
REPORTS
IN

INFORMATICS

ISSN 0333-3590

Heuristic Methods for Flow Graph Selection in
Integral Network Coding

Mohammad Ravanbakhsh and Dag Haugland

REPORT NO 391 October 2009

B

ERGENSI
S

U
NI

VERSITAS

Department of Informatics

UNIVERSITY OF BERGEN
Bergen, Norway

This report has URL
http://www.ii.uib.no/publikasjoner/texrap/pdf/2009-391.pdf

Reports in Informatics from Department of Informatics, University of Bergen, Norway, is available
at http://www.ii.uib.no/publikasjoner/texrap/.

Requests for paper copies of this report can be sent to:

Department of Informatics, University of Bergen, Høyteknologisenteret,
P.O. Box 7800, N-5020 Bergen, Norway

http://www.ii.uib.no/publikasjoner/texrap/pdf/2009-391.pdf
http://www.ii.uib.no/publikasjoner/texrap/

Heuristic Methods for Flow Graph Selection in
Integral Network Coding

Mohammad Ravanbakhsh∗and Dag Haugland†

Department of Informatics
University of Bergen

N-5020 Bergen
Norway

October 26, 2009

Abstract

The search for optimal multicast subgraphs for network coding is considered. We
assume unit link capacities and binary flow rates. In the first version of the problem,
there is no constrained on the acyclicity of the subgraphs, whereas such constraints are
imposed in the second version. These problems are known to be NP-hard. We provide
heuristics to deal with both versions of the problem. The heuristics are based on well
known optimization algorithms and they are therefore easy to implement.

1 Introduction

Multicast in a communication networks is a mode of operation where, a group of source
nodes transmits to a group of sink nodes, and where for each source, the information trans-
mitted is identical for all sinks. The capacity of a multicast session is the largest number
of bits that hence can be transmitted in a given time unit. Traditionally, the transmission
is based on simple forwarding of entering packets, implying that the multicast capacity is
given by the solution to a maximum flow problem, or equivalently, a minimum cut prob-
lem. The problems in question are formulated on a graph representing the communication
network, where link capacities reflect the maximum transmission rate between pairs of
connected nodes. As pointed out by Ahlswede et al. [2], the capacity can be increased
substantially if the routers are enabled to combine several entering transmission packets
and re-encode before forwarding the packets. This process, known as network coding is
particularly useful in applications where the flow capacity is small in comparison to the
number of users, such as fixed or mobile wireless networks.

To accommodate best possible utilization of network resources, any multicast session should
be established by first identifying a subset of resources to be assigned to the session. Thus,
the first step of a network coding scenario, which can be referred to as the flow graph
selection step, is to select the network links to carry the flow from source nodes to sink
nodes. The selected links induce a subgraph of the graph representing the communica-
tion network, and is in this work referred to as the flow graph. In the second step, a valid
∗Email: mohammad.ravanbakhsh@ii.uib.no, WWW: http://www.ii.uib.no/˜mohrav
†Email: Dag.Haugland@ii.uib.no, WWW: http://www.ii.uib.no/˜dag

1

network encoding corresponding to the flow graph is provided. Either randomly network
encoded packets[3], or, more efficiently when the network is stable, a fixed network encod-
ing scheme can be designed [4, 5, 6] for the multicast session on the selected flow graph.

In this work, we focus on the challenge of accomplishing the first step in the best possible
way. In general, for a given network and a given multicast request, there exist a set of flow
graphs that serve the needs of the multicast session. The problem is therefore defined in
terms of a cost minimization model, where the cost is a sum of costs associated with each
link included in the flow graph. Link costs typically reflect latency, power consumption
or other metrics, or possibly a combination of these, associated with pairs of connected
nodes. A corresponding optimization algorithm will thus attempt to find a “best” flow
graph as defined by the chosen criterion.

As demonstrated in [7], the flow graph selection problem can be recognized as the one
of computing a set of paths from a unique source to each terminal, such that the paths
corresponding to any sink are link disjoint, and such that the total link cost is minimized.
By a reduction from the minimum Steiner tree problem, it is seen that this problem is NP-
hard [7]. To avoid excessive computations in the first step, the focus in the current work is
therefore on fast methods producing near-optimal solutions.

