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Notation

TNa (i, i, 0%, 02, p)
X(l)/ A /X(n)

R

R

R?

the truncated bivariate normal distribution
the ordered variables satisfying X(;) < --- < X(;,
the set of real numbers
the extended set of real numbers R U {—o0,c0}
the p-dimensional space R x R--- x R
p
unspecified set
lim,,F(x), limit of F(x), letting x increase towards z
lim, ,F(x), limit of F(x), letting x decrease towards z
cardinality
the absolute value of x
x transposed
the signof x,ie. 1ifx >0,0ifx =0, —1if x <0
supremum, the least upper bound
infemum, the greatest lower bound
maximum
minimum
independent and identically distributed
defined as

convergence in probability
convergence almost surely

convergence in distribution

the Chi-square distribution with v degrees of freedom
the standard normal cumulative distribution function
the sample average of x = (x1,...,xy)

the sample variance of x = (x1,...,x,)

for all

gradient vector whose components are the partial

derivatives of f at a,ie. Vf(a) = (%,..., %)

X






Introduction

1.1 Topics covered in the thesis

This thesis discusses different ways of analysing left truncated data when
the lower bound itself is a stochastic variable. We will consider the possible
dependence between the variable of interest and the truncating variable, and
how the dependency structure between these variables influence estimation of
the underlying distribution.

1.1.1 Random left truncation

In a sample subject to left truncation by some lower bound, all the values
below this bound are entirely omitted. Opposed to the concept of left censoring’,
we have no record of how many observations are omitted, nor what the lower
bound may be (unless this is prior knowledge). In random left truncation

In the left censoring case we are given an observation or a note that the observation is below
the bound. In addition, we know the value of this bound.



the lower bound is a random variable. We call this variable "the truncating
variable”, while we call the variable subject to left truncation “the variable of
interest”.

1.1.2 Dependent truncation

When the variable of interest is larger than the truncating variable we assume
both variables are observed. In some cases there is a relation between these
two variables, and we say that the data are subject to a dependent truncation.
The assumption of independence between these variables can in general not be
tested with a truncated dataset. The reason is that we do not know anything
about the behaviour of the unobserved data.

In chapter 2 we will approach this problem by introducing a weaker assump-
tion called quasi independence, which can be interpreted as independence
between the variables we do observe. This assumption can be tested with
a truncated dataset. For this purpose we will consider two different mea-
sures of dependence for truncated data. The asymptotic properties of the
sample version of these measures will be studied and used to approximate the
distribution of finite sample test-statistics.

1.1.3 Reconstruction of the unconditional distribution

In chapter 3 we will consider a nonparametric maximum likelihood estimator
called the Product-limit estimator. This estimator aims to reconstruct the un-
conditional distribution of the variable of interest using truncated data. This
method depends heavily on the assumption of quasi independence and is
therefore not suitable for data subject to a dependent truncation. Analysis of
such data will be the primary subject in the rest of the thesis.

The problem of reconstructing the joint distribution between the variable
of interest and the truncating variable have been considered by very few au-
thors, and only just recently. A warm up to this subject is given in chapter 4,
where we assume that these variables follow a bivariate normal distribution.
The observed data will then follow the so-called truncated bivariate normal
distribution. Under this assumption, estimates of the unknown parameters



can be obtained by maximum likelihood estimation. In chapter 5 we will
consider the more general parametrisation done with copulas. For this model
we will consider maximum likelihood based estimation and a semi-parametric
approach proposed in recent literature.

1.2 Examples

Example 1.2.1: Retirement House: Klein and Moeschberger (2003)

In a retirement centre subjects are observed only if they live long enough
to enter the retirement house. The lifetime X is then left truncated by
the retirement house entry age, T. There is reason to believe that these
variables are dependent. People who enter the retirement house earlier
may get better medical attention and therefore live longer. On the other
hand, people with poor health and shorter expected lifetime may retire
earlier.

Example 1.2.2: AIDS study: Kalbfleisch and Lawless (1989)
Let Y be the infection time where 1 represents January 1978 and let T be the

incubation time in months for people who were infected by contaminated
blood transfusions and developed AIDS by 1 July 1986. Since the total study
period is 102 months only individuals with T 4+ Y < 102 were included in
the sample. Then, letting X = 102 — Y yields the model described: (X, T)
is observed only if T < X. Kalbfleisch and Lawless (1989), amongst others,
analyse these data based on the assumption that X and T are independent.
Later, Tsai (1990) pointed out that this assumption fails to hold.

1.3 Applications to insurance

In casualty insurance, claims are only observed if they are larger than the
corresponding deductible. In many cases, the insurance companies assign
individual deductibles for each object. Though it may seem strange to think of
deductibles as random variables (since we more or less control these values),



such a consideration could provide useful information. If there is a significant
association between the claims and deductibles it can be reasonable to use
deductibles as an additional covariate when estimating claims. This considera-
tion can also be used to estimate the number of unreported claims. For this
purpose the joint distribution of claims and deductibles must be estimated.
In chapter 6 we will apply some of the methods considered in this thesis on
insurance data from ships.

All numerical procedures and graphical displays in this thesis are carried
out using the statistical program R.



Measures of dependence for truncated
data

Many methods concerning truncated data depend on the assumption of inde-
pendence between the variable of interest and the truncating variable. There-
fore, to use these methods one would have to investigate the dependence
between these variables. In this chapter we will consider two different quanti-
ties designed to measure the dependence in truncated data. The first quantity
is a generalisation of the Pearson product-moment correlation coefficient pro-
posed by Chen et al. (1996). The second is a generalisation of Kendall’s Tau
proposed by Tsai (1990).

2.0.1 The general case

Let X* be the variable of interest subject to left truncation by the truncat-
ing variable T*. That is, the sampling mechanism is such that (X*, T*) is
included in the sample if and only if X* > T* (See figure 2.1 on page 8).



We assume that there are n such pairs amongst the original sample of un-
known size N. When (X*, T*) is included in the sample we denote it (X, T),
ie (X, T)=(X*TX" > T%).

Let H(x, t) be the joint distribution of (X*, T*) with marginals F(x) = H(x, o)
and G(t) = H(oo, ). Let H°(x, t) denote the conditional cumulative distribu-
tion of (X*, T*), given that X* > T*. Thus

H(x,t) = P(X* < x,T" <t|X*>T"
_P(X*<x, T <t,X*>T¥) // e 2.1)
- P(X* > T*) A(xb)

where
=P(X*>T" = / dH(u,v) and
u>v
Alx, t) ={(u,v);v <u<x,0<t}

The conditional cumulative distribution of X and T are given by F°(x) =
H(x,00) and G°(t) = H¢(co,t), respectively. Given the density h(x,t) of
(X*, T*) the conditional density is

W (x,£) = { h(x, t)/a, x>t 2.2)

0, otherwise.

In the continuous case, given the density & we have that

“(x,t) // (u,v)dudo/a,
zx:// (u,v) dudo.
u>v

Below is a graphical depiction of the sampling mechanism.

Truncation

(X3, T, ..., (X5, T) (X1, T), ..., (X, Ty), n<N.

iid.H(xt) i.id.He(x,t)




Truncation Truncation
X3, ..., Xy Ameton, L Xy, T:,..., Ty Lo T,
N———— S————v —_——— N——
i.id.F(x) i.i.d.F¢(x) i.i.d.G(t) 1.4.d.Ge(t)

This is the general setup in the left truncation case and the notations will
be kept throughout the thesis. Later we will consider the estimation of the
distribution function of X* using the so called Product-limit estimator. However,
the consistency of this estimator depends heavily on the assumption of quasi
independence, which we will consider in the following section.

2.1 Quasi independence

Since we are unable to observe data in the region X* < T*, and thus do not
know anything about the dependence in that region, we can’t decide whether
or not X* and T* are independent. However, there is a weaker definition of
independence called quasi independence.

Definition 2.1.1: Quasi independence

Let the marginal distributions of X* and T* be F(x) = H(x,o0) and
G(t) = H(oo,t) respectively. The variables X and T in the observable
vector (X, T) are said to be quasi independent if the corresponding distri-
bution H(x, t) has the following property:

Ho: H(xt) = / /A oy F) 4G (@) /20,

where ng = //Dv dF(u)dG(v).

Given the densities ¢ and f corresponding to G and F, this assumption is

(2.3)

equivalent to

f(x)g(t) /a0, x>t

Hy: h(xt)=
0, otherwise.
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Figure 2.1: The sampling mechanism: The first two plots illustrates the sam-
pling mechanism when (X*, T*) follows a bivariate normal distri-
bution with p = 0.4. The last two plots illustrates the sampling
mechanism when X* and T* are independent uniformly distributed

on [0,1].



We will denote the assumption of quasi independence Hy. The term quasi
independence was first used in the contingency table literature to describe
variables which behaved as independent variables in certain subsets of the
table. In our setting the interpretation is quite similar. The assumption of quasi
independence imply that (X*, T*) behaves as independent variables in the
region {(X*, T*)|X* > T*}. It is easily seen that independence between the
two variables imply quasi independence. The converse statement is not true,
as illustrated by the following example.

Example 2.1.2: Quasi independent variables which are not independent
Consider the contingency table 2.1. In this case both X* and T* are dis-
crete and uniform on {0,1,2,3}. We see that the requirements for quasi
independence holds since

=T ki) =0 = LY FO)3() = 12
1>] i>j
i | FOsii/m, >
w) = { 0, otherwise.

However, the variables are not independent for X* < T*.

Table 2.1
T*
h(x,t) 0 1 2 3 f(x)
0 1/16 1/16 0 2/16 1/4
1 1/16 1/16 2/16 0 1/4
2 1/16 1/16 1/16 1/16 1/4
3 1/16 1/16 1/16 1/16 1/4

g(t) 1/4 1/4 1/4 1/4 1

X*

Unfortunately, this means that even though we can establish that the obser-
vations in a truncated dataset are quasi independent, the variables may still
be dependent. However, Tsai (1990) pointed out that many methods which
originally are stated to work only under the assumption of independence
between X* and T* will also work under the assumption of quasi indepen-



dence. Motivated by this, we will consider measures which can help us decide
whether or not the data depart from the hypothesis of quasi independence. We
will first consider a generalisation of the well-known Pearson product-moment
correlation proposed by Chen et al. (1996), which we will denote by p..

2.2 The generalised product-moment correlation
coefficient

Definition 2.2.1

Given the random samples (X3, T1) and (X3, T») from the truncated vector
(X, T), we define the conditional product-moment correlation by

E[(X1 — Xo)(Th — T) | Al
{E[(X1 — X2)? | AJE[(Ty — T2)? | AJ}'/?

Pc =

where A = {max(T;, T») < min(Xj, X»)}. Alternatively we can write:

_ E[(X1 — X3)(Ty — T2)I4] _ oXT (2.4)
e {E[(X; — X2)2I4)E[(Ty — T)2Ia}/*  {oxxorr}l/2”’ '

were 1,4 is the indicator function of the set A.

The last representation of p. is valid since

E[(Xy — X2)(Ti — T2)14]/ P(A) |
{(E[(X1 — X2)214]/ P(A)) (E[(T1 — T2)214] / P(A))}/?

Pc =

And we see that P(A) in the numerator cancel the P(A)s in the denominator.
Obviously, p, is only defined when P(A) # 0. Note that by conditioning on the
event A, the two points (X3, T1) and (X, T>) become “comparable” under a
truncation since the point (min(Xj, X»), max(Ty, Tz)) given A always is located
in the observable region.

The natural thing to do next is to investigate the relation between p. and
Hy. The following theorem holds for every distribution of (X, T).

Theorem 2.2.2

Given quasi independence between X and T, it follows that p. = 0. That is:

Hy = pc=0. (2.5)
10



Proof: A proof is given in section A.1 on page 89

So at least in some sense p, = 0 indicate no relation between X and T.
However, one can’t conclude quasi independence between them except in one
special case. We know from classical statistics that independence is equivalent
to zero correlation in the multivariate normal case. The next result shows
the corresponding relations between quasi independence and p, = 0 in the
truncated bivariate normall case:

Theorem 2.2.3

If (X, T) follows a truncated bivariate normal distribution, then

Hy & p.=0 (2.6)

Proof: A proof is given in (Chen et al., 1996).

The theorem tells us that if we are able to establish that our data follows a
truncated bivariate normal distribution, a good estimate of p. could help us
decide whether or not our data are quasi independent.

We continue with a computational procedure for p.

2.2.1 Monte Carlo approximation of p.

From equation 2.1 on page 6 we know that given the unconditional distribution
H(x,t) we also know the conditional distribution H(x, t). Hence, in such a
situation, we can compute the exact value of p.. The computation of p, can
rarely be done analytically, so we need a numerical method to do this. As
an alternative to numerical integration, we can use Monte Carlo Integration.
This procedure and many other problems in this thesis requires simulations
from the conditional distribution H®. If we know how to simulate from the
unconditional distribution H, then a simulation procedure to obtain 7 i.i.d.
variables distributed according to H¢ is as follows:

Whenever (X*, T*) is bivariate normal distributed, i.e. (X*, T*) ~ NQ(yx,]/tt,cT,%,Utz,p), we
say that (X, T) follows a truncated bivariate normal distribution. The shorthand notation will
be (X, T) ~ TN (px, 1, 03,07, p)

11



1. Simulate N =1 000 000 i.i.d. pairs (X}, T}) from H and let

apc = card{i|X] > T;}/N.

2. Put N = n/apc and repeat the simulation of N i.i.d. pairs (X, T;") until
a sample with card{i|X; > T;} = n is obtained.

3. Let (X1, Th),...,(Xn, Ty) be the n pairs in the sample obtained by 2.
where X* > T7.

Then (X1, T1), ..., (Xu, Ty) will be i.i.d. according to H°.

Procedure 1. is an easy way of estimating « by MC integration if we know the
unconditional distribution H. Also note that N = n/a,c is the optimal initial
value of N if we want to form a subset of (X;,T),..., (X}, Ty) according to
3. with size n (see section 6.6 on page 83).

Using the above procedure we can simulate two large samples A and B
independently from H*:

A={(x{, T, (x3, 1), ..., (X THY,
B={(X{,T7),(X5,T7),..., (X}, T;)},
and let:

N 1
UXT = n Z(XZA - XiB)<TiA - TiB>IAi'
i=1

where A; = {max(T-A TB) < min(XzA/XzB)}-

1771

Note that the elements in the above sum are independent. Therefore, by the
Strong Law of Large Numbers®, we know that oxr converges almost surely® to
E[(X1 — X2)(T1 — T2)I4] = oxr. Hence, for a sufficiently large n, this is a good
approximation of oxr. Using the same sample, similar approximations can be
done for oxx and orr giving an approximation of p. = oxr/ {oxxorr}/?. Note

2SLLN: Let X, be the average of the first n of a sequence of independent, identically distributed

random variables X1, Xy, .. .. If E|X;| < oo then X, *% EX; by the strong law of large
numbers.
3a.s: The sequence X, is said to converge almost surely to X if d(X,, X) — 0 with probability

one for a proper norm d. This is denoted X,, == X.

12



that this can be a time consuming process if the truncated proportion is large.
We will now use this method to make a visual inspection of the behaviour of p..

Consider the case where (X, T) follows a truncated bivariate normal dis-
tribution, that is (X, T) ~ TNa(px, i, 02,07, 0). In this example we keep the
parameters (piy, U, 0'%, Utz) fixed, while varying p. We then calculate p, using
the method described on the previous page. In each case, the number of simu-
lations were n = 200000.

Figure 2.2 illustrates the relations between p and p for three different trun-
cated bivariate normal distributions. The same plot is given in (Chen et al.,
1996) for the same distributions, where the calculation of p. was done by
numerical integration. The result is the same, so we trust the accuracy of our
Monte Carlo approximation. To compare the difference, |po. — p|, a straight
line was included in the plot. Notice that the difference |o. — p| is small in the
TN,(0,—1,1,1/16,p) case, while |p. — p| is rather large in the TN>(0,0,1,1,p).
In the first case the truncated proportion is small, so one would not expect p,
to deviate much from p. However, in the second case the truncated proportion
is relatively high, making |p. — p| larger.

1.0
TN(0,-1,1,1)
< - - TN(0,0,1,1)
2 0511 - TNO-1,1,1/16)
2 - -
5 -
© 0.0-
©
c
el
£
5 0.5+
(@)
1.0

| |
-1.0 -0.5 0.0 0.5 1.0
Unconditional Correlation

Figure 2.2: Unconditional correlation versus Conditional correlation in the
truncated bivariate normal case where p varies from —1 to 1.

13



2.2.2 Sample conditional product-moment correlation coefficient

To utilise theorem 2.2.2 on page 10 and theorem 2.2.3 on page 11 we need a

good estimate of p.. A consistent estimate is as follows:

Definition 2.2.4
Let (X1,T1),...,(Xu, T,) be ii.d random vectors following the same dis-
tribution as (X, T). A pair (X;, T;) and (X;, T;) is called comparable if
max(T;, T;) < min(X;, X;). Using these pairs, the sample association be-
tween X and T in the observable region can be measured by

Yity Ui (X = X5)(Ti = Tj) I

YL (X = X2 Y (T = T)2 327 (2y)
where [;; = I[{max(T;, Tj) < min(X;, X;)}.

Tc

For simplicity, we will denote this in the following two ways:

_ Y1 SxT, B SxT
. _ .
(X0 Sxx, 2 {0 Str}2 {SxxSrr)?

T

Note that this is not the same estimate as the Monte Carlo approximation of
pc done in section 2.2.1 on page 11. In practice we do not enjoy the luxury of
two independent datasets from the same distribution. And as we will see in
section A.2 on page 91, it is harder to derive the asymptotic properties of 7..
Still, if we want to know which values of r, which imply significant departure
from Hj, these properties must be investigated. Three desirable propertiesf of
rc are given in the following theorem:

A sequence of random variables X, is said to converge in probability to X if for all € > 0

P(d(Xn, X) > €) — 0 for a proper norm d. This is denoted X L, X. The sequence Xy, is
said to converge in distribution to X if P(X,, < x) — P(X < x) for every x which the limit

distribution function P(X < x) is continuous. This is denoted X 4, X.

14



Theorem 2.2.5
Let

var(r.) = r2 i XX, + ST —ZSXTi ’
‘ ‘&= \Sxx  Srr Sxr)

Then:

P
e = Pey (2.8)
nvar(rc) LN a2,

Vv (re — pe) 4, N(0,02).

Proof: A proof is given in section A.2 on page 91.

We do not give an explicit expression for the asymptotic variance ¢ because it
depends on the distribution of the data, and because it is difficult to derive.
For practical purposes we only need to know how to estimate ¢ consistently
so that we can form a statistic capable of determining significant departure
from Hy. Such a statistic is given in the following lemma.

Lemma 2.2.6

TP 4 N(0,1) (2.9)
var(r.)

Proof: The proof is straightforward:

e = 0Pc \/F(rC_PC) v _
var(r.) _{ o }{ {nﬁr(rc)}l/z } = nbn

By theorem 2.2.5
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Hence by Slutsky’s Theorem®

anby 5 N (0,1) and the proof is complete.

2.2.3 Testing the assumption of quasi independence with r.

Lemma 2.2.6 on the preceding page provides the means for testing the hy-
pothesis Hg : p. = 0 versus H : p. # 0. For sufficiently large n, reject Hg
whenever

—

IR| ::"*" > Ze ), (2.10)
var(r;)

where € denotes the significance level of the test and Z,, the corresponding
normal critical value. In general, when Hp, is rejected, we can only conclude
that there is no linear relationship between the variables in the observable
area. However, assume further investigation implies that the data follows
a truncated bivariate normal distribution. Then rejecting Hpy is, according
to theorem 2.2.3 on page 11, equivalent to rejecting the hypothesis of quasi
independence Hy. In section 6.5 on page 79 we consider a goodness of fit test
which can be used to test whether or not the data follows a truncated bivariate
normal distribution. This test and p, are together useful tools when we wish
to test the hypothesis of quasi independence.

2.2.4 Simulation result

To support Theorem 2.2.5 on the previous page a simulation was carried out in
R. The following routine was repeated 400 times for every fixed combination
of n = 30,80,150 and p = 0,0.3,0.7:

* n pairs were drawn from the truncated bivariate normal distribution
TN>(0,—1,1,1/4,p).

e From these n pairs, r. and var(r.) were computed.

5Slutsky: Let X;;, X and Y;, be random variables. If X, LR X and Yy, L a for a constant a, then
(W) X +Yn & X +a
(ii) XYy 5 Xa
(i) Xu/ Yy & X/a, if a # 0.
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For each fixed combination of p and n the samples r%, el ,,300 and
var(rl),...,var(r2%) were obtained. We then calculated:
1 400
— 1
AVE(r,) = 00 Zrc
400
AVE(V = 100 0 0 Z var(r
400
VAR(r;) = (r — AVE(r.))?,

399

The results can be seen in table 2.2 on the following page. The motivation of
the simulation was to support the following:

* Consistency of r,
For every p, the theoretical value of p. is computed using the Monte Carlo
approximation described earlier. We then compare AVE(r.) against p.
as n increases. This procedure will detect bias.

e Consistency of nvar(r)
This evaluation is more complex since we do not know the real value
of 0>. However, by repeating the routine 400 times we can compute the
empirical variance VAR(r.) which should be an accurate approximation
of var(r.). We can then compare AVE (V) against VAR(r.). Note that
both quantities should decrease when 7 increase.

* Normality of 1.
To investigate the normality of 7. the p-value of the Shapiro-Wilks statis-
tic was computed in each case. For small p-values this test rejects the
hypothesis that the 400 computed values of r. follows a normal distribu-
tion.

Results We get that AVE(r) is close to p. in all cases, and the estimate im-
proves as n increases. For n = 80 and n = 150 the mean of the estimated
asymptotic variances AVE(V) is close to the empirical variance VAR(r.), and
they both approach zero as n increase. A closer investigation of the p = 0.7
case showed a few outliers of 7.. As can be seen in table 2.2 on the next page,
these outliers greatly affected the Shapiro-Wilks test of normality. Removing
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the few outliers improved the p-values significantly, though such a procedure

is considered to be one of the “deadly sins” amongst statisticians. In the cases

when p = 0 and p = 0.3, the assumption of normality is not rejected. A similar

simulation was carried out by Chen et al. (1996) with similar results.

Table 2.2: Simulation results of 7. from truncated samples sized n of a bivariate

normal distribution with 1, =0, #; = —1, 02 = 1 and 0? = 1/4.
Truncated
1Y Pc n=30 n=80 n =150 proportion
0 0 AVE(r.) 0.0050 0.0024 -0.0023 0.1858
VAR(r.) 0.0323 0.0112  0.0054
AVE(V) 0.0248 0.0101  0.0054
Normal p 0.3802 0.7028  0.4453
0.3 01772  AVE(r.) 01761 0.1768 0.1787 0.1524
VAR(r.) 0.0265 0.0082  0.0055
AVE(V) 0.0222 0.0091 0.0048
Normal p 0.8097 0.8206  0.6519
0.7 04633 AVE(r.) 04882 0.4648 0.4646 0.0882
VAR(r;) 0.0139 0.0054 0.0036
AVE(V) 0.0134 0.0054 0.0032
Normal p 0.0081 0.0247  0.0531
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Notice how AVE(V) and VAR(r) in table 2.2 on the facing page both decrease
when p increases. We know from classical statistics that the sampling variance
of the sample correlation is approximately

(1-p?)?
n
Thus the sample correlation becomes more accurate as [p| — 1. As seen in
figure 2.3, |oc — .| is smaller and vary less when |o.| — 1, so there seem
to be a similar relation between r. and p.. When the original data comes
from the bivariate normal distribution, the value of p influence the truncated
proportion (N —n)/N. As seen in table 2.2 on the facing page, increasing
p decreases the truncated proportion. This will also affect r.. We conclude
that the dependency structure of the observed data influence the accuracy of .

0.25
0.20

0.15

[Pc—Td

0.10

0.05

0.00

-1.0 -0.5 0.0 0.5 1.0
Pc
Figure 2.3: Plot of 67 computations of |p. — ¢|. Every r. was computed from the
truncated bivariate normal distribution TN>(0, —1,1,1,p) where

n = 100 and p varied from —1 to 1 (causing p. to vary from —1 to
1).
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2.3 Conditional Kendall’s Tau

Similar to the standard Pearson correlation, p. measures the linear relation-
ship between the variables in the observable region. In addition, it also de-
pends on the marginal distribution of X and T, e.g. p. is only defined when
E[(X1 — X2)?I4] and E[(T; — T»)?14] are finite. This can pose as a problem if
we are dealing with infinite-variance distributions. In these cases the condi-
tional Kendall’s tau is a more suitable measure of dependence.

The standard Kendall’s tau is a measure of concordance for bivariate ran-
dom vectors. Consider two points in R?, denoted (x1,t1) and (xp,t2). We
say the points are concordant if (x; — x)(t; — f2) > 0 and discordant if
(x1 —x2)(t1 — t2) < 0. Let (X3, T1) and (X», T») be independent random vec-
tors from the same distribution. If T tends to increase with X we expect the
probability of concordance to be high relative to the probability of discordance.
We expect the opposite if T tends to decrease with increasing X. Motivated
by this, Kendall’s tau is just the probability of concordance minus the proba-
bility of discordance for these pairs. The conditional version is defined in the
same way for a truncated vector (X, T'), only conditioned on the event A, that
the two pairs are comparable. Applications and a generalised Kendall’s tau
statistic are discussed in (Tsai, 1990). Let us begin with the definition.

Definition 2.3.1
Given the random samples (X3, T1) and (X3, T») from the truncated vector
(X, T), we define the conditional Kendall’s tau:

T = ZP{(Xl — Xz)(Tl — Tz) > OIA} -1,

where as before, A = {max(T;, T») < min(Xj, X»)}.

In the unconditional case, when X and T are independent, we have that
P{(X1 — X2)(T; — T2) > 0) = 1/2 and T = 0. Similarly, we have the following
relation between 7. and the assumption of quasi independence Hy.

Theorem 2.3.2
Given quasi independence between X and T, it follows that 7. = 0. That
is:
H = =0
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Proof: Rewrite 7, in the following way

T =2P{(X1 — X2)(Th — T) > 0]A} — 1
=P{(X1 —X2)(T1 — T2) > 0|A} + P{(X1 — X2)(Th — T») > 0|]A} —1
=P{(X1—Xo)(Th — T2) > 0|A} +1—P{(X3 — X2)(T1 — T,) <0|A} —1
= E[sgn(X; — X2)(Th — Tz)|A] = E[sgn(X1 — X2)(T1 — T2)14]/P(A),

and consider the last expectation. Under the assumption P(A) # 0, the proof is
completely analogous to that of theorem 2.2.2 on page 10 given in section A.1
on page 89, so the details are omitted.

2.3.1 Sample conditional Kendall’s Tau and asymptotic properties of
the corresponding test-statistic T

Definition 2.3.3

Let (X1, Ty),...,(Xn, Ty) be iid. random vectors following the same dis-
tribution as (X, T). Then the sample conditional Kendall’s Tau is given

by

fe= %Zngn ((Xi = X)(T; = T))) I, 2.11)

i<j

where [;; = [{max(T;, Tj) < min(X;, X;)} and k =} Y i Lij.

To test the assumption 7. = 0 we must consider the properties of a simplified
version of t.. Let K be the number of concordant comparable pairs minus the
number of discordantly comparable pairs. Thus

K= % Z fsgn ((Xi = X))(Ti = T))) .

i=1j=1

To establish the asymptotic properties of K we need to rewrite it. We define
the set #; and the cardinality of %; by

%,‘ = {]’T] S Xl' S X]}, R,‘ = ZI(T]‘ S Xi S X]) = Card(,%i).
j=1
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In the expression of K all elements appear twice since
sgn ((Xl - X])(Tl - T])) Il']' = 5gn ((X] - Xl>(T] - Tl)> I]l

By summing over j € %; we avoid this and we do not need to divide by
one half. In addition, when j € %, the indicator function I;; will be 1, so we
can omit the indicator function as well. If we assume that the distribution of
(X, T) is continuous we can ignore the probability of ties®. For every X; for
which j € #; we then have that sgn(X; — X;) = 1. This leads to the following
representation of K

n n

K=Y )Y sgn(T;—T)=)_6.
i=1je%; i=1

The rewriting of K is motivated by the following nice result about the random

variables S;.

Theorem 2.3.4

Assume that the distribution of (X, T') is continuous so that the probability
of ties can be ignored. Under Hj the conditional distribution of S; given
the set %; is uniform. The probability mass function is given by

PS_]|R—rZ)

j=ri—1r-3,...,—r+3,—-ri+1,

otherwise.

—_

Hence E(S;|R;=r;) =0, Var(S;R;=r;)= 5(7’12 —-1).

Proof: A proof in the case R; = 3 is given in section A.3 on page 96.

A visual inspection of this theorem can be seen in figure 2.4 and figure 2.5
on page 24. Note that p = 0 imply quasi independence in the truncated
bivariate normal case. Figure 2.4 was generated by drawing a sample from
TN>(0,—1,3,1,p = 0) of size n = 50. If the sample contained a set %; with
cardinality R; = 10, the corresponding value of S; were calculated. This routine

®A tie is when the realisation of two variables are equal.

22



was repeated until 12 000 values of S;|R; = 10 were attained.

At first eyesight this result does not seem to help us decide significant depar-
ture from Hy. In practice we only have one data set, so we can’t e.g. make a
QQ-plot to check if S;|R; = r; actually is uniform. However, the application of
this result becomes clear in the next theorem.

Theorem 2.3.5
Assume that the distribution of (X, T) is continuous and that the assump-
tion Hy holds, then

K

- 4, N(0,1).
{(1yr (2 1)}z o1

Sketched proof:

It can be shown, see (@, 1990, page 173), that conditioned on (R; =
r,...,Ry = r4), S1,...,S, are mutually independent. Hence K is the sum
of conditionally independent variables S;. By theorem 2.3.1 on the preceding
page it then follows that

n
E(K|R1:T1,...,Rn:7’n ZES‘R_VI _O,
i=1
1
Var(K’Rl = rl/-../Rn = rn == ZVar Sl‘Rl = 1"1') = 5 Z(;";Z — 1)
i=1 i=1

And since K is a sum of independent variables it is possible to use the central

limit theorem” on

7 Lisi (Si—E(SiRi=1i)) _ K
Y~ Var(Si|R; = ;) (I, (2-1))2

We can’t apply the classical central limit theorem since the variances Var(S;|R; =
r;) are not equal. However, the result follows from Lindebergs central limit
theorem if the Lindeberg condition holds. In Tsai (1990) this is verified by
evaluating the stronger Lyapunov condition.

"Let X, be the average of the first n variables of a sequence of independent, identically
distributed random variables X;, X, . ... If E|X;|? < co the central limit theorem asserts that

VI (X — EX1) % N(0,varXy)
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Figure 2.4: 12000 i.i.d. S;|R; = 10 drawn from 12000 samples from the trun-
cated bivariate normal distribution TN,(0, —1,3,1,p = 0), each of
size n = 50.
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Figure 2.5: The effect when the variables are not quasi independent: The same
procedure as above only with TN,(0,—1,3,1,p = 0.7).

24



2.3.2 Testing the assumption of quasi independence with T

Using theorem 2.3.5 on page 23 we can test the hypothesis Hr : 7. = 0 versus
HY : 7. # 0. For sulfficiently large n, reject Hr whenever

K
(3oL -1

where € denotes the significance level of the test and Z,, the corresponding

IT| =

>Ze, (2.12)

normal critical value. Analogous to accepting the hypothesis p. = 0, accepting
the hypothesis 7. = 0 do not imply quasi independence between the variables
in general. And opposed to p,, there is no direct link between 7. and Hy when
the data follows a truncated bivariate normal distribution. However, this can
be a more suitable test when data do not follow a truncated bivariate normal
distribution. In chapter 5 we will see how the conditional Kendall’s tau can be
used to estimate copula parameters.

The following example illustrates that T is invariant to strictly increasing
transformations of the data.

Example 2.3.6
Table 2.3 was made by first calculating the statistics R and T using a sample
from TN>(0,—1,2,2,p = 0) of size n = 100. Afterwards, the same statistics
were calculated from the exponentially transformed data. We see that the
R statistic is not invariant for such a transformation of the data, while T is.

Table 2.3: Invariance of T

data transformed data

R -0.087 -0.437
P-value 0.465 0.331
T -0.22 -0.22
P-value 0.41 0.41
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2.3.3 Monte Carlo approximation of 1.

The calculation of 7. can be done similar to the Monte Carlo approximation of
pc. With the same notations as in section 2.2.1 on page 11 let

A A yB\(TA _ 7B
T = agsgn ((Xi - XPNTF =T, )) La,,
n
where A; = {max(T#, T?) < min(X#, XB)}, na = Y 1y, .
i=1

This is the average of the function sgn ((X; — X2)(Th — T»)) amongst the com-
parable pairs. By the strong law of large numbers we know that 7. converges
almost surely to E [sgn ((X; — X2)(Th — T2)) |A] = 7. Hence, for a sufficiently
large n, this is a good approximation of 7.. Note that 7, is not the same as the
sample conditional Kendall’s tau f.. In figure 2.6 this method is used to make a
visual inspection of the relations between the unconditional correlation and .
when (X, T) follows a truncated bivariate normal distribution. For comparison,
we include p, in the plot.

TN2(0,-1,1,1) TN2(0,0,1,1)

1.0

-0.2 00 0.2

Conditional Rho/Tau
. 0.0 .
|
Conditional Rho/Tau
0.6

! Conditional Rho ! Conditional Rho
- - - Conditional Tau - - - Conditional Tau

T T T T T T T T T T
-1.0 -05 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0

-1.0
-1.0

Unconditional Correlation Unconditional Correlation

Figure 2.6: Unconditional correlation versus p. and 7, in two different trun-
cated bivariate normal cases, where p varies from —1 to 1.
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The Product-limit estimator

In this and the two following chapters we will consider the problem of re-
constructing the distribution of (X*, T*) using data from the observed vector
(X, T) = (X*, T*|X* > T*). The focus of this chapter will be on the reconstruc-
tion of the marginal distributions F and G under the assumption that X and T
are quasi independent. For this purpose we will consider a well established
estimator known as the Product-limit estimator.

3.1 Definition and conditions

The sampling mechanism in the left truncated case will cause the distribution
of X to be centred to the right of the distribution of X*. This is natural
since the sampling mechanism removes points in the lower domain of F. The
Product-limit estimator (PLE) was derived by Lynden-Bell (1971) and is a
nonparametric MLE of F. When data are given, the PLE attempts to correct

for this bias by assigning higher weights to the smaller values of (X, ..., Xy).
A detailed discussion of the PLE weights can be found in (Stute and Wang,
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2008). In this chapter we will give a short description of this estimator based
on the work of Woodroofe (1985). However, we will define the PLE using a
quantity called the number at risk, R(-).

Definition 3.1.1: Number at risk

Given the observations (X1, T1), ..., (Xu, T) the number at risk at (x, t) is
given by

R(x,t) = il(Xi >x,T; <t), R(z)=R(z2).
i=1

In a survival analysis setting, where X is truncated lifetime, R(z) is the indi-
viduals at risk at time z (T < z) that have not yet died (X > z).

Definition 3.1.2: The Product-limit estimator

Let F and G be the distributions of X* and T* respectively. For the i.i.d.
truncated observations (X1, T1), ..., (X, T,) let

r(z) = [(X;=2z), s(z)=

n n
=1 i=1

S|
S|

I(Ti = Z).

-

Then the Product-limit estimator of F is given by
A R(X;) —r(X;)
Fpr(z) =1 - <~ , (3.1)
distirE[X,'gz R(Xl)
and the Product-limit estimate of G is

Gr(z) = T[] (W) : (3.2)

distinct T; >z

In both cases, an empty product is to be interpreted as one.

Consider the conditional likelihood of the observed data points x4, ..., x, and
t1,...,t,, written as a function of F and G:

n

Li=1] (dF(xi) dG(t)/ / /u>vdF(u) dG(v)> .

i=1
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Maximising this likelihood with respect to F and G results in the Product-limit
estimator of F and G. Such a procedure is described in Wang et al. (1986) in

the right truncation case. However, we will not study these details. Instead
we will try to derive the PLE of F under some assumptions about its properties.

Assume that there are no ties in our observations. Hence X1 < X(3),...,<
Xy and 7(X;) = 1,1 <i < n. We will assume that our estimator Fpy is a right
continuous function with jumps at Xy, ..., X, and with support on [X(l), X(n)]
so that ﬁpL(X(l)—) = 0. Similarly we assume that Gpp is a right continuous
function with jumps at Ty, ..., T, and with support on [T(l), T(n)].

When X* and T* are independent we have that

P(T<z<X)=P(T" <z<X'|X*>T") = ~G(z)(1 - F(z—)),
Xo

where ap = P(X* > T*). An estimation equation for F and G is therefore
given by

Xy ~ A .
“IR(2) = Gpu(2) (1~ Fpu(z-), (33)
which, when written in logarithm form is
X0 ~ A ~
log (;R(z)) = log (Gpr(2)) +1log (1 — Epr(z—)). (3.4)

Next, let X € (X, ..., X,) and remember that X > T for the corresponding
T € (Ty,...,Ty). This means that jumps for the functions Gpr. and Ep; will not
occur at the same points. Consequently, we have that R(X+) = R(X) — 1 and
GpL(X+) = Gpr(X). Hence, by subtracting 3.4 at X+ from 3.4 at X we get

log (%R(x)) —log (%(R(x) - 1))
= 10g<1 - ﬁpL<X—)> - log(l - ﬁpL(X»

(3.5

Since Fp; is a right continuous step function with jumps at Xj, ..., X;;, we have
that

log (1 - ﬁpL(x(i))) — log (1 - ﬁpL(x(iH)—)) , 1<i<n-1.
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As we have assumed ﬁpL(X(l)—) = 0 we get that

log (1 - PPL(X(l)—)> =log(1) =

Therefore, if we let X(,) = max(Xj ..., X,|X; < z) and sum equation 3.5 over
all X; where X; < z, we get

XZS;Z [log ((xoR(nXi)> —log <040R(X;)_1>] = log (1 - ﬁPL(X(l)—))

0

1 —log (l — Fpr (X ) + log (1 —For(Xp)— ))}
0
+ —log<1 )+10g(1—FPL(X() ))}WL---
0
+ —log (1 FPL )) +log (1 - FPL(X( )‘))} —log (1 - ﬁPL(X(a))>

0
= —log (1 — ﬁpL<X(a))) .

It follows from the definition of X, that ﬁpL(X(a)) = Fpr(z), so the above
equation becomes

log(1—Fpr(z) = — ) [IOg <“°ﬁ(Xi)> ~log <“0R(Xi)_1ﬂ

X<z n h
v (R -1
‘Xizgzlg< R(X) )
(X;) —1

which equals the definition given by equation 3.1 on page 28 when there
are no ties amongst (X, ..., X,;). Analogous procedures can be done for the
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truncating variables (Ty,...,T,) to get

A B R(T;) — 1>
GPL(Z) Tll_[>z ( R(Ti) :
Note that the definition of Fp;, given in equation 3.1 on page 28 also implies
that Fpy is supported on [X(1), X(m)]- This may seem strange since the support
of F most likely extends below X () and above X,,). However, values within the
interval [X(1), X(,)] are assigned approximately the correct mass (See figure 31
on page 36). Under the conditions given in the following theorem (following
Woodroofe (1985)), the interval [X(l), X(n)] will extend to the support of F as

n — oo,

Theorem 3.1.3: Conditions for consistent reconstructions of F and G
Put

ap = inf{x : F(x) > 0}, bp =sup{x:F(x) <1},
ac = inf{t: G(t) > 0}, bg =sup{t:G(t) <1}.

If X* and T* are independent, then Fpr is a consistent reconstruction of
F only if ag < ar. Similar, Gpy is a consistent reconstruction of G only if
be < br.

Proof: A proof can be found in (Woodroofe, 1985).

These conditions are reasonable: If ag > ar, we will never get information
about the region at which X* < a; because of the sampling mechanism. Con-
sequently, F can’t be fully recovered. Similar, if bg > br , we will never get
information about the region at which T* > br. Note that if F and G are
continuous, the conditions are G=1(0) < F~1(0) and G'(1) < F~1(1).

Originally, the Product-limit estimator is said to be applicable when X* and T*
are independent. Tsai (1990) pointed out that the asymptotic properties would
remain the same if we assume quasi independence, though he did not give
any explicit arguments of why this is so. We leave this verification open, but
point out that the estimation equation 3.3 on page 29 is valid also under the
assumption of quasi independence.
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3.2 A problematic property of the PLE

Assume that there are no ties among Xj, ..., X, so that r(X(i)) =1lfor1<i<
n. If

R(X) =1 forsomei, 1<i<mn, (3.6)

then

R(X() — (X))
R(X3)

=0, hence F(x;)=1.

