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Abstract

This study is aimed at testing the use of Magnetic Resonance (MR) images
and mathematical models for renal parameter estimation.

The study was based on four models; the Patlak model, Cortical Com-
partment model, Separable Compartment/Sourbron model and Deconvolu-
tion method.

The project included the mathematical derivation of the model. The
models were then applied to whole Kidney MRI images in order to get and
compare parameters. Part of the project also included the visualization of
the parameters produced by the models on a voxel-by-voxel basis.

The project showed that of the four models the Deconvolution method
produces the highest parameter values followed by the Patlak model. The
Cortical Compartment and Sourbron models produce almost similar results.
The voxel-by-voxel visualization also showed that only the renal cortex pro-
duces high �ow results.



Chapter 1
Background

Human beings generally have two kidneys but can live with only one, but no
human being can live without a kidney. The kidneys are organs that regulate
the volume of body �uid, acidity and mineral composition. The kidneys
perform these functions through the processes of glomerular ultra�ltration,
tubular reabsorption and tubular excretion. This is very important because
the body needs only a minimum amount of most minerals. Too much of
these minerals are harmful to the body. The kidney therefore helps regulate
these substances. Certain diseases like diabetes however cause the kidneys to
fail to perform their function. People faced with such problems might have
to undergo dialysis and others undergo kidney transplants. It is therefore
important to know the rate of kidney function especially for people with
such diseases. One important measure of renal function is the Glomerular
�ltration rate. Glomerular �ltration rate (GFR) is the rate of �ow of �ltered
�uid through the kidney. It is so far the best test of kidney function.

1.1 The Glomerular Filtration Process

As blood �ows through the aorta into kidneys, it �ows into the renal arteries
which has a smaller diameter and then into the arterioles whose diameter is
also smaller than the arteries. The reduction in the vessel diameter causes an
increase in the pressure of the blood. This causes the blood to exert pressure
on the walls of the vessels. This is called hydrostatic pressure. The walls
of the capillaries within the glomeruli are semi-permeable and allow small
particles to be �ltered through. Mineral salts and acids are small enough
and are �ltered into the bowman's capsule. Blood plasma and proteins on
the other hand are bigger and therefore stay inside the arterioles.
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Another type of pressure that acts on the blood is oncotic pressure. This
happens because blood plasma displaces water from the blood which causes
the water concentration in the blood to be low. On the other hand, water
concentration in the tissues ouside the blood vessels is high. The process of
osmosis forces water from the extracellular tissues into the blood vessels.

In the kidney, glomerular �ltration is possible because the hydrostatic
pressure in the glomerulus is higher than oncotic pressure. The Bowman's
capsule also exerts its own hydrostatic and oncotic pressure on the glomeru-
lus. The net �ltration within the glomerulus is the GFR and is expressed
mathematically by Starling's law as

GFR = Lp · S × (∆ hydrostatic pressure −∆ oncotic pressure)

GFR = Lp · S × [(Hg −Hb)− s(Og −Ob)],

where Lp is the unit permeability in the capillary wall and S is the sur-
face area available for �ltration. Hg, Hb are the hydrostatic pressure in the
glomerular capillaries and the Bowman's capsule respectively. Og, Ob the
oncotic pressure in the glomerulus and the Bowman's capsule respectively
and s is the re�ection coe�cient of proteins across the capillary walls. If the
capilliary walls are permeable, s = 0 whereas s = 1 if they are impermeable.
Since blood plasma and proteins do not �lter into the Bowman's capsule,
blood plasma and proteins are absent in the Bowman's capsule hence Ob = 0
and s = 1 which reduces the equation to

GFR = Lp · S × [(Hg −Hb)−Og].

1.2 Traditional Method Of Calculating GFR

The primary method for calculating GFR in hospitals is the Creatinine Clear-
ance test. Creatinine is a chemical produced naturally in the human body
as a result of the breakdown of creatinine phosphate in the muscles. The
amount of creatinine produced by the human body is constant. To test for
GFR, a urine sample is collected over a twenty-four hour period from the
patient. The urine is then tested for creatinine concentration and compared
to the concentration of creatinine in a sample of blood from the patient at
the end of the twenty-four hour period. From these measurements, creatinine
clearance is given as

C =
Uc × V
Pc

,

where Uc is the concentration of creatinine in the urine, V is the urine �ow
rate and Pc is the concentration of creatinine in blood plasma. This method,
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however is not totally accurate since some amount (very little) of creatinine
is reabsorbed by the body. Inulin on the other hand, is a polysaccharide used
by plants to store energy. Inulin is totally excreted by the human body and
therefore produces a more accurate measurement of GFR. Calculating GFR
from inulin is a more complicated process used only for reseach purposes.

1.3 Statement Of The Problem

The traditional method of estimating GFR produces values for the whole
human body and does not di�erentiate between the left or the right kidney.
It can therefore predict kidney mulfunction or failure but cannot tell which
of the kidneys is failing.

The method also produces one parameter; the GFR and does not provide
any other parameters of renal function. This creates the need for the use of
other methods in order to get detailed information about renal function.

1.4 Aim Of This study

The aim of this study is the estimation of GFR from registered tracer en-
hanced 3-dimensional Magnetic Resonance Images (MRI).

Signal intensity / time series will be obtained from these images and per-
fusion and GFR will be calculated using various tracer kinetic models. This
study is based on the use of four models. These are: Patlak model, Cortical
compartment model, Sourbron/Separable compartment model and Deconvo-
lution method. The thesis begins with the derivation of the mathematical
models from the basic assumptions used in the modelling process. The data
are then prepared from the available 4-dimensional MRI images. The models
are then tested on the data to obtain single kidney perfusion information.
Part of the thesis will also be a visualization of voxelwise measurement of
GFR on the prepared kidney data.
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Chapter 2
Mathematical Models

2.1 Introduction

The success of renal parameter estimation with MRI images relies on well
built models that simplify, yet accurately represent the processes that take
place within the kidney. Renal paramenter estimation with MRI images is
one of the topics at the core of medical research today. A lot of progress is
being made in that direction from the simple Patlak plot technique to the
much more complex Cortical Compartment Model, but nothing concrete has
been implemented in healthcare facilities yet.
The MRI images used in these models provide two paramenters for the mod-
elling process. The �rst is the region of interest curve denoted Croi(t) which
represents the average attenuation per time t over the region from where the
renal parameters are to be calculated. In the case of a voxel-by-voxel anal-
ysis, the attenuation curve for each voxel is its own region of interest curve.
In whole kidney analysis however, this is either the average attenuation over
the whole kidney parenchyma or just the renal cortex. The second parame-
ter provided by the MRI images is the arterial input function also called the
aortic attenuation function. This function represents the amount of tracer
supplied to the kidney by the aorta at a given time t. This is represented by
Ca(t).
The curves obtained from MRI images are signal intensity/time curves, which
for most research purposes are transformed into concentration/time curves
which represent the concentration of the tracer within the system. One
method of making this conversion is used by Aumann et al. [4] as

C(t) =
−k
TE
· ln(

S(t)

S0

) .
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Where TE is the echo time which can be retrieved from the diacom �le.
S0 denotes the baseline signal. The average baseline signal can be used in
this case to account for noise during image acquisition. S(t) denotes the
signal level at time t and k is a proportionality constant which relates the
change in relaxation rate and the concentration C(t). To �nd k, information
is needed on the characteristics of the contrast agent, pulse sequence and
tissue. The raw signal intensity/time curves were used in this project because
no information on the contrast agent were available for the images used.

In this chapter four methods for calculating renal parameters from MRI
were analyzed. They are the Patlak Plot technique [14, 15], the Cortical
Compartment Model [3], the Separable Compartment Model [26] and the
Deconvolution Method [16].

The �rst three of the methods listed are two compartment models. What
makes the di�erence between the parameters returned by these models are
the processes that are assumed to take place within the compartments. The
general assumptions made in these models however is that the contrast agent
is unidirectional, which is an accurate depiction of blood �ow within the
human body in general. As a result of the combination of valves, arteries and
veins, blood and contrast agent carried by the blood move in one direction.
Two principles are used frequently in this chapter. These are stated below
as theorems:

Central Volume Principle. The normalized �rst moment of the e�ux con-
centration curve or mean transit time MTT, is the ratio of the tissues's vol-
ume to its �ow.

Conservation of Mass. Mass cannot be created or destroyed. This can
also be stated as the amount of mass within a closed system remains constant
regardless of what processes take place within the system.

Since the input used in this project is the concentration vrs time curves
of a contrast agent, mass as used here is calculated as

mass = concentration× volume. (2.1)

2.2 The Patlak Model

Patlak model for the assessment of renal function is an adaptation of the
original Patlak plot technique originally used for the evaluation of nuclear
medicine imaging after the injection of a radioactive tracer. The model uses
the whole kidney parenchyma for renal parameter estimation and assumes
that:
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1. There is a linear relation between the renal parameters.

2. The vascular and nephron space are the two compartments used in this
model.

3. The contrast agent is completely mixed within these two compartments.

4. The out�ow of the contrast agent from the nephron space is negligible,
hence assumed to be zero.

Figure 2.1: An Illustration of the Patlak Model

2.2.1 Description Of The Patlak Model

Let K(t) be the total amount of tracer in the kidney region of interest at
time t and B(t) and Q(t) be the amount in the vascular and the nephron
space respectively. b(t) is the mass of contrast agent supplied by the arteries
at time t. It is assumed that b(t) will be carried instantaneously into the
vascular space. The mass of tracer within the vascular space is therefore
assumed to be proportional to b(t)

B(t) = c1 · b(t) . (2.2)

Where c1 is a constant representing the proportion of the contrast agent that
�ows into the vascular space. From assumption three, the contrast agent that
�ows into the nephron space is not dissipated. This means that the system
is a closed system with a single source and no sinks. The amount of tracer
in the nephron space will therefore be increasing and the rate of increase is
proportional to b(t) and is given by

dQ(t)

dt
= c2 · b(t) . (2.3)
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Solving this equation, we arrive at the equation representing total amount of
contrast agent in Q(t) in the nephron space which is given by

Q(t) = c2 ·
∫ t

0

b(y)dy +M . (2.4)

At time t = 0, there is no contrast agent in the nephron space so the above
equation becomes

Q(t) = c2 ·
∫ t

0

b(y)dy . (2.5)

From conservation of mass, the total mass of contrast agent in the whole
system is equal to the sum of the masses in the vascular and the nephron
space.