Two different variants of the flow graph selection problem are studied in this work. First,
we consider no flow graph constraints but the link disjoint property of paths leading to a
common sink. In the second variant, however, we also impose the requirement that the flow
graph has no directed cycles. In other words, the flow graph must be a Directed Acyclic
Graph (DAG), which is required in many network coding algorithms, such as e.g. LIF [4].

1.1 Contributions of this paper

In this paper, we propose heuristics for the flow graph selection problem in network coding.
We focus on graphs with unit rate capacity links, since problems with integer capacity links
easily can be transformed to parallel links with unit rate capacity. For the first variant of
the problem, we propose a method that guarantees to extract a flow graph with integer flow
rates (as opposed to real numbered ones), given that such flow graphs exist. We claim
and justify that our approach is simpler and faster than the method suggested in [7]. For
the acyclic, and hence more challenging, version of the problem, we also propose a fast
heuristic. However, it cannot be claimed that this method is successful in finding a feasible
solution (an acyclic flow graph) to all instances for which such solutions exist.

The structure of this paper is as follows. In Section 2 we describe the network model
in more detail, and we introduce the notation. We formulate the proposed heuristics in
Section 3. Finally, we present the conclusions in Section 4.

2 Notation and network model

A communication network can be described by a directed graph G = (N, E), where N
is the set of nodes and E is the set of links. A node represents a router, station, or host
computer, and the presence of a link (i, j) ∈ E expresses that node i can communicate
directly with node j. Each node will have a unique location in the plane. In our application,
the set of nodes N can be partitioned into three disjoint sets, namely S the set of sources, T
the set of sinks (or terminals), and R the set of intermediate nodes. For each link (i, j) ∈ E,
we assume there is a fixed cost denoted aij of using the link in a multicast session. The
links will be assumed to have unit capacity, and below we argue why this is a reasonable
assumption.

2

If the input rate of the multicast session is nS , where nS is some positive integer, we
consider a network with nS = |S| source nodes, each producing a unit rate data stream.
This implies no serious restriction since a source with integer rate nS can be modeled as
nS co-located sources, each one of rate 1. When applying the flow algorithms and the
network coding algorithms, we can transform the problem into one with a single source by
introducing a single dummy source node with only nS outgoing links connected to source
nodes. The purpose of the multicast session that we consider is to transmit all information
from the dummy source to each of the |T | sinks.

The following two subsections describe in more detail the network that we consider.

2.1 Flows

Definition 1. A flow1 of a given sink t ∈ T is a set of link disjoint paths to t, one from each
source in S.

Observe that flows corresponding to different sinks may share links.

Definition 2. A flow graph in G is a subgraph of G where the union of flows, one for each
sink in T , constitutes the link set.

The flow graph of G is not necessarily unique. The main theorem in network coding implies
that a network represented by G supports a multicast session as long as there exists at least
one flow graph in G.

The centralized network encoding algorithms described in the literature are typically ap-
plied to a flow graph in G, sometimes with conditions on acyclicity. In [4], network coding
is performed on a link by link basis by dynamic programming, provided the flow graph is
directed and acyclic.

In this work, we study two versions of the problem of finding a flow graph in G with
minimum total link cost. In the cyclic version, we allow the flow graph to be cyclic, whereas
absence of directed cycles is an imposed constraint in the acyclic version. Define z ∈
{0, 1}E such that for all (i, j) ∈ E zij = 1 if and only if link (i, j) is included in G, and
for all t ∈ T , define xt ∈ <E as the vector of link flows destined for sink t. Then the cyclic
version of the problem can be stated as

minimize
∑

(i,j)∈E aijzij (1)
subject to:

0 ≤ zij 6 1 ∀(i, j) ∈ E (2)
0 6 xt

ij 6 zij ∀(i, j) ∈ E, ∀t ∈ T (3)∑
(i,j)∈ΓO(i)

xt
ij −

∑
(j,i)∈ΓI(i)

xt
ji = ∆t

i ∀i ∈ N, ∀t ∈ T (4)

zij integer ∀(i, j) ∈ E. (5)

where s is the dummy source node and, ΓO(i) and ΓI(i), are the sets of outgoing and
incoming links in node i, respectively, and

∆t
i =


nS , if i = s

−nS , if i = t

0, otherwise.
(6)

1This definition is motivated by unit capacity links and integer flow values.

