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Abstract 

 

 

Infectious pancreatic disease (IPN) and pancreas disease (PD) of salmon are viral diseases 

caused by Infectious Pancreatic Necrosis Virus (IPNV) (Birnaviridae) and Salmonid 

Alphavirus (SAV) (Togaviridae). Both IPNV- and SAV infections induce lesions in pancreas 

tissue/cells and are frequently detected from the same individual; hence it is possible that the 

viruses target the same cell types and therefore might interfere with each other during such 

infections. In the present study, Chinook Salmon Embryo Cells (CHSE-214) were 

experimentally co-infected with SAV and IPNV and infections were studied by IFAT, real-

time RT- PCR and by viral end-point titration. Real-time RT-PCR was also used to examine 

to what extent the viruses up-regulated key transcripts (IFN and Mx) in the cellular antiviral 

immune response.  

 

IFAT and end-point titration indicated that SAV to some extent inhibited IPNV replication , 

whereas IPNV did not affect SAV infections notably. Furthermore, the experiments 

demonstrated that key transcripts (IFN and Mx) in the cellular antiviral immune system were 

affected by the infections. Interestingly, transcription of these mRNAs were up-regulated in 

SAV infected, but not in IPNV infected cells, which could provide a possible explanation to 

the observed differences in the ability to interfere with the other virus. 
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Introduction 

 

 

Pancreas Disease (PD) and Infectious Pancreas Necrosis (IPN) 

 

Infectious Pancreatic Necrosis (IPN) is a disease of salmonids and a number of other fish 

species. An infectious aetiology for IPN was proposed (Wood, Snieszko, and Yasutake, 1955) 

and in 1960 infectious pancreatic necrosis virus (IPNV) was isolated in cell culture (Wolf et 

al., 1960). The agent is a virus in the family Birnaviridae (Dobos and Roberts, 1983), and was 

initially considered to cause diseases in rainbow trout (Onchorhyncus mykiss) and brook trout  

(Salvelinus fontinalis) fry. However, outbreaks may occur in Atlantic salmon during fresh and 

salt-water life stages. (Munro et al., 2006; Roberts and Pearson, 2005; Smail et al., 2006). 

Although IPN was believed to be a disease of salmonids, IPNV has been isolated from a 

variety of both freshwater and marine fish species, in addition to some cartilaginous 

vertebrates and invertebrates (Hill, 1982; Hill and K., 1995) 

 

IPN diseases cause many histopathological changes in the infected salmonids. Thus, severe 

massive necrosis of acinar cells with nuclear pyknosis, karyorrhexis, and occasionally 

basophilic cytoplasmic inclusion are observed in pancreas (Smail et al., 1995). IPN affected 

rainbow trout and Atlantic salmon may also show congestion and necrosis of liver tissues 

(Taksdal, Stangeland, and Dannevig, 1997). 

 

There is a wide variation in the degree of pathogenicity among different IPNV isolates. 

Mortality in rainbow trout fry vary between 0-90% due to infection with avirulent and highly 

virulent strains, respectively. (Sano et al., 1992). 

 

Infectious pancreatic necrosis and Pancreas disease (PD) are two fish diseases with partly 

similar pathology. Pancreatic damage is common in both diseases (Munro et al., 1984; Smail 

et al., 1995). It is also known that these two viruses can act simultaneously on the same 

locality and in the same fish.  
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Pancreas Disease (PD) in Atlantic salmon (Salmo salar) has been known since 1976 (Munro 

et al., 1984). The disease was given its name due to histopathological changes in affected fish, 

which include acute necrosis in the exocrine pancreas (Munro et al., 1984), and cardiac- and 

skeletal myopathy (Ferguson, Rice, and Lynas, 1986). During the late 80s and early 90s, PD 

was diagnosed from Ireland and the west cost of USA (Kent and Elston, 1987; Murphy et al., 

1992). The first report of PD in Norway was made in 1989 (Mcvicar, 1990; Poppe, Rimstad, 

and Hyllseth, 1989) and Murphy et al. (1992) proposed an infectious aetiology for pancreas 

disease, and in 1995, togavirus-like particles were successfully isolated from PD affected 

Atlantic salmon (Nelson et al., 1995). Morphologically the isolated virus resembled members 

of the Togaviridae, and the name Salmon Pancreas Disease Virus (SPDV) was proposed. 

Sequence analysis of cDNA clones from gradient-purified SPDV placed the virus among the 

Alphavirus genus, and it was the first Alphavirus described from fish (Weston et al., 1999). 

 

A disease with similar histopathology to PD was described from freshwater reared rainbow 

trout (Onchorhyncus mykiss) in France, and given the name Sleeping Disease (SD) due to the 

unusual behavior of affected rainbow trout (Boucher P., 1994). The virus responsible for SD 

was isolated by (Castric et al., 1997), and the nucleotide also sequence classified the virus as 

an atypical Alphavirus of the Togaviridae (Villoing et al., 2000). Sequence analysis, 

monoclonal antibody reactivity and serological comparison of SPDV and SDV suggested that 

they were both distinct subtypes of a new Alphavirus species, for which the name salmonid 

Alphavirus (SAV) was proposed (Weston et al., 2002). Further studies have shown that virus 

isolated from PD in Norway differed from SPDV (SAV) and SDV (SAV2), this virus has 

been named Norwegian Salmonid Alphavirus (NSAV or SAV3) (Hodneland et al., 2005) 

 

Traditionally, Salmonid alphavirus diseases have been distinguished into PD and SD, since 

disease outbreaks of these two viruses occur in saltwater and freshwater fish, respectively. 

The Norwegian outbreaks, reported as PD, have only occurred in the marine production phase 

of salmonids.  
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Salmonid Alphavirus structure and replication  

 

The Alphavirus genus is well studied and characterized, but little work has been done with 

regard to molecular characterization of SAV in vitro. The genome size is similar to other 

alphaviruses at approximately 11900 nt. It consists of a positive sense single-stranded, non-

segmented RNA that is divided into two open reading frames (ORF) with a 5`-terminal cap 

and a 3`-terminal poly (A) tract. The two-thirds of the genome at the 5`-terminal contains an 

ORF that codes for non-structural proteins (nsP), termed nsP1, nsP2, nsP3 and nsP4. The 

second ORF in the 3`-terminal (one-third of the genome) encodes a 26S sub-genomic mRNA 

that produces five structural proteins, termed capsid protein (C protein), E3, E2, 6K, and E1 

(Hodneland et al., 2005; Villoing et al., 2000; Welsh et al., 2000; Weston et al., 1999). 