The following example illustrates how this may lead to unreasonable results

Example 3.2.1
Consider the pair (x(;),t) in a sample of n pairs (x;,t;). Assume all the
other truncating variables t; in the sample are larger than x(;). Then
R(xy) = Loy I(t < xqy) = I(t < xqy) = 1, Thus

ﬁpL(X(l)) =1.
We see how important independence is since such samples are most likely

obtained when there is a positive association between X* and T*. However,
3.6 may occur in the independent case as well. Woodroofe (1985) showed that

the probability of 3.6 occurring is asymptotically negligible in the independent
case. As a precautionary measure, one should always check the values of
R(x(;)) for 1 < i < n. Hopefully, only R(x(,)) should be equal to 1. If not,
Woodroofe (1985) suggested replacing R by

R*(z) = max{R(z), nkn(2)}, 0<z < x(y,

where k; is a non-increasing function for which ky(z) > ku(x(,)) = % for all
z < X(y). In this way R*(x;) > 1for1<i<n,and R*(x(n)) 1
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3.3 Applications of the PLE

Given the Product-limit estimators of F and G we have the following nonpara-
metric maximum likelihood estimates!:

ﬁx = /_ udﬁPL(U> = Zx(i)FPL{x(i)}r (37)

o= (u—o)?dPer(u) = Y (x) — i) Frr{x )
—co i=1
) . n

ot = | (v—p)*dGpL(v) = Y (te) — ) *Creiti)

where ﬁpL{x(i)} and GpL{ t(l-)} are the Product-limit density functions given
by:

For{x()} = Fpr(x) — Frr(x(i1)), 2<i<mn
For{xa)} = Frr(x1)),
Gre{ts} = Grr(ty) — Gpr(tioyy), 2<i<n
Grr{ta)} = Grr(t)).

By using Product-limit estimates of F and G it is also possible to estimate
= P(X* > T*). First, note that

a()://u>vd1-"(u)dG(v) :/,O;U,:dc(”)] dF(u) :/w G(u) dF ().

o]

Hence the nonparametric maximum likelihood estimator of ay is

Ry = [ o:o Gpr(u) dfpr (u Z ) Epr{x}- (3.8)

IThe parameters jiy, pt, 02 and 07 denotes E(X*), E(T*), Var(X*) and Var(T*) respectively.
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3.4 Simulation result

To evaluate the performance of the PLE, two separate simulations were car-
ried out in R. The first simulation is simply a re-do of the example given in
(Woodroofe, 1985). In the second simulation the PLE is tested in the indepen-
dent truncated bivariate normal case.

3.4.1 Simulation 1: The independent uniform case

Assume X* and T* are independent and uniformly distributed on the unit
interval. Obviously, g = 1/2. The joint distribution of the truncated variables
X and T is then given by equation 2.3 on page 7:

min(t,u)
Fe(x,t) = //A(“) dF(u)dG(v)/ao :2/0%/O dodu

X
:2/ min(t,u)du:2(xt—%t2), 0<x<1 0<t<l1l x>t

0
3.9)

Note that the last equality is only valid when x > t. So marginally, since
F¢(x) = H°(x,1), we have to put t = 1 in the last integral. We then get

X
Fc(x)zz/ udu=2x%* 0<x<1,
0

hence E(X) = /01P(X >u)du = /01(1—142)du = % .

In the simulation, n = 10 pairs of (x, t) were drawn from the distribution given
in 3.9. It turned out in this case that R(x(;y) > 1 for 1 <i < n, so we did not
have to use R* in the calculation of the PLE. The result can be viewed in table
3.1. Here ﬁpL(x(i)) should be compared with x; since F(x) = x,0 < x < 1.
The sample average was X = 0.6437, which is close to E(X) = 2/3. The MLE of
the mean given by equation 3.7 on the previous page was I, = 0.5603, which
is quite close to E(X*) = 1/2. The MLE of &g given by equation 3.8 on the
preceding page was &g = 0.5925, also somewhat close to ay = 1/2. It would be
optimistic to hope for a better result when the calculation was done using only
ten data points. In fact, repetition of the simulation revealed a rather erratic
behaviour of the PLE and the resulting estimates of ap and . By increasing n
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the estimates became more accurate, supporting the consistency of the PLE.

i X(i) b R(xp) Fpo(xg)  Frofxp}
1 02575 0.2363 5 0.2000 0.2000
2 0.4087 0.1695 6 0.3333 0.1333
3 04357 0.3765 5 0.4666 0.1333
4 0.6438 0.0420 6 0.5555 0.0888
5 0.6658 0.6285 5 0.6444 0.0888
6 0.6724 0.5971 4 0.7333 0.0888
7 0.7225 0.3251 3 0.8222 0.0888
8 0.8203 0.1389 3 0.8814 0.0592
9 0.8970 0.7317 2 0.9407 0.0592

10 0.9129 0.0816 1 1.0000 0.0592

Table 3.1: Calculations of the PLE in the independent uniform case. The esti-
mated MLE of the mean and the sample average are fi, = 0.5603
and x = 0.6437.
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3.4.2 Simulation 2: The independent normal case

In this simulation, n = 100 pairs of (X, T) where drawn from a TN, (0, —1,2,2,0)
distribution. Also in this simulation, R(x(i)) >1for1 <i < n, sowedid

not need to use R* in the calculation of the PLE. A visual representation of

the estimated PLE is displayed in figure 3.1. The real distribution of X* is

included in the figure. In the interval [x(1), x(,| the PLE is quite close to the

real distribution, but the estimation error is a little larger in the lower end of

this interval. This is the penalty we receive when we assign larger weights to

the smaller values of (x1,...,xy).

By the definition of a truncated bivariate normal distribution, X* ~ N(0,2).
The MLE of the mean is fi, = 0.0534, which is quite close to EX* = 0. This
should be compared to the sample average ¥ = 0.5372. The MLE of the vari-
ance is 1.7168, also quite close to Var X* = 2. By Monte Carlo approximation,
the true value of ag is 0.6922. The MLE of & given by equation 3.8 on page 33
is 0.6763.

PLE - Normal case

Real distribution 4—”,—’
//

0.8
0.6
0.4

0.2

0.0 —'JJ

Figure 3.1: Calculation of the PLE of F in the independent, truncated bivariate
normal case TN;(0,—1,2,2,0), n = 100. Note that ﬁpL(z) = 0 for
z < x) = —21L
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3.5 The generalised inverse of the PLE

Assume that we wish to simulate from the PLE, by generating a random
variable X* with the distribution Fp;. The standard procedure is then to let
X* = F,(U) where U ~ U[0,1] and F,'(u) = inf{x : Fp.(x) > u}. In the
continuous case this is valid since

P(X <x)=P(FY(U) <x)=P(U < F(x)) = F(x).

Simulating from the generalised inverse of the PLE can be done using the
following algorithm.

e Let {x(i)}, 1 < i < n be the ordered values of the sample,
e Apply Fp; on the sequence {x@}
e Draw U ~ U[0,1] and let X* = min{x; : ﬁpL(X(i)) > U}.

Then X* is distributed according to Fpr. Note that we may only draw values
equal to values in the observed data. If we want to simulate from the condi-
tional empirical distribution F5(z) = 1/nY /" ; I(X; < z) we may simply draw
uniformly from the observed data.

Histogram of generated sample

10

O_

[ I I I 1
-4 -2 0 2 4

Figure 3.2: Histogram of 100 random variables drawn from fpr using the
algorithm described above. Fp; was made using n = 100 i.i.d.
TN>(0,-1,2,2,0).
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Maximum likelihood estimation in the
truncated bivariate normal case

For data subject to a dependent truncation the PLE is not applicable. For
such data we must model the dependence between X* and T* in some way.
For example, we can assume that (X*, T*) follows some joint distribution
function. We can then derive the conditional distribution of (X, T) and choose
parameters that fits the observed data. This can be done by using the maximum
likelihood method.

4.1 Basic properties and definitions

Let X7 = x1,..., X, = x, be i.i.d. fx(x|0), where 0 € RY and X; € R?. Then
the likelihood function is defined by

L(6) = f{fxwe»
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The maximum likelihood estimate (MLE) of 6 is the value 8 which maximises
the likelihood function, hence the name. For such estimates we have the
following result

Theorem 4.1.1
Let 8 be the MLE of 0. Then under suitable regularity conditions on fx(x|0)

0L 0.
That is, 0 is a consistent estimator of 6.

The ”suitable regularity conditions” can be found in (Casella and Berger, 1990,
page 516) for a scalar parameter. For a vector parameter 6 € R? more assump-
tions are required, but they are usually satisfied in reasonable problems.

Definition 4.1.2
The Fisher-information is defined by

aZ

1(6) = log(L(6)).

0007

The Fisher-information is a d x d matrix. When evaluated at 6 we call it the
observed Fisher-information.

Theorem 4.1.3

Assume 0 is a consistent MLE of 6. Then
1V2(8)(8 — 0) % Ny (0,1,),

where I is the identity matrix of size d.

As a result we have that for a finite sample estimate 8, sd(6;) ~ Vit where I
is the i’th element in the diagonal of I~!(8). In addition, for a sufficiently large
n, 9; is approximately normally distributed with expectation 6; and variance
I'. The following theorem provides the Fisher information of a continuous
transformation of the MLE .
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Theorem 4.1.4

For the parameter vector 6 € R? let g(0) = (81(0),...,8p(0)) be such
that the p X p matrix | with elements J;; = dg;/d0; is invertible. Then the
Fisher information of g(0) is

1(g(6)) =7 '1(6)(J")~", hence I'(g(6))=J"1""(6)].

The following theorem shows the invariance property of MLE.

Theorem 4.1.5

Assume 0 is a consistent MLE of 6. Then for a continuous function
g : R? — R? we have that

1'% (g(8)) (8(8) — 8(8)) & N4(0, ).

4.2 Estimation with a truncated dataset

Consider the model where (X1, Ty), ..., (Xy, T,) are ii.d. TNy (py, e, 02,02, 0).
The density of (X*, T*), which we want to reconstruct, is then given by

1

27t001/1 — p?
con - (52 -2 () (52) (52

and the density of (X,T) is given by equation 2.2 on page 6. Let 6 =
(px, pit,02,0%,0) and (x,t) = ((x1,t1),..., (xn,ts)). The probability of the ob-
served data (x, t) is then the likelihood function

hix, t) =

1 n

a(0)" i

L(6) = [ [h°(xi ti]0) = h(x;, ti0),
=1
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where a(6) = P(X* > T*|6). Maximising L(0) with respect to 6 is equivalent
to maximising the log likelihood function:

log(L(6)) = —nloga(6) + élog h(x;, t;]0)

= C —nlogu(0) —nlog(oyoi) — glog(l —0?)

i B () -2 () ()]

1

In this particular case a(80) can be calculated quite easy:
a=P(X*>T") =P(T"— X* < 0) = P(U < 0).
And since (X*, T*) is bivariate normal distributed it follows that
U ~ N(ps — phy, 02 + 07 — 200:0%).

Hence

oc((-))zg‘b( e Fx )
\/ 02 + 02 — 200,07

where ¢ denotes the standard normal cumulative distribution function.

The function log(L(6)) can be maximised numerically. In this optimisation it is
important to let p be constrained to the open interval (—1,1). To evaluate the
method, four samples of different size were drawn from TN,(0,—1,1,1,0.3)
with sample size n = 50,100, 200 and 500. The optimisation was done using
a Quasi-Newton method in R. The result can be viewed in table 4.1 on the
following page. We see that the estimates improve as n increase. Different sam-
ples gave of course different answers, but all were close to the real parameters
for large n. We will continue the evaluation of this method in section 4.3 on
page 43.
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Table 4.1: MLE of the parameters in a truncated bivariate normal distribution

where the real parameters are y, =0, y; = —1, (T,% =1, (ff =1 and
p =03

n=50 n=100 n=200 n=500 True value
fiy -02529 -0.0729 0.0286 -0.0128 0
fir  -1.0130 -1.0744 -0.9276 -0.9669 -1
62 1.0733 0.9505 0.9699 1.0050 1
ﬁ'tz 0.7925 09911 0.9848 1.0572 1
¢ 01202 02583 0.1741 0.2732 0.3

4.2.1 Normal linear model

A natural extension of the i.i.d. TNy (py, pt, (73%, atz, p) model, that allows some
modelling of the relationship with covariates, is to drop the identical require-
ment from the i.i.d. This can be done by modelling the means y,; and 4, as
functions of the covariates. The simplest structure of such a function is the
linear model:

Poi = 0x + Y] Bx, W= +yl B,

where y; is a vector of covariates. If we assume that (X1, T1),..., (X, T,) are
independent TNy (pyi, pii, (Tx, U't ,p) the log likelihood function becomes

log(L Zlog(x )+ Zlogh x;, :|0)

i=1

=C—) loga;(6) — nlog(oxot) — glog(l —0%)—

i=1
S L (F) ) (5 ]

z:l

where

ai(e):4>< Rt P )
\/ 02 + 07 — 2000

This model is used in section 6.7 on page 86 to investigate if the dependence
between X and T can be explained by a common covariate.
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4.3 Testing dependence using the MLE of p

It is especially interesting that theorem 4.1.3 on page 39 provides a method
for testing p = 0 versus p # 0. In the optimisation, we only need to include
the “hessian=TRUE” command in R to produce the so called observed Fisher
information matrix (). In our case, we have that sd(p) ~ v/I?> . We should
therefore reject the hypothesis p = 0 whenever

#1= |

Moreover, when (X*, T*) follows a bivariate normal distribution then rejecting

> |Z€/2|.

p = 0 is equivalent to rejecting the hypothesis of independence. Unfortunately,
there is no way of testing the assumption that (X*, T*) follows a bivariate
normal distribution with a truncated dataset. We will address this problem in
section 6.5 on page 79.

To investigate the above approximation a simulation was carried out in R.
The following routine was repeated 400 times for every fixed combination of
n = 50,100,200 and p = —0.5,0,0.5:

* 7 pairs were drawn from the truncated bivariate normal distribution
TNZ(OI _1/ 1/ 1/ P)/

155

¢ Using these n pairs, the MLEs of p and I°>> were computed.

For each fixed combination of p and n we then obtain the samples p1, ..., P00
and If5, e, 1280. We then calculate:

1 400
AVE() = 155 i:lﬁi’
AVE(I®) = - 4020155

400 = "7

i=1
400

. 1 . .
VAR(p) = 755 2 (Pi = AVE(p))?,
i1

Result

The result can be seen in table 4.2 on the next page. In all cases, AVE(p)
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is close to p. We see that AVE(I*®) is quite close to VAR(p) for n = 100 and
n = 200, indicating that the approximation sd(p) ~ v I% is not so bad. Both
quantities decreases with increasing 7, hence the accuracy of the estimates is
increasing in n. The Shapiro Wilks statistic for testing normality in the sample
of 400 p’s asserts that the assumption of normality hold when n = 100 and
n = 200, but not when n = 50. However, the computed p-values are all low,
and when we tested the normality of z; = (p — p)/V/I®®> we got a rejection in
all cases.

Table 4.2: Simulation results of ¢ from truncated samples sized n of a bivariate

normal distribution with y, =0, y; = —1, (73% =1, and 0}2 =1.
Truncated
1Y n=50 n=100 n =200 proportion
-0.5 AVE( -0.4886 -0.4983 -0.4996 0.2818

f)
VAR(p) 0.0323 0.0141  0.0054
AVE(I®) 0.0295 0.0151 0.0054
Normal p  0.0113 0.0822  0.1031

fp) 0.0051 0.0046  0.0020 0.2393
VAR(p) 0.0577 0.0224 0.0114
)

AVE(I®) 0.0476 0.0244 0.0123
Normal p  0.0421 0.0666  0.1340

0.5  AVE(p) 04972 0.4995 0.4986 0.1592
VAR(p) 0.0236 0.0120  0.0053
AVE(I®) 0.0251 0.0118  0.0058

Normal p  0.0237 0.0712  0.1022
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The main problem in this case is that p is restricted to the interval (—1,1). So if
e.g. we have that p = 0.7 the normal approximation will be very poor because
of the negative skewness (see figure 4.1 on the following page). Therefore,
consider the so-called Fisher’s z transform

—_

_|_

e

1

e

This transformation was originally proposed for the standard sample correla-
tion. Note that the domain of this function is (—oo, o0), so this transformation
will spread out the shorter tail of p. By the invariance properties of MLE,
g(p) is the MLE of g(p) so this function will also converge towards a normal
distribution. The idea is that it will do so faster than p. It follows from theorem
4.1.4 and theorem 4.1.5 on page 40 (or the Delta method) that

73’((?)—8(10)1)]\]01 where ¢ (p) =
VERE s

We can utilise this to test Hz : p = 0 versus p # 0. Reject Hz whenever

ot
(1+0)(1-p)

g(p)
Zl=|—2\W Sz 41
1Z| = | 5 Ig’(p)|‘> /2 (4.1)

where € denotes the significance level of the test and Z,,, the corresponding
normal critical value.

To see if Fisher’s z transform improves the normal approximation, we com-
puted 400 of the following quantities

=3

VI VIS g (p)]

based on 400 independent samples of size n = 100 of the truncated bivariate

qa_b-p g _ 8P) —8(p)

normal distribution with correlation 0.7. A histogram of the 400 MLEs of p
and the Fisher’s z transform of these values can be seen in figure 4.1 on the
following page. The Shapiro Wilks test produced a p-value equal to 4.764¢~%
for the normality of the 400 computed values of A, while the p-value for
the normality of the corresponding values of B was 0.3757. The statistic Z is
therefore preferable compared to Z*.
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Figure 4.1: To the left we have a histogram of 400 MLE of p based on 400 inde-
pendent samples of size n = 100 of the truncated bivariate normal
distribution with correlation 0.7, and to the right a histogram of
the Fisher’s z transformed of these values.
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Copula models for dependently
truncated data

In recent years there has been a growing interest in copulas and their appli-
cations in statistics. Copulas provide a method of describing the relationship
between a multivariate distribution function and its margins. The idea is to
form joint distributions by coupling together marginal distributions using de-
pendent uniform distributions.

We will start by giving the formal definition and some basic results about cop-

ulas. In the rest of the chapter we will consider how to model the dependency
structure in truncated data using the concept of copulas.

5.1 Basic properties and results

We will follow the notation suggested by McNeil, Frey and Embrechts in
(McNeil et al., 2005) and define a copula function C in the following way:
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Definition 5.1.1: Copula
Let C: [0,1]% — [0,1], and assume the following three properties hold

1. C(uy,...,uq)is increasing in each component ;.
2. C(1L,...,4Lu,1,...,1)=u; Vie{l,...,d}, u; €[0,1].

3. For all (ﬂl, e ,ﬂd), (bl,. . .,bd) € [0, 1]d with a; < bi we have
Yo Y (1) C g, ) > 0,
=1 =1

where ujy =ajand up =b; Vje€ {1,...,d}.

Then C is a copula.

The first property is required for any distribution function. The second prop-
erty gives uniform marginals which is the main idea of copulas. The last
property is the so called rectangle inequality which ensures non-negative
values of P(a; < Uy < by,...,a3 < Uy < by) when (U, ..., U;)T is distributed
according to C.

The following theorem states that all multivariate density functions contain
copulas.

Theorem 5.1.2: Sklar’s theorem
Let F be a joint distribution function with margins Fy, ..., F;. Then there
exists a copula C: [0,1]% — [0, 1] such that, for all x, ..., x; in R = [—o0, 0],

F(xl,...,xd) :C(Fl(xl),...,Fd(xd)). (51)

If the margins are continuous, then C is unique; otherwise C is uniquely de-
termined on Ran F; X RanF, x - - - X Ran F;, where Ran F; = F;(IR) denotes
the range of F;. Conversely, if C is a copula and Fj, . .., F; are univariate dis-
tribution functions, then the function F defined in 5.1 is a joint distribution
function with margins F, ..., F;.

Proof: A proof can be found in (Nelsen, 1999, page 18).
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The converse statement of Sklar’s theorem tells us that we can construct multi-
variate distributions using a copula and arbitrary marginal distributions. Such
a distribution is often called meta distribution.

Before we continue with the definition of Archimedean copulas, we need
to define the pseudo-inverse.

Definition 5.1.3: Pseudo-inverse
Let ¢ : [0,1] — [0, c0] be a continuous, strictly decreasing function such that
¢(1) = 0. The pseudo-inverse of ¢ is the function ¢!~1 with Dom ¢!~ =
[0, 0] and Ran ¢l~1 = [0, 1] given by
S = { ¢70), 0<E<9(0) 52
0, $(0) <t < 0.

The following theorem provides a method for constructing 2-dimensional
copulas:

Theorem 5.1.4: Archimedian Copulas
Let ¢ : [0,1] — [0, c0] be a continuous, strictly decreasing function such that
¢(1) = 0 and let ¢! U be the pseudo-inverse of ¢ defined by equation 5.2.
Let the function C : [0,1]*> — [0, 1] be given by

Clur,u2) = ¢ (P(u1) + p(u2)). (5.3)

Then the function C is a copula if and only if ¢ is convex.

Proof: A proof can be found in (Nelsen, 1999, page 91).

The function ¢ is often called the generator of the copula and a copula con-
structed in this way is called an Archimedean copula. Table 5.1 on the following
page list the three generators which we will use in chapter 6. For variables
following a meta distribution constructed with an Archimedean copula there
is a special relation between Kendall’s tau and the generator function. This
relation is formulated in the following theorem:
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Theorem 5.1.5
Let X and T be random variables following a meta distribution with an
Archimedean copula C generated by ¢. Then Kendall’s tau for X and T is

given by:
1
T:1+4/
0

o(t)
50 dt. (5.4)

Proof: A proof can be found in (Nelsen, 1999, page 130).

Copula Generator ¢(t) T 0 €
Gumbel (—Int)® 1-1/6 [1,00)
Clayton S0 —1) 6/(60+2) [—1,00) \ {0}

o6t _
Frank — 1n<8797_11> 1-4071(1 - Di(f)) (—o0,00)\ {0}

Table 5.1: Table summarising the generators, the relation between Kendall’s
tau and the copula parameter, and permissible parameter values for
the Archimedean copulas Gumbel, Clayton and Frank. D;(6) is the

Debye function D;(6) = 0! f09 t/(exp(t) —1)dt.

5.1.1 Simulating from meta distributions

In R, the package “copula” provides a series of tools when dealing with
copulas. In particular, it features simulations from the most common copulas
such as the Gaussian and Archimedean copulas. It is also possible to simulate
from meta distributions, but only for a few kinds of marginal distributions.
Assume we want to simulate from the meta distribution

F(xl,. . .,xd) = C(Fl(xl)/- . ~/Fd(xd))/

and we know how to simulate from C. We can then use the following proce-
dure:
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1. Simulate U = (Uy, ..., Uy) from C.
2. Let X;=F (W), 1<i<d.
Then X = (Xj,...,Xy) is distributed according to the meta distribution:
P(X1 <x1,...,X1 <x5) =P(F, ' (W) < x,..., E;H(Ug) < xq)
P(U; < Fi(x1),...,U; < Fi(xy))
C(Fi(x1), ..., Fa(xa))

5.2 Maximum likelihood based estimation

Let us assume the distribution of the unconditional vector (X*, T*) is given by
the meta distribution

H(x,t) := C (F(x),G(t)), (5.5)

where C is an arbitrary copula, and F and G are arbitrary distribution functions.
The corresponding density function is then given by

e t) = 50 H(x 1) = ¢ (F(x), G(0) f(x)g(0),

where ¢ denotes the copula density function, and f and g are the density
functions of F and G, respectively. According to equation 2.2 on page 6 the
conditional density function of (X, T) = (X*, T*|X* > T*) is

. { (), GO Wg(B)/w, x>, 56

0, otherwise,

where
a=P(X*>T") = // c(F(1),G(0))f(1)g(v) du do.
u>v
Assume that (X1, Th) = (x1,f1),..., (Xu, T) = (x4, t,) are ii.d. according to

equation 5.6. For simplicity let 6 denote the unknown parameters specifying
the copula and the marginals and let (x,t) = ((x1,t1),..., (xn, tn)). We then
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obtain the following log likelihood function:

n

log(L(6)) = —nloga(6) + ) _logh(x;,1]6)

i=1

= —nloga(6) + élog c(F(x;|0),G(t:]0)]0)

+

n n
log f(i]0) + ) log g(t]0).
i=1 i=1

In this setting, the traditional separation of first fitting the marginals and then
the copula is not possible. This is because «(0) depends on both the copula pa-
rameter and the parameters of the marginals. This means we have to optimise
the log likelihood directly. The difficult part of optimising this likelihood is the
computation of «(0). The available package on multidimensional integration
in R did not work properly for varying parameters. The other option was
Monte Carlo integration:

1. Simulate (X5, Ty), ..., (X}, T{) according to 5.5 for each set of parameters
0.

2. Let
1 - 3k *
a(0) = Ecard{z]Xi > T/}

In the optimisation we let k = 1 000 000.

However, including a simulation in a function subject to optimisation will in
general be problematic. Such a function is not deterministic and the maximum
of the function will vary for every simulation, though not necessarily by much.
There are two solutions to this problem, one good and one bad.

A bad solution is to lower the convergence tolerance so that the iterations in
the optimisation stop when the function is “close” to its maximum.

A good solution is to fix the seed which R uses to generate random numbers.
The simulation is then deterministic for varying parameters causing the func-
tion to be deterministic. In addition, to make the optimisation more efficient,
one should choose reasonable initial values. When we have normal marginals,
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natural initial values for u, and y; are the empirical means ¥ and f, while the
empirical variance s2 and s? are natural initial values for 02 and ¢?. A simple,
but somewhat ad hoc way of choosing initial values for 6, is to choose 6 so
that the right side of equation 5.4 on page 50 equals the sample Kendall’s tau.
This is a bad estimate of 6, but will work fine as an initial value.

5.2.1 Performance of the optimisation

Due to the Monte Carlo integration, the optimisation became rather time
consuming. We also had to increase the default convergence tolerance and
increase the total number of iterations allowed, to make the optimisation work.

Based on 100 independent truncated samples of size n = 100 from the Clay-
ton copula with parameter 6 and with normal marginals we computed 100
estimates of the parameters (jiy, jit, 0',%, (th, 6). The true parameter values were
set to (0,—1,1,1,3). We then computed the sample average and the sample
variance of these estimates denoted AVE(-) and VAR(-), respectively. This
routine was repeated, but with the exponential marginals F(x) =1 —e¢~** and
G(t) = 1 — e P In this case the true parameter values of (a, B, 0) were set to
(05,1,2).

The result can be seen in table 5.2. In all cases, AVE(-) is close to the real

parameter value suggesting that the optimisation works. Compared to the
marginal parameters, the variance amongst the estimates of 6 is larger.

Table 5.2: Simulation result.

Ha e & o7 0

Normal AVE(-) -0.0055 -1.0023 0.9742 0.9787 3.0062
marginals VAR(-) 0.0106 0.0123 0.0153 0.0208 0.3202

« B 6

exponential AVE(-) 05074 1.0281 2.0911
marginals VAR(-) 0.0029 0.0168 0.1981
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5.3 Estimation based on the conditional Kendall’s tau
and the copula-graphic estimator

The goal of the following analysis is to estimate the copula parameter in
an Archimedean family and the marginal distributions, without making any
parametric assumptions about the marginal distributions. Such an estimation
procedure was proposed by Lakhal Chaieb et al. (2006) and is an application

of the conditional Kendall’s tau and the copula-graphic estimators.

5.3.1 Model and assumptions

As for the MLE estimation we will assume that (X*, T*) is distributed accord-
ing to a meta distribution. However, for this method it is convenient to write
the joint distribution of (X*, T*) as

P(X* > x, T* < t) = C*(S(x), G(t)). (5.7)

Where F(x) =1 — S(x) and G(t) are the marginal distributions of X* and T*,
respectively, and C* is a copula function which we will call the semisurvival
copula. Care should be taken not to confuse C* with the copula C that we try

to estimate in section 5.2 on page 51. If we assume that the relations given by
5.5 and 5.7 both hold we have

C*(S(x), G(1))

(X*>x,T"<t)

t) — H(x,t)

t) = C(F(x), G(1))
t) = C(1-5(x),G(1)),

hence the relation between C and C* is given by C*(u,v) = v — C(1 —u,v).

P
G(
G(
G(

When the joint distribution of (X*, T*) is given by 5.7, the conditional distribu-
tion of (X, T) = (X*, T*|X* > T*) can be written as

n(x,t) =P(X >x,T<t)=C"(S(x),G(t))/a, x > t, (5.8)
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where
«=P(X* > T) = //u>vc*(5(u),G(v))f(u)g(v) du do,

and c* is the copula density corresponding to C*. Note that 5.8 is valid since

x > t implies that
P(X*>x,T" <t,X*">T")=P(X">x,T" <t)=C"(Sx(x),G(t)).

For this estimation procedure we will only consider semisurvival copulas
which are members of the Archimedean family. Hence

m(x,t) = ¢ p{S(x)} + p{G(t)}]/a, x>, (5.9)

where ¢ is a non-increasing convex function defined on [0, 1], with ¢(1) = 0.
We will only consider generator functions with one parameter denoted by 6.

It is assumed that for some ty > xo"
G(JCQ) >0, S(XQ) =1, G(to) =1, and S(to) > 0.

In (Lakhal Chaieb et al., 2006), these conditions are used to derive the asymp-

totic theory of the estimation procedure we will describe in the following
sections. However, we will not study these details.

5.3.2 The copula-graphic estimator

The motivation for using the semisurvival copula is that for points (x,f)
satisfying x > t we have that {(X*, T*)|X* > x, T* < t} C (X, T). So when we
observe i.i.d pairs (X1, T1),..., (Xy, T,) from the observable region (X, T) we
have the following empirical estimate of 7r(x,t):

R(x,t)

Al t) = =2, (5.10)

1Lakhal Chaieb et al. (2006) write their article in a survival analysis setting and thus only con-
sider positive defined variables. However, we see no reason why this estimation procedure
can’t be applied to variables which can take on negative values as well.
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where R(-) is the “number at risk” function given by definition 3.1.1 on
page 28:

n
R(x,t) =) I(X; > x,T; <t).
i=1
Lakhal Chaieb et al. (2006) utilise this estimate of 71(x,t) to derive semi-
parametric estimates of S and G. These estimators are known as the copula-

graphic estimators. We will start by giving the definition.

Definition 5.3.1: The copula-graphic estimator
Assume that (X1, Ty),..., (Xy, T,) are i.i.d. according to 5.9 and let R(z) =
R(z,z). Given the copula parameter 6 and « = P(X* > T*) we define the
copula-graphic estimators of S and G as

gb(ocR(Xi) - 1)

Xl'SZ

Sce(z) = fPl{ )y

Gee(z) = 4’_1{ )

Ti>z

o PN o B ] en

In both cases, an empty sum is to be interpreted as 0.

For the independent copula the generator function is ¢(t) = —log(t), hence
¢~ 1(t) = e~!. We therefore get
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This shows that the copula-graphic estimator of F reduces to the Product-limit
estimator in the independent case. The derivation of the copula-graphic es-
timator is also very similar to the derivation of the Product-limit estimator
which was done in section 3.1 on page 27.

Let us for the time being assume that the copula parameter 6 is known and
that we observe i.i.d. pairs (X1, T1),...,(Xy, T,) from the observable region
(X, T). If we let x = t = z, and put the empirical estimate of 77(x, t) given by
equation 5.10 on page 55 equal to the model given in 5.9, we get the following
estimating equation for G and S

a—2 =¢ o (Scc(z—)) + ¢ (G(z2))]. (5.13)

Similar to the derivation of the PLE, we postulate some properties about
Scc and Geg. Assume that Scg is a decreasing right-continuous function
with jumps at Xi, ..., X, and that G¢¢ is an increasing right-continuous func-
tion with jumps at Ty, ..., T,,. In addition, assume that Scc is supported on
[X(1), X(n)] s0 that Scg(X()—) = 1. Applying ¢ on both sides of 5.13 yields

R Z A A
o (:52) = p (e + 0 (C). 619
Next, let X € (X, ..., X,) and remember that X > T for the corresponding
T € (Ty,...,Ty). This means that jumps for the functions Geg and Scg will
not occur at the same points. Consequently, we have that R(X+) = R(X) — 1
and GpL(X—i—) = GpL(X). By subtracting 5.14 at X+ from 5.14 at X we get

¢ (Sca(X=)) = ¢ (Sca(X)) = ¢ («xR(X)) -9 (ocR(X,z_1> . (1)

n

Since Sc¢ is a right continuous step function with jumps at Xy, ..., X,, we
have that
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where as before, X(l), el X(n) is the ordered values of X, ..., X,,. As we have
assumed §CG(X(1)—) =1, we get that,

¢ <9CG(X(1)—)> = ¢(1) =0.

Therefore, if we let X(,) = max(X; ..., X,|X; < z) and sum equation 5.15 over
all X; where X; < z, we get

¢ (“ﬁ(nXi)> —¢ (“Ro(;)_l)] =¢ (§CG<X(1)_))

It follows from the definition of X, that §Cg(X(a)) = Scc(z), so the above
equation becomes

¢ (Scc(z)) = Z[cp <,XR(X1')> _4)(“1?(&)—1)}

n n

i

- L (S5 e (K]

Analogous procedures can be done for the truncating variables Ty, ..., T, to

get
0 E BT o (B

Applying ¢! on 5.16 and 5.17 leads to the definition of the copula-graphic
estimators of S and G.

(5.16)

The copula-graphic estimators of S and G also provides an estimation equation
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for a. If we plug 5.16 and 5.17 into 5.14 we get the following equation
R(Xi)
AU

(g
X;<z n

E D) oA ()

Ti>z

In particular, we can choose z = T, so the equation simplifies to

Hy(a,0)= ) [cp (aR(nXi)> —¢ (zxﬁ(xg_l)] +¢ (txﬁ(]};(n))> =0.

X,‘<T(n)

In practice we do not know the copula parameter so we need a second estimat-
ing equation to estimate & and 6 . To obtain a second equation we will revisit
the conditional Kendall’s tau and consider its relation to a generalised cross
ratio function.

5.3.3 The cross-ratio function and its relation to conditional Kendall’s
tau

Oakes (1989) describes a measure of local dependence called the cross-ratio
function, which can be used in this setting. A local dependence at (x, t) between
X and T is then defined, for x > ¢, as

) _ 71(x,t)D1Dyr(x, t)
P (x,t) = Dy7t(x, t)Dyrt(x, t)

d d
where the operators D; and D, are given by Dy = o and D; = 5
In section A.4 on page 97 we show that the cross-ratio can be rewritten

as

P{(X1 — Xz)(Tl — Tz) < 0|X1,7_ =X, T1,2 = t}
P{(X1 — Xz)(T1 — TZ) > 0|X1,2 =X, T1,2 = t} ’

Pr(x t) = (5.18)

where (X1, T1) and (X3, T) are independently distributed as 5.8 and

XLZ = mil’l(Xl,Xz), Tl,Z = max(Tl, Tz)
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From 5.18 we see that ¢* is the ratio between the probability of discordance
and the probability of concordance, given that X1, = x and T;, = t. Hence
Pp*(x,t) < 1 indicates a positive association at (x,t) while ¢*(x,t) > 1 indi-
cates a negative association at (x, t). Note that ¥ (x, f) is only defined when
x > t, since 7t(x, t) is only defined when x > t. Consequently, the pairs (X1, T;)
and (Xp, T,) are comparable when we condition on X, = x and Ty, = t. If
we assume that X and T are quasi independent, then ¢*(x,¢) = 1.

The following theorem states that if 77(x,t) is Archimedean, then ¢* can
be expressed in terms of the generator function ¢.
Theorem 5.3.2

Suppose that 77(x,t) is Archimedean so that 5.9 holds. Then ¢*(x,t)
depends on x and ¢t only through v = am(x, ) with

Pr(x ) =9(0) = —7 =

Proof: A proof analogous to this case can be found in (Oakes, 1989, page 488).

For the independent copula the generator function is ¢(t) = —log(t). So when
m(x,t) = Sx(x)G(t), theorem 5.3.2 states that ¥(v) = 1.

Theorem 5.3.3
Suppose that 77(x,t) is Archimedean so that 5.9 holds. Then we have
the following relation between the cross-ratio function and conditional
Kendall’s tau:

1-— 1[]{0(7'[(5(1/2, Tl,Z)}

= A
1+ 1!J{DC7T(X1/2, Tl,Z)}

TC ==

7

where A = {T;, < X31,} .

Proof: For simplicity let

a= P{(X1 — Xz)(T1 — Tz) > 0|X1,2 =X, Tl,Z = t},
b= P{(X1 — Xz)(Tl — Tz) < 0‘5(1/2 =X, TLZ = t}.
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Assume that X and T are continuous variables. We may then ignore the
possibility of ties so that a +b =

1. Then 5.18 and theorem 5.3.2 on the
preceding page implies that

—¢{am(x,t)} a—-b

Trplano D) agp  Cesn(X—=X)(h -

T2)|XL2 =X, Tl,Z = t]

Again, note that we only consider points (x,t) where x > t so Xl,z = x and
Tip =t imply that A = {T;, < Xj,}. Consequently, we have that
o a1 —ylan(xt)}
E[Sgl’l(Xl Xz)(Tl T2)|A, XLQ = X, T1,2 = t] = 1 T lP{DUT(X, t)} .

In the proof of theorem 2.3.2 on page 20 we showed that 7. could be written as
T. = E[sgn(X; — X2)(T1 — T2)|A]. Using this definition and conditioning on
Xl,Z and Tl,z we get

= E[sgn(X; — X2)(T1 — T2)| 4]
= E[E[sgn(Xq — Xo)(Th —

T2)|A, X12, T o) | A
A] .

5.3.4 Estimating the copula parameter using the conditional
Kendall’s tau

1—¢{an(X10,T12)}
1+ ¢v{an(X10,T12)}

unl

Let (X1, T1),...,(Xn, Ty) be iid. random vectors following 5.8. In view of

theorem 5.3.3 on the preceding page and equation 5.10 on page?S an estimate
of 7, is given by

PLaR (R Ty) /)
- kzlqzlwwzfc o)/} 1

where X;; = min(X;, X;), T;; = max(T;, Tj), 1

ij = K{T;; > X;;} and k =
Y.Y.i<j Lij. The second estimating equation is then obtained by setting 7. equal

to the sample conditional Kendall’s tau, f., given by equation 2.11 on page 21

p{aR(X;;, T, )/n}
kZIZ<JZ:1+l/J{0cR X, Tij)/n} Lj = kZZSgn (Xi = X))(Ti — T)) I -

i<j
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62

This equation is equivalent to

_ ey L p{aR(Xi, Tij) /n}
P= Lo XTI (R, >/n}]l
1
= X[ X0 T > 0 e /n}] 5
W{aR(X;;, T;;)/n}
LR pfaR (R, 1y~ OG- X)E ) <00

When %, # 0, the solution (&, §) must be such that the last two sums both equal

0. We can therefore choose either one of these sums as a second estimating
equation. We will follow Lakhal Chaieb et al. (2006) and use

Hz(Dé,G)
ST

i<j

H{(X; — X;)(T; = T;) > 0} —

—_

i L;=0,
1+l/J{IXR(X1',]', T,',j)/n}] J

as the second estimating equation. The estimates & and @ are therefore obtained

by solving



5.3.5 Estimating procedure for the Frank and Clayton Copulas

Before we can proceed with an evaluation of the estimation procedure dis-
cussed in the previous sections we need to know how to simulate from a meta
distribution on the form:

P(X >x,T <t)=C*(S(x),G(t)) = C*(1 — F(x),G(t)).

If we know how to simulate from C* we can do the following procedure:
1. Simulate (U, V) from C*.
2. LetX=F1(1-U), T=G V).

Then (X, T) will be distributed according to C*(S(x)

<
[
Y
—
N—
S—

P(X>x,T<t)=P(F'1-U)>xG V)<t
=P(1-U>F(x),V<G())
=P(U<1-F(x),V<G(t))

c* (

(1—F(x),G(t)).

Let us considered the case where C* is the Frank’s copula, but with a small
modification of the generator ¢:

1— ¢ , 0.0t " 920t
o(t) = log ((1 S 0= =g 60

The only change from the standard generator function is —6 — 6. For this
parametrisation we have that positive values of 6 corresponds to a positive
dependence between X and T. According to theorem 5.3.2 on page 60 the
cross-ratio function can be written as

—v¢" (v) LY
P'(v) e —1"

p(v) =
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For this cross-ratio function the estimation equation H(«, 0) becomes

Fio(a,0) = - T 3| H(X; — X)(T; = ;) > 0}
i<j
exp{adR(X;; T;;)/n}

— — — I; =0.
IXQR(XI‘,]', Ti,]') + exp{chR(Xilj, Ti,]')/n} —1("Y

Note that Hy(«,0) only depends on « and 6 through 7y = af. An estimation
procedure can then be given by

1. Solve Hy(a,0) = Hp(y) = 0 to obtain 7.
2. Solve Hy(«,4/a) = 0 to obtain &.
3. Let§ = /4.

In figure 5.1 on the next page the copula-graphic estimator is plotted against
the true marginal distribution. The estimation is based on a sample of size
n = 100, simulated from the frank copula with different types of marginals.
For comparison we included the PLE.

We see that the copula-graphic estimator performes significantly better as
an estimator of the marginal distribution than the PLE. Notice how the PLE
underestimates when 6 = —5 and overestimates when 6 = 5. For the chosen
parametrisation of the Frank copula these values correspond to negative and
positive dependence, respectively.
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Figure 5.1: Copula-graphic estimator of F(x) based on a sample of size n = 100,
simulated from the Frank copula with parameter § = 5, —5 and
with varying marginals.
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For the Clayton copula the generator function is given by

"

o(t) =5t =1), ¢()=—+"1, ¢'(1)=(6+ 1) .

| =

The cross-ratio function is therefore given by

¢(v)zwze+1.

