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Abstract

The UML is the de facto standard for system specification, but
offers little specialized support for the specification and analysis of
policies. This paper presents Deontic STAIRS, an extension of the
UML sequence diagram notation with customized constructs for pol-
icy specification. The notation is underpinned by a denotational trace
semantics. We formally define what it means that a system satisfies a
policy specification, and introduce a notion of policy refinement. We
prove that the refinement relation is transitive and compositional, thus
supporting a stepwise and modular specification process. The approach
is exemplified with access control policies.

Key words: Policy specification, policy refinement, policy adherence,
UML sequence diagrams, access control

1 Introduction

Policy based management of information systems has the last decade been
subject to increased attention, and several frameworks, see e.g. [24], have
been introduced for the purpose of policy specification, analysis and enforce-
ment. At the same time the UML 2.1 [17] has emerged as the de facto stan-
dard for the modeling and specification of information systems. However,
the UML offers little specialized support for the specification and analysis
of policies.

Policy specifications are used in policy based management of systems.
The domain of management may vary, but typical purposes are access con-
trol, security and trust management, and management of networks and ser-
vices. Whatever the management domain, the purpose is to control behav-
ioral aspects of a system. This is reflected in our definition of a policy,
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adopted from [23], viz. that a policy is a set of rules governing the choices
in the behavior of a system.

A key feature of policies is that they “define choices in behavior in terms
of the conditions under which predefined operations or actions can be in-
voked rather than changing the functionality of the actual operations them-
selves” [24]. This means that the capabilities or potential behavior of the
system generally span wider than what is prescribed by the policy, i.e. the
system can potentially violate the policy. A policy can therefore be un-
derstood as a set of normative rules about a system, defining the ideal,
desirable or acceptable behavior of the system. In our approach, each rule
is classified as either a permission, an obligation or a prohibition. This clas-
sification is based on standard deontic logic [15], and several of the existing
approaches to policy specification have language constructs of such a deontic
type, e.g. [1, 4, 11, 23]. This categorization is furthermore implemented in
the ISO/IEC standard for open distributed processing [10].

The contribution of this paper is firstly an extension of the UML sequence
diagram notation suitable for specifying policies. In [25] we evaluated UML
sequence diagrams as a notation for policy specification, and argued that
although the notation to a large extent is sufficiently expressive, it is not
suitable for policy specification. The reason for this lies heavily in the fact
that there are no constructs for expressing deontic modalities. In this paper
we propose a customized notation, referred to as Deontic STAIRS, which is
underpinned by the denotational trace semantics of the STAIRS approach
to system development with UML sequence diagrams [7, 21]. The notation
is not tailored for a specific type of policy, thus allowing the specification of
policies for access control, security management, trust management, etc. In
this paper the approach is exemplified with access control policies, whereas
the work presented in [18] demonstrates the suitability of the notation to
express trust management policies.

Secondly, this paper contributes by introducing a notion of policy ad-
herence that formally defines what it means that a system satisfies a policy
specification.

As pointed out also elsewhere [3, 19], although recognized as an impor-
tant research issue, policy refinement still remains poorly explored in the
literature. This paper contributes thirdly by proposing a notion of policy
refinement that supports an incremental policy specification process from
the more abstract and high-level to the more concrete and low-level. We
show that the refinement relation is transitive, which is an important prop-
erty as it allows a stepwise development process. We also show that each of
a set of composition operators is monotonic with respect to the refinement
relation. In the literature this is often referred to as compositionality, and
means that a policy specification can be refined by refining individual parts
of the specification separately.

Through refinement more details are added, and the specification is typ-
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ically tailored towards an intended system (possibly including an enforce-
ment mechanism). The set of systems that adhere to the policy specification
thereby decreases. We show that the refinement relation ensures that if a
system adheres to a concrete, refined policy specification, it also adheres to
the more abstract specifications. Enforcement of the final specification thus
implies the enforcement of the specifications from the earlier phases.

For specific domains a special purpose policy language, e.g. XACML [16]
for access control, will typically have tailored constructs for its domain. A
general purpose language such as Deontic STAIRS is, however, advantageous
as it offers techniques for policy capturing, specification, development and
analysis across domains and at various abstraction levels.

The next section introduces UML sequence diagrams and the STAIRS
denotational semantics. In Section 3 we propose the customized syntax and
semantics for policy specification with sequence diagrams. Section 4 for-
malizes the notion of policy adherence, whereas policy refinement is defined
and analyzed in Section 5. Related work is discussed in Section 6 before we
conclude in Section 7. For sake of readability of the main sections of the
paper, a set of formal definitions are presented separately in Appendix A,
whereas the full proofs of results are presented in Appendix B.

This paper is the full technical report on the results published in [26].

2 UML Sequence Diagrams and STAIRS

In this section we introduce the UML 2.1 sequence diagram notation and
give a brief introduction to the denotational semantics as defined in the
STAIRS approach. STAIRS formalizes, and thus precisely defines, the trace
semantics that is only informally described in the UML 2.1 standard.

UML interactions describe system behavior by showing how entities in-
teract by the exchange of messages. The behavior is described by traces
which are sequences of event occurrences ordered by time. Several UML
diagrams can specify interactions, and in this paper we focus on sequence
diagrams where each entity is represented with a lifeline. To illustrate lan-
guage constructs and central notions, we use a running example throughout
the paper in which the interaction between a user U and an application A is
defined. The diagram M to the left in Fig. 1 is very basic and has only two
events, the sending of the message login(id) on U (which we denote !l) and
the reception of the same message on A (denoted ?l). The send event must
occur before the receive event. The semantics of the diagram M is given by
the single trace of these two events, denoted 〈!l, ?l〉.

The diagram W to the right in Fig. 1 shows the sending of the two
messages l and r from U to A, where r denotes read(doc). The order of
the events on each lifeline is given by their vertical positions, but the two
lifelines are independent. The semantics for each of the messages is as for
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Figure 1: Sequence diagrams

the message in diagram M , and the semantics of W is given by weak se-
quencing of the two messages. Weak sequencing takes into account the
independence of lifelines, so the semantics for the diagram W is given by
the set {〈!l, ?l, !r, ?r〉, 〈!l, !r, ?l, ?r〉}. The two traces represent the valid in-
terpretations of the diagram; the sending of l is the first event to occur, but
after that both the reception of l and the sending of r may occur.

The UML sequence diagram notation has further constructs for combin-
ing diagrams, most notably alt for specifying alternatives, par for parallel
composition, and loop for several sequential compositions of one diagram
with itself.

The traces of events defined by a diagram are understood as representing
system runs. In each trace a send event is ordered before the corresponding
receive event, and H denotes the trace universe, i.e. the set of all traces that
complies with this requirement. A message is in the STAIRS denotational
semantics given by a triple (s, tr, re) of a signal s, a transmitter tr and a
receiver re. The transmitter and receiver are lifelines. L denotes the set of
all lifelines and M denotes the set of all messages. An event is a pair of
kind and message, (k,m) ∈ {!, ?}×M. By E we denote the set of all events,
and we define the functions k. ∈ E → {!, ?}, tr. , re. ∈ E → L to yield the
kind, transmitter and receiver of an event, respectively.