K(t) = B(t) +Q(t) . (2.6)

Substituting equations 2.2 and 2.5 into 2.6 results in the fundamental
equation of the Patlak model

K(t) = c1 · b(t) + c2 ·
∫ t

0

b(y)dy . (2.7)

Dividing equation 2.7 by b(t) results in the equation

K(t)

b(t)
= c1 + c2 ·

∫ t

0
b(y)dy

b(t)
, (2.8)

which is of the form
Y = c1 + c2 ·X ,

which is the equation of a straight line and this is the central idea behind
the Patlak model. The constant c2 is the slope of the line and represents the
GFR and c1 the y-intercept represents the size of the vascular space.

2.2.2 Calculating Input Parameters Using the Patlak

Model

To �nd the whole kidney K(t), each 3D volume of the kidney was converted
to a vector. The result of this process is a set of time series data, one for each
signal intensity / time curve of a voxel. The time series were then stripped
of all data that were not part of the kidney region of interest. The method
used to achieve this was to delete a time series row from the data array if
the sum of the row was equal to zero. This worked because those sections
of the MRI which were not part of the kidney had been set to zero by the
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segmentation process. After this process, the number of rows left in the array
represents the actual number of voxels that make up the kidney. The array
was then averaged by columns to create a row data which represents the
average attenuation of the region of interest. The minimum of the average
attenuation curve was subtracted from the average attenuation to create
a baseline shift which sets the minimum of the attenuation curve before
contrast arrival to zero. The result was multiplied by the kidney volume of
the kidney which was calculated as the volume of a single volume as obtained
from the diacom �le multipled by the total number of voxels which represents
the kidney region of interest. The �nal result of these processes isK(t), which
is the net attenuation of the kidney.

b(t) was calculated using the same procedure as that used for K(t). The
input in this case was the arterial region of interest segmented from the MRI
images and the volume calculated from the number of voxels used to calculate
the arterial input function Ca(t).

Alternatively, Ca(t) can be used for the value of b(t) while Croi(t) is used
for the value of K(t). In this case, since the values are not multiplied by
the volume of the regions, the input being used is equal to the mass per unit
volume. The c2 calculated has to be multiplied by the volume of the region
of interest to get the whole volume GFR.

2.2.3 Solving The Patlak Model

Since the Patlak model is linear in nature, the key to solving it is discretizing
the integration of b(t) and solving the resulting system of equations. To
discretize the integral, the trapezoidal rule for unequal intervals was used
since the image aquisition time for the data was not with equal intervals∫ t

0

b(y)dy =
t∑
i=0

bi + bi+1

2
(t(i+1) − ti) .

Alternatively, the function b(t) can be interpolated using either linear or
cubic spline. It can then be integrated by using the trapezoidal rule for
equal intervals.

Solving this system of equations is equivalent to solving an n× 2 matrix.
According to [15], if the values ofK(t) and b(t) and its intergral are known for
two time periods t1 and t2, then the system can be set up as a simultaneous
equation

K(t1) = c1 · b(t1) + c2 ·
∫ t1

0

b(y)dy , (2.9)
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K(t2) = c1 · b(t2) + c2 ·
∫ t2

0

b(y)dy . (2.10)

Solving for c1 and c2 in the above results in the equations

c1 =
K(t2)− c2 ·

∫ t2
0
b(y)dy

b(t2)
, (2.11)

c2 =

K(t1)·b(t2)
b(t1)

−K(t2)

b(t2)
b(t1)

∫ t1
0
b(y)dy −

∫ t2
0
b(y)dy

. (2.12)

The problem with this method however is that the dataset in use has unequal
intervals, meaning that the resulting values of c1 and c2 will be dependent on
the times chosen for the calculation. In addition to the above, although the
Patlak model assumes a linear relation between the data, the dataset used
are nonlinear in nature and simultaneous equations are much more suitable
for linear data. This means that simultaneous equations would not work in
this situation. Simultaneous equations are therefore not used in this project.
The Patlak model results in an n× 2 system of equations

Bx = k (2.13)

where the vector x contains the unknown parameters c1 and c2. The �rst
column of the matrix B contains the vector b(t) and the second column
contains the values of the cumulative integral

∫ tn
0
b(y)dy for each time tn.

Using the normal equations, equation 2.13 becomes

BTBx = BTk, (2.14)

which is now a 2× 2 system of equations which can easily be solved as

x = VBΣBU
′

Bl, (2.15)

where l = BTk, the assumption of negligible out�ow of contrast agent leads
to the overestimation of GFR which in this case is c2. This is usually com-
pensated for by hermatocrit correction. The hermatocrit is the amount of
the blood volume that is occupied by the red blood cells. Hermatocrit level
can be estimated from the unenhanced b(t) as [15]

hct = 0.0083 · bun + 0.0244.

From this value the GFR can be calculated from c2 as

GFR = (1− hct) · c2. (2.16)
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2.3 The Cortical Compartment Model

The Cortical Compartment model uses only the renal cortex for the region
of interest in its renal paramater estimation function. The model makes the
following assumptions;

1. The two compartments that are responsible for glomerular �ltration
are the glomeruli and the renal tubules.

2. Both in�ow and out�ow of contrast agent are assumed in this model.
Compared to assumption 4 of the Patlak model, the Cortical compart-
ment model does not neglect the out�ow of contrast agent.

3. A slight delay in the arrival time of the contrast agent in the cortex
from when it is seen in the aortic region.

4. A dispersion of the contrast agent within the glomeruli.

In the cortical compartment model, the contrast agent is carried by the ar-
terial input function Ca(t), delayed and dispersed into the glomeruli.

Figure 2.2: A pictorial depiction of the cortical compartment model. The
contrast agent is carried by k21 from the glomerulus C

′
a into the renal tubules

Ck it is then carried out of the renal tubules by k12, k21 is the GFR.

This model takes into the consideration the fact that glomerular �ltration
takes place in the renal cortex and not in the kidney as a whole. The contrast
agent as seen in the glomeruli C

′
a(t) is assumed to be equal to the arterial

input function Ca(t) shifted in time and dispersed according to the function
[25]:

C
′

a(t) = Ca(t− τ)⊗ (
1

d
)e−

t
d , (2.17)
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where τ is a time delay and d is a dispersion constant. ⊗ denotes the convo-
lution operation.
The �ow k21 carries the contrast agent into the renal tubules from the
glomeruli and the �ow k12 carries the contrast agent from the renal tubules
out of the system. The change in the amount of contrast agent in the tubules
at time t is therefore proportional and is given by the equation:

dCk(t)

dt
= k21C

′

a(t)− k12Ck(t) (2.18)

Solving this model using the technique of integrating factor, equation 2.18
becomes

dCk(t)

dt
+ k12Ck(t) = k21C

′

a(t)

µ(t)
dCk(t)

dt
+ µ(t)k12Ck(t) = µ(t)k21C

′

a(t)

Where µ(t) is the integrating factor that has to be found. From this, it is
seen that

dµ(t)

dt
= k12µ(t)

⇒ lnµ(t) = k12t+m

µ(t) = Mek12t

Substituting this back into the di�erential equation gives:

ek12t
dCk(t)

dt
+ k12e

k12tCk(t) = k21e
k12tC

′

a(t)

d

dt
[Mek12tCk(t)] = k21e

k12tC
′

a(t)

ek12tCk(t) =

∫ t

0

k21e
k12yC

′

a(y)dy

Ck(t) =

∫ t

0

k21e
k12ye−k12tC

′

aydy.

This leads to the equation

Ck(t) = k21

∫ t

0

e−k12(t−y)C
′

a(y)dy . (2.19)

Equation 2.19 can also be written as

Ck(t) = k21e
−k12t ⊗ C ′a(t) .
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The total mass of the contrast agent inside the system is the sum of the mass
within the glomerular compartment and that in the tubular compartment.

Croi(t) = C
′

a(t) + Ck(t) (2.20)

Since the value C
′
a(t) is the mass per unit volume of the glomeruli compart-

ment which is also the plasma compartment, then, according to the principle
of buoyancy which states that an object displaces a volume of liquid equal to
its own volume, the contrast agent within the plasma compartment displaces
a volume of plasma equal to its own volume. Therefore the contrast agent
takes up a fraction fa of the plasma space and this has to be accounted for
in the mass balance equation. 2.20 becomes

Croi(t) = faC
′

a(t) + Ck(t), (2.21)

Where fa is the fractional plasma volume - the fraction of plasma space
taken up by the contrast agent. Substituting equation 2.19 into equation
2.21 gives the equation

Croi(t) = faC
′

a(t) + k21

∫ t

0

e−k12(t−y)C
′

a(y)dy. (2.22)

Equations 2.17 and 2.22 make up the cortical compartment model with �ve
parameters fa, τ, k12, k21, d.

2.3.1 Implementation Of The Cortical Compartment Model

Since the functions provided by MRI images are discrete and �nite, the in-
tegrals in the model are discretized. In addition, since the convolution oper-
ation is being used, the input data Ca(t) and Croi(t) are interpolated. The
time shift operation also requires that the data from the arterial input func-
tion Ca(t) be right shifted, which makes its sample times di�erent from the
sample times of the original function and the region of interest function. The
new function Ca(t − τ) must therefore undergo both interpolation and ex-
trapolation to resynchronize with the original time samples. However, since
it is known that before the start time of the original function, there is no
contrast enhancement, the extrapolatin function used is a constant function
with value equal to the minimum or the average of the unattenuated part
of the arterial input function Ca(t). The integral is also replaced with the
cumulative discrete trapezoidal integral. Let

f(y) = ek12yC
′

a(y),
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Then

T (t) =

∫ t

0

f(y)dy =
∆y

2
(f(t0) + 2f(t1) + 2f(t2) + · · ·+ 2f(tn−1) + f(tn)),

where n is the number of time samples. Then the equation of the cortical
compartment model gives

Cest
roi = faC

′

a(t) + k21e
−k12t · T (t). (2.23)

The parameters of the two equations that make up the cortical compartment
model can then be found using nonlinear least squares.