For this cross-ratio function the estimation equation H(«, 0) becomes

HQ([X,Q) = %ZZ I{(Xl — X])(Tl — T]) > 0} — 01_'_2 Il']‘ =0.

i<j

Here H(«, ) is completely independent of «a so solving Hp(«,6) = Hy(0) =0
gives us §. Then & can be obtained by solving Hj(a,8) = 0. In figure 5.2 the
copula-graphic estimator is plotted against the true marginal distribution. The
estimation is based on a sample of size n = 100, simulated from the Frank
copula with normal and exponential marginals.

theta=-0.5, X*~exp(0.5), T*~exp(1) theta=-0.5, X*~N(1,1), T*~N(0,1)
X 7 ) ,/
© . o )
d
© — /’ © )
o / 1 o
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Lo < / (TR < /
(=} / S /
f "
N / o~ A
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i - - - Copula—graphic ..+ --- Copula-graphic
o |7 PLE o |~ PLE
e T T T T T T T T © T T T T T
0 1 2 3 4 5 6 7 -1 0 1 2 3
X X

Figure 5.2: Copula-graphic estimator of F(x) based on a sample of size n = 100,
simulated from the Clayton copula with parameter § = —0.5 and
with varying marginals.
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5.3.6 Simulation

To evaluate the precision of this estimation procedure a simulation was car-
ried out in R. The following routine was repeated 100 times for every fixed
combination of n = 100,300 and 8 = 2,5:

* 1 truncated pairs were drawn from 7t(x,t) = C*(S(x), G(t))/a with C*
as the Frank’s copula with parameter 6 and with marginals S(x) = e 2¥
and G(t) =1—¢".

e From these 7 pairs, § and & were computed using the described method.
These estimates where then used in the copula-graphic estimator of
Scc to compute Sci(q1), Scc(g2), Scc(gs) and Scg(q4). Where g1, go,
g3 and g4 are quantiles in the exp(1/2) distribution corresponding to
S(q1) = 0.2, S(g2) =04, S(g3) = 0.6 and S(g4) = 0.8

Let A represent the parameters 6,«,S(q1),5(42),5(g3) and S(q4), and let A,
represent estimate number i. We then calculated:

1 100 . 1 100 .
AVE(M)=—Y"A;,  VAR*(A) = (A —A)2

100 =~

Note that VAR*(-) is the estimation error and not the sample variance. By
Monte Carlo integration, 6 = 2 and 5 corresponds to a = 0.7052 and 0.7725.
In all cases, AVE(A) is close to the true value suggesting that the estimation
procedure works. In most cases the estimators improved when n was increased
from 100 to 300. When we increased 6, which is equivalent to increasing
the dependence between X and T, there was a reduction in the estimation
error. Remember that this also happened in our simulation of the sample
conditional product-moment correlation coefficient .. This change increases
the value of « and thus reduces the truncated propotion. Consequently, the n
we observe represents a larger proportion of the original N, which will result
in better estimates. Also notice that VAR* ((S(g;)) increase when i increases,
thus the copula-graphic estimator and the PLE share the property of larger
estimation error in the lower domain of F. A similar simulation was carried
out by Lakhal Chaieb et al. (2006) with similar results.
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Table 5.3: Simulation results.

0, «

n=100

n=300

2,0.7052

5,0.7725

0.6893
1.8816
0.1927
0.3912
0.5901
0.7873

0.0170
1.3406
0.0027
0.0065
0.0105
0.0109

0.7563
4.9732
0.1958
0.3936
0.5910
0.7997

0.0079
1.5025
0.0023
0.0037
0.0030
0.0033

0.6920
1.9422
0.1956
0.3934
0.5890
0.7893

0.0053
0.4320
0.0007
0.0021
0.0034
0.0037

0.7629
4.9670
0.1971
0.3950
0.5954
0.7975

0.0025
0.4591
0.0005
0.0012
0.0013
0.0014




Analysing the dependence between
deductibles and claim sizes in shipping
data

We will now consider twodimensional data where the variable of interest is
the claim size and the truncating variable is the deductible of insured ships.
These data are subject to the truncating sampling mechanism since we do not
observe claims smaller than the corresponding deductible.

6.1 About the data

The ships are divided into the four categories: Cargo-, Bulk-, Container- and
Tankships. All the ships in our analysis have reported a claim larger than the
corresponding deductible. Even though many of the ships are given the same
deductible, we will treat this quantity as a random variable.
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It is in the insurance companies interest to estimate claims based on dif-
ferent covariates like age, engine type and total sum insured. The total sum
insured plays an important role in our analysis of the data. We will denote
this quantity by z. Within the four categories there is a wide range in the
total sum insured. Therefore, to obtain an i.i.d. model, the claim size and
deductible are divided by total sum insured. In this way we can compare
ships of different value. Because of a rather large difference between the stan-
dardised deductibles and claim sizes we will consider the log transformed data.

To formalise, let (X;,T{),..., (X,;, T,;) denote the original claim sizes and
deductibles and let z;,...,z, denote the corresponding total sum insured.
Then the variables subject to our analysis are given by

! /

X T.
Xizlogj and E:logj, 1<i<n. (6.1)
1 1

Note that X;. > Ti' imply X; > T;, so the sampling mechanism is the same
for these variables. A summary of these quantities for the dataset Cargo can
be seen in table 6.1. Notice how the transformation given above reduces the

differences between the size of X and T.

Table 6.1: Summary of (X', T'), (X, T) and z for the dataset Cargo.
Min. 1stQu. Median Mean  3rd Qu. Max.

X 89000 174177 248420 448071 477760 8871006
T 37450 75000 100000 134267 150000 500000
z 2450000 6300000 10880000 13790000 18000000 51400000
X 57194 -4.1696 -3.6626 -3.5607 -2.9552 -0.8853
T -6.7806 -5.0752 -4.7444 -4.5633 -4.0279 -2.4850
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6.2 Testing the assumption of quasi independence

In view of equation 6.1 on the facing page, we have reason to believe that X is
positively related to T since both variables depend on the value of total sum
insured. Since we suspect a positive dependency structure we will consider
the following assumptions:

1. Hg : p. = 0 against p. > 0.
2. Hr : 1. = 0 against 7. > 0.
3. Hz : p = 0 against p > 0.

We put the significance level at 5%.

The two first assumptions can be properly tested by means of the statis-
tics R and T given by equation 2.10 on page 16 and equation 2.12 on page 25,
respectively. In section 6.5 on page 79 we will see that the truncated bivariate
normal distribution fits the data relatively well, which is an indication that
(X*,T*) may be bivariate normally distributed. This means that the third
assumption may be tested by the statistic Z given by equation 4.1 on page 45.

For each dataset we computed the test statistics R, T and Z and the cor-
responding p-values. Note that the 5% critical value for these test statistics
is 1.6448. The result can be seen in table 6.2. For the datasets Cargo, Bulk
and Container, all three assumptions are rejected. For the dataset Tank we
reject Hr but not Hg and Hy. Since (X, T) may follow the truncated bivariate
normal distribution, a rejection of Hy is a strong indication that the data are
not quasi independent. We conclude that X and T are most likely not quasi
independent in the datasets Cargo, Bulk and Container, while the assumption
of quasi independence is questionable in the dataset Tank.

Table 6.2: Test results.

R T Z p-value(Hg) p-value(Hr) p-value(Hz)
Cargo 2.1254 3.3078  4.1906 0.0167 0.0005 1.39e-05
Bulk 3.3138 3.4707 3.5733 0.0004 0.0003 0.0002
Container 7.4520 6.9828 10.6086 4e-14 1e-12 0
Tank 1.2134 2.7565  1.5209 0.1124 0.0029 0.0641

71



6.3

Reconstruction of the joint distribution

We will now try to reconstruct the unconditional joint distribution of the

claim size and the deductible. For this purpose we will consider the following

models:

1.

72

SE - Sample Estimates

For comparison we include the sample mean and variance of x1, ..., x,
and t4,...,t,, and the sample correlation between them. Because of the
sampling mechanism we expect X to overestimate y, and f to underesti-
mate ;. Hopefully, the other methods considered will adjust their means
compared to these estimates.

PLE - The Product-limit estimator

We know that X and T are probably not quasi independent in the datasets
Cargo, Bulk and Container, so the PLE is not recommendable for these
datasets. Still, we include the estimated parameters for comparison. The
assumption of quasi independence may hold in the dataset Tank, so the
PLE may be applicable for this dataset.

TBN - MLE assuming the data are Truncated Bivariate Normal dis-
tributed

The first pure parametric candidate. A scatterplot from a truncated bi-
variate normal distribution should resemble an ellipse with the part
X < T "cut oft”. Figure B.1 on page 100 do in fact exhibit this charac-
teristics of the truncated bivariate distribution, so this is a promising
parametrisation.

Copula - MLE assuming the data follows a truncated meta distribution
With this model we can try to fit different types of dependency structures.
In section 6.4 on page 75 we will argue that normal marginals is a good
choice for these datasets. The considered models can be seen in table 6.3
on the facing page.

CGE - Copula graphic estimator

Using the procedure described in section 5.3 on page 54 we can estimate
the parameters a and 6. This is done under the assumption that C* is the
modified Frank copula given by equation 5.20 on page 63 .



Table 6.3
Copula Marginal F  Marginal G

Copulal Clayton Normal Normal
Copula2 Frank Normal Normal
Copula3 Gumbel Normal Normal

For the parametric distributions Copulal, Copula2 and Copula3 we also
computed Monte Carlo estimates of a. The estimated parameters for the
different models can be found in table 6.4 on the next page.

6.3.1 Results

As we expected, compared to the SE all the other methods gives a smaller
estimate of y, and a larger estimate of ;. The TBN method gives a smaller
estimate of p than the SE. For the datasets Cargo, Bulk and Container the
PLE gives quite different estimates compared to the other methods, while for
the dataset Tank the PLE estimates are somewhat closer to the others. This
is reasonable since the assumption of quasi independence may hold for this
dataset. This is also reflected when we try to fit a meta distribution to this
dataset using the Gumbel copula: The optimisation tends towards the “illegal”
copula parameter 6 = 1, so no parameter estimates are reported for this model.
When 6 — 1 in Gumbel copula we get the independence copula.

Because of the results in section 6.2 on page 71 we do not recommend the PLE
for these datasets. To proceed with the CGE model, we would have to know
if the selected Archimedean copula fits the data. This problem is addressed
by Beaudoin and Lakhal-Chaieb (2008), but the topic is not covered in in this
thesis. We will therefore proceed with an evaluation of the fit of the pure

parametric models TBN, Copulal, Copula2 and Copula3. In the following
section we will evaluate the marginal fit of these models. In section 6.5 on
page 79 we will evaluate the joint fit of these models.
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Table 6.4: Estimated parameters

Model Jy 1t i o? 0 0 o
Cargo

SE -3.5607 -4.5629 0.90106 0.8303 0.7295 NA NA

PLE -45372 -27780 1.0286 0.2345 NA NA 0.0721

TBN -3.8224 -4.3698 1.0455 0.9066 0.5291 NA 0.7154

Copulal -3.6199 -4.3766 0.9037 1.0809 NA 14131 0.8007

Copula2 -3.6888 -4.4706 1.0382 0.9698 NA 5.7277 0.8438

Copula3 -3.9991 -4.3842 1.2163 0.8306 NA 14207 0.6547

CGE NA NA NA NA NA 3.8780 0.6828
Bulk

SE -3.6604 -4.8383 0.7958 0.4250 0.5506 NA NA

PLE -4.1311 -3.9287 0.9632 0.1866 NA NA 0.4089

TBN -39570 -4.7729 1.0776 0.4365 0.3722 NA 0.7922

Copulal -3.8245 -4.7693 0.9192 0.5024 NA 0.8351 0.8628

Copula2 -39337 -4.7887  1.0413 0.4519 NA 27953 0.8066

Copula3 -4.1711 -4.7016 1.3279 0.4421 NA 1.1094 0.6710

CGE NA NA NA NA NA 23918 0.8444

Container

SE -3.8240 -4.9982 0.9824 0.6924 0.7760 NA NA

PLE -4.3958 -3.4928 0.8860 0.4816 NA NA 0.1836

TBN -3.9073 -49855 1.0618 0.6907 0.7280 NA 0.9354

Copulal -3.8476 -4.8800 1.0664 0.8174 NA 1.7851 0.9147

Copula2 -3.8888 -4.9459 1.0723 0.7169 NA 6.2805 0.9250

Copula3 -3.9848 -4.9901 1.2083 0.7233 NA 1.8561 0.8872

CGE NA NA NA NA NA 5.1417 0.8853
Tank

SE -39651 -5.1648 0.7709 0.3084 0.3968 NA NA

PLE -4.2455 -45011 0.7369 0.2427 NA NA 0.5698

TBN -44778 -5.0628 1.2814 0.3276 0.1401 NA 0.6882

Copulal -42983 -5.0841 1.0753 0.3587 NA 03051 0.7690

Copula2 -4.3040 -5.0810 1.1149 0.3294 NA 1.1247 0.7641

Copula3 NA NA NA NA NA NA NA

CGE NA NA NA NA NA 1.4002 0.8564
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6.4 Monte Carlo estimated aQ-plots for truncated data

For a random variable X with distribution function F we define the g-quantile
of F as

my(F) = inf{x : F(x) > q}.

Assume we observe ii.d. Xi,..., X, from an unknown distribution and we
want to check if the data follows a specific distribution F. Let £, denote the
empirical distribution function, i.e. F,(x) = 1/n Y%, I(X; < x) . Then a visual
inspection can be done with the Q@-plot given by

(114(F), 7tg(En)),

where a straight line is an indication that F fits the data. Since ﬁq(ﬁn) =
X (min{izq< i) the points of the plot are given by

(F'(i/n),X3), 1<i<n.

In our case, we want to check if Xy, ..., X, follow F°(x) = H(x,c0) for some
estimated H°. In section 3.4 on page 34 we managed to find a closed form of F*
when X* and T* were uniformly distributed on the unit interval. However, in
most cases F¢ and G° are given by integrals which must be solved numerically.
Simulating from F¢ on the other hand is easy (See section 2.2.1 on page 11).
We therefore propose a QQ-plot using the empirical distribution of Xj, ..., X,
and Xj,..., X , where X; is simulated from F¢ and 7 is large. Let F¢ denote
the empirical distribution of Xj, ..., X5. The resulting QQ-plot is then given
by
(B2 (1/n), X (i) = Rimingjyzity X)-

Similarly, if we want to check if Ty,..., T, follow G°(t) = H(oo,t) we can
consider the Qo-plot

(G (i/n), Twy) = (Timingjjziny) Ti))-

—n

For a sufficiently large 7i these plots should be approximately the same as the
one we would get with F and G°. A straight line in this QQ-plot indicates that
F¢ and G° fits the data. And if F° and G° fits the data it is reasonable to believe
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F and G represents the unobserved data as well.

As can be seen figure 6.1 on the facing page and figure 6.2 on page 78, the
conditional normal distribution fits the data quite well. These plots were made
using the method described on the previous page. The variables Xj, ..., Xz
where simulated from the estimated truncated bivariate normal distribution.
This model asserts that X* and T* both follow a normal distribution. Notice
that several of the ships in the dataset Container have the same total sum
insured and deductible. For this dataset there is little hope of finding any
parametric distribution that will fit. We conclude that the normal distribution
is a good choice of marginal distributions for X* and T*.
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Figure 6.1: QQ-plot for the observed data versus the conditional normal dis-
tribution for the datasets Cargo and Bulk. The conditional normal
quantiles was MC estimated from 300 000 pairs (X, T) drawn from
the estimated TBIN.

77



observed quantiles

observed quantiles

QQ-plot Container, Normal X

MC estimated quantiles

QQ-plot Tank, Normal X

MC estimated quantiles

-2

-4

observed quantiles

QQ-plot Container, Normal T

uantiles
I | |
o A »
T T 2

observed q

1

o

ol
1

-6.0

-6.5

T T T T T
-7 -6 -5 -4 -3

MC estimated quantiles

QQ-plot Tank, Normal T

T T
-6.5 -55

T
-4.5 -3.5

MC estimated quantiles

Figure 6.2: QQ-plot for the observed data versus the conditional normal distri-
bution for the datasets Container and Tank. The conditional normal
quantiles was MC estimated from 300 000 pairs (X, T) drawn from
the estimated TBN. Notice that several of ships in the dataset
Container is given the same deductible.
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6.5 Goodness of fit test

Since we aim to reconstruct the distribution of (X*, T*), it would be nice to
test

H(x,t) = H(x,t) V (x,t),

where H is one of the suggested parametric distributions. But such a proce-
dure is not possible since the data we observe belong to the truncated vector
(X,T) = (X*, T*|X* > T*). However, if H® fits the observed data it is reason-
able to believe H represent the unobserved data as well. So the best we can do
is to test

Ho: H(x,t) = H(x,t) V (x,t), (6.2)

where H¢(x, t) is given by equation 2.1 on page 6. A test for Hy was suggested
by Jostein Paulsen during his lectures in Risk Management.

First we simulate a substantial number of data from the estimated distri-
bution H¢. We then divide R? into k disjoint rectangles Iy, ..., Ir. The idea is
that if the fit is good the relative number of data in each of the rectangles
should be approximately the same for the observed data as for the simulated
data. To be more specific, let (X3, T1), ..., (Xy, Ty) be iid. with distribution
H¢(x,t) and let (X, Ty),..., (X5, Tz) be i.i.d. with distribution H¢(x, t). Let

nj = Card{i|(XZ-, Ti) € Ij}, ] =1,...,k,
771]' = card{i|(Xi, Tl) € I]}, ] =1,...,k.

Let p = (p1,-..,px), where p; = P((X,T) € I;). We can then consider
(n1,...,m;) to be multinomially distributed with 7 trials and k classes having
probabilities p. The Pearson statistic for testing the null hypothesis Hy : p = a
is given by

2

Cula) = Zk; (”J;a”“f)
=1 j

It can be shown, see (van der Vaart, 1998), that under Hy the sequence C,(a)

converges to the X%fl-distribution as n — oo0. An extension of this test is to
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replace a by an estimate of p, where the estimator p is constructed so that it
is a good estimator if the null hypothesis is true. Under the originally null
hypothesis 6.2 the SLLN assures us that

j

ﬁj:—ﬂp]- as 7 — oo,

n

Hence, this estimator is a good estimator if 6.2 is true. Deviation from 6.2
should then be reflected by the corresponding test statistic

However, this procedure results in a reduction in the number of degrees of
freedom. It can be shown, see e.g. (van der Vaart, 1998), that under Hy

Cua(p) 4, X+ 1., as n,ii— oo ata rateso that —0,

S

where 7 is the number of parameters estimated in H¢(x, t). In the truncated
bivariate case we need to estimate (i, yt, 02,07,0), so r = 5.

The program we made simulates 7 = 1 000 000 pairs (X;, T;) from H(x,t).
For C,.:(p) to be approximately chi-squared distributed it is advised, as a rule
of thumbs, to choose the rectangles so that

min{nl,. . .,nk,ﬁ1,. ..,ﬁk} > 10.

To obtain such rectangles the program splits both datasets into a 9 x 9 grid, and
then concatenates neighbouring cells with too few observation, so that each
concatenated cell has at least 10 observations. The problem of too few observa-
tions in cells is mainly a problem in the original data set. The concatenation
process is displayed in figure 6.3 on the next page.

6.5.1 Results
With significance level 0.01 we accept that three of the datasets may be trun-

cated bivariate normally distributed. In appendix B we see that the scatterplot
drawn from this distribution resembles the originally dataset better than the
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Figure 6.3: The process of concatenating grids when testing the fit of copula3
to the data set Cargo.

others. For the dataset Container there is little hope of finding a good fit no
matter how many distributions we try. This is because marginally, no paramet-
ric estimate of G° will be able to fit the data. None of the copula models fitted
the data particularly well so we conclude that the overall best parametrisation
(amongst the considered) is done with a truncated bivariate normal distribu-
tion.

One should note that this is a very powerful test, so if the data deviate
just a little from H¢(x,t) we get a rejection of Hy. Therefore, even though the
p-value for the truncated bivariate normal distribution is small, we choose this
model in our further investigation of the data.
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Table 6.5: Table summarising the performance of different methods. k denotes

the number of cells left after the concatenation.

Method Dataset p-value 1% critical value  C 5 k
TBN Cargo 0.0100 15.08 15.07 11
Bulk 0.0107 21.66 21.46 15

Container 0.0002 20.09 29.72 14

Tank 0.0607 3480 28.08 24

Copulal Cargo 0.0296 15.08 1240 11
Bulk 0.0051 21.66 23.52 15

Container 3.75e-07 23.20 49.21 16

Tank 1.83e-07 33.40 6458 23

Copula2 Cargo 7.52e-05 15.08 2638 11
Bulk 5.76e-05 2320 3697 16

Container 0.0004 21.66 30.20 15

Tank 0.0002 3480 4656 24

Copula3 Cargo  0.0035 16.81 19.37 12
Bulk 0.0096 21.66 21.77 15

Container 0.0001 23.20 34.33 16

Tank NA NA NA NA

82



6.6 Some applications of the estimated distribution

Let us assume that our datasets follow the estimated truncated bivariate
normal distribution. From section 5.2 on page 51 we have that an estimate of
a = P(X* > T*) is given by

x(0) =4>( = )
V02 + 07 — 200,07

Having estimated «, we can estimate the population size N of the original

sample. If we consider (X}, T}),..., (X}, Tx) as independent trials where the
event X > T/ is a success, then n ~ Binomial(N, «) for all N > 1. We then

have
n gas

by SLLN N;ux, hence N =

| I

Note that this is an approximation of an approximation, so the estimate is not
necessarily accurate. An estimate of the number of unreported claims is then
given by fi,, = N — n. The estimates for our datasets can be seen in table 6.6
on the next page.

When (X*, T*) is bivariate normally distributed it is straightforward to verify
that the conditional distribution of X* given T* =t is

(04
N (px +p;’:(t — ), 02(1 = p%)).

Let fx r(x) be the density function of X*|T* = t and consider the function

e}

¢*(t) = E[exp(X*)|T = f] = /_ooe"fX‘T(x) dx. 6.3)
In view of equation 6.1 on page 70, it is natural to consider the function
e(u) = Elexp(X™)| exp(T) = u] = e*(logu),

so that we can observe the dependency structure between X /z and T'/z. In
practice the deductible is known, so for a given deductible ¢ for a ship with
corresponding total sum insured z the expected claim size is ze(t/z).
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In figure 6.4 on the next page we plotted e(u) using the estimated parameters
from our datasets. For the dataset Container we expect a claim equal to the
total sum insured when the deductible is set to 40% of total sum insured.
Remember that the TBN model did not fit this dataset particularly well, so
this result is most likely misleading. For the dataset Tank, there is little change
in the expected claim size when we vary the deductible.

Table 6.6: Estimates of the population size of the original sample and the
number of unreported claims.

n i N ﬁur

Cargo 140 0.7154 196 56
Bulk 176 0.7922 222 46
Container 191 09354 204 13
Tank 299 0.6882 434 135
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Figure 6.4: The relation between the standardised claim sizes and deductible
under the estimated TBN model.
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6.7 Further investigation of the dependence

As mentioned we believe some of the association between X and T can be
explained by the standardisation done using the total sum insured. Notice that
the relation between (X, T) and logz is linear since

/

X' / /
X; = log;Z =logX; —logz; and T;=logT, —logz;, 1<i<n.
1

Indeed, as seen in table 6.7, the statistics R and T are greatly reduced when
we use the log transformed original data. But we still reject Hg and Hr for the
datasets Cargo, Bulk and Container. However, by omitting the standardisation
we loose the assumed i.i.d. property. Consequently, these test will no longer
be valid, so we need to approach this investigation in a different way.

Table 6.7: Test of quasi independence between log X' and log T'.

R T 5% critical value p-value(Hgr) p-value(Hr)

Cargo 2.0538 2.9197 1.6448 0.0199 0.0017
Bulk 2.1888 2.7060 1.6448 0.0143 0.0034
Container 3.6013 3.6002 1.6448 0.0002 0.0002
Tank 0.0588 1.3317 1.6448 0.4765 0.0914

Let us still consider the log transformed standardised data (X3, T1), . .., (X, Tn),
but assume now that they are independently TNy (pyi, pii, (73, (th, p) where

,uxi:lxx‘f‘,BxlogZi/ ]’lﬁ:at—i—lBtlogzi'

If the linear relation to log z is the only reason why X and T are dependent we
expect p in this model to be close to zero. The parameters (ay, &, Bx, Bt, 02,02, 0)
can be found by maximising the corresponding log likelihood, as described in
section 5.2 on page 51. The estimated parameters for our datasets are displayed
in table 6.8 on the facing page. As can be seen in figure 6.5 on the next page,
the estimate of ((ay, at, By, Bt) fits quite well. Compared to the estimates of p
done under the TBN model in section 6.3 on page 72, the estimates of p under
this model was smaller. Still, the test statistic Z rejects the hypothesis p = 0 for
the datasets Cargo and Container.
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Table 6.8: Estimated parameters in the normal linear model

Ky oy Bx Bt (7:% ‘7t2 Y

Cargo 11.66 10.53 -0.9580 -0.9267 0.7275 0.3954 0.2687
Bulk 1459 953 -1.1369 -0.8755 0.9217 0.2811 0.1601
Container 11.28 8.79 -0.9322 -0.8459 0.6066 0.3182 0.4916
Tank 6.4016 11.36 -0.6522 -0.9773 1.2725 0.1999 -0.0635

Table 6.9: Test results of the hypothesis Hz : p = 0 under the normal linear

model.
Z 5% critical value p-value(Z)
Cargo 2.1102 1.6448 0.0174
Bulk 1.4146 1.6448 0.0785
Container  6.0940 1.6448 5.50e-10
Tank -0.6304 1.6448 0.7357

Figure 6.5: The lines &, + By logz and &; + f; log z plotted together with the
observed values of (logz, X) and (logz, T) for the dataset Cargo.
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6.8 Conclusion and final remarks

The analysis of the dependence between the deductible and claim size given
in this chapter was motivated by the following

* A significant association between the claim size and the deductible
implies that models which aim to estimate claim sizes based on covariates
could benefit on including the deductible as an additional covariate.

¢ A reconstruction of the unconditional joint distribution of the claim size
and deductible provides an estimate of the number of unreported claims.

After testing the assumption of quasi independence in section 6.2 on page 71,
we concluded that this assumption fails to hold in three out of the four consid-
ered dataset. We also concluded that the assumption of quasi independence
was questionable for the fourth dataset. However, we pointed out that one
possible explanation of this association could be the standardisation done with
the total sum insured.

Amongst the different methods of reconstructing the unconditional joint dis-
tribution, we chose to focus on the pure parametric models TBN, Copulal,
Copula2 and Copula3. The validity of these models relies on the untestable
assumption that the deductible and claim size follows a certain unconditional
distribution. In section 6.5 on page 79, we argued that a good fit of the corre-
sponding conditional distribution indicates that the unconditional distribution
may represent the unobserved data as well. However, this argument can be
quite misleading, specially if the truncated proportion is large. This remains
one of the fundamental problems when reconstructing the unconditional dis-
tribution using data subject to a dependent truncation.

In section 6.7 on page 86, we addressed the assertion that the dependence
between the deductible and claim size can be explained by the standardisation
done using the total sum insured. This was done by modelling the mean of the
deductible and claim size as linear functions of the log transformed total sum
insured. The results clearly indicated that much of the association between the
deductible and claim size is explained by this standardisation. However, two
of the datasets still seemed to be subject to a dependent truncation.
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Some proofs

A.1 Quasi independence imply p. =0

Proof: We now give a proof of theorem 2.2.2 on page 10 in the continuous case.
We divide the set A = {max(T;, T») < min(Xj, X»)} into the following subsets:

Al ={Th < T < X < X1},
Ay={T1 < T < Xp < X1},
A3 ={T, < T; < X; < X2},
Ay ={T1 < T, < X1 < X}

In thisway A = A1 UAy U A3 U Ay

As before, we denote the density of (X, T), X* and T* by h'(x,t), f(x) and
g(t), respectively. Note that A, A», A3 and A4 are disjoint sets and that
P(A1) = P(A4), P(A2) = P(A3). Thus, the numerator of p, given in equa-
tion 2.4 on page 10 can be rewritten in the following manner:
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oxXT = E(Xl — Xz)(Tl — Tz)IA = E(Xl — Xz)(Tl - TZ)(IAl -+ IAz —+ IAS + IA4)
= 2E(X; — Xo)(T1 — Ta)(Ln, + La,)

=2 / / / / (x1— x2) (11 — B2 (1, 11 )E (%2, £2) Ay dixa Ay d
<t <xp<xq
+ / / // (x1 — XZ)(tl — i’z)]’lc(xl, tl)hc(xz, tz) dX1 dXQ dtl dtz}.
) <tr<xp<xy

For the last integral we make the change of variable

uq 0100 tl
Uy _ 1 0 0O tz
x| (001 0] |x]’
X2 00 01 X2
where the Jacobian of the transformation is | = —1. With this change of

variable, we obtain
UXT:2//// (x1 —x2) (11 — up)
Uy <uU1<Xp<X1
X {h®(x1, u1)h®(x, u) — h(x2, up)h(x1, up) }|—1| dxy dxp dug duy.
If we now assume quasi independence:

H(/) :
0, otherwise,

at) { Fs()/a0, x>t

we get

2
UXT:*Z//// (x1 — x2)(u1 — u)
lXO Uy <up<xp<X1

X Af (x1)g (ur) f (x2)g (42) — f(x2)g (1) f(x1)g(u2) } dx1 dxa duy duy = 0.
0

Hence p. = 0 and the proof is complete.
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A.2 Proof of the asymptotic properties of r.

To establish the asymptotic properties of r. some basic knowledge about the
properties of U-statistics is needed, hence the following definition and theorem
are given.

A.2.1 U-Statistics

Definition A.2.1: U-statistics
Let Xj, ..., X;; be an i.i.d. random sample from an unknown distribution.
Let h be a permutation symmetric function and consider the estimation of
6 = Eh(Xj, ..., X;). A U-statistic with kernel # will be an unbiased estimator
of 8 and is defined as

The set B is all unordered subset of r, where the integers can be taken from

{1,..,n}.

Note that the elements in a U-statistic are in general dependent. Hence, we
can’t derive the asymptotic behaviour of this statistic by direct application of
LLN(Law of Large Numbers) and CLT(Central limit theorem). The solution
of this problem is to approximate the original U-statistic by a sum of i.i.d
random quantities called projections, which asymptotically have the same
distribution as the U-statistic. We can then obtain the asymptotic properties of
the underlying U-statistic by applying LLN and CLT on this sum. The details
of this procedure is formulated in the following theorem.

Theorem A.2.2: Asymptotic properties of U-statistics

Let U be the projection of U — 6 onto the set of all statistics of the form
Y1 ¢i(X;) and let

hl(x) = Eh(Xl,Xz,. . .,Xr’X1 = x) — 0.

If EW?(Xy, ..., X;) < oo then /n' (U —6 — U) LN} Consequently, the se-
quence \/n (U — 0) is asymptotically normal with mean 0 and variance
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r>{ where, with X, ..., X, and X’l, ey X; denoting i.i.d. variables,

/!

= cov{h(X1,..., %), h(X1, X5...,X,)},

U= ZEU 0| Xi) Zhl

i=1

Proof: Note that the theorem describes the centred projection. A full proof can
be found in (van der Vaart, 1998, page 162), but the main idea is the following

decomposition:
Vi (U —8) = V' (L) + Vi (U -6 — 1),

It can be proved that the last term converge in probability to zero. The normal-
ity is then obtained by applying CLT on the first term since the elements in U
are independent. If we can establish that we are dealing with a U-statistic we
know the following;:

uoe Vau-0 L N©20.

A.2.2 Consistency of r¢
With this knowledge at hand, we now proceed to the proof of equation 2.8 on

page 15. The first step is to show that %S xT 1S a consistent estimator of oxr,
that is:

i1 = 25 3 Y= X)(T = Ty £ B[ = Xa)(Ti ~ L.

Observe that every element in Sxr is repeated once since (X; — X;)(T; — T;)I;; =
(X] — XZ)(T] — TI)I]z This means that:

ii(X Xi(T; = T;)1 2ZZX Xi(T; = T;) 1,

i=1j=1 i<j
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This is a U-statistic of order r = 2 for the kernel:

n( <’;1> (’;22)) = (31— x2) (1 — t2)1{max(ty, f2) < min(x1,x2)},
estimating 6; = E(X; — X3)(T; — T2)I4 = oxr. From theorem A.2.2 on page 91
it now follows that n~2Sxr is a consistent estimator of 7. Similar arguments
will also establish U, = n2Sxx L, oxx and Uz = n=2Str L, orr. Consider
the function

flx,y,z) = (A1)

We know that f : R?® — R is a function continuous for all (oxT,0xX, 07T) When
oxx > 0 and orr > 0. It then follows from the continuous mapping theoremi
that:

_
(UpUs)

oxTr

P
— floxr,0xx,077) = —1
(oxx07rT)>

rC = f(ull UZ/ u3) = = Pc/

Nl—=

and the proof is complete. Note that this proof holds under the conditions
E(Xl — Xz)Z(Tl — Tz)ZIA < o0, E(Xl — X2)4IA < o0 and E(Tl — T2)41A < ®©
though the result itself may hold under weaker conditions.

A.2.3 Normality of r¢

We now want to establish that r. is asymptotically normal distributed. By
theorem A.2.2 on page 91 Uy, U and U3 are asymptotically normal distributed.
However, if we want to apply the Delta method, we need the joint asymp-
totic distribution of U = (Uy, Uy, U3)T. We therefore proceed with a formal
definition of a multivariate U-statistic.

ILet X be a random vector in R and let ¢ : R — RR™ be continuous at every point of a set C
such that P(X € C) = 1. Then

(i) If X, 5 X then g(X,) % g(X)
(ii) If X, 2 X then g(X,) = g(X)
(i) If X, 25 X then g(X,) = g(X).
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Definition A.2.3: One-sample Order-r Multivariate U-statistics
Let X3, ..., X, be a random sample from an unknown distribution. Let
h(Xy,..., X)) = (h(Xy,...,X%),..., ho(X1,...,X;))T be a vector consist-
ing of permutation symmetric functions and consider the estimation of
0 = (Ehy(X1,.., X;),...,Ehp(X1, ..., X;))T. A U-statistic with kernel vector
h will be an unbiased estimator of 8 and is defined as

U=+ Y h(Xg, .. X5)
(+) 5

where, as before, the set j is all unordered subset of r, where the integers
can be taken from {1, ..., n}.

The asymptotic properties of Order-r Multivariate U-statistics are derived in
Kowalski and Tu (2008) and the result is analogous to that of Theorem A.2.2.
However, there is a different representation for {, which we will adopt in the

next theorem. For the first element in h we have that
@':Var[h}‘(Xl)], hT(X) :E[hl(Xlr“-/Xr)’Xl :X].

Theorem A.2.4

Let h*(X;) = (h}(X41),...,hi(X1))T be the natural extension of h} above.
Then, under mild regularity conditions

Vi (U= 8) 4 N, (0,12%,),

where ¥, = Var(h*(X1)) = E[(h*(X1) — 6)(h*(X1) — 0)]

Proof: A proof can be found in (Kowalski and Tu, 2008, page 255).

This theorem is applicable to our case since Uj, U, and Us all are U-statistics
of order r = 2 and are formed by the same sample. This means, with U =
(Uy = n=2Sxr,Ur = n~2Sxx, Us = n=2Srr)T and 0 = (oxr, 0xx, 077)7,

VI (U = 0) & N, (0,4%,),

94



where the covariance matrix is

e () 0) () -9) |

and the elements of h* are

2 ((2)) ¢ o

s (3))-= - 2)

Next, let D(8) = Vf(oxr,0xx,0rT), where f is given by equation A.1 on

page 93. Thus

T T
D(B) _ E)f af af _ 1 —0XT —0XT .
doxr” 90xx" 90TT (oxx0r7)? 2(0%x077)? 2(0%x0%)

If we now apply the Delta method, we obtain the asymptotic distribution of

Nl

Vit (re—pc) = Vi (f(U) = £(8)) > N (0,02 = 4D(8)"%,D(8)) ,

and the proof is complete.

A.2.4 Consistency of the estimated asymptotic variance

A procedure how to estimate 0> = 4D(0)7%,D(8) is described in (Kowalski
and Tu, 2008). However, this procedure require rather “nice” expressions of hj,

h; and I3 and is therefore not applicable in our case. An alternative approach
to this problem can be found in appendix A in (Chen et al., 1996).
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A.3 Example of Uniform S

We now proceed to show that theorem 2.3.1 on page 22 holds in the simple
case when R; = 3 and T is a continuous variable. In general, since i € %; there
is always one tie in S;, therefore max(S;) = r; — 1 and min(S;) = —r; + 1. This
explains the range of S;. Assume %; = {i,a,b} where a and b are arbitrary
number from the set {j|1 <j <wn,j # i}. It then follows that

Ri=3 and S;€{-2,02}.

As before, let ¢g°(t) and G(t) denote the density and cumulative distribution
function of T, respectively. Then

P(S;=—2|R;=3) =P(sgn(T, — T;) = —1Nsgn(T, — T;) = —1)
(Tu <TinT, < T

= T <TiﬂTb<Ti’n:t)gc(t)dt

/ P(T, < t N T, < )g°(t) dt.

Under Hj there is no trend in the selection of T, and T; in §; i.e. they are
independent. We can then write the last integral as

/:” P(T, < H)P(T, < £)g°(t) df = /:” GE ()24 () dt = E[G*(T)2.

In general we know that G°(T) ~ U|[0, 1], hence

P(S; = —2|R; = 3) = E[GS(T)?| = E[U?] = /O1 w2 du = %
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Similarly we have that

P(Sl = 0|Ri :3) = P({Ta <TiNT, > Ti}U{Tu >TiNT, < Tz})
_ 2/ P(T, < tN Ty > )g°(t) dt

=2 [~ -G
=2(E - E[uﬂ}
~23-3) =3

and

P(S;=2|R;=3) =P(T, > TiNT, > T))

= | _P(T>tNTy > t)ge(t)dt

= g°(t)dt
)z]

1

3’

8

| |
)_\

[Uz]

where the second last equality holds since 1 — U also is uniformly distributed
on [0,1]. Hence

P(S;= —2|R;=3)=P(S;=0|R; =3) =P(5;,=2|R; =3) = .

Thus S;|R; = 3 is uniformly distributed on {—2,0,2}. Analogous calculations
can be done for any value of R;.

A.4 Alternative representation of the cross-ratio function

In general, when 77(x, t) is continuous we have that

_ n(x,t)D1Dom(x,t)  P(X>x,T<t)P(X=x,T=t)
YD) = B e Dan(nf) ~ P(X = x, T < HP(X > x,T =)

where the somewhat sloppy notation X = x and T = t should be interpreted
as X € [x,x+dx) and T € [t, t + dt), respectively. Some algebra will establish

97



the alternative representation of the cross-ratio function:

o(x p o PX> 2T <HP(X=xT =1
T PX =5, T<tHP(X>xT =1)
P(X2>XT2<tX1—XT1—t)
P(X2—xT2<tX1>xT1—t)
CP(Xo > X, T < Ty, Kip=x,Typ =t)
P(X1 > X, Th < T1,X12 =X, T12 t)
CPXy> Xy, T <T,Xip=xTip=1t)/P(Xip=xTip=t
CPXi> X, o< T, Xip=x,Tio=1)/P(Xip=x,Tio =t
P(X2>X1,T2<T1|X12—X T12 )
P(X1>X2,T2<T1|X12—x T12— ),

where (X;,T;) and (X3, T) are independently distributed as in 5.8, X1 =
min(X1, X,) and Ty » = max(Ty, Tz). Next, note that

P((Xl — Xz)(Tl — Tz) < 0|X1,2 =X, Tl,Z = t)
=2P(X2 > X1, Ta < Th|X1p =x,T1p =),

since (X1 —X2)(Th —T») < Oifand only if X, > Xj and Tr < Ty or Xo < X3
and T, > T;, and by symmetry these two event have the same probability.
Similar we have that

P((Xl — Xz)(Tl — Tz) > 0|X1,2 =X, Tl,Z = t)
= ZP(Xl >Xo, Th < Tl’XLZ =X, Tl,Z = t).