3

In the acyclic version, the additional constraints can be formulated as:

uj,k−1 ≥ ujk ≥ ui,k−1 + zij − 1 ∀(i, j) ∈ E, ∀k = 1, . . . , |N | (7)
ui|N | = 0 ∀i ∈ N, (8)
us0 = 1 (9)

uik ∈ {0, 1} ∀i ∈ N, ∀k = 0, . . . , |N |. (10)

where for all i ∈ N, k = 0, . . . , |N |,

uik =
{

1, z defines some flow path from s to i of at least k links
0, otherwise

The first inequality in constraint (7) states the obvious fact that if j ∈ N lies on a path of
length k or more, than it also lies on a path of length at least k − 1. The second inequality
says that if i ∈ N is on a path of length at least k − 1, and (i, j) ∈ E is in the flow graph,
then j is on a path of length at least k. Combined with (8)-(9), these constraints ensure
absence of directed cycles.

3 Flow graph construction methods

In many deterministic algorithms used for network encoding (e.g. Jaggi et al. [4]), it has
been assumed that for an integral rate (nS) network coding, there are nS link-disjoint paths
from the (dummy) source node to each sink (recall nS = |S|, where |S| is the number of
unit rate sources). In [9], linear programming (LP) is introduced to compute the optimal
subgraph for a multicast session. The LP-method in [9] produces solutions in the field of
real numbers. In this format, the subgraph which carries the flow for a specific sink is not
necessarily a set of link-disjoint paths, and in such cases, it is not a flow. On the other hand,
restricting the LP to have integer solutions raises a problem that is known to be NP-hard [7].
In [7], approximation algorithms are introduced to produce integral solutions. The method
used in [7] is based on iteratively solving the minimum-cost flow problem as defined in [9]
by modifying the link costs.

For both versions of the problem defined in the previous section, we now suggest methods
to construct flow graphs in G. The first method, described in Section 3.1, finds a feasible
solution to the cyclic version based on considerations of the solution to the LP (1)-(4).
This method does not guarantee an optimum integer solution, but as long as the instance is
feasible, the method guarantees that a feasible solution is found. In practice, the solution
can also be close to optimum. In Section 3.2, we modify the well-known Ford-Fulkerson
algorithm [1] in order to extract flow graphs for the acyclic problem.

3.1 LP-based methods for the cyclic version

In this section, we suggest a method for constructing flows that may or may not be cyclic.
In contrast to [7], our approach needs to solve the LP problem (1)-(4) only once, after
which the flow graph is extracted by solving a minimum cost flow problem for each sink.
Thus, the running time of our approach is roughly that of solving (1)-(4) plus the time it
takes to solve |T | much smaller LP-problems. We have not compared the performance of
our approach with [7], but in many instances, the solution it produces is close to the relaxed
optimal solution. Also, there are two main reasons for introducing a new method based on
LP instead of using [7]. First, in our algorithm we need to solve (1)-(4) once, whereas
each iteration of [7] requires to solve a modified version of (1)-(4). Hence, our approach
is faster. Second, for the class of problems where links have unit rate capacity, we show in

4

Theorem 1 that in any instance, feasible integer solutions based on the solution to (1)-(4).
Our flow graph selection method consists of the following two steps:

3.1.1 First step of the flow selection method

Solving the optimization problem defined in [9] yields a possibly fractional solution, of
which the non-zero variables define a subgraph. We later use this subgraph in the second
step to generate flows by applying a method based on integer programming, the details of
which will be explained below.

Assume (1)-(4) is feasible, and denote its optimal solution by (x̂, ẑ).
Define Et =

{
(i, j) ∈ E : x̂t

ij > 0
}

. That is, Et consists of the links that in the optimal
solution to (1)-(4) carry flow from the dummy source to sink t. Since integrality constraints
are relaxed in this problem, the paths defined by positive x̂ij-values are not necessarily link-
disjoint, and Et is not necessarily a flow according to Definition 1.