Figure 2.3: The function CROI (line) and the re�tted version (thick line)

2.4 The Separable Compartment / Sourbron

Model

The Separable Compartment Model also divides the kidney into 2 compart-
ments, the plasma and tubular compartment. This model assumes the fol-
lowing:

1. Plasma �ow denoted by FP carries the contrast agent from the arteries
Ca(t) into the kidneys.

2. Time delay in humans is negligible, hence set to zero.

In the kidneys, the contrast agent �rst enters into the vascular system where
it distributes over the plasma volume denoted VP . Through ultra�ltration,
a fraction of the contrast agent is transported by the tubular �ow where is
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distributes over the tubular volume VT [26]. From there, the contrast agent
leaves the kidney transported by vascular and tubular out�ow. Figure 2.4
shows the separable compartment model.

Figure 2.4: The Separable Compartment Model

2.4.1 Description Of The Separable Compartment Model

Let the mean transit time in the plasma and tubular compartments be de-
noted TP and TT respectively. The model assumes that the contrast agent in
in the arteries CA(t) is dispersed within the plasma region by an exponential
function [26]

CP (t) = T−1
P e

− t
TP ⊗ CA(t). (2.24)

Since some reabsorption of the contrast agent takes place within the
tubuli, not all the contrast agent within the tubuli �ows out of the tubuli. A
fraction f of the contrast agent is reabsorbed, then (1 − f) of the contrast
agent will then �ow out. By the concentration of mass, the change of tracer
mass in the tubular compartment is the di�erence between the concentration
that �ows into the tubular compartment from the plasma compartment and
the concentration that �ows out

dVTCT
dt

= FTCP − (1− f)FTCT . (2.25)

Although the volume of most organs in the human body is a�ected by de-
formation due to respiration and other motions, if we assume the change in
time dt is so small that the volume of the tubular compartment is �xed, then
equation 2.25 can be rewritten as

VT
dCT
dt

= FTCP − (1− f)FTCT . (2.26)
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We solve this equation using integrating factor

VT
dCT
dt

= FTCP − (1− f)FTCT

dCT
dt

+
(1− f)FT

VT
CT =

FT
VT
CP

µ(t)
dCT
dt

+ µ(t)
(1− f)FT

VT
CT = µ(t)

FT
VT
CP .

Where µ(t) is the integrating factor. From this we get

d(µ(t)CT )

dt
= µ(t)

dCT
dt

+ CT
dµ(t)

dt
.

From which we get

dµ(t)

dt
=

(1− f)FT
VT

µ(t) .

Which we solve to arrive at

µ(t) = ce
(1−f)FT

VT
t
.

Which we plug back into our di�erential equation to get

d

dt
(e

(1−f)FT
VT

t
CT (t)) = e

(1−f)FT
VT

tFT
VT
CP (t)

e
(1−f)FT

VT
t
CT (t) =

∫ t

0

e
(1−f)FT

VT
yFT
VT
CP (y)dy

CT (t) =
FT
VT

∫ t

0

e
− (1−f)FT

VT
(t−y)

CP (y)dy

Which is the convolution equation

CT (t) =
FT
VT
e
− t

TT ⊗ CP (y) , (2.27)

where
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TT =
VT

FT (1− f)
. (2.28)

The total amount of tracer in the system is the sum of the tracer in the
plasma and tubular compartment

C = VPCP + VTCT (2.29)

substituting equation 2.27 into 2.29 results in the the �nal equation

C(t) = VPCP (t) + FT e
− t

TT ⊗ CP (t) . (2.30)

The separable compartment model is de�ned by the two equations 2.24
and 2.30 and the four parameters TP , VP , FT , TT . FT is the renal GFR.
Using the central volume theory and the four parameters calculated from the
model, plasma �ow FP can also be calculated as

FP =
VP
TP

. (2.31)

The extraction fraction, which is the percentage of plasma entering the
glomeruli that is �ltered into the tubuli can also be calculated as

E =
FT
FP

(2.32)

Comparatively, this model is very similar to the cortical compartment
model. First, it should be noted that the type of �ltration that takes place
in the glomeruli is selective. Blood plasma is therefore not �ltered into the
tubuli but only remains in the glomeruli. The glomerular space in the cortical
compartment model is therefore equivalent to the plasma space in the separa-
ble compartment model. Secondly, the parameters calculated by the cortical
compartment model are analogues to some of the parameters in the separable
compartment model. These parameters are the dispersion constant d which
is labelled TP in the separable compartment model, the �ltration fraction fa
which is equivalent to VP , k21 for FT and k12 for 1/TT . The major di�erence
between the two models is that while the cortical compartment model as-
sumes a time delay between the tracer in the arterial input function before it
enters the glomerular space, the separable compartment model asserts that
this delay in humans is small and therefore negligible [26] so in this model
τ = 0.
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2.5 The Deconvolution Method

The deconvolution method is, in a sense, di�erent from the other three mod-
els. This method does not make any simplifying assumption about the un-
derlying structure of the kidney neither does it divide the kidney into com-
partments of any sort. All it does is to analyze the evolution of the function
that makes up the concentration function. The basic assumption made by
this model is that the region of interest concentration curve is a dispersion of
the arterial input function. The result is the ability to decompose the concen-
tration time curve into its impulse response so as to remove the dependency
from the arterial input function [16]. As a result of the above assumption,
the arterial input function Ca(t) can be seen as a unit impulse function which
is convolved with an unknown function h(t) to produce the cortical region of
interest enhancement curve Croi(t).

Croi(t) = Ca(t)⊗ h(t) =

∫ t

0

Ca(τ) · h(t− τ)dτ (2.33)

which can be discretized to obtain the discrete deconvolution function

Croi(t) =
t∑

τ=0

Ca(τ) · h(t− τ)∆τ. (2.34)

The convolution equation 2.34 can then be inverted to �nd the renal impulse
response function h(t) as

h(t) = Croi(t)⊗−1 Ca(t). (2.35)

2.5.1 The Deconvolution Operation

From the discretization of the convolution operation,

Croi(t) = Ca(t)⊗ h(t) =
t∑
0

Ca(τ) · h(t− τ)∆τ.

Assuming ∆τ = 1 we have

Croi(0) = Ca(0) · h(0)

Croi(1) = Ca(1) · h(0) + Ca(0) · h(1)

Croi(2) = Ca(2) · h(0) + Ca(1) · h(1) + Ca(0) · h(2)
...

Croi(n− 1) = Ca(n− 1) · h(0) + Ca(n− 2) · h(1) + . . .+ Ca(0) · h(n− 1) ,
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which we can decompose into matrix form as

Croi(0)
Croi(1)
Croi(2)

...
Croi(n− 2)
Croi(n− 1)


=



Ca(0) 0 0 . . . 0 0
Ca(1) Ca(0) 0 . . . 0 0
Ca(2) Ca(1) Ca(0) 0 . . . 0
...

. . .
...

Ca(n− 2) Ca(n− 3) . . . Ca(1) Ca(0) 0
Ca(n− 1) Ca(n− 2) . . . Ca(2) Ca(1) Ca(0)





h(0)
h(1)
h(2)
...

h(n− 2)
h(n− 1)


The above equation can be expressed as

croi = Cah ,

where croi is a vector representing the cortical region of interest and Ca is a
Toeplitz matrix with its �rst column representing the arterial input function
Ca(t) and its �rst row having its �rst element to be the �rst element of
the arterial input function and the the rest of the elements being zero and
the matrix itself being diagonal-constant. Ca is therefore lower triangular
in nature. h is the renal impulse response function we wish to recover by
solving the equation. This problem can be solved using the singular value
decomposition of Ca(t), we have

croi = Cah⇒ croi = UΣV ′h⇒ h = V Σ−1U ′croi,

where U, V are unitary matrices.

2.5.2 Curve Fitting Within The Deconvolution Method

The renal impulse response function h(t) exhibits three sequential peaks that
identi�es the �ow of contrast agent through the glomeruli, the proximal con-
voluted tubule and the distal convoluted tubules [16]. The function also has
a lot of other minor oscillations that could be the result of noise from image
acquisition. According to [16], the �rst two of the major peaks can be �tted
by the sum of two gamma variate functions

G(t) = a1(t− a4)a2e−(t−a4)/a3 + b1(t− b4)b2e−(t−b4)/b3 , (2.36)

where t is the time and the ai and bi are parameters to be found. The
problem with this method however is that the parameters ai, i = 1, 2, 3, 4 on
the left side of the addition symbol determine one gamma variate function
while the bi, i = 1, 2, 3, 4 determine a second. For the function de�ned by
the parameters ai, a4 determines the time at which the function starts. To
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guarantee that the function is real, ta ≥ a4 where ta is the time input for the
curve de�ned by the parameters ai. In the same way, for the function de�ned
by the parameters bi, b4 determines the start of the function. To guarantee
a real function therefore tb ≥ b4 where tb is the time input for the curve
de�ned by the bi parameters. Since the ai, bi are �tted to unique peaks on h,
they have di�erent starting points. Since the ai are the parameters de�ning
the �rst peak, a4 > b4. This means that ta 6= tb. To avoid the possibility
of �tting G(t) as a complex function, it is better to break in up into two
separate functions

G(t) = Gvas +Gprox , (2.37)

where Gvas is the �t to the glomerular peak and is de�ned as:

Gvas(t) = a1(t− a4)a2e−(t−a4)/a3 (2.38)

and Gprox is the �t to the proximal tubule peak

Gprox(t) = b1(t− b4)b2e−(t−b4)/b3 . (2.39)

Gvas can therefore be �tted over the whole of h(t) and Gprox can be �tted to
the part of h(t) where the proximal distal tubule peak begins. The parameters
of the G curves are such that a1, b1 are scale factors, a2, b2, a3, b3 decide the
shape of the curves and as stated earlier, a4, b4 determine where the curves
begin. The parameters are �tted by a nonlinear least squares procedure.