The functions ⌢, S© and T© are for concatenation of sequences, filtering
of sequences and filtering of pairs of sequences, respectively. Concatenation
is to glue sequences together, so h1

⌢ h2 is the sequence that equals h1 if h1

is infinite. Otherwise it denotes the sequence that has h1 as prefix and h2

as suffix, where the length equals the sum of the length of h1 and h2.
By E S©a we denote the sequence obtained from the sequence a by remov-

ing all elements from a that are not in the set of elements E. For example,
{1, 3} S© 〈1, 1, 2, 1, 3, 2〉 = 〈1, 1, 1, 3〉.

The filtering function T© is described as follows. For any set of pairs of
elements F and pair of sequences t, by F T©t we denote the pair of sequences
obtained from t by truncating the longest sequence in t at the length of the
shortest sequence in t if the two sequences are of unequal length; for each
j ∈ {1, . . . , k}, where k is the length of the shortest sequence in t, selecting
or deleting the two elements at index j in the two sequences, depending on
whether the pair of these elements is in the set F . For example, we have
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that {(1, f), (1, g)} T© (〈1, 1, 2, 1, 2〉, 〈f, f, f, g, g〉) = (〈1, 1, 1〉, 〈f, f, g〉).
Parallel composition (‖) of trace sets corresponds to the pointwise inter-

leaving of their individual traces. The ordering of the events within each
trace is maintained in the result. Weak sequencing (%) is implicitly present
in sequence diagrams and defines the partial ordering of the events in the
diagram. For trace sets H1 and H2, the formal definitions are as follows.

Definition 1. Parallel composition.

H1 ‖ H2
def
= {h ∈ H | ∃s ∈ {1, 2}∞ : π2(({1} × E) T© (s, h)) ∈ H1 ∧

π2(({2} × E) T© (s, h)) ∈ H2}

Definition 2. Sequential composition.

H1 % H2
def
= {h ∈ H | ∃h1 ∈ H1, h2 ∈ H2 : ∀l ∈ L : e.l S©h = e.l S©h1

⌢ e.l S©h2}

{1, 2}∞ is the set of all infinite sequences over the set {1, 2}, and π2 is
a projection operator returning the second element of a pair. The infinite
sequence s in the definition can be understood as an oracle that determines
which of the events in h that are filtered away. The expression e.l denotes
the set of events that may take place on the lifeline l. Formally

e.l
def
= {e ∈ E | (k.e = ! ∧ tr.e = l) ∨ (k.e = ? ∧ re.e = l)}

The semantics of a sequence diagram is defined by the function [[ ]] that
for a sequence diagram d yields a set of traces [[d]] ⊆ H representing the
behavior described by the diagram.

Definition 3. Semantics of sequence diagrams.

[[e]]
def
= {〈e〉} for any e ∈ E

[[d1 par d2]]
def
= [[d1]] ‖ [[d2]]

[[d1 seq d2]]
def
= [[d1]] % [[d2]]

[[d1 alt d2]]
def
= [[d1]] ∪ [[d2]]

For the formal definition of further constructs and the motivation behind
the definitions, see [7, 21].

3 Specifying Policies

In this section we present Deontic STAIRS, a customized notation for spec-
ifying policies with sequence diagrams. The notation is defined as a conser-
vative extension of UML 2.1 sequence diagrams in the sense that the UML
sequence diagram constructs of Deontic STAIRS are used in accordance with
the standard [17]. We furthermore define a denotational trace semantics.
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Figure 2: Policy rules

The notation constructs are illustrated by the examples of policy rules
depicted in Fig. 2. We consider a policy that administrates the access of
users U to an application A.

A policy rule is defined as a sequence diagram that consists of two parts,
a trigger and a deontic expression. The trigger is a scenario that specifies
the condition under which the given rule applies and is captured with the
keyword trigger. The body of the deontic expression describes the behavior
that is constrained by the rule, and the keywords permission, obligation and
prohibition indicate the modality of the rule. The name of the rule consists
of two parts, where the former part is the keyword rule, and the latter part
is any chosen name for the rule.

The rule access to the left in Fig. 2 is a permission stating that by the
sending of the message loginOK from the application to the user, i.e. the
id of the user has been verified, the user is permitted to retrieve documents
from the system. In case of login failure, the rule bar to the right in Fig. 2
specifies that document retrieval is prohibited, i.e. the user is barred from
accessing the application.

Generally, a diagram specifying a policy rule contains one or more life-
lines, each representing a participating entity. There can be any number
of entities, but there must be at least one. In the examples we have for
simplicity shown only two lifelines, U and A. We also allow the trigger to be
omitted. In that case the rule applies under all circumstances and is referred
to as a standing rule.

By definition of a policy, a policy specification is given as a set of rules,
each specified in the form shown in Fig. 2.

The extension of the sequence diagram notation presented in this sec-
tion is conservative with respect to the UML standard, so people that are
familiar with UML should be able to understand and use the notation. All
the constructs that are available in the UML for specification of sequence
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diagrams can furthermore freely be used in the specification of the body of
a policy rule.

Semantically, the triggering scenario and the body of a rule are given
by trace sets T ⊆ H and B ⊆ H, respectively. Additionally, the semantics
must capture the deontic modality, which we denote by dm ∈ {pe, ob, pr}.
The semantics of a policy rule is then given by the tuple r = (dm, T,B).
Notice that for standing rules, the trigger is represented by the set of all
traces, i.e. T = H. Since a policy is a set of policy rules, the semantics of a
policy specification is given by a set P = {r1, . . . , rm}, where each ri is the
semantic representation of a policy rule.

4 Policy Adherence

In this section we define the adherence relation →a that for a given policy
specification P and a given system S defines what it means that S satisfies
P , denoted P →a S. We assume a system model in which the system is
represented by a (possibly infinite) set of traces S, where each trace describes
a possible system execution. In order to define P →a S, we first define what
it means that a system adheres to a rule r ∈ P , denoted r →a S.

A policy rule applies if and when a prefix h′ of an execution h ∈ S
triggers the rule, i.e. the prefix h′ ⊑ h fulfills the triggering scenario T . The
function ⊑ is a predicate that takes two traces as operand and yields true iff
the former is equal to or a prefix of the latter. Since the trace set T represents
the various executions under which the rule applies, it suffices that at least
one trace t ∈ T is fulfilled by h′ for the rule to trigger. Furthermore, for h′

to fulfill t, the trace t must be a sub-trace of h′, denoted t 2 h′.
For traces h1, h2 ∈ H, if h1 2 h2 we say that h1 is a sub-trace of h2 and,

equivalently, that h2 is a super-trace of h1. Formally, the sub-trace relation
is defined as follows.

Definition 4. h1 2 h2
def
= ∃s ∈ {1, 2}∞ : π2(({1} × E) T© (s, h2)) = h1

The expression h1 2 h2 evaluates to true iff there exists a filtering such
that when applied to h2 the resulting trace equals h1. For example, 〈a, b, c〉2
〈e, a, b, e, f, c〉. For a trace set H and traces h and h′ we define the following.

Definition 5.

H 2 h
def
= ∃h′ ∈ H : h′

2 h

h′
2/ h

def
= ¬(h′

2 h)

H2/ h
def
= ¬∃h′ ∈ H : h′

2 h

Since a sequence diagram is represented by a set of traces H, it suffices
that a trace h is a super-trace of at least one element of H for h to fulfill the
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sequence diagram. This is captured by the expression H 2 h. Formally, the
triggering of a rule (dm, T,B) by a trace h ∈ S is then defined as follows.

