
Heterogeneous Distributed
Calibration Framework for the High

Level Trigger in ALICE

Sebastian Robert Bablok

Thesis for the degree of Philosophiae Doctor (PhD)
at the University of Bergen

October 30, 2008

—

Abstract

This thesis focusses on the development of a distributed and re-configurable online
calibration environment for the ALICE (A Large Ion Collider Experiment) HLT
(High Level Trigger). ALICE1 is one of the four major experiments at the new accel-
erator ring (Large Hadron Collider - LHC) at CERN in Geneva (CH). The experiment
is laid out to investigate the properties of strongly interacting matter created in heavy
ion collisions at ultra-relativistic energies. It is assumed that the universe consisted of
such a state of matter shortly after the Big Bang. The HLT is a sub-system of ALICE,
focussing on online event reconstruction and analysis, event selection and data reduc-
tion. These tasks are executed on a large computing farm close to the experiment.
To achieve high accuracy in the analysis, calibration is a major issue for the software
components running in the HLT.

The thesis describes the interfaces and components developed for the HLT cali-
bration framework. These interfaces cover the data exchange with the other ALICE
sub-systems connected to the HLT. Their purpose is to provide calibration and con-
dition settings to the HLT and to send freshly produced calibration objects to the
destined targets. The exchange of data also requires synchronisation with the other
sub-systems and within HLT itself. The interfaces (described in chapter 4.3, 4.4 and
4.5) and their interplay (depicted in chapter 5), as well as the FED-API (Front-End-
Device-API) (specified in chapter 3) have been the main effort during this PhD project.
How well they meet the imposed requirements is presented in the summary and outlook
in chapter 6.

The outline of this thesis is the following: In the first chapter a very brief overview
of the physics goal of the experiment is given. ALICE with its detectors and systems
is presented in chapter two. Chapter three focusses on the FED-API, which deals
with the connection of the ALICE DCS (Detector Control System) to the Front-End-
Electronics (FEE) of the different detectors. The FED-API is (re-)used for the HLT
as well. The different parts constituting the HLT calibration framework, – interfaces
and their related components – are described in detail in chapter four. They are the
main topic of the thesis. Especially the heterogeneity of the connected systems and the
diversity of the used mechanisms are major aspects. Chapter five joins the different
constituents and displays their interaction and synchronisation procedures. Moreover,
examples for the usage of the HLT calibration framework and benchmarks for dedicated

1The ALICE Collaboration consists of more than 1000 members from 109 Institutes in 31 Countries
(cf. http://aliceinfo.cern.ch/Public/en/Chapter3/Chap3Collaboration-en.html).

ii

interfaces are presented. Finally, the results are summarised and an outlook on further
developments and enhancements is given in chapter six. The appendix covers the usage
of the presented interfaces. The calibration framework for the ALICE HLT, as it is
described here, refers to the state of Autumn 2008.

iii

Introduksjon

Denne doktoravhandlingen baserer seg på utviklingen av et fordelt og rekonfigurerbart
online kalibreringsrammeverk for ALICE (A Large Ion Collider Experiment) HLT
(High Level Trigger). ALICE2 er et av fire hovedeksperimenter ved den nye akseler-
atorringen (LHC - Large Hadron Collider) på CERN i Geneve (CH). Eksperimentet
har til hensikt å studere egenskapene ved materie produsert i kollisjoner mellom tunge
ioner i ultra-relativistiske energiområder. Man antar at universet var i en slik tilstand
i de tidligste fasene etter Big Bang. HLT er et subsystem av ALICE som fokuserer på
online event rekonstruksjon og analyse, event seleksjon og reduksjon av data fra AL-
ICE. Dette arbeidet utføres ved en stor datamaskinfarm lokalisert nær eksperimentet.
For å oppnå høy nøyaktighet i analysen er kalibreringen av komponentene som utfører
HLTs oppgaver særlig viktig.

Avhandlingen beskriver grensesnittet og komponentene utviklet for HLT kalibre-
ringsrammeverket. De dekker utveksling av data mellom HLT og de tilkoblede ALICE
subsystemene. Deres oppgave er å utføre påkrevd kalibrerings- og betingelsesinnstill-
inger i HLT, samt å forsyne nylig produserte kalibreringsobjekter til bestemmelsesst-
edene. Datautvekslingen krever også synkronisering med de andre subsystemene og
innen selve HLT. Grensesnittene (beskrives i kapittel 4.3, 4.4 og 4.5) og deres samspill
(beskrives i kapittel 5), dessuten FED-APIen (Front-End-Device-API) (spesifisert i
kapittel 3) har vært et hovedfokus i denne avhandlingen. Hvor godt de oppfyller
nødvendige betingelser presenteres i kapittel 6.

I første kapittel gis en kort oversikt over fysikken bak ALICE eksperimentene. I
kapittel 2 blir ALICEs detektorer og systemer presentert. Kapittel 3 fokuserer på
FED-APIen som håndterer sammenkoblingen av ALICE DCS (Detektor Kontroll Sys-
tem) og Front-End-Elektronikk (FEE) på de forskjellige detektorene. FED-APIen er
igjen brukt i HLT. Avhandlingens hovedtema, grensesnittene og de tilhørende kompo-
nentene som utgjør HLTs kalibreringsrammeverk, beskrives detaljert i kapittel 4. Spe-
sielt er heterogeniteten av de sammenkoblede systemene og diversiteten i de anvendte
mekanismene satt i fokus. I kapittel 5 bringes de ulike elementene sammen for å belyse
deres samvirke og synkroniseringsprosedyrer. Utover dette presenteres her eksempler
på anvendelsen av HLT kaliberingsrammeverket og målte referanseverdier. Avslut-
ningsvis, i kapittel 6, foretas en oppsummering av resultatene, samt en fremtidsrettet
vurdering av potensiell videreutvikling og forbedring. Appendikset gir en brukerveiled-

2ALICE Samarbeidet: 31 land, 109 institutt og mer enn 1000 medlemmer
(se http://aliceinfo.cern.ch/Public/en/Chapter3/Chap3Collaboration-en.html).

iv

ning for de presenterte grensesnittene. Kalibreringsrammeverket for ALICE HLT som
beskrives her, gjelder status per høsten 2008.

v

Conventions used in this PhD thesis

This document uses several common typographical conventions.
To emphasise source code or documentation of the tools and applications, they are

written in a monospaced font.
In this thesis several UML (Unified Modelling Language) diagrams are presented.

The design and preparation of these diagrams has been guided by the following book
describing UML 2.0:
M. Jeckle, C. Rupp, J. Hahn, B. Zengler, S. Queins: UML 2 glasklar, Carl Hanser
Verlag, München (Germany), ISBN: 3-446-22575-7, 2004

Trademarks, trade names, services marks and registered names, mentioned in this
dissertation, are protected by international law and national agreements, even if this
is not explicitly marked.

vi

If at the beginning something looks impossible, start with small steps ...

"Beginne damit, das

Nötige
zu tun.

Dann tue das

Mögliche
und plötzlich tust du das

Unmögliche."
Franz von Assisi (zugeschrieben)

"Start by doing what is
necessary,

then do what is
possible,

and suddenly you are doing the
impossible."

ascribed to St. Francis of Assisi

vii

Acknowledgements

In the development of the interfaces described within this thesis, I enjoyed very good
cooperation and fruitful exchange of ideas with people of the other ALICE systems. I
would like to say thank you to the involved persons from the ALICE DCS, the ALICE
ECS and the ALICE Offline group. In addition I want to state my regards to the
other people participating in the development of the FED-API.