Consequently

P(Xz > X1, T < T1|X1,2 =X, Tl,Z = t)
P(Xl > X, Tr < T1|X12 =X, le = t)
P(X, > X1, To < T1| Ko = x, Tip = 1)
2P(X1 >Xo, Th < T1’X12 =X, T12 = t)
(
(

px,t) =

N

’TJ

X1 — X)( T2)<0|X12—x lezt)
X1 — Xz)( Tz) > 0|X12 =X, T12 = t)

(
B

and we have the desired result.
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Comparison of scatterplots

As a supplement to the goodness of fit test given in section 6.5 on page 79,
we made scatterplots of the variables (X3, T1), ..., (X, T,) simulated from the
estimated conditional distributions, where n equal the number of pairs in the
original datasets. These scatterplots are displayed in figure B.2, B.3, B.4 and
B.4 in the following pages and should be compared with the scatterplot of the
original datasets displayed in figure B.1 on the following page.
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Figure B.1: Scatterplot of the original data
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Figure B.2: Scatterplot of randomly drawn vectors from the estimated trun-
cated bivariate normal distribution.
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Figure B.3: Scatterplot of randomly drawn vectors from the estimated Copulal
distribution.
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\section*{Notation}
\begin{table}[htbp] 
\begin{tabular}{ll}
$TN_2(\mu_x,\mu_t,\sigma_{x}^{2},\sigma_{t}^{2},\rho)$& the truncated bivariate normal distribution\\
$X_{(1)},\dots,X_{(n)}$&the ordered variables satisfying $X_{(1)}\leq \dots\leq X_{(n)}$\\
$\mathbb{R}$ & the set of real numbers\\
$\overline{\mathbb{R}}$& the extended set of real numbers $\mathbb{R}\cup\lbrace-\infty,\infty\rbrace$\\
$\mathbb{R}^p$&the p-dimensional space $\underbrace{\mathbb{R}\times\mathbb{R}\dots\times\mathbb{R}}_p$\\
$\cdot$&unspecified set\\
$F(z-)$&$\mbox{lim}_{x\uparrow z}F(x)$, limit of $F(x)$, letting $x$ increase towards $z$\\
$F(z+)$&$\mbox{lim}_{x\downarrow z}F(x)$, limit of $F(x)$, letting $x$ decrease towards $z$\\
card&cardinality\\
$\abs{x}$&the absolute value of $x$\\
$x^{T}$&$x$ transposed\\
$\sgn(x)$& the sign of $x$, i.e. $1$ if $x>0$, $0$ if $x=0$, $-1$ if $x<0$\\
$\sup$& supremum, the least upper bound\\
$\inf$& infemum, the greatest lower bound\\
$\max$&maximum\\
$\min$&minimum\\
i.i.d.&independent and identically distributed\\
$:=$&defined as\\
$\xrightarrow{P}$&convergence in probability\\
$\xrightarrow{a.s.}$&convergence almost surely\\
$\xrightarrow{d}$&convergence in distribution\\
$\chi_{v}^{2}$&the Chi-square distribution with $v$ degrees of freedom\\
$\phi$&the standard normal cumulative distribution function\\
$AVE(\boldsymbol{x})$&the sample average of $\boldsymbol{x}=(x_1,\dots,x_n)$\\
$VAR(\boldsymbol{x})$&the sample variance of $\boldsymbol{x}=(x_1,\dots,x_n)$\\
$\forall$&for all\\
$\nabla f(\boldsymbol{a})$&gradient vector whose components are the partial\\
& derivatives of $f$ at $\boldsymbol{a}$, i.e. $\nabla f(\boldsymbol{a})=(\frac{\partial f}{\partial a_1},\dots,\frac{\partial f}{\partial a_n})$\\
\end{tabular}
\end{table}

\makemain

\chapter{Introduction}
\section{Topics covered in the thesis}
This thesis discusses different ways of analysing left truncated data when the lower bound  itself is a stochastic variable. We will consider the possible dependence between the variable of interest and the truncating variable, and how the dependency structure between these variables influence estimation of the underlying distribution. 
\subsection{Random left truncation}
In a sample subject to left truncation by some lower bound, all the values below this bound are entirely omitted. Opposed to the concept of \textit{left censoring}\footnote{In the left censoring case we are given an observation or a note that the observation is below the bound. In addition, we know the value of this bound.}, we have no record of how many observations are omitted, nor what the lower bound may be (unless this is prior knowledge). In random left truncation the lower bound is a random variable. We call this variable ''the truncating variable'', while we call the variable subject to left truncation ''the variable of interest''.
\subsection{Dependent truncation}
 When the variable of interest is larger than the truncating variable we assume both variables are observed. In some cases there is a relation between these two variables, and we say that the data are subject to a dependent truncation. The assumption of independence between these variables can in general not be tested with a truncated dataset. The reason is that we do not know anything about the behaviour of the unobserved data. \\\\
 In \chapref{chapter2} we will approach this problem by introducing a weaker assumption called quasi independence, which can be interpreted as independence between the variables we do observe. This assumption can be tested with a truncated dataset. For this purpose we will consider two different measures of dependence for truncated data. The asymptotic properties of the sample version of these measures will be studied and used to approximate the distribution of finite sample test-statistics.
\subsection{Reconstruction of the unconditional distribution}
In \chapref{recon} we will consider a nonparametric maximum likelihood estimator called the Product-limit estimator. This estimator aims to reconstruct the unconditional distribution of the variable of interest using truncated data. This method depends heavily on the assumption of quasi independence and is therefore not suitable for data subject to a dependent truncation. Analysis of such data will be the primary subject in the rest of the thesis.\\\\
The problem of reconstructing the joint distribution between the variable of interest and the truncating variable have been considered by very few authors, and only just recently. A warm up to this subject is given in \chapref{mlebiv}, where we assume that these variables follow a bivariate normal distribution. The observed data will then follow the so-called truncated bivariate normal distribution. Under this assumption, estimates of the unknown parameters can be obtained by maximum likelihood estimation. In \chapref{copmod} we will consider the more general parametrisation done with copulas. For this model we will consider maximum likelihood based estimation and a semi-parametric approach proposed in recent literature.\\\\

  
\section{Examples}

\begin{example}[Retirement House: \citet{Klein2003}]
In a retirement centre subjects are observed only if they live long enough to enter the retirement house. The lifetime $X$ is then left truncated by the retirement house entry age, $T$. There is reason to believe that these variables are dependent. People who enter the retirement house earlier may get better medical attention and therefore live longer. On the other hand, people with poor health and shorter expected lifetime may retire earlier.
\end{example}
\begin{example}[AIDS study: \citet{Lawless}]
Let $Y$ be the infection time where $1$ represents January 1978 and let $T$ be the incubation time in months for people who were infected by contaminated blood transfusions and developed AIDS by 1 July 1986. Since the total study period is $102$ months only individuals with $T+Y< 102$ were included in the sample. Then, letting $X=102-Y$ yields the model described: $(X,T)$ is observed only if $T<X$. \citet{Lawless}, amongst others, analyse these data based on the assumption that $X$ and $T$ are independent. Later, \citet{MR1049418} pointed out that this assumption fails to hold. 
\end{example}
\section{Applications to insurance}
In casualty insurance, claims are only observed if they are larger than the corresponding deductible. In many cases, the insurance companies assign individual deductibles for each object. Though it may seem strange to think of deductibles as random variables (since we more or less control these values), such a consideration could provide useful information. If there is a significant association between the claims and deductibles it can be reasonable to use deductibles as an additional covariate when estimating claims. This consideration can also be used to estimate the number of unreported claims. For this purpose the joint distribution of claims and deductibles must be estimated. In \chapref{skip} we will apply some of the methods considered in this thesis on insurance data from ships.\\\\
All numerical procedures and graphical displays in this thesis are carried out using the statistical program R. 
      
\chapter{Measures of dependence for truncated data}\label{chap:chapter2}
Many methods concerning truncated data depend on the assumption of independence between the variable of interest and the truncating variable. Therefore, to use these methods one would have to investigate the dependence between these variables. In this chapter we will consider two different quantities designed to measure the dependence in truncated data. The first quantity is a generalisation of the Pearson product-moment correlation coefficient proposed by \citet{MR1424617}. The second is a generalisation of Kendall's Tau proposed by \citet{MR1049418}.
\subsection{The general case}
Let $X^{*}$ be the variable of interest subject to left truncation by the truncating variable $T^{*}$.  That is, the sampling mechanism is such that $(X^{*},T^{*})$ is included in the sample if and only if $X^{*}>T^{*}$ (See \figref{trunk}). We assume that there are $n$ such pairs amongst the original sample of unknown size $N$. When $(X^{*},T^{*})$ is included in the sample we denote it $(X,T)$, i.e. $(X,T)=(X^{*},T^{*}|X^{*}> T^{*})$.\\\\  Let $H(x,t)$ be the joint distribution of $(X^*,T^*)$ with marginals $F(x)=H(x,\infty)$ and $G(t)=H(\infty,t)$.  Let $H^{c}(x,t)$ denote the conditional cumulative distribution of $(X^*,T^*)$, given that $X^*>T^*$. Thus
\begin{equation}\label{eq:fordeling}
\begin{split}
H^{c}(x,t)& = P(X^{\ast} \leq x,T^{\ast} \leq t \mid X^{\ast} > T^{\ast})\\&
 =  \dfrac{P(X^{\ast} \leq x,T^{\ast} \leq t , X^{\ast} > T^{\ast})}{P(X^{\ast} > T^{\ast})} =  \int\int_{\Delta(x,t)}\diff H(u,v)/\alpha,
\end{split}
\end{equation}
where
\begin{equation*}
\begin{split}
&\alpha=P(X^{\ast} > T^{\ast})=\int\int_{u \geq v}\diff H(u,v)\quad \text{and}\\
&\Delta(x,t)=\lbrace(u,v); v < u \leq x, v\leq t \rbrace.
\end{split}
\end{equation*}
The conditional cumulative distribution of $X$ and $T$ are given by $F^c(x)=H^c(x,\infty)$ and $G^c(t)=H^c(\infty,t)$, respectively. Given the density $h(x,t)$ of $(X^{*},T^{*})$ the conditional density is 
\begin{equation}\label{eq:defdensity}
h^{c}(x,t)=
\begin{cases}
&h(x,t)/\alpha, \quad x>t,\\
&0,\phantom{x,t)/\alpha,}\quad \text{otherwise}.\\
\end{cases}
\end{equation}\\
In the continuous case, given the density $h$ we have that
\begin{equation*}
\begin{split}
&H^{c}(x,t)=\int\int_{\Delta(x,t)}h(u,v)\diff u\diff v/\alpha,\\
&\alpha=\int\int_{u > v}h(u,v)\diff u\diff v.
\end{split}
\end{equation*}
Below is a graphical depiction of the sampling mechanism. 
\begin{align*}
\underbrace{(X_{1}^{*},T_{1}^{*}),\dots,(X_{N}^{*},T_{N}^{*})}_{i.i.d. H(x,t)}\xrightarrow{Truncation}\underbrace{(X_{1},T_{1}),\dots,(X_{n},T_{n})}_{i.i.d. H^c(x,t)},\quad n\leq N.
\end{align*}
\begin{align*}
\underbrace{X_{1}^{*},\dots,X_{N}^{*}}_{i.i.d. F(x)}\xrightarrow{Truncation}\underbrace{X_{1},\dots,X_{n}}_{i.i.d. F^c(x)},\quad\quad\quad\underbrace{T_{1}^{*},\dots,T_{N}^{*}}_{i.i.d. G(t)}\xrightarrow{Truncation}\underbrace{T_{1},\dots,T_{n}}_{i.i.d. G^c(t)}
\end{align*}

This is the general setup in the left truncation case and the notations will be kept throughout the thesis. Later we will consider the estimation of the distribution function of $X^*$ using the so called \textit{Product-limit estimator}. However, the consistency of this estimator depends heavily on the assumption of \textit{quasi independence}, which we will consider in the following section.
\begin{figure}[htbp]
\centering
\includegraphics[scale=0.7]{figurer/trunk}
\caption{The sampling mechanism: The first two plots illustrates the sampling mechanism when $(X^{*},T^{*})$ follows a bivariate normal distribution with $\rho=0.4$. The last two plots illustrates the sampling mechanism when $X^{*}$ and $T^{*}$ are independent uniformly distributed on $[0,1]$.}\label{fig:trunk}
\end{figure}
\section{Quasi independence}
 Since we are unable to observe data in the region $X^{*}\leq T^{*}$, and thus do not know anything about the dependence in that region, we can't decide whether or not $X^{*}$ and $T^{*}$ are independent. However, there is a weaker definition of independence called quasi independence.\\
\begin{definition}[Quasi independence]
Let the marginal distributions of $X^{*}$ and $T^{*}$ be $F(x)=H(x,\infty)$ and
$G(t)=H(\infty,t)$ respectively. The variables $X$ and $T$ in the observable vector $(X,T)$
are said to be quasi independent if the corresponding distribution $H^{c}(x,t)$ has the
following property:\\
\begin{equation}\label{eq:quasi}
\begin{split}
&H_{0}:\quad H^{c}(x,t)=\int\int_{\Delta(x,t)}\diff F(u)\diff G(v)/\alpha_{0},\\
&\text{where}\quad\quad\;\;\; \alpha_{0}=\int\int_{u>v}\diff F(u)\diff G(v).
\end{split}
\end{equation}
Given the densities $g$ and $f$ corresponding to $G$ and $F$, this assumption is equivalent to\\
\begin{equation*}
H_0^{'}:\quad h^{c}(x,t)=
\begin{cases}
&f(x)g(t)/\alpha_{0}, \quad x>t,\\
&0,\quad\quad\quad\quad\quad\quad \text{otherwise}.\\
\end{cases}
\end{equation*}\\
\end{definition}	
We will denote the assumption of quasi independence $H_0$. The term quasi independence was first used in the contingency table literature to describe variables which behaved as independent variables in certain subsets of the table. In our setting the interpretation is quite similar. The assumption of quasi independence imply that $(X^*,T^*)$ behaves as independent variables in the region $\lbrace (X^*,T^*)|X^*>T^*\rbrace$. 
 It is easily seen that independence between the two variables imply quasi independence. The converse statement is not true, as illustrated by the following example.\\
\begin{example}[Quasi independent variables which are not independent]
Consider the contingency \tabref{cont}. In this case both $X^*$ and $T^*$ are discrete and uniform on $\lbrace 0,1,2,3\rbrace$. We see that the requirements for quasi independence holds since 
\begin{equation*}
\begin{split}
&\alpha=\ssum_{i>j}h(i,j)=\alpha_0=\ssum_{i>j}f(i)g(j)=\frac{6}{16},\\
&h^{c}(i,j)=
\begin{cases}
&f(i)g(j)/\alpha_{0}, \quad i>j,\\
&0,\quad\quad\quad\quad\quad\; \text{otherwise}.\\
\end{cases}
\end{split}
\end{equation*}
However, the variables are not independent for $X^*\leq T^*$. 
\end{example}
\begin{table}[htbp]
\caption{}
\centering
\begin{tabular}{rrrrrrr}
\toprule
&&&$T^*$&&&\\ 
\cmidrule(r){3-6}
&$h(x,t)$&0&1&2&3&$f(x)$\\
&0&1/16&1/16&0&2/16&1/4\\
$X^*$&1&1/16&1/16&2/16&0&1/4\\
&2&1/16&1/16&1/16&1/16&1/4\\
&3&1/16&1/16&1/16&1/16&1/4\\
\cmidrule(r){3-6}
&$g(t)$&1/4&1/4&1/4&1/4&1\\
\bottomrule
\end{tabular}
\label{tab:cont}
\end{table}
Unfortunately, this means that even though we can establish that the observations in a truncated dataset are quasi independent, the variables may still be dependent. However, \citet{MR1049418} pointed out that many methods which originally are stated to work only under the assumption of independence between $X^{*}$ and $T^{*}$ will also work under the assumption of quasi independence. Motivated by this, we will consider measures which can help us decide whether or not the data depart from the hypothesis of quasi independence. We will first consider a generalisation of the well-known Pearson product-moment correlation proposed by \citet{MR1424617}, which we will denote by $\rho_{c}$.  

\section{The generalised product-moment correlation coefficient}\label{sec:pmc}
\begin{definition}
Given the random samples $(X_1,T_1)$ and $(X_2,T_2)$ from the truncated vector $(X,T)$, we define the conditional product-moment correlation by
\begin{align*}
\rho_c =\dfrac{E[(X_1-X_2)(T_1-T_2)\mid A]}{{\lbrace E[(X_1-X_2)^{2}\mid A]E[(T_1-T_2)^{2}\mid A]\rbrace}^{1/2}}\;,
\end{align*}\\
where $A = \lbrace \text{max} (T_1,T_2)< \text{min} (X_1,X_2)\rbrace$. Alternatively we can write:
\begin{align}\label{eq:teller}
\rho_c =\dfrac{E[(X_1-X_2)(T_1-T_2)I_A]}{{\lbrace E[(X_1-X_2)^{2}I_A]E[(T_1-T_2)^{2}I_A]\rbrace}^{1/2}}=\dfrac{\sigma_{XT}}{\lbrace\sigma_{XX}\sigma_{TT}\rbrace^{1/2}}\;,
\end{align}
were $I_A$ is the indicator function of the set A.
\end{definition}
The last representation of $\rho_c$ is valid since
\begin{equation*}
\rho_c =\dfrac{E[(X_1-X_2)(T_1-T_2)I_A]/P(A)}{{\left\lbrace\left( E[(X_1-X_2)^{2}I_A]/P(A)\right)\left(E[(T_1-T_2)^{2}I_A]/P(A)\right)\right\rbrace}^{1/2}}.
\end{equation*}
And we see that $P(A)$ in the numerator cancel the $P(A)$s in the denominator. Obviously, $\rho_c$ is only defined when $P(A)\neq 0$.  Note that by conditioning on the event $A$, the two points $(X_1,T_1)$ and $(X_2,T_2)$ become ''comparable'' under a truncation since the point $(\text{min} (X_1,X_2),\text{max} (T_1,T_2))$ given $A$ always is located in the observable region.\\\\
The natural thing to do next is to investigate the relation between $\rho_{c}$ and $H_{0}$. The following theorem holds for every distribution of $(X,T)$.   
\begin{theorem}\label{thm:hnull1}
Given quasi independence between $X$ and $T$, it follows that $\rho_c = 0$. That is:\\
\begin{equation}
H_0 \quad\Rightarrow \quad\rho_c = 0.
\end{equation}
\end{theorem}
\begin{proof}A proof is given in \secref{proof1}
\end{proof}
So at least in some sense $\rho_c = 0$ indicate no relation between $X$ and $T$. However, one can't conclude quasi independence between them except in one special case. We know from classical statistics that independence is equivalent to zero correlation in the multivariate normal case. The next result shows the corresponding relations between quasi independence and $\rho_c = 0$ in the \textit{truncated bivariate normal}\footnote{Whenever $(X^{*},T^{*})$ is bivariate normal distributed, i.e. $(X^{*},T^{*})\sim N_2(\mu_x,\mu_t,\sigma_x^2,\sigma_t^2,\rho)$, we say that $(X,T)$ follows a \textit{truncated bivariate normal distribution}. The shorthand notation will be $(X,T)\sim TN_2(\mu_x,\mu_t,\sigma_x^2,\sigma_t^2,\rho)$} case:
\begin{theorem}\label{thm:hnull2}
If $(X,T)$ follows a truncated bivariate normal distribution, then\\
\begin{equation}
H_0 \quad\Leftrightarrow \quad\rho_c = 0
\end{equation}
\end{theorem}
\begin{proof}A proof is given in \citep{MR1424617}.
\end{proof}
The theorem tells us that if we are able to establish that our data follows a truncated bivariate normal distribution, a good estimate of $\rho_{c}$ could help us decide whether or not our data are quasi independent.\\\\
 We continue with a computational procedure for $\rho_c$. 
\subsection{Monte Carlo approximation of $\rho_{c}$}\label{sec:montecarlo}
From \eqref{fordeling} we know that given the unconditional distribution $H(x,t)$ we also know the conditional distribution $H^c(x,t)$. Hence, in such a situation, we can compute the exact value of $\rho_{c}$. The computation of $\rho_{c}$ can rarely be done analytically, so we need a numerical method to do this. As an alternative to numerical integration, we can use Monte Carlo Integration. This procedure and many other problems in this thesis requires simulations from the conditional distribution $H^c$. If we know how to simulate from the unconditional distribution $H$, then a simulation procedure to obtain $n$ i.i.d. variables distributed according to $H^c$ is as follows:
\begin{enumerate}
\item Simulate $\tilde{N}=1\;000\;000$ i.i.d. pairs $(X_{i}^{*},T_{i}^{*})$ from $H$ and let 
\begin{align*}
\alpha_{MC}=\mbox{card}\lbrace i|X^{*}_{i}>T^{*}_{i}\rbrace/\tilde{N}.
\end{align*}
\item Put $N=n/\alpha_{MC}$ and repeat the simulation of $N$ i.i.d. pairs $(X_{i}^{*},T_{i}^{*})$ until a sample with $card\lbrace i|X_i>T_i\rbrace=n$ is obtained. 
\item Let $(X_1,T_1),\dots,(X_n,T_n)$ be the $n$ pairs in the sample obtained by $2.$ where $X^{*}_{i}>T^{*}_{i}$. 
\end{enumerate}
Then $(X_1,T_1),\dots,(X_n,T_n)$ will be i.i.d. according to $H^c$.\\\\
Procedure $1.$ is an easy way of estimating $\alpha$ by MC integration if we know the unconditional distribution $H$. Also note that $N=n/\alpha_{MC}$ is the optimal initial value of $N$ if we want to form a subset of $(X_{1}^{*},T_{1}^{*}),\dots,(X_{N}^{*},T_{N}^{*})$ according to $3.$ with size $n$ (see \secref{application}).\\\\   
Using the above procedure we can simulate two large samples $A$ and $B$ independently from $H^c$:\\
\begin{equation*}
\begin{split}
&A=\lbrace(X_{1}^{A},T_{1}^{A}),(X_{2}^{A},T_{2}^{A}),\dots,(X_{n}^{A},T_{n}^{A})\rbrace,\\
&B=\lbrace(X_{1}^{B},T_{1}^{B}),(X_{2}^{B},T_{2}^{B}),\dots,(X_{n}^{B},T_{n}^{B})\rbrace,\\
\end{split}
\end{equation*}
and let: 
\begin{equation*}
\begin{split}
&\hat{\sigma}_{XT}= \frac{1}{n}\sum_{i=1}^{n}(X_{i}^{A}-X_{i}^{B})(T_{i}^{A}-T_{i}^{B})I_{A_{i}},\\
&\text{where}\quad A_{i}=\lbrace\max(T_{i}^{A},T_{i}^{B})<\min(X_{i}^{A},X_{i}^{B})\rbrace.\\
\end{split}
\end{equation*}
Note that the elements in the above sum are independent. Therefore, by the \textit{Strong Law of Large Numbers}\footnote{SLLN: Let $\bar{X}_n$ be the average of the first n of a sequence of independent, identically distributed random variables $X_1,X_2,\dots$. If $E|X_1|<\infty$ then $\bar{X}_n\xrightarrow{a.s}EX_1$ by the strong law of large numbers.},  we know that $\hat{\sigma}_{XT}$ converges \textit{almost surely}\footnote{a.s: The sequence $X_n$ is said to converge almost surely to $X$ if $d(X_n,X)\rightarrow 0$ with probability one for a proper norm $d$. This is denoted $X_n\xrightarrow{a.s.}X$.} to $E[(X_1-X_2)(T_1-T_2)I_{A}]=\sigma_{XT}$. Hence, for a sufficiently large $n$, this is a good approximation of $\sigma_{XT}$. Using the same sample, similar approximations can be done for $\sigma_{XX}$ and $\sigma_{TT}$ giving an approximation of $\rho_{c}=\sigma_{XT}/\lbrace\sigma_{XX}\sigma_{TT}\rbrace^{1/2}$. Note that this can be a time consuming process if the truncated proportion is large. We will now use this method to make a visual inspection of the behaviour of $\rho_{c}$.\\\\ 
Consider the case where $(X,T)$ follows a truncated bivariate normal distribution, that is $(X,T)\sim TN_2(\mu_x,\mu_t,\sigma_x^2,\sigma_t^2,\rho)$. In this example we keep the parameters $(\mu_x,\mu_t,\sigma_x^2,\sigma_t^2)$ fixed, while varying $\rho$. We then calculate $\rho_{c}$ using the method described on the previous page. In each case, the number of simulations were $n=200000$.\\\\ \Figref{int} illustrates the relations between $\rho$ and $\rho_{c}$ for three different truncated bivariate normal distributions. The same plot is given in \citep{MR1424617} for the same distributions, where the calculation of $\rho_c$ was done by numerical integration. The result is the same, so we trust the accuracy of our Monte Carlo approximation. To compare the difference, $\abs{\rho_{c}-\rho}$, a straight line was included in the plot. Notice that the difference $\abs{\rho_{c}-\rho}$ is small in the $TN_2(0,-1,1,1/16,\rho)$ case, while $|\rho_{c}-\rho|$ is rather large in the $TN_2(0,0,1,1,\rho)$. In the first case the truncated proportion is small, so one would not expect $\rho_{c}$ to deviate much from $\rho$. However, in the second case the truncated proportion is relatively high, making $\abs{\rho_{c}-\rho}$ larger.
\\\\
\begin{figure}[htbp]
\centering
\includegraphics[scale=0.96]{figurer/montecarlo}
\caption{Unconditional correlation versus Conditional correlation in the truncated bivariate normal case where $\rho$ varies from $-1$ to $1$.}\label{fig:int}
\end{figure}
\subsection{Sample conditional product-moment correlation coefficient}
To utilise \thmref{hnull1} and \thmref{hnull2} we need a good estimate of $\rho_{c}$. A consistent estimate is as follows: 
\begin{definition}
Let $(X_1,T_1),\hdots,(X_n,T_n)$ be i.i.d random vectors following the same distribution as $(X,T)$. A pair $(X_i,T_i)$ and $(X_j,T_j)$ is called comparable if $\max(T_i,T_j)< \min(X_i,X_j)$. Using these pairs, the sample association between $X$ and $T$ in the observable region can be measured by
\begin{equation}
\begin{split}
r_{c}&=\dfrac{\sum_{i=1}^{n}\sum_{j=1}^{n}(X_i-X_j)(T_i-T_j)I_{ij}}{\lbrace\sum_{i=1}^{n}\sum_{j=1}^{n}(X_i-X_j)^{2}I_{ij}\rbrace^{1/2}\lbrace\sum_{i=1}^{n}\sum_{j=1}^{n}(T_i-T_j)^{2}I_{ij}\rbrace^{1/2}}\;,\\
&\text{where}\quad I_{ij}=I\lbrace \max(T_i,T_j)< \min(X_i,X_j)\rbrace.\\
\end{split}
\end{equation}
For simplicity, we will denote this in the following two ways:
\begin{align*}
r_{c}=\dfrac{\sum_{i=1}^{n}S_{XT_{i}}}{\lbrace\sum_{i=1}^{n}S_{XX_{i}}\rbrace^{\frac{1}{2}}\lbrace\sum_{i=1}^{n}S_{TT_{i}}\rbrace^{\frac{1}{2}}}
=\dfrac{S_{XT}}{\lbrace S_{XX}S_{TT}\rbrace^{\frac{1}{2}}}\;.
\end{align*}
\end{definition}
Note that this is not the same estimate as the Monte Carlo approximation of $\rho_c$ done in \secref{montecarlo}. In practice we do not enjoy the luxury of two independent datasets from the same distribution. And as we will see in \secref{proof2}, it is harder to derive the asymptotic properties of $r_c$. Still, if we want to know which values of $r_{c}$ which imply significant departure from $H_{0}$, these properties must be investigated. Three desirable properties\footnote{A sequence of random variables $X_n$ is said to converge in probability to $X$ if for all $\epsilon>0$ $P(d(X_n,X)>\epsilon)\rightarrow 0$ for a proper norm $d$. This is denoted $X_n\xrightarrow{P}X$. The sequence $X_n$ is said to converge in distribution to $X$ if $P(X_n\leq x)\rightarrow P(X\leq x)$ for every $x$ which the limit distribution function $P(X\leq x)$ is continuous. This is denoted $X_n\xrightarrow{d}X$.} of $r_{c}$ are given in the following theorem:
\newpage
\begin{theorem}\label{thm:stress}\label{nr2}
Let 
\begin{align*}
\widehat{\mbox{var}}(r_{c})=r_{c}^{2}\sum_{i=1}^{n}\left(\frac{S_{XX_{i}}}{S_{XX}}+\frac{S_{TT_{i}}}{S_{TT}}-2\frac{S_{XT_{i}}}{S_{XT}}\right)^2.
\end{align*}
Then:
\begin{align}
&r_c\xrightarrow{P} \rho_c, \label{eq:p1}
\\
&n\widehat{\mbox{var}}(r_{c})\xrightarrow{P}\sigma^{2},\notag
\\
&\sqrt{n}(r_c-\rho_{c})\xrightarrow{d} N(0,\sigma^{2}).\notag   
\end{align}
\end{theorem}
\begin{proof}A proof is given in \secref{proof2}.
\end{proof}
We do not give an explicit expression for the asymptotic variance $\sigma^{2}$ because it depends on the distribution of the data, and because it is difficult to derive. For practical purposes we only need to know how to estimate $\sigma^2$ consistently so that we can form a statistic capable of determining significant departure from $H_{0}$. Such a statistic is given in the following lemma.
\begin{lemma}\label{lemma:test}
\begin{equation}
\dfrac{r_c-\rho_{c}}{\sqrt{\widehat{\mbox{var}}(r_{c})}}\xrightarrow{d} N(0,1)
\end{equation}
\end{lemma}
\begin{proof}
The proof is straightforward:
\begin{equation*}
\dfrac{r_c-\rho_{c}}{\sqrt{\widehat{\mbox{var}}(r_{c})}}=\Biggr\lbrace\dfrac{\sqrt{n}(r_c-\rho_{c})}{\sigma}\Biggr\rbrace\Biggr\lbrace\dfrac{\sigma}{\lbrace n\widehat{\mbox{var}}(r_{c})\rbrace^{1/2}}\Biggr\rbrace = a_{n}b_{n}
\end{equation*} 
By \thmref{stress}
\begin{equation*}
\begin{split}
&a_{n}\xrightarrow{d} N(0,1)\\
&b_{n}\xrightarrow{P}1
\end{split}
\end{equation*}
Hence by \textit{Slutsky's Theorem}\footnote{Slutsky: Let $X_n$, $X$ and $Y_n$ be random variables. If $X_n\xrightarrow{d}X$ and $Y_n\xrightarrow{P}a$ for a constant $a$, then\\ (i) $X_n+Y_n\xrightarrow{d}X + a$\\(ii) $X_nY_n\xrightarrow{d}Xa$\\(iii) $X_n/Y_n\xrightarrow{d}X/a$, if $a\neq 0$.}
\begin{equation*}
a_{n}b_{n}\xrightarrow{d} N(0,1)\quad \text{and the proof is complete.}
\end{equation*}
\end{proof}
\subsection{Testing the assumption of quasi independence with $r_c$}
\Lemmaref{test} provides the means for testing the hypothesis $H_{R}:\rho_{c}=0$ versus $H_{R}^{c}:\rho_{c}\neq 0$. For sufficiently large $n$, reject $H_R$ whenever 
\begin{equation}\label{eq:R}
\abs{R}=\biggr|\dfrac{r_c}{\sqrt{\widehat{\mbox{var}}(r_{c})}}\biggr|>Z_{\epsilon/2},
\end{equation}
where $\epsilon$ denotes the significance level of the test and $Z_{\epsilon/2}$ the corresponding normal critical value. In general, when $H_{R}$ is rejected, we can only conclude that there is no linear relationship between the variables in the observable area. However, assume further investigation implies that the data follows a truncated bivariate normal distribution. Then rejecting $H_R$ is, according to \thmref{hnull2}, equivalent to rejecting the hypothesis of quasi independence $H_{0}$. In \secref{goodsec} we consider a goodness of fit test which can be used to test whether or not the data follows a truncated bivariate normal distribution. This test and $\rho_c$ are together useful tools when we wish to test the hypothesis of quasi independence.
\subsection{Simulation result}
To support \Thmref{stress} a simulation was carried out in R. The following routine was repeated 400 times for every fixed combination of $n=30,80,150$ and $\rho=0,0.3,0.7$:
\begin{itemize}
\item $n$ pairs were drawn from the truncated bivariate normal distribution\\ $TN_{2}(0,-1,1,1/4,\rho)$.
\item From these $n$ pairs, $r_{c}$ and $\widehat{\mbox{var}}(r_{c})$ were computed. 
\end{itemize}
For each fixed combination of $\rho$ and $n$ the samples $r_{c}^{1},\dots, r_{c}^{400}$ and\\  $\hat{\mbox{var}}(r_{c}^{1}),\dots,\widehat{\mbox{var}}(r_{c}^{400})$ were obtained. We then calculated:
\begin{equation*}
\begin{split}
&AVE(r_{c})=\frac{1}{400}\sum_{i=1}^{400}r_{c}^{i}\\
&AVE(\hat{V})=\frac{1}{400}\sum_{i=1}^{400}\widehat{\mbox{var}}(r_{c}^i)\\
&VAR(r_{c})=\frac{1}{399}\sum_{i=1}^{400}(r_{c}^{i}-AVE(r_{c}))^2,
\end{split}
\end{equation*}
The results can be seen in \tabref{simulation}. The motivation of the simulation was to support the following: 
\begin{itemize}
 \item \textit{Consistency of $r_c$\\}
For every $\rho$, the theoretical value of $\rho_c$ is computed using the Monte Carlo approximation described earlier. We then compare $AVE(r_{c})$ against $\rho_c$ as $n$ increases. This procedure will detect bias.
\item \textit{Consistency of} ${n\widehat{\mbox{var}}(r_{c})}$\\
This evaluation is more complex since we do not know the real value of $\sigma^{2}$. However, by repeating the routine $400$ times we can compute the empirical variance $VAR(r_{c})$ which should be an accurate approximation of $\mbox{var}(r_{c})$. We can then compare $AVE(\hat{V})$ against $VAR(r_{c})$. Note that both quantities should decrease when $n$ increase.
 \item \textit{Normality of $r_c$}\\
To investigate the normality of $r_{c}$ the p-value of the Shapiro-Wilks statistic was computed in each case. For small p-values this test rejects the hypothesis that the $400$ computed values of $r_c$  follows a normal distribution.\\\\
\end{itemize}
\textbf{Results}
 We get that $AVE(r_{c})$ is close to $\rho_{c}$ in all cases, and the estimate improves as $n$ increases. For $n=80$ and $n=150$ the mean of the estimated asymptotic variances $AVE(\hat{V})$ is close to the empirical variance $VAR(r_{c})$, and they both approach zero as $n$ increase.  A closer investigation of the $\rho=0.7$  case showed a few outliers of $r_{c}$. As can be seen in \tabref{simulation}, these outliers greatly affected the Shapiro-Wilks test of normality. Removing the few outliers improved the p-values significantly, though such a procedure is considered to be one of the ``deadly sins`` amongst statisticians. In the cases when $\rho=0$ and $\rho=0.3$, the assumption of normality is not rejected. A similar simulation was carried out by \citet{MR1424617} with similar results.
\\\\
\\\\