Definition 6. The rule (dm, T,B) is triggered by the trace h iff T 2 h.

To check whether a system S adheres to a rule (dm, T,B) we first need to
identify all the triggering prefixes of traces of S. Then, for each triggering
prefix, we need to check the possible continuations. As an example, con-
sider the system S = {h1, h2, h3}. Assume that h1 and h2 have a common
prefix ha that triggers the rule, i.e. h1 and h2 can be represented by the
concatenations ha

⌢ hb and ha
⌢ hc, respectively, such that T 2ha. Assume,

furthermore, that the system trace h3 does not trigger the rule, i.e. T2/ h3.
The three runs can be structured into a tree as depicted in Fig. 3.

Adherence to a policy rule intuitively means the following. The system
adheres to the permission (pe, T,B) if at least one of the traces hb and hc

fulfills B; so a permission requires the existence of a continuation that fulfills
the behavior. The system adheres to the obligation (ob, T,B) if both of hb

and hc fulfill B; so an obligation requires that all possible continuations
fulfill the behavior. The system adheres to the prohibition (pr, T,B) if
neither hb nor hc fulfill B; so a prohibition requires that none of the possible
continuations fulfill the behavior. Notice that to fulfill the behavior given
by the trace set B, it suffices to fulfill one of the traces since each element
of B represents a valid way of executing the behavior described by the rule
body. As for the trace h3, since the rule is not triggered, the rule is trivially
satisfied.

h1 h2 h3

hb

ha

hc

Figure 3: Structured traces

Adherence to policy rule r of system S, denoted r →a S is defined as
follows, where h|k is a truncation operation that yields the prefix of h of
length k ∈ N.

Definition 7. Adherence to policy rule of system S:

– (pe, T,B) →a S
def
= ∀h ∈ S : ∀t ∈ T : t 2 h ⇒

∃h′ ∈ S : ∃k ∈ N : h|k ⊑ h′ ∧ t 2 h|k ∧ ({t} % B) 2 h′

– (ob, T,B) →a S
def
= ∀h ∈ S : ∀t ∈ T : t 2 h ⇒ ({t} % B) 2 h

– (pr, T,B) →a S
def
= ∀h ∈ S : ∀t ∈ T : t 2 h ⇒ ({t} % B)2/ h
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With these definitions of adherence to policy rule of a system S, we
define adherence to a policy specification P as follows.

Definition 8. P →a S
def
= ∀r ∈ P : r →a S

Example 1. As an example of policy rule adherence, consider the permis-
sion rule access to the left in Fig. 2 stating that users U are allowed to
retrieve documents from the application A after a valid login. Semantically,
we have access = (pe, T,B), where T is the singleton set

{〈(!, (loginOK,A,U)), (?, (loginOK,A,U))〉}

and B is the singleton set containing the sequence of events depicted to the
left in Fig. 4.

Trace of rule access Partial trace of S

(!, (read(doc),U,A)) · · ·
(?, (read(doc),U,A)) (!, (login(id),U,A))
(!, (doc,A,U)) (?, (login(id),U,A))
(?, (doc,A,U)) (!, (query(id),A,SA))

(?, (query(id),A,SA))
(!, (valid(id),SA,A))
(?, (valid(id),SA,A))
(!, (loginOK,A,U))
(?, (loginOK,A,U))
(!, (read(doc),U,A))
(?, (read(doc),U,A))
(!, (doc,A,U))
(?, (doc,A,U))
(!, (store(doc’),U,A))
(?, (store(doc’),U,A))
· · ·

Figure 4: Traces of rule and system

To the right in Fig. 4 we have shown a partial trace of S in the case
that access →a S. The user U sends a login message to the application
A, after which the application sends a query to the security administrator
SA to verify the id of the user. At some point in the execution the events
(!, (loginOK,A,U)) and (?, (loginOK,A,U)) triggering the rule occur. The
user then retrieves a document and finally stores a modified version. Since
there exists a filtering of the system trace that equals the trace representing
the body of the permission rule, the system adheres to the rule. Other
system traces with the same triggering prefix need not fulfill the trace of the
rule since the rule is a permission.
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The definition of policy adherence is based on the satisfiability relation
of deontic logic which defines what it means that a model satisfies a deontic
expression. Standard deontic logic is a modal logic that is distinguished by
the axiom OBp ⊃ PEp, stating that all that is obligated is also permitted.
The next theorem states that this property as well as the definitions OBp ≡
¬PE¬p (p is obligated iff the negation of p is not permitted) and OBp ≡
PR¬p (p is obligated iff the negation of p is prohibited) of deontic logic are
preserved by our definition of adherence.

Theorem 1.

– (ob, T,B) →a S ⇒ (pe, T,B) →a S
– (ob, T,B) →a S ⇔ (¬pe, T,¬B) →a S
– (ob, T,B) →a S ⇔ (pr, T,¬B) →a S

Notice that the use of negation in the theorem is pseudo-notation. The
precise definitions are as follows.

Definition 9.

– (¬pe, T,¬B)→a S
def
= ∀h ∈ S : ∀t ∈ T : t 2 h ⇒

¬∃h′ ∈ S : ∃k ∈ N : h|k ⊑ h′ ∧ t 2 h|k ∧ ¬(({t} % B) 2 h′)

– (pr, T,¬B) →a S
def
= ∀h ∈ S : ∀t ∈ T : t 2 h ⇒ ¬(({t} % B)2/ h)

The first clause of Theorem 1 follows immediately from the definition of
adherence, whereas the second and third clause are shown by manipulation
of quantifiers, negations and set inclusions.

Generally, the inter-definability axioms of deontic logic linking obliga-
tions to permissions are not adequate for policy based management of dis-
tributed systems since permissions may be specified independently of obliga-
tions and by different administrators. An obligation rule of a network con-
figuration policy, for example, does not imply the authorization to conduct
the given behavior if authorizations are specified in the form of permission
rules of a security policy.

However, an obligation for which there is no corresponding permission
represents a policy conflict which must be resolved for the policy to be en-
forceable. A policy specification P is consistent, or conflict free, iff there
exists a system S such that P →a S. Theorem 1 reflects properties of
consistent policy specifications, and if any of these properties are not sat-
isfied there are occurrences of modality conflicts, and the policy cannot be
enforced.

There are five types of modality conflicts. First, obligation to conduct
the behavior represented by the set of traces B, while the complement B
(defined by H\B) is also obligated; second, prohibiting B while prohibiting
the complement B; third, prohibiting B while obligating B; four, permitting
B while obligating B; five, prohibiting B while also permitting B.
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In policies for distributed systems conflicts are likely to occur since dif-
ferent rules may be specified by different managers, and since multiple policy
rules may apply to the same system entities. The problem of detecting and
resolving policy conflicts is outside the scope of this paper, but existing
solutions to resolving modality conflicts, see e.g. [14], can be applied.

5 Policy Refinement

We aim for a notion of refinement that allows policy specifications to be
developed in a stepwise and modular way. Stepwise refinement is ensured
by transitivity, which means that a policy specification that is the result of a
number of refinement steps is a valid refinement of the initial, most abstract
specification. Modularity means that a policy specification can be refined
by refining individual parts of the specification separately.