And, of course, I experienced a perfect collaboration in the whole ALICE HLT
group. Representatively, I would like to name here Prof. Dr.Volker Lindenstruth and
Dr.Timm M. Steinbeck (the complete HLT collaboration is listed in the appendix C).

Moreover, I am thankful to the Norwegian Research Council (NFR) for supporting
this project financially and for the chance of getting experiences abroad.

With this PhD thesis, I finally complete my student life. Along this road many
people have accompanied me – during study, work and private life – family, friends,
teachers, fellow students and colleagues (often taking more than one role):

My friends in Germany, who held fast the bonds of friendship. They and others
showed me that distance and friendship are not necessary contradictory: Kerstin &
Marcus Lohr, Frederic Hoffman, Anna Th.Cibis, Christian Kofler, Michael Schaaf,
Larissa Bollinger, Eric S. Conner and Stephan Reichel. With joy I remember your
phone calls, letters, post cards and visits. A special greeting goes to Cornelia "Conny"
Ebitsch, who convinced me to "start doing the necessary". Danke!

In my new home, Bergen, I have felt (and feel) welcome as well. Not only in
science and work aspects, but also in social life activities the Nuclear Physics Group
at the University of Bergen has made (and makes) my living here most comfortable.
In the order they stepped into my life, these are: Ketil Røed, Matthias Richter,
Are S.Martinsen, Kenneth Aamodt, Dag T. Larsen, Dr. Johan Alme, Prof. Dr. Joakim
Nystrand, Prof. Dr.Håvard Helstrup, Prof. Dr.Kristin F.Hetland, Dr. Jens I. Jørdre,
Dr.Hongyan Yang (Xie Xie, especially for the exotic taste discoveries in the Chinese
cuisine), Gaute Øvrebekk (it has been (and is) a great time being office mates), Øys-
tein Djuvsland, Kyrre Skjerdal, Camilla H. Stokkevåg (Tusen takk for alle de hyggelige
og fine kaffepausene, og all norsk-hjelpen), Dominik Fehlker, Øystein S.Haaland,
Dr. Boris Wagner, Hege Erdal, Kristian Ytre-Hauge, Henrik Qvigstad, Dana Huang
and Lijiao Liu. With quite a few of you I share the predicate friends, even after this
relatively short time, and I feel honoured by it.

My very grateful thanks go to Dr.Kalliopi "Kelly" Kanaki, for showing a lot of
patience in explaining to me the ALICE related physics aspects, for the Mediterranean

viii

flair she brought in our group, for quite some delicious recipes and mainly for the
unappreciative work of proof reading this thesis and for giving a wide array of useful
suggestions for improvements: ευχαριστώ πoλύ.

Furthermore, I also like to acknowledge Prof. Dr.Kjetil Ullaland for his very friendly
and straightforward character, his never ending source of new ideas, the jokes during
lunch time and for taking the job of being my co-supervisor. Mange takk!

There are three important persons without them I would have never started work-
ing on a PhD:

– Dr.Randolf Straky, without him I would have never considered the idea of taking
a PhD; – Mein Freund, mögen unsere Abende weiterhin so ergiebig "inspired" sein.

– Prof. Dr. Ralf Keidel, who brought me to the ALICE project and supported me
during my computer science studies and my Diploma thesis. Above all, he encouraged
me in moving to Bergen and taking the PhD-stipend. His support has not stopped
after leaving to Bergen – You deserve my honest thankfulness.

– Prof. Dr.Dieter Röhrich, who offered me the opportunity of working in this
thrilling field of science and writing a PhD-thesis on the presented topic. His re-
laxed and kind manner and his ability of explaining complex physics properties in an
easy and well understandable way has helped me a lot in finding my way through the
relevant physics topics. Moreover, his style has made me interested in a subject, that
does not actually belong to the roots of my studies. In permitting me to travel to the
relevant conferences in India, China and Canada, he allowed me to contribute to the
corresponding community and to experience other countries’s culture as well. I always
enjoyed the amicable atmosphere of him and his wife Dr. Bianca Ross, which reaches
far beyond work life – You both have taken a major part in me feeling at home here.
I will always perceive myself being connected to you in deep gratitude.

Finally, a deep and everlasting gratefulness I feel for my family. I thank my parents
Brigitte and Wolfgang Bablok (I have always felt the assurance of your fatherly guiding
hand), who supported and encouraged me to all intents and purposes. Your advice
reached and helped me all over the world. Further, I wish to point out that it is
perfectly wonderful having an elder brother: Frank Bablok. He and his family – my
sister-in-law Ursula, my niece Sabine and my nephew Michael – have been at the ready
whenever needed for backup and assistance or for a cheering up.

Bergen in October 2008

Sebastian R. Bablok

ix

Contents

1 Physics motivation 1

2 ALICE at the LHC 3
2.1 The LHC . 3
2.2 ALICE – an overview . 3
2.3 The ALICE detectors . 6

2.3.1 ITS . 7
2.3.2 TPC . 8
2.3.3 TRD . 9
2.3.4 TOF . 10
2.3.5 PHOS . 11
2.3.6 HMPID . 11
2.3.7 DiMUON . 12
2.3.8 Other detectors . 13

2.4 The ALICE offline / online systems . 14
2.4.1 Offline . 14
2.4.2 Experiment Control System – ECS 18
2.4.3 Trigger – TRG . 19
2.4.4 Data Acquisition – DAQ . 20
2.4.5 High Level Trigger – HLT . 21
2.4.6 Detector Control System – DCS 27

3 The FED-API in ALICE DCS 29
3.1 The DCS board . 29
3.2 The FeeCom chain . 30
3.3 Distributed Information Management 32
3.4 The FED-API – DCS integration . 34

3.4.1 FED - Commands . 36
3.4.2 FED - Services . 39

4 The HLT interfaces 44
4.1 Design methodology . 44

4.1.1 UML notation overview . 44
4.2 Interfaces overview . 49
4.3 ECS . 52

x

CONTENTS CONTENTS

4.3.1 HLT-proxy . 52
4.3.2 HLT RunManager . 59
4.3.3 Redundant ECS portals . 60

4.4 Offline . 62
4.4.1 The Shuttle-Portal . 62
4.4.2 The Taxi portal . 71

4.5 DCS . 80
4.5.1 The Pendolino portal . 80
4.5.2 The FED-Portal . 87

4.6 DAQ . 95
4.7 AliEve . 96

5 HLT calibration framework 97
5.1 Putting the bits and pieces together . 97

5.1.1 Calibration Input . 98
5.1.2 Calibration Output . 99

5.2 The HCDBManager . 100
5.3 Synchronisation sequence . 101
5.4 Applications . 103

5.4.1 General procedures . 103
5.4.2 TPC procedures . 107
5.4.3 PHOS procedures . 109

5.5 Benchmarks . 109

6 Summary and Outlook 114

A FED-API FeeCom commands 117
A.1 ConfigureFeeCom commands . 117
A.2 ControlFeeCom commands . 119
A.3 Message channel log levels . 120

B Usage of the HLT interfaces 121
B.1 Usage of the HLT-ECS interface . 121

B.1.1 Start of the Logic Engine . 121
B.1.2 Start of the HLT-proxy . 121
B.1.3 Start of ECS test-GUI . 123

B.2 Usage of the Shuttle-Portal . 125
B.2.1 FXS-Subscriber parameters . 125
B.2.2 XML example file for FXS-Subscriber configuration 126

B.3 Usage of the Taxi . 128
B.4 Usage of the Pendolino . 130
B.5 Usage of the FED-Portal . 132
B.6 Usage of the HCDBManager script . 133