Recently, the existence of a ribosomal -1 frameshift site in the alphavirus structural 

polyprotein, that gives rise to the transframe protein TF has been shown (Firth et al., 2008).  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Alphavirus replication.  Figure from (White and Fenner, 1994). 
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Alphaviruses have a nucleocapsid consisting of 240 copies of the C protein, which is 

surrounded by a lipid envelope in which 240 copies each of two transmembrane glycoproteins 

(E1 and E2) are located. The E2 protein produces a stable heterodimer together with the E1 

protein. Three E2-E1 heterodimers form one glycoprotein spike. The spikes are used for 

recognition, binding and entry into host cells (Strauss and Strauss, 1994). The low pH in the 

endosome forces the envelope proteins to undergo a structural change that makes the fusion 

between the viral envelope and the endosomal membrane possible (Strauss and Strauss, 

1994). Fusion between the two membranes ( i. e. cell infection) results in a release of the 

nucleocapsid into the cytoplasm (Baker, Olson, and Fuller, 1999). The uncoated viral genome 

serves as a messenger RNA for the synthesis of the nonstructural or replication proteins and 

as a template for the synthesis of the complementary 42S minus strand (Fig. 1). The 5` two 

thirds of the 42S alphavirus genome are translated into a single polyprotein P1234 that is 

autoproteolytically cleaved by nsP2; this cleaving results in a replicase complex consisting of 

P123 and nsP4. A RNA-dependent RNA polymerase complex, formed by these proteins, 

transcribes the genome into full-length 42S minus-strand RNA-templates. The proteinase 

level in the cell will increase after infection, making the RNA-dependent RNA polymerase 

complex unstable, and the complex will further be divided into nsP1, nsP2 and nsP3. This 

dividing gives a replicase complex that only produces (+) strand RNAs (Strauss and Strauss, 

1994). 

 

The last part of the genome, termed 26S sub-genomic mRNA, uses the full-length 42S minus 

strand for the protein synthesis. Translation of the structural polyprotein proceeds through the 

26S mRNA that is used as template for production of a C-p62-6K-E1 polyprotein (Strauss and 

Strauss, 1994). After the capsid protein is autoproteolytically cleaved from this polyprotein it 

will associate with genomic 42S RNA in the cytoplasm, resulting in an icosahedral 

nucleocapsid structure (Garoff, Sjoberg, and Cheng, 2004; Strauss and Strauss, 1994). The 

remaining p62-6K-E1 contains a signal sequence that results in the translocation of the 

polypeptide to the membrane of the rough endoplasmic reticulum (RER) (Garoff et al., 1990; 

Garoff, Simons, and Dobberstein, 1978). In the endoplasmatic reticulum (ER) 

oligosaccharides covalently bind to the polypeptide, following a proteolytic cleavage into p62, 

6K and E1 (Liljestrom and Garoff, 1991). An interaction between the P62, 6K and E1 in the 

ER gives heterodimeric complexes, before being transported to the Golgi complex. The 

glycoproteins will accumulate in the plasma membrane of host cell after the transport through 

the Golgi complex. P62 is oligomerized into E2 and E3 during transport through the Golgi 
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complex (Strauss and Strauss, 1994). It is suggested that the cytoplasmic nucleocapsid 

diffuses freely to the same site on the plasma membrane where the viral glycoproteins are 

embedded (Garoff, Sjoberg, and Cheng, 2004). At the plasma membrane there will be binding 

in a 1:1 molar ratio between the cytoplasmic C-terminus of the E2 in the glycoprotein spike 

and the newly arrived nucleocapsids. This will trigger the final assembly and budding of new 

viruses will occur (Garoff and Cheng, 2001).  

 

 

Infectious Pancreas Necrosis Virus structure and replication 

 

Infectious pancreatic necrosis virus (IPNV) belongs to the genus Aquabirnavirus in the family 

Birnaviridae. Electron microscopy studies have shown that the IPNV is about 55-65 nm in 

diameter (Dobos et al., 1979). The non-enveloped icosahedral capsid of IPNV contains two 

segments (A and B) of double-stranded RNA, which codes for 5 viral proteins (Havarstein et 

al., 1990). (Fig.2) 

 

 
Fig. 2: genome organization of Infectious pancreatic necrosis virus (IPNV) (ViralZone. Swiss Bioinfomatics) 

 

 

Genome segment A contains two overlapping open reading frames (ORFs), the shortest one 

located at the 5` end and encoding the non-structural protein VP5, (Duncan et al., 1987b; 

Havarstein et al., 1990) which has been detected in IPNV infected cells (Magyar and Dobos, 

1994). It has been demonstrated that the VP5 protein is not essential for viral replication in 

cell culture (Weber et al., 2001), but Hong and Wu (2002) showed that VP5 was able to 
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induce anti-apoptotic functions in CHSE-214 cells. Apoptosis is the process of programmed 

cell death in response to a variety of stimuli, and is considered to be a part of the innate 

immune response to virus infection, limiting the time and cellular machinery available for 

viral replication (Everett and McFadden, 1999). 

 

The additional larger ORF in segment A encodes a 106-kDa polyprotein that is processed into 

the mature VP2 and VP3 structural proteins through the proteolytic activity of VP4 (non-

structural protein)  (Duncan et al., 1987a; Petit et al., 2000). The determinants for virulence 

and cell culture adaption is associated with VP2 which is a major capsid protein (Song et al., 

2005).  

 

Genome segment B encodes a non-structural protein (VP1) that constitutes the RNA 

dependent RNA polymerase (RdRp) (Duncan et al., 1991). Two forms of RdRp are present in 

the virion, as free protein and covalently linked to the 5` ends of the two segments (VPg) 

(Calvert et al., 1991). It has been demonstrated in vitro that VP1 is guanylated and 

incorporated into a complex that serves as a primer for RNA synthesis (Xu, Si, and Dobos, 

2004). 

  

Two cell components, both specific and non-specific, are involved in the attachment of IPNV 

to the cellular membrane of host cells, (Kuznar et al., 1995). There is little or no information 

about the function of these two molecules. However,  it has been proposed that VP2 is the cell 

attachment protein for the virion (Dobos, 1995a).  It is suggested that the entry of IPNV, like 

many other naked viruses, is achieved by endocytosis. (Couve, Kiss, and Kuznar, 1992). 