Refinement of a policy rule means to weaken the trigger or strengthen the
body. A policy specification may also be refined by adding new rules to the
specification. Weakening the trigger means to increase the set of traces that
trigger the rule. For permissions and obligations, the body is strengthened
by reducing the set of traces representing the behavior, whereas the body
of a prohibition is strengthened by increasing the set of prohibited traces.
The refinement relation  tr for the triggering scenario, and the refinement
relations  pe,  ob and  pr for the body of permissions, obligations and
prohibitions, respectively, are defined as follows.

Definition 10. Refinement of policy trigger and body:

– T  tr T ′ def
= T ′ ⊇ T

– B  pe B′ def
= B′ ⊆ B

– B  ob B′ def
= B′ ⊆ B

– B  pr B′ def
= B′ ⊇ B

Obviously, these relations are transitive and reflexive. The relations
are furthermore compositional, which means that the different parts of a
sequence diagram d can be refined separately. Compositionality is ensured
by monotonicity of the composition operators with respect to refinement as
expressed in the following theorem. The instances of the relation  denote
any of the above four refinement relations.

Theorem 2. If d1  d′1 and d2  d′2, then the following hold.

– d1 seq d2  d′1 seq d′2
– d1 alt d2  d′1 alt d′2
– d1 par d2  d′1 par d′2
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The theorem follows directly from the definition of the composition op-
erators. Since the refinement relations are defined by the subset and the
superset relations, the theorem is proven by showing that the operators %,
∪ and ‖ on trace sets (defining sequential, alternative and parallel composi-
tion, respectively) are monotonic with respect to ⊆ and ⊇. For seq and ⊆,
the result

[[d′1]] ⊆ [[d1]] ∧ [[d′2]] ⊆ [[d2]] ⇒ [[d′1]] % [[d′2]] ⊆ [[d1]] % [[d2]]

holds since the removal of elements from [[d1]] or [[d2]] yields a reduction of set
of traces that results from applying the% operator. The case of monotonicity
of % with respect to ⊇ is symmetric. The argument for par, i.e. monotonicity
of ‖, is similar to seq, whereas the case of the union operator ∪ defining alt

is trivial.
We now define refinement of a policy rule as follows.

Definition 11.

(dm, T,B) (dm′, T ′, B′)
def
= dm = dm′ ∧ T  tr T ′ ∧ B  dm B′

It follows immediately from reflexivity and transitivity of the refinement
relations  tr and  dm that the refinement relation  for policy rules is
also reflexive and transitive.

A policy is a set of rules, and for a policy specification P ′ to be a re-
finement of a policy specification P , we require that each rule in P must be
refined by a rule in P ′.

Definition 12. P  P ′ def
= ∀r ∈ P : ∃r′ ∈ P ′ : r  r′

Theorem 2 addresses composition of interactions within a policy rule r.
At the level of policy specifications, composition is simply the union of rule
sets P . It follows straightforwardly that policy composition is monotonic
with respect to refinement, i.e. P1  P ′

1 ∧ P2  P ′
2 ⇒ P1 ∪ P2  P ′

1 ∪ P ′
2.

Refinement of policy specifications is furthermore transitive, i.e. P1  P2 ∧
P2  P3 ⇒ P1  P3.

Development of policy specifications through refinement allows an ab-
stract and general view of the system in the initial phases, ignoring de-
tails of system behavior, design and architecture. Since the specification is
strengthened through refinement and more detailed aspects of the system
are considered, the set of systems that adhere to the policy specification de-
creases. However, a system that adheres to a concrete, refined specification
also adheres to the initial, abstract specification. This means that if a policy
specification is further refined before it is enforced, the enforcement ensures
that the initial, abstract specification is also enforced. This is expressed in
the next theorem.
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Theorem 3. Given a system S and policy specifications P and P ′, if P  P ′

and P ′ →a S, then P →a S.

Policy composition and refinement do not rely on the assumption that
the rules are mutually consistent or conflict free, which means that incon-
sistencies may be introduced during the development process. However,
potential conflicts are generally inherent in policies for distributed systems
[14]. Development of policy specification with refinement is in this respect
desirable since conflicts and other errors are generally easier to detect and
correct at abstract levels.

Example 2. In the following we give an example of policy specification
refinement. Let, first, P1 = {access, bar} be the policy specification given
by the permission and the prohibition depicted in Fig. 2. Refinement allows
adding rules to the specification, so assume the obligation rule loginFail in
Fig. 5 and the obligation rule disable in Fig. 6 are added to the rule set such
that P2 = {access, bar, loginFail, disable}.

loginFail

rule loginFail

U A

trigger

obligation

invalid(id)

Figure 5: Login failure

The former rule states that the application is obligated to alert the user
in case of a login failure, i.e. when the user id is invalid. The latter rule,
adapted from [4], states that in case of three consecutive login failures, the
application is obligated to disable the user, log the incident and alert the
user.

The body of the rule to the left in Fig. 6 is specified with the UML 2.1
sequence diagram construct called interaction use which is a reference to
another diagram. The interaction use covers the lifelines that are included
in the referenced diagram. The body is defined by the parallel composition
of the three diagrams d (disable the user), l (log the incident) and a (alert
the user) to the right in Fig. 6. Equivalently, the referenced diagrams can
be specified directly in place of the respective interaction uses.

By reflexivity, the permission and prohibition of P2 are refinements of the
same rules in P1. Since adding rules is valid in refinement, P2 is a refinement
of P1. Obviously, a system that adheres to P2 also adheres to P1.
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rule disable
U A

trigger

obligation

par
ref sd d

ref sd l

sd d
A

disable(id)

sd l
A

log(disabled,id)

sd a

U A

disabled

loginFail(3,id)

ref sd a

Figure 6: Disable user

The rules in both P1 and P2 refer to interactions only between the ap-
plication and the users, which may be suitable at the initial development
phases. At later stages, however, the policy specification is typically spe-
cialized towards a specific system, and more details about the system ar-
chitecture is taken into account. This is supported through refinement by
decomposition of a single entity into several entities, thus allowing behavior
to be specified in more detail. Due to space limits refinement by detailing
is only exemplified in this paper. See [7] for a formal definition.

The rule loginFail2 in Fig. 7 shows a refinement of the rule loginFail in
Fig. 5. Here, the application A has been decomposed into the entities secu-
rity administrator SA and log L. The refined obligation rule states that by
the event of login failure, the security administrator must log the incident be-
fore alerting the user. The log also reports to the security administrator the
current number n of consecutive login failures. Observe that the modality as
well as the trigger are the same in both loginFail and loginFail2, and that the
interactions between the application and the user are identical. This implies
that loginFail2 is a detailing of loginFail. Hence, loginFail loginFail2. It is
easily seen that adherence to the latter rule implies adherence to the former.

Compositionality of refinement means that for a given policy specifica-
tion, the individual rules can be refined separately. This means that for the
policy specification P3 = {access, bar, loginFail2, disable} we have P2  P3

and that for all systems S, P3 →a S implies P2 →a S. By transitivity of
refinement we also have that P1  P3 and that adherence to P3 implies
adherence to P1.
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loginFail(n,id)loginFail

U SA L

loginFail(id)

trigger

obligation

rule loginFail2

invalid(id)

Figure 7: Login failure refined

Compositionality of refinement also means that in order to refine a policy
rule, the individual parts of the body of a rule can be refined separately. We
illustrate this by showing a refinement of the body of the rule disable of
Fig. 6. The body shows the parallel composition of three diagrams, denoted
d par l par a.