C ALICE HLT Collaboration 136

xi

CONTENTS CONTENTS

D Publications 137

xii

List of Figures

1.1 Phase diagram of strongly interacting matter 2

2.1 Sketch of the LHC . 4
2.2 Sketch of ALICE . 5
2.3 Particle detection techniques . 6
2.4 ALICE coordinates and angles . 7
2.5 Position of the ITS detectors . 8
2.6 Layout of the ITS detectors . 8
2.7 Layout of the TPC . 9
2.8 Sketch of the TRD and a TRD supermodule 10
2.9 Working principle of the TRD . 10
2.10 Layout of the PHOS detector . 11
2.11 Layout of the HMPID detector . 12
2.12 Working principle of the HMPID . 12
2.13 Layout of the DiMuon spectrometer . 13
2.14 Computing model of ALICE . 15
2.15 Event reconstruction model in AliRoot 15
2.16 ROOT environment and tools . 16
2.17 AliRoot representation of the ALICE detectors 17
2.18 AliEn components . 17
2.19 Connection layout of the ALICE systems 18
2.20 Schematics of the online dataflow . 20
2.21 Overview of the HLT connections . 22
2.22 Layout of the HLT analysis nodes . 24
2.23 Mechanism of the HLT PubSub framework 26
2.24 DCS tree structure layout . 28

3.1 Sketch of the FeeComChain . 31
3.2 DIM_DNS mechanism . 33
3.3 Layers of a DIM application . 34
3.4 DIM push architecture . 34
3.5 Location sketch of the FED-API in ALICE DCS 35
3.6 Screenshot of a TPC FED-Client PVSS panel 43

4.1 Notation in UML Composite Structure Diagrams 45

xiii

LIST OF FIGURES LIST OF FIGURES

4.2 Notation in UML Class Diagrams . 46
4.3 Notation in UML Deployment Diagrams 46
4.4 Notation in UML Use Case Diagrams 47
4.5 Notation in UML State Machine Diagrams 47
4.6 Notation in UML Activity Diagrams 48
4.7 Notation in UML Sequence Diagrams 48
4.8 HLT interfaces overview . 49
4.9 UML Composite Structure Diagram of the HLT interfaces 51
4.10 Sketch of the ECS interface . 52
4.11 UML Deployment Diagram of the HLT-ECS interface 54
4.12 UML State Machine Diagram of the HLT-proxy 56
4.13 UML State Machine Diagram mapped for the HLT RunManager 57
4.14 Sketch of the Offline Shuttle interface 62
4.15 Protocol structure of the Shuttle-Portal data 64
4.16 UML Class Diagram of the FXS-Subscriber 65
4.17 UML Sequence Diagram of the FXS-Subscriber 67
4.18 Sketch of the Taxi interface . 72
4.19 Structure of T-HCDB / HCDB / OCDB 73
4.20 File name scheme of CDB entries . 75
4.21 Versioning scheme of CDB entries . 76
4.22 UML Activity Diagram of the Taxi . 78
4.23 Sketch of the HLT Pendolino interface 81
4.24 UML Sequence Diagram of the Pendolino 82
4.25 UML Activity Diagram of the Pendolino 85
4.26 Sketch of the HLT FED-Portal interface 88
4.27 UML Use Case Diagram of the FED-Portal 89
4.28 UML Class Diagram of the Adapter Design Pattern 90
4.29 UML Class Diagram of the FED-Subscriber 91
4.30 Protocol structure for the FED-Subscriber 92
4.31 H-RORC picture / Use Case of the DAQ interfaces 95
4.32 Screenshot AliEve online / Use Case of HOMER 96

5.1 Figure of the input procedure for calibration data 98
5.2 Figure of the output procedure for calibration data 100
5.3 Synchronisation timeline of the HLT interfaces 102
5.4 Sketch of the synchronisation via ECS 104
5.5 Huffman table example for the HLT-Offline interfaces 105
5.6 UML Use Case Diagram of the B-field retrieval 106
5.7 UML Use Case Diagram of the temperature histogram example 108
5.8 Benchmark graph of the Taxi . 111
5.9 Benchmark graph of the Pendolino . 113

A.1 Dead band mechanism in DCS - FEE 120

B.1 Screenshot of the ECS test-GUI . 123

xiv

List of Tables

2.1 Expected event size per detector . 21

3.1 FED-API command: Structure of the ConfigureFERO channel 37
3.2 FED-API command: Structure of the ControlFERO channel 37
3.3 FED-API command: Structure of the ConfigureFeeCom channel 38
3.4 FED-API command: Structure of the ControlFeeCom channel 39
3.5 FED-API service: Structure of the Grouped Service channel 40
3.6 FED-API service: Structure of the Single Service channel 40
3.7 FED-API service: Structure of the Acknowledge channel 41
3.8 FED-API service: Structure of the Message channel 42

4.1 Meta data table of the Shuttle-Portal entries 68
4.2 CDB table scheme for OCDB entries 74
4.3 CDB table scheme for meta data of the OCDB entries 74
4.4 Protocol structure for the FED-Portal data 92
4.5 FEDPayload structure for a Service channel 93
4.6 FEDPayload structure for a Message channel 93

5.1 Average request time in the Taxi performance 110
5.2 Average request time in the Pendolino performance 112

xv

Chapter 1

Physics motivation

The Standard Model (SM) describes the properties of elementary particles constitut-
ing the universe as we see it today and the fundamental forces1 that govern their
interactions. It has also implications to our current understanding of the birth of
our universe, the Big Bang, as well as astrophysical observations. Part of the SM is
the theory of strong interactions between elementary particles, i.e. quarks. Gluons
are mediating this fundamental force between the quarks. The theory of Quantum-
Chromo-Dynamics (QCD) describes this behaviour.

Quarks are strongly interacting particles and bound by gluons inside hadrons2.
Their characteristics are described by QCD. Two properties of QCD are asymptotic
freedom and confinement. Asymptotic freedom states that interactions between quarks
become weaker at smaller distances and increase the more the quarks are apart. This
prevents us from observing individual quarks. Confinement means that the force
between quarks does not diminish as they are separated, resulting in an infinite amount
of energy needed to separate two quarks. In Lattice-QCD it is predicted that hadrons,
set under conditions of high temperature and density, undergo a phase transition
from a state of hadronic constituents to a plasma of unbound quarks and gluons, the
Quark-Gluon-Plasma (QGP).

One way to reach high temperature and densities is by colliding heavy ions at
ultra-relativistic energies, thus studying the primordial conditions of the Big Bang.
Several accelerators with a large range of beam energies have been and will be used
in laboratories all over the world, like CERN (SPS, LHC), GSI (SIS, FAIR) and BNL
(RHIC). These different accelerators can access different parts of the phase diagram
shown in figure 1.1.

The QGP is created in the initial state of heavy-ion collisions. It cannot be observed
directly, its life time in the experiments is too short3. A set of observables have been
identified as indicators for the QGP. These observables are jet quenching, collective
flow patterns and yields of heavy quarks [1] [2].

1Three of the four known fundamental forces are included in the SM, gravity is excluded.
2Hadrons are built from quarks. Most common are the baryons to which the protons and neutrons

with three quarks each belong.
3At the LHC the lifetime of the created QGP is expected to be 4− 10 fm/c [1].

1

Physics motivation

Figure 1.1: Phase diagram of strongly interacting matter. Different accelerators access
different regions of the diagram (in temperature and net baryon density). The LHC aims
for a region, where the state of the early universe can be studied.