\begin{table}[htbp]
\caption{Simulation results of $r_{c}$ from truncated samples sized n of a bivariate normal distribution with $\mu_{x}=0$, $\mu_{t}=-1$, $\sigma_{x}^{2}=1$ and $\sigma_{t}^{2}=1/4$.}
\centering
\begin{tabular}{rrrrrrr}
\toprule
&&&&&&Truncated\\
$\rho$ & $\rho_{c}$ &  & n=30 & n=80 & n = 150 & proportion  \\ 
\midrule
0&0&$AVE(r_{c})$& 0.0050&0.0024&-0.0023&0.1858 \\
&&$VAR(r_{c})$& 0.0323&0.0112&0.0054& \\
&&$AVE(\hat{V})$&0.0248&0.0101&0.0054& \\
&&Normal p&0.3802&0.7028&0.4453&\\\\
0.3&0.1772&$AVE(r_{c})$&0.1761&0.1768&0.1787&0.1524 \\
&&$VAR(r_{c})$&0.0265&0.0082&0.0055& \\ 
&&$AVE(\hat{V})$&0.0222&0.0091&0.0048& \\
&&Normal p&0.8097&0.8206&0.6519&\\\\
0.7&0.4633&$AVE(r_{c})$&0.4882&0.4648&0.4646&0.0882 \\
&&$VAR(r_{c})$&0.0139&0.0054&0.0036& \\ 
&&$AVE(\hat{V})$&0.0134&0.0054&0.0032& \\
&&Normal p&0.0081&0.0247&0.0531&\\
\bottomrule
\end{tabular}
\label{tab:simulation}
\end{table}
\newpage
Notice how $AVE(\hat{V})$ and $VAR(r_{c})$ in \tabref{simulation} both decrease when $\rho$ increases. We know from classical statistics that the sampling variance of the sample correlation is approximately
\begin{align*}
\dfrac{(1-\rho^2)^2}{n}\;.
\end{align*}
Thus the sample correlation becomes more accurate as $|\rho|\rightarrow 1$. As seen in \figref{comparison}, $\abs{\rho_c-r_c}$ is smaller and vary less when  $|\rho_c|\rightarrow 1$, so there seem to be a similar relation between $r_c$ and $\rho_c$. When the original data comes from the bivariate normal distribution, the value of $\rho$ influence the truncated proportion $(N-n)/N$. As seen in \tabref{simulation}, increasing $\rho$ decreases the truncated proportion. This will also affect $r_c$. We conclude that the dependency structure of the observed data influence the accuracy of $r_c$.
\\\\
\begin{figure}[htbp]
\centering
\includegraphics[scale=0.9]{figurer/comparison}
\caption{Plot of $67$ computations of $|\rho_{c}-r_{c}|$. Every $r_c$ was computed from the truncated bivariate normal distribution $TN_2(0,-1,1,1,\rho)$ where $n=100$ and $\rho$ varied from $-1$ to $1$ (causing $\rho_c$ to vary from $-1$ to $1$). }
\label{fig:comparison}
\end{figure}
\section{Conditional Kendall's Tau}
Similar to the standard Pearson correlation, $\rho_{c}$ measures the linear relationship between the variables in the observable region. In addition, it also depends on the marginal distribution of $X$ and $T$, e.g. $\rho_{c}$ is only defined when $E[(X_1-X_2)^{2}I_A]$ and $E[(T_1-T_2)^{2}I_A]$ are finite. This can pose as a problem if we are dealing with infinite-variance distributions. In these cases the conditional Kendall's tau is a more suitable measure of dependence.\\\\ The standard Kendall's tau is a measure of concordance for bivariate random vectors. Consider two points in $\mathbb{R}^2$, denoted $(x_{1},t_{1})$ and $(x_{2},t_{2})$. We say the points are concordant if $(x_{1}-x_{2})(t_{1}-t_{2})>0$ and discordant if $(x_{1}-x_{2})(t_{1}-t_{2})<0$. Let $(X_{1},T_{1})$ and $(X_{2},T_{2})$ be independent random vectors from the same distribution. If $T$ tends to increase with $X$ we expect the probability of concordance to be high relative to the probability of discordance. We expect the opposite if $T$ tends to decrease with increasing $X$. Motivated by this, Kendall's tau is just the probability of concordance minus the probability of discordance for these pairs. The conditional version is defined in the same way for a truncated vector $(X,T)$, only conditioned on the event $A$, that the two pairs are comparable. Applications and a generalised Kendall's tau statistic are discussed in \citep{MR1049418}. Let us begin with the definition.
\begin{definition}
Given the random samples $(X_1,T_1)$ and $(X_2,T_2)$ from the truncated vector $(X,T)$, we define the conditional Kendall's tau:\\
\begin{equation*}
\tau_{c}=2P\lbrace(X_{1}-X_{2})(T_{1}-T_{2})>0\vert A\rbrace - 1,
\end{equation*}
where as before, $A= \lbrace \max (T_1,T_2)< \min (X_1,X_2)\rbrace$.
\end{definition}
In the unconditional case, when $X$ and $T$ are independent, we have that $P\lbrace(X_{1}-X_{2})(T_{1}-T_{2})>0)=1/2$ and $\tau=0$. Similarly, we have the following relation between $\tau_c$ and the assumption of quasi independence $H_0$.
\begin{theorem}\label{thm:tauhnull}
Given quasi independence between $X$ and $T$, it follows that $\tau_c = 0$. That is:
\begin{equation*}
H_0 \quad\Rightarrow \quad\tau_c = 0
\end{equation*}
\end{theorem}
\begin{proof}
Rewrite $\tau_c$ in the following way
\begin{equation*}
\begin{split}
\tau_{c}&=2P\lbrace(X_{1}-X_{2})(T_{1}-T_{2})>0\vert A\rbrace - 1\\
&=P\lbrace(X_{1}-X_{2})(T_{1}-T_{2})>0\vert A\rbrace + P\lbrace(X_{1}-X_{2})(T_{1}-T_{2})>0\vert A\rbrace - 1\\
&=P\lbrace(X_{1}-X_{2})(T_{1}-T_{2})>0\vert A\rbrace + 1 - P\lbrace(X_{1}-X_{2})(T_{1}-T_{2})<0\vert A\rbrace - 1\\
&=E[\sgn(X_{1}-X_{2})(T_{1}-T_{2})\vert A]=E[\sgn(X_{1}-X_{2})(T_{1}-T_{2})I_A]/P(A),
\end{split}
\end{equation*}
and consider the last expectation. Under the assumption $P(A)\neq 0$, the proof is completely analogous to that of \thmref{hnull1} given in \secref{proof1}, so the details are omitted.
\end{proof}
\subsection{Sample conditional Kendall's Tau and asymptotic properties of the corresponding test-statistic T}
\begin{definition}
Let $(X_1,T_1),\hdots,(X_n,T_n)$ be i.i.d. random vectors following the same distribution as $(X,T)$. Then the sample conditional Kendall's Tau is given by
\begin{align}\label{eq:sampletau}
t_{c}=\frac{1}{k}\ssum_{i<j}\sgn\left((X_i-X_j)(T_i-T_j)\right)I_{ij},
\end{align}
where $I_{ij}=I\lbrace \max(T_i,T_j)<\min(X_i,X_j)\rbrace$ and $k=\ssum_{i<j}I_{ij}$.
\end{definition}
To test the assumption $\tau_c=0$ we must consider the properties of a simplified version of $t_c$. Let $K$ be the number of concordant comparable pairs minus the number of discordantly comparable pairs. Thus 
\begin{align*}
K=\frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}\sgn\left((X_i-X_j)(T_i-T_j)\right)I_{ij}.
\end{align*}
To establish the asymptotic properties of $K$ we need to rewrite it. We define the set $\mathscr{R}_i$ and the cardinality of $\mathscr{R}_i$ by 
\begin{equation*}
\mathscr{R}_i=\lbrace j |T_j\leq X_i \leq X_j\rbrace,\quad R_i=\sum_{j=1}^{n}I(T_j\leq X_i \leq X_j)=\mbox{card}(\mathscr{R}_i).
\end{equation*}
In the expression of $K$ all elements appear twice since
\begin{align*}
\sgn\left((X_i-X_j)(T_i-T_j)\right)I_{ij}=\sgn\left((X_j-X_i)(T_j-T_i)\right)I_{ji}.
\end{align*}
By summing over $j\in \mathscr{R}_i$ we avoid this and we do not need to divide by one half. In addition, when $j\in \mathscr{R}_i$, the indicator function $I_{ij}$ will be $1$, so we can omit the indicator function as well. If we assume that the distribution of $(X,T)$ is continuous we can ignore the probability of ties\footnote{A tie is when the realisation of two variables are equal.}. For every $X_j$ for which $j\in \mathscr{R}_i$ we then have that $\sgn(X_j-X_i)=1$. This leads to the following representation of $K$
\begin{equation*}
K=\sum_{i=1}^{n}\sum_{j\in \mathscr{R}_i}\sgn(T_j-T_i)=\sum_{i=1}^{n}S_i.
\end{equation*}
The rewriting of $K$ is motivated by the following nice result about the random variables $S_i$.
\begin{theorem}
Assume that the distribution of $(X,T)$ is continuous so that the probability of ties can be ignored. Under $H_0$ the conditional distribution of $S_i$ given the set $\mathscr{R}_i$ is uniform. The probability mass function is given by
\begin{equation*}
\begin{split}
f_i(j)&=P(S_i=j\mid R_i=r_i)\\
&=
\begin{cases}
\dfrac{1}{r_i} \quad j=r_i-1, r_i-3,\hdots , -r_i+3, -r_i +1,\\
0 \quad\; \text{otherwise}.\\
\end{cases}
\end{split}
\end{equation*}
\begin{equation*}
\text{Hence}\quad E(S_i|R_i=r_i)=0,\quad \Var(S_i|R_i=r_i)=\frac{1}{3}(r_{i}^{2}-1).
\end{equation*}
\end{theorem}\label{thm:uniform}
\begin{proof} A proof in the case $R_i=3$ is given in \secref{proof3}.
\end{proof}
A visual inspection of this theorem can be seen in figure \ref{Unigraf1} and \figref{Unigraf2}. Note that $\rho=0$ imply quasi independence in the truncated bivariate normal case. Figure \ref{Unigraf1} was generated by drawing a sample from  $TN_{2}(0,-1,3,1,\rho=0)$ of size $n=50$. If the sample contained a set $\mathscr{R}_i$ with cardinality $R_i=10$, the corresponding value of $S_i$ were calculated. This routine was repeated until $12\;000$ values of $S_i|R_i=10$ were attained. \\\\
At first eyesight this result does not seem to help us decide significant departure from $H_0$. In practice we only have one data set, so we can't e.g. make a \forkorting{QQ}-plot to check if $S_i|R_i=r_i$ actually is uniform. However, the application of this result becomes clear in the next theorem.
\begin{theorem}\label{thm:normal2}
Assume that the distribution of $(X,T)$ is continuous and that the assumption $H_0$ holds, then 
\begin{align*}
T=\dfrac{K}{\lbrace\frac{1}{3}\sum_{i=1}^{n}(r_{i}^{2}-1)\rbrace^{\frac{1}{2}}}\xrightarrow{d} N(0,1).
\end{align*}
\end{theorem}
\textbf{Sketched proof:}\\
It can be shown, see \citep[page~173]{MR1049418}, that conditioned on $(R_1=r_1,\hdots,R_n=r_n)$, $S_1,\hdots,S_n$ are mutually independent. Hence $K$ is the sum of conditionally independent variables $S_i$. By \thmref{uniform} it then follows that
\begin{align*}
&E(K|R_1=r_1,\hdots,R_n=r_n)=\sum_{i=1}^{n}E(S_i|R_i=r_i)=0,\\
&\Var(K|R_1=r_1,\hdots,R_n=r_n)=\sum_{i=1}^{n}\Var(S_i|R_i=r_i)=\frac{1}{3}\sum_{i=1}^{n}(r_i^2-1).
\end{align*}
And since $K$ is a sum of independent variables it is possible to use the \textit{central limit theorem}\footnote{Let $\bar{X}_n$ be the average of the first $n$ variables of a sequence of independent, identically distributed random variables $X_1,X_2,\dots$. If $E|X_1|^2<\infty$ the central limit theorem asserts that $\sqrt{n}(\bar{X}_n-EX_1)\xrightarrow{d}N(0,var X_1)$} on 
\begin{equation*}
T=\dfrac{\sum_{i=1}^{n}\left(S_i-E(S_i|R_i=r_i\right))}{\sum_{i=1}^{n}\Var(S_i|R_i=r_i)}=\dfrac{K}{\lbrace\frac{1}{3}\sum_{i=1}^{n}(r_{i}^{2}-1)\rbrace^{\frac{1}{2}}}\;.
\end{equation*}
We can't apply the classical central limit theorem since the variances $ \Var(S_i|R_i=r_i)$ are not equal. However, the result follows from Lindebergs central limit theorem if the Lindeberg condition holds. In \citet{MR1049418} this is verified by evaluating the stronger Lyapunov condition.
\newpage
\begin{figure}[p]
\centering
\includegraphics[scale=1]{figurer/UniformS}
\caption{$12 000$ i.i.d. $S_i|R_i=10$ drawn from $12 000$ samples from the truncated bivariate normal distribution $TN_{2}(0,-1,3,1,\rho=0)$,  each of size $n=50$.}\label{Unigraf1}
\includegraphics[scale=1]{figurer/UniformS2}
\caption{The effect when the variables are not quasi independent: The same procedure as above only with $TN_{2}(0,-1,3,1,\rho=0.7)$.}\label{fig:Unigraf2}
\end{figure} 
\clearpage
\subsection{Testing the assumption of quasi independence with $T$}
Using \thmref{normal2} we can test the hypothesis $H_{T}:\tau_{c}=0$ versus $H_{T}^{c}:\tau_{c} \neq 0$. For sufficiently large $n$, reject $H_{T}$ whenever 
\begin{equation}\label{eq:T}
\abs{T}=\biggr|\dfrac{K}{\lbrace\frac{1}{3}\sum_{i=1}^{n}(r_{i}^{2}-1)\rbrace^{\frac{1}{2}}}\biggr|>Z_{\epsilon/2}\;,
\end{equation}
where $\epsilon$ denotes the significance level of the test and $Z_{\epsilon/2}$ the corresponding normal critical value. Analogous to accepting the hypothesis $\rho_c=0$, accepting the hypothesis $\tau_{c}=0$ do not imply quasi independence between the variables in general. And opposed to $\rho_c$, there is no direct link between $\tau_c$ and $H_0$ when the data follows a truncated bivariate normal distribution. However, this can be a more suitable test when data do not follow a truncated bivariate normal distribution. In \chapref{copmod} we will see how the conditional Kendall's tau can be used to estimate copula parameters.\\\\
The following example illustrates that $T$ is invariant to strictly increasing transformations of the data. 
\begin{example}
\Tabref{invariant} was made by first calculating the statistics $R$ and $T$ using a sample from $TN_2(0,-1,2,2,\rho=0)$ of size $n=100$. Afterwards, the same statistics were calculated from the exponentially transformed data. We see that the $R$ statistic is not invariant for such a transformation of the data, while $T$ is.
\end{example}
\begin{table}[htbp]
\caption{Invariance of $T$}
\centering
\begin{tabular}{lrr}
\toprule
&data & transformed data \\ 
\midrule
R&-0.087&-0.437\\
P-value&0.465 &0.331\\\\
T&-0.22 &-0.22\\
P-value&0.41 &0.41\\
\bottomrule
\end{tabular}
\label{tab:invariant}
\end{table}
\subsection{Monte Carlo approximation of $\tau_c$}
The calculation of $\tau_c$ can be done similar to the Monte Carlo approximation of $\rho_c$. With the same notations as in \secref{montecarlo} let
\begin{equation*}
\begin{split}
&\hat{\tau}_c= \frac{1}{n_A}\sum_{i=1}^{n}\sgn\left((X_{i}^{A}-X_{i}^{B})(T_{i}^{A}-T_{i}^{B})\right)I_{A_{i}},\\
&\text{where}\quad A_{i}=\lbrace\max(T_{i}^{A},T_{i}^{B})<\min(X_{i}^{A},X_{i}^{B})\rbrace,\quad n_A=\sum_{i=1}^{n}I_{A_i}\;.\\
\end{split}
\end{equation*}
This is the average of the function $\sgn\left((X_1-X_2)(T_1-T_2)\right)$ amongst the comparable pairs. By the strong law of large numbers we know that $\hat{\tau}_c$ converges almost surely to $E\left[\sgn\left((X_1-X_2)(T_1-T_2)\right)|A\right]=\tau_c$. Hence, for a sufficiently large $n$, this is a good approximation of $\tau_c$. Note that $\hat{\tau}_c$ is not the same as the sample conditional Kendall's tau $t_c$. In \figref{hepp} this method is used to make a visual inspection of the relations between the unconditional correlation and $\tau_c$ when $(X,T)$ follows a truncated bivariate normal distribution. For comparison, we include $\rho_c$ in the plot.      
\begin{figure}
\centering
\includegraphics[scale=0.9]{figurer/Sammenligning}
\caption{Unconditional correlation versus $\rho_c$ and $\tau_c$ in two different truncated bivariate normal cases, where $\rho$ varies from $-1$ to $1$.} \label{fig:hepp}
\end{figure}
\chapter{The Product-limit estimator}\label{chap:recon}
In this and the two following chapters we will consider the problem of reconstructing the distribution of $(X^*,T^*)$ using data from the observed vector $(X,T)=(X^*,T^*|X^*>T^*)$. The focus of this chapter will be on the reconstruction of the marginal distributions $F$ and $G$ under the assumption that $X$ and $T$ are quasi independent. For this purpose we will consider a well established estimator known as the Product-limit estimator.
\section{Definition and conditions}\label{sec:plesec}
The sampling mechanism in the left truncated case will cause the distribution of $X$ to be centred to the right of the distribution of $X^*$. This is natural since the sampling mechanism removes points in the lower domain of $F$. The Product-limit estimator (PLE) was derived by \citet{Lynden71} and is a nonparametric MLE of $F$. When data are given, the PLE attempts to correct for this bias by assigning higher weights to the smaller values of $(X_1,\dots,X_n)$. A detailed discussion of the PLE weights can be found in \citep{Stute}. In this chapter we will give a short description of this estimator based on the work of \citet{MR888448}. However, we will define the PLE using a quantity called the number at risk, $R(\cdot)$.
\begin{definition}[Number at risk]\label{def:nratrisk}
Given the observations $(X_1,T_1),\dots,(X_n,T_n)$ the number at risk at $(x,t)$ is given by
\begin{align*}
R(x,t)=\sum_{i=1}^{n}I(X_i\geq x,T_i\leq t),\quad\tilde{R}(z)=R(z,z).
\end{align*}
\end{definition}
In a survival analysis setting, where $X$ is truncated lifetime, $\tilde{R}(z)$ is the individuals at risk at time $z$ ($T\leq z$) that have not yet died ($X\geq z$). 
\begin{definition}[The Product-limit estimator]
Let $F$ and $G$ be the distributions of $X^*$ and $T^*$ respectively. For the i.i.d. truncated observations $(X_1,T_1),\dots,(X_n,T_n)$ let
\begin{align*}
r(z)=\frac{1}{n}\sum_{i=1}^{n}I(X_i=z),\quad s(z)=\frac{1}{n}\sum_{i=1}^{n}I(T_i=z).
\end{align*}
Then the Product-limit estimator of $F$ is given by
\begin{align}\label{eq:PLEdef}
\hat{F}_{PL}(z)=1\quad-\prod_{\text{distinct}\; X_i\leq z}\left(\dfrac{\tilde{R}(X_i)-r(X_i)}{\tilde{R}(X_i)}\right),
\end{align}
and the Product-limit estimate of $G$ is
\begin{align}
\hat{G}_{PL}(z)=\prod_{\text{distinct}\;T_i>z}\left( \dfrac{\tilde{R}(T_i)-s(T_i)}{\tilde{R}(T_i)}\right).
\end{align}
In both cases, an empty product is to be interpreted as one.
\end{definition}
Consider the conditional likelihood of the observed data points $x_1,\dots,x_n$ and $t_1,\dots,t_n$, written as a function of $F$ and $G$:
\begin{align*}
L_n=\prod_{i=1}^{n}\left( \diff F(x_i)\diff G(t_i)/\int\int_{u\geq v}\diff F(u)\diff G(v)\right).
\end{align*}
Maximising this likelihood with respect to $F$ and $G$ results in the Product-limit estimator of $F$ and $G$. Such a procedure is described in \citet{MR868322} in the right truncation case. However, we will not study these details. Instead we will try to derive the PLE of $F$ under some assumptions about its properties.\\\\
Assume that there are no ties in our observations. Hence $X_{(1)}<X_{(2)},\dots,<X_{(n)}$ and $r(X_i)=1$, $1\leq i\leq n$. We will assume that our estimator $\hat{F}_{PL}$ is a right continuous function with jumps at $X_1,\dots,X_n$ and with support on $[X_{(1)},X_{(n)}]$ so that $\hat{F}_{PL}(X_{(1)}-)=0$. Similarly we assume that $\hat{G}_{PL}$ is a right continuous function with jumps at $T_1,\dots,T_n$ and with support on $[T_{(1)},T_{(n)}]$.\\\\
 When $X^*$ and $T^*$ are independent we have that 
\begin{align*}
P(T\leq z\leq X)=P(T^*\leq z\leq X^*|X^*>T^*)=\frac{1}{\alpha_0}G(z)(1-F(z-)),
\end{align*}
where $\alpha_0=P(X^*>T^*)$. An estimation equation for $F$ and $G$ is therefore given by
\begin{align}\label{eq:esteqple}
\frac{\alpha_0}{n}\tilde{R}(z)=\hat{G}_{PL}(z)(1-\hat{F}_{PL}(z-)),
\end{align}
which, when written in logarithm form is
\begin{align}\label{logligning}
\log\left(\frac{\alpha_0}{n}\tilde{R}(z)\right)=\log\left(\hat{G}_{PL}(z)\right)+\log\left(1-\hat{F}_{PL}(z-)\right).
\end{align}
Next, let $X\in(X_1,\dots,X_n)$ and remember that $X>T$ for the corresponding $T\in(T_1,\dots,T_n)$. This means that jumps for the functions $\hat{G}_{PL}$ and $\hat{F}_{PL}$ will not occur at the same points. Consequently, we have that $\tilde{R}(X+)=\tilde{R}(X)-1$ and $\hat{G}_{PL}(X+)=\hat{G}_{PL}(X)$. Hence, by subtracting \ref{logligning} at $X+$ from \ref{logligning} at $X$ we get
\begin{equation}\label{logligning2}
\begin{split}
\log\left(\frac{\alpha_0}{n}\tilde{R}(X)\right)- & \log\left( \frac{\alpha_0}{n}(\tilde{R}(X)-1)\right)\\&=\log(1-\hat{F}_{PL}(X-))-\log(1-\hat{F}_{PL}(X)).
\end{split}
\end{equation}
Since $\hat{F}_{PL}$ is a right continuous step function with jumps at $X_1,\dots,X_n$, we have that
\begin{align*}
\log\left( 1-\hat{F}_{PL}(X_{(i)})\right)=\log\left( 1- \hat{F}_{PL}(X_{(i+1)}-)\right),\quad 1\leq i\leq n-1.
\end{align*} 
As we have assumed $\hat{F}_{PL}(X_{(1)}-)=0$ we get that
\begin{align*}
\log\left(1-\hat{F}_{PL}(X_{(1)}-)\right)=\log(1)=0.
\end{align*}
Therefore, if we let $X_{(a)}=\max(X_1\dots,X_n|X_i\leq z)$ and sum equation \ref{logligning2} over all $X_i$ where $X_i\leq z$, we get
\begin{equation*}
\begin{split}
&\sum_{X_i\leq z}\left[\log\left(\alpha_0\dfrac{\tilde{R}(X_i)}{n}\right)-\log\left(\alpha_0\dfrac{\tilde{R}(X_i)-1}{n}\right)\right]=\underbrace{\log\left( 1-\hat{F}_{PL}(X_{(1)}-)\right)}_0\\
&+\underbrace{\left[-\log\left( 1-\hat{F}_{PL}(X_{(1)})\right)+\log\left( 1-\hat{F}_{PL}(X_{(2)}-)\right)\right]}_0\\
&+\underbrace{\left[-\log\left( 1-\hat{F}_{PL}(X_{(2)})\right)+\log\left( 1- \hat{F}_{PL}(X_{(3)}-)\right)\right]}_0+\dots\\
&+\underbrace{\left[-\log\left( 1- \hat{F}_{PL}(X_{(a-1)})\right)+\log\left( 1- \hat{F}_{PL}(X_{(a)}-)\right)\right]}_0-\log\left( 1-\hat{F}_{PL}(X_{(a)})\right)\\
&= -\log\left( 1-\hat{F}_{PL}(X_{(a)})\right).
\end{split}
\end{equation*}
It follows from the definition of $X_{(a)}$ that $\hat{F}_{PL}(X_{(a)})=\hat{F}_{PL}(z)$, so the above equation becomes 
\begin{equation*}
\begin{split}
\log(1-\hat{F}_{PL}(z))&=-\sum_{X_i\leq z}\left[\log\left(\alpha_0\dfrac{\tilde{R}(X_i)}{n}\right)-\log\left(\alpha_0\dfrac{\tilde{R}(X_i)-1}{n}\right)\right]\\
&=\sum_{X_i\leq z}\log \left(\dfrac{\tilde{R}(X_i)-1}{\tilde{R}(X_i)}\right)\\
&=\log\left(\prod_{X_i\leq z}\left(\dfrac{\tilde{R}(X_i)-1}{\tilde{R}(X_i)}\right)\right).
\end{split}
\end{equation*}
Thus, an estimator of $F$ is given by
\begin{align*}
\hat{F}_{PL}(z)=1-\prod_{X_i\leq z}\left(\dfrac{\tilde{R}(X_i)-1}{\tilde{R}(X_i)}\right),
\end{align*}
which equals the definition given by \eqref{PLEdef} when there are no ties amongst $(X_1,\dots,X_n)$. Analogous procedures can be done for the truncating variables $(T_1,\dots,T_n)$ to get
\begin{align*}
\hat{G}_{PL}(z)=\prod_{T_i>z}\left( \dfrac{\tilde{R}(T_i)-1}{\tilde{R}(T_i)}\right).
\end{align*}
 Note that the definition of $\hat{F}_{PL}$ given in \eqref{PLEdef} also implies that $\hat{F}_{PL}$ is supported on $[X_{(1)},X_{(n)}]$. This may seem strange since the support of $F$ most likely extends below $X_{(1)}$ and above $X_{(n)}$. However, values within the interval $[X_{(1)},X_{(n)}]$ are assigned approximately the correct mass (See \figref{PLE}). Under the conditions given in the following theorem (following \citet{MR888448}), the interval $[X_{(1)},X_{(n)}]$  will extend to the support of $F$ as $n\rightarrow \infty$.
\begin{theorem}[Conditions for consistent reconstructions of $F$ and $G$]\label{thm:condi}
Put
\begin{equation*}
\begin{split}
&a_F=\inf\lbrace x:F(x)>0\rbrace,\quad b_F=\sup\lbrace x:F(x)<1\rbrace,\\
&a_G= \inf\lbrace t:G(t)>0\rbrace,\quad b_G=\sup\lbrace t:G(t)<1\rbrace.
\end{split}
\end{equation*}
If $X^*$ and $T^*$ are independent, then $\hat{F}_{PL}$ is a consistent reconstruction of $F$ only if $a_G\leq a_F$. Similar, $\hat{G}_{PL}$ is a consistent reconstruction of $G$ only if $b_G\leq b_F$.
\end{theorem}
\begin{proof}
A proof can be found in \citep{MR888448}.
\end{proof}
These conditions are reasonable: If $a_G>a_F$, we will never get information about the region at which $X^*<a_G$ because of the sampling mechanism. Consequently,  $F$ can't be fully recovered. Similar, if $b_G> b_F$ , we will never get information about the region at which $T^*>b_F$.  Note that if $F$ and $G$ are continuous, the conditions are $G^{-1}(0)\leq F^{-1}(0)$ and $G^{-1}(1)\leq F^{-1}(1)$.\\\\
Originally, the Product-limit estimator is said to be applicable when $X^*$ and $T^*$ are independent. \citet{MR1049418} pointed out that the asymptotic properties would remain the same if we assume quasi independence, though he did not give any explicit arguments of why this is so. We leave this verification open, but point out that the estimation \eqref{esteqple} is valid also under the assumption of quasi independence.

\section{A problematic property of the PLE}
Assume that there are no ties among $X_1,\dots,X_n$ so that $r(X_{(i)})=1$ for $1\leq i\leq n$. If
\begin{align}\label{problem}
\tilde{R}(X_{(i)})=1\quad \text{for some $i$,}\quad 1\leq i < n,
\end{align}
then
\begin{align*}
\dfrac{\tilde{R}(X_{(i)})-r(X_{(i)})}{\tilde{R}(X_{(i)})}=0,\quad \text{hence}\quad F(x_{(i)})=1.
\end{align*}
The following example illustrates how this may lead to unreasonable results
\begin{example}
Consider the pair $(x_{(1)},t)$ in a sample of $n$ pairs $(x_i,t_i)$. Assume all the other truncating variables $t_i$ in the sample are larger than $x_{(1)}$. Then $\tilde{R}(x_{(1)})=\sum_{i=1}^{n}I(t_i\leq x_{(1)})=I(t\leq x_{(1)})=1$,  Thus
\begin{align*}
\hat{F}_{PL}(x_{(1)})=1.
\end{align*}
\end{example}
We see how important independence is since such samples are most likely obtained when there is a positive association between $X^*$ and $T^*$. However, \ref{problem} may occur in the independent case as well. \citet{MR888448} showed that the probability of \ref{problem} occurring is asymptotically negligible in the independent case. As a precautionary measure, one should always check the values of $\tilde{R}(x_{(i)})$ for $1\leq i \leq n$. Hopefully, only $\tilde{R}(x_{(n)})$ should be equal to $1$. If not, \citet{MR888448} suggested replacing $\tilde{R}$ by
\begin{align*}
\tilde{R}^{*}(z)=\max\lbrace \tilde{R}(z), nk_n(z)\rbrace, \quad 0\leq z \leq x_{(n)},
\end{align*}
where $k_n$ is a non-increasing function for which $k_n(z)>k_n(x_{(n)})=\frac{1}{n}$ for all $z<x_{(n)}$. In this way $\tilde{R}^{*}(x_i)>1$ for $1\leq i <n$, and $\tilde{R}^{*}(x_{(n)})=1$. 
\section{Applications of the PLE}
Given the Product-limit estimators of $F$ and $G$ we have the following nonparametric maximum likelihood estimates\footnote{The parameters $\mu_x$, $\mu_t$, $\sigma^{2}_{x}$ and $\sigma^{2}_{t}$ denotes $E(X^*)$, $E(T^*)$, $\Var(X^*)$ and $\Var(T^*)$ respectively.}:
\begin{align}\label{eq:forvPLE}
\hat{\mu}_x=\int_{-\infty}^{\infty}u\diff \hat{F}_{PL}(u)=\sum_{i=1}^{n}x_{(i)}\hat{F}_{PL}\lbrace x_{(i)}\rbrace,
\end{align} 
\begin{align*}
\hat{\mu}_t=\int_{-\infty}^{\infty}v\diff \hat{G}_{PL}(v)=\sum_{i=1}^{n}t_{(i)}\hat{G}_{PL}\lbrace t_{(i)}\rbrace,
\end{align*} 
\begin{align*}
\hat{\sigma}_{x}^{2}=\int_{-\infty}^{\infty}(u-\hat{\mu}_x)^2\diff \hat{F}_{PL}(u)=\sum_{i=1}^{n}(x_{(i)}-\hat{\mu}_x)^2\hat{F}_{PL}\lbrace x_{(i)}\rbrace,
\end{align*} 
\begin{align*}
\hat{\sigma}_{t}^{2}=\int_{-\infty}^{\infty}(v-\hat{\mu}_t)^2\diff \hat{G}_{PL}(v)=\sum_{i=1}^{n}(t_{(i)}-\hat{\mu}_t)^2\hat{G}_{PL}\lbrace t_{(i)}\rbrace,
\end{align*} 
where $\hat{F}_{PL}\lbrace x_{(i)}\rbrace$ and $\hat{G}_{PL}\lbrace t_{(i)}\rbrace$ are the Product-limit density functions given by:
\begin{equation*}
\begin{split}
&\hat{F}_{PL}\lbrace x_{(i)}\rbrace = \hat{F}_{PL}(x_{(i)})-\hat{F}_{PL}(x_{(i-1)}),\quad 2\leq i \leq n,\\
&\hat{F}_{PL}\lbrace x_{(1)}\rbrace=\hat{F}_{PL}(x_{(1)}),\\
&\hat{G}_{PL}\lbrace t_{(i)}\rbrace = \hat{G}_{PL}(t_{(i)})-\hat{G}_{PL}(t_{(i-1)}),\quad 2\leq i \leq n,\\
&\hat{G}_{PL}\lbrace t_{(1)}\rbrace=\hat{G}_{PL}(t_{(1)}).\\
\end{split}
\end{equation*}
By using Product-limit estimates of $F$ and $G$ it is also possible to estimate $\alpha_0=P(X^*>T^*)$. First, note that
\begin{align*}
\alpha_0&=\int\int_{u>v}\diff F(u)\diff G(v)=\int_{-\infty}^{\infty}\Bigr[\int_{-\infty}^{u}\diff G(v)\Bigr]\diff F(u)=\int_{-\infty}^{\infty}G(u)\diff F(u).
\end{align*}
Hence the nonparametric maximum likelihood estimator of $\alpha_0$ is 
\begin{align}\label{eq:alpha}
\hat{\alpha}_0=\int_{-\infty}^{\infty}\hat{G}_{PL}(u)\diff \hat{F}_{PL}(u)= \sum_{i=1}^{n}\hat{G}_{PL}(x_{(i)})\hat{F}_{PL}\lbrace x_{(i)}\rbrace.
\end{align}
\section{Simulation result}\label{sec:plesimulation}
To evaluate the performance of the PLE, two separate simulations were carried out in R. The first simulation is simply a re-do of the example given in \citep{MR888448}. In the second simulation the PLE is tested in the independent truncated bivariate normal case. 
\subsection{Simulation 1: The independent uniform case}
Assume $X^*$ and $T^*$ are independent and uniformly distributed on the unit interval. Obviously, $\alpha_0=1/2$. The joint distribution of the truncated variables $X$ and $T$ is then given by \eqref{quasi}:
\begin{equation}\label{jointuni}
\begin{split}
F^c(x,t)&=\int\int_{\Delta(x,t)}\diff F(u)\diff G(v)/\alpha_{0}=2\int_{0}^{x}\int_{0}^{\min(t,u)}\diff v\diff u\\
&=2\int_{0}^{x}\min(t,u)\diff u = 2(xt -\frac{1}{2}t^2),\quad 0\leq x\leq 1, \quad 0\leq t<1,\quad x>t.
\end{split}
\end{equation}
Note that the last equality is only valid when $x>t$. So marginally, since $F^c(x)=H^{c}(x,1)$, we have to put $t=1$ in the last integral. We then get
\begin{equation*}
\begin{split}
&F^c(x)=2\int_{0}^{x}u\diff u=x^2,\quad 0\leq x \leq 1,\\ 
&\text{hence}\quad E(X)=\int_{0}^{1}P(X>u)\diff u=\int_{0}^{1}(1-u^2)\diff u = \frac{2}{3}\;.
\end{split}
\end{equation*}
In the simulation, $n=10$ pairs of $(x,t)$ were drawn from the distribution given in \ref{jointuni}. It turned out in this case that $\tilde{R}(x_{(i)})>1$ for $1\leq i <n$, so we did not have to use $\tilde{R}^{*}$ in the calculation of the PLE.  The result can be viewed in table \ref{unisim}. Here $\hat{F}_{PL}(x_{(i)})$ should be compared with $x_{(i)}$ since $F(x)=x$, $0\leq x\leq 1$. The sample average was $\bar{x}=0.6437$, which is close to $E(X)=2/3$. The MLE of the mean given by \eqref{forvPLE} was $\hat{\mu}_x=0.5603$, which is quite close to $E(X^*)=1/2$. The MLE of $\alpha_0$ given by \eqref{alpha} was $\hat{\alpha}_0=0.5925$, also somewhat close to $\alpha_0=1/2$. It would be optimistic to hope for a better result when the calculation was done using only ten data points. In fact, repetition of the simulation revealed a rather erratic behaviour of the PLE and the resulting estimates of $\alpha_0$ and $\mu_x$. By increasing $n$ the estimates became more accurate, supporting the consistency of the PLE.
\\\\
\\\\

\begin{table}[htbp]
\centering
\begin{tabular}{rrrrrr}
\toprule
$i$ & $x_{(i)}$ &$t$  & $\tilde{R}(x_{(i)})$ & $\hat{F}_{PL}(x_{(i)})$ &$\hat{F}_{PL}\lbrace x_{(i)}\rbrace$ \\ 
\midrule
1&0.2575&0.2363&5&0.2000&0.2000\\
2&0.4087&0.1695&6&0.3333&0.1333\\
3&0.4357&0.3765&5&0.4666&0.1333\\
4&0.6438&0.0420&6&0.5555&0.0888\\
5&0.6658&0.6285&5&0.6444&0.0888\\
6&0.6724&0.5971&4&0.7333&0.0888\\ 
7&0.7225&0.3251&3&0.8222&0.0888\\
8&0.8203&0.1389&3&0.8814&0.0592\\
9&0.8970&0.7317&2&0.9407&0.0592\\
10&0.9129&0.0816&1&1.0000&0.0592\\ 
\bottomrule
\end{tabular}
\caption{Calculations of the PLE in the independent uniform case. The estimated MLE of the mean and the sample average are $\hat{\mu}_x=0.5603$ and $\bar{x}=0.6437$. }
\label{unisim}
\end{table}
\newpage
\subsection{Simulation 2: The independent normal case}
In this simulation, $n=100$ pairs of $(X,T)$ where drawn from a $TN_2(0,-1,2,2,0)$ distribution. Also in this simulation, $\tilde{R}(x_{(i)})>1$ for $1\leq i <n$, so we did not need to use $\tilde{R}^{*}$ in the calculation of the PLE. A visual representation of the estimated PLE is displayed in \figref{PLE}. The real distribution of $X^*$ is included in the figure. In the interval $[x_{(1)},x_{(n)}]$ the PLE is quite close to the real distribution, but the estimation error is a little larger in the lower end of this interval. This is the penalty we receive when we assign larger weights to the smaller values of $(x_1,\dots,x_n)$.\\\\ By the definition of a truncated bivariate normal distribution, $X^*\sim N(0,2)$. The MLE of the mean is $\hat{\mu}_x=0.0534$, which is quite close to $EX^*=0$. This should be compared to the sample average $\bar{x}=0.5372$. The MLE of the variance is $1.7168$, also quite close to $\Var X^*=2$. By Monte Carlo approximation, the true value of $\alpha_0$ is $0.6922$. The MLE of $\alpha_0$ given by \eqref{alpha} is $0.6763$.