Fig. 8 shows refinement of the diagram elements d and l into d2 and
l2, respectively. In d2 the lifeline A has been decomposed into the com-
ponents security administrator SA and user store US and shows the secu-
rity administrator disabling a user by sending a message to the user store.
We now have that d  d2 and, similarly, that l  l2 for the other dia-
gram element. By compositionality of refinement of rule body, we get that
(d par l par a) (d2 par l2 par a).

sd d2
SA US

disable(id)

ok

sd l2
SA L

log(disabled,id)

ok

Figure 8: Refined diagrams

Let the obligation rule disable2 be defined by replacing the references
to d and l in disable of Fig. 6 with references to d2 and l2, respectively, of
Fig. 8. We now have that disable disable2. The policy specification P4 =
{access, bar, loginFail2, disable2} is a refinement of P3 and, by transitivity, a
refinement of P2 and P1 also. As before, P4 →a S implies P1 →a S for all
systems S.

These examples show how more detailed aspects of system architecture
and behavior may be taken into account at more refined levels. Another
feature of refinement is that the behavior defined at abstract levels can be
constrained at more concrete levels by ruling out alternatives. As an exam-
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ple, consider the body of the rule disable2 which semantically is captured by
the set trace set [[d2 par l2 par a]]. This defines an interleaving of the traces
of the three elements; there are no constraints on the ordering between them.
The ordering can, however, be constrained by using sequential composition
instead of parallel composition. If, for example, it is decided that the dis-
abling of the user and the logging of the incident should be conducted before
the user is alerted, this is defined by (d2 par l2) seq a. Sequential composi-
tion is a special case of parallel composition, so semantically we now have
that [[(d2 par l2) seq a]] ⊆ [[d2 par l2 par a]]. For the obligation rule, the for-
mer set of traces represents a refinement of the latter set of traces.

Let disable3 be defined as disable2 where d2 par l2 par a of the latter is
replaced with (d2 par l2) seq a in the former. Then disable2  disable3.
By defining the specification P5 = {access, bar, loginFail2, disable3} we have
P4  P5. By transitivity, P5 is a refinement of all the previous policy
specifications of this example, and adherence to P5 implies adherence to
them all.

6 Related Work

Although a variety of languages and frameworks for policy based manage-
ment has been proposed the last decade or so, policy refinement is still in
its initial phase and little work has been done on this issue. After being
introduced in [2] the goal-based approach to policy refinement has emerged
as a possible approach and has also later been further elaborated [3, 19, 20].

In the approach described in [2], system requirements that eventually are
fulfilled by low-level policy enforcement are captured through goal refine-
ment. Initially, the requirements are defined by high-level, abstract policies,
and so called strategies that describe the mechanisms by which the system
can achieve a set of goals are formally derived from a system description
and a description of the goals. Formal representation and reasoning are
supported by the formalization of all specifications in event calculus.

Policy refinement is supported by the refinement of goals, system entities
and strategies, allowing low-level, enforceable policies to be derived from
high-level, abstract ones. Once the eventual strategies are identified, these
are specified as policies the enforcement of which ensures the fulfillment of
the abstract goals. As opposed to our approach, there is no refinement of
policy specifications. Instead, the final polices are specified with Ponder [4],
which does not support the specification of abstract policies that can be
subject to refinement. The goal-based approach to policy refinement hence
focus on refinement of policy requirements rather than policy specifications.

The same observations hold for the goal-based approaches described in
[3, 19, 20], where the difference between [3, 2] and [19, 20] mainly is on
the strategies for how to derive the policies to ensure the achievement of
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a given goal. The former use event calculus and abduction in order to
derive the appropriate strategies, whereas the latter uses automated state
exploration for obtaining the appropriate system executions. All approaches
are, however, based on requirements capturing through goal refinement, and
Ponder is used as the notation for the eventual policy specification.

In [3] a policy analysis and refinement tool supporting the proposed
formal approach is described. In [2], the authors furthermore show that the
formal specifications and results can be presented with UML diagrams to
facilitate usability. The UML is, however, used to specify goals, strategies,
etc., and not the policies per se as in our approach. In our evaluation of
the UML as a notation for specifying policies [25] we found that sequence
diagrams to a large extent have the required expressiveness, but that the
lack of a customized syntax and semantics makes them unsuitable for this
purpose. The same observation is made in attempts to formalize policy
concepts from the reference model for open distributed processes [10] using
the UML [1, 13]. Nevertheless, in this paper we have shown that with minor
extensions, policy specification and refinement can be supported.

UML sequence diagrams extend message sequence charts (MSCs) [9],
and both MSCs and a family of approaches that have emerged from them,
e.g. [5, 6, 12, 22], could be considered as alternatives to notations for policy
specification. These approaches, however, lack the expressiveness to specify
policies and capture a notion of refinement with the properties demonstrated
in this paper.

Live sequence charts (LSCs)[6] and modal sequence diagrams (MSDs) [5]
are two similar approaches based on a distinction between existential and
universal diagrams. This distinction can be utilized to specify permissions,
obligations and prohibitions. However, conditionality is not supported for
existential diagrams in LSCs which means that diagrams corresponding to
our permissions cannot be specified with triggers. A precise or formal notion
of refinement is also not defined for these approaches. In [12], a variant of
MSCs is provided a formal semantics and is supported by a formal notion of
refinement. MSCs are interpreted as existential, universal or negative (ille-
gal) scenarios, which is related to the specification of permissions, obligations
and prohibitions, respectively, in Deontic STAIRS. There are, however, no
explicit constructs in the syntax for distinguishing between these interpre-
tations. Conditional scenarios with a triggering construct are supported in
[12], but as for LSCs the composition of the triggering scenario and the
triggered scenario is that of strong sequencing. This can be unfortunate in
the specification of distributed systems in which entities behave locally and
interact with other entities asynchronously.

Triggered message sequence charts (TMSCs) [22] allow the specifica-
tion of conditional scenarios and is supported by compositional refinement.
There is, however, no support for distinguishing between permitted, obli-
gated and prohibited scenarios; a system specification defines a set of valid
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traces, and all other traces are invalid.

7 Conclusion and Future Work

In this paper we have shown that the deontic notions of standard deon-
tic logic [15] can be expressed in the UML by a conservative extension of
the sequence diagram notation, thus enabling policy specification. We have
defined both a formal notion of policy adherence and a formal notion of
refinement. The refinement relation is transitive and also supports a com-
positional policy development, which means that individual parts of the
policy specification can be developed separately. The refinement relation
also ensures that the enforcement of a low-level policy specification implies
the enforcement of the initial high-level specification.

Stepwise and compositional development of policy specifications is desir-
able as it facilitates the development process. Policy analysis is furthermore
facilitated as analysis generally is easier and more efficient at abstract levels,
and identified flaws are cheaper to fix. However, for policy analysis to be
meaningful at an abstract level, the results must be preserved under refine-
ment. In future work we will analyze the refinement relation with respect to
such property preservation, particularly with respect to security, trust and
adherence.

In the future we will also define language extensions to allow the spec-
ification of constraints in the form of Boolean expressions that limit the
applicability of policy rules to specific system states. A refinement relation
appropriate for this extension will also be defined.
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[12] I. H. Krüger. Distributed System Design with Message Sequence Charts.
PhD thesis, Institut für Informatik, Ludwig-Maximilians-Universität
München, July 2000.