2

Chapter 2

ALICE at the LHC

2.1 The LHC

The Large Hadron Collider (LHC) is the world’s largest accelerator ring for hadrons
at the moment. It is built in an underground tunnel at CERN in Geneva and has
a circumference of 27000 m. The tunnel is at an average depth of 100 m. Bunches
of particles circulate inside two beam pipes in opposite directions. In order to avoid
beam - gas interactions there is ultra high vacuum inside the pipes. A sketch of the
LHC ring is displayed in figure 2.1.

Superconducting magnets are used for bending and focussing of the beam. They
are cooled down to 1.9 K by liquid helium. In sum the LHC uses 9593 magnets (154
dipole magnets are used for bending the beam), which create a B-field of about 8.33 T.

The ring is designed for acceleration of protons (p) and heavy ions (mainly lead
(Pb), but other ions are foreseen as well). The hadrons inside the ring travel at close
to speed of light (99.9999991 %). Collisions of p + p will reach an energy of 14 TeV
in the centre of mass system. The design luminosity of the LHC in proton beams
is L = 10 34 cm−2 s−1 . In heavy ion collisions an energy of 5.5 ATeV (centre-of-mass
energy per nucleon pair) is reached1. A luminosity of L = 10 27cm−2 s−1 is expected
for the Pb beam in the LHC.

The hadrons inside the accelerator ring are circulated in bunches2. To collide the
hadrons in the centre of the experiments the two beams are aimed at each other by
dedicated focussing magnets around the experiment locations [3]. The LHC operation
has started in September 2008, first collisions are expected for spring 2009.

2.2 ALICE – an overview

ALICE stands for A Large I on Collider Experiment. It is one of the four large
experiments of the LHC. The other three experiments are ATLAS (A Toroidal LHC
ApparatuS), CMS (Compact Muon Solenoid) and LHCb (Large H adron Collider

1This sums up to 1150 TeV as total energy in Pb + Pb collisions.
2It is planned to have 1.1× 1011 protons per bunch.

3

2.2 ALICE – an overview ALICE at the LHC

Figure 2.1: The figure displays the LHC ring with the location of the four major experi-
ments. Hadrons are injected into the LHC in both directions by the SPS (Super Proton
Synchrotron), where they are pre-accelerated.

beauty). Two smaller experiments are also built at the LHC: TOTEM (TOTal
E lastic and diffractive cross section M easurement) and LHCf (Large H adron Collider
f orward).

For ALICE the LHC will provide a p + p collision rate of about 200 kHz3. The
Pb + Pb interaction rate is 8 kHz. While the other three major experiments are
designed for p + p collisions, ALICE mainly focuses on heavy ion collisions, where the
QGP shall be investigated. But p + p and p + A collisions must be measured and
analysed as well. Thereby ALICE is able to handle the above mentioned interaction
rates. The rate of ≤ 200 kHz in p + p collisions is limited by the pile up of events
in the Time Projection Chamber (TPC) barrel. It is able to cope with the highest
particle multiplicities anticipated for Pb + Pb collisions in the LHC. The first estimate
had been dNch/dy ≈ 8000 , but latest results from RHIC indicate a lower multiplicity
of dNch/dy ≤ 3000 at the LHC.

3The LHC achieves an interaction rate of 40 MHz in p + p, which is used in ATLAS and CMS. For
ALICE the interaction rate is reduced by temporarily defocusing the beam in order to allow ALICE
handling the pile up in the Time Projection Chamber (TPC).

4

2.2 ALICE – an overview ALICE at the LHC

Figure 2.2: The overview presents the assembly of ALICE detectors:
1) ITS with its detectors SPD, SDD and SSD sits around the interaction point in the
centre of ALICE;
2) TPC barrel;
3) TRD supermodules;
4) TOF supermodules;
5) HMPID, which covers only a small region on one half upper location inside the ALICE
solenoid magnet;
6) PHOS is sited below the interaction point;
7) EMCal will be locate opposite azimuthal to PHOS and covers a larger area;
8) L3 Solenoid magnet surrounds all major barrel detectors;
9) Muon Tracker Chambers (5 chambers);
10) dipole magnet for the measurement of the muon momenta;
11) Muon Filter, a massive iron block;
12) Muon Trigger Chambers (2 chambers);
13) ACORDE on top of the L3 magnet for cosmic ray detection;
14) Forward Detectors including FMD, PMD, V0 and T0;
15) beam pipe of the LHC.
The ZDC is not in the figure. It is located 116 m on both sides of the interaction point
between the beam pipe inside the LHC tunnel.

5

2.3 The ALICE detectors ALICE at the LHC

Figure 2.3: For the detection of different particles different techniques are applied. The
presented sequence of techniques is typical for experiments in high energy physics.

For particle identification ALICE uses a broad variety of different techniques (a
general sketch is shown in 2.3) [2] [4] [5]:

• ionisation energy loss,

• transition radiation,

• Time-Of-Flight,

• Cherenkov radiation,

• electromagnetic calorimetry.

ALICE is designed to have the interaction point surrounded by a solenoidal magnet,
which includes all major tracking and particle identification barrel detectors. The
magnet is reused from the old L3 experiment of the LEP (Large Electron-Positron
Collider) ring and produces a modest magnetic field of 0.5 T. The field is required to
measure the momentum of charged particles inside the ALICE barrel.

ALICE has overall dimensions of 26 m × 16 m × 16 m (given by the L3 magnet
and the DiMuon arm) and weights approximately 10000 t. Figure 2.2 sketches the
setup of ALICE and its main detectors [1] [6] [7] [8].

2.3 The ALICE detectors

The following sections describe briefly the ALICE detectors, their location and accep-
tance and detection methods. The official ALICE coordinate system is a right-handed

6

2.3 The ALICE detectors ALICE at the LHC

Figure 2.4: For the description of the location and coverage of the detectors in ALICE the
angles θ and φ are used. The azimuthal angle φ is located in the X-Y plane, the polar
angle θ in the Z-Y plane. The positive X axis is pointing to the centre of the LHC ring.

orthogonal Cartesian system. The axes X, Y and Z have their origin at the nominal
interaction point (X, Y, Z) = (0, 0, 0).

The azimuthal angle φ is counted from positive X to the Y axis and the polar angle
θ from positive Z to the Y axis. The scheme is visualised in figure 2.4 [9]. For the
acceptance pseudo-rapidity (η) is used, which can be calculated from a given θ angle
by the formula: η = −ln

[
tan

(
θ
2

)]
[4].

2.3.1 ITS

The Inner Tracking System (ITS) is closest to the interaction point. The beam pipes
of the LHC enter the ITS from both sides and the beams are supposed to cross each
other for collisions in the very centre of its cylindrical geometric structure. The ITS
cylinder has a diameter of ≈ 90 cm, where the inner 6 cm are taken by the beam
pipe. It contains three different detectors: Silicon Pixel Detector (SPD), Silicon Drift
Detector (SDD) and Silicon Strip Detector (SSD). Each detector consists of two layers
of silicon detectors. The inner most is the SPD. It is designed for detection of primary
vertices, as well as secondary tracks from weak decays of strange, charm and beauty
particles. Second comes the SDD with layer three and four. Finally the SSD with
silicon detector layer five and six builds up the outer part of the ITS. Drawings about
the position and the layout of the ITS are shown in figures 2.5 and 2.6.

As the name ITS already indicates, their main purpose is the reconstruction of the
primary and secondary vertices. The ITS has a pseudo-rapidity acceptance of |η| <
0.9, for the most inner pixel layer the coverage is |η| < 1.98. The outermost layer of

7

2.3 The ALICE detectors ALICE at the LHC

Figure 2.5: With its three silicon vertex detec-
tors (SPD, SDD and SSD) the ITS sits cen-
trally inside the TPC barrel around the beam
pipe and the interaction point.