\begin{figure}[htbp]
\centering
\includegraphics[scale=0.98]{figurer/PLE2}
\caption{Calculation of the PLE of $F$ in the independent, truncated bivariate normal case $TN_2(0,-1,2,2,0)$, $n=100$. Note that $\hat{F}_{PL}(z)=0$ for $z<x_{(1)}=-2.11$. }\label{fig:PLE}
\end{figure}
\clearpage
\section{The generalised inverse of the PLE}
Assume that we wish to simulate from the PLE, by generating a random variable $X^*$ with the distribution $\hat{F}_{PL}$. The standard procedure is then to let $X^*=\hat{F}_{PL}^{-1}(U)$ where $U\sim U[0,1]$ and $\hat{F}_{PL}^{-1}(u)=\inf\lbrace x:\hat{F}_{PL}(x)\geq u \rbrace$. In the continuous case this is valid since
\begin{align*}
P(X\leq x)=P(F^{-1}(U)\leq x)=P(U\leq F(x))=F(x).
\end{align*}
Simulating from the generalised inverse of the PLE can be done using the following algorithm.
\begin{itemize}
\item Let $\lbrace x_{(i)} \rbrace$, $1\leq i \leq n$ be the ordered values of the sample,
\item Apply $\hat{F}_{PL}$ on the sequence $\lbrace x_{(i)} \rbrace$,
\item Draw $U\sim U[0,1]$ and let $X^*=\min\lbrace x_{(i)}:\hat{F}_{PL}(x_{(i)})\geq U \rbrace$.
\end{itemize}
Then $X^*$ is distributed according to $\hat{F}_{PL}$. Note that we may only draw values equal to values in the observed data. If we want to simulate from the conditional empirical distribution $F_{n}^{c}(z)=1/n\sum_{i=1}^{n}I(X_i\leq z)$ we may simply draw uniformly from the observed data.
\begin{figure}[htbp]
\centering
\includegraphics[scale=1]{figurer/histPLE}
\caption{Histogram of $100$ random variables drawn from $\hat{F}_{PL}$ using the algorithm described above. $\hat{F}_{PL}$ was made using $n=100$ i.i.d. $TN_2(0,-1,2,2,0)$.}\label{fig:hist}
\end{figure}
\chapter{Maximum likelihood estimation in the truncated bivariate normal case}\label{chap:mlebiv}
For data subject to a dependent truncation the PLE is not applicable. For such data we must model the dependence between $X^*$ and $T^*$ in some way. For example, we can assume that $(X^*,T^*)$ follows some joint distribution function. We can then derive the conditional distribution of $(X,T)$ and choose parameters that fits the observed data. This can be done by using the maximum likelihood method.
\section{Basic properties and definitions}
Let $\boldsymbol{X}_1=\boldsymbol{x}_1,\dots,\boldsymbol{X}_n=\boldsymbol{x}_n$ be i.i.d. $f_{\boldsymbol{X}}(\boldsymbol{x}|\boldsymbol{\theta})$, where $\boldsymbol{\theta}\in\mathbb{R}^d$ and $\boldsymbol{X}_{i}\in\mathbb{R}^p$. Then the likelihood function is defined by
\begin{align*}
L(\boldsymbol{\theta})=\prod_{i=1}^{n}f_{\boldsymbol{X}}(\boldsymbol{x}_i|\boldsymbol{\theta}).
\end{align*}
The maximum likelihood estimate (MLE) of $\boldsymbol{\theta}$ is the value $\boldsymbol{\hat{\theta}}$ which maximises the likelihood function, hence the name. For such estimates we have the following result 
\begin{theorem}
Let $\boldsymbol{\hat\theta}$ be the MLE of $\boldsymbol{\theta}$. Then under suitable regularity conditions on $f_{\boldsymbol{X}}(\boldsymbol{x}|\boldsymbol{\theta})$
\begin{align*}
\boldsymbol{\hat\theta}\xrightarrow{P}\boldsymbol{\theta}.
\end{align*}
That is, $\boldsymbol{\hat\theta}$ is a consistent estimator of $\boldsymbol{\theta}$.
\end{theorem}
The ''suitable regularity conditions'' can be found in \citep[page 516]{Casella} for a scalar parameter. For a vector parameter $\boldsymbol{\theta}\in\mathbb{R}^d$ more assumptions are required, but they are usually satisfied in reasonable problems.
\begin{definition}
The Fisher-information is defined by
\begin{align*}
I(\boldsymbol{\theta})=-\dfrac{\partial^2}{\partial \boldsymbol{\theta}\partial \boldsymbol{\theta}^{T}}\log(L(\boldsymbol{\theta})).
\end{align*}
\end{definition}
The Fisher-information is a $d\times d$ matrix. When evaluated at $\boldsymbol{\hat\theta}$ we call it the observed Fisher-information. 
\begin{theorem}\label{thm:mleresult}
Assume $\boldsymbol{\hat\theta}$ is a consistent MLE of $\boldsymbol{\theta}$. Then 
\begin{align*}
I^{1/2}(\boldsymbol{\hat\theta})(\boldsymbol{\hat\theta}-\boldsymbol{\theta})\xrightarrow{d}N_d(0,\boldsymbol{I}_d),
\end{align*}
where $\boldsymbol{I}_d$ is the identity matrix of size $d$.
\end{theorem}
As a result we have that for a finite sample estimate $\boldsymbol{\hat\theta}$, $sd(\theta_i)\approx \sqrt{I^{ii}}$ where $I^{ii}$ is the i'th element in the diagonal of $I^{-1}(\boldsymbol{\hat\theta})$. In addition, for a sufficiently large $n$, $\hat{\theta}_i$ is approximately normally distributed with expectation $\theta_i$ and variance $I^{ii}$. The following theorem provides the Fisher information of a continuous transformation of the MLE .
\newpage
\begin{theorem}\label{mleg}
For the parameter vector $\boldsymbol\theta\in\mathbb{R}^p$ let $\textbf{g}(\boldsymbol{\theta})=(g_1(\boldsymbol{\theta}),\dots,g_p(\boldsymbol{\theta)})$ be such that the $p\times p$ matrix $J$ with elements $J_{ij}=\partial g_j/\partial\theta_i$ is invertible. Then the Fisher information of $\textbf{g}(\boldsymbol{\theta})$ is 
\begin{align*}
I\left( \textbf{g}(\boldsymbol{\theta})\right)=J^{-1}I(\boldsymbol{\theta})(J^{T})^{-1},\quad\text{hence}\quad I^{-1}\left( g(\boldsymbol{\theta})\right)=J^{T}I^{-1}(\boldsymbol{\theta})J.
\end{align*}
\end{theorem}
The following theorem shows the invariance property of MLE.
\begin{theorem}\label{thm:mleg2}
Assume $\boldsymbol{\hat\theta}$ is a consistent MLE of $\boldsymbol{\theta}$. Then for a continuous function\\ $\boldsymbol{g}:\mathbb{R}^p\rightarrow \mathbb{R}^p$ we have that
\begin{align*}
I^{1/2}\left( \textbf{g}(\boldsymbol{\hat{\theta}})\right)(\textbf{g}(\boldsymbol{\hat\theta})-\textbf{g}(\boldsymbol{\theta}))\xrightarrow{d}N_d(0,\boldsymbol{I}_d).
\end{align*}
\end{theorem}
\section{Estimation with a truncated dataset}\label{sec:mlesec}
Consider the model where $(X_1,T_1),\hdots,(X_n,T_n)$ are i.i.d. $TN_{2}(\mu_x,\mu_t,\sigma_x^2,\sigma_t^2,\rho)$. The density of $(X^*,T^*)$, which we want to reconstruct, is then given by
\begin{equation*}
\begin{split}
&h(x,t)=\frac{1}{2\pi\sigma_x\sigma_t\sqrt{1-\rho^2}}\\
&\times\exp\Biggr\lbrace-\frac{1}{2(1-\rho^2)}\biggr[\Bigr(\frac{x-\mu_x}{\sigma_{x}}\Bigr)^2 -2\rho\Bigr(\frac{x-\mu_x}{\sigma_{x}}\Bigr)\Bigr(\frac{t-\mu_t}{\sigma_{t}}\Bigr)+\Bigr(\frac{t-\mu_t}{\sigma_{t}}\Bigr)^2\biggr]\Biggr\rbrace,
\end{split}
\end{equation*}
and the density of $(X,T)$ is given by \eqref{defdensity}.
 Let $\boldsymbol{\theta}=(\mu_x,\mu_t,\sigma_x^2,\sigma_t^2,\rho)$ and $(\mathbf{x,t})=((x_1,t_1),\hdots,(x_n,t_n))$.
The probability of the observed data $(\mathbf{x,t})$ is then the likelihood function
\begin{equation*}
L(\boldsymbol{\theta})=\prod_{i=1}^{n}h^c(x_i,t_i|\boldsymbol{\theta})=\frac{1}{\alpha(\boldsymbol{\theta})^n}\prod_{i=1}^{n}h(x_i,t_i|\boldsymbol{\theta}),
\end{equation*}
where $\alpha(\boldsymbol{\theta})=P(X^*>T^*|\boldsymbol{\theta})$. Maximising $L(\boldsymbol{\theta})$ with respect to $\boldsymbol\theta$ is equivalent to maximising the log likelihood function:
\begin{equation*}
\begin{split}
\log(L(\boldsymbol{\theta}))&=-n\log\alpha(\boldsymbol{\theta})+\sum_{i=1}^{n}\log h(x_i,t_i|\boldsymbol{\theta})\\
&=C - n\log\alpha(\boldsymbol{\theta})-n\log(\sigma_x\sigma_t)-\frac{n}{2}\log(1-\rho^2)\\
&\phantom{=}-\frac{1}{2(1-\rho^2)}\sum_{i=1}^{n}\biggr[\Bigr(\frac{x_i-\mu_x}{\sigma_{x}}\Bigr)^2 -2\rho\Bigr(\frac{x_i-\mu_x}{\sigma_{x}}\Bigr)\Bigr(\frac{t_i-\mu_t}{\sigma_{t}}\Bigr)+\Bigr(\frac{t_i-\mu_t}{\sigma_{t}}\Bigr)^2\biggr]
\end{split}
\end{equation*}
In this particular case $\alpha(\boldsymbol{\theta})$ can be calculated quite easy:
\begin{equation*}
\alpha=P(X^*>T^*)=P(T^*-X^*<0)=P(U<0).
\end{equation*}
And since $(X^*,T^*)$ is bivariate normal distributed it follows that 
\begin{align*}
U\sim N(\mu_t-\mu_x,\sigma_{x}^{2}+\sigma_{t}^{2}-2\rho\sigma_x\sigma_t).
\end{align*}
Hence
\begin{align*}
\alpha(\boldsymbol{\theta})=\phi\Biggr(\dfrac{\mu_t-\mu_x}{\sqrt{\sigma_{x}^{2}+\sigma_{t}^{2}-2\rho\sigma_x\sigma_t}}\Biggr),
\end{align*}
where $\phi$ denotes the standard normal cumulative distribution function.\\\\ 
The function $\log(L(\boldsymbol{\theta}))$ can be maximised numerically. In this optimisation it is important to let $\rho$ be constrained to the open interval $(-1,1)$.  To evaluate the method, four samples of different size were drawn from $TN_{2}(0,-1,1,1,0.3)$ with sample size $n=50,100,200$ and $500$. The optimisation was done using a Quasi-Newton method in R. The result can be viewed in \tabref{likeltabell}. We see that the estimates improve as $n$ increase. Different samples gave of course different answers, but all were close to the real parameters for large $n$. We will continue the evaluation of this method in  \secref{mleindtest}.
\begin{table}[htbp]
\caption{MLE of the parameters in a truncated bivariate normal distribution where the real parameters are $\mu_{x}=0$, $\mu_{t}=-1$, $\sigma_{x}^{2}=1$, $\sigma_{t}^{2}=1$ and $\rho=0.3$.}
\centering
\begin{tabular}{rrrrrr}
\toprule
&n=50 & n=100 & n=200 & n=500 & True value\\ 
\midrule
$\hat{\mu}_x$&-0.2529&-0.0729&0.0286&-0.0128& 0\\
$\hat{\mu}_t$&-1.0130&-1.0744&-0.9276&-0.9669& -1\\
$\hat{\sigma}_{x}^{2}$&1.0733&0.9505&0.9699&1.0050& 1\\
$\hat{\sigma}_{t}^{2}$&0.7925&0.9911& 0.9848&1.0572& 1\\
$\hat{\rho}$&0.1202&0.2583&0.1741& 0.2732& 0.3\\
\bottomrule
\end{tabular}
\label{tab:likeltabell}
\end{table}
\\\\
\subsection{Normal linear model}
A natural extension of the i.i.d. $TN_{2}(\mu_x,\mu_t,\sigma_x^2,\sigma_t^2,\rho)$ model, that allows some modelling of the relationship with covariates, is to drop the identical requirement from the i.i.d. This can be done by modelling the means $\mu_{xi}$ and $\mu_{ti}$ as functions of the covariates. The simplest structure of such a function is the linear model:
\begin{align*}
\mu_{xi}=\alpha_x + y_{i}^{T}\beta_x\; ,\quad \mu_{ti}=\alpha_t + y_{i}^{T}\beta_t\;,
\end{align*}
where $y_i$ is a vector of covariates. If we assume that $(X_1,T_1),\dots,(X_n,T_n)$ are independent $TN_{2}(\mu_{xi},\mu_{ti},\sigma_x^2,\sigma_t^2,\rho)$ the log likelihood function becomes
\begin{equation*}
\begin{split}
\log(L(\boldsymbol{\theta}))&=-\sum_{i=1}^{n}\log\alpha_i(\boldsymbol{\theta})+\sum_{i=1}^{n}\log h(x_i,t_i|\boldsymbol{\theta})\\
&=C - \sum_{i=1}^{n}\log\alpha_i(\boldsymbol{\theta})-n\log(\sigma_x\sigma_t)-\frac{n}{2}\log(1-\rho^2)-\\
&\phantom{=}\frac{1}{2(1-\rho^2)}\sum_{i=1}^{n}\biggr[\Bigr(\frac{x_i-\mu_{xi}}{\sigma_{x}}\Bigr)^2 -2\rho\Bigr(\frac{x_i-\mu_{xi}}{\sigma_{x}}\Bigr)\Bigr(\frac{t_i-\mu_{ti}}{\sigma_{t}}\Bigr)+\Bigr(\frac{t_i-\mu_{ti}}{\sigma_{t}}\Bigr)^2\biggr],
\end{split}
\end{equation*}
where 
\begin{align*}
\alpha_i(\boldsymbol{\theta})=\phi\Biggr(\dfrac{\mu_{ti}-\mu_{xi}}{\sqrt{\sigma_{x}^{2}+\sigma_{t}^{2}-2\rho\sigma_x\sigma_t}}\Biggr).
\end{align*}
This model is used in \secref{finaldep} to investigate if the dependence between $X$ and $T$ can be explained by a common covariate. 
\section{Testing dependence using the MLE of $\rho$}\label{sec:mleindtest}
It is especially interesting that \thmref{mleresult} provides a method for testing $\rho=0$ versus $ \rho \neq 0$. In the optimisation, we only need to include the ''hessian=TRUE'' command in R to produce the so called observed Fisher information matrix $I(\boldsymbol{\hat\theta})$. In our case, we have that $\mbox{sd}(\hat{\rho})\approx \sqrt{I^{55}}$. We should therefore reject the hypothesis $\rho=0$  whenever
\begin{align*}
\abs{Z^*}=\left|\dfrac{\hat{\rho}}{\sqrt{I^{55}}}\right|>\abs{Z_{\epsilon/2}}.
\end{align*}
Moreover, when $(X^*,T^*)$ follows a bivariate normal distribution then rejecting $\rho=0$ is equivalent to rejecting the hypothesis of independence. Unfortunately, there is no way of testing the assumption that $(X^*,T^*)$ follows a bivariate normal distribution with a truncated dataset. We will address this problem in \secref{goodsec}.\\\\ 
To investigate the above approximation a simulation was carried out in R. The following routine was repeated 400 times for every fixed combination of $n=50,100,200$ and $\rho=-0.5,0,0.5$:
\begin{itemize}
\item $n$ pairs were drawn from the truncated bivariate normal distribution\\ $TN_{2}(0,-1,1,1,\rho)$,
\item Using these $n$ pairs, the MLEs of $\rho$ and $I^{55}$ were computed.
\end{itemize}
For each fixed combination of $\rho$ and $n$ we then obtain the samples $\hat{\rho}_{1},\dots, \hat{\rho}_{400}$ and $I^{55}_{1},\dots,I^{55}_{400}$. We then calculate:
\begin{equation*}
\begin{split}
&AVE(\hat{\rho})=\frac{1}{400}\sum_{i=1}^{400}\hat{\rho}_{i},\\
&AVE(I^{55})=\frac{1}{400}\sum_{i=1}^{400}I^{55}_{i},\\
&VAR(\hat{\rho})=\frac{1}{399}\sum_{i=1}^{400}(\hat{\rho}_{i}-AVE(\hat{\rho}))^2,
\end{split}
\end{equation*}
\textbf{Result}\\\\
The result can be seen in \tabref{mlerho}. In all cases, $AVE(\hat{\rho})$ is close to $\rho$. We see that $AVE(I^{55})$ is quite close to $VAR(\hat{\rho})$ for $n=100$ and $n=200$, indicating that the approximation $\mbox{sd}(\hat{\rho})\approx \sqrt{I^{55}}$ is not so bad. Both quantities decreases with increasing $n$, hence the accuracy of the estimates is increasing in $n$. The Shapiro Wilks statistic for testing normality in the sample of $400$ $\rho$'s asserts that the assumption of normality hold when $n=100$ and $n=200$, but not when $n=50$. However, the computed p-values are all low, and when we tested the normality of $z_i=(\hat{\rho}-\rho)/\sqrt{I^{55}}$ we got a rejection in all cases. \\\\
\begin{table}[htbp]
\caption{Simulation results of $\hat{\rho}$ from truncated samples sized $n$ of a bivariate normal distribution with $\mu_{x}=0$, $\mu_{t}=-1$, $\sigma_{x}^{2}=1$, and $\sigma_{t}^{2}=1$.}
\centering
\begin{tabular}{rrrrrr}
\toprule
&&&&&Truncated\\
$\rho$&  & n=50 & n=100 & n = 200 & proportion  \\ 
\midrule
-0.5&$AVE(\hat{\rho})$& -0.4886&-0.4983&-0.4996&0.2818 \\
&$VAR(\hat{\rho})$&0.0323&0.0141&0.0054& \\
&$AVE(I^{55})$&0.0295&0.0151&0.0054& \\
&Normal p&0.0113&0.0822&0.1031&\\\\
0&$AVE(\hat{\rho})$&0.0051&0.0046&0.0020&0.2393\\
&$VAR(\hat{\rho})$&0.0577&0.0224&0.0114& \\ 
&$AVE(I^{55})$&0.0476&0.0244&0.0123& \\
&Normal p&0.0421&0.0666&0.1340&\\\\
0.5&$AVE(\hat{\rho})$&0.4972&0.4995&0.4986&0.1592 \\
&$VAR(\hat{\rho})$&0.0236&0.0120&0.0053& \\ 
&$AVE(I^{55})$&0.0251&0.0118&0.0058& \\
&Normal p&0.0237&0.0712&0.1022&\\
\bottomrule
\end{tabular}
\label{tab:mlerho}
\end{table}
\newpage
The main problem in this case is that $\rho$ is restricted to the interval $(-1,1)$. So if e.g. we have that $\rho=0.7$ the normal approximation will be very poor because of the negative skewness (see \figref{histrho}). Therefore, consider the so-called Fisher's $z$ transform
\begin{align*}
g(\hat\rho)=\dfrac{1}{2}\log\dfrac{1+\hat\rho}{1-\hat\rho}\;.
\end{align*} 
This transformation was originally proposed for the standard sample correlation. Note that the domain of this function is $(-\infty,\infty)$, so this transformation will spread out the shorter tail of $\hat\rho$. By the invariance properties of MLE, $g(\hat\rho)$ is the MLE of $g(\rho)$ so this function will also converge towards a normal distribution. The idea is that it will do so faster than $\hat{\rho}$. It follows from theorem \ref{mleg} and \thmref{mleg2} (or the Delta method) that 
\begin{equation*}
\dfrac{g(\hat{\rho})-g(\rho)}{\sqrt{I^{55}}\abs{g^{'}(\hat{\rho})}}\xrightarrow{d}N(0,1),\quad\text{where}\quad g^{'}(\hat{\rho})=\dfrac{1}{(1+\hat{\rho})(1-\hat{\rho})}.
\end{equation*}
We can utilise this to test $H_Z:\rho=0$ versus $\rho\neq 0$. Reject $H_Z$ whenever
\begin{align}\label{eq:Z}
\abs{Z}=\abs{\dfrac{g(\hat{\rho})}{\sqrt{I^{55}}\abs{g^{'}(\hat\rho)}}}>Z_{\epsilon/2}\;,
\end{align} 
where $\epsilon$ denotes the significance level of the test and $Z_{\epsilon/2}$ the corresponding normal critical value.\\\\
To see if Fisher's $z$ transform improves the normal approximation, we computed $400$ of the following quantities
\begin{align*}
A=\dfrac{\hat\rho-\rho}{\sqrt{I^{55}}}\;,\quad\quad\quad B=\dfrac{g(\hat\rho)-g(\rho)}{\sqrt{I^{55}}\abs{g^{'}(\hat\rho)}}\;,
\end{align*}
based on $400$ independent samples of size $n=100$ of the truncated bivariate normal distribution with correlation $0.7$. A histogram of the $400$ MLEs of $\hat{\rho}$ and the Fisher's z transform of these values can be seen in \figref{histrho}. The Shapiro Wilks test produced a p-value equal to $4.764e^{-06}$ for the normality of the $400$ computed values of $A$, while the p-value for the normality of the corresponding values of $B$ was $0.3757$. The statistic $Z$ is therefore preferable compared to $Z^*$.
\begin{figure}[htbp]
\centering
\includegraphics[scale=0.9]{figurer/histrho}
\caption{To the left we have a histogram of $400$ MLE of $\rho$ based on $400$ independent samples of size $n=100$ of the truncated bivariate normal distribution with correlation 0.7, and to the right a histogram of the Fisher's z transformed of these values. }\label{fig:histrho}
\end{figure}
\chapter{Copula models for dependently truncated data}\label{chap:copmod}
In recent years there has been a growing interest in copulas and their applications in statistics. Copulas provide a method of describing the relationship between a multivariate distribution function and its margins. The idea is to form joint distributions by \textit{coupling} together marginal distributions using dependent uniform distributions. \\\\
 We will start by giving the formal definition and some basic results about copulas. In the rest of the chapter we will consider how to model the dependency structure in truncated data using the concept of copulas.
\section{Basic properties and results}
We will follow the notation suggested by McNeil, Frey and Embrechts in \citep{MR2175089} and define a copula function $C$ in the following way: 
\begin{definition}[Copula]
Let $C$: $[0,1]^d\rightarrow [0,1]$, and assume the following three properties hold
\begin{enumerate}
\item $C(u_1,\dots,u_d)$ is increasing in each component $u_i$.
\item $C(1,\dots,1,u_i,1,\dots,1)=u_i\quad \forall$  $i$ $\in \lbrace 1,\dots ,d \rbrace$, $u_i\in[0,1]$.
\item For all $(a_1,\dots,a_d)$, $(b_1,\dots,b_d)\in [0,1]^d$ with $a_i\leq b_i$ we have
\begin{align*}
\sum_{i_1=1}^{2}\dots\sum_{i_d=1}^{2}(-1)^{i_1,\dots ,i_d}C(u_{1i_1},\dots ,u_{di_d})\geq 0,
\end{align*}
where $u_{j1}=a_j$ and $u_{j2}=b_j$ $\forall$ $j\in\lbrace 1,\dots , d\rbrace$.
\end{enumerate}
Then $C$ is a copula.
\end{definition}
The first property is required for any distribution function. The second property gives uniform marginals which is the main idea of copulas. The last property is the so called rectangle inequality which ensures non-negative values of $P(a_1\leq U_1\leq b_1,\dots,a_d\leq U_d\leq b_d)$ when $(U_1,\dots,U_d)^{T}$ is distributed according to $C$.\\\\
The following theorem states that all multivariate density functions contain copulas.
\begin{theorem}[Sklar's theorem]\label{thm:sklar}
Let $F$ be a joint distribution function with margins $F_1,\dots,F_d$. Then there exists a copula $C$: $[0,1]^d\rightarrow [0,1]$ such that, for all $x_1,\dots,x_d$ in $\bar{\mathbb{R}}=[-\infty,\infty]$,
\begin{align}\label{kobling}
F(x_1,\dots,x_d)=C(F_1(x_1),\dots, F_d(x_d)).
\end{align}
If the margins are continuous, then $C$ is unique; otherwise $C$ is uniquely determined on $\Ran{F_1}\times\Ran{F_2}\times\dots\times\Ran{F_d}$, where $\Ran{F_i}=F_i(\bar{\mathbb{R}})$ denotes the range of $F_i$. Conversely, if C is a copula and $F_1,\dots,F_d$ are univariate distribution functions, then the function $F$ defined in  \ref{kobling} is a joint distribution function with margins $F_1,\dots,F_d$.
\end{theorem}
\begin{proof}
A proof can be found in \citep[page 18]{MR1653203}.
\end{proof}
The converse statement of Sklar's theorem tells us that we can construct multivariate distributions using a copula and arbitrary marginal distributions. Such a distribution is often called \textit{meta distribution}. \\\\
Before we continue with the definition of Archimedean copulas, we need to define the pseudo-inverse. 
\begin{definition}[Pseudo-inverse]
Let $\phi: [0,1]\rightarrow [0,\infty]$ be a continuous, strictly decreasing function such that $\phi(1)=0$. The \textit{pseudo-inverse} of $\phi$ is the function $\phi^{[-1]}$ with $\Dom \phi^{[-1]}=[0,\infty]$ and $\Ran \phi^{[-1]}=[0,1]$ given by
\begin{align}\label{eq:pseudo}
\phi^{[-1]}(t)=
\begin{cases}
&\phi^{-1}(t), \quad 0\leq t\leq \phi(0),\\
&0,\quad\quad\quad \phi(0)\leq t\leq \infty.\\
\end{cases}
\end{align}\\
\end{definition}
The following theorem provides a method for constructing 2-dimensional copulas:
\begin{theorem}[Archimedian Copulas]
Let $\phi:[0,1]\rightarrow [0,\infty]$ be a continuous, strictly decreasing function such that $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse of $\phi$ defined by \eqref{pseudo}. Let the function $C:[0,1]^2\rightarrow [0,1]$ be given by
\begin{equation}
C(u_1,u_2)=\phi^{[-1]}(\phi(u_1)+\phi(u_2)).
\end{equation}	
Then the function $C$ is a copula if and only if $\phi$ is convex. 
\end{theorem}
\begin{proof}
A proof can be found in \citep[page 91]{MR1653203}.
\end{proof}
The function $\phi$ is often called the generator of the copula and a copula constructed in this way is called an Archimedean copula. \Tabref{copgen} list the three generators which we will use in \chapref{skip}. For variables following a meta distribution constructed with an Archimedean copula there is a special relation between Kendall's tau and the generator function. This relation is formulated in the following theorem: 
\begin{theorem}\label{thm:tauphi}
Let $X$ and $T$ be random variables following a meta distribution with an Archimedean copula $C$ generated by $\phi$. Then Kendall's tau for $X$ and $T$ is given by:
\begin{align}\label{eq:parasammenheng}
\tau=1+4\int_{0}^{1}\dfrac{\phi(t)}{\phi^{'}(t)}\diff t.
\end{align}
\end{theorem} 
\begin{proof}
A proof can be found in \citep[page 130]{MR1653203}.\\\\
\end{proof}
\begin{table}[htbp]
\centering
\begin{tabular}{rccc}
\toprule
Copula&Generator $\phi(t)$&$\tau$&$\theta\in$\\ 
\midrule
Gumbel&$(-\ln t)^{\theta}$&$1-1/\theta$&$[1,\infty)$\\\\
Clayton&$\frac{1}{\theta}(t^{-\theta}-1)$&$\theta /(\theta +2)$&$[-1,\infty)\setminus\lbrace 0\rbrace$\\\\
Frank&$-\ln \Bigr (\dfrac{e^{-\theta t}-1}{e^{-\theta }-1}\Bigr )$&$1-4\theta^{-1}(1-D_1(\theta))$&$(-\infty,\infty)\setminus\lbrace 0\rbrace$\\
\bottomrule
\end{tabular}
\caption{Table summarising the generators, the relation between Kendall's tau and the copula parameter, and permissible parameter values for the Archimedean copulas Gumbel, Clayton and Frank. $D_1(\theta)$ is the Debye function $D_1(\theta)=\theta^{-1}\int_{0}^{\theta} t/(\exp(t)-1)\diff t$.}
\label{tab:copgen}
\end{table}
\subsection{Simulating from meta distributions}
In R, the package ''copula'' provides a series of 
 tools when dealing with copulas. In particular, it features simulations from the most common copulas such as the Gaussian and Archimedean copulas. It is also possible to simulate from meta distributions, but only for a few kinds of marginal distributions. Assume we want to simulate from the meta distribution
\begin{align*}
F(x_1,\dots,x_d)=C(F_1(x_1),\dots, F_d(x_d)),
\end{align*}
and we know how to simulate from $C$. We can then use the following procedure:
\begin{enumerate}
\item Simulate $\boldsymbol{U}=(U_1,\dots,U_d)$ from $C$.
\item Let $X_i=F_{i}^{-1}(U_i),\quad 1\leq i\leq d$.
\end{enumerate}
Then $\boldsymbol{X}=(X_1,\dots,X_d)$ is distributed according to the meta distribution:
\begin{equation*}
\begin{split}
P(X_1\leq x_1,\dots, X_1\leq x_d)&=P(F_{1}^{-1}(U_1)\leq x_1,\dots, F_{d}^{-1}(U_d)\leq x_d)\\
&=P(U_1\leq F_1(x_1),\dots, U_d\leq F_d(x_d))\\
&=C(F_1(x_1),\dots, F_d(x_d))
\end{split}
\end{equation*}
\section{Maximum likelihood based estimation}\label{sec:mlesec}
Let us assume the distribution of the unconditional vector $(X^*,T^*)$ is given by the meta distribution
\begin{align}\label{metdistr}
H(x,t):=C\left(F(x),G(t)\right),
\end{align}
where $C$ is an arbitrary copula, and $F$ and $G$ are arbitrary distribution functions. The corresponding density function is then given by
\begin{align*}
h(x,t)=\frac{\partial }{\partial x\partial t}H(x,t)=c\left(F(x),G(t)\right) f(x)g(t),
\end{align*}
where $c$ denotes the copula density function, and $f$ and $g$ are the density functions of $F$ and $G$, respectively. According to \eqref{defdensity} the conditional density function of $(X,T)=(X^*,T^*|X^*>T^*)$ is  
\begin{equation}\label{eq:metadens}
h^{c}(x,t)=
\begin{cases}
&c(F(x),G(t))f(x)g(t)/\alpha, \quad x>t,\\
&0,\phantom{F(x),G(t))f(x)g(t)/\alpha,}\quad \text{otherwise},
\end{cases}
\end{equation}\\
where
\begin{align*}
\alpha=P(X^{\ast} > T^{\ast})=\int\int_{u > v}c(F(u),G(v))f(u)g(v)\diff u\diff v.
\end{align*}
Assume that $(X_1,T_1)=(x_1,t_1),\hdots,(X_n,T_n)=(x_n,t_n)$ are i.i.d. according to \eqref{metadens}. For simplicity let $\boldsymbol{\theta}$ denote the unknown parameters specifying the copula and the marginals and let $(\mathbf{x,t})=((x_1,t_1),\hdots,(x_n,t_n))$. We then obtain the following log likelihood function:
\begin{equation*}
\begin{split}
\log(L(\boldsymbol{\theta}))&=-n\log\alpha(\boldsymbol{\theta})+\sum_{i=1}^{n}\log h(x_i,t_i|\boldsymbol{\theta})\\
&= -n\log\alpha(\boldsymbol{\theta})+\sum_{i=1}^{n}\log c(F(x_i|\boldsymbol{\theta}),G(t_i|\boldsymbol{\theta})|\boldsymbol{\theta})\\
&\phantom{=}+\sum_{i=1}^{n}\log f(x_i|\boldsymbol{\theta})+\sum_{i=1}^{n}\log g(t_i|\boldsymbol{\theta}).
\end{split}
\end{equation*}
In this setting, the traditional separation of first fitting the marginals and then the copula is not possible. This is because $\alpha(\boldsymbol{\theta})$ depends on both the copula parameter and the parameters of the marginals. This means we have to optimise the log likelihood directly. The difficult part of optimising this likelihood is the computation of $\alpha(\boldsymbol{\theta})$. The available package on multidimensional integration in R did not work properly for varying parameters. The other option was Monte Carlo integration:\\
\begin{enumerate}
\item Simulate $(X^{*}_{1},T^{*}_{1}),\dots,(X^{*}_{k},T^{*}_{k})$ according to \ref{metdistr} for each set of parameters $\boldsymbol{\theta}$.
\item  Let
\begin{align*}
\alpha(\boldsymbol{\theta})=\frac{1}{k}\mbox{card}\lbrace i|X^{*}_{i}>T^{*}_{i}\rbrace.
\end{align*}
In the optimisation we let $k=1\;000\;000$.
\end{enumerate}
However, including a simulation in a function subject to optimisation will in general be problematic. Such a function is not deterministic and the maximum of the function will vary for every simulation, though not necessarily by much. There are two solutions to this problem, one good and one bad.\\\\ A bad solution is to lower the convergence tolerance so that the iterations in the optimisation stop when the function is ''close'' to its maximum.\\\\ A good solution is to fix the seed which R uses to generate random numbers. The simulation is then deterministic for varying parameters causing the function to be deterministic. In addition, to make the optimisation more efficient, one should choose reasonable initial values. When we have normal marginals, natural initial values for $\mu_x$ and $\mu_t$ are the empirical means $\bar{x}$ and $\bar{t}$, while the empirical variance $s_x^2$ and $s_t^2$ are natural initial values for $\sigma_x^2$ and $\sigma_t^2$.  A simple, but somewhat ad hoc way of choosing initial values for $\theta$, is to choose $\theta$ so that the right side of \eqref{parasammenheng} equals the sample Kendall's tau. This is a bad estimate of $\theta$, but will work fine as an initial value. 
\subsection{Performance of the optimisation}
 Due to the Monte Carlo integration, the optimisation became rather time consuming. We also had to increase the default convergence tolerance and increase the total number of iterations allowed, to make the optimisation work.\\\\ Based on $100$ independent truncated samples of size $n=100$ from the Clayton copula with parameter $\theta$ and with normal marginals we computed $100$ estimates of the parameters $(\mu_x,\mu_t,\sigma_{x}^{2},\sigma_{t}^{2},\theta)$. The true parameter values were set to $(0,-1,1,1,3)$. We then computed the sample average and the sample variance of these estimates denoted $AVE(\cdot)$ and $VAR(\cdot)$, respectively. This routine was repeated, but with the exponential marginals $F(x)=1-e^{-\alpha x}$ and $G(t)=1-e^{-\beta t}$. In this case the true parameter values of $(\alpha,\beta,\theta)$ were set to $(0.5,1,2)$.\\\\ The result can be seen in \tabref{copulaopt}. In all cases, $AVE(\cdot)$ is close to the real parameter value suggesting that the optimisation works. Compared to the marginal parameters, the variance amongst the estimates of $\theta$ is larger. 
\\\\
\begin{table}[htbp]
\caption{Simulation result. }
\centering
\begin{tabular}{rrrrrrrr}
\toprule
&&&$\mu_x$&$\mu_t$&$\sigma_x^2$&$\sigma_t^2$&$\theta$ \\ 
\midrule
&Normal&$AVE(\cdot)$&-0.0055&-1.0023&0.9742&0.9787&3.0062\\
&marginals&$VAR(\cdot)$&0.0106&0.0123&0.0153&0.0208&0.3202\\
\toprule
&&&$\alpha$&$\beta$&$\theta$&& \\
\midrule
&exponential&$AVE(\cdot)$&0.5074&1.0281&2.0911&&\\
&marginals&$VAR(\cdot)$&0.0029&0.0168&0.1981&&\\
\bottomrule
\end{tabular}
\label{tab:copulaopt}
\end{table}	