2.5.3 Calculating Renal Parameters For The Deconvo-

lution Method

Application of the central volume principle implies that renal perfusion RP
is the ratio of the fractional plasma volume FPV and the vascular mean
transit time MTTvas,

RP =
FPV

MTTvas
. (2.40)

The fractional plasma volume which is the fraction of the plasma volume
occupied by the contrast agent can be found by the equation

FPV = κ

∫
Croi(t)dt∫
ca(t)dt

, (2.41)

where κ is a scale factor that that accounts for tissue density [22]. However
from the matrix representation of the deconvolution, Croi can be represented
as

Croi = Ca(t)⊗ h(t) = Ca(t) · h(t) . (2.42)
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Therefore equation 2.41 can be rewritten as

FPV =

∫
Ca(t) · h(t)dt∫
Ca(t)dt

≈
∫
h(t)dt . (2.43)

The fractional plasma volume is therefore calculated by taking the integral
over the Gvas(t).
To calculate the Mean transit time, it it should be noted that the net volume
of the system can be de�ned as

Net V olume = Flow · t

To �nd the total volume therefore is to �nd the volume of of particles having
transit times t.

dV = t · rate of �ow
dV = tFh(t)dt

V =

∫
tFh(t)dt = F

∫
th(t)dt = F · Transit time ,

which means that the mean transit time of the system is given by:

MTT =

∫ ∞

0

th(t)dt . (2.44)

The vascular mean transit time is therefore given by:

MTTvas =

∫ ∞

0

tGvas(t)dt. (2.45)

To calculate the GFR, the following formula was used [16]

GFR =
maximum slope of the proximal tubule peak

(Cvasc)max
. (2.46)

Where (Cvasc)max is the ratio of the maximum peak of the vascular function
Gvas(t) divided by FPV . From the calculation of the renal perfusion and
GFR, we can calculate the �ltration fraction as the ratio of the GFR and
renal perfusion

FF =
GFR

RP
. (2.47)
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Figure 2.5: Concentration curves Croi(t) blue and Ca(t) red and their impulse
response h(t) right

Figure 2.6: A scaled up view of part of the original impulse response curve
h(t) and the gamma �tted Gvas(t) (red *) and Gprox(t) (blue o)
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Chapter 3
Data Preparation

3.1 Introduction

Successful renal function estimation using MRI images requires the avail-
ability of MRI images for the process. Once these are acquired, the dataset
needs to be registered to correct for motion in the organs due to respiration.
The next stage is to accurately identify the region of interest (ROI) needed
for mathematical assessment. This stage is the segmentation stage. Once
the regions of interest have been acquired, the mathematical models can be
applied. In this project, the MRI images used were pre-registered images.
The data preparation stage of this project therefore involves only the process
of data segmentation.

This chapter describes the processes used to segment the kidneys for
this project. For some of the images used in the project the �rst stage in
segmentation is to de�ne a rectangular area that contains the kidney. This
is necessary because the kidney is located within an area which also has
the liver and the stomach. These organs have tissue structures identical to
the kidney and might also have similar properties. De�ning a local region
where segmentation is supposed to take place ensures the accuracy of the
segmentation process.

3.2 Manual Segmentation

The �rst method used to segment the kidney parenchyma was by hand draw-
ing the region of interest(ROI) mask. To achieve this, one of the time se-
quences was selected as a reference volume. On each slice of the reference
volume, a region of interest was drawn using matlab's roipoly command.
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This results in a matrix of size m× n for each slice with values 0 and 1 with
the value 1 where the pixel is inside the region of interest and 0 otherwise.
In locations where the kidney could not be detected or where there was no
kidney present, an m× n matrix of all zeros was created. This is important
to ensure that the size of the mask is equal to the size of one time slice of the
dataset. Pixelwise multiplication between each time slice of the dataset and
the mask is then performed. The result of these operations is the segmented
dataset.

Figure 3.1: Manual Segmentation of the human kidney a) 2D slice of the
MRI image b) Rectangular area around the right kidney c) Manual mask
around the kidney d) pixelwise product of the kidney and the mask

3.3 Statistical Segmentation

Figure 3.2: Enhancement pattern of di�erent tissue structures in the renal
MRI image. Notice how the cortex peaks very early compared to the other
tissues and the mean of the maximum value also higher that most of the
other tissues. The functions were plotted using six randomly selected pixels
from the tissue.
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Other segmentation methods tested in this project are based on temporal
statistics of each voxel in the dataset. Since the contrast agent is carried by
the blood into the system, it is assumed that the part of the body that takes
up blood will have the intensity of the voxel changing over time. Some voxels
will however change faster than others especially in their tracer uptake phase
as shown in �gure 3.2. It is therefore assumed that methods of statistical
dispersion performed on the voxels in time will show which voxels change
rapidly. The cortex for example peaks very early in the sequence. It is
therefore assumed to have a high deviation if the sequence used was up to
the peak of each voxel and not the whole time sequence. Two methods of
dispersion were used, the standard deviation given by

σ =

√√√√ 1

N

N∑
i=1

(Xi − µ)2,

and the mean absolute deviation

mad =
1

N

N∑
i=1

|Xi − µ| .

Figure 3.3: Image segmentation using mean absolute deviation a) mean ab-
solute deviation of the dataset from time 0 to peak time. b) thresholding of
image a). c) Image b) �lled with imfill and morphological closing d) Image
c) eroded and dilated to remove small pixels not part of kidney e) Pixelwise
product of original image and image d)

Segmenting the cortex can be done by increasing the threshold of the
deviations. Another method is to use the time to peak information of each
voxel in the dataset in combination with the standard or the mean absolute
deviation segmentatioin already shown in �gure 3.3. Since the mean absolute
segmentation method performed already gives the whole kidney parenchyma,
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and from �gure 3.2, some other tissues also peak very early, the time to
peak information alone would not produce a good segmentation of the renal
cortex. This is further compounded by the presence of noise in the image.
However performing a logical and operation between the ROI mask of the
parenchyma and the time to peak information takes us closer to the goal
of cortical segmentation. Morphological opening and closing followed by a
morphological dilation and erosion �ne tunes the segmentation operation.

Figure 3.4: Stages of the segmentation of the cortex. a) The time to peak
map of the kidney b) image a) combined with �gure 3.3 c) using logical and
c) Image b) after morphological opening and closing and dilation and erosion
d) pixelwise multiplication of image c) and �gure 3.1 b)

3.4 Kidney Segmentation By k-means Cluster-

ing

K-means clustering is an unsupervised cluster analysis method which is used
for dimensionality reduction. Given a set of n voxels with t samples per voxel
with t <= n, then the system is at most t−dimensional. K-means provides a
way to partition the system into k clusters, k <= t. Given the 4 dimensional
dataset that makes up our MRI images with n voxels {v1, v2, · · · , vn} per 3
dimensional timestep, each 3 dimensional timestep is reshaped into a vector.
The result is a set of t vectors. K-means therefore partitions the voxels into
k partitions S = {S1, S2, · · · , Sk} by minimizing the objective function

f =
k∑
i=1

∑
vj∈Si

||vj − µi||2 , (3.1)

where µi is the mean of Si. Using k-means clustering for segmentation is
usually a trial-and-error routine which will partition the volume into k mu-
tually exclusive partitions. K-means might have to be run a couple of times
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until the right number of partitions that produces the best kidney partitions
is achieved. Image processing routines can then be used to �ne-tune the
segmentation process.

Figure 3.5: K-means segmentation of the kidney. The dataset was partitioned
into 11 partitions. The �rst image shows the partitions within the volume a)
The cortical partition b) The medula partition c) sum of image a) and b).
d) Morphologically transformed version of c) e) Pixelwise product of d) and
the original image
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Chapter 4
Numerical Experiments

Having developed the mathematical models associated with renal parameter
estimation, the aim of this chapter is to test the models on available MRI
images. In a way, this is also a comparison of the models as it will enable us
to compare the values returned by the models.

As stated in the chapter 3, the arterial input function was segmented by
hand. This raises the issue of how large a region of interest selected for the
arterial input function should be.

From �gure 4.1, analysing the image from left to right and from top to
bottom, the contrast agent enters the kidney from the regions marked A and
B. It then �ows into the cortex and enhances it. After that, it �ows into
the other parts of the kidney and enhances them. Since the �rst sighting
of the contrast agent will be in the region marked A, one option is to use
this region as the arterial input function for the slice. However, since the
whole section marked B makes up the arteries, we might also be tempted to
use that section for the arterial input function. The downside to this choice
however is the reduction in the function due to averaging e�ect. This will
happen because apart from the region marked A, most of the region B is
not enhanced during the initial sightings. It is therefore possible that the
selection of B might reduce the output of the models.

To test the models, three MRI images were used to perform four tests.
Test 1 was performed on the right kidney of the test subject. Test 2 was
performed on the left kidney of the same subject. Test 3 was performed from
the same kidney used for test 1 registered by a di�erent person (this was
registered by Andrea Anderlik, a PhD fellow at the Biomedicin Department).
Tests 1 through 3 were performed using A as the arterial input function. Tests
4 is a repetition of test 1 using the region B.
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Figure 4.1: A montage in time of a slice of a functional MRI image

The results of the tests were tabulated using the following scheme.

Table 4.1: Parameter comparison of the di�erent models

Model τ d fa k21 k12

Patlak - - c1 c2 -

Cortical τ d fa k21 k12

Sourbron - TP VP FT
1
TT

Deconvolution - - FPV GFR -

Since the cortical compartment model had the most parameters which
are �ve in total, the parameters of the other models were compared to its
parameters. Below are the test results;
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Table 4.2: Test 1

Model τ d fa k21 k12

Patlak - - 0.79727546 0.00016595 -

Cortical 3.47380033 0.11456115 0.06615905 0.00379473 0.11951595

Sourbron - 0.18897981 0.09965853 0.00778876 0.12607557

Deconvolution - - 1.09544367 0.02594675 -

Table 4.3: Test 2

Model τ d fa k21 k12

Patlak - - 0.84903070 0.00009305 -

Cortical 4.59511014 0.24342930 0.15944592 0.01388819 0.26296464

Sourbron - 0.33050968 0.19419390 0.01824565 0.19152907

Deconvolution - - 0.99502602 0.09333561 -

Table 4.4: Test 3

Model τ d fa k21 k12

Patlak - - 0.74906297 0.00035882 -

Cortical 3.52731078 0.26247502 0.12040167 0.01019533 0.08231768

Sourbron - 0.27714202 0.11823087 0.01093042 0.07805641

Deconvolution - - 0.86909071 0.07237362 -

From tables 4.2 through 4.4, it can be seen that the Patlak model produces
very low estimates as compared to the rest of the models. This is the e�ect
of the negligible �ow assumption. To see what happens in the estimation,
we have to take a look at the typical region of interest curve for the kidney
cortex. From �gure 4.2, the cortical concentration rises to its peak very
early and takes a longer time in the washout phase. Using the whole curve
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therefore negates the negligible �ow assumption. To solve this problem, we
take the part of the cortical concentration curve up to the peak time and use
that to calculate the Patlak model paramenters.