Theorem 1. If (1)-(4) is feasible, then for all t ∈ T , Gt = (N, Et) contains nS link-
disjoint paths from s to t.

Proof. We prove that if all links in Gt have unit capacity, nS units of flow can be sent from
s to t in Gt. This condition is a equivalent to the existence of nS link-disjoint paths from s
to t in Gt.

First, consider the problem of maximizing the flow from s to sink t ∈ T in G when the
links (i, j) ∈ E have capacities ẑij . We have that x̂t is a feasible solution to this problem
since (x̂, ẑ) is feasible in (1)-(4). By (4) and (6), we also have that the corresponding total
flow is nS . Because ẑij ≤ 1 for all links (i, j), we have that x̂t remains feasible in the max
flow problem if the capacities are increased to 1 for all (i, j) for which ẑij > 0. Hence, we
can send nS units of flow from s to t in Gt given that all its links have unit capacity.

In the favorable case where x̂ happens to be integral, we have solved the problem. Other-
wise, we go on with a second step which for all t ∈ T computes a flow in Gt.

3.1.2 Second step of the flow selection method

In the second step, we go through the sinks sequentially, and for each t ∈ T , we compute
a flow Bt ⊆ Et. By Theorem 1, we know that such a flow exists. Assume that a subset
T ′ ⊆ T hence has been processed. For all (i, j) ∈ Et, we define the decision variables

yt
ij =

{
1, (i, j) ∈ Bt

0, otherwise, and let at
ij =

{
1

x̂t
ij

, (i, j) 6∈ Bt′ ∀t′ ∈ T ′

0, otherwise
represent the cost

of including (i, j) in the flow corresponding to t ∈ T \T ′. Thus, the following optimization
problem is solved in order to find Bt:

minimize
∑

(i,j)∈Et

at
ijy

t
ij (11)

subject to:∑
(i,j)∈ΓO(i)∩Et

yt
ij −

∑
(j,i)∈ΓI(i)∩Et

yt
ji = ∆t

i ∀i ∈ N (12)

yt
ij ∈ {0, 1} ∀(i, j) ∈ Et (13)

5

The motivation for applying the costs at
ij is that if (i, j) has already been included in a flow

Bt′ , the additional cost of including it in Bt is zero. Further, putting the cost to 1
x̂t

ij
, if (i, j)

is not yet included in any flow, encourages reuse of links (i, j) ∈ Et for which xt
ij , and

thereby zij , have large optimal values in (1)-(4). Thus the resulting link-disjoint paths are
likely to constitute a subgraph close to the optimal solution to (1)-(5).

Problem (11)-(13) is recognized as a minimum cost flow problem, and is thus solved
quickly.

3.2 Flow Construction Algorithms with Control of Cyclicity

In the approach presented in the previous section, we have no control on the existence of
cycles in the flows produced. In order to control the occurrence of cycles, we give in this
section a flow-augmenting approach based on the Ford-Fulkerson algorithm.

Algorithm 1 works on the residual graph [8] of G at each step. Initially, all links (i, j) ∈ E
are assigned the fixed cost aij , but once we have that (i, j) ∈ Bt′ for some t′ ∈ T ′, we
define the cost of link (i, j) to be zero. The purpose of this update is to stimulate link
sharing among sinks.

Since we assume unit capacity links and integer flow values, the residual graph is obtained
from G by inverting the direction of links with current flow equal to one and keeping the
links with flow equal to zero. The sign of the cost of any inverted link is correspondingly
reversed. An augmenting path [8] is simply a path from the dummy source to the sink
in that residual graph. We refer to [8] for a more detailed and general explanation of the
Ford-Fulkerson algorithm and the significance of augmenting paths.

We find the augmenting paths by using Dijkstra’s algorithm, which locates paths of mini-
mum cost. In order to avoid cycles, Dijkstra’s algorithm is modified to check whether the
addition of a link makes the flow graph cyclic, in which case the link is ignored.

