blocks. Each component adds
information in front of the information in the input block list.

6.1.3 Collection of Component Statistics

The counterpart of the generation of component statistics information by
the AliHLTComponent base class is a collector component handling the infor-
mation at the end of the chain. The AliHLTCompStatCollector component
subscribes to all data blocks of type {COMPSTAT:PRIV} and {COMPTABL:PRIV},
and sorts data into appropriate ROOT storage objects. Statistics information
from the former blocks is extracted and stored in a TTree while the latter data
blocks only present during the SOD event are sorted into a TFolder structure.
The formatted objects are either saved to a ROOT file or are published to the
component output. The advantage of the conversion to ROOT objects is the
availability of browsing tools within ROOT. E.g. this pre-processed output
can be sent from the component via the HOMER interface to a monitoring
application. Relations can be easily displayed as illustrated in Figure 6.2. The
component is part of the framework utilities in libAliHLTUtil.

The only obstacle is imposed by the relatively high computing demands of
the pre-processing of component statistics. Filling data into the target tree
object in real-time and subsequent object serialization require a high share of
computing time. Currently, the AliHLTCompStatCollector component lim-

118 CHAPTER 6. INTEGRATION OF THE ANALYSIS FRAMEWORK

Figure 6.2: The AliHLTCompStatCollector component formats component
statistics to ROOT objects which can be investigated using the de-
fault ROOT graphical user interface.

its processing rate to about 400 Hz when running inside an on-line chain.
This makes it inappropriate to run on-line within the normal event recon-
struction. However, the statistics data blocks can be written to disk in raw
format. Attaching the FileWriter component to a chain does not have any
significant impact. The raw statistics data can be post-processed by the
AliHLTCompStatCollector as illustrated in listing section C.1. For the pur-
pose of monitoring, the input rate of the collector can be scaled down.

The next step in the development includes optimization of the ROOT streamer
and filling procedure for the particular case of the statistics TTree object.

6.1.4 Dummy Data Sources

HLT analysis components are processors in the PubSub framework and, as
mentioned in section 3.3.1, cannot serve as data sources in an on-line chain.
However, for the presented benchmark tests the data sources are formerly re-
alized by AliHLTDataGenerator components in the first level. Consequently,
another layer of FilePublishers is necessary to fulfill the PubSub requirement
of existence of data sources in each branch. In the test case, the FilePublish-
ers publish one empty DDL just containing the Common Data Header each.
The CDH of 32 byte is loaded by the FilePublishers during initialization and
this solution does not introduce any performance constraints.

In order to benefit from pipelined data processing it is important to provide
a sufficient number of output buffers for all components. The initial dummy

6.2. DATA TRANSPORT PERFORMANCE 119

FilePublishers have been configured to operate on 4096 buffers of 64 byte. For
the presented tests, the DataGenerator components of the processing levels
have been operated on 1024 100 kByte blocks and 4096 25 kByte blocks.

6.2 Data Transport Performance

The overall performance of the on-line HLT has been studied using a 4-level
processing hierarchy as outlined in Figure 6.3. In the lowest level, a number of
DataGenerator components emulate the generation of output data and publish
the corresponding block descriptors. In the next level, 6 publishers from the
first level are collected. The output of the level 1 components is collected in
one single components in level 2 for topologies (a) to (c). Topology (d) is
dedicated for the investigation of the effect of decoupling of branches of the
processing hierarchy.

Topology Data Size [Byte] Processing rate [Hz] comments

c) (1) 10000±500 5285±40
c) (1) 5000±500 5580±25
c) (1) 1000±500 8835±30
b) (6) 10000±500 1840±40
b) (6) 5000±500 2310±40
b) (6) 1000±500 2385±35
a) (18) 10000±500 290±10
a) (18) 5000±500 560±15
a) (18) 1000±500 1250±40
d) (18) 10000±500 340±15
d) (18) 5000±500 675±15
d) (18) 1000±500 1300±45

Table 6.1: Performance measurements of HLT hierarchy. Chain topologies are
according to Figure 6.4. The DataGenerator components publish data
blocks of sizes in the specified range.

Table 6.1 and Figure 6.3 show the results for 3 different data size ranges. For
larger data volumes a drop in the processing rate can be observed especially
for setups with 108 publishers in topology (a). The problem occurs especially
for topologies with a large data fan-in. Further investigation is needed in order
to understand the behavior of the on-line data transport framework and to
estimate the potential for optimization. Also the effect of decoupling branches
and merging the processing at higher levels is much smaller than expected.

120 CHAPTER 6. INTEGRATION OF THE ANALYSIS FRAMEWORK

.........

... ...

Level 0: 108 components

Level 1: 18 components

Level 2: one component

Level 3: one component

(a) Full chain

... ...

...

Level 0: 6 components

Level 1: one component

.........

Level 2: one component

Level 3: one component

... ...

...

(b) One sector

... ...

...

Level 0: one component......

Level 1: one component

Level 2: one component

Level 3: one component

... ...

...

...

(c) One partition

.........

... ...

Level 0: 108 components

Level 1: 18 components

Level 2: two component

Level 3: one component

(d) Full chain, two branches

Figure 6.3: Chain topology of HLT performance test. A 4-level hierarchy moti-
vated by the TPC analysis chain is applied. Topology (a) defines the
full setup while (b) and (c) define only a subset. Configuration (d)
defines two parallel processing branches. Dummy file publishers as
initial data sources are omitted in the figure.

6.2. DATA TRANSPORT PERFORMANCE 121

Data Size [kByte]
1 2 3 4 5 6 7 8 9 10

Pr
oc

es
si

ng
 S

pe
ed

 [k
H

z]

0

1

2

3

4

5

6

7

8

9

Data Size [kByte]
1 2 3 4 5 6 7 8 9 10

Pr
oc

es
si

ng
 S

pe
ed

 [k
H

z]

0

1

2

3

4

5

6

7

8

9

Data Size [kByte]
1 2 3 4 5 6 7 8 9 10

Pr
oc

es
si

ng
 S

pe
ed

 [k
H

z]

0

0.5

1

1.5

2

2.5

Data Size [kByte]
1 2 3 4 5 6 7 8 9 10

Pr
oc

es
si

ng
 S

pe
ed

 [k
H

z]

0

0.5

1

1.5

2

2.5

Figure 6.4: Performance of PubSub data transport framework using the HLT
hierarchy of Figure 6.3: � a), � b), � c), and � d). .

122 CHAPTER 6. INTEGRATION OF THE ANALYSIS FRAMEWORK

6.3 Component Fan-In

The HLT hierarchy implies merging of data blocks from multiple parents for
the input of another component. This entails also copying of data physi-
cally between different nodes. A crucial impact is induced by the merging of
input streams for one component. The effect has been studied with a sim-
ple topology involving a variable number of DataGenerator components on
a single node each and one consumer component on a different node. The
configuration is shown in the appendix in listing C.2.

The DataGenerator components are initialized to publish data of sizes in the
range of 10500 ± 500 in order to simulate a moderate data volume which is
realistic for many cases. The data transportation system allows processing
rates > 1 kHz for setups with 9 and less publishers as presented in table 6.2.
The numbers have been collected using the average processing rates from the
HLT status display.

Topology Data Size [Byte] Processing rate [Hz] comments

36 (1) � 1 10500±500 472±12
27 (1) � 1 10500±500 570±15
27 (1) � 1 10500±500 572±10 w/o component statistics
18 (1) � 1 10500±500 580±10
9 (1) � 1 10500±500 1185±20
4 (1) � 1 10500±500 2636±6
2 (1) � 1 10500±500 4445±15
2 (2) � 1 10500±500 3384±40
1 (1) � 1 10500±500 7040±40
1 (1) � 1 1000 7580±40
1 (1) � 1 500 7920±40

Table 6.2: Performance measurements of component fan-in. Numbers in paren-
theses denote the number of nodes. The DataGenerator components
publish data blocks of sizes in the specified range.

In addition, the component statistics collection as described in section 6.1.2
allows investigation of the rate distribution for the individual test cases. The
result is shown in Figure 6.5. Plots for 1 and 2 publishers show a broad
distribution. An interesting effect can be seen in the measurements for 27
and 36 publishers. Here, a structure with 2 peaks is expressed. While the
first peak corresponds to the observed processing rate, the second one which
is even more pronounced for 36 publishers is not yet fully understood. As a
matter of fact, half of the events arrive at a much higher rate.

6.3. COMPONENT FAN-IN 123

36 publishers
Entries 30297
Mean 2.967

processing rate [kHz]
0 1 2 3 4 50

200

400

600

800

1000

1200 36 publishers
Entries 30297
Mean 2.967

(1000/ComponentCycleTime) {Level==1 && ComponentCycleTime>100 && InputBlockCount==36 && NormalizedInputSize>=10000 && NormalizedInputSize<10500}

27 publishers
Entries 32440
Mean 2.812

processing rate [kHz]
0 1 2 3 4 5 6 7 80

200
400
600
800

1000
1200
1400
1600
1800
2000

27 publishers
Entries 32440
Mean 2.812

(1000/ComponentCycleTime) {Level==1 && ComponentCycleTime>100 && InputBlockCount==27 && NormalizedInputSize>=10000 && NormalizedInputSize<10500}

18 publishers
Entries 29188
Mean 1.56

processing rate [kHz]
0 2 4 6 8 100

1000

2000

3000

4000

5000 18 publishers
Entries 29188
Mean 1.56

(1000/ComponentCycleTime) {Level==1 && ComponentCycleTime>100 && InputBlockCount==18 && NormalizedInputSize>=10000 && NormalizedInputSize<10500}

9 publishers
Entries 36950
Mean 2.178

processing rate [kHz]
0 2 4 6 8 100

200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400 9 publishers

Entries 36950
Mean 2.178

(1000/ComponentCycleTime) {Level==1 && ComponentCycleTime>100 && InputBlockCount==9 && NormalizedInputSize>=10000 && NormalizedInputSize<10500}

2 publishers
Entries 64352
Mean 4.255

processing rate [kHz]
0 2 4 6 8 100

200

400

600

800

1000

1200

1400

1600 2 publishers
Entries 64352
Mean 4.255

(1000/ComponentCycleTime) {Level==1 && ComponentCycleTime>100 && InputBlockCount==2 && NormalizedInputSize>=10000 && NormalizedInputSize<10500}

1 publisher
Entries 45239
Mean 4.807

processing rate [kHz]
0 2 4 6 8 100

200

400

600

800

1000 1 publisher
Entries 45239
Mean 4.807

(1000/ComponentCycleTime) {Level==1 && ComponentCycleTime>100 && InputBlockCount==1 && NormalizedInputSize>=10000 && NormalizedInputSize<10500}

Figure 6.5: Performance impact of component fan-in. The figure shows the dis-
tribution of processing rates for topologies with 36, 27, 18, 9, 4, 2,
and 1 publisher(s).

124 CHAPTER 6. INTEGRATION OF THE ANALYSIS FRAMEWORK

Bursts of data can be an explanation, though the minor influence to the
overall rate is unclear. Also the reason for the occurrence in topologies with
many publishers only is not yet understood. More detailed measurements are
underway to study the behavior of the system. These data are also necessary
to investigate the potential for optimization.

In order to test the impact of the component statistics functionality, process-
ing rates have been checked for disabled component statistics. It is shown
exemplary for the topology containing 27 publishers and does not impose any
noticeable effect.

6.4 Transportation of ROOT Objects

Transportation of ROOT objects has been introduced in section 4.6.2. It is
the basis for platform-independent storage and transmission of data produced
in the HLT and facilitates the implementation of on-line detector calibration
and monitoring components.

Two major options for the exchange of a complex data object are deployed in
the HLT:

• Serialization using the ROOT streamer functionality allows the most
flexible approach. The HLT component interface provides the function-
ality to send and receive ROOT objects be means of the high-level pro-
cessing interface (see section 4.3.4).

• Proprietary serialization can be applied by copying the relevant data
members to a C-structure and restoring the object from that information
on the receiver side.