 

IPNV replication occurs in the cytoplasm of infected cells and synthesis of cellular proteins is 

not inhibited by this process  (Saint-Jean, Borrego, and Perez-Prieto, 2003). Virus RNA in 

IPNV infected cells is transcribed by the virion RdRp, that is primed by VP1 and proceeds via 

an asymmetric, semiconservative strand-displacement mechanism (Dobos, 1995a; Dobos, 

1995b). There is little or no information on minus strand RNA synthesis. 

 

Major aspects associated with IPNV replication, such as particle assembly and interference 

with host cells are poorly understood. Villanueva et al., (2004) showed that two different 

sized viral particles were present during the IPNV infective cycle. Non-infectious, immature 

particles (66 nm) appeared immediately after RNA synthesis and viral dsRNA in infected 
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cells was detected simultaneously with this particle. This indicates that the viral assembly 

takes place right after the dsRNA replication has begun. Subsequently, the smaller (60 nm) 

and mature infectious virions are generated through proteolytic cleavage of the viral 

precursors within the capsid. (Villanueva et al., 2004). There is little available information 

about the viral assembly and release of IPNV, but in infected cells the assembly takes place in 

the cytoplasm and the release occurs via cell lysis (Hjalmarsson and Everitt, 1999). 

 

 

Expression of interferon in response to virus infection 

 

Interferons (IFNs) are proteins (cytokines) induced by virus entry into cells and secreted to 

play a major role in the defence against virus infections in vertebrates (Samuel, 2001). IFN-

like activity was identified in fish as early as in 1965 and has since been detected in a variety 

of fish species including salmonids (Robertsen, 2006). On the basis of gene sequences, 

protein structure and functional properties two families of IFNs (type I and type II) can be 

distinguished (Kontsek, Karayianni-Vasconcelos, and Kontsekova, 2003; Pestka, Krause, and 

Walter, 2004; Samuel, 2001). IFN type I includes the classical IFN-α/β, which are induced by 

viruses in most cells, whereas IFN type II is identical to IFN-γ (Samuel, 2001). The 

information on IFN-α/β pathway proteins in teleost fish is limited, but the innate interferon 

system is similar to that in mammals (Robertsen, 2006).  

 

Two IFN genes (IFN-α1 and IFN-α2) have been cloned from Atlantic salmon. Gene structure, 

promoter, antiviral activity and effect on expression of Mx and ISG15 (interferon stimulated 

gene) have also been characterized in these two genes (Bergan et al., 2006; Robertsen et al., 

2003; Rokenes, Larsen, and Robertsen, 2007). IFN type I is considered to be one of the 

earliest non-specific anti-viral immune factors to be induced in fish (Robertsen, 2006). 

 

For SAV it is known that type I IFN is induced in vitro in a number of cell types (Gahlawat, 

Ellis, and Collet, 2009), and in vivo, high levels of IFN-α/β are associated with systemic 

replication of a number of terrestrial alphaviruses (Klimstra et al., 1999; Ryman et al., 2000; 

Ryman et al., 2002; White et al., 2001).  
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An interferon induced antiviral effect against IPNV has been shown in vitro (Robertsen et al., 

2003).  The same authors have also shown in vitro a link between Mx protein expression and 

inhibition of IPNV (Jensen and Robertsen, 2002; Larsen, Rokenes, and Robertsen, 2004; 

Nygaard et al., 2000). An antiviral activity induced by Atlantic salmon Mx1 protein (ASMx1) 

has been shown to inhibit IPNV replication. CHSE-214 cells that expressed ASMx1 

constitutively was found to inhibit virus induced cytopathic effect (CPE) and viral synthesis 

together with a reduction in the transcription of viral RNA (Larsen, Rokenes, and Robertsen, 

2004).  

 

 

Suppression of host responses by alphaviruses 

 

Alphaviruses are capable of antagonizing the induction of stress and innate immune responses 

in cell cultures (Aguilar, Weaver, and Basler, 2007; Breakwell et al., 2007; Frolova et al., 

2002). In a number of terrestrial alphaviruses the activities of nsP2 protein has this ability 

(Breakwell et al., 2007; Frolova et al., 2002). In other terrestrial alphaviruses the capsid 

proteins have been found to be responsible for this ability (Aguilar, Weaver, and Basler, 2007; 

Garmashova et al., 2007a). Interestingly, these proteins were also found to be the primary 

mediators of host cell transcription and translation shut off in cell cultures used for analysis of 

IFN induction. Virus mutants in these studies were selected for Nsp2 non-cytopatogenicity 

(Frolova et al., 2002) or no capsid protein expression and these mutants did not shut off host 

cell functions and induced IFN-α/β. (Aguilar, Weaver, and Basler, 2007; Garmashova et al., 

2006; Garmashova et al., 2007b).  

 

 

Suppression of host response by IPNV 

  

Host cells treated with salmon rIFN-α1 after IPNV infection have shown that IPNV was able 

to inhibit IFN signalling (Collet et al., 2007; Jorgensen et al., 2007). Another study showed 

that the viral protein synthesis of IPNV was reduced if CHSE-214 cells were pre-treated with 

salmon IFN. This reduction prevents the process where pVP2 matures into VP2. The cells 

pre-treated with IFN were compared with cells infected with IPNV before IFN treatment; the 

results showed that IPNV was able to antagonize the antiviral state in cells infected with 

IPNV prior to IFN treatment (Skjesol A., 2009). The same authors showed that there is a 
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correlation between the time of IPNV infection and IFN treatment; the weakening of IFN 

signalling was more prominent the longer post-infection IFN was added. This indicates that 

IPNV is able to antagonize the cells innate immune responses. VP4 and VP5 reduced the IFN-

induced expression more than other proteins tested, suggesting that these molecules are the 

strongest candidates for counteracting the IFN response (Skjesol A., 2009). 
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Aims of the study 

 

SAV and IPNV frequently occur as co-infections in Norwegian Atlantic salmon, and it is 

likely that they may share common target cells (Munro et al., 1984; Smail et al., 1995). The 

aim of this study was to clarify how SAV- and IPNV replication might interfere with each 

other in Chinook Salmon Embryo Cells (CHSE-214) during in vitro co-infections. Another 

objective was to find out if the viruses were able to induce a non-specific antiviral response in 

the host cells, and to see if this might inhibit or block infection of the other virus. Such 

knowledge about innate immune responses and antiviral mechanisms could potentially be 

exploited in future vaccine strategies. 
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Material and Methods 
 