Figure 2.6: Overview of the ITS detec-
tors: The inner two layers belong to
the Silicon Pixel Detector, surrounded
by the two layers of the Silicon Drift De-
tector. The outer two layers constitute
the Silicon Strip Detector.

the SSD is essential for matching the tracks to the ones reconstructed by the TPC, the
surrounding detector. ITS is able to detect simultaneously up to 15000 tracks. With
the outer four layers the ITS can perform a first particle identification of low momenta
particles (< 100 MeV/c) via dE/dx measurements as well [1] [7] [8] [10].

2.3.2 TPC

The ITS is surrounded by the TPC. With its cylindric barrel (inner radius (rin): ≈
90 cm, outer radius (rout): ≈ 250 cm, length along the beam axis: 500 cm) the TPC
is the largest tracking detector in ALICE for charged particles. It consists of a large
field cage, which is filled with a high purity gas mixture of Ne/CO2/N2 (90/10/5).
Charged particles crossing the TPC ionise the gas along their path. Due to a high
voltage of 100 kV, which is applied to the field cage along the beam direction, the
electrons from the ionisation drift towards the end plates of the TPC4, where the
signal is amplified and collected at about 280 000 readout pads on each side. These
pads are connected to Front-End-Cards (FEC), which are responsible for the actual
readout of the detector data. The procedure of measuring tracks of charged particles
inside the TPC is sketched in figure 2.7.

Each side of the TPC (end plates) is divided into 18 trapezoidal sectors. The sector
4The maximum drift time in the TPC is about 90 µs.

8

2.3 The ALICE detectors ALICE at the LHC

Figure 2.7: This figure of the TPC displays how the track of a charged particle is measured
in the TPC central barrel. The electrostatic field along the beam line forces the electrons
produced from ionisation to drift towards the readout chambers (end plates).

covers 2 Multi Wire Proportional Chambers (MWPC), the Inner ReadOut chamber
(IROC)) and the Outer ReadOut Chamber (OROC). The IROC subdivided into 2
partitions, the OROC into 4 partitions. A ReadOut Control Unit (RCU) controls each
partition and is connected to 18 - 25 FECs. For configuration and monitoring of these
electronics, the RCU hosts a dedicated card, the DCS board. The latter one plays an
important role in the later described TPC Front-End-Electronics (FEE) control chain,
which is described in chapter 3. The recorded event data is sent over optical fibres to
the Data Acquisition System (DAQ) by a so called Source-Interface-Unit (SIU), which
is hosted by the RCU as well.

The TPC has an acceptance of |η| < 0.9 for the full track length and for reduced
track length of |η| < 1.5. It is able to cope with a central collision rate of 200 Hz. The
TPC allows also for identification of particles via dE/dx measurements [1] [7] [8] [11].

2.3.3 TRD

The Transition Radiation Detector (TRD) provides full azimuthal coverage over more
than the total length of the TPC barrel. This corresponds to a pseudo-rapidity ac-
ceptance of |η| < 0.84. Its main purpose is electron identification with momenta of
higher than 1 GeV/c. In addition it acts as a fast trigger for charged particles with
high momentum.

The TRD consists of 18 supermodules, which match the outline of the 18 TPC

9

2.3 The ALICE detectors ALICE at the LHC

Figure 2.8: The TRD consists of 18
supermodules (lower part of the fig-
ure), located around the TPC barrel
and matching the outline of the 18 sec-
tors of the TPC.

Figure 2.9: The working principle of the TRD:
electrons emit photons while passing through a
radiator. These photons are measured via the
ionisation of the gas in the drift region.

sectors. Each supermodule has 5 stacks with 6 layers each. The layers consist of
a carbon fibre laminated Rohacell / polypropylene fibre sandwich radiator, a drift
section and a multi-wire proportional chamber for the readout. The TRD is filled
with a gas mixture of Xe/CO2 (85/15). The readout electronics are mounted directly
on the detector back panel and controlled via dedicated DCS boards (see description
of the DCS board on page 29). The TRD structure is shown in figure 2.8.

Electrons passing through the radiator emit photon radiation. These photons ionise
the gas in the drift section. The resulting electrons as well as electrons from ionisation
due to collisions are measured in the MWPC as shown in figure 2.9. This results in a
clear electron - pion separation [1] [7] [8] [12].

2.3.4 TOF

The Time-Of-Flight (TOF) detector is located around the TRD supermodules. Like
the TRD it has 18 supermodules each divided into 5 segments. Therefore it covers
nearly the same pseudo-rapidity region (|η| < 0.9). It is designed for particle identi-
fication in the intermediate momentum range (up to 2.5 GeV/c for pions and kaons
and 4 GeV/c for protons). The TOF in ALICE is a gaseous detector with Multi-gap
Resistive-Plate Chambers (MRPC), filled with C2H2F4/i− C4H10/SF6 (90/ 5/ 5) [1]
[7] [8] [13].

10

2.3 The ALICE detectors ALICE at the LHC

2.3.5 PHOS

The PHOton Spectrometer (PHOS) is an electromagnetic calorimeter with a limited
coverage area at midrapidity. It consists of five modules with 56 × 64 channels for
detection of photons. Each channel is built of a lead-tungstate (PbWO4) crystal with
the dimensions of 22 × 22 × 180 mm3, an Avalanche Photo-Diode (APD) and related
readout electronics. The acceptance of the PHOS covers 0.24 of a unit in pseudo-
rapidity (|η| < 0.12) and 100o in the azimuthal angle at the bottom of ALICE, 460 cm
away from the interaction point. It spreads over an area of ≈ 8 m2. The layout of
the five PHOS modules is shown in figure 2.10. Since PHOS uses similar FEE like the
TPC, its control and monitor system is also similar (see section 3.2 for more details).

Figure 2.10: Layout of the five modules of the PHOS detector with the CPV on top.

The PHOS detector is designed to detect photons in the range from 0.5 to 100 GeV.
Photons entering the PbWO4 crystals initiate an electro-magnetic shower. The result-
ing scintillation light is measured by APDs attached to each crystal.

There are plans to add a Charged Particle Veto (CPV) detector on top of each
module. The CPV consists of MWPCs with a cathode pad readout. It will be used
to separate the measurements of charged and neutral particles in the PHOS module.
The CPV is counted as a separate detector [1] [7] [8] [14].

2.3.6 HMPID

The High Momentum Particle Identification Detector (HMPID) is built of seven mod-
ules (1.5 × 1.5 m2) located in a single-arm array at the two o’clock position in the
ALICE barrel, 4.8 m away from the interaction point. It has an acceptance of 5 % of
the central barrel phase space (|η| < 0.6, 1.2o < φ < 58.8o). Figure 2.11 shows the
layout of the seven HMPID modules.

11

2.3 The ALICE detectors ALICE at the LHC

Figure 2.11: The seven modules of
the HMPID are mounted on the space
frame at two o’clock position inside the
ALICE barrel.

Figure 2.12: HMPID working principle: A
charged particle with high momentum crossing
the radiator emits Cherenkov photons, which are
measured in the MWPC via photocathodes.

The HMPID modules consist of a liquid radiator (C6F14 (Perfluorohexane)), a
gas chamber with CH4, a MWPC and solid CsI (Caesium Iodide) photocathodes.
The HMPID identifies hadrons with high momentum (pt > 1 GeV/c). Its detection
mechanism is based on proximity-focusing Ring Imaging Cherenkov (RICH) counters.
When a fast particle traverses a thin layer of liquid C6F14 it emits Cherenkov photons.
These photons are detected in the MWPC by the photocathodes, see figure 2.12 [1]
[7] [8] [15].