In order to determine the performance of the serialization of ROOT objects,
both approaches have been studied for the AliExternalTrackParam object.
A specific component, the class AliHLTBenchExternalTrackComponent with
id BenchmarkAliExternalTrackParam, has been implemented which publishes
arrays of variable size of randomly filled AliExternalTrackParam objects. It
furthermore can extract objects of that type from the input stream. Examples
on usage of the component in off-line and on-line HLT chains can be found in
appendix C.

Figure 6.6 shows the processing time vs. number of elements in the array,
measured on an Intel c© Pentium c© M 2.00 GHz processor. The graphs show
a linear raise for all compression levels. The relative processing time and
compression ratio for the different levels of the deflate algorithm is shown in
Figure 6.7. Here, both quantities have been normalized to the compression

6.4. TRANSPORTATION OF ROOT OBJECTS 125

of level 9. While the achieved compression shows only a small increase for
higher levels, the processing time is significantly larger for higher compression
levels. This observation suggests a medium compression level and the level 4
is used as default by the component interface.

Array size [elements]
0 2000 4000 6000 8000 10000

C
om

pu
tin

g
Ti

m
e

 [u
s]

0

200

400

600

800

1000

Level 9

Level 7

computing time of ROOT object compression

Figure 6.6: Processing time of object serialization for different array sizes and
levels of the compression (deflate) algorithm.

Finally, benchmark tests have been carried out on the HLT on-line system
using one publisher and one subscriber on the same node or two different
nodes. The applied configuration is shown in listing C.4 in appendix C. The
result is presented in Figure 6.8. The data exchange via a C-structure and
copying of members clearly provides the maximum performance.

126 CHAPTER 6. INTEGRATION OF THE ANALYSIS FRAMEWORK

Compression Level
1 2 3 4 5 6 7 8 9

N
or

m
al

iz
ed

 R
at

io
/T

im
e

0

0.2

0.4

0.6

0.8

1

Normalized benchmark of zip compression

Compression Ratio

Computing Time

Figure 6.7: Comparison of compression ratio and computing time of object seri-
alization for different levels of the deflate compression normalized to
compression level 9.

Test Case
1 2 3 4 5 6

Pr
oc

es
si

ng
 S

pe
ed

 [H
z]

0

200

400

600

800

1000

1200

1400

1600

1800

2000
C Structure

TCA compression 0

TCA compression 2

TCA compression 4

TCA compression 6

TCA compression 8

Figure 6.8: Performance of various data exchange approaches. � exchange be-
tween processes on the same node, and ∗ on different nodes.

7. Integration of TPC On-line Analysis

A Time Projection Chamber (TPC) implements the main tracking detector in
the central region of the ALICE experiment. Together with ITS and TRD it
is designed to provide charged-particle momentum measurements with good
two-track separation, particle identification, and vertex determination

The sensitive volume of the TPC is formed by a cylindrical gas volume of
88 m3 and 5.1 m in length as sketched in Figure 7.1. The inner radius is
around 85 cm and the outer radius at around 280 cm. Further details can be
found in [47].

E

E

88 μs

510
 cm

Figure 7.1: The ALICE Time Projection Chamber.

Charged particles originating from the collision traverse the sensitive volume
and ionize the gas. The mixture of CO2, Ne and N2 is optimized for the
required properties. Liberated charges, electrons and ions, drift due to an
applied electrical field along the beam line out of the sensitive volume. The
two endcaps are equipped with a two-dimensional read-out system provided
by Multiwire Proportional Chambers (MWPC) with segmented cathode pads
for readout. The charge distribution is sampled over time, and together with
the two coordinates this allows 3-dimensional position measurements.

Primary electrons need to be transported over a distance of up to 2.5m in
each of the two drift volumes which are divided by the central electrode. The
field and gas mixture is adjusted to allow a readout time of 88 μs.

127

128 CHAPTER 7. INTEGRATION OF TPC ON-LINE ANALYSIS

The TPC covers the mid rapidity region with an acceptance of |η| < 0.9 in
pseudo rapidity1 for tracks with full radial length. In azimuthal direction,
TPC acceptance covers the full phase space.

The end plates of the TPC instrument 72 readout chambers. On each side
of the drift volume there are 18 Inner and Outer Readout Chambers (IROC/
OROC), respectively. The readout is divided into 216 identical subsystems.
Each IROC is read out by 2 systems and each OROC by 4 respectively. Those
numbers correspond to the composition of the 216 Detector Data Links of the
TPC. The TPC Front-End Electronics (FEE) serve in total 557568 readout
pads.

The large number of channels together with the sampling frequency of 10
MHz entail a very large data volume of up to 650 MByte per event. In order
to cope with the high data rate, several data reduction approaches have been
implemented and HLT on-line analysis is an integral part of the solution.
The first stage is carried out directly by the TPC FEE. A dedicated readout
chip has been developed specifically for the purpose of data readout of the
TPC, the ALICE TPC Readout Chip (ALTRO) [48]. Beside the sampling
and digitization of the analog signals it incorporates a signal processing unit
and has the ability of significant data reduction by applying several stages of
filters. The resulting zero suppression reduces the data volume by at least
an order of magnitude depending on the nature of the event. For events
with very low occupancy data reduction ratio at that level can be several
orders of magnitude, for a typical PbPb event the reduction is expected to be
approximately 10.

At the stage of HLT, different techniques have been implemented to achieve
further reduction. Under normal running conditions, trigger information and
compressed data are produced based on the on-line event reconstruction. Fur-
thermore components for zero suppression of ALTRO data in the hLT and for
on-line selection of dedicated channels (section 7.4.2) are available.

7.1 TPC on-line Event Reconstruction

As the result of predictions from theory and experimental data from RHIC,
central PbPb collisions were expected to produce very high particle multi-
plicities. The ALICE TPC has been designed for an extreme charge particle
multiplicity density of dNch/dη = 8000, corresponding to about 20000 tracks
in the acceptance region of the TPC. In recent years, the expectations have
been corrected downwards, still reconstruction of central PbPb events remains
a challenge.

1η = 0.9 corresponds to a polar angle of approximately θ = 44◦.

7.1. TPC ON-LINE EVENT RECONSTRUCTION 129

Initial fast TPC reconstruction algorithms have been adopted and developed
in [49]. Prototypes have been implemented and raise expectations for data
reduction up to factor 20 by using on-line event reconstruction and subsequent
ROI readout or adaptive compression techniques [34, 49]. The recent years
have been spent on the full integration of the prototypes.

TPC on-line event reconstruction relies on localization of data processing
in order to run processes in parallel. The analysis chain topology follows
the granularity of data readout and geometry of the detector as sketched in
Figure 7.2. Data are received by 216 DDLs on the HLT FEP nodes, where
also the first analysis processes, the ClusterFinder components are running.
ClusterFinder components reconstruct space point information from raw data,
the space points are connected by Tracker components individually on the
level of TPC slices2. Tracks from the different slices are combined on the level
of the Track Merger and finally converted to a format appropriate for storage.

Side A
Side B

CF CF CF CF CF CF

TR TR TR

M M

ESD

ClusterFinder (216)

Local Tracker (36)

TPC Track Merger

ESD Converter

Figure 7.2: Topology of the TPC on-line data analysis chain. The reconstruction
includes ClusterFinder components (CF), Tracking components (TR),
track merging components (M), and the final conversion to Event
Summary Data (ESD).

As the performance of HLT analysis depends on the data volume to be trans-
ported between components and computing nodes, data sizes play an impor-
tant role for the choice of topology. The fan-in of a component collecting data
from many parent components has a significant impact on the processing rate
as shown in section 6.

The original fast TPC tracking approach is based on conformal mapping and
has been discussed in [49]. Recently, development has focused on a Cellular
Automaton tracking algorithm as presented in [50]. The concept has been
extended and implemented for fast tracking in the ALICE TPC [51]. Both
trackers are fully integrated into HLT analysis components. There have been

2In TPC notation, both Inner and Outer Readout Chambers are referred to be sectors, the
combination of IROC and OROC forms a slice of the same azimuthal position.

130 CHAPTER 7. INTEGRATION OF TPC ON-LINE ANALYSIS

also studies on Hough Transform tracking approaches [49, 52]. However, those
have not been integrated so far into the on-line HLT.

Due to the relatively large input data volume of the ClusterFinder processes,
emphasis has been put on efficient access and decoding of the data stream.

7.2 TPC Raw Data

The raw data format of the TPC is defined by the ALTRO chip. This chip
is as already mentioned a dedicated development for the ALICE Time Pro-
jection chamber and combines a 10bit ADC converter with additional signal
processing units for each channel. The channels are connected to the readout
pads of the TPC front-end and sample the collected charge over time. Both
for signal and timebin, a bit width of 10 has been chosen. This has influence
on the raw data format since all modern computer architectures store data in
multiples of bytes. Using a 16 bit word (2 byte) to store a 10 bit word leads
to an enormous increase of the data volume as all upper bits are not used
for data storage. For the sake of effectiveness, a compressed data format has
been chosen where 4 10bit words form a so called 40bit ALTRO word which is
stored in 5 bytes. Each TPC readout partition is served by an RCU, a specific
hardware device developed for the ALICE TPC ([53]). The RCU assembles
the data from up to 200 ALTRO chips and adds a specific data block with
additional information regarding the partition at the end of the ALTRO data.
The TPC Front-End Electronics skips any sorting of the data and just writes
data of all channels sequentially forming a back linked data block as shown
in Figure 7.3.

A channel trailer at the end contains the relevant channel meta information.
The hardware address uniquely specifies the address of a channel in the set of
Front-End-Cards (FEC), ALTRO chips and ALTRO channels. Each ALTRO
channel has the ability of significant data size reduction by applying a zero-
suppression algorithm. Only the signal passing the suppression is shipped
with the data stream. As a consequence, timewise there might be gaps of
variable length between the so called data bunches. Each bunch is determined
by the bunch length, the end time and the signals.

The whole data block is terminated by the RCU trailer of variable length. It
contains ALTRO payload specifications and common configuration parame-
ters of the front-end electronics. Due to the back-linked nature of the data
block, reading starts from the end.

The ALTRO format has recently been under revision and will probably be
changed in order to allow further consistency checks and better handling of
corrupted data.

7.2. TPC RAW DATA 131

Channel Trailer

Channel Payload

Channel Trailer

Channel Payload

Channel Trailer

Channel Payload

Channel Trailer

Channel Payload

NW Number of Words
HWA Hardware Address
BL Bunch Length
TB Timebin
Sx Signal x

BL TB S0 S1

Sn−1 Sn BL TB
S0 S1 BL TB
S0 S1 S2 S3

S2 S3 S4 S5

RCU Trailer

Number of 40bit Words

RCU Payload

(CDH)
Common Data Header

HWANW

Figure 7.3: The ALTRO format consists of (i) the Common Data Header, (iii)
RCU Payload containing the ALTRO channels, and (iii) the RCU
trailer.

7.2.1 TPC Data decoding and processing

Because of the 10bit nature of ALTRO data, some pre-processing is needed
before the actual processing can start. Bit shift operations are used to convert
values into 16/32bit numbers which can be used by the algorithm. Two
different techniques have been provided by two different working groups in
ALICE. The default off-line reconstruction utilizes a value by value stream
model. The approach has been standardized for all detector reconstruction.

Performance constraints have triggered a second development by the PHOS
HLT group. The decoder approach applies monolithic treatment of the en-
coded ALTRO data and provides data in decoded format.

In the course of this work, both techniques have been adopted to the data
input of TPC on-line reconstruction.

AliRoot RawReader and TPC RawStream

AliRoot’s general interface to raw data are provided by the AliRawReader

class. Several implementations are available in order to read different sources
of raw data through all the same interface (section 4.5.1). The design of the
RawReader suggests a stream model for the data decoding. In this model,
data processing steps through the data points sequentially. Each data point
is characterized by the three coordinates channel address, time bin and signal.
Those three coordinates are provided by functions of the RawStream class,

132 CHAPTER 7. INTEGRATION OF TPC ON-LINE ANALYSIS

a function Next() is used to increment the position in the data stream. The
standard reader class for ALTRO raw data AliAltroRawStream follows that
approach as outlined in listing 7.1.