 

Cell culture  

 

Chinook Salmon Embryo (CHSE-214) cells were cultured in 175 cm2 NunclonTM bottles 

containing 30 ml Eagels minimum essential medium (EMEM) supplemented with 10 % foetal 

bovine serum (FBS), L-glutamine (4 mM), gentamicin (50 µg ml-1 ), 1% non-essential amino 

acids and 1 % Hepes buffer concentration 2 pH at 20°C for 5-7 days until an approximately 

80% monolayer was obtained. Infected cells were grown in 2% FBS maintenance medium 

(medium with 2% FBS instead of 10%) in 14°C. For virus propagation the CHSE-214 cell 

line was grown in 75 cm2 NunclonTM  bottles infected with virus isolate (passage 22 for SAV 

and passage 20 for IPNV). The virus infected bottles were incubated for 7-8 days, until virus-

induced cytopathic effect (CPE) was evident and the supernatant was collected and stored at -

80 °C.  

 

 

Virus isolates 

 

The SAV3 isolate (SAVH 20/03) passage 22, used in this study was collected from infected 

salmon in Vik, Hordaland (Hodneland et al., 2005). The IPNV of the N1 strain, serotype SP 

was also used in this study (Christie et al., 1988). The N1 isolate has been shown to give low 

mortality in in vivo experiments. It is therefore classified as a low virulence strain (Sano et al., 

1992).  

 

 

Antibodies  

 

Antibodies used in the present study included a monoclonal antibody (N1-B9) against the 

IPNV VP2 protein (Frost et al., 1995) and a polyclonal antibody against the E2 protein in 

SAV (E2-pTe200) (Ottem, 2005). Bound antibodies were detected using Alexa dye 488-

labelled anti-rabbit IgG (Molecular probes) and/or Alexa dye 555-labelled anti-mouse IgG 

(Molecular probes). 
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The E2-pTE200 antibody against SAV was adsorbed on confluent CHSE-214 cells that were 

fixed 4% paraformaldehyde. Antibody diluted 1:10 in with phosphate buffered saline (PBS) 

containing 0.1 % natriumazid was incubated for 24 h at 4 °C in a 175 cm2 bottle of fixed 

CHSE-214 cells 4%. The diluted antibody was transferred into a new bottle of cells and 

incubated for 1 h. at room temperature. This last step was done twice. Finally the antibody 

was collected and stored at -20 °C until use.  

 

 

Immunofluorescence antibody test (IFAT) 

 

Indirect immunofluorescence staining was performed on IPNV and SAV infected CHSE-214 

cells grown in 96 wells plates (Nunclon) and on coverslips in 24 well plates (Nunclon). 

Following incubation for 7-9 days, the cells were washed once in 1xPBS and fixed in 4 % 

paraformaldehyde for 20 min. Fixed cells were then permeabilized and dehydrated in a 

methanol-PBS series of 25, 50, 75 and 100 % methanol, before they were rehydrated using 

the same Methanol-PBS series in opposite direction. After blocking with 5 % skimmed milk 

powder in PBS for 30 min the cells were incubated for 1 h with the primary antibodies (SAV 

and IPNV) diluted in the blocking solution. Secondary antibodies were diluted in blocking 

solution; and diluted 1:1000. Alexa fluor 555 goat-anti mouse IgG was used for detection of 

antibodies bound with IPNV and Alexa Fluor 488 goat anti-rabbit used with the SAV 

antibody, PBS with 5 % FBS was used for washing between each step, three washes per step. 

During the last washing step a DAPI (4',6-diamidino-2-phenylindole) staining was added to 

stain  nuclei. DAPI was diluted 1:6000 in PBS and added the cells for 2 minutes. By testing 

the different primary antibodies with different dilutions best dilution was determined.   

 

 

Endpoint titration by IFAT 

 

The viral titrations were performed on CHSE-214 cells grown in 96-well plates. The growth 

medium was removed and 150 µl maintenance medium was added to each well. The viral 

suspensions were diluted from 5-1  to 5-12 in maintenance medium (2% FBS) and with 50 µl of 

each dilution, which comprised a further dilution of 1:4. After 7-8 days incubation at 15 °C, 

the wells were subjected to IFAT. The 50% tissue culture infective dose (TCID50) was 
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estimated by the end-point titration method (Karber, 1931). The infective titers of both viruses 

involved in this study were equal.   

 

 

IFAT detection of cells co-infected with SAV and IPNV  

 

In this experiment NunclonTM 24 well culture plates with CHSE-214 cells grown on 

coverslips were used. The coverslips with CHSE-214 cells were exposed for either SAV or 

IPNV, or combinations of these. The study consists of five different experimental groups 

(listed in table 1) performed in triplicate.  

 

 
Table 1: Overview of experimental groups used in this study.  

The group code stated in this table will be used to distinguish between groups throughout this study. 

  
Groups T0 T24 Group description 
I     Mock SAV Single SAV infection 
II    IPNV SAV IPNV infection, prior to co-infection with SAV 24 h. pi.  
III   Mock IPNV Single IPNV infection 
IV   SAV IPNV SAV infection, prior to co-infection with IPNV 24 h. pi.  
V    Mock SAV-IPNV Simultaneously co-infection by SAV and IPNV 
VI   Mock Mock Negative controls  
 
 
 
 
Table 2: Overview of experimental groups used in this study (with half the virus concentration). 

 
Groups T0 T24 Group description 
I (2) Mock SAV Single SAV infection 
II (2) IPNV SAV IPNV infection, prior to co-infection with SAV 24 h. pi.  
III (2) Mock IPNV Single IPNV infection 
IV (2) SAV IPNV SAV infection, prior to co-infection with IPNV 24 h. pi.  
V (2) Mock SAV-IPNV Simultaneously co-infection by SAV and IPNV 
VI (2) Mock Mock Negative controls  
 

 

All groups were fixed in 4% paraformaldehyde 48 h after the start of the experiment. IFAT 

and DAPI staining was then performed. There were three parallels for each group. The 

experiment was later repeated using half the virus concentrations (Table 2).   
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The coverslips from each group were removed from the wells and placed on a slide containing 

5 µl SlowFade® Gold antifade reagent (Invitrogen) prior to microscopic examination. About 

800-1000 cells were counted on each coverslip and the percentage of cell infected by the 

respective viruses in group I, II, III, IV, and V were estimated. This procedure was done with 

all of the coverslips in each of the three parallels. The percentages of infected cells are 

presented as the mean of the three parallels. 