Unlike the approach suggested for the cyclic version, Algorithm 1 does not guarantee to
output a feasible solution even when such solutions exist.

Obviously, the flow-augmenting approach can also be applied without modification of Di-
jkstra’s algorithm in order to find a flow graph for the cyclic version of the problem.

6

Algorithm 1 Constructing flows by flow-augmenting paths
for (i, j) ∈ E do

cij = aij ; // Put all costs equal to the input cost
end for
for t ∈ T do

for (i, j) ∈ E do
fij = 0; // Put the flow equal to 0

end for
repeat

Apply (a modified version of) Dijkstra’s algorithm to find Π = a cheapest flow-
augmenting path to t in the residual graph of G;
if a path was found then

for (i, j) ∈ Π do
fij = 1− fij ;

end for
end if

until no path was found
Define the flow as Bt = {(i, j) ∈ E : fij = 1};
for (i, j) ∈ Bt do

cij = 0; // Reusing (i, j) for another sink is free
end for

end for
return {Bt : t ∈ T}

4 Conclusion

We have presented heuristics for flow graph selection for network coding in the case of unit
link capacities. For instances where cyclic flow graphs are permitted, we have suggested a
method based on linear programming. The other approach is based on a modified version
of Dijkstra’s algorithm, and is aimed for instances where the flow graph is required to be
acyclic.

By comparison to lower bounds produced by linear relaxations of the flow selection prob-
lem, computational results published in [10, 11] indicate that the results produced by our
methods are very close to the optimal solution.

References

[1] L. R. Ford, D. R. Fulkerson, “Maximal Flow through a Network”, Canadian Journal
of Mathematics, 8 (1956), pp.399–404. 3

[2] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network Information Flow”,
IEEE Transactions on Information Theory, Vol. 46, April 2000, pp. 1204-1216. 1

[3] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, Shi Jun and B. Leong, “A
Random Linear Network Coding Approach to Multicast”, IEEE Transactions on Infor-
mation Theory, Vol.52, October 2006, pp.4413-4430. 1

[4] S. Jaggi, P. Sanders, P.A. Chou, M. Effros, S. Egner, K. Jain and L.M.G.M. Tol-
huizen,“Polynomial Time Algorithms for Multicast Network Code Construction”,

7

IEEE Transactions on Information Theory, Vol. 51, June 2005, pp. 1973-1982. 1,
2.1, 3

[5] Á. Barbero and Ø. Ytrehus, “Cycle-logical Treatment of ’Cyclopathic’ Networks”,
IEEE Transactions on Information Theory, Vol. 52, June 2006, pp. 2795-2805. 1

[6] Á. Barbero and Ø. Ytrehus, “Knotworking”, Proceedings of ITA 2006,, San Diego,
February 2006 (electronic publication). 1

[7] T. Cui and T. Ho, “Minimum Cost Integral Network Coding”, Proceedings of IEEE
Symposium on Information Theory, 2007 1, 1.1, 3, 3.1

[8] K. H. Rosen (Ed.), “Handbook of Discrete and Combinatorial Mathematics", CRC
Press, 1999. 3.2

[9] D. S. Lun, N. Ratnakar, M. Médard, R. Koetter, D. R. Karger, T. Ho, E. Ahmed, and
F. Zhao, “Minimum-Cost Multicast over Coded Packet Networks”, IEEE Transactions
on Information Theory, Vol. 52, Issue 6, June 2006, pp. 2608– 2623. 3, 3.1.1

[10] M. Ravanbakhsh, Á. I. Barbero, D. Haugland and Ø. Ytrehus,“Power savings of cyclic
network coding for multicast on wireless networks”, IEEE Information Theory Work-
shop(ITW), Cairo, Egypt, 2010. 4

[11] M. Ravanbakhsh, Towards Optimal Data Transmission by Network Coding, PhD Dis-
sertation, University of Bergen, Norway, 2009. 4

8

	Introduction
	Contributions of this paper

	Notation and network model
	Flows

	Flow graph construction methods
	LP-based methods for the cyclic version
	First step of the flow selection method
	Second step of the flow selection method

	Flow Construction Algorithms with Control of Cyclicity

	Conclusion