Listing 7.1: Access of TPC raw data though the AliAltroRawStream.
1 AliAltroRawStream stream ;
2 // s e t up stream
3 //
4

5 while (stream . Next ()) {
6 int s i g n a l=stream . GetSignal () ;
7 int time=stream . GetTime () ;
8 int channel=stream . GetChannel () ;
9 // data proce s s ing

10 // . . .
11 }

This code design provides a very easy and consistent way of reading data but
introduces some overhead. In particular it is necessary to check for each data
point whether it still belongs to the same channel and bunch.

Fast ALTRO data decoder

A fast decoder, AliAltroDecoder, has been developed by the PHOS HLT
group in conjunction with the HLT on-line reconstruction to provide fast
access to the ALTRO raw data3.

This approach benefits from the ability of arbitrary data access within one
bunch and the knowledge of bunch and channel length prior to the processing
loop. Signal values can be accessed by pointer operations with respect to a
buffer rather than function calls. In addition, it fits exactly the channel/bunch
structure of the TPC raw data. Listing 7.2 sketches the access sequence which
is based on three nested loops on the level of channels, bunches and signals
within bunches.

Implementation of Data Access

In order to keep ClusterFinder implementation and any other TPC component
working on raw data independent of the input method, an abstract interface
has been introduced. The so called DigitReader interface hides details of
and unifies data access for TPC components and is implemented in the class
AliHLTTPCDigitReader.

3Utilization of the ALTRO chip and the TPC readout system is not limited to TPC and is also
used in other ALICE sub-detectors like the Photon Spectrometer PHOS

7.2. TPC RAW DATA 133

Listing 7.2: Access of TPC raw data by means of the AliAltroDecoder.
1 AliAltroDecoder decoder ;
2 // s e t up decoder
3 //
4

5 AliAltroData channel ;
6 AliAltroBunch bunch ;
7 while (decoder . NextChannel(&channel)) {
8 int channel . GetChannel () ;
9 while (channel . NextBunch(&bunch)) {

10 int time=bunch . GetEndTimeBin () ;
11 UInt t ∗ pData=bunch . GetData () ;
12 for (int bin=bunch . GetBunchSize ()−1; bin >0;) {
13 bin−−;
14 // data proce s s ing
15 // s i g n a l=pData [b in]
16 // . . .
17 }
18 }
19 }

Currently, three maintained implementations are available:

(i) AliHLTTPCDigitReaderPacked
implements the access via the off-line stream model,
(ii) AliHLTTPCDigitReaderDecoder
utilizes the AliAltroDecoder approach, and the
(iii) AliHLTDigitReaderUnpacked
is an interface implementation especially used for data transport
during AliRoot simulation.

It is important to notice that no change in source code or recompilation is
needed in order to run HLT TPC reconstruction algorithms embedded in
AliRoot simulation. The abstract interface (AliHLTTPCDigitReader) and
dedicated implementation
(AliHLTTPCDigitReaderUnpacked) allow for fully transparent execution of
the reconstruction algorithms. The first two versions are both relevant for
TPC on-line analysis, data access is sketched in Figure 7.4.

The DigitReader interface defines the two data access paradigms as motivated
by the stream and channel/bunch model. The access sequence is outlined in
Figure 7.5. The advantage of the latter is the ’predictive’ work flow which
allows optimized processing loops.

134 CHAPTER 7. INTEGRATION OF TPC ON-LINE ANALYSIS

Since both AliHLTTPCDigitReaderPacked and AliHLTTPCDigitReaderDecoder

favor only one of the access methods respectively, support for the other tech-
nique has been added (Listing 7.3).

Data access based on the channel/bunch paradigm has also been implemented
in the AliHLTTPCDigitReaderPacked. It requires anticipated reading and
internal buffering of data and comes with some processing overhead.

Listing 7.3: The TPC DigitReader interface methods.

1 // i n t e r f a c e methods o f the stream model
2 bool Next () ; // Set the reader p o s i t i o n to the next va lue .
3 int GetRow () ; // Get the row number o f the curren t va lue .
4 int GetPad () ; // Get the pad number o f the curren t va lue .
5 int GetSignal () ; // Get the curren t ADC va lue .
6 int GetTime () ; // Get the time bin o f the curren t va lue .
7

8 // i n t e r f a c e methods o f the channel /bunch model
9 bool NextChannel () ; // Set stream po s i t i o n to the next Pad

10 // (ALTRO channel) .
11 int NextBunch () ; // Set stream to the next ALTRO bunch wi th in
12 // the current pad .
13 const UInt t ∗ GetSigna l s () ; // Get po in t e r to the the curren t ADC va lue .

Investigation culminated in the establishment of a working group with focus on
merging the different data treatment approaches into one officially maintained
decoder.

7.3 TPC on-line Data Transport and Specification

TPC on-line reconstruction defines proprietary data structures for data ex-
change between components. The relevant information is stored in C-structures
to achieve the highest possible performance. The final output is supposed to
be independent of architecture and a ROOT object is an appropriate choice.
The information of the reconstructed event is converted to ESD format or
alternatively to another track parametrization supported by AliRoot.

7.3. TPC ON-LINE DATA TRANSPORT AND SPECIFICATION 135

Algorithm
ClusterFinder

AliRawReaderMemory

AliAltroDecoder

AliAltroRawStream AliHLTTPCDigitReaderPacked

AliHLTTPCDigitReaderDecoder

Data Block

Figure 7.4: Involved classes for data access by means of
AliHLTTPCDigitReaderPacked/Decoder.

last row=−1
last pad=−1
last time=−1

timebin?

adjecent no

yes

pad?

new yes

no

row?

new yes

no

Next()

update candidateupdate candidateupdate candidate new candidate

(a) Packed

i=0
n=length

init
decoder

NextChannel()

channel?

have

yes

no − exit

NextBunch()

bunch?

have new no

yes

update candidate

new candidate

i < n?

i++no yes

(b) Decoder

Figure 7.5: Work flow of the two TPC raw data access paradigms. (a) stream
model motivated by off-line analysis, (b) channel/bunch access sup-
ported by �AliAltroDecoder.

136 CHAPTER 7. INTEGRATION OF TPC ON-LINE ANALYSIS

7.3.1 Data Types

The HLT data types used internally in TPC on-line reconstruction are defined
in the class AliHLTTPCDefinitions and summarized in Table 7.1.

’CLUSTERS’ fgkClustersDataType Clusters (Space points)

’TRAKSEGS’ fgkTrackSegmentsDataType Track segments in local coordinates

’TRACKS ’ fgkTracksDataType Tracks in global coordinates

Table 7.1: HLT data types defined for TPC on-line analysis data exchange. All
data types are of origin kAliHLTDataOriginTPC (’TPC ’) and mem-
bers of class AliHLTTPCDefinitions.

7.3.2 Cluster Data

The data format is defined by the structures AliHLTTPCSpacePointData and
AliHLTTPCClusterData. The latter defines the format of the exchanged data
blocks and consists of a size member specifying the number of structures and
the array of AliHLTTPCSpacePointData structures as presented in listing 7.4

Listing 7.4: AliHLTTPCSpacePointData and AliHLTTPCClusterData - Data
structures for exchange of Cluster/Space point data between Clus-
terFinder and Tracker

1 struct AliHLTTPCSpacePointData {
2 F loa t t fX ; // X coord ina te in l o c a l coord ina t e s
3 F loa t t fY ; // Y coord ina te in l o c a l coord ina t e s
4 F loa t t fZ ; // Z coord ina te in l o c a l coord ina t e s
5 UInt t fID ; // conta ins s l i c e patch and number
6 UChar t fPadRow ; // Pad row number
7 F loa t t fSigmaY2 ; // error (former width) o f the c l u s t e r s
8 F loa t t fSigmaZ2 ; // error (former width) o f the c l u s t e r s
9 UInt t fCharge ; // t o t a l charge o f c l u s t e r

10 UInt t fQMax ; // QMax o f c l u s t e r
11 Bool t fUsed ; // only used in AliHLTTPCDisplay
12 I n t t fTrackN ; // only used in AliHLTTPCDisplay
13 } ;
14

15 struct AliHLTTPCClusterData {
16 AliHLTUInt32 t fSpacePointCnt ;
17 AliHLTTPCSpacePointData fSpacePo ints [] ;
18 } ;

7.3. TPC ON-LINE DATA TRANSPORT AND SPECIFICATION 137

7.3.3 Track Data

Data blocks of type {TRAKSEGS:TPC} and {TRACKS :TPC} use an identical
format to exchange track data (listing 7.5). Coordinates are either in local
or global coordinate system respectively. The local coordinate system is with
respect to the global system rotated by some azimuthal angle in order to fit
the center of a TPC slice. Data blocks require therefore the data specification
to be correctly set in order to determine the relative rotation.

Listing 7.5: AliHLTTPCTrackSegmentData - Data structure for exchange of track
information. The data type determines whether description is in local
or global coordinates

1 struct AliHLTTPCTrackSegmentData
2 {
3 F loa t t fX ;
4 F loa t t fY ;
5 F loa t t fZ ;
6 F loa t t fLastX ;
7 F loa t t fLastY ;
8 F loa t t fLastZ ;
9 Double t fPt ;

10 Double t fP s i ;
11 Double t fTgl ;
12 Double t fY0err ;
13 Double t fZ0e r r ;
14 Double t fP t e r r ;
15 Double t f P s i e r r ;
16 Double t fTg l e r r ;
17 I n t t fCharge ;
18 UInt t fNPoints ;
19 UInt t fPointIDs [0] ;
20 } ;

7.3.4 Data Specification

HLT Data specification is used to identify data blocks of the same type but
different position in the analysis chain. E.g. each data input DDL corresponds
to a ClusterFinder process and there are consequently 216 data blocks of type
{CLUSTERS:TPC }. In contrast to other detectors where a bit pattern can be
used to identify DDLs in a 32bit word, for the TPC ranges of links can be
specified. The four bytes of the specification correspond in ascending order
starting from the least significant byte to (i) minimum partition, (ii) maximum
partition, (iii) minimum slice, and (iv) maximum slice. E.g. specification
0x05050303 denotes slice number 5 and partition number 3.

138 CHAPTER 7. INTEGRATION OF TPC ON-LINE ANALYSIS

By means of data specification, the ClusterFinder can identify the DDL equip-
ment id in order to load the configuration and apply the correct transformation
to space point coordinates. Track data blocks of type {TRAKSEGS:TPC } are
in local coordinates and must be transformed to global coordinates by merger
components. Data specification is also crucial for data compression compo-
nents. As the data stream needs to be redirected to the off-line reconstruc-
tion (see section 5.6), the data specification must enable the corresponding
AliHLTOUTHandler to derive the original equipment id.

7.4 Further TPC On-line Applications

HLT has been used as a supporting facility for the commissioning of the TPC.
Two applications are described below.

7.4.1 Zero Suppression

As already introduced, this very effective technique is implemented in the
front-end electronics and reduces the data volume directly at the source of
the data stream.

Alternatively, zero suppression can be done on the High-Level Trigger by using
a dedicated component. The output of this component is again the ALTRO
format and exactly compatible to the original data which allows to run the
normal off-line reconstruction algorithm without changes, except the data
input. Instead of the original TPC DDL links which even might have been
suppressed, data from the HLT DDL links must be used for reconstruction.

Zero suppression can be carried out on the HLT on-line system mainly for
the purpose of calibration studies of the detector. In order to calculate filter-
ing parameters for the embedded signal processing of each ALTRO channel,
unfiltered data are read out, but processed by HLT in order to filter out the
relevant data and save storage space. Also this allows a higher data rate as
DAQ is not busy treating the large data volume.

7.4.2 Selective Channel Readout

Zero suppression is not always the appropriate technique, especially for the
calibration phase. Since hardware zero suppression is not a loss less process,
it cannot be applied before the behavior of the detector has been studied and
the parameters have been determined. Here, the overhead is often biggest
since just a few tracks are used to study properties like the ion tail. On the

7.4. FURTHER TPC ON-LINE APPLICATIONS 139

other hand exactly those calibration tasks rely on relatively high statistics
(> 10000 events [54]).

Out of this situation, an Active Channel Selection procedure has been de-
veloped on HLT as outlined in Figure 7.6. From the raw data analysis and
cluster reconstruction it is possible to tag the active channels which contribute
to clusters. A dedicated HLT component filters the raw data, discards all in-
active channels and keeps the active ones unchanged. It is important to notice
that the data of the channels is not changed at all, just copied to the new
data block. All meta and size information is corrected according to the new
channel sequence. This technique is loss less within the scope of interest.