 

Experimental groups I, III (single infected) and VI were also used to investigate if SAV and 

IPNV induced apoptosis in CHSE-214 cells. In these three groups 100 cells were observed for 

each of the three parallels, and the average percentage of apoptotic cells was calculated. Cells 

with nuclei fragmentation visualized by DAPI staining were categorized as apoptotic cells. 

DAPI staining allows the visualization of cells whose nuclei integrity is lost. According to this 

it is able differentiate possible apoptotic and non-apoptotic CHSE-214 cells. 

 

The IFAT study showed that there was less cell density in the wells infected with IPNV for 24 

h, therefore, the cell densities in groups I, III and VI were compared. Four pictures were taken 

from each coverslip with a camera connected to the microscope, the number of cells counted 

and the cell number compared with each other.  

 

 

Relative quantification by real-time RT-PCR and efficiency tests 

 

A time series experiment where the cells were infected as described above was performed in 

24 well culture plates. The cell layers in the wells were harvested for real-time RT-PCR 

analysis. In this experiment the cells were exposed for viruses/virus-combinations (table 1) for 

various time lengths prior to harvest/sampling at 6, 17, 41 and 110 h. For each time point 

there were three parallels with three negative controls. The supernatant from time 110 was 

collected and used in an endpoint titration, as described above. The cell layers in the wells 

were harvested 1 ml of TRI-reagent and stored at – 80 c, prior to RNA extraction and real-

time RT-PCR analysis. Total RNA was extracted as described by (Devold et al., 2000). 

 

The concentration of total RNA in each sample was measured in a NanoDrop ND-1000 

spectrophometer. In order to have the same concentration of total RNA in the 1-step real-time 

RT-PCR reactions the differences of extracted RNA were adjusted by diluting samples with 
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the appropriate volume of double distilled nuclease free water. The adjusted RNA samples 

were spiked with a fixed amount of transcribed RNA from Halobacterium salinarum (SAL), 

which was used as an external control for the 1-step real-time RT-PCR. While the cellular 

elongation factor 1α (ElA) were used as internal control. 

 

VersoTM 1-step QRT-PCR ROX Kit was used for the real time RT-PCR assays. The reaction 

mixture for versoTM 1-step QRT-PCR ROX Kit, was as follows RT-enhancer 0,625 µl, ROX 

master-mix 6,25 µl, enzyme mix 0,125 µl, primers 0,5 µl, probes 0.25 µl, 2 µl RNA template 

and DEPC-water added to a final volume of 12.5 µl. PCR was performed in an ABI 7500 

sequence detection system (Applied Biosystems). The reaction was 15 min at 50 °C (Reverse 

Transcriptase step), 15 min at 95 °C (Polymerase activation step) followed by 45 cycles of 95 

°C for 15 seconds (DNA-dissociation) and 60 °C for one minute (annealing and elongation). 

The PCR efficiency (E) for each essay (nsP1, IPN, Mx, IFN, SAL and ElA) was calculated 

from the slope of standard curves derived from five-fold RNA (triplicate) dilution series in 

yeast tRNA (Invitrogen) (E=10-(1/slope)) (Pfaffl, 2001).  

 

Mean normalized expression (MNE) values for SAV, IPNV (nsP1), Mx and IFN and standard 

errors were calculated using Q-gene which is based on Ct-values of triplicate runs and PCR-

efficiency (Muller et al., 2002; Simon, 2003). The threshold was set to 0.02 for all assays 

when obtaining Ct-values. Negative template control and negative Trizol control were used 

for all assays in order to reduce the possibility of false positives. Primers and probes used 

towards the respective genes are listed in table 3. Two separate experiments were performed 

in order to test reproducibility.  
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Table 3: Primers and probes used in real-time RT-PCR analysis. 

 
Primer and 
Probes 

Target gene Direction Sequence (5`-3`) Ref. 

NSP1-F Non-structural p. 1 Fwd CCGGCCCTGAACCAGTT  

NSP1-R Non-structural p. 1 Rev GTAGCCAAGTGGGAGAAAGCT 

(Hodneland 
and Endresen, 
2006) 

NSP1-
Probe Non-structural p. 1 Probe TCGAAGTGGTGGCCAG 

 

     
IPNV-F  Fwd ACCCCAGGGTCTCCAGTC  

IPNV-R  Rev GGATGGGAGGTCGATCTCGTA 
(Nylund, 
Unpublished)  

IPNV-
Probe  Probe TCTTGGCCCCGTTCATT 

 

     
MX- F Mx Fwd TGCAACCACAGAGGCTTTGAA  

MX- R Mx Rev GGCTTGGTCAGGATGCCTAAT 
(Haugland et 
al., 2005) 

MX- probe Mx Probe 
TGGCACAAGAGGTGGACCCTGAAG
G 

 

     
INF- α- F Interferon alpha Fwd TGGACGATTTCCTCAACATTCTAGA  

INF- α- R Interferon alpha Rev 
TTCTTGAAGTAGCGTTTCAGTCTCT
T 

(Fridell., 
Unpublished) 

INF- α- 
probe Interferon alpha Probe 

CCTTAAATCCTGTGTATCACCTGCC
ATGAA 

 

     
EL1A-elaf Elongation factor 1 α Fwd CCCCTCCAGGACGTTTACAAA       
EL1A-
elam1 Elongation factor 1 α Rev ATCGGTGGTATTGGAAC 

(Olsvik et al., 
2005) 

EL1A-elar Elongation factor 1 α Probe CACACGGCCCACAGGTACA  
     

Sal- F 
16S rRNA, H. 
salinarum  Fwd GGGAAATCTGTCCGCTTAACG 

 

Sal- R 
16S rRNA, H. 
salinarum Rev CCGGTCCCAAGCTGAACA 

(Andersen et 
al., 
Unpublished) 

Sal- Probe 
16S rRNA, H. 
salinarum Probe AGGCGTCCAGCGGA 
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Results 

 

Immunofluorescence antibody test (IFAT) 

 

A polyclonal antibody against the E2 protein in SAV and a monoclonal antibody against the 

VP2 protein in IPNV have been made. Both antibodies showed to be valuable diagnostic tools 

in IFAT. Uninfected cells showed some background with these antibodies, but specific 

staining was not obtained. Early experiments showed that the polyclonal antibody against 

SAV had major background staining even at different dilutions. However, after adsorption of 

CHSE-214 cells most of the unspecific binding was eliminated, reducing the background. The 

antibody against SAV detected proteins located at the outside of the plasma membrane and in 

the ER, which is to be expected since the E2 protein is located at these sites. The results from 

the dilution series showed that the adsorbed E2 antibody had little background and specific 

staining at a 1:400 dilution (Fig 3). The antibody against IPNV (B9-N1) was raised against 

virus protein 2 (VP2) and detected little background; therefore eliminating the need for 

adsorption. The antibody also detected proteins located at the membrane in the cytoplasm, 

which is expected since VP2 proteins are located at this site. For the VP2 antibody a 1:800 

dilution was chosen based on background and strength of specific signal (Fig. 4).  