Figure 4.2: The cortical region of interest curve

Table 4.5: Repetition of the calculation of Patlak models using the region of
interest curve from initial sighting to peak

Model τ d fa k21 k12

Patlak Test 1 - - 0.53521060 0.02428748 -

Patlak Test 2 - - 0.59197647 0.02799499 -

Patlak Test 3 - - 0.44867735 0.01168330 -

We now compare the new Patlak GFR values to the values from the other
methods to give us an idea of how the models perform. From �gure 4.3, the
deconvolution method produces the largest estimates of GFR followed by the
Patlak model. The Sourbron model and the Cortical compartment models
produce almost parallel values with the Sourbron values being higher than
those of the Cortical compartment.
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Figure 4.3: A comparison of tubular �ow (k21) values from tests 1 to 3

Using a di�erent region of interest for the arterial input function also
produces di�erent results for the di�erent models considered.

Table 4.6: Test 4 - Using a Di�erent arterial input function

Model τ d fa k21 k12

Patlak - - 0.94695893 0.01067041 -

Cortical 0.20226234 0.23029272 0.16283277 0.01187411 0.19224050

Sourbron - 0.17318121 0.12214594 0.00888276 0.18980771

Deconvolution - - 1.35232386 0.00893228 -

Comparing tables 4.2 and 4.6 which are the same kidney image with dif-
ferent arterial input functions, we �nd that there are di�erences between the
values obtained for the same subject using di�erent segmentations of arterial
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input function. From this, we can say that two di�erent analysts using the
same functional MRI images of the kidney to calculate renal parameters, we
are likely to arrive at di�erent results based on segmentation process and the
model that is used by the analysts. The results of test 3 also shows that a
di�erent registration process might also a�ect the result of using MRI images
for renal parameter estimation. These results mean the results of parame-
ter estimation using the models is not accurately reproduceable. Another
example that shows the importance of the selection of a good arterial input
function happened accidentally as we were testing an arterial input function.
The arterial input function that was corrupted by the value of voxels from
other tissues around the arteries. The function that was selected had lower
values than the cortical region of interest function.

Table 4.7: Test 4 - Cortical and Sourbron estimation from defective arterial
input function

Model τ d fa k21 k12

Cortical −1.35922299 1.39848958 1.26472377 0.00409365 0.02479976

Sourbron - 0.84283906 0.81964625 0.00228073 0.02339123

Looking at the values of the Sourbron parameters in table 4.7, it is not
obvious that there is an error in the estimated parameters but the error is
�agged in the Cortical compartment model values as a negative delay time.
This is easily seen as an error because a negative time delay implies the
contrast agent arrived in the cortex before it arrived in the artery which is
cleary false. Figure 4.4 shows the curves used in tables 4.2, 4.6, 4.7. The
blue curve represents the arterial input function used in table 4.2. The red
curve was used in table 4.6 while the black curve was the erroneous arterial
input function used in table 4.7. The curve in magenta with the diamond
markers represent the cortical region of interest curve.
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Figure 4.4: Comparison of the di�erent arterial input functions used in ta-
bles 4.2, 4.6, 4.7
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Chapter 5
Model Visualization

Apart from providing results for single kidney function estimation, functional
MRI of the kidney also provides the added advantage of being able to give
insight into renal function at the voxel level, using the same models devel-
oped for whole kidney function. Since this gives perfusion parameters for
each voxel, the number of parameters that are extracted can be rather over-
whelming given the high resolution images that today's scanning equipment
can produce. The best way to analyze the result of a voxelwise estimation
of renal function therefore is to visualize the results using various interac-
tive and informative visualization schemes. This thesis also presents some
slice and volume visualization techniques to provide insight into the result of
voxelwise parameter estimation.

5.1 Volume Slicing

In visualizing with volume slices, we are interested in seeing what the per-
fusion data looks like on slices planes perpendicular to the x, y, z axes and
on arbitrary slice planes. In this section of the chapter, I will be primar-
ily interested in visualizing with di�erent types of slice based visualization
techniques in Matlab.

5.1.1 Single Slices

Since voxel-by-voxel analysis is based on the initial MRI images, the result
will equally be a 3-dimensional volume with the size of a single 3-d time-slice
of the original MRI image. Given a uniform, rectilinear, or structured grid,
a slice is de�ned as all grid points that have one of the structured integer
coordinates n1, n2, ..., nd equal [27]. In e�ect, taking a slice perpendicular to
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the z direction will have n3 integer coordinates equal. This dataset will have
dimension one less than the dimension of the original dataset. To implement
slicing, we iterate over all the sample points in the slice in order of the struc-
tured coordinates ni, i 6= s where s is the slicing axis and save the sampled
points in the slice plane [27]. We can then use a color map to map di�erent
intensity levels in the slice plane to colours. In this project, slicing using slice
planes results in a 2-dimensional image that allows an insight into one part
of the kidney at a time so using slices, we can for example see the perfusion
parameters in the centre slice of the kidney.

An example in Matlab is, given a volume of size 70× 95× 8, we can take
a slice perpendicular to the z − axis as (:,:,p), which will result in an image
of the pth slice of the volume. Slicing perpendicular to the x and y axis works
a little di�erently. Just slicing as (:,p,:) will still result in a 3-dimensional
image except that the second dimension will have the value 1. To be able to
display this image, the data is �rst reshaped to create a 2-dimensional image.
Alternatively, we can use the permute command to rearrange the volume's
dimension in a manner that matches the axis we want to work with, then we
can use (:,:,p).

Apart from axes aligned slices, it is possible to also extract arbitrary slice
planes from an image. Matlab de�nes a slice plane as a surface that takes on
colouring based on values of the volume data in the region where the slice is
positioned [1]. To generate arbitrary slices in matlab, we use the following
procedure [2]:

1. De�ne a slice surface in the region bounded by the domain of the volume
using Matlab's surf and linspace commands. In essence, this creates
an axis aligned slice.

2. Rotate the surface around an axis to orient it in the direction you want
it to go. This is achieved using the rotate command.

3. Obtain the XData, YData and ZData for the surface using the get
command. Each of these results will be a 2-dimensional array.

4. Use the XData, YData, ZData obtained to draw the slice plane within
the volume using the slice command.

An abritrary slice, unlike an axis aligned one, is not �xed in any one di-
rection which means that the sample locations will not be integral in nature.
An interpolation scheme will therefore have to be used to obtain the sample
data for the slice. Matlab uses trilinear interpolation by default to achieve
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this. The value for a pixel location in an arbitrary slice will therefore be
based on contributions from other pixel locations within the volume.

Slices extracted from a volume can be used in many ways to convey infor-
mation to an audience. Using a colormap, already discussed above will help
in easy identi�cation of areas of high and low values. In the case of multiple
parameters, color information for one variable can be combined with altitude
information for another variable to create a 3-dimensional height map with
the z values being the altitude..

5.1.2 Multiple Slices

Slice based visualization is usually very easy to implement, but in using it, we
tend to lose the 3-dimensional picture as we end up with a �at image devoid
of contribution from any other slice. However, given some n −D geometric
structure, it is possible to view the structure of the object using stacks of
(n − 1) −D substructures. For example, a stack of 2 −D objects made up
of a point, then a circle of radius r1, then a bigger circle of radius r2, then
another circle of radius r1 then another point in that order, the structure can
be deduced as a sphere in 3 − D. Another example is to stack up n circles
in 2 − D to give a cylinder in 3 − D or multiple squares to give a cube. It
is also possible to use multiple slices to visualize a slice in relation to other
slices strategically placed to get an idea about the consistency of our data
across the volume and possible some idea of the volume's 3 − D structure.
In our particular case, we can use multiple slices, both perpendicular and
arbitrary, together with transparency to see if the areas of high and low GFR
have particular spatial locations within the kidney. Transparency becomes
important in this situation to see through slices while showing other slices
behind them.

5.2 3-D Volume Visualization By Raycasting

Volume rendering as opposed to slice based visualization creates an image
that is made up of contributions from all voxels in the volume. One of
the common volume rendering techniques is raycasting. Raycasting is not
available in Matlab so it had to be coded from scratch.

In raycasting, the volume is assumed to be a cube placed in a 3-dimensional
coordinate system in front of a viewport and a light source. In this imple-
mentation, given a volume of dimension m× n× p, the volume is placed in
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a coordinate system with its minimum point being (1,1,1) and its maximum
point being (m,n, p). This volume is placed in front of a viewport with its
bottom-left located at (1,1,−q) and top-right located at (m,n,−q) where q is
length of the hypothenus of one z-slice of the volume. This is calculated as
ceil(
√
m2 + n2). This distance allows the viewport not to cut through the

volume when it is rotated.

Figure 5.1: Pictoral depiction of viewport (rectangle ABCD) and volume
(gray cube)

The basic idea in raycasting is that for every pixel in the viewport ABCD,
we shoot a ray perpendicular to the viewport into the volume and determine
the intersection of the ray and the volume. For every sample location in the
ray, we calculate the contribution of the point in the volume to the pixel
value.