Dedicated runs have been taken in autumn 2008 in order to determine the
coefficients for the ALTRO tail cancellation filters. In run 62534, 8200 events
have been collected with a total data volume of ≈ 50 GByte. Average event
size was ≈ 7 MByte. The non-zero suppressed TPC raw data would have
been ≈ 70 MByte/event. The introduced HLT filter represents a possibility
for effective data collection in this particular application. Also the subsequent
analysis is much faster due to the reduced data volume to be processed. The
TPC group will continue using the selective channel readout approach in order
to accomplish the calibration tasks.

RCU trailer

ALTRO channel selection

5 3 56 4 10 75 90 60 11 242 7 chanCDH

bunch 0 bunch 1
c h a n n e l 0

RCU trailer

9 7 3 123 5 3 7 3 9 458 7 chan

bunch 0 bunch 1
c h a n n e l 1

5 3 56 4 10 75 90 60 11 242 7 chanCDH

bunch 0 bunch 1
c h a n n e l 0

Figure 7.6: Working principle of Selective ALTRO Channel Readout. In this
particular example, channels are discarded if the signal is below the
threshold of 10 for all bunches. Please note that a bunch has to
be read in reverse order and consists of (i) length, (ii) timebin, and
(iii) the actual signal values. Channel 0 is kept because of bunch 1
exceeding the threshold. The two bunches of channel 2 both have
signals below 10 and the channel is discarded.

140 CHAPTER 7. INTEGRATION OF TPC ON-LINE ANALYSIS

8. Conclusion and Outlook

The ALICE High-Level Trigger provides a powerful computing facility for the
purpose of on-line data analysis. It allows event reconstruction at the full data
rate, the generation of trigger signals with respect to the studied physics, as
well as on-line reduction of data rate by application of compression techniques
and partial detector readout. HLT takes advantage of the three paradigms
(i) task distribution within one event, (ii) pipelined processing, and (iii) op-
timized data exchange and inter-process communication keeping a low profile
in the overall processing performance.

The presented work has studied the necessity of modular software and sys-
tem design for HLT on-line data analysis. Based on polymorphism in object
oriented programming, a framework for HLT analysis components has been
developed, implemented and commissioned. The work has directly influenced
the overall data processing scheme of the High-Level Trigger system. A com-
plete software solution for HLT on-line analysis based on the existing data
transport framework has been developed, including the framework for analy-
sis components, flexible treatment of HLT output payload during the off-line
event reconstruction and integration into the ALICE software framework.

Achievements of this work are in particular:

• The HLT analysis framework.
The framework has been developed as an integral part of HLT. It rep-
resents one module along with other sub-systems like e.g. the data
transport framework, the run control system, and the computing clus-
ter management. As an outcome of this work, data transport and data
analysis have become individual projects. The two projects can now be
developed without interference and use separate source code repositories.

• Encapsulation of HLT analysis.
A major part of the work has been spent on the development of an appro-
priate modular software design with the result of a self-consistent HLT
analysis module. Binary compatibility allows utilization of algorithms
in different environments without the necessity of error-prone manual
intervention and customization. This is in particular important for the
evaluation of HLT analysis.

141

142 CHAPTER 8. CONCLUSION AND OUTLOOK

• Full integration of HLT analysis into the off-line software framework.
A complete HLT off-line environment has been implemented. HLT an-
alysis is now an integrated module of AliRoot. This includes the simula-
tion and the reconstruction process, as well as the actual implementation
of analysis components. The integration allows in particular the utiliza-
tion of algorithms primarily developed for off-line analysis in HLT and
vice versa.

• Data processing of HLT output.
This work adds the post-processing of HLT output to the general data
processing model. HLT output payload is now handled during the AliRoot
event reconstruction phase. The foundation for data compression tech-
niques and subsequent off-line analysis from the compressed data has
been established and tested.

• Extensibility.
Following the modular design, new units can now be added to the an-
alysis without the need of changes in other units. The established inte-
gration procedure for HLT analysis algorithms enables all users of the
ALICE community to contribute and to run specific analysis. The HLT
component interface allows the integration of algorithms with minimal
effort.

• Integration of TPC on-line event reconstruction algorithms.
Existing and in parallel to this work developed algorithms for TPC on-
line event reconstruction have been integrated into the HLT and com-
missioned. The work on TPC on-line analysis has been the motivation
and test case for all implemented software solutions. As part of the work,
TPC on-line components have been integrated into the global AliRoot
simulation process.

Though HLT now represents a stable system in ALICE, there are problems
in the overall scalability. The importance of integration of the various parts
into the full system has been underestimated in the past. The problems are
investigated continuously and the system improved step by step.

As a second obstacle, the overall processing rate is still too low. Optimization
has been treated with a lower priority in the past. Bottlenecks are both in
the data transport framework as well in the analysis algorithms. In most
cases, analysis components can gain in performance if memory access and

143

the handling of intermediate data is properly optimized. However there is no
principle problem. Benchmark tests show the potential of the overall HLT
architecture. Extensive and systematic benchmark tests which have been
beyond the scope of this work will be carried out as the next step. Additional
tools have already been provided as part of the HLT analysis framework.

In order to reach the final goal of the target performance and full scalability,
the extensive commissioning has to be continued. Extensive system checks
including nightly builds, unit tests, and global system test on a regular basis
are prerequisites for a stable and maintainable system. As the next step, the
test facility will be extended in order to meet the high demands.

The major result of the presented work is a complete and in large parts fina-
lized software solution for on-line analysis with the ALICE High-Level Trigger.
Extensive documentation is available and facilitates the maintainability. In
the near future, the work on real physics trigger algorithms and components
will be continued with high priority. The system is ready for on-line data
analysis and is awaiting data from LHC operation.

144 CHAPTER 8. CONCLUSION AND OUTLOOK

A. List of Publications

A.1 Related Publications Significantly Contributed To

M. Richter et al., High level trigger applications for the ALICE experiment,
IEEE Trans. Nucl. Sci. 55 (2008), doi: 10.1109/TNS.2007.913469

The ALICE Collaboration, K. Aamodt et al., The ALICE Experiment at the
CERN LHC, 2008 JINST 3 S08002, doi: 10.1088/1748-0221/3/08/S08002,
co-editor of HLT section,

M. Richter and D. Röhrich et al., 3D Reconstruction of 10000 Particle Tra-
jectories in Real-time, in Proc. 5th World Congress on Industrial Process
Tomography Bergen, Norway, Sep 3-6 2007

M. Richter et al., The ALICE High Level Trigger, in Proc. Computing in High
Energy Physics Conf. 2004 (CHEP04), Interlaken, Switzerland (2004)

A.2 Related Publications Contributed To

S.R. Bablok et al., High level trigger online calibration framework in ALICE,
J. Phys.: Conf. Ser. 119 022007 (2008), doi: 10.1088/1742-6596/119/2/022007

S.R. Bablok et al., ALICE HLT interfaces and data organisation, in Proc.
Computing in High Energy Physics Conf. 2006 (CHEP06), Mumbai, India
(2006), [Online] http://cdsweb.cern.ch/record/1066629

D. Röhrich et al., Benchmarks and implementation of the ALICE high level
trigger, IEEE Trans. Nucl. Sci. 53 pp 854-858 (2006),
doi: 10.1109/TNS.2006.873770

B. Becker et al., Real Time Global Tests of the ALICE High Level Trigger
Data Transport Framework , IEEETrans. Nucl. Sci. 55 pp. 703-709 (2008)
arXiv:0801.1252 [physics.ins-det]

145

146 APPENDIX A. LIST OF PUBLICATIONS

A.3 Further Publications

I’am the author of the following pulications not releated to the presented topic
but accomplished within my PhD stipend at the University of Bergen:

M. Richter et al., The control system for the front-end electronics
of the ALICE time projection chamber, IEEE Trans. Nucl. Sci.
53 (2006) 980. doi: 10.1109/TNS.2006.874726

Alme, J., Richter, M. et al, A distributed, heterogeneous control
system for the ALICE TPC electronics, International Conference
Workshops on Parallel Processing 2005. (2005) pp. 265 Â 272, doi:
10.1109/ICPPW.2005.7

M. Richter et al., Communication software for the ALICE TPC
front-end electronics, Proc. 11th Workshop on Electronics for LHC
and Future Experiments (LECC 2005), Heidelberg, Germany, 12-
16 September 2005, [Online] http://cdsweb.cern.ch/record/921200

Further publications contributed to:

K. Roed et al., Irradiation tests of the complete ALICE TPC front-
end electronics chain, Proc. of 11th Workshop on Electronics for
LHC and Future Experiments (LECC 2005), Heidelberg, Germany,
12-16 September 2005 [Online] http://cdsweb.cern.ch/record/920423

J. Alme et al., Radiation-tolerant SRAM-FPGA Based Trigger and
Readout Electronics for the ALICE Experiment, IEEE Trans. Nucl.
Sci. 55 (2008) 76, doi: 10.1109/TNS.2007.910677

Fehlker, D. et al., Software environment for controlling and re-
configuration of Xilinx Virtex FPGAs, Proc Topical Workshop for
Particle Physics 2007, Prague (Czech Republic), September 2007,
URL: http://www.particle.cz/conferences/twepp0

C. Gonzáles Gutiérres et al., ”The ALICE TPC readout control
unit”, IEEE Nucl. Sci. Symp. Conf. Rec. 1, ”575-579”, ”2005”,
”doi: 10.1109/NSSMIC.2005.1596317”

L Musa et al. (ALICE TPC Collaboration), J. Phys. G: Nucl.
Part. Phys. 34 S705-S708, ”doi: 10.1088/0954-3899/34/8/S78”

B. Software Appendix

B.1 The AliHLTComponent interface

The AliHLTComponent base class provides the interface for all HLT analysis
components. This appendix is intended to present a short overview, detailed
information and a reference class/interface description can be found in the
ALICE HLT analysis framework on-line documentation1.

The interface is divided in public external methods intended to be used from
an application using the component, and internal methods which need to be
implemented by the developer of an analysis component.

B.1.1 Public external methods

The external methods are provided to an application using the component.
The public interface methods define the binding procedure into e.g. the HLT
on-line system PubSub or the AliRoot off-line system. The methods are of
little relevance for the developer of a component. Some of them are obligatory
to be implemented by the child class in order to determine the properties.

1 /∗∗ I n i t f unc t i on to prepare data proce s s ing . ∗/
2 int I n i t (const AliHLTAnalysisEnvironment∗ environ ,
3 void∗ environParam , int argc , const char∗∗ argv) ;
4

5 /∗∗ Clean−up func t i on to terminate data proce s s ing . ∗/
6 int Dein i t () ;
7

8 /∗∗ Process ing o f one event . ∗/
9 int ProcessEvent (const AliHLTComponentEventData& evtData ,

10 const AliHLTComponentBlockData∗ blocks ,
11 AliHLTComponentTriggerData& trigData ,
12 AliHLTUInt8 t∗ outputPtr ,
13 AliHLTUInt32 t& s i z e ,
14 AliHLTUInt32 t& outputBlockCnt ,
15 AliHLTComponentBlockData∗& outputBlocks ,
16 AliHLTComponentEventDoneData∗& edd) ;

1http://web.ift.uib.no/∼kjeks/doc/alice-hlt-current/classAliHLTComponent.html

147

148 APPENDIX B. SOFTWARE APPENDIX

Component Properties

Each component implementation must implement the component property
functions. This set of methods is defined pure virtual.

Listing B.1: Component property functions to be implemented by the child com-
ponent.

1 virtual const char∗ GetComponentID () = 0 ;
2 virtual void GetInputDataTypes (AliHLTComponentDataTypeList&) = 0 ;
3 virtual AliHLTComponentDataType GetOutputDataType () = 0 ;
4 virtual int GetOutputDataTypes (AliHLTComponentDataTypeList& t g tL i s t) ;
5 virtual void GetOutputDataSize (unsigned long& constBase ,
6 double& inpu tMu l t i p l i e r) = 0 ;
7 virtual AliHLTComponent∗ Spawn () = 0 ;

The type of the component implementation is already defined in the default
base classes AliHLTDataSource, AliHLTProcessor, and AliHLTDataSink.