 

 
 
Fig. 3: Immunofluorescent staining of SAV infected CHSE-214 cells with different dilutions of a primary 

antibody raised against E2 protein (E2), (A) 1:50, (B) 1:100, (C) 1:200, (D) 1:400, (E) 1:800, (F) 1:1600. (All 

pictures are taken with 1/3 sec exposure and 2.80x gain) 

 

A B C 

D E F 
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Fig. 4: Immunofluorescent staining of IPNV infected CHSE-214 cells with different dilutions of a primary 

antibody visualizing VP2/N1-B2, (A) 1:100, (B) 1:200, (C) 1:400, (D) 1:800, (E) 1:1600, (F) 1:3200 (all pictures 

are taken with 1/3 sec exposure and 2.80x gain) 

 

IFAT experiments  

 

IPNV Infected CHSE-214 cells developed a CPE, which is characterized by a progressive 

rounding of the cells. In order to establish the fraction of cells that developed CPE as a 

consequence of IPNV and SAV, the percentage of cells with nuclei fragmentation was found 

in group I, III and IV at 24 h. p. i. In groups I and III 75% cells showed fragmentation, while 

group IV (mock infected) had only 25% (Fig. 5).  

 

To test the progress of infections, the cell densities for group I, III and IV were measured by 

cell counting. Group I and IV did not show any differences in cell densities. However, in 

group III there was about 30% less cell density compared to groups I and IV (Fig. 6).  

 
 

 

 

A B C 

D E F 
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Fig. 5: Fragmented and non-fragmented nuclei in CHSE-214 cells.                                                                          

A. (line) fragmented nuclei stained with DAPI, (arrow) normal nucleus stained with DAPI.                        

B. Percentage of fragmented and non-fragmented nucleus in SAV and IPNV infected cells compared to non-

infected cells.                                                   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: DAPI stained CHSE-214 nuclei detected with IFAT. (picture A and B taken in the central part of the 

coverslip, C and D taken in the circumference of the coverslip.)                                                                                                                   

(A) and (C) CHSE-214 cells exposed for IPNV for 24 h. (B) and (D) uninfected CHSE-24 cells                                                                                                      
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Many viruses are able to infect the same cell, such infections are termed superinfection. The 

IFAT method was used to detect the superinfection of SAV and IPNV in the same cell. This 

was only observed in group V. Fig. 7 (A) shows two SAV infected cells in which the detected 

proteins are located at the membrane, (B) shows the same cells infected with IPNV. (C) and 

(D) shows the DAPI stained nucleus and all pictures merged together, respectively.  

 

 

 
 
Fig. 7: CHSE-214 cells co-infected with SAV and IPNV (group V) visualized using IFAT and DAPI 

A. SAV visualized with the E2 antibody 

B. IPNV visualized with the VP2/N1-B2 antibody. 

C. DAPI stained nucleus. 

D. All pictures merged. 

 

In the IFAT detection of cells infected with virus/virus combinations (Table 1), the percentage 

of infected cells after 24 h was estimated for each parallel. Together (all three parallels), there 

were about 2500 cells counted for group I, II, III, IV and V (Table 1). No infected cells were 

detected in group VI (uninfected control). Fig. 8 shows the mean percentage of the three 

parallels for SAV and IPNV infected cells. The range, which represents the difference in the 

parallel with lowest percentage and the parallel with highest percentage are given for both 

SAV and IPNV infected cells. The percentage of SAV infected cells in group I, II and V were 

compared. The results showed 32% infected cells in group I, 38% in group II and 45% in V. 

A B 

C D 
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The same procedure was done to find the percentage of IPNV infected cells in groups III, IV 

and V. Interestingly, there were no IPNV infected cells detected in group IV and V (groups 

challenged with SAV), and group III had only 6% IPNV infected cells.  

In order to check the validity of these results the virus concentrations were dropped to the half 

for the virus/virus combinations (Table 2). When half the virus concentration was used the 

percentage of SAV infected cells in group I(2), II(2) and V(2) were reduced to 10%, 7% and 

7%, respectively (fig. 8). Surprisingly, this reduction resulted in a higher percentage of IPNV 

infected cells, 9% IPNV infected cells in group III(2), and 3% in the two other groups (Fig. 

8).  

 

Fig. 8: Percentage of SAV and IPNV infected CHSE-214 cells in different virus combinations fixed after 24 h. 

The range from the three parallels is shown for each group.  
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Real-time RT-PCR analysis.  
 
Standards curves were derived from five-fold dilution series for all assays in order to estimate 

PCR efficiencies. PCR effciency were calculated from slopes of standard curves (fig. 9). 

Slope of standard curve for elongation factor 1(ElA) are described is (Andersen et al., 2007). 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9: Standard curves for the five different assays used in this study; standard curves for all assays are five fold 

diluted in yeast tRNA and run in triplicates.   
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Real-time RT-PCR analysis was performed on RNA extracted from two of the three parallels 

from the time series experiment and negative controls. The target genes used were Nsp1 

normalized against SAL and ELA reference genes. Group I, II and V were compared in both 

duplicate 1 and 2. The MNE values for Nsp1 against both reference genes showed small 

differences in the three experimental groups in the time series.  

MNE values in duplicate number 2 for both reference genes could be as much as 10 fold 

lower compared to duplicate number 1. The differences in group II observed in duplicate 1 

were not reproducible in duplicate 2. Both, duplicate 1 and 2 independently of reference gene, 

showed that the nsP1 expression were at the highest after 17 h (Fig. 10). 