2.3.7 DiMUON

The forward muon arm, also called DiMuon spectrometer, is a complex assembly of
five Tracking and two Trigger Stations combined with Muon absorbers and filters and
a large dipole magnet. The Muon Chambers cover an acceptance of −2.5 < η <

−4.0; the Tracking Stations are positioned between 5.36 and 14.22 m away from the
interaction vertex, the Trigger Stations between 16.12 and 17.12 m. The dipole magnet
is placed at a distance of 7 m and provides a B-field of 0.67 T. Front absorbers are used
to protect the spectrometer from photons and hadrons coming from the interaction
point. To shield it from particles produced in the beam pipe as well, a conical absorber
tube with an outer diameter of 60 cm is installed around the beam pipe. The layout
of the DiMuon spectrometer is presented in figure 2.13.

The DiMuon spectrometer uses cathode pad chambers for the Tracking Stations.
Each chamber is made of two cathode planes, while two chambers form one Tracking
Station. The Trigger Stations are made of four Resistive Plate Chambers collected in
two stations.

The DiMuon spectrometer is designed to measure high momentum muon pairs
(pt > 4 GeV/c) coming from particle decays with heavy quark content [1] [8] [16] [17].

12

2.3 The ALICE detectors ALICE at the LHC

Figure 2.13: Layout of the DiMuon spectrometer. Beginning from the interaction point:
first the absorbers in grey, the Tracking Chambers in light blue, the dipole magnet with its
coil in red and pink, the massive iron block of the Muon filter in orange and the Trigger
Chambers in green.

2.3.8 Other detectors

A set of several smaller detectors complete the setup of ALICE. Most of them are
located close around the beam line outside of the ITS detectors: the Forward Multi-
plicity Detector (FMD), the Photon Multiplicity Detector (PMD), the Vertex 0 De-
tector (V0) and the Time 0 Detector (T0). These detectors are used for global event
characterisation and for triggering.

The FMD is made of five silicon-strip ring counters located on both side of the
interaction point (-3.4 < η < -1.7 and 1.7 < η < 5.0). It provides ALICE with
information of charged particle multiplicity [7] [8] [18].

The PMD is located opposite to the Muon arm at 2.3 < η < 3.7. It is built as
a honeycomb wire chamber measuring event-by-event photon multiplicity and their
spatial distribution [7] [8] [19].

The V0 is built of two arrays of scintillator counters to provide trigger information.
One of these arrays sits on each side of the interaction point close to the beam line [7]
[8] [18].

The T0 consists of two arrays of Cherenkov counters, asymmetrically located on
both sides of the interaction point. It delivers fast timing and trigger information as
well as a t0 time reference for TOF [7] [8] [18].

Two other detectors are located outside the L3 magnet: the ALICE COsmic Ray

13

2.4 The ALICE offline / online systems ALICE at the LHC

DEtector (ACORDE) and the Zero Degree Calorimeter (ZDC). ACORDE is built from
an array of plastic scintillators sitting on top of the L3 magnet (|η| < 1.3, |φ| < 60o).
Its main purpose is triggering on cosmic rays entering the ALICE barrel. The ZDC is
located far away from the central barrel: 116 m on both sides of the interaction point
between the beam pipes. The ZDC is used for centrality determination by measuring
the spectator nucleons5 in Pb + Pb collisions [7] [8] [20].

In the future (2010) ALICE will be upgraded with an ElectroMagnetic Calorimeter
(EMCal). It covers a larger area than PHOS but has a smaller granularity and lower
resolution. The detector is located in the upper left corner of the ALICE barrel, 4.36 m
away from the interaction point (|η| < 0.7, 80o < φ < 187o). For the FEE it will use
a similar setup like the PHOS [1] [7] [8] [21].

2.4 The ALICE offline / online systems

ALICE has five online systems for readout, controlling, configuring and monitoring
the different detectors: the Experiment Control System (ECS), the Data Acquisition
(DAQ), the High Level Trigger (HLT), the Detector Control System (DCS) and the
Trigger (TRG). The analysis software framework AliRoot and the ALICE GRID stor-
age and computing facility (AliEn - ALICE Environment) are in the Offline system.

2.4.1 Offline

The ALICE Offline project covers the computing model, GRID activities and related
tasks developed for the analysis environment of ALICE. The computing model com-
prises data definitions, the analysis software and the used framework, as well as the
visualisation of events. To verify the results of the analysis software simulation pack-
ages together with event generators have been included. In addition ALICE Offline
takes care of the interface to the ALICE GRID and their access via AliEn. The
different building blocks are visualised in figure 2.14.

The analysis framework in ALICE is called AliRoot (ALICE Root). It is based on
ROOT, an object-oriented software framework written in C++. ROOT comes with
a C++ - interpreter (CINT) for on-the-fly interpretation of source code, Run Time
Type Information (RTTI) and automatic generated code documentation. Nearly all
classes are inherited from TObject, the "master" base class in ROOT. This feature
has been adopted from languages like Java or Smalltalk. ROOT provides a broad set
of utilities, containers and visualisation components, like graphs or histograms. There
are ports to all major platforms, running under Unix, Linux, Windows or Mac OS6

[22] [23].
Components for analysing detector data can be started by macros in the AliRoot

environment7. Additionally, AliRoot provides a tool for event monitoring and visual-
isation: ALICE Event Visualisation Environment (AliEve). AliEve uses OpenGL for

5Non-interacting nucleons in a heavy ion collision are called spectator nucleons.
6The ROOT repository can be acquired from http://root.cern.ch/ .
7The AliRoot environment is an enhancement of the ROOT environment, taking the facilities like

14

2.4 The ALICE offline / online systems ALICE at the LHC

Figure 2.14: The different parts of the ALICE
computing model: the analysis framework (Root
and AliRoot), analysis software of the different
detectors, simulation software (G3, G4, FLUKA)
and event generator (EVGEN), data definitions
like Event Summary Data (ESD) and the GRID
access for the computing environment (AliEn).

Figure 2.15: This figure sketches the
comparison in the reconstruction of
real data and Monte Carlo simulations
in Online (HLT) and Offline. In both
cases finally reconstructed events are
stored in ESDs.

3D visualisation of events inside the detector models of ALICE. Furthermore it can
display histograms and browse through ROOT structures.

In order to have the analysis components tested in advance, AliRoot provides
interfaces to several particle simulation packages:

• FLUKA8: Fully integrated Monte Carlo9 simulation package for particle trans-
portation and interactions in nuclear matter. It has been written in FORTRAN
[25].

• GEANT310 (G3): Monte Carlo simulation package for elementary particles in
matter written in FORTRAN [26].

• Geant4 (G4): Port of the FORTRAN package of G3 to C++ with an object-
oriented design [27].

In order to have a common data structure ALICE Offline has defined the format
for raw event data shipped by the FEEs of the detectors. In addition the structures
for event fragments, subevents and complete events are specified. They are filled

the CINT, RTTI and the standard ROOT utility libraries and extending them with the libraries of
the AliRoot classes.

8FLUKA stands for "FLUktuierende KAskade".
9Monte Carlo simulations are a set of classes for simulations with repeated random sampling.

These classes have in common: a defined set of inputs, inputs randomly chosen from the domain
(with deterministic computation) and aggregation of the individual computation results to the final
result [24].

10GEANT stands for "GEometry ANd Tracking".