Listing B.2: Property function to get the type of component.

1 virtual TComponentType GetComponentType () = 0 ; // Source , s ink , or proces sor

B.1.2 Private internal methods

This section handles the component interface to a child class and is of high
relevance for the developer of a component.

Component Setup

1 /∗∗ Chi ld c l a s s method f o r the i n t e r n a l i n i t i a l i z a t i o n . ∗/
2 virtual int DoInit (int argc , const char∗∗ argv) ;
3

4 /∗∗ Chi ld c l a s s method f o r the i n t e r n a l c lean−up . ∗/
5 virtual int DoDeinit () ;
6

7 /∗∗ Reconf igure the component . ∗/
8 virtual int Reconf igure (const char∗ cdbEntry , const char∗ cha inId) ;
9

10 /∗∗ Read the Preprocessor va l u e s . ∗/
11 virtual int ReadPreprocessorValues (const char∗ modules) ;
12

13 /∗∗ Custom hand ler f o r the SOR event . ∗/
14 virtual int StartOfRun () ;
15

16 /∗∗ Custom hand ler f o r the EOR event . ∗/
17 virtual int EndOfRun () ;

B.1. THE ALIHLTCOMPONENT INTERFACE 149

Data Processing

A general internal processing method is called from the ProcessEvent func-
tion when all internal variables are set and event processing has been prepared.
The method is pure virtual and must be implemented by the child class. The
method is already implemented in the default base classes AliHLTDataSource,
AliHLTProcessor, and AliHLTDataSink.

1 /∗∗ I n t e rna l p roce s s ing o f one event .
2 ∗/
3 virtual int DoProcess ing (const AliHLTComponentEventData& evtData ,
4 const AliHLTComponentBlockData∗ blocks ,
5 AliHLTComponentTriggerData& trigData ,
6 AliHLTUInt8 t∗ outputPtr ,
7 AliHLTUInt32 t& s i z e ,
8 AliHLTComponentBlockDataList& outputBlocks ,
9 AliHLTComponentEventDoneData∗& edd) = 0 ;

For the sake of convenience, three component base classes specialized for the
task of data processing, data publishing and data dumping are provided by
the HLT analysis framework. Each class implements its own flavor of the
processing method.

Data Processing in AliHLTProcessor

The class AliHLTProcessor is the base class for all processing components
which process input data and produce output data. The normal development
requires to implement a child class of AliHLTPprocessor. This base class
implements the AliHLTComponent::DoProcessing method and provides a
low level and a high level processing method for the child class.

1 int AliHLTProcessor : : DoEvent (const AliHLTComponentEventData& evtData ,
2 const AliHLTComponentBlockData∗ /∗ b l o c k s ∗/ ,
3 AliHLTComponentTriggerData& trigData ,
4 AliHLTUInt8 t∗ /∗ outputPtr ∗/ ,
5 AliHLTUInt32 t& s i z e ,
6 vector<AliHLTComponentBlockData>& /∗ outpu tB locks ∗/) ;
7 {
8 // we j u s t forward to the h igh l e v e l method , a l l o ther parameters
9 // a l r eady have been s to r ed i n t e r n a l l y

10 s i z e =0;
11 return DoEvent (evtData , t r igData) ;
12 }
13 int AliHLTProcessor : : DoEvent (const AliHLTComponentEventData& /∗ evtData ∗/ ,
14 AliHLTComponentTriggerData& /∗ t r i gData ∗/)
15 {
16 HLTFatal ("no processing method implemented") ; return −ENOSYS;
17 }

150 APPENDIX B. SOFTWARE APPENDIX

As described in section 4.3, the High Level interface method is especially de-
signed for components which do not need to access the input block list and the
output buffer directly. Implementation is also somewhat easier for the devel-
oper of moderate experience. Access to the input data is possible by means of
the GetFirstInputObject/GetNextInputObject functions, respectively the
GetFirstInputBlock/GetNextInputBlock functions.

The AliHLTDataSource and AliHLTDataSink components have similar im-
plementations.

Access to input data blocks and output buffer

The data access methods provided by the AliHLTComponent base class are an
important prerequisite for the usability of the high-level interface. The class
provides methods to iterate trough all input blocks or objects. If objects are
requested, the base class restores the ROOT objects from the input data and
provides it to the child implementation. Furthermore there are methods to
publish a newly generated object, and to forward an input block/object to the
output. An overview of the most important methods can be found in listing
B.3.

A special use case is the so called memory file which allows to open a ROOT
file in memory instead of disk. The functionality provides normal file I/O
operations. The file structure is sent over the normal component output at
the end of the processing function.

Listing B.3: High-level data access methods of the component base class.
1 /∗∗ Get the f i r s t o b j e c t o f a s p e c i f i c data type from the input data . ∗/
2 const TObject∗ GetFirst InputObject (const AliHLTComponentDataType& dt ,
3 const char∗ classname ,
4 int bForce) ;
5

6 /∗∗ Get the f i r s t o b j e c t o f a s p e c i f i c data type from the input data . ∗/
7 const TObject∗ GetFirst InputObject (const char∗ dtID ,
8 const char∗ dtOrigin ,
9 const char∗ classname ,

10 int bForce) ;
11

12 /∗∗ Get the next o b j e c t o f a s p e c i f i c data type from the input data . ∗/
13 const TObject∗ GetNextInputObject (int bForce) ;
14

15 /∗∗ Get data type o f an input b l o c k . ∗/
16 AliHLTComponentDataType GetDataType (const TObject∗ pObject) ;
17

18 /∗∗ Get data s p e c i f i c a t i o n o f an input b l o c k . ∗/
19 AliHLTUInt32 t Ge tSpe c i f i c a t i on (const TObject∗ pObject) ;
20

B.1. THE ALIHLTCOMPONENT INTERFACE 151

21 /∗∗ Get the f i r s t b l o c k o f a s p e c i f i c data type from the input data . ∗/
22 const AliHLTComponentBlockData∗ GetFirst InputBlock (const char∗ dtID ,
23 const char∗ dtOr ig in) ;
24

25 /∗∗ Get the next b l o c k o f a s p e c i f i c data type from the input data . ∗/
26 const AliHLTComponentBlockData∗ GetNextInputBlock () ;
27

28 /∗∗Get data s p e c i f i c a t i o n o f an input b l o c k . ∗/
29 AliHLTUInt32 t Ge tSpe c i f i c a t i on (const AliHLTComponentBlockData∗ pBlock=NULL) ;
30

31 /∗∗ Forward an input o b j e c t to the output . ∗/
32 int Forward (const TObject∗ pObject) ;
33

34 /∗∗ Forward an input b l o c k to the output . ∗/
35 int Forward (const AliHLTComponentBlockData∗ pBlock=NULL) ;
36

37 /∗∗ I n s e r t an o b j e c t i n t o the output . ∗/
38 int PushBack (TObject∗ pObject , const AliHLTComponentDataType& dt ,
39 AliHLTUInt32 t spec=kAliHLTVoidDataSpec ,
40 void∗ pHeader=NULL, int headerS i ze =0);
41

42 /∗∗ I n s e r t b u f f e r in t o the output . ∗/
43 int PushBack (const void∗ pBuffer , int i S i z e ,
44 const AliHLTComponentDataType& dt ,
45 AliHLTUInt32 t spec=kAliHLTVoidDataSpec ,
46 const void∗ pHeader=NULL, int headerS i ze =0);
47

48

49 /∗∗ Create a memory f i l e in the output stream . ∗/
50 AliHLTMemoryFile∗ CreateMemoryFile (int capac i ty ,
51 const AliHLTComponentDataType& dt ,
52 AliHLTUInt32 t spec) ;
53

54 /∗∗ Write an o b j e c t to memory f i l e in the output stream .
55 i n t Write (AliHLTMemoryFile∗ pFi le , cons t TObject∗ pObject ,
56 cons t char∗ key=NULL, i n t op t ion=TObject : : kOverwri te) ;
57

58 /∗∗ Close o b j e c t memory f i l e . ∗/
59 int CloseMemoryFile (AliHLTMemoryFile∗ pFi l e) ;

B.1.3 Example Implementation of Low-Level Processing

The Low-level processing interface gives full flexibility as it provides access to
all parameters of the component processing function.

The function gets an array of block descriptors and must iterate over all
blocks in order to find the relevant input data. Output data are directly
written to the provided data buffer and corresponding block descriptors are
inserted into the list of output blocks. Listing B.4 shows a sketch from the

152 APPENDIX B. SOFTWARE APPENDIX

AliHLTTPCClusterFinderComponent.

Listing B.4: Example implementation of the low-level processing method. From
the AliHLTTPCClusterFinderComponent

1 int AliHLTTPCClusterFinderComponent
2 : : DoEvent (const AliHLTComponentEventData& evtData ,
3 const AliHLTComponentBlockData∗ blocks ,
4 AliHLTComponentTriggerData& /∗ t r i gData ∗/ ,
5 AliHLTUInt8 t∗ outputPtr ,
6 AliHLTUInt32 t& s i z e ,
7 vector<AliHLTComponentBlockData>& outputBlocks)
8 {
9 //

10

11 // == i n i t i t e r (po in t e r to da tab l o c k)
12 const AliHLTComponentBlockData∗ i t e r = NULL;
13 unsigned long ndx ;
14

15 for (ndx = 0 ; ndx < evtData . fBlockCnt ; ndx++)
16 {
17 i t e r = b locks+ndx ;
18

19 // . . . Process ing
20

21 // F i l l b l o c k d e s c r i p t o r
22 AliHLTComponentBlockData bd ;
23 Fi l lB lockData (bd) ;
24 bd . fO f f s e t = o f f s e t ;
25 bd . f S i z e = mysize ;
26 bd . f S p e c i f i c a t i o n = i t e r−>f S p e c i f i c a t i o n ;
27 bd . fDataType = AliHLTTPCDefinitions : : fgkClustersDataType ;
28 outputBlocks . push back (bd) ;
29

30 t S i z e += mysize ;
31 outBPtr += mysize ;
32 outPtr = (AliHLTTPCClusterData ∗) outBPtr ;
33 }
34

35 s i z e = tS i z e ;
36

37 // . . .
38 }

B.1.4 Example Implementation of High-Level Processing

The High-level processing interface has been introduced for the sake of sim-
plification of the processing function and the treatment of ROOT objects.
Instead of passing all parameters to the method, the base class providing ac-
cess methods as presented above. The methods include the serialization of

B.1. THE ALIHLTCOMPONENT INTERFACE 153

ROOT objects. Produced data blocks are inserted to the output stream by
using specific PushBack methods of the component base class. In the example
of listing B.5, the component iterates though all input objects by means of
GetFirstInputObject/GetNextInputObject and writes the restored objects
to a memory file.

Listing B.5: Example implementation of the high-level processing method.
1 int AliHLTRootFileStreamerComponent
2 : : DoEvent (const AliHLTComponentEventData& /∗ evtData ∗/ ,
3 AliHLTComponentTriggerData& /∗ t r i gData ∗/)
4 {
5 // see header f i l e f o r c l a s s documentation
6 int iRe su l t =0;
7 AliHLTMemoryFile∗ pFi l e=CreateMemoryFile (fDataType , f S p e c i f i c a t i o n) ;
8 i f (pF i l e) {
9 int count=0;

10 for (const TObject∗ pObj=GetFirst InputObject () ;
11 pObj && iResu l t >=0;
12 pObj=GetNextInputObject ()) {
13 iRe su l t=Write (pFi le , pObj) ;
14 i f (iRe su l t) {
15 count++;
16 }
17 }
18 HLTInfo ("wrote %d object(s) from %d input blocks to file" ,
19 count , GetNumberOfInputBlocks ()) ;
20 iRe su l t=CloseMemoryFile (pF i l e) ;
21 } else {
22 iRe su l t=−ENOMEM;
23 }
24 return iRe su l t ;
25 }

B.1.5 Return and Error Code Scheme

For return codes, the following scheme applies:

• The data processing methods have to indicate error conditions by a
negative error/return code, like e.g. system error code -EINVAL.