 

Fig. 10: Duplicate of MNE values for Nsp1 in CHSE-214 cells in the three different groups harvested at 

different time points; (I) SAV single infection, (V) simultaneously SAV/IPNV co-infection and (II) SAV 

infection after 24 h exposure to IPNV.  The nsP1 was normalized against SAL and ELA reference genes.  (The 

scale used for Duplicate 2 is adjusted in order to see the trend. However, it should be mentioned that duplicate 2 

had much lower expression of nsP1). 
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Similarity, MNE values for IPNV showed that duplicate 1 and 2 did not have any 

measureable differences in the three groups. In duplicate 1 the MNE values for IPNV against 

both reference genes showed that RNA expression was highest at 17 h. In duplicate 2 this 

peak was only observed with SAL as reference gene (Fig. 11). 

 
Fig. 11: Duplicate of MNE values for IPNV in CHSE-214 cells in group III, V and IV; (III) IPNV single 

infection, (V) simultaneously IPNV/SAV co-infection and (IV) IPNV infection after 24 h exposure to SAV.  The 

IPNV was normalized against SAL and ELA reference genes.  

 

 

Real-time RT-PCR analysis for IFN-α and Mx was performed with the same RNA as used in 

duplicate 1 (fig. 12). All six experimental groups were analyzed. Mean normalized expression 

(MNE) values for IFN showed that group I (single SAV) after 24 h induced a strong up-

regulation of IFN-α, independently of reference genes. IPNV did not show to induce any 

measurable IFN up-regulation.  

 

MNE values for Mx showed that group IV gave the highest Mx induction at 6 h, and that 

group I and V gave the highest induction at 17 h. Group III (single IPNV) did not induce Mx 

production at all.  All these results were observed with both reference genes.  
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in group II at 17 h, however, the IFN-α up-regulation was much lower compared to group I, 

although this two groups induced almost the same amount of Mx.  

 

 

 
Fig. 12: MNE values in all six groups, with IFN-α and Mx as target genes towards two reference genes (H. 

salinarum and elongation factor 1).  
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End-point titration (110 hour, time series experiment) 

 

Supernatant from all groups (Table 1) were collected from the time series experiment at 110 

h., and endpoint titration was performed for both SAV and IPNV in all groups (Table 2). 

 

In this study there were four parallels for each of the six groups, the viral titer were sat to be  

the last wells were over 50% of the wells had virus infected cells detectable with IFAT .   

Interestingly, the result showed that all SAV infected groups had the same amount of virus 

per ml supernatant. However, there were measurable differences in the groups infected with 

IPNV. As Table 1 shows, group III (single IPNV) had the highest amount of IPNV infectious 

particles. In group II, IV and V the amount of IPNV were 5, 5 and 25 times less compared to 

group III.).   

 

 

Table 2: Virus per ml for SAV and IPNV in the six different groups, the supernatants used for titration were 

collected 110 h post the initial infection time. 

 
 I II III IV V IV 

SAV 1,25E+06  1,25E+06  
 

0  1,25E+06  
 

1,25E+06  
 

0  

IPNV 0  2,50E+05  
 

1,25E+06  
 

2,50E+05  
 

5,00E+04  
 

0  
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Disscussion  

 

Co-infections with birnaviruses and other viruses have been described earlier (Alonso, 

Rodriguez, and Perez-Prieto, 1999; Alonso, Rodriguez Saint-Jean, and Perez-Prieto, 2003; 

Johansen and Sommer, 2001; Saint-Jean and Perez-Prieto, 2007), but the possible interactions 

between birnaviruses and alphaviruses have not been examined. It is likely that these two 

viruses might affect the same individual fish, and target cells that are located in the pancreas 

tissue (Munro et al., 1984; Smail et al., 1995). The present work provides evidence that during 

such co-infections SAV interfere with IPNV replication in CHSE-214 cells, while IPNV does 

not notably affect SAV. It is shown that SAV induce INF-α and Mx in CHSE-214, while 

IPNV does not. This is in agreement with previous studies (A. Bratland, Unpublished;    

Jensen and Robertsen, 2002; Rokenes, Larsen, and Robertsen, 2007). The IFN-system may 

play a key role in the observed interference between these viruses.  

 

Several diagnostic tests like the indirect immunofluorescence assay (IFAT), enzyme-linked 

immunosorbent assays (ELISA) and molecular diagnostic tests like real-time-RT-PCR have 

been developed for fish pathogens (Adams et al., 1995; Overturf, LaPatra, and Powell, 2001). 

These methods can be used to examine IPNV and SAV and also RNA or protein products. In 

the present study CHSE-214 cells experimentally co-infected with SAV and IPNV were 

studied by (I) IFAT, which detect specific proteins, (II) real-time RT- PCR which detect 

genomic segments of the virus, and, (III) viral end-point titration, which detect infectious 

virus particles. The IFAT method proved to be particularly useful since it allowed visual 

identification of infected cells. This made it possible to investigate if the viruses were able to 

infect the same cell. Although not commonly observed, these studies demonstrated that single 

cells where both the SAV E2 protein and the IPNV VP2 protein were expressed existed in the 

cell layer. This confirms that both SAV and IPNV replication, at least to the extent of 

expression of these proteins, may occur in the same cell. As part of the IFAT method, staining 

of cell nuclei with DAPI was performed. This provided information about the integrity of cell 

nuclei during infection, and suggested that infections with both SAV and IPNV lead to 

fragmentation of the nucleus. The result agrees with in vitro studies of IPNV infection which 

reported that morphological changes like fragmentation of nuclei could be seen in apoptotic 

cells as early as 6 h. p. i. of CHSE-214 cells (Hong et al., 1999). Apoptosis is morphologically 

characterized by cell shrinkage and hyperchromatic nuclear fragments (Wyllie, Kerr, and 
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Currie, 1980). Like for IPNV, it has been shown that terrestrial alphaviruses trigger apoptotic 

death of the infected host cell (Glasgow et al., 1997; Mastrangelo et al., 2000; Nava et al., 

1998). More than one method should, however, be applied to confirm that SAV induce 

apoptosis in CHSE-214 cells. 