[13] P. Linington. Options for expressing ODP enterprise communities and
their policies by using UML. In Proceedings of the 3rd International
Conference on Enterprise Distributed Object Computing (EDOC’99),
pages 72–82. IEEE CS Press, 1999.

[14] E. Lupu and M. Sloman. Conflicts in policy-based distributed systems
management. IEEE Transactions on Software Engineering, 25(6):852–
869, 1999.

19



[15] P. McNamara. Deontic logic. In D. M. Gabbay and J. Woods, edi-
tors, Logic and the Modalities in the Twentieth Century, volume 7 of
Handbook of the History of Logic, pages 197–288. Elsevier, 2006.

[16] OASIS. eXstensible Access Control Markup Language (XACML) Ver-
sion 2.1, 2005.

[17] Object Management Group. Unified Modeling Language: Superstruc-
ture, version 2.1.1, 2007.

[18] A. Refsdal, B. Solhaug, and K. Stølen. A UML-based method for the
development of policies to support trust management. In Trust Man-
agement II – Proceedings of 2nd Joint iTrust and PST Conference on
Privacy, Trust Management and Security (IFIPTM’08), pages 33–49.
Springer, 2008.

[19] J. Rubio-Loyola, J. Serrat, M. Charalambides, P. Flegkas, and
G. Pavlou. A functional solution for goal-oriented policy refinement.
In Proceedings of the 7th International Workshop on Policies for Dis-
tributed Systems and Networks (POLICY’06), pages 133–144. IEEE
Computer Society, 2006.

[20] J. Rubio-Loyola, J. Serrat, M. Charalambides, P. Flegkas, G. Pavlou,
and A. L. Lafuente. Using linear temporal model checking for goal-
oriented policy refinement frameworks. In Proceedings of the 6th Inter-
national Workshop on Policies for Distributed Systems and Networks
(POLICY’05), pages 181–190. IEEE Computer Society, 2005.

[21] R. K. Runde, A. Refsdal, and K. Stølen. Relating computer systems
to sequence diagrams with underspecification, inherent nondetermin-
ism and probabilistic choice – Part 1: Underspecification and inherent
nondeterminism. Technical Report 346, Department of Informatics,
University of Oslo, 2007.

[22] B. Sengupta and R. Cleaveland. Triggered message sequence charts.
IEEE Transactions on Software Engineering, 32(8):587–607, 2006.

[23] M. Sloman. Policy driven management for distributed systems. Journal
of Network and Systems Management, 2:333–360, 1994.

[24] M. Sloman and E. Lupu. Security and management policy specification.
Network, IEEE, 16(2):10–19, 2002.

[25] B. Solhaug, D. Elgesem, and K. Stølen. Specifying policies using UML
sequence diagrams – An evaluation based on a case study. In Pro-
ceedings of the 8th International Workshop on Policies for Distributed
Systems and Networks (POLICY’07), pages 19–28. IEEE Computer
Society, 2007.

20



[26] B. Solhaug and K. Stølen. Compositional refinement of policies in UML
– Exemplified for access control. In Proceedings of the 13th European
Symposium on Research in Computer Security (ESORICS’08), volume
5283 of LNCS, pages 300–316. Springer, 2008.

21



22



A Operations on Sequences

By E ∞ and E ω, we denote the set of all infinite sequences and the set of
all finite and infinite sequences over the set E of elements, respectively. N

denotes the natural numbers, and N0 denotes N ∪ {0}. We use 〈〉 to denote
the empty sequence, and by 〈e1, e2, . . . , en〉 we denote the sequence of n
elements, whose first element is e1, second element is e2, etc.

We define the functions

# ∈ E ω → N0 ∪ {∞}, [ ] ∈ E ω × N → E

to yield respectively the length and the nth element of a sequence. We define
the function

⌢ ∈ E ω × E ω → E ω

for concatenation of sequences, i.e., gluing together sequences. Formally,
concatenation is defined by the following.

(s1
⌢ s2)[n]

def
=

{

s1[n] if 1 ≤ n ≤ #s1

s2[n − #s1] if #s1 < n ≤ #s1 + #s2

The prefix relation on sequences,

⊑ ∈ E ω × E ω → Bool

is formally defined as follows.

s1 ⊑ s2
def
= ∃s ∈ E ω : s1

⌢ s = s2

The complementary relation is defined by the following.

s1 /⊑ s2
def
= ¬(s1 ⊑ s2)

The truncation operator

| ∈ E ω × N ∪ {∞} → E ω

is used to truncate a sequence at a given length.

s|j
def
=

{

s′ if 0 ≤ j ≤ #s,where #s′ = j ∧ s′ ⊑ s

s if j > #s

P(E) denotes the set of all subsets of E. The filtering operator

S© ∈ P(E) × E ω → E ω
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is used to filter away elements. A S©s denotes the sub-trace of s obtained
by removing elements of s that are not in A. For a finite sequence s, this
operator is completely defined by the following conditional equations.

A S©〈〉 = 〈〉
e ∈ A ⇒ A S©(〈e〉⌢ s) = 〈e〉⌢(A S©s)
e /∈ A ⇒ A S©(〈e〉⌢ s) = A S©s

For an infinite sequence s, we need one additional equation.

∀n ∈ N : s[n] /∈ A ⇒ A S©s = 〈〉

The filtering operator T© is defined for pairs of sequences:

T© ∈ P(E × E) × (E ω × E ω) → (E ω × E ω)

In order to formally define this operator, we first generalize some of the
above operators on sequences to pairs of sequences.

#(s1, s2) = min{#s1,#s2}

(s1, s2)[n] = (s1[n], s2[n])

(s1, s2) ⌢(s′1, s
′
2) = (s1

⌢ s′1, s2
⌢ s′2)

(s1, s2)|j = (s1|j, s2|j)

Furthermore, for elements e1, e2 ∈ E, 〈(e1, e2)〉 denotes (〈e1〉, 〈e2〉).
For a pair of sequences c = (s1, s2), the filtering operator T© is now

defined by the following conditional equations.

B T©c = B T©(c|#c)
B T©(〈〉, 〈〉) = (〈〉, 〈〉)

f ∈ B ⇒ B T©(〈f〉⌢ c) = 〈f〉⌢ B T©c
f /∈ B ⇒ B T©(〈f〉⌢ c) = B T©c
∀n < #c + 1 : c[n] /∈ B ⇒ B T©c = (〈〉, 〈〉)
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B Proofs

Theorem 1.

– (ob, T,B) →a S ⇒ (pe, T,B) →a S
– (ob, T,B) →a S ⇔ (¬pe, T,¬B) →a S
– (ob, T,B) →a S ⇔ (pr, T,¬B) →a S

Proof. The third clause follows immediately from Definition 7 of adherence
and the definition of the sub-trace relation. The first and second clauses are
proved in Lemma 1 through Lemma 3.

Lemma 1. (ob, T,B) →a S ⇒ (pe, T,B) →a S

Proof.