15

2.4 The ALICE offline / online systems ALICE at the LHC

Figure 2.16: Sketch of how code is processed in the ROOT using the different tools in the
ROOT environment.

during the different steps of the analysis process. A special protocol, the Common
Data Header (CDH), is used to include meta data like event IDs, trigger messages or
Regions-of-Interests (RoI). After reconstruction the results of the analysis are stored
in Event Summary Data (ESD) blocks.

ALICE Offline also coordinates the GRID activities in ALICE. This includes the
tasks of organising the GRID resources gathered for ALICE analysis and data stor-
age11, as well as enabling easy access to it. These GRID resources are provided by
connected computing centres. They are organised and categorised12 in the so called
Tiers:

11The overall organisation of the various GRID resources for all LHC experiments are handled by
the LCG (LHC Computing GRID) project [28].

12The classification uses the MONARC model (Models of Networked Analysis at Regional Centres
for LHC Experiments) [29].

16

2.4 The ALICE offline / online systems ALICE at the LHC

• Tier 0: CERN computing centre, used for computing and mass storage of raw
data. Its tasks cover calibration- and alignment processes and a first reconstruc-
tion. The Tier 0 is connected with 10 GB/s to the ALICE DAQ to store the
recorded data. (Additionally CERN will also host a Tier 1 and a Tier 2 centre.)

• Tier 1: Large computing centres (outside CERN). They provide a computing
environment for a subsequent reconstruction as well as mass storage facilities.
The stored data are copies of the data hosted in the Tier 0 at CERN. In addition
they store the processed data from Tier 1 and Tier 2 centres.

• Tier 2: Smaller computing centres, which are only used to process GRID jobs,
but do not necessarily provide storage facilities. They create and reconstruct
simulated data and perform end users analysis.

Figure 2.17: The pictures shows the
AliRoot representation of a simulated
Pb + Pb event in ALICE.

Figure 2.18: The sketch displays the AliEn
components and their deployment in the
ALICE VO (Virtual Organisation).

The developed middleware for allowing ALICE users to access the GRID facilities
is called AliEn. It is designed to enable an easy access to the GRID and to hide the
underlying complexity and heterogeneity to the users. Open source components of
web services, common network protocols and distributed agents constitute the base of
AliEn. User authentication is achieved by personal GRID certificates, which have to
be registered in the ALICE VO (Virtual Organisation). Data in AliEn are organised
in special AliEn FCs (File Catalogues). The AliEn FC is a virtual file system, which
does not own the files but stores only the association between Logical File Names
(LFN) and Physical File Names (PFN) on a mass storage system13. It features easy
replication and caching of the corresponding files on different GRID sites [30] [31] [32].

In addition, the ALICE GRID hosts the Offline Conditions DataBase (OCDB),
sometimes also referred to as Conditions DataBase (CDB). This database contains
all calibration- and alignment settings produced for ALICE. The OCDB is accessed

13ALICE uses the CERN Advanced STORage manager (CASTOR) as mass storage system
(http://castor.web.cern.ch/castor/).

17

2.4 The ALICE offline / online systems ALICE at the LHC

by the AliCDB access classes in AliRoot using AliEn for the GRID requests. New
calibration objects are entered after each run by the Offline Shuttle [33]. More details
about the OCDB and the Offline Shuttle are given in the description of the interfaces
between HLT and Offline in section 4.4.

All the different GRID activities on the net can be monitored using MonALISA
(Monitoring Agents using a Large Integrated Service Architecture), a GRID tool for
observing GRID sites and tasks [34] [35].

2.4.2 Experiment Control System – ECS

During a run all ALICE detectors, as well as all online systems of ALICE are steered
by the ECS. Well defined states and transition commands are used to facilitate the
control. Therefore every detector and each online system has implemented Finite State
Machines (FSM), which can be plugged into the ECS system and allow ECS to take
over control. A more detailed description of the FSM connections can be found in
section 4.3 describing the HLT-ECS interface. In addition ALICE Offline is connected
to ECS to get notified about the runs, especially to start the Offline Shuttle after each
run (see section 4.4.1 on page 70). Figure 2.19 displays the connections of the ALICE
systems and the event data flow of the experiment.

Figure 2.19: The ECS controls all ALICE online systems and includes a connection to
Offline for notification about runs. The online systems (DAQ, HLT, DCS and Trigger)
are connected to the detectors of ALICE. DAQ and HLT receive raw event data from the
experiment. While HLT analyses the events online and provides trigger decisions to DAQ,
DAQ builds events and transfers the data to permanent mass storage. Offline retrieves
data from and provides data to the online systems DAQ, DCS and HLT.

Activity Domains, which are defined by their different tasks in ALICE, are steered
by the online systems. An example of an Activity Domain can be the components re-
sponsible for the configuration of the FEEs of a detector; these components are hosted
by DCS. ECS coordinates the different domains in a hierarchical control structure,
and compiles them to partition(s). A partition is a set of detectors and their required

18

2.4 The ALICE offline / online systems ALICE at the LHC

parts of the online systems needed for configuring and taking experiment data. In
that sense it is the largest entity to be steered by an operator. The largest partition
consists of all detectors together forming the global partition. Partitioning enables
to separate the control of different detectors and to steer them independently. This
allows to have a subset of detectors taking data, while others are in calibration mode.
Each online system can be run autonomously, even without ECS, but for data taking,
they have to be connected and synchronised via ECS.

The ECS also provides the human interface to the operators of the different par-
titions and the global run operator. In addition ECS integrates ALICE in the LHC
control setup. Thereby it retrieves general beam information for the experiment and
synchronises ALICE with the accelerator control [7] [8].

Operationally the ECS works as an independent system but in ALICE it is physi-
cally part of the DAQ system - running on dedicated nodes in the DAQ cluster.

2.4.3 Trigger – TRG

The main task of the ALICE Trigger (TRG) is selecting events. It has three different
stages of trigger signals without taking the HLT into account, which provides a final
level of triggers after the read out of participating detectors. These three stages are
called Level 0 (L0), Level 1 (L1) and Level 2 (L2) trigger decisions. To conclude on
a trigger the Trigger system receives input from several Trigger detectors in ALICE.
The detectors participating in the trigger depend on the experiment type (p + p or
Pb + Pb), the chosen physics observables and the trigger classes. The L0 trigger is
sent to the detectors after 1.2 µs, the L1 signal arrives after 6.5 µs. The last trigger
from TRG takes past-future protection into account and therefore arrives at the end
of this interval, which is after 88 µs. The past-future protection is used to prevent
corruption of readout data due to pile-ups in certain detectors, especially the TPC,
which is the slowest detector in ALICE14.

The trigger input from the participating detectors is collected and synchronised in
the Central Trigger Processor (CTP), implemented as VME (Virtual Machine Envi-
ronment) modules. The CTP sends out its trigger signals to the Local Trigger Units
(LTU) of each detector. The LTUs relay the signals then to the FEE of the corre-
sponding detectors via the Timing, Trigger and Control (TTC) broadcast system, the
network that connects the TRG unidirectional with the detectors. The TTC is also
used to synchronise the TRG with the LHC clock.

In addition a link from DAQ notifies TRG about buffers running full on the DAQ
side. Custom made hardware, the so called BusyBoxes in the case of the TPC, FMD
and PHOS, send detector busy information using a dedicated notification protocol [36]
[37] [38]. In that case TRG has to reduce the trigger rate to enable the detectors and
the DAQ to handle the event data rate [7] [8]. The tasks of the TRG in the online
data flow are visualised in figure 2.20 [39].

14The sensitive window in the TPC is ≈ 88 µs. It is directly related to the maximum drift time in
the detector [8].