 

By combining IFAT with real-time-RT-PCR for quantification of RNA, it was possible to 

obtain data about the percentage of infected cells as well as levels of chosen viral and host 

RNA transcripts. While IFAT showed that the percentage of IPNV infected cells in the cell 

layer were reduced during co-infections, a corresponding reduction in viral RNA levels could 

not be detected. By performing the real-time-RT-PCR experiments in duplicate runs, it could 

be demonstrated, however, that regulation in RNA levels was only in the 0-5 interval. Such 

small variations are difficult to measure due to uncertainties that are provided by the method. 

To measure expression kinetics of the selected viral and host RNA during infection, target 

transcripts were normalized against reference transcripts. This opens for discussion about the 

stability and reliability of the chosen reference genes. Ideal housekeeping gene should show a 

constant expression between individuals and different developmental stages, and it should be 

unaffected by any experimental treatment (Zhang, Ding, and Sandford, 2005). The internal 

housekeeping gene Elongation factor 1A (ElA) used, has previously been described for use as 

a reference gene in fish. E1A transcript is steadily expressed under a variety of terms, though 

its performance during a virus infection is not that well known and it is most likely dependant 

on virus species (Olsvik et al., 2005). Bratland, (unpublished) suggested ElA to be an 

acceptable reference gene towards nsP1. From previous studies, one can see that the 

expression of a number of the frequently used house keeping genes can vary under 

experimental circumstances (Radonic et al., 2004; Schmittgen and Zakrajsek, 2000; 

Vandesompele et al., 2002). A second reference gene (external) was therefore used. This 

consisted of an in vitro transcribed 900 nt RNA homologous to 16S rRNA of the bacterium H. 

salinarum, which was added to the samples after RNA extraction, thereby, not affected by 

pre-extraction handling or gene expression variations in the samples. Although the real-time-

RT-PCR method was unable to detect reliable differences in viral RNA levels between the 

test groups, the final outcome of the infections found with endpoint titration showed that less 

infectious IPNV units were produced during co-infections than during single infections, while 

the production of infectious SAV units was not affected by presence of IPNV. 
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In addition to monitoring levels of viral RNA, the real-time-RT-PCR experiments 

demonstrated that key transcripts in the anti viral immune system (IFN and Mx) were affected 

by the infections. Interestingly, transcription of these mRNAs were up-regulated in SAV 

infected, but not in IPNV infected cells, providing a possible explanation to the observed 

differences in the ability to interfere with the other virus. Up-regulation of IFN and Mx during 

SAV infection is in agreement with previous studies (Bratland, unpublished; Gahlawat, Ellis, 

and Collet, 2009). Although the SAV genome is a single stranded RNA, all RNA viruses need 

to synthesize antisense RNA at some time during their replication cycle. This leads to 

potential presence of viral dsRNA, which is known to trigger many of the cellular responses 

to virus infection, including IFN-inducible enzymes (Jacobs and Langland, 1996). However, 

cells infected with IPNV, which has a double stranded RNA genome, induced no IFN-like 

activity. A possible explanation for this has been suggested by Skjesol (2009) who showed 

that VP4 and VP5 reduced the IFN-induced expression suggesting that these molecules are 

the strongest candidates for counteracting the IFN system. This concur with earlier studies 

that has demonstrated that IPNV induced neither IFN nor Mx during infection of TO cells, or 

CHSE-214 cells (Jensen and Robertsen, 2002; Rokenes, Larsen, and Robertsen, 2007). IPNV 

is, however, able to induce an IFN response both in other cell types, like rainbow trout gonad 

cell line and in vivo (Collet et al., 2007; de Sena and Rio, 1975; Jensen and Robertsen, 2000; 

McBeath et al., 2007; Saint-Jean and Perez-Prieto, 2007). The virus is also sensitive to 

presence of IFN-induced effector proteins. (Larsen, Rokenes, and Robertsen, 2004) 

transfected CHSE-214 cells with the Atlantic salmon Mx1 protein (ASMx1) and 

demonstrated an antiviral effect of these cells towards IPNV. Other studies have demonstrated 

that an anti-IPNV activity induced by IFN and Mx is obtained in a number of cell types 

(Jensen and Robertsen, 2002; Nygaard et al., 2000; Robertsen et al., 2003).  

 

 

Effective vaccines against fish viruses have traditionally been difficult to develop (Biering et 

al., 2005). The majority of the commercial vaccines that are available at the moment contain 

inactivated disease agents. In vaccines against viral agents, the use of inactivated agents may 

be overly simplistic since the innate immune system, an important line of defence against 

viruses, in not activated. Effective response to and control of virus infection seems to require 

several levels of interactions between the innate and adaptive immune systems (Kang and 

Compans, 2009). Live attenuated vaccines provide a complete viral lifecycle and, thus, may 

overcome this problem through stimulation of responses that resemble those seen after natural 
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virus infection. Such vaccines could potentially have advantages over traditional vaccines also 

in aquaculture (Benmansour and de Kinkelin, 1997). A major disadvantage off attenuated 

vaccine, however, is the possibility that they will revert to a virulent form (Benmansour and 

de Kinkelin, 1997). A recombinant full-length SAV2 was recently published (Moriette et al., 

2006). This study demonstrated that a recombinant strain of SAV2 (SD) that possessed little 

or no virulence in fish was able to protect rainbow trout against wild type SAV2. Moreover, it 

was demonstrated that SAV can replicate and express foreign RNAs, opening the possibility 

of using live SAV as a delivery vector of any antigen in fish.  

 

The trigging of antiviral mechanisms (IFN and Mx) by SAV demonstrated in this study might 

be useful features in the development of recombinant alphavirus-based vaccines. In such a 

vaccine there will be a specific protection obtained by the antigens and a non-specific 

protection obtained by the reported up regulation of antiviral mechanisms in cells induced by 

wild type SAV.  As this study shows this might be a future application against IPN and other 

diseases caused by viruses.  

 

 

Conclusion and Future perspectives  

 

This study showed that IFN-mediated antiviral activity and Mx expression could be induced 

by SAV, and that such induction would correlate with the inhibition of IPNV in the co-

infections. IPNV did not up-regulate IFN and Mx, nor did it interfere with SAV, suggesting 

that the IFN-system may play a key role in the observed interference in vitro between these 

viruses. However, despite the reported correlation between IFN and Mx induction and 

inhibition of IPNV replication, it should be mentioned that other cytokines with antiviral 

activity also could be involved. The results of the present study were based entirely on in vitro 

experiments that can never fully reproduce in vivo conditions. Therefore, it would be of great 

interest to conduct co-infection experiments on salmonid fish in test the in vivo interference 

of these two viruses. 
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