• If no suitable input block could be found (e.g. no clusters for the TPC
cluster finder) set size to 0, block list is empty, return 0.

• If no usable or significant signal could be found in the input blocks return
an empty output block, set size accordingly, and return 0.

• If the output buffer is not big enough return empty block list and
-ENOSPC.

154 APPENDIX B. SOFTWARE APPENDIX

B.2 Common HLT Data Types

The framework provides data origins and data types as shown in tables B.1
and B.2. Data origins follow when ever possible the notation of the sub-
detectors in ALICE. Additional origin keys have been defined for HLT specific
data blocks, and some detectors for a better distinction of the exact origin.
Table shows the current definition. All common data types are of origin ANY.

’TPC ’ kAliHLTDataOriginTPC Data Origin TPC

’PHOS’ kAliHLTDataOriginPHOS Data origin PHOS

’FMD ’ kAliHLTDataOriginFMD Data origin FMD

’MUON’ kAliHLTDataOriginMUON Data origin MUON

’TRD ’ kAliHLTDataOriginTRD Data origin TRD

’ITS ’ kAliHLTDataOriginITS Data origin ITS

’ISPD’ kAliHLTDataOriginITSSPD Data origin ITS SPD

’ISDD’ kAliHLTDataOriginITSSDD Data origin ITS SDD

’ISSD’ kAliHLTDataOriginITSSSD Data origin ITS SSD

’EMCL’ kAliHLTDataOriginEMCAL Data origin EMCAL

’OUT ’ kAliHLTDataOriginOut Data origin HLT out

’OFFL’ kAliHLTDataOriginOffline Data origin Offline

’PRIV’ kAliHLTDataOriginPrivate HLT/PubSub private internal

’SMPL’ kAliHLTDataOriginSample Data origin for examples

"/0/0/0" kAliHLTDataOriginVoid invalid data origin

"***" kAliHLTDataOriginAny wildcard data type origin

Table B.1: Common data origins defined for HLT data exchange. Please note the
blank at the end of three-character definitions.

’DDL RAW ’ kAliHLTDataTypeDDLRaw DDL raw data

’ALIESDV0’ kAliHLTDataTypeESDObject ESD object

’ROOTTREE’ kAliHLTDataTypeTTree A ROOT TTree object

’ROOTHIST’ kAliHLTDataTypeHistogram A ROOT histogram

"/0/0/0/0/0/0/0" kAliHLTVoidDataTypeID invalid data type id

"*******" kAliHLTAnyDataTypeID wildcard data type id

Table B.2: Common data types defined for HLT data exchange. All data types
are of origin ANY.

C. Benchmark Environment

For the purpose of benchmark studies, dedicated on-line configurations have
been added to the HLT RunControl. The configurations allow the periodic
test of the system performance. An overview of HLT on-line configurations
used for the benchmark tests throughout this work and macros describing
useful off-line HLT chains is presented here.

Listing C.1: Post-processing of HLT component statistics raw data by an off-line
HLT chain using the AliHLTCompStatCollector component. The
macro is part of the AliRoot distribution.

1 /∗∗
2 ∗ Helper macro to format a b l o c k o f AliHLTComponentStatist ics e n t r i e s .
3 ∗ The b l o c k i s u s u a l l y c rea t ed by a t t a ch in g a f i l e w r i t e r to a chain ,
4 ∗ wr i t i n g on ly COMPSTAT:PRIV data b l o c k s .
5 ∗
6 ∗ The macro t r a n s l a t e s the b l o c k in t o HLTruns a stand−a lone chain
7 ∗ Usage :
8 ∗ <pre>

9 ∗ a l i r o o t −b −q format−s t a t i s t i c s .C | t e e format−s t a t i s t i c s . l o g
10 ∗ </pre>

11 ∗
12 ∗
13 ∗ @ingroup a l i h l t b enchmark
14 ∗ @author Matthias . R i ch t e r@ i f t . u ib . no
15 ∗/
16 void f o r m a t s t a t i s t i c s (const char∗ i n f i l e ,
17 const char∗ o u t f i l e="HLT.statistics.root")
18 {
19 AliHLTSystem gHLT;
20 gHLT. SetGlobalLoggingLeve l (0 x7c) ;
21 gHLT. LoadComponentLibraries ("libAliHLTUtil.so") ;
22 TString arg ;
23 arg . Form("-datatype ’COMPSTAT’ ’PRIV’ -datafile %s" , i n f i l e) ;
24 AliHLTConfiguration pub l i s h e r ("publisher" , "FilePublisher" , NULL,
25 arg . Data ()) ;
26

27 arg . Form("-file %s -publish 0 -arraysize 200000" , o u t f i l e) ;
28 AliHLTConfiguration s ink1 ("sink1" , "StatisticsCollector" ,
29 "publisher" , arg . Data ()) ;
30

31 gHLT. Bui ldTaskList ("sink1") ;
32 gHLT.Run () ;
33 }

155

156 APPENDIX C. BENCHMARK ENVIRONMENT

Listing C.2: XML configuration describing the benchmark test for component
fan-in. The storage of the component statistics by a FileWriter com-
ponent has been omitted.

1 <?xml ve r s i on="1.0" encoding="ISO-8859-1"?>
2 <SimpleChainConfig2 ID="TPC" ve rbo s i t y="0x78">
3 <i n f ob lock >

4 <author>Matthias</author>
5 <date >20/01/09</date>

6 <de s c r i p t i on >

7 Component fan−in benchmark using DataGenerator components
8 </de s c r i p t i on >

9 </in fob lock >

10

11 <ALICE>

12 <Sources type="file">
13 <!−− one pub l i s h e r on 1 node −−>

14 <DDL>768</DDL>
15

16 <!−− 4 pub l i s h e r s on 4 nodes −−>

17 <!−− <DDL>768 ,772 ,776 ,780</DDL> −−>

18 <Directory >/opt/HLT−data/ g l oba l /empty−Events/raw0</Directory>

19 </Sources>

20

21 <Fi l ePub l i sherOpt ions>−buffermanager r ing </Fi l ePub l i sherOpt ions>

22 <RORCShm b l o c k s i z e="64" blockcount="2048"/>
23

24 <TPC>

25 <S l i c e > <Part i t i on >

26

27 <Component ID="pub">
28 <ComponentID>DataGenerator</ComponentID>

29 <Options>−s i z e 10000 −range 1000</Options>
30 <Parent>DDL</Parent>
31 <Shm b l o c k s i z e="100k" blockcount="2048"/>
32 <Mul t i p l i c i t y >1</Mu l t i p l i c i t y >

33 <Library>l ibAl iHLTUti l . so</Library>

34 <ForceFEP/>
35 </Component>
36 </Par t i t i on > </S l i c e >

37

38 <Component ID="fan-in">
39 <ComponentID>DataGenerator</ComponentID>

40 <Options>−mu l t i p l i e r 0.0</Options>
41 <Parent>pub</Parent>
42 <Shm b l o c k s i z e="100k" blockcount="2048"/>
43 <Mul t i p l i c i t y >1</Mu l t i p l i c i t y >

44 <Library>l ibAl iHLTUti l . so</Library>

45 <Node>cntpcc040 </Node>
46 </Component>
47

48 </TPC> </ALICE>

49

50 </SimpleChainConfig2>

157

Listing C.3: Example macro describing the benchmark test for the exchange of
ROOT objects utilizing the AliHLTBenchExternalTrackComponent.

1 void bench externa l trackparam (int events =100 , int compress ionLeve l=4)
2 {
3 //
4 // i n i t the HLT system in order to d e f i n e the ana l y s i s chain below
5 //
6 gSystem−>Load ("libHLTrec.so") ;
7 AliHLTSystem∗ gHLT=AliHLTReconstructorBase : : GetInstance () ;
8 gHLT−>SetGlobalLoggingLeve l (0 x7c) ;
9

10 //
11 // de f i n e the ana l y s i s chain to be run
12 //
13 int iNo fPub l i she r s =1;
14 TString dumpInput ;
15 for (int pub=0; pub<1; pub++) {
16 TString pub l i s h e r ;
17 TString arg ;
18 // pu b l i s h e r s o f AliExternalTrackParam arrays
19 pub l i s h e r . Form("PUB_\%02d" , pub) ;
20 arg="-minsize 100 -maxsize 10000" ;
21 arg+=" -tclonesarray" ;
22 arg+=" -object-compression=" ; arg+=compress ionLeve l ;
23 arg+=" -verbosity 1" ;
24 AliHLTConfiguration pub l i s h e r c on f (pub l i s h e r . Data () ,
25 "BenchmarkAliExternalTrackParam" ,
26 NULL, arg . Data ()) ;
27 i f (dumpInput . Length ()>0) dumpInput+=" " ;
28 dumpInput+=pub l i sh e r ;
29 }
30

31 AliHLTConfiguration dumpconf ("sink1" , "BenchmarkAliExternalTrackParam" ,
32 dumpInput . Data () , "-verbosity 1") ;
33

34 AliHLTConfiguration s t a t c on f ("stat" , "StatisticsCollector" , "sink1" , "") ;
35

36 AliHLTConfiguration wr i t e r ("statwriter" , "ROOTFileWriter" , "stat" ,
37 "-datafile HLT.statistics.root "

38 "-concatenate -events -overwrite") ;
39

40 //
41 // I n i t and run the chain
42 //
43 gHLT−>LoadComponentLibraries ("libAliHLTBenchmark.so libAliHLTUtil.so") ;
44 gHLT−>Bui ldTaskList ("statwriter") ;
45 gHLT−>Run(events) ;
46 }

158 APPENDIX C. BENCHMARK ENVIRONMENT

Listing C.4: XML configuration describing the benchmark test for the exchange
of ROOT objects.

1 <?xml ve r s i on="1.0" encoding="ISO-8859-1"?>
2 <SimpleChainConfig2 ID="TPC" ve rbo s i t y="0x78">
3 <i n f ob lock >

4 <author>Matthias</author>
5 <date >29/11/08</date>

6 <de s c r i p t i on >

7 Data t ranspor t benchmark for ar rays o f AliExternalTrackParam
8 </de s c r i p t i on >

9 </in fob lock >

10

11 <ALICE>

12 <Sources type="file">
13 <DDL>768</DDL>
14 <Directory >/opt/HLT−data/ g l oba l /empty−Events/raw0</Directory>

15 </Sources>

16 <RORCShm b l o c k s i z e="40" blockcount="100"/>
17

18 <TPC>

19 <S l i c e > <Part i t i on >

20 <Component ID="publisher">
21 <ComponentID>BenchmarkAliExternalTrackParam</ComponentID>

22 <Options>
23 −mins ize 100 −maxsize 1000 −nocheck
24 <!−− case 1 : the C−s t r u c tu r e −−>

25 −carray
26 <!−− case 2 : TClonesArray compress ion 0 −−>

27 <!−− −t c l on e s a r r ay −object−compress ion=0 −−>

28 </Options>
29 <Parent>DDL</Parent>
30 <Shm b l o c k s i z e="1M" blockcount="10"/>
31 <Mul t i p l i c i t y >1</Mu l t i p l i c i t y >

32 <Library>libAliHLTBenchmark . so</Library>

33 <ForceFEP/>
34 </Component>
35 </Par t i t i on > </S l i c e >

36

37 <Component ID="sink">
38 <ComponentID>BenchmarkAliExternalTrackParam</ComponentID>

39 <Options></Options>
40 <Parent>pub l i sher </Parent>
41 <Shm b l o c k s i z e="1k" blockcount="10"/>
42 <Mul t i p l i c i t y >1</Mu l t i p l i c i t y >

43 <Library>libAliHLTBenchmark . so</Library>

44 <!−− run e i t e r on the same node (ForceFEP) or not −−>

45 <!−− <ForceFEP/> −−>

46 </Component>
47 </TPC> </ALICE>

48 </SimpleChainConfig2>

Glossary

ADC Analog-to-Digital Converter
AFS Andrew File System
ALICE A Large Ion Collider Experiment
AliEve Alice Event Monitoring Display
AliRoot Alice ROOT
ALTRO ALICE TPC Readout chip
AOD Analysis Object Data
AOP Aspect Oriented Programming
API Application Programming Interface