5.2.1 Bounding Box Intersection

Given the rectangle ABCD shown in �gure 5.1, ~BC and ~BA are vectors in
the plane de�ned by ABCD. The normal ~nr to the plane is therefore de�ned
as

~nr = ~BA× ~BC,

where × is de�ned as the vector cross product. For every pixel location (~p)
in the viewport, we can de�ne the ray through that location as

~r(t) = ~p+ t ~nr,

where t is a step parameter, ~p is the origin and ~nr is the ray direction.
To compute the intersection of the ray with the cube, we can take each

face of the cube to be a plane. Then each of the planes is de�ned by the
equation

(~a− ~x) · ~np = 0,
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which is true for all ~x. In this equation, ~a represents a point on the plane
and ~np the normal to the plane. To �nd if the ray intersects the plane, we
plug the ray equation into the plane equation to give

(~a− ~p− t ~nr) · ~np = 0,

and solve for t to get

t =
(~a− ~p) · ~np
~nr · ~np

.

If the ray is parallel to the plane, then ~nr · ~np = 0 so t will be unde�ned. To
calculate the intersection of the ray and cube, we use the ray-box intersection
method. In this method an axis aligned box is de�ned as two parallel planes
which is speci�ed by the location of two opposite corners ~a, ~b of the box. The
objective is therefore to calculate the the intersection of the ray and the 3
pairs of planes ([xmin, xmax],[ymin, ymax],[zmin, zmax]) that de�ne the volume.

tx1 = ~ax− ~px

~nrx
, tx2 =

~bx− ~px

~nrx

ty1 = ~ay− ~py

~nry
, ty2 =

~by− ~py

~nry

tz1 = ~az− ~pz

~nrz
, tz2 =

~bz− ~pz

~nrz

.

To �nd the intersection times tmin, tmax is to �nd the common intervals
of the times tx1 , tx2 , ty1 , ty2 , tz1 , tz2

tmin = max(min(tx1 , tx2),min(ty1 , ty2),min(tz1 , tz2))

tmax = min(max(tx1 , tx2),max(ty1 , ty2),max(tz1 , tz2)).

If tmin ≤ tmax, then the ray enters the volume at tmin and exits at tmax
This leads to the following algorithm for bounding box intersection:

Let Box minimum Bl = (xl, yl, zl)
box maximum Bh = (xh, yh, zh)
ray origin Ro = (xo, yo, zo)
ray direction Rd = (xd, yd, zd)

tnear = −∞, tfar =∞
if xd = 0 then
if xo < xl or xo > xh then
return false

end if

else
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t1 ⇐ (xl−xo)
xd

\\time of intersection with minimum X plane

t2 ⇐ (xh−xo)
xd

\\time of intersection with maximum X plane
if t1 > t2 then
swap(t1, t2)

end if

if t1 > tnear then
tnear ⇐ t1

end if

if t2 < tfar then
tfar ⇐ t2

end if

if tnear > tfar then
return false \\box is missed

end if

if tfar < 0 then
return false \\box is behind ray

end if

end if

if yd = 0 then
if yo < yl or yo > yh then
return false

end if

else

t1 ⇐ (yl−yo)
yd

\\time of intersection with minimum Y plane

t2 ⇐ (yh−yo)
yd

\\time of intersection with maximum Y plane
if t1 > t2 then
swap(t1, t2)

end if

if t1 > tnear then
tnear ⇐ t1

end if

if t2 < tfar then
tfar ⇐ t2

end if

if tnear > tfar then
return false \\box is missed

end if

if tfar < 0 then
return false \\box is behind ray

end if
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end if

if zd = 0 then
if zo < zl or zo > zh then
return false

end if

else

t1 ⇐ (zl−zo)
yd

\\time of intersection with minimum Z plane

t2 ⇐ (zh−zo)
yd

\\time of intersection with maximum Z plane
if t1 > t2 then
swap(t1, t2)

end if

if t1 > tnear then
tnear ⇐ t1

end if

if t2 < tfar then
tfar ⇐ t2

end if

if tnear > tfar then
return false \\box is missed

end if

if tfar < 0 then
return false \\box is behind ray

end if

end if

5.2.2 Interpolation

After �nding the ray intersection, the next step is to �nd the voxel intensity
at each sample location along the ray. Unfortunately, the samples along the
ray will not necessarily be at integer locations within the volume. Trilinear
interpolation is therefore used to approximate voxel values along the ray.

5.2.3 Color Compositing

Given a transfer function and step size, the method of calculating the pixel
color from the volume is called compositing. One compositing model is to
take the average of all the sample voxel intensities along the ray. Using this
model, the color C(p) at the pixel location p was calculated as the color of
the average intensity along the ray.

C(p) = f(

∑
I(t)∆t

n
)
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where f is the transfer function, s(t) the signal intensity at the sample loca-
tion t on the ray and n is the number of steps.

Another model used frequently in angiography is the Maximum Intensity
Projection. With this model, the transfer function is applied to the maximum
of the voxel intensities along the ray.

C(p) = f( max
t∈[0,T ]

I(t))

Yet another method is to apply a threshold along the ray. The transfer
function is applied to the value of the �rst voxel greater than or equal to
the threshold α along the ray. This is �rst hit projection with compositing
function

C(p) =

{
f(I(t)) ∃t ∈ [0, t], I(t) ≥ α

0 otherwise

Another method is compositing based on absorption and emission. Let
C(p) be the colour of a given pixel p on the image plane. Then C(p) is a
superposition of the contribution of all the voxels v(t) along the ray r(t).
C(p) is therefore given as

C(p) =

∫ t1

t0

I(t)dt (5.1)

Let every voxel along the ray radiate an energy I(t) and absorb energy from
other voxels along the ray with absorption coe�cient τ(t), then for every
change in distance along the ray, the change in intensity at position t is given
by

dI(t)

dt
= −τ(t)I(t). (5.2)

The emission and absorption values I(t) and τ(t) are determined by a transfer
function. Integrating equation 5.2 gives the contribution of each voxel along
the ray

I(t) = Ke−
R t1

t0
τ(t)dt. (5.3)

Given that the initial emission at point t0 is I(t0), the equation above becomes

I(t) = I(t0)e−
R t1

t0
τ(t)dt. (5.4)

Substituting equation 5.4 into 5.1 results in the equation

C(p) =

∫ t1

t0

I(t0)e−
R t1

t0
τ(t)dtdt. (5.5)
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This is the compositing function used in raycasting. The next step is to
discretize the compositing function for implementation. Since t changes uni-
formly by the factor ∆t along the ray t(t), the integral in the compositing
function can be replaced by the sum of the contributions of each voxel along
the sample locations

C(p) =
N∑
i=0

I(i∆t)e−
Pi−1

j=0 τ(j∆t)∆t∆t, (5.6)

where N is the number of sample points along the ray. The power sum of the
inner exponential term is just the product of all the individual exponential
terms

C(p) =
N∑
i=0

I(i∆t)(
i−1∏
j=0

e−τ(j∆t)∆t)∆t. (5.7)

Using taylor series expansion, the function e−x = 1−x+ x2

2!
− x3

3!
+· · · . For very

small x however, higher order terms tend to converge to zero, the function
can therefore be approximated linearly by ignoring higher order terms as
e−x = 1− x. Thus, the compositing equation changes to the approximation

C(p) =
N∑
i=0

I(i∆t)(
i−1∏
j=0

(1− τ(j∆t))∆t. (5.8)

Rewriting I(i∆t) = Ii and τ(j∆t) = τj results in the formulation

C(p) =
N∑
i=0

Ii(
i−1∏
j=0

(1− τj)∆t (5.9)

This is the function used to model the compositing function along the ray.
If the accumulated colour up to position i along the ray is given as Ci and
the energy radiated at point i is given as ci, then the compositing function is
implemented as a iterative function, which is the sum of the energy emitted
at the point i and the superposition of the energies from other points the ray
has already traversed.

Ci = ci + (1− τi)Ci+1.

This is the back-to-front compositing equation. In this project, Ci is imple-
mented as a convex combination of the absorption coe�cient τi as

Ci = ciτi + (1− τi)Ci+1. (5.10)

The above compositing equation results in a �at rendering of the volume.
To provide depth information, the di�use component of the Phong shading
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model was used. With di�use re�ection, it is assumed that the light coming
into a surface is re�ected evenly across the surface. Given a light source at
the position ~t with intensity Id and the normal to the surface denoted n, the
di�use re�ection equation is given as

Rd = Idcosθ = Id(~l · ~n).

Since the dot product can be negetive or positive, in some application the
absolute value of the dot product is used. This solution however assumes the
surface is two sided. For a one-sided volume as in the case of the volumes in
use, a one-sided solution is employed. This is to substitute the dot product
with the max function to arrive at the di�use equation

Rd = Idcosθ = Id max(0,~l · ~n).

Combining the di�use re�ection into the compositing equation derived above,
we get

Ci = ciτi max(0,~l · ~n) + (1− τi)Ci+1.

In our volume, we replace the surface normal with the normalized gradient
vector of the voxel at time where the gradient is given by

∇v(t) = [
∂v(t)

∂x
,
∂v(t)

∂y
,
∂v(t)

∂z
]

which is approximated using the central di�erence formula

∇vi =
[v(xi+1, y, z)− v(xi−1, y, z), v(x, yi+1, z)− v(x, yi−1, z), v(x, y, zi+1)− v(x, y, zi−1)]

2
.