Assume: (ob, T,B) →a S
Prove: (pe, T,B) →a S
〈1〉1. Case: ∀h ∈ S : ∀t ∈ T : t2/ h

Proof: Adherence holds trivially by Def. 7
〈1〉2. Case: ∃h ∈ S : ∃t ∈ T : t 2 h

〈2〉1. Choose arbitrary h ∈ S and t ∈ T such that t 2 h
Proof: The traces exist by case assumption

〈2〉2. ∃h′ ∈ S : ∃k ∈ N : h|k ⊑ h′ ∧ t 2 h|k ∧ ({t} % B) 2 h′

〈3〉1. ({t} % B) 2 h
Proof: By assumption and Def. 7

〈3〉2. ∃k ∈ N : h|k ⊑ h ∧ t 2 h|k
Proof: Case assumption and choosing k = #h

〈3〉3. Q.E.D.
Proof: 〈3〉1, 〈3〉2 and choosing h′ = h

〈2〉3. Q.E.D.
Proof: 〈2〉1, 〈2〉2 and Def. 7

〈1〉3. Q.E.D.
Proof: The cases are exhaustive
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Lemma 2. (ob, T,B) →a S ⇒ (¬pe, T,¬B) →a S

Proof.

Assume: (ob, T,B) →a S
Prove: (¬pe, T,¬B) →a S
〈1〉1. Case: ∀h ∈ S : ∀t ∈ T : t2/ h

Proof: Adherence holds trivially by Def. 9
〈1〉2. Case: ∃h ∈ S : ∃t ∈ T : t 2 h

〈2〉1. Choose arbitrary h ∈ S and t ∈ T such that t 2 h
Proof: The traces exist by case assumption

〈2〉2. ¬∃h′ ∈ S : ∃k ∈ N : h|k ⊑ h′ ∧ t 2 h|k ∧ ¬(({t} % B) 2 h′)
〈3〉1. Assume: ∃h′ ∈ S : ∃k ∈ N : h|k ⊑ h′ ∧ t 2 h|k ∧¬(({t} % B)2 h′)

Prove: ⊥
〈4〉1. Choose arbitrary h′ ∈ S and k ∈ N such that h|k ⊑ h′ and

t 2 h|k and ({t} % B)2/ h′

Proof: The trace and number exist by assumption 〈3〉1
〈4〉2. t 2 h′

Proof: 〈4〉1
〈4〉3. ({t} % B) 2 h′

Proof: 〈4〉2, assumption and Def. 7
〈4〉4. Q.E.D.

Proof: 〈4〉1 and 〈4〉3
〈3〉2. Q.E.D.

Proof: By contradiction
〈2〉3. Q.E.D.

Proof: 〈2〉1, 〈2〉2 and Def. 9
〈1〉3. Q.E.D.

Proof: The cases are exhaustive
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Lemma 3. (ob, T,B) →a S ⇐ (¬pe, T,¬B) →a S

Proof.

Assume: (¬pe, T,¬B) →a S
Prove: (ob, T,B) →a S
〈1〉1. Case: ∀h ∈ S : ∀t ∈ T : t2/ h

Proof: Adherence holds trivially by Def. 7
〈1〉2. Case: ∃h ∈ S : ∃t ∈ T : t 2 h

〈2〉1. Choose arbitrary h ∈ S and t ∈ T such that t 2 h
Proof: The traces exist by case assumption

〈2〉2. ({t} % B) 2 h
〈3〉1. ∀h′ ∈ S : ∀k ∈ N : (h|k ⊑ h′ ∧ t 2 h|k ⇒ ({t} % B) 2 h′)

Proof: By assumption and Def. 9
〈3〉2. Q.E.D.

Proof: 〈3〉1 with h′ = h and k = #h
〈2〉3. Q.E.D.

Proof: 〈2〉1, 〈2〉2 and Def. 7
〈1〉3. Q.E.D.

Proof: The cases are exhaustive

Theorem 2. If d1  d′1 and d2  d′2, then the following hold.

– d1 seq d2  d′1 seq d′2
– d1 alt d2  d′1 alt d′2
– d1 par d2  d′1 par d′2

Proof. Since refinement is defined in terms of the relations ⊆ and ⊇, the
theorem is proven by showing the monotonicity of these relations with re-
spect to the operators %, ∪ and ‖ defining seq, alt and par, respectively. The
proofs are given in Lemma 4 through Lemma 9.

Lemma 4. Monotonicity of ⊆ with respect to %.

H1 ⊆ H ′
1 ∧ H2 ⊆ H ′

2 ⇒ H1 % H2 ⊆ H1 % H ′
2

Proof. Lemma 27 in [8].
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Lemma 5. Monotonicity of ⊇ with respect to %.

H1 ⊇ H ′
1 ∧ H2 ⊇ H ′

2 ⇒ H1 % H2 ⊇ H ′
1 % H ′

2

Proof.

Assume: 1. H1 ⊇ H ′
1

2. H2 ⊇ H ′
2

Prove: H1 % H2 ⊇ H ′
1 % H ′

2

〈1〉1. Case: H ′
1 % H ′

2 = ∅
Proof: Trivial as H ⊇ ∅ for all sets H

〈1〉2. Case: H ′
1 % H ′

2 6= ∅
〈2〉1. Choose arbitrary h ∈ H ′

1 % H ′
2

Proof: Non-empty by case assumption
〈2〉2. h ∈ H1 % H2

〈3〉1. Choose h1 ∈ H ′
1 and h2 ∈ H ′

2 such that
∀l ∈ L : e.l S©h = e.l S©h1

⌢ e.l S©h2

Proof: 〈2〉1 and Def. 2 of %
〈3〉2. h1 ∈ H1

Proof: 〈3〉1 and assumption 1
〈3〉3. h2 ∈ H2

Proof: 〈3〉1 and assumption 2
〈3〉4. Q.E.D.

Proof: 〈3〉1, 〈3〉2, 〈3〉3 and Def. 2 of %
〈2〉3. Q.E.D.

Proof: 〈2〉1, 〈2〉2 and definition of ⊇
〈1〉3. Q.E.D.

Proof: The cases are exhaustive

Lemma 6. Monotonicity of ⊆ with respect to ∪.

H1 ⊆ H ′
1 ∧ H2 ⊆ H ′

2 ⇒ H1 ∪ H2 ⊆ H ′
1 ∪ H ′

2

Proof. The result follows immediately from the definitions of ⊆ and ∪.

Lemma 7. Monotonicity of ⊇ with respect to ∪.

H1 ⊇ H ′
1 ∧ H2 ⊇ H ′

2 ⇒ H1 ∪ H2 ⊇ H ′
1 ∪ H ′

2

Proof. The result follows immediately from the definitions of ⊇ and ∪.

Lemma 8. Monotonicity of ⊆ with respect to ‖.

H1 ⊆ H ′
1 ∧ H2 ⊆ H ′

2 ⇒ H1 ‖ H2 ⊆ H ′
1 ‖ H ′

2

Proof. Lemma 28 in [8].
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Lemma 9. Monotonicity of ⊇ with respect to ‖.

H1 ⊇ H ′
1 ∧ H2 ⊇ H ′

2 ⇒ H1 ‖ H2 ⊇ H ′
1 ‖ H ′

2

Proof.