C C programming language
C++ C++ object oriented programming language
CDB Configuration DataBase
CDH Common Data Header
CERN European Organization for Nuclear Research
CRC Cyclic Redundancy Check

D-RORC DAQ RORC
DA Detector Algorithms
DAQ Data Aquisition
DATE Data Acquisition and Test Environment
DCS Detector Control System
DDL Detector Data Link
DIU DDL Destination Interface Unit
DMA Direct Memory Access

ECS Experiment Control System
EMCAL Electromagnetic Calorimeter
EOD End-of-data event
ESD Event Summary Data
Eve ROOT Event Monitoring Display

FAIR Facility for Antiproton and Ion Research at GSI Darmstadt/Germany
FEC Front-End Card
FEE Front-End Electronics
FEP Front-End Processor
FMD Forward Multiplicity Detector

159

160 Glossary

FPGA Field-Programmable Gate Array
FSM Finite State Machine

GByte Gigabyte
GDC Global Data Collector

H-RORC HLT RORC
HEP High Energy Physics
HLT High-Level Trigger
HMPID High Momentum Particle Identification Detector
HOMER HLT On-line Monitoring Environment including ROOT

IP Interaction Point
IR Infrared
IROC TPC Inner Readout Chamber
ITS Inner Tracking System

L0 Level-0 trigger
L1 Level-1 trigger
L2 Level-2 trigger
LDC Local Data Concentrator
LEP Large Electron-Positron Collider
LHC Large Hadron Collider
LSB Least Significant Byte

MSB Most Significant Byte
MWPC Multi-Wire Proportional Chamber

OCDB Offline Conditions Data Base
OOP Object Oriented Programming
OROC TPC Outer Readout Chamber
OS Operating System

PC Personal Computer
PCI Peripheral Component Interconnect
PCI-X Peripheral Component Interconnect eXtended
PHOS Photon Spectrometer
PID Particle Identification
PubSub Publisher- Subscriber Framework

QCD Quantum Chromo Dynamics
QGP Quark Gluon Plasma

RCU Readout Control Unit

Glossary 161

RHIC Relativistic Heavy Ion Collider, Brookhaven Nat. Lab./USA
ROI Region Of Interest Readout
ROOT An Object Oriented Analysis Framework
RORC Read-Out Received Card

SDD Silicon Drift Detector
SIU DDL Source Interface Unit
SMP Symmetrical Multi Processing
SOD Start-of-data event
SPD Silicon Pixel Detector
SPS Super Proton Synchrotron
SSD Silicon Strip Detector
STAR Solenoidal Tracker At RHIC
SysMes System Management for Networked Embedded Systems and Clusters

T0 Time 0 detector
TCP/IP Transmission Control Protocol/Internet Protocol
TOF Time-Of-Flight
TPC Time Projection Chamber
TRD Transition Radiation Detector
TTC Timing, Trigger and Control

UI User Interface
UNIX (UNICS) UNiplexed Information and Computing System

V0 Vertex 0 detector

WN Worker Node

XML Extensible Markup Language

Bibliography

[1] L. Evans and P. Bryant et al. The Cern Large Hadron Collider. JINST 3 S08002,
2008. doi: 10.1088/1748-0221/3/08/S08001.

[2] CERN AC - HF 267 http://cdsweb.cern.ch/record/841560.

[3] H. Satz. The Transition from Hadron Matter to Quark-Gluon Plasma. Ann. Rev.
Nucl. Part. Sci., 35:245–270, 1985. doi: 10.1146/annurev.ns.35.120185.001333.

[4] J. Stachel P. Braun-Munzinger. Probing the Phase Boundary between Hadronic Mat-
ter and the Quark-Gluon-Plasma in Relativistic Heavy Ion Collisions. Nucl.Phys.
A606, pages 320–328, 1996. doi: 10.1016/j.nima.2006.05.036.

[5] HEP Phase Diagram. Introduction to the CBM experiment, 2007. [Online]
http://www.gsi.de/fair/experiments/CBM/1intro.html.

[6] E. Shuryak. Physics of Strongly coupled Quark-Gluon Plasma. Prog. Part. Nucl.
Phys., 62, 2009. doi: 10.1016/j.ppnp.2008.09.001.

[7] A. Franz (for the PHENIX Collaboration). Highlights from PHENIX: I (Quark Mat-
ter 2008). J. Phys. G: Nucl. Part. Phys., 35(104007), 2008. doi: 10.1088/0954-
3899/35/10/104002.

[8] T.C. Awes (for the PHENIX Collaboration). Highlights from PHENIX: II (Quark
Matter 2008). J. Phys. G: Nucl. Part. Phys., 35(104007), 2008. doi: 10.1088/0954-
3899/35/10/104007.

[9] A. Adare et al. (Phenix Collaboration). Transverse momentum and centrality de-
pendence of dihadron correlations in Au+Au collisions at

√
sNN = 200 GeV : Jet

quenching and the response of partonic matter. Phys. Rev. C, 77(011901(R)), 2008.
doi: 10.1103/PhysRevC.77.011901.

[10] ALICE collaboration. ALICE - Technical Proposal for A Large Ion Collider Experi-
ment at the CERN LHC. CERN/LHCC 1995-71, 1995.

[11] K. Aamodt et al. The ALICE Collaboration. The ALICE Experiment at the CERN
LHC. JINST 3 S08002, 2008. doi: 10.1088/1748-0221/3/08/S08002.

[12] R. Brun et al. ROOT: An object oriented data analysis framework. Nucl. Instrum.
Meth., A389:81–86, 1997. [Online] http://www.ifh.de/CHEP97/paper/358.ps.

[13] K. Aamodt et al. The ALICE Collaboration. The ALICE Experiment at the CERN
LHC - Offline Computing. JINST 3 S08002, pages 162–182, 2008. doi: 10.1088/1748-
0221/3/08/S08002.

[14] I. Foster and C. Kesselmann. The Grid 2: Blueprint for a new Comuting Infrastruc-
ture. Morgan Kaufmann Publishers, U.S.A., 2004.

162

BIBLIOGRAPHY 163

[15] ALICE Collaboration. Technical Design Report: Trigger, DAQ, HLT, DCS. CERN-
LHCC-2003-062, 2004.

[16] ALICE Collaboration. Technical Design Report: Trigger, DAQ,
HLT, DCS. CERN-LHCC-2003-062, pages 413–422, 2004. [Online]
http://cdsweb.cern.ch/record/684651.

[17] B. G. Taylor. Timing distribution at the LHC. Proceedings of the 8th Workshop on
Electronics for LHC Experiments, Colmar France, 2002. [Online] CERN-2002-003,
http://cdsweb.cern.ch/record/592719.

[18] S. Bablok et al. High level trigger online calibration framework in ALICE. J. Phys.:
Conf. Ser., 119 022007, 2008. doi: 10.1088/1742-6596/119/2/022007.

[19] System Management for Networked Embedded Systems and Clusters, 2008. [Online]
http://wiki.kip.uni-heidelberg.de/ti/SysMES/index.php/Main Page.

[20] D. Röhrich et al. Benchmarks and Implementation of the ALICE High Level Trigger.
IEEE Trans. Nucl. Sci., 53:854–858, 2006. doi: 10.1109/TNS.2006.873770.

[21] C. Loizides. Jet physics in ALICE. PhD thesis, University of Frankfurt, Inst. Kern-
physik, Germany, 2005. [Online] arXiv:0501017 [nucl-ex].

[22] B. Becker et al. ALICE dimuon high-level trigger: project re-
view. Technical Report ALICE-INT-2007-022, CERN, 2007. [Online]
https://edms.cern.ch/document/878756.

[23] T. Alt and V. Lindenstruth. The ALICE HLT Read-Out Receiver Card. GSI Scientific
Report 2005, pages 286, 2005.

[24] T. M. Steinbeck. A modular and fault-tolerant data transport framework. PhD thesis,
Ruprecht-Karls-University Heidelberg, Germany, 2004. [Online] arXiv:0404014 [cs].

[25] T. M. Steinbeck et al. An Object-Oriented Network-Transparent Data Trans-
portation Framework. IEEE Trans. Nucl. Sci., 49:455–459, 2002. doi:
10.1109/TNS.2002.1003773.

[26] T. M. Steinbeck et al. New experiences with the ALICE High Level Trigger Data
Transport Framework. Proc. Computing in High Energy Physics Conf. (CHEP04),
2004. [Online] http://chep2004.web.cern.ch/chep2004.

[27] J. P. R. Middlelink. Bigphysarea kernel patch, 2003. [Online]
http://www.polyware.nl/ middelink/En/hob-v4l.html#bigphysarea.

[28] T. M. Steinbeck et al. A Control Software for the ALICE High Level Trig-
ger. Proc. Computing in High Energy Physics Conf. (CHEP04), 2004. [Online]
http://chep2004.web.cern.ch/chep2004.

[29] T. M. Steinbeck. SimpleChainConfig. HLT project internal information, University
of Heidelberg, 2007.

164 BIBLIOGRAPHY

[30] S.R. Bablok et al. ALICE HLT interfaces and data organisation. Computing
in High Energy Physics Conf. 2006 (CHEP06), Mumbai, India, 2006. [Online]
http://cdsweb.cern.ch/record/1066629.

[31] R. Divià and T.M. Steinbeck. Data format and specifications for the HLT-to-DAQ
interface. Technical Report ALICE-INT-2007-015, ver. 3, CERN, 2008. [Online]
https://edms.cern.ch/document/871995.

[32] P. Vande Vyvre R. Divià, P. Jovanovic. Data Format over the ALICE
DDL. Technical Report ALICE-INT-2002-010, ver. 11, CERN, 2007. [Online]
https://edms.cern.ch/document/340186.

[33] J. Wagner et al. Lossless Data Compression for ALICE HLT. Tech-
nical Report ALICE-INT-2008-020, ver. 1, CERN, 2008. [Online]
https://edms.cern.ch/document/948159.

[34] D. Röhrich and A. Vestbø. Efficient TPC data compression by track and cluster
modeling. Nucl. Instrum. Meth., A566:668, 2006. doi: 10.1016/j.nima.2006.06.056.

[35] F. Carminati et al. The ALICE Offline Environment. Computing in High Energy
Physics Conf. 2007 (CHEP07), Victoria, Canada, 2007.

[36] J.F.Grosse-Oetringhaus A.Colla. The Shuttle Framework - A system for automatic
readout and processing of conditions data. Technical Report ALICE-INT-2008-011,
ver. 01, CERN, 2008. [Online] https://edms.cern.ch/document/924807.

[37] T. M. Steinbeck. HLT Online Monitoring Environment including
ROOT. presented during ALICE week March 2007, 2007. [Online]
http://indico.cern.ch/conferenceDisplay.py?confId=13370.

[38] M. Tadel. Raw-data display and visual reconstruction validation in ALICE. J. Phys.:
Conf. Ser., 119 032036, 2008. doi: 10.1088/1742-6596/119/3/032036.

[39] M. Tadel. The new generation of OpenGL support in ROOT. J. Phys.: Conf. Ser.,
119 042028, 2008. doi: 10.1088/1742-6596/119/4/042028.

[40] S. Pont R. Gauthier. Designing Systems Programs. Prentice-Hall, Englewood Cliffs,
N.J., 1970.

[41] G. Kiczales et al. Aspect-Oriented Programming. Lecture Notes in Computer Science
(LNCS), 1241, 1997. doi: 10.1007/BFb0053371.

[42] S. R. Bablok. Heterogeneous Distributed Calibration Framework for the High Level
Trigger in ALICE. PhD thesis, University of Bergen, Norway, 2008.

[43] ALICE HLT analysis framework on-line documentation - Tutorial.
http://web.ift.uib.no/∼kjeks/doc/alice-hlt-current/group alihlt tutorial.html.

[44] AliRoot tutorial. AliRoot tutorial session Oct 2008, 2008. [Online]
http://aliceinfo.cern.ch/export/download/OfflineDownload/tutorial.ppt.

BIBLIOGRAPHY 165

[45] D Bryant D Salomon, G Motta. Data Compression: The Complete Reference.
Springer Verlag, London, GB, 4 edition, 2007.