All these steps are combined to give the �nal algorithm for volume ray-
casting

for each pixel p in the image plane I do
r(t)⇐ ray perpendicular to I through p
t1, t2 ⇐ intersection of r(t) with volume f(x, y, z)
C(p)⇐ 0 color of background pixel
for t from t2 to t1 reducing by stepsize do

Calculate the colour contribution of f(r(t)) to the image
end for

end for

5.3 Fourier Based Volume Rendering

Fourier based volume rendering is based on the idea used to develop tomo-
graphic images from projections as discussed in [13]. Considering that in
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x-ray computed tomography, a set of projections are given with the aim of
recovering a 3 − D representation of the structure, in fourier based volume
rendering, the aim is to recover the projection information from a given 3−D
structure which in this case is the 3 − D volume. To get a picture of how
this process works, consider a volume and its Fourier transform

F (u, v, w) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(x, y, z)e−i2π(ux+vy+wz)dxdydz. (5.11)

Where f(x, y, z) is the volume in consideration and F (u, v, w) its Fourier
transform. Assume now a slice of the Fourier transform is taken on the
(u − v)-plane (where w = 0). Then any point (u0, v0, w0) is projected unto
the point (u0, v0, 0). Equation 5.11 on this plane becomes

F (u, v, 0) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(x, y, z)e−i2π(ux+vy)dxdydz. (5.12)

This can be rewritten as

F (u, v, 0) =

∫ ∞

−∞

∫ ∞

−∞
{
∫ ∞

−∞
f(x, y, z)dz}e−i2π(ux+vy)dxdy. (5.13)

Which is the 2 − D fourier transform of the projection of f(x, y, z) in the
z−axis, the direction perpendicular to the original plane from which the slice
was extracted. This is the Fourier Slice-Projection theorem which states
that the inverse transform of a slice extracted from the frequency domain
representation of a volume yields a projection of the volume in a direction
perpendicular to the slice [17]. On the basis of this theorem, a projection of
the volume can be calulated from the frequency domain transformation of
the volume. This method is faster than the usual raycasting method because
of how fast the FFT of a volume can be calculated. The other complexity is
the extraction of a slice from the volume. The algorithm to create the fourier
rendering is as follows:

1. Compute the 3−D fourier transform F(u, v, w) of the volume.

2. Compute the values of F(u, v, w) on a plane through the origin of
F(u, v, w) by trilinear interpolation.

3. Perform the inverse 2 − D Fourier transform of the slice to give an
image of the 2−D projection of the volume.

The result of this algorithm is an x-ray image of the volume, where each pixel
corresponds to the contribution of samples on a ray through the volume. No
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color or shading information is present in this image. However, it should be
noted that the discrete fourier transform assumes a periodicity of the spa-
tial function f(x, y, z). The images produced using the above steps might
therefore contain multiple images which are contributions from the periods
of f(x, y, z). The solution is to perform a zero padding of the volume before
performing the fourier transform. To incorporate some directional shading
into this method, it can be recalled that adding di�usion shading in raycast-
ing is given by multiplying the contribution on each sample point on the ray
by the re�ection of a light source ~L with the surface normal ~N

Ip =

∫ t1

t0

Ipf(r(t)) max(0, ~N(r(t)) · ~L)dt, (5.14)

Where Ip(r(t)) is the intensity of the light from the direction ~L and f(r(t))

is the value of the volume along the ray, ~N(r(t)) is the normal to the volume

at the sample location r(t) along the ray and ~L is the lighting direction. The

function max(0, ~N(r(t)) is nonlinear and �nding its fourier transform is not
easy. It can however be approximated by the function [11, 29]

max(0, ~N(r(t)) =
1

2
(1 + ( ~N · ~L)). (5.15)

Equation 5.14 then becomes

Ip =

∫ t1

t0

Ipf(r(t))
1

2
(1 + ( ~N · ~L))dt

=
1

2

∫ t1

t0

Ipf(r(t))dt+
1

2

∫ t1

t0

Ipf(r(t))( ~N · ~L)dt,

which can be decomposed into its constituent form as

Ip =
1

2

∫ t1

t0

Ipf(r(t))dt+
1

2

∫ t1

t0

Ipf(r(t))NxLxdt

+
1

2

∫ t1

t0

Ipf(r(t))NyLydt+
1

2

∫ t1

t0

Ipf(r(t))NzLzdt.

Since the light source ~L is independent of the ray location, it can be taken
out of the integral to arrive at:

Ip =
1

2

∫ t1

t0

Ipf(r(t))dt+
1

2
Lx

∫ t1

t0

Ipf(r(t))Nxdt

+
1

2
Ly

∫ t1

t0

Ipf(r(t))Nydt+
1

2
Lz

∫ t1

t0

Ipf(r(t))Nzdt.
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Where Li, and Ni are the components of the light and normal in the i−axis
respectively. The above equation sets up the projection equation for the vol-
ume and normals. Using the fourier projection-slice theorem, the algorithm
can be setup as follows:

1. Create four copies of the Volume f(x, y, z).

2. Multiply each of the �rst three copies of f(x, y, z) created by a compo-
nent Ni, i = x, y, z to create the matrices fNx, fNy, fNz.

3. Find the 3−D Fourier transform of each of the matrices found in step
2 and the original matrix f(x, y, z).

4. For a plane P (u, v) through the origin extract a slice through each of
the matrices created in step 3.

5. Find the 2−D inverse Fourier transform of each of matrices from step
4 to get the matrices fN2x, fN2y, fN2z, f2. The 2 is a reimder that
these are 2−D matrices.

6. Multiply f2 by the constant 1
2
and the matrices fN2i, i = x, y, z by 1

2

of the appropriate lighting component and add them together.

As in the case of the original image, each of the directinal derivatives is
zero-padded to remove the periodicity e�ect from the �nal image.
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5.4 Example Of Visualized Results From The

Patlak Model

Figure 5.2: Single slices of c2 volume parameter taken parallel to the xy plane

Figure 5.3: Multiple slices of the c2 volume parameter displayed as slice
contours. notice that the high intensity areas are consistent across slices
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Figure 5.4: Multiple slices of the c1 volume parameter displayed as slice
contours.

Figure 5.5: A multislice view of c2

Figure 5.6: A multislice view of c2 incorporating arbitrary slice planes
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Figure 5.7: A raycast image of c2 composited with averaging

Figure 5.8: A raycast image of c2 composited with maximum intensity pro-
jection
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Figure 5.9: A raycast image of the vascular volume parameter (c1) from
Patlak

Figure 5.10: A raycast image of the tubular �ow parameter (c2) from Patlak
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Figure 5.11: c2 parameter result viewed as a heightmap

Figure 5.12: c2 result as x-ray from Fourier based visualization

From these visualizations, the structure of the kidney is clearly seen. This
means that results from a voxel-by-voxel visualization of the models can show
the structure of the kidney. It can also be seen that the �ow parameter c2,
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(the analog of the GFR if we had used the concentration vs time curves) is
high only along the cortex lines. It is very low or almost zero in the other
parts of the kidney like the medula. On the other hand, �gures 5.9 and 5.4
show that the vascular volume parameter c1 shows relatively high values
along the medula as well. These results also show where parameter values
are too low instead of being high. This can be helpful in recognizing defective
or failing kidneys.
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Chapter 6
Conclusion

Renal parameter estimation using MRI images is a very interesting concept
because it allows the user to acquire multiple parameters from a single test.
For example, the ability to acquire �ve parameters from using the cortical
compartment model makes it an attractive prospect and it would be inter-
esting to see such applications in the hospitals. The results of this project
however show that there are a number of factors that a�ect the result of
this process. These include the segmentation and registration processes and
image noise. These factors make it di�cult to duplicate the results acquired
from the tests. We cannot therefore prescribe this method as the sole method
of renal parameter estimation but it can be used in collaboration with the
traditional method of GFR estimation, which is the urine test.

After using the urine test to �nd the whole kidney GFR, the MRI models
can be used to test how each single kidney contributes to the process while
also producing other parameters including kidney volume.

Another factor that will a�ect the usage of this method is the computa-
tional cost of the models. From the numerical experiments performed, the
Patlak model has the fastest execusion time. This is not surprising as the
operations involved are integration (which is summation), matrix multiplica-
tion and SVD. This means it can be used if the aim is to access parameters
fast. At the minimum, the other methods involve the use of nonlinear least
squares while sourbron and the cortical compartment models also involve
the use of the convolution operation which are all algorithmically expensive
methods.

The voxelwise analyses of the kidney parameters also make it possible to
analyse the intergrity of the kidney especially after a transplant since it will
show which parts of the kidney cortex are not perfusing right. It will also
make it possible to visualize any growth or tumour within the kidney which
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is perfusing in a way that is di�erent from the tissues around it.
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Appendix A
Mathematical Preliminaries

A.1 Introduction

In the analysis of the renal parameter estimation models certain mathemati-
cal methods are used frequently. These are interpolation (and extrapolation)
and least squares. This chapter presents a discussion of these concepts and
their application to the rest of the thesis.

A.2 Interpolation

Given a discrete data set, interpolation is the process of creating new data
points within the range of the data. This is very important because unlike
continuous functions where it is easy to plug a data point and evaluate the
function at that point, in discrete data sets, such information is not available
for reconstructing the function at any point. There are however methods
available for estimating the value of the function. In this thesis, two in-
terpolation methods are used; linear and cubic spline interpolation. The
interpolants considered are polynomial interpolants. The following theorem
will be helpful in understanding the relationship between the number of input
points, the interpolants and the uniqueness of the derived curve.

Theorem 1. A polynomial of degree n− 1 passing through n distinct points
is unique.

Proof. Let p(t) and q(t) be two di�erent polynomials of degree n− 1 passing
through the same n distinct points. De�ne a new polynomial r(t) as

r(t) = p(t)− q(t) .
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Since p(t) and q(t) are di�erent r(t) is nonzero. r(t) is of degree at most n−1
since both p(t) and q(t) are of degree at most n− 1. r(t) has n zeros. By the
fundamental theorem of algebra however, a polynomial of degree n− 1 must
have exactly n− 1 zeros. r(t) can therefore have more than n− 1 zeros only
if it is the zero polynomial. This means

r(t) = p(t)− q(t) = 0⇒ p(t) = q(t) .

A.2.1 Linear Interpolation

Given two points (x1, y1), (x2, y2), linear interpolation �nds a point (x, y)
such that the three points lie on a straight line. The value of y along the
unique straight line de�ned by (x1, y1), (x2, y2) is given by the equation

y − y1

x− x1

=
y2 − y1

x2 − x1

.

Solving for y results in the equation

y = y1 + (x− x1)
y2 − y1

x2 − x1

.

Since in most cases MRI images are not taken on a uniform time scale, the
data points must be interpolated on a uniform time scale to be used in this
thesis.

A.2.2 Cubic Spline Interpolation

Given a dataset on sample points (x1, x2, · · · , xn), in cubic spline interpola-
tion, the aim is to �t the data to a piecewise function of the form

S(x) =


S1(x), x ∈ [x1, x2)

S2(x), x ∈ [x2, x3)

. . .