\section{Estimation based on the conditional Kendall's tau and the copula-graphic estimator}\label{sec:chaiebsec}
The goal of the following analysis is to estimate the copula parameter in an Archimedean family and the marginal distributions, without making any parametric assumptions about the marginal distributions. Such an estimation procedure was proposed by \citet{Chaieb} and is an application of the conditional Kendall's tau and the copula-graphic estimators.
\subsection{Model and assumptions}
As for the MLE estimation we will assume that $(X^*,T^*)$ is distributed according to a meta distribution. However, for this method it is convenient to write the joint distribution of $(X^*,T^*)$ as 
\begin{align}\label{chaiebunc}
P(X^*>x,T^*\leq t)=C^*(S(x),G(t)).
\end{align}
Where $F(x)=1-S(x)$ and $G(t)$ are the marginal distributions of $X^*$ and $T^*$, respectively, and $C^*$ is a copula function which we will call the semisurvival copula. Care should be taken not to confuse $C^*$ with the copula $C$ that we try to estimate in \secref{mlesec}. If we assume that the relations given by \ref{metdistr} and \ref{chaiebunc} both hold we have
\begin{equation*}
\begin{split}
C^*(S(x),G(t))&=P(X^*>x,T^*\leq t)\\
&=G(t)-H(x,t)\\
&=G(t)-C(F(x),G(t))\\
&=G(t)-C(1-S(x),G(t))\;,
\end{split}
\end{equation*}
hence the relation between $C$ and $C^*$ is given by $C^*(u,v)=v-C(1-u,v)$.\\\\
When the joint distribution of $(X^*,T^*)$ is given by \ref{chaiebunc}, the conditional distribution of $(X,T)=(X^*,T^*|X^*>T^*)$ can be written as 
\begin{align}\label{chaiebcopula}
\pi(x,t)=P(X>x,T\leq t)=C^*(S(x),G(t))/\alpha\;,\quad\quad x>t,
\end{align}
where
\begin{align*}
\alpha=P(X^*>T^*)=\int\int_{u>v}c^*(S(u),G(v))f(u)g(v)\diff u\diff v,
\end{align*}
and $c^*$ is the copula density corresponding to $C^*$. Note that \ref{chaiebcopula} is valid since $x>t$ implies that
\begin{align*}
P(X^*>x,T^*\leq t,X^*>T^*)=P(X^*>x,T^*\leq t)=C^*(S_x(x),G(t)).
\end{align*}
 For this estimation procedure we will only consider semisurvival copulas which are members of the Archimedean family. Hence
\begin{align}\label{chaiebarch}
\pi(x,t)=\phi^{-1}[\phi\lbrace S(x)\rbrace+\phi\lbrace G(t)\rbrace]/\alpha,\quad\quad x>t,
\end{align}
where $\phi$ is a non-increasing convex function defined on $[0,1]$, with $\phi(1)=0$. We will only consider generator functions with one parameter denoted by $\theta$.\\\\ It is assumed that for some $t_0>x_0$\footnote{\Citet{Chaieb} write their article in a survival analysis setting and thus only consider positive defined variables. However, we see no reason why this estimation procedure can't be applied to variables which can take on negative values as well.} 
\begin{align*}
G(x_0)>0,\quad S(x_0)=1,\quad G(t_0)=1,\quad\text{and}\quad S(t_0)>0.
\end{align*} 
In \citep{Chaieb}, these conditions are used to derive the asymptotic theory of the estimation procedure we will describe in the following sections. However, we will not study these details. 
\subsection{The copula-graphic estimator}
The motivation for using the semisurvival copula is that for points $(x,t)$ satisfying $x>t$ we have that $\lbrace(X^*,T^*)|X^*> x,T^*\leq t\rbrace\subset(X,T)$. So when we observe i.i.d pairs $(X_1,T_1),\dots,(X_n,T_n)$ from the observable region $(X,T)$ we have the following empirical estimate of $\pi(x,t)$:
\begin{align}\label{eq:empi}
\hat{\pi}(x,t)=\dfrac{R(x,t)}{n},
\end{align}
where $R(\cdot)$ is the ''number at risk'' function given by \defref{nratrisk}:
\begin{align*}
R(x,t)=\sum_{i=1}^{n}I(X_i\geq x,T_i\leq t).
\end{align*}
\Citet{Chaieb} utilise this estimate of $\pi(x,t)$ to derive semi-parametric estimates of $S$ and $G$. These estimators are known as the copula-graphic estimators. We will start by giving the definition. 
\begin{definition}[The copula-graphic estimator]
Assume that $(X_1,T_1),\dots,(X_n,T_n)$ are i.i.d. according to \ref{chaiebarch} and let $\tilde{R}(z)=R(z,z)$. Given the copula parameter $\theta$ and $\alpha=P(X^*>T^*)$ we define the copula-graphic estimators of $S$ and $G$ as
\begin{align}\label{graphS}
\hat{S}_{CG}(z)=\phi^{-1}\Biggr\lbrace\sum_{X_i\leq z}\Biggr[\phi\Bigr(\alpha\dfrac{\tilde{R}(X_i)-1}{n}\Bigr)-\phi\Bigr(\alpha\dfrac{\tilde{R}(X_i)}{n}\Bigr)\Biggr]\Biggr\rbrace,
\end{align}
\begin{align}\label{graphG}
 \hat{G}_{CG}(z)=\phi^{-1}\Biggr\lbrace\sum_{T_i>z}\Biggr[\phi\Bigr(\alpha\dfrac{\tilde{R}(T_i)-1}{n}\Bigr)-\phi\Bigr(\alpha\dfrac{\tilde{R}(T_i)}{n}\Bigr)\Biggr]\Biggr\rbrace.
\end{align}
In both cases, an empty sum is to be interpreted as $0$.
\end{definition}
For the independent copula the generator function is $\phi(t)=-\log(t)$, hence $\phi^{-1}(t)=e^{-t}$. We therefore get
\begin{equation*}
\begin{split}
\hat{F}_{CG}(z)&=1-\phi^{-1}\left\lbrace\sum_{X_i\leq z}\left[\phi\left(\alpha\dfrac{\tilde{R}(X_i)-1}{n}\right)-\phi\left(\alpha\dfrac{\tilde{R}(X_i)}{n}\right)\right]\right\rbrace\\
&=1-\exp\left\lbrace\sum_{X_i\leq z}\left[\log\left(\alpha\dfrac{\tilde{R}(X_i)-1}{n}\right)-\log\left(\alpha\dfrac{\tilde{R}(X_i)}{n}\right)\right]\right\rbrace\\
&=1-\exp\left\lbrace\sum_{X_i\leq z}\left[\log\left(\dfrac{\tilde{R}(X_i)-1}{\tilde{R}(X_i)}\right)\right]\right\rbrace\\
&=1-\exp\left\lbrace \log\left(\prod_{X_i\leq z}\left(\dfrac{\tilde{R}(X_i)-1}{\tilde{R}(X_i)}\right)\right)\right\rbrace\\
&=1-\prod_{X_i\leq z}\left(\dfrac{\tilde{R}(X_i)-1}{\tilde{R}(X_i)}\right).
\end{split}
\end{equation*}
This shows that the copula-graphic estimator of $F$ reduces to the Product-limit estimator in the independent case. The derivation of the copula-graphic estimator is also very similar to the derivation of the Product-limit estimator which was done in \secref{plesec}. \\\\
Let us for the time being assume that the copula parameter $\theta$ is known and that we observe i.i.d. pairs $(X_1,T_1),\dots,(X_n,T_n)$ from the observable region $(X,T)$. If we let $x=t=z$, and put the empirical estimate of $\pi(x,t)$ given by \eqref{empi} equal to the model given in \ref{chaiebarch}, we get the following estimating equation for $G$ and $S$
\begin{align}\label{est}
\alpha\dfrac{\tilde{R}(z)}{n}=\phi^{-1}[\phi\left( \hat{S}_{CG}(z-)\right)+\phi\left( \hat{G}(z)\right)].
\end{align}
Similar to the derivation of the PLE, we postulate some properties about $\hat{S}_{CG}$ and $\hat{G}_{CG}$. Assume that $\hat{S}_{CG}$ is a decreasing right-continuous function with jumps at $X_1,\dots,X_n$ and that $\hat{G}_{CG}$ is an increasing right-continuous function with jumps at $T_1,\dots,T_n$. In addition, assume that $\hat{S}_{CG}$ is supported on $[X_{(1)},X_{(n)}]$ so that $\hat{S}_{CG}(X_{(1)}-)=1$. Applying $\phi$ on both sides of \ref{est} yields
\begin{align}\label{est2}
\phi\left(\alpha\dfrac{\tilde{R}(z)}{n}\right)=\phi\left( \hat{S}_{CG}(z-)\right)+\phi\left( \hat{G}(z)\right).
\end{align}
Next, let $X\in(X_1,\dots,X_n)$ and remember that $X>T$ for the corresponding $T\in(T_1,\dots,T_n)$. This means that jumps for the functions $\hat{G}_{CG}$ and $\hat{S}_{CG}$ will not occur at the same points. Consequently, we have that $\tilde{R}(X+)=\tilde{R}(X)-1$ and $\hat{G}_{PL}(X+)=\hat{G}_{PL}(X)$. By subtracting \ref{est2} at $X+$ from \ref{est2} at $X$ we get
\begin{align}\label{est3}
\phi\left( \hat{S}_{CG}(X-)\right)-\phi\left(\hat{S}_{CG}(X)\right)=\phi\left(\alpha\dfrac{\tilde{R}(X)}{n}\right)-\phi\left(\alpha\dfrac{\tilde{R}(X)-1}{n}\right).
\end{align}
Since $\hat{S}_{CG}$ is a right continuous step function with jumps at $X_1,\dots,X_n$, we have that
\begin{align*}
\phi\left( \hat{S}_{CG}(X_{(i)})\right)=\phi\left( \hat{S}_{CG}(X_{(i+1)}-)\right),\quad 1\leq i\leq n-1,
\end{align*} 
where as before, $X_{(1)},\dots,X_{(n)}$ is the ordered values of $X_1,\dots,X_n$. As we have assumed $\hat{S}_{CG}(X_{(1)}-)=1$, we get that, 
\begin{align*}
\phi\left( \hat{S}_{CG}(X_{(1)}-)\right)=\phi(1)=0.
\end{align*}
Therefore, if we let $X_{(a)}=\max(X_1\dots,X_n|X_i\leq z)$ and sum equation \ref{est3} over all $X_i$ where $X_i\leq z$, we get
\begin{equation*}
\begin{split}
&\sum_{X_i\leq z}\Biggr[\phi\left(\alpha\dfrac{\tilde{R}(X_i)}{n}\right)-\phi\left(\alpha\dfrac{\tilde{R}(X_i)-1}{n}\right)\Biggr]=\underbrace{\phi\left( \hat{S}_{CG}(X_{(1)}-)\right)}_0\\
&+\underbrace{\left[-\phi\left( \hat{S}_{CG}(X_{(1)})\right)+\phi\left( \hat{S}_{CG}(X_{(2)}-)\right)\right]}_0\\
&+\underbrace{\left[-\phi\left( \hat{S}_{CG}(X_{(2)})\right)+\phi\left( \hat{S}_{CG}(X_{(3)}-)\right)\right]}_0+\dots\\
&+\underbrace{\left[-\phi\left( \hat{S}_{CG}(X_{(a-1)})\right)+\phi\left( \hat{S}_{CG}(X_{(a)}-)\right)\right]}_0-\phi\left( \hat{S}_{CG}(X_{(a)})\right)= -\phi\left( \hat{S}_{CG}(X_{(a)})\right).
\end{split}
\end{equation*}
It follows from the definition of $X_{(a)}$ that $\hat{S}_{CG}(X_{(a)})=\hat{S}_{CG}(z)$, so the above equation becomes
\begin{equation}\label{est4}
\begin{split}
\phi\left( \hat{S}_{CG}(z)\right)&=-\sum_{X_i\leq z}\left[\phi\left(\alpha\dfrac{\tilde{R}(X_i)}{n}\right)-\phi\left(\alpha\dfrac{\tilde{R}(X_i)-1}{n}\right)\right]\\
&=\sum_{X_i\leq z}\left[\phi\left(\alpha\dfrac{\tilde{R}(X_i)-1}{n}\right)-\phi\left(\alpha\dfrac{\tilde{R}(X_i)}{n}\right)\right].
\end{split}
\end{equation}
Analogous procedures can be done for the truncating variables $T_1,\dots,T_n$ to get
\begin{align}\label{est5}
\phi\left(\hat{G}(z)\right)=\sum_{T_i>z}\left[\phi\left(\alpha\dfrac{\tilde{R}(T_i)-1}{n}\right)-\phi\left(\alpha\dfrac{\tilde{R}(T_i)}{n}\right)\right].
\end{align}
Applying $\phi^{-1}$ on \ref{est4} and \ref{est5} leads to the definition of the copula-graphic estimators of $S$ and $G$.\\\\
The copula-graphic estimators of $S$ and $G$ also provides an estimation equation for $\alpha$. If we plug \ref{est4} and \ref{est5} into \ref{est2} we get the following equation
\begin{equation*}
\begin{split}
&\sum_{X_i<z}\left[\phi\left(\alpha\dfrac{\tilde{R}(X_i)}{n}\right)-\phi\left(\alpha\dfrac{\tilde{R}(X_i)-1}{n}\right)\right]\\
&+\sum_{T_i>z}\left[\phi\left(\alpha\dfrac{\tilde{R}(T_i)}{n}\right)-\phi\left(\alpha\dfrac{\tilde{R}(T_i)-1}{n}\right)\right]+\phi\left(\alpha\dfrac{\tilde{R}(z)}{n}\right)=0.
\end{split}
\end{equation*}
In particular, we can choose $z=T_{(n)}$ so the equation simplifies to 
\begin{align*}
H_1(\alpha,\theta)=\sum_{X_i<T_{(n)}}\left[\phi\left(\alpha\dfrac{\tilde{R}(X_i)}{n}\right)-\phi\left(\alpha\dfrac{\tilde{R}(X_i)-1}{n}\right)\right]+\phi\left(\alpha\dfrac{\tilde{R}(T_{(n)})}{n}\right)=0.
\end{align*}
In practice we do not know the copula parameter so we need a second estimating equation to estimate $\alpha$ and $\theta$ . To obtain a second equation we will revisit the conditional Kendall's tau and consider its relation to a generalised cross ratio function.
\subsection{The cross-ratio function and its relation to conditional Kendall's tau}
\citet{Oakes} describes a measure of local dependence called the cross-ratio function, which can be used in this setting. A local dependence at $(x,t)$ between $X$ and $T$ is then defined, for $x>t$, as
\begin{align*}
\psi^*(x,t)=\dfrac{\pi(x,t)D_1D_2\pi(x,t)}{D_1\pi(x,t)D_2\pi(x,t)}\;,
\end{align*}
where the operators $D_1$ and $D_2$ are given by $D_1=-\dfrac{\partial }{\partial x}$ and $D_2=\dfrac{\partial}{\partial t}$.\\\\
In \secref{cross} we show that the cross-ratio can be rewritten as
\begin{align}\label{psi1}
\psi^*(x,t)=\dfrac{P\lbrace(X_{1}-X_{2})(T_{1}-T_{2})<0\vert \tilde{X}_{1,2}=x, \tilde{T}_{1,2}=t\rbrace}{P\lbrace(X_{1}-X_{2})(T_{1}-T_{2})>0\vert \tilde{X}_{1,2}=x, \tilde{T}_{1,2}=t\rbrace}\;,
\end{align}
where $(X_1,T_1)$ and $(X_2,T_2)$ are independently distributed as \ref{chaiebcopula} and 
\begin{align*}
\tilde{X}_{1,2}=\min(X_1,X_2),\quad\quad\tilde{T}_{1,2}=\max(T_1,T_2).
\end{align*} 
From \ref{psi1} we see that $\psi^*$ is the ratio between the probability of discordance and the probability of concordance, given that $\tilde{X}_{1,2}=x$ and $\tilde{T}_{1,2}=t$. Hence $\psi^*(x,t)<1$ indicates a positive association at $(x,t)$ while $\psi^*(x,t)>1$ indicates a negative association at $(x,t)$. Note that $\psi(x,t)$ is only defined when $x>t$, since $\pi(x,t)$ is only defined when $x>t$. Consequently, the pairs $(X_1,T_1)$ and $(X_2,T_2)$ are comparable when we condition on $\tilde{X}_{1,2}=x$ and $\tilde{T}_{1,2}=t$. If we assume that $X$ and $T$ are quasi independent, then $\psi^*(x,t)=1$.\\\\
The following theorem states that if $\pi(x,t)$ is Archimedean, then $\psi^*$ can be expressed in terms of the generator function $\phi$. 
\begin{theorem}\label{thm:archpsi}
Suppose that $\pi(x,t)$ is Archimedean so that \ref{chaiebarch} holds. Then $\psi^*(x,t)$ depends on $x$ and $t$ only through $v=\alpha\pi(x,t)$ with
\begin{align*}
\psi^*(x,t)=\psi(v)=\dfrac{-v\phi^{''}(v)}{\phi^{'}(v)}.
\end{align*}
\end{theorem}
\begin{proof}
A proof analogous to this case can be found in \citep[page 488]{Oakes}.  
\end{proof}
For the independent copula the generator function is $\phi(t)=-\log(t)$. So when $\pi(x,t)=S_x(x)G(t)$, \thmref{archpsi} states that $\psi(v)=1$.
\begin{theorem}\label{thm:taupsi}
Suppose that $\pi(x,t)$ is Archimedean so that \ref{chaiebarch} holds. Then we have the following relation between the cross-ratio function and conditional Kendall's tau:
\begin{align*}
\tau_c=E\Biggr[\dfrac{1-\psi\lbrace\alpha\pi(\tilde{X}_{1,2},\tilde{T}_{1,2})\rbrace}{1+\psi\lbrace\alpha\pi(\tilde{X}_{1,2},\tilde{T}_{1,2})\rbrace}\Biggr|A\Biggr],
\end{align*}
where $A = \lbrace \tilde{T}_{1,2}< \tilde{X}_{1,2}\rbrace$\;.
\end{theorem}
\begin{proof}
For simplicity let
\begin{equation*}
\begin{split}
&a=P\lbrace(X_{1}-X_{2})(T_{1}-T_{2})>0\vert \tilde{X}_{1,2}=x, \tilde{T}_{1,2}=t\rbrace,\\
&b=P\lbrace(X_{1}-X_{2})(T_{1}-T_{2})<0\vert \tilde{X}_{1,2}=x, \tilde{T}_{1,2}=t\rbrace.
\end{split}
\end{equation*}
Assume that $X$ and $T$ are continuous variables. We may then ignore the possibility of ties so that $a+b=1$. Then  \ref{psi1} and \thmref{archpsi} implies that
\begin{align*}
\dfrac{1-\psi\lbrace\alpha\pi(x,t)\rbrace}{1+\psi\lbrace\alpha\pi(x,t)\rbrace}=\dfrac{a-b}{a+b}=E[\sgn(X_{1}-X_{2})(T_{1}-T_{2})\vert \tilde{X}_{1,2}=x, \tilde{T}_{1,2}=t].
\end{align*}
Again, note that we only consider points $(x,t)$ where $x>t$ so $\tilde{X}_{1,2}=x$ and $\tilde{T}_{1,2}=t$ imply that $A=\lbrace \tilde{T}_{1,2}<\tilde{X}_{1,2}\rbrace$. Consequently, we have that
\begin{align*}
E[\sgn(X_{1}-X_{2})(T_{1}-T_{2})\vert A, \tilde{X}_{1,2}=x, \tilde{T}_{1,2}=t]=\dfrac{1-\psi\lbrace\alpha\pi(x,t)\rbrace}{1+\psi\lbrace\alpha\pi(x,t)\rbrace}\;.
\end{align*}
In the proof of \thmref{tauhnull} we showed that $\tau_c$ could be written as $\tau_c=E[\sgn(X_{1}-X_{2})(T_{1}-T_{2})\vert A]$. Using this definition and conditioning on $\tilde{X}_{1,2}$ and $\tilde{T}_{1,2}$ we get
\begin{equation*}
\begin{split}
\tau_c&=E[\sgn(X_{1}-X_{2})(T_{1}-T_{2})\vert A]\\
&=E\bigr[E[\sgn(X_{1}-X_{2})(T_{1}-T_{2})\vert A, \tilde{X}_{1,2},\tilde{T}_{1,2}]\bigr\vert A\bigr]\\
&=E\Biggr[\dfrac{1-\psi\lbrace\alpha\pi(\tilde{X}_{1,2},\tilde{T}_{1,2})\rbrace}{1+\psi\lbrace\alpha\pi(\tilde{X}_{1,2},\tilde{T}_{1,2})\rbrace}\Biggr|A\Biggr].
\end{split}
\end{equation*}
\end{proof}
\subsection{Estimating the copula parameter using the conditional Kendall's tau}
Let $(X_1,T_1),\dots,(X_n,T_n)$ be i.i.d. random vectors following \ref{chaiebcopula}. In view of \thmref{taupsi} and \eqref{empi} an estimate of $\tau_c$ is given by 
\begin{align}
\hat{\tau}_c=\dfrac{1}{k}\ssum_{i<j}\dfrac{1-\psi\lbrace\alpha R(\tilde{X}_{i,j},\tilde{T}_{i,j})/n\rbrace}{1+\psi\lbrace\alpha R(\tilde{X}_{i,j},\tilde{T}_{i,j})/n\rbrace}I_{ij},
\end{align}
where $\tilde{X}_{i,j}=\min(X_i,X_j)$, $\tilde{T}_{i,j}=\max(T_i,T_j)$, $I_{ij}=I\lbrace \tilde{T}_{i,j}> \tilde{X}_{i,j}\rbrace$ and $k=\ssum_{i<j}I_{ij}$. The second estimating equation is then obtained by setting $\hat{\tau}_c$ equal to the sample conditional Kendall's tau, $t_c$, given by \eqref{sampletau}:
\begin{align*}
\dfrac{1}{k}\ssum_{i<j}\dfrac{1-\psi\lbrace\alpha R(\tilde{X}_{i,j},\tilde{T}_{i,j})/n\rbrace}{1+\psi\lbrace\alpha R(\tilde{X}_{i,j},\tilde{T}_{i,j})/n\rbrace}I_{ij}=\dfrac{1}{k}\ssum_{i<j}\sgn(X_i-X_j)(T_i-T_j)I_{ij}\;.
\end{align*}
This equation is equivalent to
\begin{equation*}
\begin{split}
0&=\ssum_{i<j}\Biggr[\sgn(X_i-X_j)(T_i-T_j)-\dfrac{1-\psi\lbrace\alpha R(\tilde{X}_{i,j},\tilde{T}_{i,j})/n\rbrace}{1+\psi\lbrace\alpha R(\tilde{X}_{i,j},\tilde{T}_{i,j})/n\rbrace}\Biggr]I_{ij}\\
&=\ssum_{i<j}\Biggr[I\lbrace(X_i-X_j)(T_i-T_j)>0\rbrace-\dfrac{1}{1+\psi\lbrace\alpha R(\tilde{X}_{i,j},\tilde{T}_{i,j})/n\rbrace}\Biggr]I_{ij}\\
&\phantom{=}+\ssum_{i<j}\Biggr[\dfrac{\psi\lbrace\alpha R(\tilde{X}_{i,j},\tilde{T}_{i,j})/n\rbrace}{1+\psi\lbrace\alpha R(\tilde{X}_{i,j},\tilde{T}_{i,j})/n\rbrace}-I\lbrace(X_i-X_j)(T_i-T_j)<0\rbrace\Biggr]I_{ij}.
\end{split}
\end{equation*}
When $\hat{\tau}_c\neq 0$, the solution $(\hat{\alpha},\hat{\theta})$ must be such that the last two sums both equal $0$. We can therefore choose either one of these sums as a second estimating equation. We will follow \citet{Chaieb} and use 
\begin{equation*}
\begin{split}
&H_2(\alpha,\theta)\\
&=\dfrac{1}{n^2}\ssum_{i<j}\Biggr[I\lbrace(X_i-X_j)(T_i-T_j)>0\rbrace-\dfrac{1}{1+\psi\lbrace\alpha R(\tilde{X}_{i,j},\tilde{T}_{i,j})/n\rbrace}\Biggr]I_{ij}=0\;,
\end{split}
\end{equation*}
as the second estimating equation. The estimates $\hat{\alpha}$ and $\hat{\theta}$ are therefore obtained by solving 
\begin{align*}
H(\alpha,\theta)=\binom{H_1(\alpha,\theta)}{H_2(\alpha,\theta)}=\binom{0}{0}.
\end{align*}
\newpage
\subsection{Estimating procedure for the Frank and Clayton Copulas}
Before we can proceed with an evaluation of the estimation procedure discussed in the previous sections we need to know how to simulate from a meta distribution on the form:
\begin{align*}
P(X>x, T\leq t)=C^*(S(x),G(t))=C^*(1-F(x),G(t)).
\end{align*}
If we know how to simulate from $C^*$ we can do the following procedure:
\begin{enumerate}
\item Simulate $(U,V)$ from $C^*$.
\item Let $X=F^{-1}(1-U),\quad T=G^{-1}(V)$.
\end{enumerate}
Then $(X,T)$ will be distributed according to $C^*(S(x),G(t))$:
\begin{equation*}
\begin{split}
P(X>x,T\leq t)&=P(F^{-1}(1-U)>x,G^{-1}(V)\leq t)\\
&=P(1-U>F(x),V\leq G(t))\\
&=P(U<1-F(x),V\leq G(t))\\
&=C^*(1-F(x),G(t)).
\end{split}
\end{equation*}
Let us considered the case where $C^*$ is the Frank's copula, but with a small modification of the generator $\phi$:
\begin{align}\label{eq:modfrank}
\phi(t)=\log\dfrac{(1-e^\theta)}{(1-e^{\theta t)}}\;,\quad \phi^{'}(t)=\dfrac{\theta e^{\theta t}}{1-e^{\theta t}}\;,\quad \phi^{''}(t)=\dfrac{\theta^{2} e^{\theta t}}{(1-e^{\theta t})^2}\;.
\end{align}
The only change from the standard generator function is $-\theta\rightarrow\theta $. For this parametrisation we have that positive values of $\theta$ corresponds to a positive dependence between $X$ and $T$. According to \thmref{archpsi} the cross-ratio function can be written as
\begin{align*}
\psi(v)=\dfrac{-v\phi^{''}(v)}{\phi^{'}(v)}=\dfrac{\theta v}{e^{\theta v}-1}\;.
\end{align*}
For this cross-ratio function the estimation equation $H_2(\alpha,\theta)$ becomes
\begin{equation*}
\begin{split}
H_2(\alpha,\theta)=\dfrac{1}{n^2}\ssum_{i<j}\Biggr[&I\lbrace(X_i-X_j)(T_i-T_j)>0\rbrace \\
&-\dfrac{\exp\lbrace\alpha\theta R(\tilde{X}_{i,j},\tilde{T}_{i,j})/n  \rbrace}{\alpha\theta R(\tilde{X}_{i,j},\tilde{T}_{i,j})+\exp\lbrace\alpha\theta R(\tilde{X}_{i,j},\tilde{T}_{i,j})/n  \rbrace-1}\Biggr]I_{ij}=0.
\end{split}
\end{equation*}
Note that $H_2(\alpha,\theta)$ only depends on $\alpha$ and $\theta$ through $\gamma=\alpha\theta$. An estimation procedure can then be given by
\begin{enumerate}
\item Solve $H_2(\alpha,\theta)=H_2(\gamma)=0$ to obtain $\hat\gamma$.
\item Solve $H_1(\alpha,\hat{\gamma}/\alpha)=0$ to obtain $\hat\alpha$.
\item Let $\hat{\theta}=\hat{\gamma}/\hat{\alpha}$.
\end{enumerate}
In \figref{chaiebfrank} the copula-graphic estimator is plotted against the true marginal distribution. The estimation is based on a sample of size $n=100$, simulated from the frank copula with different types of marginals. For comparison we included the PLE.\\\\ We see that the copula-graphic estimator performes significantly better as an estimator of the marginal distribution than the PLE. Notice how the PLE underestimates when $\theta=-5$ and overestimates when $\theta=5$. For the chosen parametrisation of the Frank copula these values correspond to negative and positive dependence, respectively.
\newpage
\begin{figure}[htbp]
\centering
\includegraphics[scale=0.74]{figurer/Chaiebfrank3}
\caption{Copula-graphic estimator of $F(x)$ based on a sample of size $n=100$, simulated from the Frank copula with parameter $\theta=5,-5$ and with varying marginals.}\label{fig:chaiebfrank}
\end{figure}
\clearpage
For the Clayton copula the generator function is given by
\begin{align*}
\phi(t)=\dfrac{1}{\theta}(t^{-\theta}-1),\quad \phi^{'}(t)=-t^{-(\theta+1)},\quad \phi^{''}(t)=(\theta +1)t^{-(\theta+2)}.
\end{align*}
The cross-ratio function is therefore given by
\begin{align*}
\psi(v)=\dfrac{-v\phi^{''}(v)}{\phi^{'}(v)}=\theta+1.
\end{align*}
For this cross-ratio function the estimation equation $H_2(\alpha,\theta)$ becomes
\begin{align*}
H_2(\alpha,\theta)=\dfrac{1}{n^2}\ssum_{i<j}\Biggr[&I\lbrace(X_i-X_j)(T_i-T_j)>0\rbrace -\dfrac{1}{\theta+2}\Biggr]I_{ij}=0.
\end{align*}
Here $H_2(\alpha,\theta)$ is completely independent of $\alpha$ so solving $H_2(\alpha,\theta)=H_2(\theta)=0$ gives us $\hat\theta$. Then $\hat\alpha$ can be obtained by solving $H_1(\alpha,\hat\theta)=0$. In \figref{chaiebclayton} the copula-graphic estimator is plotted against the true marginal distribution. The estimation is based on a sample of size $n=100$, simulated from the Frank copula with normal and exponential marginals.
\begin{figure}[htbp]
\centering
\includegraphics[scale=0.73]{figurer/Chaiebclayton}
\caption{Copula-graphic estimator of $F(x)$ based on a sample of size $n=100$, simulated from the Clayton copula with parameter $\theta=-0.5$ and with varying marginals.}\label{fig:chaiebclayton}
\end{figure}
\subsection{Simulation}
To evaluate the precision of this estimation procedure a simulation was carried out in R. The following routine was repeated 100 times for every fixed combination of $n=100,300$ and $\theta=2,5$:
\begin{itemize}
\item $n$ truncated pairs were drawn from $\pi(x,t)=C^*(S(x),G(t))/\alpha$ with $C^*$ as the Frank's copula with parameter $\theta$ and with marginals $S(x)=e^{-\frac{1}{2}x}$ and $G(t)=1-e^{-t}$.\\ 
\item From these $n$ pairs, $\hat{\theta}$ and $\hat{\alpha}$ were computed using the described method. These estimates where then used in the copula-graphic estimator of $\hat{S}_{CG}$ to compute $\hat{S}_{CG}(q_1)$, $\hat{S}_{CG}(q_2)$, $\hat{S}_{CG}(q_3)$ and $\hat{S}_{CG}(q_4)$. Where $q_1$, $q_2$, $q_3$ and $q_4$ are quantiles in the $\exp(1/2)$ distribution corresponding to  $S(q_1)=0.2$, $S(q_2)=0.4$, $S(q_3)=0.6$ and $S(q_4)=0.8$ 
\end{itemize}
Let $\lambda$ represent the parameters $\theta,\alpha,S(q_1),S(q_2),S(q_3)$ and $S(q_4)$, and let $\hat{\lambda}_i$ represent estimate number $i$. We then calculated:
\begin{align*}
AVE(\lambda)=\dfrac{1}{100}\sum_{i=1}^{100}\hat{\lambda}_{i},\quad\quad VAR^*(\lambda)=\dfrac{1}{100}\sum_{i=1}^{100}(\hat{\lambda}_i-\lambda)^2.
\end{align*}
Note that $VAR^*(\cdot)$ is the estimation error and not the sample variance. By Monte Carlo integration, $\theta=2$ and $5$ corresponds to $\alpha=0.7052$ and $0.7725$. In all cases, $AVE(\lambda)$ is close to the true value suggesting that the estimation procedure works. In most cases the estimators improved when $n$ was increased from $100$ to $300$. When we increased $\theta$, which is equivalent to increasing the dependence between $X$ and $T$, there was a reduction in the estimation error. Remember that this also happened in our simulation of the sample conditional product-moment correlation coefficient $r_c$. This change increases the value of $\alpha$ and thus reduces the truncated propotion. Consequently, the $n$ we observe represents a larger proportion of the original $N$, which will result in better estimates. Also notice that $VAR^*\left((S(q_i)\right)$ increase when $i$ increases, thus the copula-graphic estimator and the PLE share the property of larger estimation error in the lower domain of $F$. A similar simulation was carried out by \citet{Chaieb} with similar results.
\begin{table}[htbp]
\caption{Simulation results.}
\centering
\begin{tabular}{rrrrr}
\toprule
$\theta$, $\alpha$ &&n=100 & n=300\\ 
\midrule
2, 0.7052&$AVE(\hat{\alpha})$&0.6893&0.6920\\
&$AVE(\hat{\theta})$&1.8816&1.9422\\
&$AVE(\hat{S}(q_1))$&0.1927&0.1956\\
&$AVE(\hat{S}(q_2))$&0.3912&0.3934\\
&$AVE(\hat{S}(q_3))$&0.5901&0.5890\\
&$AVE(\hat{S}(q_4))$&0.7873&0.7893\\\\
&$VAR^*(\hat{\alpha})$&0.0170&0.0053\\
&$VAR^*(\hat{\theta})$&1.3406&0.4320\\
&$VAR^*(\hat{S}(q_1))$&0.0027&0.0007\\
&$VAR^*(\hat{S}(q_2))$&0.0065&0.0021\\
&$VAR^*(\hat{S}(q_3))$&0.0105&0.0034\\
&$VAR^*(\hat{S}(q_4))$&0.0109&0.0037\\\\
5, 0.7725&$AVE(\hat{\alpha})$&0.7563&0.7629\\
&$AVE(\hat{\theta})$&4.9732&4.9670\\
&$AVE(\hat{S}(q_1))$&0.1958&0.1971\\
&$AVE(\hat{S}(q_2))$&0.3936&0.3950\\
&$AVE(\hat{S}(q_3))$&0.5910&0.5954\\
&$AVE(\hat{S}(q_4))$&0.7997&0.7975\\\\
&$VAR^*(\hat{\alpha})$&0.0079&0.0025\\
&$VAR^*(\hat{\theta})$&1.5025&0.4591\\
&$VAR^*(\hat{S}(q_1))$&0.0023&0.0005\\
&$VAR^*(\hat{S}(q_2))$&0.0037&0.0012\\
&$VAR^*(\hat{S}(q_3))$&0.0030&0.0013\\
&$VAR^*(\hat{S}(q_4))$&0.0033&0.0014\\
\bottomrule
\end{tabular}
\label{tab:chaiebsim}
\end{table}
\chapter{Analysing the dependence between deductibles and claim sizes in shipping data}\label{chap:skip}
We will now consider twodimensional data where the variable of interest is the claim size and the truncating variable is the deductible of insured ships. These data are subject to the truncating sampling mechanism since we do not observe claims smaller than the corresponding deductible.
\section{About the data}
The ships are divided into the four categories: Cargo-, Bulk-, Container- and Tankships. All the ships in our analysis have reported a claim larger than the corresponding deductible. Even though many of the ships are given the same deductible, we will treat this quantity as a random variable.\\\\
It is in the insurance companies interest to estimate claims based on different covariates like age, engine type and total sum insured. The total sum insured plays an important role in our analysis of the data. We will denote this quantity by $z$. Within the four categories there is a wide range in the total sum insured. Therefore, to obtain an i.i.d. model, the claim size and deductible are divided by total sum insured. In this way we can compare ships of different value. Because of a rather large difference between the standardised deductibles and claim sizes we will consider the log transformed data. \\\\
To formalise, let $(X^{'}_{1},T^{'}_{1}),\dots,(X^{'}_{n},T^{'}_{n})$ denote the original claim sizes and deductibles and let $z_1,\dots,z_n$ denote the corresponding total sum insured. Then the variables subject to our analysis are given by
\begin{align}\label{eq:consideredmod}
X_i=\log \frac{X_{i}^{'}}{z_i} \quad\text{and}\quad T_i=\log \frac{T_{i}^{'}}{z_i}\;,\quad 1\leq i \leq n.
\end{align}
Note that $X_{i}^{'}>T_{i}^{'}$ imply $X_i>T_i$, so the sampling mechanism is the same for these variables. A summary of these quantities for the dataset Cargo can be seen in \tabref{summarydata}. Notice how the transformation given above reduces the differences between the size of $X$ and $T$. 
\\\\
\begin{table}[htbp]
\caption{Summary of $(X^{'},T^{'})$, $(X,T)$ and $z$ for the dataset Cargo.}
\centering
\begin{tabular}{rrrrrrr}
\toprule
 & Min. & 1st Qu. &  Median&  Mean & 3rd Qu.& Max.  \\ 
\midrule
$X^{'}$&89000& 174177&248420&448071&477760&8871006 \\
$T^{'}$&37450&75000& 100000&134267&150000& 500000 \\
$z$&2450000&6300000&10880000&13790000&18000000&51400000\\
$X$&-5.7194&-4.1696&-3.6626&-3.5607&-2.9552&-0.8853\\
$T$&-6.7806&-5.0752&-4.7444&-4.5633&-4.0279&-2.4850 \\
\bottomrule
\end{tabular}
\label{tab:summarydata}
\end{table}
\newpage
\section{Testing the assumption of quasi independence}\label{sec:datatestind}
 In view of \eqref{consideredmod}, we have reason to believe that $X$ is positively related to $T$ since both variables depend on the value of total sum insured. Since we suspect a positive dependency structure we will consider the following assumptions:
\begin{enumerate}
\item $H_R:\rho_c=0$ against $\rho_c>0$. 
\item $H_T:\tau_c=0$ against $\tau_c>0$.  
\item $H_Z:\rho=0$ against $\rho>0$.  
\end{enumerate}
We put the significance level at $5\%$.\\\\
The two first assumptions can be properly tested by means of the statistics $R$ and $T$ given by \eqref{R} and \eqref{T}, respectively.  In \secref{goodsec} we will see that the truncated bivariate normal distribution fits the data relatively well, which is an indication that $(X^*,T^*)$ may be bivariate normally distributed. This means that the third assumption may be tested by the statistic $Z$ given by \eqref{Z}. \\\\
For each dataset we computed the test statistics $R$, $T$ and $Z$ and the corresponding p-values. Note that the $5\%$ critical value for these test statistics is $1.6448$. The result can be seen in \tabref{quasitest}. For the datasets Cargo, Bulk and Container, all three assumptions are rejected. For the dataset Tank we reject $H_T$ but not $H_R$ and $H_Z$. Since $(X,T)$ may follow the truncated bivariate normal distribution, a rejection of $H_R$ is a strong indication that the data are not quasi independent. We conclude that $X$ and $T$ are most likely not quasi independent in the datasets Cargo, Bulk and Container, while the assumption of quasi independence is questionable in the dataset Tank.
 \begin{table}[htbp]
\caption{Test results.}
\centering
\begin{tabular}{lrrrrrr}
\toprule
&$R$ & $T$ & $Z$ & p-value($H_R$)&p-value($H_T$)&p-value($H_Z$) \\ 
\midrule
Cargo&2.1254&3.3078&4.1906&0.0167&0.0005&1.39e-05\\
Bulk&3.3138&3.4707&3.5733&0.0004&0.0003&0.0002\\
Container&7.4520&6.9828&10.6086&4e-14&1	e-12&0\\
Tank&1.2134&2.7565&1.5209&0.1124& 0.0029&0.0641\\
\bottomrule
\end{tabular}
\label{tab:quasitest}
\end{table}
\section{Reconstruction of the joint distribution}\label{sec:fitting}
We will now try to reconstruct the unconditional joint distribution of the claim size and the deductible. For this purpose we will consider the following models: 
\begin{enumerate}
\item SE - Sample Estimates\\
For comparison we include the sample mean and variance of $x_1,\dots,x_n$ and $t_1,\dots,t_n$, and the sample correlation between them. Because of the sampling mechanism we expect $\bar{x}$ to overestimate $\mu_x$ and $\bar{t}$ to underestimate $\mu_t$. Hopefully, the other methods considered will adjust their means compared to these estimates.
\item  PLE - The Product-limit estimator\\
We know that $X$ and $T$ are probably not quasi independent in the datasets Cargo, Bulk and Container, so the PLE is not recommendable for these datasets. Still, we include the estimated parameters for comparison. The assumption of quasi independence may hold in the dataset Tank, so the PLE may be applicable for this dataset.
\item TBN - MLE assuming the data are Truncated Bivariate Normal distributed\\
The first pure parametric candidate. A scatterplot from a truncated bivariate normal distribution should resemble an ellipse with the part $X<T$ ''cut off''. \Figref{scatterdata} do in fact exhibit this characteristics of the truncated bivariate distribution, so this is a promising parametrisation.
\item Copula - MLE assuming the data follows a truncated meta distribution\\
With this model we can try to fit different types of dependency structures. In \secref{MCqqsec} we will argue that normal marginals is a good choice for these datasets. The considered models can be seen in  \tabref{copmodell}.
\begin{table}[htbp]
\caption{}
\centering
\begin{tabular}{lllll}
\toprule
&&Copula &Marginal F & Marginal G\\ 
\midrule
&Copula1&Clayton& Normal&Normal\\
&Copula2&Frank& Normal&Normal\\
&Copula3&Gumbel& Normal&Normal\\
\bottomrule
\end{tabular}
\label{tab:copmodell}
\end{table}
\item CGE - Copula graphic estimator\\
Using the procedure described in \secref{chaiebsec} we can estimate the parameters $\alpha$ and $\theta$. This is done under the assumption that $C^*$ is the modified Frank copula given by \eqref{modfrank} .   
\end{enumerate}
For the parametric distributions Copula1, Copula2 and Copula3 we also computed Monte Carlo estimates of $\alpha$. The estimated parameters for the different models can be found in \tabref{parafit}.  
\subsection{Results}
As we expected, compared to the SE all the other methods gives a smaller estimate of $\mu_x$ and a larger estimate of $\mu_t$. The TBN method gives a smaller estimate of $\rho$ than the SE. For the datasets Cargo, Bulk and Container the PLE gives quite different estimates compared to the other methods, while for the dataset Tank the PLE estimates are somewhat closer to the others. This is reasonable since the assumption of quasi independence may hold for this dataset. This is also reflected when we try to fit a meta distribution to this dataset using the Gumbel copula: The optimisation tends towards the ''illegal'' copula parameter $\theta=1$, so no parameter estimates are reported for this model. When $\theta\rightarrow 1$ in Gumbel copula we get the independence copula.\\\\
Because of the results in \secref{datatestind} we do not recommend the PLE for these datasets. To proceed with the CGE model, we would have to know if the selected Archimedean copula fits the data. This problem is addressed by \citet{Chaiebselection}, but the topic is not covered in in this thesis. We will therefore proceed with an evaluation of the fit of the pure parametric models TBN,  Copula1, Copula2 and Copula3. In the following section we will evaluate the marginal fit of these models. In \secref{goodsec} we will evaluate the joint fit of these models. 
\newpage
\begin{table}[htbp]
\caption{Estimated parameters}
\centering
\begin{tabular}{rrrrrrrrr}
\toprule
&Model&$\mu_x$&$\mu_t$&$\sigma_x^2$&$\sigma_t^2$&$\rho$&$\theta$&$\alpha$ \\ 
\midrule\multicolumn{8}{|c|}{Cargo}\\
\midrule
&SE&-3.5607&-4.5629&0.90106&0.8303&0.7295&NA&NA\\
&PLE&-4.5372&-2.7780&1.0286&0.2345&NA&NA&0.0721\\
&TBN&-3.8224&-4.3698&1.0455&0.9066&0.5291&NA&0.7154\\
&Copula1&-3.6199&-4.3766&0.9037&1.0809&NA&1.4131&0.8007\\
&Copula2&-3.6888&-4.4706&1.0382&0.9698&NA&5.7277&0.8438\\
&Copula3&-3.9991&-4.3842&1.2163&0.8306&NA&1.4207&0.6547\\
&CGE&NA&NA&NA&NA&NA&3.8780&0.6828\\
\midrule\multicolumn{8}{|c|}{Bulk}\\
\midrule
&SE&-3.6604&-4.8383&0.7958&0.4250&0.5506&NA&NA\\
&PLE&-4.1311&-3.9287&0.9632&0.1866&NA&NA&0.4089\\
&TBN&-3.9570&-4.7729&1.0776&0.4365&0.3722&NA&0.7922\\
&Copula1&-3.8245&-4.7693&0.9192&0.5024&NA&0.8351&0.8628\\
&Copula2&-3.9337&-4.7887&1.0413&0.4519&NA&2.7953&0.8066\\
&Copula3&-4.1711&-4.7016&1.3279&0.4421&NA&1.1094&0.6710\\
&CGE&NA&NA&NA&NA&NA&2.3918&0.8444\\
\midrule\multicolumn{8}{|c|}{ Container}\\
\midrule
&SE&-3.8240&-4.9982&0.9824&0.6924&0.7760&NA&NA\\
&PLE&-4.3958&-3.4928&0.8860&0.4816&NA&NA&0.1836\\
&TBN&-3.9073&-4.9855&1.0618& 0.6907&0.7280&NA&0.9354\\
&Copula1&-3.8476&-4.8800&1.0664& 0.8174&NA&1.7851&0.9147\\
&Copula2&-3.8888&-4.9459&1.0723&0.7169&NA&6.2805&0.9250\\
&Copula3&-3.9848&-4.9901&1.2083&0.7233&NA&1.8561&0.8872\\
&CGE&NA&NA&NA&NA&NA&5.1417&0.8853\\
\midrule\multicolumn{8}{c}{ Tank}\\
\midrule
&SE&-3.9651&-5.1648&0.7709&0.3084&0.3968&NA&NA\\
&PLE&-4.2455&-4.5011&0.7369&0.2427&NA&NA&0.5698\\
&TBN&-4.4778&-5.0628&1.2814&0.3276&0.1401&NA&0.6882\\
&Copula1&-4.2983&-5.0841&1.0753&0.3587&NA&0.3051&0.7690\\
&Copula2&-4.3040&-5.0810&1.1149&0.3294&NA&1.1247&0.7641\\
&Copula3&NA&NA&NA&NA&NA&NA&NA\\
&CGE&NA&NA&NA&NA&NA&1.4002&0.8564\\
\bottomrule
\end{tabular}
\label{tab:parafit}
\end{table}	
\clearpage
\section{Monte Carlo estimated \forkorting{QQ}-plots for truncated data}\label{sec:MCqqsec}
For a random variable $X$ with distribution function $F$ we define the q-quantile of $F$ as
\begin{align*}
\pi_q(F)=\inf\lbrace x:F(x)\geq q \rbrace.
\end{align*}
Assume we observe i.i.d. $X_1,\dots, X_n$ from an unknown distribution and we want to check if the data follows a specific distribution $F$. Let $\hat{F}_n$ denote the empirical distribution function, i.e. $\hat{F}_n(x)=1/n\sum_{i=1}^{n}I(X_i\leq x)$ . Then a visual inspection can be done with the \forkorting{QQ}-plot given by
\begin{align*}
(\pi_q(F),\hat{\pi}_q(\hat{F}_n)),
\end{align*}
where a straight line is an indication that $F$ fits the data. Since $\hat{\pi}_q(\hat{F}_n)=X_{(min\lbrace i:q\leq\frac{i}{n}\rbrace)}$ the points of the plot are given by
\begin{align*}
(F^{-1}(i/n),X_{(i)}),\quad 1\leq i \leq n.
\end{align*}
In our case, we want to check if $X_1,\dots,X_n$ follow $F^c(x)=H^c(x,\infty)$ for some estimated $H^c$. In \secref{plesimulation} we managed to find a closed form of $F^c$ when $X^*$ and $T^*$ were uniformly distributed on the unit interval. However, in most cases $F^c$ and $G^c$ are given by integrals which must be solved numerically. Simulating from $F^c$ on the other hand is easy (See \secref{montecarlo}). We therefore propose a \forkorting{QQ}-plot using the empirical distribution of $X_1,\dots,X_n$ and $\tilde{X}_1,\dots,\tilde{X}_{\tilde{n}}$ , where $\tilde{X}_i$ is simulated from $F^c$ and $\tilde{n}$ is large. Let $\tilde{F}_{n}^{c}$ denote the empirical distribution of $\tilde{X}_1,\dots,\tilde{X}_{\tilde{n}}$. The resulting \forkorting{QQ}-plot is then given by
\begin{equation*}
(\tilde{F}_{n}^{c\: -1}(i/n),X_{(i)})=(\tilde{X}_{(\min\lbrace j:j\geq i\frac{\tilde{n}}{n} \rbrace)},X_{(i)}).
\end{equation*}
Similarly, if we want to check if $T_1,\dots,T_n$ follow $G^c(t)=H^c(\infty,t)$ we can consider the \forkorting{QQ}-plot
\begin{equation*}
(\tilde{G}_{n}^{c\: -1}(i/n),T_{(i)})=(\tilde{T}_{(\min\lbrace j:j\geq i\frac{\tilde{n}}{n} \rbrace)},T_{(i)}).
\end{equation*}
For a sufficiently large $\tilde{n}$ these plots should be approximately the same as the one we would get with $F^c$ and $G^c$. A straight line in this \forkorting{QQ}-plot indicates that $F^c$ and $G^c$ fits the data. And if $F^c$ and $G^c$ fits the data it is reasonable to believe $F$ and $G$ represents the unobserved data as well. \\\\
As can be seen \figref{qqplotMC1} and \figref{qqplotMC2}, the conditional normal distribution fits the data quite well. These plots were made using the method described on the previous page. The variables $\tilde{X}_1,\dots,\tilde{X}_{\tilde{n}}$ where simulated from the estimated truncated bivariate normal distribution. This model asserts that $X^*$ and $T^*$ both follow a normal distribution. Notice that several of the ships in the dataset Container have the same total sum insured and deductible. For this dataset there is little hope of finding any parametric distribution that will fit. We conclude that the normal distribution is a good choice of marginal distributions for $X^*$ and $T^*$.
\begin{figure}[htbp]
\centering
\includegraphics[scale=0.8]{figurer/qqplottMC}
\caption{\forkorting{QQ}-plot for the observed data versus the conditional normal distribution for the datasets Cargo and Bulk. The conditional normal quantiles was MC estimated from $300\;000$ pairs $(X,T)$ drawn from the estimated TBN.}\label{fig:qqplotMC1}
\end{figure}
\begin{figure}[htbp]
\centering
\includegraphics[scale=0.8]{figurer/qqplottMC2}
\caption{\forkorting{QQ}-plot for the observed data versus the conditional normal distribution for the datasets Container and Tank. The conditional normal quantiles was MC estimated from $300\;000$ pairs $(X,T)$ drawn from the estimated TBN. Notice that several of ships in the dataset Container is given the same deductible.}\label{fig:qqplotMC2}
\end{figure}
\newpage
\section{Goodness of fit test}\label{sec:goodsec}
Since we aim to reconstruct the distribution of $(X^*,T^*)$, it would be nice to test
\begin{align*}
H(x,t)=\tilde{H}(x,t)\quad\forall\;(x,t),
\end{align*}  
where $\tilde{H}$ is one of the suggested parametric distributions. But such a procedure is not possible since the data we observe belong to the truncated vector $(X,T)=(X^*,T^*|X^*>T^*)$. However, if $H^c$ fits the observed data it is reasonable to believe $H$ represent the unobserved data as well. So the best we can do is to test 
\begin{align}\label{goodtese}
H_0:H^c(x,t)=\tilde{H}^c(x,t)\quad\forall\;(x,t),
\end{align}
where $H^c(x,t)$ is given by \eqref{fordeling}. A test for $H_0$ was suggested by Jostein Paulsen during his lectures in Risk Management.\\\\
First we simulate a substantial number of data from the estimated distribution $\tilde{H}^c$. We then divide $\mathbb{R}^2$ into $k$ disjoint rectangles $I_1,\dots,I_k$. The idea is that if the fit is good the relative number of data in each of the rectangles should be approximately the same for the observed data as for the simulated data. To be more specific, let $(X_1,T_1),\dots,(X_n,T_n)$ be i.i.d. with distribution $H^c(x,t)$ and let $(\tilde{X}_1,\tilde{T}_1),\dots,(\tilde{X}_{\tilde{n}},\tilde{T}_{\tilde{n}})$ be i.i.d. with distribution $\tilde{H}^c(x,t)$. Let
\begin{equation*}
\begin{split}
&n_j=\mbox{card}\lbrace i|(X_i,T_i)\in I_j\rbrace,\quad j=1,\dots, k\;,\\
&\tilde{n}_j=\mbox{card}\lbrace i|(\tilde{X}_i,\tilde{T}_i)\in I_j\rbrace,\quad j=1,\dots, k\;.
\end{split}
\end{equation*}
Let $\boldsymbol{p}=(p_1,\dots,p_k)$, where $p_i=P((X,T)\in I_i)$. We can then consider $(n_1,\dots,n_k)^{'}$ to be multinomially distributed with $n$ trials and $k$ classes having probabilities $\boldsymbol{p}$. The Pearson statistic for testing the null hypothesis $H_0:\boldsymbol{p}=\boldsymbol{a}$ is given by 
\begin{align*}
C_n(\boldsymbol{a})=\sum_{j=1}^{k}\dfrac{(n_j-na_{j})^2}{na_{j}}.
\end{align*} 
It can be shown, see \citep{MR1652247}, that under $H_0$ the sequence $C_n(\boldsymbol{a})$ converges to the $\chi_{k-1}^{2}$-distribution as $n\rightarrow \infty$. An extension of this test is to replace $\boldsymbol{a}$ by an estimate of $\boldsymbol{p}$, where the estimator $\hat{\boldsymbol{p}}$ is constructed so that it is a good estimator if the null hypothesis is true. Under the originally null hypothesis \ref{goodtese} the SLLN assures us that
\begin{align*}
\hat{p}_j=\frac{\tilde{n}_j}{\tilde{n}}\xrightarrow{a.s}p_j\quad \text{as}\quad \tilde{n}\rightarrow \infty.
\end{align*}
Hence, this estimator is a good estimator if \ref{goodtese} is true. Deviation from \ref{goodtese} should then be reflected by the corresponding test statistic
\begin{align*}
C_{n,\tilde{n}}(\hat{\boldsymbol{p}})=\sum_{j=1}^{k}\dfrac{(n_j-n\hat{p}_j)^2}{n\hat{p}_j}.
\end{align*}
However, this procedure results in a reduction in the number of degrees of freedom. It can be shown, see e.g. \citep{MR1652247}, that under $H_0$ 
\begin{align*}
C_{n,\tilde{n}}(\hat{\boldsymbol{p}})\xrightarrow{d}\chi_{k-1-r}^{2}\quad \text{as}\quad n,\tilde{n}\rightarrow \infty\quad \text{at a rate so that}\quad \frac{n}{\tilde{n}}\rightarrow 0,
\end{align*}
where $r$ is the number of parameters estimated in $\tilde{H}^c(x,t)$.  In the truncated bivariate case we need to estimate $(\mu_x,\mu_t,\sigma_{x}^{2},\sigma_{t}^{2},\rho)$, so $r=5$.\\\\ 
The program we made simulates $\tilde{n}=1\;000\;000$ pairs $(X_i,T_i)$ from $\tilde{H}^c(x,t)$. For $C_{n,\tilde{n}}(\hat{\boldsymbol{p}})$ to be approximately chi-squared distributed it is advised, as a rule of thumbs, to choose the rectangles so that
\begin{align*}
\min\lbrace n_1,\dots,n_k,\tilde{n}_1,\dots,\tilde{n}_k\rbrace\geq 10.
\end{align*}
To obtain such rectangles the program splits both datasets into a $9\times 9$ grid, and then concatenates neighbouring cells with too few observation, so that each concatenated cell has at least $10$ observations. The problem of too few observations in cells is mainly a problem in the original data set. The concatenation process is displayed in \figref{grids}.
\begin{figure}[htbp]
\centering
\includegraphics[scale=0.95]{figurer/grids}
\caption{The process of concatenating grids when testing the fit of copula3 to the data set Cargo.}\label{fig:grids}
\end{figure}
\subsection{Results}
With significance level $0.01$ we accept that three of the datasets may be truncated bivariate normally distributed. In \chapref{appendixB} we see that the scatterplot drawn from this distribution resembles the originally dataset better than the others. For the dataset Container there is little hope of finding a good fit no matter how many distributions we try. This is because marginally, no parametric estimate of $G^c$ will be able to fit the data. None of the copula models fitted the data particularly well so we conclude that the overall best parametrisation (amongst the considered) is done with a truncated bivariate normal distribution.\\\\ One should note that this is a very powerful test, so if the data deviate just a little from $\tilde{H}^c(x,t)$ we get a rejection of $H_0$. Therefore, even though the p-value for the truncated bivariate normal distribution is small, we choose this model in our further investigation of the data.\\\\
\newpage 