[46] K. Aamodt et al. The ALICE Collaboration. The ALICE Experiment at the CERN
LHC. JINST 3 S08002, page 175, 2008. doi: 10.1088/1748-0221/3/08/S08002.

[47] ALICE Collaboration. ALICE time projection chamber : Technical Design Report.
CERN-LHCC-2000-001, 2000. [Online] http://cdsweb.cern.ch/record/451098.

[48] R. Esteve Bosch et al. The ALTRO chip: a 16-channel A/D converter and digital
processor for gas detectors. IEEE Trans. Nucl. Sci., pages 2460 – 2469, 2003. doi:
10.1119/TNS.2003.820629.

[49] A. Vestbø. Pattern Recognition and Data Compression for the ALICE High Level
Trigger. PhD thesis, University of Bergen, Norway, 2004. [Online] arXiv:0406003
[physics].

[50] I. Abt, D. Emeliyanov, I. Gorbounov, and I. Kisel. Cellular automaton and Kalman
filter based track search in the HERA-B pattern tracker. Nucl. Instrum. Meth.,
A490(3):546 – 558, 2002. doi: 10.1016/S0168-9002(02)01097-5.

[51] S. Gorbunov. TPC online reconstruction - CA tracker. pre-
sented during ALICE offline week April 2008, 2008. [Online]
http://indico.cern.ch/conferenceDisplay.py?confId=27911#7.

[52] C. Cheshkov. Fast Hough-transform track reconstruction for the
ALICE TPC. Nucl. Instrum. Meth., A566(1):35–39, 2006. doi:
http://dx.doi.org/10.1016/j.nima.2006.05.036.

[53] C. Gonzáles Gutiérres et al. The ALICE TPC readout control unit. IEEE Nucl. Sci.
Symp. Conf. Rec. 1, pages 575–579, 2005. doi: 10.1109/NSSMIC.2005.1596317.

[54] private communication S. Rosseger.

Index

ALICE, 10
Computing model, 12
Data Acquisition, 13, 22
Data Flow, 99
Detector Control System (DCS), 14, 49,

50, 52, 54
Experiment Control System, 16
Experiment Control System (ECS), 13,

57
HLT, 14
Inner Tracking System (ITS), 10, 90
Online Systems, 12
Time Projection Chamber (TPC), 10,

90, 127
Transition Radiation Detector (TRD),

10, 90
Trigger, 13

AliHLTComponentStatistics, 116
AliHLTCompStatCollector, 117
AliHLTConfiguration, 81
AliHLTOUTComponent, 86
AliHLTReconstructor, 87
AliHLTSimulation, 84
AliHLTSystem, 48, 78
AliRawReader, 76
AliReconstruction, 78, 87
AliReconstructor, 87
AliRoot, 12, 42

AliEve, 42
Data Processing Flow, 74
Event Summary Data (ESD), 74, 87, 90,

100, 129
OCDB, 14, 49, 50, 87
Reconstruction, 75
Shuttle, 49, 50
Simulation, 51
simulation, 75

AliRootWrapperSubscriber, 21, 68
AliSimulation, 78
Analysis

Off-line, 12

Application
modular, 46
monolithic, 46

Aspect Oriented Programming (AOP), 47

Calibration data, 39
Cellular Automaton Tracking, 129
Common Data Header, 76, 101, 118
Component

Analysis, 50
Arguments, 29
Environment, 56
High-level Interface, 63, 124
Low-level Interface, 62
Processing interface, 61
Registration, 51, 65
Statistics evaluation, 116
Type, 29

Component library, 65, 80
ComponentHandler, 54, 65
Compression

Deflate, 96, 124
Lossless, 96

Conformal Mapping Tracking, 129

Data Processing
Methodology, 16
Parallel Event Fragment Processing, 17
Pipelined Data Processing, 18, 118
Sequential, 16
Sequential Event Processing, 16

Data processing, off-line, 12
Data processing, on-line, 12
Detector Calibration, 40
Detector Data Link, 13, 22, 38, 86

Elliptic Flow, 9
Encapsulation, 45
Endianness, 27, 40, 93

Big endian, 27
Little endian, 27

Equipment id, 27

166

INDEX 167

Event Summary Data (ESD), 74
Extensible Markup Language (XML), 29, 80

Front-End processor (FEP), 17

Global Data Collectors, 13
GRID Computing, 12, 39

HLT, 15
DAQ/HLT mode, 14
Analysis component, 21
Analysis framework, 21, 35, 38, 43, 47,

65, 69, 99, 115
Block descriptor, 26, 40, 60, 69, 82, 119
Configuration, 16, 29, 51, 80
Configuration, off-line, 78
Data sink component, 21, 59
Data source component, 21, 59
Data Specification, 27, 137
Data transport framework, 21, 41, 59,

82, 118
Data Types, 26, 41, 54, 60, 69, 136
Digits, 86
External interface, 48, 68
H-RORC, 22
Monitoring, 40, 61
Output, 86, 87
Processing hierarchy, 20
Raw data, 86
simulation, 75

HLT analysis component
component id, 54
Event processing, 54
interface, 53

HLTOUT, 101
Compressed Raw Data, 39
Payload, 38, 52, 103
Trigger, 38

HOMER, 40, 117
HOMERReader, 41
HOMERWriter, 41

Hough Transform Tracking, 129

Jet Physics, 10

Large Hadron Collider (LHC), 5
libAliHLTUtil, 49, 117

libHLTbase, 48
libHLTinterface, 48
Library, shared, 48
Local Data Concentrators, 13

Modularity
Code based, 46
Object based, 46, 48

Module Agent, 50, 66, 84
Registration, 50

Monitoring, 40
Multiwire Proportional Chambers (MWPC),

127

Network Byte Order, 27

OCDB, 14, 39, 52, 58, 61
PreProcessor, 50, 52
Shuttle, 52

Output buffer, 29

Parallel Computing, 16, 20
PredictionProcessor, 50, 52
Process multiplicity, 29
Publisher/Subscriber Framework, 15, 23, 59

Quark Gluon Plasma, 7

Region Of Interest readout (ROI), 38
ROOT, 93

C-Interpreter (CINT), 94
Object streamer, 94
Object, 124
TObject, 61

RORCPublisher, 26

Serialization, 93, 124
Shared Memory, 20, 25

bigphys, 25
sysv, 25

Structure Alignment, 27, 40, 93

TClonesArray, 96
TPC

ALTRO, 127
On-line reconstruction, 128
Raw data, 130
Readout Chamber, 127

TTree, 117

Errata

page I ”Abstract” 2nd line: deleted ”(HEP)”

page 3 ”1. Introduction” 1st paragraph line 2: ” one particluar sub-detector” → ”particular”

page 6 ”2. ALICE and the Large Hadron Collider” 1st paragraph line 2: ”ions beams” → ”ion beams”

page 6 ”2.1 Physics Motivation” 2nd paragraph line 3: ”describing sub-atomic interaction” → ”.. interactions ...”

page 7 ”2.1 Physics Motivation” 1st paragraph line 2: ”need to be” → ”needs to be”

page 7 ”2.2 Quark Gluon Plasma” 1st paragraph line 5: ”1980’s” → ”1980s”

page 9 ”2.2 Quark Gluon Plasma” 1st paragraph line 5: ”Jets” → ”jets”

page 10 ”Hard Collision and Jets” 2nd paragraph: 2x ”Jet” → ”jet”

page 13 Fig. 2.6.: ”TTC” needs to be ”Trigger” as TTC describes a common LHC project and the ALICE subsystem

is named ”Trigger”

page 16 ”3.1 Conceptual Design” last paragraph line 1: ”HLT is in influenced” → ”HLT is influenced”

page 17 ”3.2 Processing Methodology - Sequential Event Processing” 2nd paragraph, line 2: ”bandwith” → ”band-

width”; inserted space in ”running period”; skipped ”the” before HLTs.

page 17 Figure 3.2: left node has to be “Node 2”; numbering of the output events corrected “4” → “n”

page 18 ”Pipelined Data Processing” 2nd par, last line: ”later throughout this section” → ”in section 3.4.3”

page 20 ”Shared Memory based Data Exchange”, added reference to section 3.4.2

page 21 ”3.3.1 The Concept of Components”, line 2: ”HLT component” → ”HLT components”

page 22 ”3.3.2 Data Input of the HLT on-line System”, line 3: ”A DDL” → ”The DDL ...”

page 28 ”3.4.4 Intrinsic Data Properties” line 1 and last item line 1: ”endianess” → ”endianness”

page 33 ”3.7.2 Development Environment - The make Utility” 1st paragraph line 1: ” 1970’ies” → ”1970s”

page 41 ”3.9.2 HLT On-line Monitoring Environment” 1st paragraph line 5: ”Endianess” → ”Endianness”

page 45 ”4.1 Interface Methodology” 1st paragraph line 3: ”1970’s” → ”1970”

page 47 ”Aspects in the Design of HLT” 2nd paragraph line 4: ”to first extend” → ”extent”

page 57 ”4.3.2 Running Environment” 1st par, line 6: ”Every component send ...” → ”Every component sends ...”

page 57 ”4.3.3 Initialization and Cleanup” last line: ”takes account for ..” → ”takes account of ..”

page 61 ”4.3.4 Data Processing” 3rd paragraph line 9: deleted ’)’ behind reference 3.4.4

page 80 ”4.5.2 The Off-line HLT System - HLT Configurations in AliRoot”: change in layout in order to avoid

enumeration to be broken up. Last paragraph before ”HLT Configurations in AliRoot” has been shortened by

replacing ”characterized” with ”specified” and ”configuration file” with ”configuration”

page 81 ”4.5.2 The Off-line HLT System - HLT Configurations in AliRoot” 2nd paragraph line 4: ”can simply look

like: ” → ” can simply look like illustrated in listing 4.11” Listing 4.11 placed in the middle of the page

page 81 Listing 4.11: linebreak added in ”fp1 fp2”, ”output percentage 80” in order to stay within margin

page 86 ”4.5.3 AliRoot HLT Simulation - Output of HLT simulation” line 1: ”10 DDL connection” → ”connections”

page 87 ”4.5.4 AliRoot HLT Reconstruction” line 5: ”pug-ins” → ”plug-ins”

page 92 ”4.6 HLT Data Exchange”, 1st paragraph, line 7: ”the caches holds ” → ”the cache holds ”

page 93 ”4.6 HLT Data Exchange”, 1st paragraph line 2: ”Endianess” → ”Endianness”

page 96 ”4.6.2 ROOT Objects - Serialization of Single Objects” 2nd paragraph line 4: ”Endianess” → ”Endianness”

page 107 ”Preprocessed Raw HLTOUT data” 1st paragraph line 4: ”regarding to tracks” → ”with respect to tracks”

page 130 ”7.2 TPC Raw Data” 1st paragraph line 6: ”bit with” → ”bit width”

page 131 Fig 7.3.: The description of the fields in the right block (Altro channel) is missing and has been added.

Adjustment of colors to fit b/w printing.

page 142 last paragraph: ”the overall processing rate still too low” missing ”is” inserted

page 143 2nd paragraph line 4: ”is a prerequisite” → ”are prerequisites”

page 161 “Glossary”: added “XML”

General replacement of ”can not” → ”cannot” (occurrence 15 times throughout the thesis)

General replacement of ”it’s” → ”its” (occurrence 18 times throughout the thesis)

Further references added to some index terms

Hyphenation:

page 5 ”2. ALICE and the Large Hadron Collider” 1st paragraph, line 4: ”devel-oped” → ”de-veloped”

page 57 ”4.3.2 Running Environment” 2nd par, line 4: ”envi-ronment” → ”envir-onment”

page 61 ”4.3.4 Data Processing” 2nd paragraph, line 1: ”corre-sponding” → ”cores-ponding”

page 74 ”4.5.1 AliRoot Data Processing Flow” last line: ”perfor-mance” → ”perform-ance”

page 83 ”4.5.3 AliRoot HLT Simulation” last paragraph line 1: ”proce-dure” → ”pro-cedure”

page 84 ”4.5.3 AliRoot HLT Simulation” last paragraph line 1: ”possi-ble” → ”pos-sible”

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Euroscale Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /RelativeColorimetric
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