Sn−1(x), x ∈ [xn−1, xn),

(A.1)

where Si is a polynomial of degree three of the form

Si(x) = ai(x− xi)3 + bi(x− xi)2 + ci(x− xi) + di (A.2)

where i = 1, 2, 3, · · · , n− 1 with

S
′

i(x) = 3ai(x− xi)2 + 2bi(x− xi) + ci (A.3)
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and
S
′′

i (x) = 6ai(x− xi) + 2bi (A.4)

being the �rst and second derivatives respectively and where S(x) satis�es
the following conditions:

1. S(xi) = f(xi). That is S(x) interpolates all the sample points.

2. S(x) is continuous on [x1, xn].

3. S
′
(x) is continuous on [x1, xn].

4. S
′′
(x) is continuous on [x1, xn].

From property 1,

S(xi) = yi = ai(xi − xi)3 + bi(xi − xi)2 + ci(xi − xi) + di

⇒ yi = di.

Property 2 implies that
Si+1(xi) = Si(xi)

i = 1, 2, · · · , n− 1 using the above with equation A.3,

Si(x) = di = Si+1(xi) = ai+1(xi − xi+1)3 + bi+1(xi − xi+1)2

+ ci+1(xi − xi+1) + di+1

⇒ di = ai+1h
3 + bi+1h

2 + ci+1h+ di+1

where h = xi − xi+1

property 3⇒ S
′

i(xi) = S
′

i−1(xi)

from equation A.3

S
′

i = ci ⇒ ci = 3ai+1h
2 + 2bi+1h+ ci+1

equation 4 ⇒ S
′′

i (xi) = 2bi

⇒ bi =
S
′′
i (xi)

2

From equation A.4 and the continuity property Si+1(xi) = Si(xi)

2bi+1 = 6aih+ 2bi

ai =
2bi+1 − 2bi

6h

=
S
′′
i+1(xi)− S

′′
i (xi)

6h
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From the continuity property

ci =
di+1 − aih3 − bih2 − di

h

= −aih2 − bih−
yi − yi+1

h

=
yi+1 − yi

h
−
S
′′
i+1(xi) + 2S

′′
i (xi)

6
h

Some of work on the models were also tested with data resampled by cubic
interpolation.

A.2.3 Trilinear Interpolation

Trilinear interpolation is a three dimensional extension of linear interpolation.
In the visualization part of the work, the data volumetric data has to be
resampled to be able to take data samples at any location within the volume.
Trilinear interpolation was chosen because it produces much better results
compared to the other alternative considered which was nearest neighbour
interpolation though it is computationally more expensive. Given a cube
with vertices Cijk with i, j, k = 0, 1, if ρ(u, v, w) is a point within the cube,
then let

x = u− buc
y = v − bvc
z = w − bwc

The idea is to interpolate the cube on all axes. One possibility is to �rst
interpolate the cube four times using linear interpolation on the z − axis,
this results in

i1 = C000(1− z) + C001z

i1 = C010(1− z) + C011z

i1 = C100(1− z) + C101z

i1 = C110(1− z) + C111z

The result of the above process can then be used to interpolate the cube two
times on the y − axis

j1 = i1(1− y) + i2y

j2 = i3(1− y) + i4y.
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Finally the latter process can be used to interpolate the cube once on the
x− axis to arrive at

ρ(u, v, w) = j1(1− x) + j2x.

Compacting the above processes into one reults in the trilinear interpolation
formula

ρ(u, v, w) = C000(1− x)(1− y)(1− z) + C001(1− x)(1− y)z

+ C010(1− x)y(1− z) + C011(1− x)yz + C100x(1− y)(1− z)

+ C101x(1− y)z + C110xy(1− z) + C111xyz.

A.2.4 Extrapolation

Another mathematical method used in this paper is extrapolation. The idea
here is to construct new data points outside a discrete set of known data
points. One method of doing this is linear extrapolation. This is analogous
to creating a tangent at the end of the sample data and extending the tangent
beyond the limit of the data and picking o� the values on the line. Given
a point x to be extrapolated near the data points (xk−1, yk−1), (xk, yk), then
linear extrapolation gives

y(x) = yk−1 +
x− xk−1

xk − xk−1

(yk − yk−1).

The downside to this method however is that if the extrapolated value is far
from the sample points or should the sample data be nonlinear, a lot of errors
will be introduced into the data. Another possibility is to extrapolate higher
order polynomials. This can be achieved using least squares to approximate
the function f(x) that approximates the sample points and �nding value of
x on the function f(x). Which is the method employed in matlab using
polyval/poly�t.

A.3 Least Squares

Given a system of m equations in n unknowns, the problem of �nding a
solution x ∈ Cn that satis�es the equation Ax = b where A ∈ Cmxn is the
matrix of coe�cients and b ∈ Cm is what least squares is concerned with.
The system is said to be overdetermined if m > n. Let

r = Ax− b, r ∈ Cm. (A.5)
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If the system of equations are linear in the independent variable, then r is
linear otherwise r is nonlinear. The least squares problem is to �nd an x that
minimizes the 2-norm of r. If

f(x) = ||r||2 , (A.6)

then the least squares problem is to �nd

min
x∈Cn

f(x). (A.7)

A.3.1 Linear Least Squares

Theorem 2. The minimizer x∗ of the set of equations Ax = b must satisfy
BTBx = BTk which is called the normal equation of the system.

Proof.

r = Ax− b⇒ ||r||2 = ||Ax− b||2
||r||22 = rT r = (Ax− b)T (Ax− b)

= xTATAx− xTAT b− bTAx+ bT b

= xTATAx− 2xTAT b+ bT b,

which gives r as a function of x. For x∗ to be a critical point of the system,
∂
∂x

must be equal to 0.

∂
∂x

(xTATAx− 2xTAT b+ bT b) = 0

−2∂x
T

∂x
ATAx+ xTATA∂x

∂x
− 2∂x

T

∂x
AT b = 0

which gives

2ATAx− 2AT b = 0⇒ ATAx = AT b .

For x to be a minimum point ∂2

∂x2 > 0

∂2

∂x2 (xTATAx− 2xTAT b+ bT b) = ATA .

But xTATAx = ||Ax||22 is the square of the 2-norm of A and by the de�nition
of a norm, ||Ax||22 > 0 provided Ax 6= 0 which is the case so long as x 6= 0
and A is not rank de�cient. If the above conditions are satis�ed, then ATA
is fully positive de�nite and we therefore have a local minimum which is also
a global minimum since ||r||22 is quadratic.
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If A is of full rank, the solution of the system is given as

x = (ATA)−1AT b .

Although the above solution is fast and easy to compute, if A has perturba-
tion errors or is close to singular, which is possible if within a certain range,
the time series are close together and the change in attenuation is not very
signi�cant, then the normal equations can be ill-conditioned. In that case we
can use a more robust method called Singular Value Decomposition.

Theorem 3. Let A be an arbitrary m× n matrix with m ≥ n. Then A can
be written as A = UΣV T where U is an m×n matrix such that UTU = I, V
is an n×n orthogonal matrix and Σ is an n×n diagonal matrix with entries
σ1, σ2, · · · , σn with σ1 ≥ σ2 ≥ · · · ≥ σn

Using this method our matrix equation becomes

UΣV Tx = b⇒ x = V Σ−1UT b .

The entries of Σ−1 is just the reciprocal of the entries of Σ.

A.3.2 Nonlinear Least Squares

In nonlinear least squares, the aim is to solve the equation

min
x∈C

f(x) where f(x) =
1

2
||r(x)||22 .

This is equivalent to solving the same equation without the constant term.
Assuming the ri(x) are twice di�erentiable, the Jacobian of r(x) is

J(x) ∈ Cmxn with J(x)ij =
∂ri(x)

∂xj
,

where i = 1, · · · ,m and j = 1, · · · , n.
The Hessian is

Hi(x) = ∇2ri(x)

where

Hi(x)jk =
∂2ri(x)

∂xj∂xk
.

Then the �rst derivative of f(x) is given by

∇f(x) =
m∑
i=1

ri(x) · ∇ri(x) = J(x)T r(x)
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and the second derivative by

∇2f(x) = J(x)TJ(x) +
m∑
i=1

ri(x)Hi(x) = J(x)TJ(x) + S(x) .

The necessary condition for x∗ to be a local minimum of f(x) is that its �rst
derivative must be 0

∇f(x∗) = J(x∗)T r(x∗) = 0 .

Using Taylor series expansion, f(x) can expanded quadratically around xc
as

f(x+ xc) = fc(x) = f(xc) +∇f(xc)
T (x− xc)

+
1

2
(x− xc)T∇2f(xc)(x− xc)

=
1

2
||r(xc)||22 + J(xc)r(xc)

T (x− xc)

+
1

2
(x− xc)T [J(xc)

TJ(xc) + S(xc)](x− xc) .

Then according to Newton's method, the zeros of f
′
(x) can be approximated

by

xn+1 = xn −
f
′
(xn)

f ′′(xn)
,

which in this case reduces to

x∗ = xc − (J(xc)
TJ(xc) + S(xc))

−1J(xc)
T r(xc).

Using a linear approximation of f(x) gives

fc(xc) = r(xc)
T r(xc) + J(xc)(x− xc)r(xc)T = r(xc) + J(xc)(x− xc).

The idea of least squares then will be to minimize

min
x∈Cn
||r(xc) + J(xc)(x− xc)||2 , (A.8)

which requires only �rst derivative information r(x). Using Newton's method
on this equation also gives the solution

x∗ = xc − (J(xc)
TJ(xc))

−1J(xc)
T r(xc). (A.9)
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Equation A.8 can also be solved by applying linear least squares solution
directly on it instead of using A.9. One other method used by Matlab and
employed by the Levenberg-Maquardt method is to minimize the function

min
x∈Cn
||r(xc) + J(xc)(x+ − xc)||2 (A.10)

subject to the condition that

||x+ − xc||2 ≤ δc, (A.11)

where δc de�nes a trust region where the minimization function fc(x) can be
trusted to accurately model the original function f(x). The above formula-
tion gives

x+ = xc − (J(xc)
TJ(xc) + µcI)−1J(xc)

T r(xc), (A.12)

where µc = 0 if δc ≥ ||(J(xc)
TJ(xc))

−1J(xc)
T r(xc)||2 and µc > 0 otherwise.
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