\begin{table}[htbp]
\caption{Table summarising the performance of different methods. $k$ denotes the number of cells left after the concatenation.}
\centering
\begin{tabular}{rrrrrrr}
\toprule
&Method&Dataset&p-value & $1\%$ critical value & $C_{n,\tilde{n}}$ & $k$ \\ 
\midrule
&TBN&Cargo& 0.0100&15.08&15.07&11\\
&&Bulk& 0.0107&21.66&21.46&15\\
&&Container&0.0002&20.09& 29.72&14\\
&&Tank&0.0607&34.80&28.08&24\\\\
&Copula1&Cargo& 0.0296&15.08&12.40&11\\
&&Bulk&0.0051&21.66&23.52&15\\
&&Container&3.75e-07&23.20&49.21&16\\
&&Tank&1.83e-07&33.40&64.58&23\\\\
&Copula2&Cargo& 7.52e-05&15.08&26.38&11\\
&&Bulk&5.76e-05&23.20&36.97&16\\
&&Container&0.0004&21.66&30.20&15\\
&&Tank&0.0002&34.80&46.56&24\\\\
&Copula3&Cargo&0.0035&16.81&19.37&12\\
&&Bulk&0.0096&21.66&21.77&15\\
&&Container&0.0001&23.20&34.33&16\\
&&Tank&NA&NA&NA&NA\\
\bottomrule
\end{tabular}
\label{tab:goodtable}
\end{table}
\newpage
\section{Some applications of the estimated distribution}\label{sec:application}
Let us assume that our datasets follow the estimated truncated bivariate normal distribution. From \secref{mlesec} we have that an estimate of $\alpha=P(X^*>T^*)$ is given by  
\begin{align*}
\alpha(\boldsymbol{\hat\theta})=\phi\Biggr(\dfrac{\hat{\mu}_t-\hat{\mu}_x}{\sqrt{\hat{\sigma}_{x}^{2}+\hat{\sigma}_{t}^{2}-2\hat{\rho}\hat{\sigma}_x\hat{\sigma}_t}}\Biggr).
\end{align*}
Having estimated $\alpha$, we can estimate the population size $N$ of the original sample. If we consider $(X^{*}_{1},T^{*}_{1}),\dots,(X^{*}_{N},T^{*}_{N})$ as independent trials where the event $X^{*}_{i}>T^{*}_{i}$ is a success, then $n\sim \text{Binomial}(N,\alpha)$ for all $N\geq 1$. We then have 
\begin{align*}
\text{by SLLN}\quad\frac{n}{N}\xrightarrow{a.s}\alpha\;, \quad\text{hence}\quad\hat{N}=\frac{n}{\hat{\alpha}}\;.
\end{align*}
Note that this is an approximation of an approximation, so the estimate is not necessarily accurate. An estimate of the number of unreported claims is then given by $\hat{n}_{ur}=\hat{N}-n$. The estimates for our datasets can be seen in \tabref{tabunreported}.\\\\ 
When $(X^*,T^*)$ is bivariate normally distributed it is straightforward to verify that the conditional distribution of $X^*$ given $T^*=t$ is
\begin{align*}
N\bigr(\mu_x+\rho\frac{\sigma_x}{\sigma_t}(t-\mu_t),\sigma_{x}^{2}(1-\rho^{2})\bigr).
\end{align*}  
 Let $f_{X|T}(x)$ be the density function of $X^*|T^*=t$ and consider the function
\begin{align}\label{betingetf}
e^*(t)=E[\exp(X^*)|T=t]=\int_{-\infty}^{\infty}e^{x}f_{X|T}(x)\diff x.
\end{align}
 In view of \eqref{consideredmod}, it is natural to consider the function 
\begin{align*}
e(u)=E[\exp(X^*)|\exp(T)=u]=e^*(\log u),
\end{align*}
so that we can observe the dependency structure between $X^{'}/z$ and $T^{'}/z$. In practice the deductible is known, so for a given deductible $t$ for a ship with corresponding total sum insured $z$ the expected claim size is $ze(t/z)$.\\\\ In \figref{betingetfig} we plotted $e(u)$ using the estimated parameters from our datasets. For the dataset Container we expect a claim equal to the total sum insured when the deductible is set to $40\%$ of total sum insured. Remember that the TBN model did not fit this dataset particularly well, so this result is most likely misleading. For the dataset Tank, there is little change in the expected claim size when we vary the deductible.\\\\
\\\\
\begin{table}[htbp]
\caption{Estimates of the population size of the original sample and the number of unreported claims.}
\centering
\begin{tabular}{rrrrrr}
\toprule
&&$n$ & $\hat\alpha$&$\hat{N}$&$\hat{n}_{ur}$ \\ 
\midrule
&Cargo&140&0.7154&196&56\\
&Bulk&176&0.7922&222&46\\
&Container&191&0.9354&204&13\\
&Tank&299&0.6882&434&135\\
\bottomrule
\end{tabular}
\label{tab:tabunreported}
\end{table}
\newpage
\begin{figure}[p]
\centering
\includegraphics[scale=0.85]{figurer/betinget}
\caption{The relation between the standardised claim sizes and deductible under the estimated TBN model.}\label{fig:betingetfig}
\end{figure}
\clearpage
\section{Further investigation of the dependence}\label{sec:finaldep}
As mentioned we believe some of the association between $X$ and $T$ can be explained by the standardisation done using the total sum insured. Notice that the relation between $(X,T)$ and $\log z$ is linear since
\begin{align*}
X_i=\log \frac{X_{i}^{'}}{z_i}=\log X_{i}^{'}-\log z_i \quad\text{and}\quad T_i=\log T_{i}^{'}-\log z_i,\quad 1\leq i \leq n.
\end{align*}
Indeed, as seen in \tabref{quasitestorg}, the statistics $R$ and $T$ are greatly reduced when we use the log transformed original data. But we still reject $H_R$ and $H_T$ for the datasets Cargo, Bulk and Container. However, by omitting the standardisation we loose the assumed i.i.d. property. Consequently, these test will no longer be valid, so we need to approach this investigation in a different way.
\begin{table}[htbp]
\caption{Test of quasi independence between $\log X^{'}$ and $\log T^{'}$.}
\centering
\begin{tabular}{rrrrrrr}
\toprule
&&$R$ & $T$ & $5\%$ critical value & p-value($H_R$)&p-value($H_T$) \\ 
\midrule
&Cargo&2.0538&2.9197&1.6448&0.0199&0.0017\\
&Bulk&2.1888&2.7060&1.6448&0.0143&0.0034\\
&Container&3.6013&3.6002&1.6448&0.0002&0.0002\\
&Tank&0.0588&1.3317&1.6448&0.4765& 0.0914\\
\bottomrule
\end{tabular}
\label{tab:quasitestorg}
\end{table}
\\\\
Let us still consider the log transformed standardised data $(X_1,T_1),\dots,(X_n,T_n)$, but assume now that they are independently $TN_{2}(\mu_{xi},\mu_{ti},\sigma_x^2,\sigma_t^2,\rho)$ where 
\begin{align*}
\mu_{xi}=\alpha_x +\beta_x \log z_i\;,\quad \mu_{ti}=\alpha_t +\beta_t \log z_i\;.
\end{align*}
If the linear relation to $\log z$ is the only reason why $X$ and $T$ are dependent we expect $\rho$ in this model to be close to zero. The parameters $(\alpha_x,\alpha_t,\beta_x,\beta_t,\sigma_x^2,\sigma_t^2,\rho)$ can be found by maximising the corresponding log likelihood, as described in \secref{mlesec}. The estimated parameters for our datasets are displayed in \tabref{mlereg}. As can be seen in \figref{regression}, the estimate of $((\alpha_x,\alpha_t,\beta_x,\beta_t)$ fits quite well. Compared to the estimates of $\rho$ done under the $TBN$ model in \secref{fitting}, the estimates of $\rho$ under this model was smaller. Still, the test statistic $Z$ rejects the hypothesis $\rho=0$ for the datasets Cargo and Container.

\begin{table}[htbp]
\caption{Estimated parameters in the normal linear model}
\centering
\begin{tabular}{rrrrrrrrr}
\toprule
&&$\alpha_x$&$\alpha_t$&$\beta_x$&$\beta_t$&$\sigma_x^2$&$\sigma_t^2$&$\rho$ \\ 
\midrule
&Cargo&11.66&10.53&-0.9580&-0.9267&0.7275&0.3954&0.2687\\
&Bulk&14.59&9.53&-1.1369&-0.8755&0.9217&0.2811&0.1601\\
&Container&11.28&8.79&-0.9322&-0.8459&0.6066&0.3182&0.4916\\
&Tank&6.4016&11.36&-0.6522&-0.9773&1.2725&0.1999&-0.0635\\
\bottomrule
\end{tabular}
\label{tab:mlereg}
\end{table}
\begin{table}[htbp]
\caption{Test results of the hypothesis $H_Z:\rho=0$ under the normal linear model.}
\centering
\begin{tabular}{rrrrr}
\toprule
&&Z & $5\%$ critical value & p-value(Z) \\ 
\midrule
&Cargo&2.1102&1.6448&0.0174\\
&Bulk&1.4146&1.6448&0.0785\\
&Container&6.0940&1.6448&5.50e-10\\
&Tank&-0.6304&1.6448&0.7357\\
\bottomrule
\end{tabular}
\label{tab:mletestreg}
\end{table}
\begin{figure}[htbp]
\centering
\includegraphics[scale=0.8]{figurer/regresjon}
\caption{The lines $\hat{\alpha}_x + \hat{\beta}_x \log z$ and $\hat{\alpha}_t + \hat{\beta}_t \log z$ plotted together with the observed values of $(\log z, X)$ and $(\log z,T)$ for the dataset Cargo.}\label{fig:regression}
\end{figure}
\section{Conclusion and final remarks}
The analysis of the dependence between the deductible and claim size given in this chapter was motivated by the following
\begin{itemize}
\item A significant association between the claim size and the deductible implies that models which aim to estimate claim sizes based on covariates could benefit on including the deductible as an additional covariate.
\item A reconstruction of the unconditional joint distribution of the claim size and deductible provides an estimate of the number of unreported claims. 
\end{itemize}
After testing the assumption of quasi independence in \secref{datatestind}, we concluded that this assumption fails to hold in three out of the four considered dataset. We also concluded that the assumption of quasi independence was questionable for the fourth dataset. However, we pointed out that one possible explanation of this association could be the standardisation done with the total sum insured.
\\\\
Amongst the different methods of reconstructing the unconditional joint distribution, we chose to focus on the pure parametric models TBN, Copula1, Copula2 and Copula3. The validity of these models relies on the untestable assumption that the deductible and claim size follows a certain unconditional distribution. In \secref{goodsec}, we argued that a good fit of the corresponding conditional distribution indicates that the unconditional distribution may represent the unobserved data as well. However, this argument can be quite misleading, specially if the truncated proportion is large. This remains one of the fundamental problems when reconstructing the unconditional distribution using data subject to a dependent truncation. 
\\\\
In \secref{finaldep}, we addressed the assertion that the dependence between the deductible and claim size can be explained by the standardisation done using the total sum insured. This was done by modelling the mean of the deductible and claim size as linear functions of the log transformed total sum insured. The results clearly indicated that much of the association between the deductible and claim size is explained by this standardisation. However, two of the datasets still seemed to be subject to a dependent truncation.  
\appendix
\chapter{Some proofs}\label{chap:A}
\section{Quasi independence imply $\rho_c=0$}\label{sec:proof1}
\begin{proof}
We now give a proof of \thmref{hnull1} in the continuous case.
We divide the set $A = \lbrace \text{max} (T_1,T_2)<\text{min} (X_1,X_2)\rbrace$ into the following subsets:\\
\begin{equation*}
\begin{split}
&A_1=\lbrace T_2<T_1<X_2<X_1\rbrace,\\
&A_2=\lbrace T_1<T_2<X_2<X_1\rbrace,\\
&A_3=\lbrace T_2<T_1<X_1<X_2\rbrace,\\
&A_4=\lbrace T_1<T_2<X_1<X_2\rbrace.\\
\end{split}
\end{equation*}\\
In this way $A=A_1\cup A_2 \cup A_3 \cup A_4$\\
As before, we denote the density of $(X,T)$, $X^*$ and $T^*$  by $h^{c}(x,t)$, $f(x)$ and $g(t)$, respectively. Note that $A_1, A_2, A_3$ and $A_4$ are disjoint sets and that $P(A_1)=P(A_4)$, $P(A_2)=P(A_3)$. Thus, the numerator of $\rho_c$ given in \eqref{teller} can be rewritten in the following manner:\\
\begin{equation*}
\begin{split}
\sigma_{XT}&=E(X_1-X_2)(T_1-T_2)I_A=E(X_1-X_2)(T_1-T_2)(I_{A_{1}}+I_{A_{2}}+I_{A_{3}}+I_{A_{4}})\\&=2E(X_1-X_2)(T_1-T_2)(I_{A_{1}}+I_{A_{2}})\\&=2\Bigr\lbrace\int\int\int\int_{t_2<t_1<x_2<x_1}(x_1-x_2)(t_1-t_2)h^{c}(x_1,t_1)h^{c}(x_2,t_2)\diff x_1\diff x_2\diff t_1\diff t_2\\&\phantom{=}+\int\int\int\int_{t_1<t_2<x_2<x_1}(x_1-x_2)(t_1-t_2)h^{c}(x_1,t_1)h^{c}(x_2,t_2)\diff x_1\diff x_2\diff t_1\diff t_2\Bigr\rbrace.
\end{split}
\end{equation*}
For the last integral we make the change of variable
\begin{equation*}
\begin{pmatrix}
u_1\\u_2\\x_1\\x_2
\end{pmatrix}=\begin{pmatrix}
0&1&0&0\\
1&0&0&0\\
0&0&1&0\\
0&0&0&1\\
\end{pmatrix}
\begin{pmatrix}
t_1\\t_2\\x_1\\x_2
\end{pmatrix},
\end{equation*}
where the Jacobian of the transformation is $J=-1$. With this change of variable, we obtain
\begin{equation*}
\begin{split}
\sigma_{XT}&=2\int\int\int\int_{u_2<u_1<x_2<x_1}(x_1-x_2)(u_1-u_2)\\
&\times\lbrace h^{c}(x_1,u_1)h^{c}(x_2,u_2)-h^{c}(x_2,u_1)h^{c}(x_1,u_2)\rbrace\abs{-1} \diff x_1\diff x_2\diff u_1\diff u_2.
\end{split}
\end{equation*}
If we now assume quasi independence: 
\begin{equation*}
H_0^{'}:\quad h^{c}(x,t)=
\begin{cases}
&f(x)g(t)/\alpha_{0}, \quad x> t,\\
&0,\phantom{x)g(t)/\alpha_{0},}\quad \text{otherwise},\\
\end{cases}
\end{equation*}
we get
\begin{equation*}
\begin{split}
\sigma_{XT}&=\frac{2}{\alpha_{0}^{2}}\int\int\int\int_{u_2<u_1<x_2<x_1}(x_1-x_2)(u_1-u_2)\\
&\times\lbrace \underbrace{f(x_1)g(u_1)f(x_2)g(u_2)-f(x_2)g(u_1)f(x_1)g(u_2)}_0\rbrace \diff x_1\diff x_2\diff u_1\diff u_2=0.
\end{split}
\end{equation*}
Hence $\rho_c = 0$ and the proof is complete.
\end{proof}
\newpage
\section{Proof of the asymptotic properties of $r_c$}\label{sec:proof2}
To establish the asymptotic properties of $r_c$ some basic knowledge about the properties of U-statistics is needed, hence the following definition and theorem are given. 
\subsection{U-Statistics}
\begin{definition}[U-statistics]
Let $X_{1},...,X_{n}$ be an i.i.d. random sample from an unknown distribution. Let $h$ be a permutation symmetric function and consider the estimation of $\theta=Eh(X_{1},...,X_{r})$. A U-statistic with kernel $h$ will be an unbiased estimator of $\theta$ and is defined as
\begin{equation*}
U=\frac{1}{\binom{n}{r}}\sum_{\beta}h(X_{\beta_{1}},...,X_{\beta_{r}})
\end{equation*} 
The set $\beta$ is all unordered subset of $r$, where the integers can be taken from $\lbrace1,...,n\rbrace$. 
\end{definition}
Note that the elements in a U-statistic are in general dependent. Hence, we can't derive the asymptotic behaviour of this statistic by direct application of $LLN$(Law of Large Numbers) and $CLT$(Central limit theorem). The solution of this problem is to approximate the original U-statistic by a sum of i.i.d random quantities called projections, which asymptotically have the same distribution as the U-statistic. We can then obtain the asymptotic properties of the underlying U-statistic by applying $LLN$ and $CLT$ on this sum. The details of this procedure is formulated in the following theorem. 
\begin{theorem}[Asymptotic properties of U-statistics]\label{thm:U}\label{UU}
Let $\hat{U}$ be the projection of $U-\theta$ onto the set of all statistics of the form $\sum_{i=1}^{n}g_{i}(X_{i})$ and let 
\begin{align*}
h_1(x)=Eh(X_1,X_2,\dots,X_r|X_1=x)-\theta.
\end{align*}
If $Eh^{2}(X_{1},...,X_{r})<\infty$ then $\sqrt{n}(U-\theta-\hat{U})\xrightarrow{p}0$. Consequently, the sequence $\sqrt{n}(U-\theta)$ is asymptotically normal with mean 0 and variance $r^{2}\zeta$ where, with $X_{1},...,X_{r}$ and $X_{1}^{'},...,X_{r}^{'}$ denoting i.i.d. variables,
\begin{equation*}
\begin{split}
&\zeta =\mbox{cov}\lbrace h(X_{1},\dots ,X_{r}),h(X_1,X_{2}^{'}\dots ,X_{r}^{'})\rbrace,\\
&\hat{U}=\sum_{i=1}^{n}E(U-\theta \mid X_{i})=\frac{r}{n}\sum_{i=1}^{n}h_1(X_i).
\end{split}
\end{equation*}
\end{theorem}
\begin{proof}
Note that the theorem describes the centred projection. A full proof can be found in \citep[page 162]{MR1652247}, but the main idea is the following decomposition: 
\begin{equation*}
\sqrt{n}(U-\theta)=\sqrt{n}(\hat{U})+ \sqrt{n}(U-\theta-\hat{U}).
\end{equation*}
It can be proved that the last term converge in probability to zero. The normality is then obtained by applying $CLT$ on the first term since the elements in $\hat{U}$ are independent. If we can establish that we are dealing with a U-statistic we know the following:
\begin{equation*}
U\xrightarrow{P}\theta,\quad\quad\sqrt{n}(U-\theta)\xrightarrow{d}N(0,r^{2}\zeta).
\end{equation*}
\end{proof}
\subsection{Consistency of $r_c$}
With this knowledge at hand, we now proceed to the proof of \eqref{p1}. The first step is to show that $\frac{1}{n^{2}}S_{XT}$ is a consistent estimator of $\sigma_{XT}$, that is:\\
\begin{equation*}
\frac{1}{n^{2}}S_{XT}=\frac{1}{n^{2}}\sum_{i=1}^{n}\sum_{j=1}^{n}(X_i-X_j)(T_i-T_j)I_{ij}\xrightarrow{P}E\left[(X_{1}-X_{2})(T_{1}-T_{t})I_{A}\right].
\end{equation*}
Observe that every element in $S_{XT}$ is repeated once since $(X_{i}-X_{j})(T_{i}-T_{j})I_{ij}=(X_{j}-X_{i})(T_{j}-T_{i})I_{ji}$. This means that:\\
\begin{equation*}
\frac{1}{n^{2}}S_{XT}=\frac{1}{n^{2}}\sum_{i=1}^{n}\sum_{j=1}^{n}(X_i-X_j)(T_i-T_j)I_{ij}=\frac{2}{n^{2}}\ssum_{i<j}(X_i-X_j)(T_i-T_j)I_{ij},
\end{equation*}
which asymptotically is the same as:
\begin{equation*}
\frac{2}{n(n-1)}\ssum_{i<j}(X_i-X_j)(T_i-T_j)I_{ij}=\frac{1}{\binom{n}{2}}\ssum_{i<j}(X_i-X_j)(T_i-T_j)I_{ij}=U_1.
\end{equation*}
This is a U-statistic of order $r=2$ for the kernel:
\begin{equation*}
h\Bigr(\binom{x_{1}}{t_{1}},\binom{x_{2}}{t_{2}}\Bigr)=(x_{1}-x_{2})(t_{1}-t_{2})1\lbrace \text{max} (t_1,t_2)\leq \text{min} (x_1,x_2)\rbrace,
\end{equation*} 
estimating $\theta_1=E(X_{1}-X_{2})(T_{1}-T_{2})I_{A}=\sigma_{XT}$. From \thmref{U} it now follows that $n^{-2}S_{XT}$ is a consistent estimator of $\sigma_{XT}$. Similar arguments will also establish $U_2=n^{-2}S_{XX}\xrightarrow{P}\sigma_{XX}$ and $U_3=n^{-2}S_{TT}\xrightarrow{P}\sigma_{TT}$. Consider the function
\begin{align}\label{eq:fmapping}
f(x,y,z)=\dfrac{x}{(yz)^{\frac{1}{2}}}
\end{align}
We know that $f:\mathbb{R}^3\rightarrow \mathbb{R}$ is a function continuous for all $(\sigma_{XT},\sigma_{XX},\sigma_{TT})$ when $\sigma_{XX}>0$ and $\sigma_{TT}>0$. It then follows from the \textit{continuous mapping theorem}\footnote{Let $X$ be a random vector in $\mathbb{R}^k$ and let $g:\mathbb{R}^k\rightarrow\mathbb{R}^m$ be continuous at every point of a set $C$ such that $P(X\in C)=1$. Then\\(i) If $X_n\xrightarrow{d}X$ then $g(X_n)\xrightarrow{d}g(X)$\\(ii) If $X_n\xrightarrow{P}X$ then $g(X_n)\xrightarrow{P}g(X)$\\(iii) If $X_n\xrightarrow{a.s.}X$ then $g(X_n)\xrightarrow{a.s.}g(X)$.} that:
\begin{equation*}
r_{c}=f(U_1,U_2,U_3)=\dfrac{U_1}{(U_2U_3)^{\frac{1}{2}}}\xrightarrow{P}f(\sigma_{XT},\sigma_{XX},\sigma_{TT})=\dfrac{\sigma_{XT}}{(\sigma_{XX}\sigma_{TT})^{\frac{1}{2}}}=\rho_c,
\end{equation*}
and the proof is complete. Note that this proof holds under the conditions $E(X_{1}-X_{2})^{2}(T_{1}-T_{2})^{2}I_{A}<\infty$, $E(X_{1}-X_{2})^{4}I_{A}<\infty$ and $E(T_{1}-T_{2})^{4}I_{A}<\infty$ though the result itself may hold under weaker conditions.
\subsection{Normality of $r_c$}\label{sec:normalr}
We now want to establish that $r_c$ is asymptotically normal distributed. By \thmref{U} $U_1$, $U_2$ and $U_3$ are asymptotically normal distributed. However, if we want to apply the Delta method, we need the joint asymptotic distribution of $\textbf{U}=(U_1,U_2,U_3)^{T}$. We therefore proceed with a formal definition of a multivariate U-statistic.
\newpage  
\begin{definition}[One-sample Order-r Multivariate U-statistics]\label{thm:U2}
Let $X_{1},\dots ,X_{n}$ be a random sample from an unknown distribution. Let $\textbf{h}(X_1,\dots,X_r)=(h_1(X_1,\dots ,X_r),\dots,h_v(X_1,\dots ,X_r))^{T}$ be a vector consisting of permutation symmetric functions and consider the estimation of $\boldsymbol{\theta}=(Eh_1(X_{1},...,X_{r}),\dots,Eh_v(X_{1},...,X_{r}))^{T}$. A U-statistic with kernel vector $\textbf{h}$ will be an unbiased estimator of $\boldsymbol{\theta}$ and is defined as
\begin{align*}
\textbf{U}=\frac{1}{\binom{n}{r}}\sum_{\beta}\textbf{h}(X_{\beta_{1}},...,X_{\beta_{r}})
\end{align*}
where, as before, the set $\beta$ is all unordered subset of r, where the integers can be taken from $\lbrace1,...,n\rbrace$.
\end{definition}
The asymptotic properties of \textit{Order-r Multivariate U-statistics} are derived in \citet{MR2368050} and the result is analogous to that of Theorem \ref{UU}. However, there is a different representation for $\zeta$, which we will adopt in the next theorem. For the first element in $\textbf{h}$ we have that 
\begin{align*}
\zeta=\Var[h_{1}^{*}(X_1)],\quad h_{1}^{*}(x)=E[h_1(X_1,\dots, X_r)|X_1=x].
\end{align*}
\begin{theorem}
Let $\textbf{h}^{\boldsymbol{*}}(X_1)=(h_{1}^{*}(X_1),\dots ,h_{v}^{*}(X_1))^{T}$ be the natural extension of $h_{1}^{*}$ above. Then, under mild regularity conditions 
\begin{equation*}
\sqrt{n}(\textbf{U}-\boldsymbol{\theta})\xrightarrow{d}N_v(0,r^2\Sigma_h),
\end{equation*}
where $\Sigma_h=\Var(\textbf{h}^{\boldsymbol{*}}(X_1))=E[(\textbf{h}^{\boldsymbol{*}}(X_1)-\boldsymbol{\theta})(\textbf{h}^{\boldsymbol{*}}(X_1)-\boldsymbol{\theta})^{T}]$
\end{theorem}
\begin{proof}
A proof can be found in \citep[page 255]{MR2368050}.
\end{proof}
This theorem is applicable to our case since $U_1$, $U_2$ and $U_3$ all are U-statistics of order $r=2$ and are formed by the same sample. This means, with $\textbf{U}=(U_1=n^{-2}S_{XT},U_2=n^{-2}S_{XX},U_3=n^{-2}S_{TT})^{T}$ and $\boldsymbol{\theta}=(\sigma_{XT},\sigma_{XX},\sigma_{TT})^{T}$,
\begin{align*}
\sqrt{n}(\textbf{U}-\boldsymbol{\theta})\xrightarrow{d}N_v(0,4\Sigma_h),
\end{align*}
where the covariance matrix is
\begin{align*}
\Sigma_h=E\left[\left(\textbf{h}^{\boldsymbol{*}}(\binom{X_{1}}{T_{1}})-\boldsymbol{\theta}\right)\left(\textbf{h}^{\boldsymbol{*}}(\binom{X_{1}}{T_{1}})-\boldsymbol{\theta}\right)^{T}\right],
\end{align*}
and the elements of $\textbf{h}^{\boldsymbol{*}}$ are
\begin{equation*}
\begin{split}
&h_{1}^{*}\left(\binom{X_{1}}{T_{1}}\right)=E\left[(X_1-X_2)(T_1-T_2)I_A\Biggr|\binom{X_{1}}{T_{1}}\right],\\
&h_{2}^{*}\left(\binom{X_{1}}{T_{1}}\right)=E\left[(X_1-X_2)^2I_A\Biggr|\binom{X_{1}}{T_{1}}\right],\\
&h_{3}^{*}\left(\binom{X_{1}}{T_{1}}\right)=E\left[(T_1-T_2)^2I_A\Biggr|\binom{X_{1}}{T_{1}}\right].
\end{split}
\end{equation*}
Next, let $D(\boldsymbol{\theta})=\nabla f(\sigma_{XT},\sigma_{XX},\sigma_{TT})$, where $f$ is given by \eqref{fmapping}. Thus
\begin{align*}
D(\boldsymbol{\theta})=\Biggr(\frac{\partial f}{\partial \sigma_{XT}},\frac{\partial f}{\partial \sigma_{XX}},\frac{\partial f}{\partial \sigma_{TT}}\Biggr)^{T}=\Biggr(\dfrac{1}{(\sigma_{XX}\sigma_{TT})^{\frac{1}{2}}},\dfrac{-\sigma_{XT}}{2(\sigma_{XX}^{3}\sigma_{TT})^{\frac{1}{2}}},\dfrac{-\sigma_{XT}}{2(\sigma_{XX}\sigma_{TT}^{3})^{\frac{1}{2}}}\Biggr)^{T}.
\end{align*}
If we now apply the Delta method, we obtain the asymptotic distribution of $r_c$:
\begin{equation*}
\sqrt{n}(r_c-\rho_c)=\sqrt{n}(f(\textbf{U})-f(\boldsymbol{\theta}))\xrightarrow{d}N\left(0,\sigma^2=4D(\boldsymbol{\theta})^{T}\Sigma_h D(\boldsymbol{\theta})\right),
\end{equation*}
and the proof is complete.
\subsection{Consistency of the estimated asymptotic variance}
A procedure how to estimate $\sigma^2=4D(\boldsymbol{\theta})^{T}\Sigma_h D(\boldsymbol{\theta})$ is described in \citep{MR2368050}. However, this procedure require rather ''nice'' expressions of $h_{1}^{*}$, $h_{2}^{*}$ and $h_{3}^{*}$ and is therefore not applicable in our case. An alternative approach to this problem can be found in appendix A in \citep{MR1424617}. 
\section{Example of Uniform S}\label{sec:proof3}
We now proceed to show that \thmref{uniform} holds in the simple case when $R_i=3$ and $T$ is a continuous variable. In general, since $i\in \mathscr{R}_i$ there is always one tie in $S_i$, therefore $\max(S_i)=r_i-1$ and $\min(S_i)=-r_i+1$. This explains the range of $S_i$. Assume $\mathscr{R}_i =\lbrace i, a,b\rbrace$ where $a$ and $b$ are arbitrary number from the set $\lbrace j|1\leq j \leq n, j \neq i\rbrace$. It then follows that
\begin{equation*}
R_i=3\quad \text{and}\quad S_i\in \lbrace -2,0,2 \rbrace.
\end{equation*}
As before, let $g^c(t)$ and $G^c(t)$ denote the density and cumulative distribution function of $T$, respectively. Then
\begin{equation*}
\begin{split}
P(S_i=-2|R_i=3)&=P(\sgn(T_a-T_i)=-1\cap\sgn(T_b-T_i)=-1)\\&= P(T_a<T_i\cap T_b<T_i)\\&=\int_{-\infty}^{\infty}P(T_a<T_i\cap T_b<T_i|T_i=t)g^c(t)\diff t\\&=\int_{-\infty}^{\infty}P(T_a<t\cap T_b<t)g^c(t)\diff t.
\end{split}
\end{equation*}
Under $H_0$ there is no trend in the selection of $T_a$ and $T_b$ in $S_i$ i.e. they are independent. We can then write the last integral as
\begin{equation*}
\int_{-\infty}^{\infty}P(T_a<t)P(T_b<t)g^c(t)\diff t = \int_{-\infty}^{\infty}G^c(t)^2g^c(t)\diff t=E[G^c(T)^2].
\end{equation*}
In general we know that $G^c(T)\sim U[0,1]$, hence 
\begin{align*}
P(S_i=-2|R_i=3)=E[G^c(T)^2]=E[U^2]=\int_{0}^{1}u^2\diff u=\frac{1}{3}.
\end{align*}
Similarly we have that
\begin{equation*}
\begin{split}
P(S_i=0|R_i=3)&=P(\lbrace T_a<T_i\cap T_b>T_i\rbrace\cup\lbrace T_a>T_i\cap T_b<T_i\rbrace)\\
&=2\int_{-\infty}^{\infty}P(T_a<t\cap T_b>t)g^c(t)\diff t\\&=2\int_{-\infty}^{\infty}G^c(t)(1-G^c(t))g^c(t)\diff t\\&=2\lbrace E[U]-E[U^2]\rbrace\\
&=2\lbrace\frac{1}{2}-\frac{1}{3}\rbrace=\frac{1}{3},
\end{split}
\end{equation*}  
and
\begin{equation*}
\begin{split}
P(S_i=2|R_i=3)&=P(T_a>T_i\cap T_b>T_i)\\
&=\int_{-\infty}^{\infty}P(T_a>t\cap T_b>t)g^c(t)\diff t\\&=\int_{-\infty}^{\infty}(1-G^c(t))^2g^c(t)\diff t\\
&=E[(1-U)^2]\\&=E[U_{*}^{2}]=\frac{1}{3},
\end{split}
\end{equation*}
where the second last equality holds since $1-U$ also is uniformly distributed on $[0,1]$. Hence
\begin{align*}
P(S_i=-2|R_i=3)=P(S_i=0|R_i=3)=P(S_i=2|R_i=3)=\frac{1}{3}.
\end{align*}
Thus $S_i|R_i=3$ is uniformly distributed on $\lbrace-2,0,2\rbrace$. Analogous calculations can be done for any value of $R_i$.
\section{Alternative representation of the cross-ratio function}\label{sec:cross}
In general, when $\pi(x,t)$ is continuous we have that 
\begin{align*}
\psi(x,t)&=\dfrac{\pi(x,t)D_1D_2\pi(x,t)}{D_1\pi(x,t)D_2\pi(x,t)}=\dfrac{P(X>x,T<t)P(X=x,T=t)}{P(X=x,T<t)P(X>x,T=t)}
\end{align*}
where the somewhat sloppy notation $X=x$ and $T=t$ should be interpreted as $X\in[x,x+\diff x)$ and $T\in[t,t+\diff t)$, respectively. Some algebra will establish the alternative representation of the cross-ratio function:
\begin{equation*}
\begin{split}
\psi(x,t)&=\dfrac{P(X>x,T<t)P(X=x,T=t)}{P(X=x,T<t)P(X>x,T=t)}\\
&=\dfrac{P(X_2>x,T_2<t,X_1=x,T_1=t)}{P(X_2=x,T_2<t,X_1>x,T_1=t)}\\
&=\dfrac{P(X_2>X_1,T_2<T_1,\tilde{X}_{1,2}=x,\tilde{T}_{1,2}=t)}{P(X_1>X_2,T_2<T_1,\tilde{X}_{1,2}=x,\tilde{T}_{1,2}=t)}\\
&=\dfrac{P(X_2>X_1,T_2<T_1,\tilde{X}_{1,2}=x,\tilde{T}_{1,2}=t)/P(\tilde{X}_{1,2}=x,\tilde{T}_{1,2}=t)}{P(X_1>X_2,T_2<T_1,\tilde{X}_{1,2}=x,\tilde{T}_{1,2}=t)/P(\tilde{X}_{1,2}=x,\tilde{T}_{1,2}=t)}\\
&=\dfrac{P(X_2>X_1,T_2<T_1|\tilde{X}_{1,2}=x,\tilde{T}_{1,2}=t)}{P(X_1>X_2,T_2<T_1|\tilde{X}_{1,2}=x,\tilde{T}_{1,2}=t)}\;,\\
\end{split}
\end{equation*}
where $(X_1,T_1)$ and $(X_2,T_2)$ are independently distributed as in \ref{chaiebcopula}, $\tilde{X}_{1,2}=\min(X_1,X_2)$ and $\tilde{T}_{1,2}=\max(T_1,T_2)$. Next, note that
\begin{equation*}
\begin{split}
&\phantom{=2}P((X_1-X_2)(T_1-T_2)<0|\tilde{X}_{1,2}=x,\tilde{T}_{1,2}=t)\\
&=2P(X_2>X_1,T_2<T_1|\tilde{X}_{1,2}=x,\tilde{T}_{1,2}=t),
\end{split}
\end{equation*}
since $(X_1-X_2)(T_1-T_2)<0$ if and only if $X_2>X_1$ and $T_2<T_1$ or $X_2<X_1$ and $T_2>T_1$, and by symmetry these two event have the same probability. Similar we have that
\begin{equation*}
\begin{split}
&\phantom{=2}P((X_1-X_2)(T_1-T_2)>0|\tilde{X}_{1,2}=x,\tilde{T}_{1,2}=t)\\
&=2P(X_1>X_2,T_2<T_1|\tilde{X}_{1,2}=x,\tilde{T}_{1,2}=t).
\end{split}
\end{equation*} 
Consequently
\begin{equation*}
\begin{split}
\psi(x,t)&=\dfrac{P(X_2>X_1,T_2<T_1|\tilde{X}_{1,2}=x,\tilde{T}_{1,2}=t)}{P(X_1>X_2,T_2<T_1|\tilde{X}_{1,2}=x,\tilde{T}_{1,2}=t)}\\
&=\dfrac{2P(X_2>X_1,T_2<T_1|\tilde{X}_{1,2}=x,\tilde{T}_{1,2}=t)}{2P(X_1>X_2,T_2<T_1|\tilde{X}_{1,2}=x,\tilde{T}_{1,2}=t)}\\
&=\dfrac{P((X_1-X_2)(T_1-T_2)<0|\tilde{X}_{1,2}=x,\tilde{T}_{1,2}=t)}{P((X_1-X_2)(T_1-T_2)>0|\tilde{X}_{1,2}=x,\tilde{T}_{1,2}=t)}\;,
\end{split}
\end{equation*}
and we have the desired result.
\chapter{Comparison of scatterplots}\label{chap:appendixB}
As a supplement to the goodness of fit test given in \secref{goodsec}, we made scatterplots of the variables $(X_1,T_1),\dots,(X_n,T_n)$ simulated from the estimated conditional distributions,  where $n$ equal the number of pairs in the original datasets. These scatterplots are displayed in figure B.2, B.3, B.4 and B.4 in the following pages and should be compared with the scatterplot of the original datasets displayed in \figref{scatterdata}.  
\begin{figure}[htbp]
\centering
\includegraphics[scale=0.70]{figurer/scatterdata}
\caption{Scatterplot of the original data}\label{fig:scatterdata}
\end{figure}
\begin{figure}[htbp]
\centering
\includegraphics[scale=0.70]{figurer/scatterMLE}
\caption{Scatterplot of randomly drawn vectors from the estimated truncated bivariate normal distribution.}\label{fig:scatterMLE}
\includegraphics[scale=0.70]{figurer/scatterclayton}
\caption{Scatterplot of randomly drawn vectors from the estimated \textit{Copula1} distribution.}\label{fig:scatterclayton}
\end{figure}
\begin{figure}[htbp]
\centering
\includegraphics[scale=0.70]{figurer/scatterfrank}
\caption{Scatterplot of randomly drawn vectors from the estimated \textit{Copula2} distribution.}\label{fig:scatterfrank}
\includegraphics[scale=0.70]{figurer/scattergumbel}
\caption{Scatterplot of randomly drawn vectors from the estimated \textit{Copula3} distribution.}\label{fig:scatterclayton}
\end{figure}
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