Assume: 1. H1 ⊇ H ′
1

2. H2 ⊇ H ′
2

Prove: H1 ‖ H2 ⊇ H ′
1 ‖ H ′

2

〈1〉1. Case: H ′
1 ‖ H ′

2 = ∅
Proof: Trivial as H ⊇ ∅ for all sets H

〈1〉2. Case: H ′
1 ‖ H ′

2 6= ∅
〈2〉1. Choose arbitrary h ∈ H ′

1 ‖ H ′
2

Proof: Non-empty by case assumption
〈2〉2. h ∈ H1 ‖ H2

〈3〉1. Choose s ∈ {1, 2}∞ such that
π2(({1} × E) T© (s, h)) ∈ H ′

1 and
π2(({2} × E) T© (s, h)) ∈ H ′

2

Proof: 〈2〉1 and Def. 1 of ‖
〈3〉2. π2(({1} × E) T© (s, h)) ∈ H1

Proof: 〈3〉1 and assumption 1
〈3〉3. π2(({2} × E) T© (s, h)) ∈ H2

Proof: 〈3〉1 and assumption 2
〈3〉4. Q.E.D.

Proof: 〈3〉1, 〈3〉2 and 〈3〉3 and Def. 1 of ‖
〈2〉3. Q.E.D.

Proof: 〈2〉1, 〈2〉2 and definition of ⊇
〈1〉3. Q.E.D.

Proof: The cases are exhaustive
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Theorem 3. Given a system S and policy specifications P and P ′, if
P  P ′ and P ′ →a S, then P →a S.

Proof.

Assume: 1. P  P ′

2. P ′ →a S
Prove: P →a S
〈1〉1. Case: P = ∅

Proof: Adherence holds trivially by Def. 8
〈1〉2. Case: P 6= ∅

〈2〉1. Choose arbitrary r ∈ P
Proof: The rule exists by case assumption

〈2〉2. r →a S
〈3〉1. Choose r′ ∈ P ′ such that r  r′

Proof: The rule exist by assumption 1 and Def. 12 of policy refine-
ment

〈3〉2. r′ →a S
Proof: Assumption 2 and Def. 8 of policy adherence

〈3〉3. Q.E.D.
Proof: 〈3〉1, 〈3〉2 and Lemma 10, Lemma 11 and Lemma 12 for the
respective modalities of r

〈2〉3. Q.E.D.
Proof: 〈2〉1, 〈2〉2 and Def. 8 of policy adherence

〈1〉3. Q.E.D.
Proof: The cases are exhaustive
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Lemma 10.

(pe, T,B) (pe, T ′, B′) ∧ (pe, T ′, B′) →a S ⇒ (pe, T,B) →a S

Proof.

Assume: 1. (pe, T,B) (pe, T ′, B′)
2. (pe, T ′, B′) →a S

Prove: (pe, T,B) →a S
〈1〉1. Case: ∀h ∈ S : ∀t ∈ T : t2/ h

Proof: Adherence holds trivially by Def. 7
〈1〉2. Case: ∃h ∈ S : ∃t ∈ T : t 2 h

〈2〉1. Choose arbitrary h ∈ S and t ∈ T such that t 2 h
Proof: The traces exist by case assumption

〈2〉2. ∃h′ ∈ S : ∃k ∈ N : h|k ⊑ h′ ∧ t 2 h|k ∧ ({t} % B) 2 h′

〈3〉1. t ∈ T ′

Proof: 〈2〉1, assumption 1 and Def. 11 of rule refinement
〈3〉2. ∃h′ ∈ S : ∃k ∈ N : h|k ⊑ h′ ∧ t 2 h|k ∧ ({t} % B′) 2 h′

Proof: 〈2〉1, 〈3〉1, assumption 2 and Def. 7 of adherence
〈3〉3. ∃h′ ∈ S : ∃k ∈ N : h|k ⊑ h′ ∧ t 2 h|k ∧ ∃h′′ ∈ ({t} % B′) : h′′

2 h′

Proof: 〈3〉2 and Def. 4 of 2

〈3〉4. ({t} % B′) ⊆ ({t} % B)
Proof: Assumption 1, Def. 11 of rule refinement and Lemma 4 of
monotonicity of ⊆ wrt. %

〈3〉5. ∃h′ ∈ S : ∃k ∈ N : h|k ⊑ h′ ∧ t 2 h|k ∧ ∃h′′ ∈ ({t} % B) : h′′
2 h′

Proof: 〈3〉3 and 〈3〉4
〈3〉6. Q.E.D.

Proof: 〈3〉5 and Def. 4 of 2

〈2〉3. Q.E.D.
Proof: 〈2〉1, 〈2〉2 and Def. 7 of adherence

〈1〉3. Q.E.D.
Proof: The cases are exhaustive
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Lemma 11.

(ob, T,B) (ob, T ′, B′) ∧ (ob, T ′, B′) →a S ⇒ (ob, T,B) →a S

Proof.

Assume: 1. (ob, T,B) (ob, T ′, B′)
2. (ob, T ′, B′) →a S

Prove: (ob, T,B) →a S
〈1〉1. Case: ∀h ∈ S : ∀t ∈ T : t2/ h

Proof: Adherence holds trivially by Def. 7
〈1〉2. Case: ∃h ∈ S : ∃t ∈ T : t 2 h

〈2〉1. Choose arbitrary h ∈ S and t ∈ T such that t 2 h
Proof: The traces exist by case assumption

〈2〉2. ({t} % B) 2 h
〈3〉1. t ∈ T ′

Proof: 〈2〉1, assumption 1 and Def. 11 of rule refinement
〈3〉2. ({t} % B′) 2 h

Proof: 〈2〉1, 〈3〉1, assumption 2 and Def. 7 of adherence
〈3〉3. ({t} % B′) ⊆ ({t} % B)

Proof: Assumption 1, Def. 11 of rule refinement and Lemma 4 of
monotonicity of ⊆ wrt. %

〈3〉4. Q.E.D.
Proof: 〈3〉2, 〈3〉3 and Def. 4 of 2

〈2〉3. Q.E.D.
Proof: 〈2〉1, 〈2〉2 and Def. 7 of adherence

〈1〉3. Q.E.D.
Proof: The cases are exhaustive

32



Lemma 12.

(pr, T,B) (pr, T ′, B′) ∧ (pr, T ′, B′) →a S ⇒ (pr, T,B) →a S

Proof.

Assume: 1. (pr, T,B) (pr, T ′, B′)
2. (pr, T ′, B′) →a S

Prove: (pr, T,B) →a S
〈1〉1. Case: ∀h ∈ S : ∀t ∈ T : t2/ h

Proof: Adherence holds trivially by Def. 7
〈1〉2. Case: ∃h ∈ S : ∃t ∈ T : t 2 h

〈2〉1. Choose arbitrary h ∈ S and t ∈ T such that t 2 h
Proof: The traces exist by case assumption

〈2〉2. ({t} % B)2/ h
〈3〉1. t ∈ T ′

Proof: 〈2〉1, assumption 1 and Def. 11 of rule refinement
〈3〉2. ({t} % B′)2/ h

Proof: 〈2〉1, 〈3〉1, assumption 2 and Def. 7 of adherence
〈3〉3. ({t} % B′) ⊇ ({t} % B)

Proof: Assumption 1, Def. 11 of rule refinement and Lemma 5 of
monotonicity of ⊇ wrt. %

〈3〉4. Q.E.D.
Proof: 〈3〉2, 〈3〉3 and Def. 5 of 2/

〈2〉3. Q.E.D.
Proof: 〈2〉1, 〈2〉2 and Def. 7 of adherence

〈1〉3. Q.E.D.
Proof: The cases are exhaustive
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