19

2.4 The ALICE offline / online systems ALICE at the LHC

2.4.4 Data Acquisition – DAQ

When the detectors receive the trigger signal to read out their FEE, they send their
raw event data via Detector Data Links (DDL) to DAQ. A DDL consists of a Source
Interface Unit (SIU) on the sender side, a pair of optical fibres to transport the data
and a Destination Interface Unit (DIU) on the receiver side. It can transfer data in
both directions with a rate of 200 MB/s. The DIUs are mounted on the so called DAQ
- ReadOut Receiver Cards (D-RORC) in dedicated computers of the DAQ cluster. In
addition they make exact copies of the data and send them via SIUs and DDLs to
the HLT for online processing. To return back processed data HLT uses the same
mechanism: SIUs on HLT - ReadOut Receiver Cards (H-RORC) send data via DDLs
to DIUs on D-RORCs on the DAQ side. There the HLT data are included in the
normal storage path of the DAQ system as well. In that perspective the HLT is
handled as a separate detector with the exception that additionally trigger decisions
from HLT are evaluated and applied to the storage policy.

Figure 2.20: The figure depicts the online data flow of event data and their storage
procedure by DAQ. The readout of the detector FEEs (Front-End Read-Out – FERO)
is driven by the Trigger system: The CTP sends trigger decisions to the LTUs of each
detector; this signal is then relayed to the FEE of the detectors via the TTCs. After read
out the data are sent to DAQ and a copy is transferred to the HLT. After event building
in the DAQ farm, the data are stored to mass storage. [39]

The DAQ system consists of Local Data Concentrators (LDC), nodes in the DAQ
cluster which collect the data from the detectors, and Global Data Concentrators
(GDC). The LDCs host the D-RORCs and each LDC can handle more than one
D-RORC. They have to be able to handle several times 200 MB/s. The data are

20

2.4 The ALICE offline / online systems ALICE at the LHC

relayed to the Event Builder on the GDCs via the Event Building Network, a standard
Gigabit ethernet connection using TCP/IP. The Event Builder merges the data from
the different subevents. The merging of events can be done in parallel on the Event
Building Network, several events at the same time. The complete events are stored to
CASTOR, the mass storage system used in ALICE. The ALICE CASTOR files can
be accessed later for offline analysis via AliEn on the ALICE GRID.

Detector p+p Pb+Pb
ITS Pixel 0.14
ITS Drift 0.0018 1.5
ITS Strips 0.16
TPC 2.45 75.9
TRD 0.0111 8.0
TOF 0.18
PHOS 0.02
HMPID 0.12
MUON 0.15
PMD 0.12
Trigger 0.12
Total 2.500 86.5

Table 2.1: The event size per detector for minimum-bias p + p and central Pb + Pb events
in MB [7].

In the process of storing, the events are first saved to a Transient Data Storage
(TDS). Later on they are moved to the Permanent Data Storage (PDS) in the CERN
computing centre. The DAQ is able to store 1.25 GB/s to mass storage. The data
flow in the DAQ and the integration to the systems of the HLT, the TRG and the
detectors are displayed in figure 2.20.

The LDCs and the GDCs use standard 32 bit Intel PCs running Scientific Linux
CERN 4 (SLC4). The storage facility in DAQ consists of 18 arrays of 4-5 TB discs.
In the current setup, they are run in RAID (Redundant Array of Inexpensive Disks)
level 6, which allows storage of 50 TB. Table 2.1 shows the data taking design param-
eters and the expected data volume per detector for minimum-bias p + p and central
Pb + Pb collisions.

In addition dedicated machines provide an interface to the Offline Shuttle for trans-
ferring new calibration data, which will be calculated by specific Offline components
in the DAQ net [7] [8] [39].

2.4.5 High Level Trigger – HLT

The ALICE HLT is designed to perform event reconstruction, event analysis and
calibration calculations online, as well as to allow for a first detector performance
monitoring during the run. Results of the analysis are written to ESD blocks. The

21

2.4 The ALICE offline / online systems ALICE at the LHC

HLT provides event selection, chooses RoI within an event and compresses event data.
These tasks enable DAQ to cope with the expected event data rate of 25 GB/s15.

Figure 2.21: The figure sketches the HLT connections to the other systems in ALICE. ECS
controls the HLT by a dedicated interface. Raw event data are received from the detectors.
After processing the results are transferred to the corresponding systems. Additional input
is retrieved from DCS and Offline. Experiment monitoring is enabled by interfacing AliEve.

To accomplish these computationally intensive tasks a large PC farm with inter-
faces to the various other systems in ALICE has been set up. Raw event data from
the FEEs of all major detectors in ALICE are received during a run as direct copies
from the DAQ LDCs. Analysis components process the data on the HLT cluster. The
results are transferred to the corresponding systems [7] [8] [40].

The connections of the HLT to other systems are sketched in figure 2.21 and are
the main focus of this thesis. They are described in the following chapters.

Hardware

The HLT consists of a large computing farm with (in the end) up to 1000 multi-
processor nodes. The nodes consist of off-the-shelf PCs, located in two counting rooms.
In the current setup most of the nodes host two AMD Dualcore Opteron 2 GHz CPUs
on a dualboard with 8 GB RAM, two Gigabit ethernet connectors and an Infiniband

15ALICE DAQ can archive about 1.25 GB/s; therefore the data rate has to be reduced by a factor
of 20.

22

2.4 The ALICE offline / online systems ALICE at the LHC

backbone for high throughput transmission. Some of the nodes are already equipped
with Intel Quadcore CPUs, a complete upgrade to Quadcore CPUs is foreseen. In size
the HLT cluster is comparable to a Tier 1 centre.

Most of the nodes are reserved for processing events. A small fraction is assigned
to infrastructure tasks, like gateways, development and maintenance nodes and servers
used for cluster monitoring. Two fileservers provide storage facilities and distribute
the files over the cluster using AFS (Andrew File System). Each of them has a net
capacity of 2 TB on a hardware Raid level 6.

In addition dedicated portal nodes provide interfaces to the ALICE systems. They
have two ethernet interfaces going into different subnets: one internal to the HLT
cluster and one to the subnet of the connected ALICE system. Dedicated interface
applications run on these nodes according to the connected system. The interface
nodes exist in redundant setups. Chapter 4 gives a detailed description of these inter-
faces and applications.

The cluster contains also 87 Front-End-Processor (FEP) nodes, where the raw event
data from the FEE of the detectors enter the HLT. The data come as direct copies
from the D-RORCs and are received in 185 H-RORCs hosted by the FEPs. The H-
RORC is a PCI card with a Virtex-4 FPGA and 4 modules of 32 MB Double Data
Rate Synchronous Dynamic Random Access Memory (DDR-SDRAM). It is designed
for receiving and preprocessing16 raw event data. For receiving data up to two DIUs
are mounted on the cards and connected to DDL fibres. Transactions between the
cards and the FEPs are PCI DMA (Direct Memory Access) based. The H-RORCs are
also used for transmitting results back to the DAQ. Therefore the DIUs are replaced
by SIUs.

The layout of the analysis task levels is shown in figure 2.22. It matches the ALICE
detector structure and the different analysis steps. The raw data are processed first on
the FEP nodes including the FPGAs of the H-RORCs. Therefore cluster finding can
be done in hardware or software. Track finding or Vertex reconstruction respectively
is performed on the next layer. The corresponding analysis components run in parallel
on different cluster nodes. Afterwards events are merged across detector borders and
globally reconstructed, followed by trigger decisions and event selections. Finally, data
compression and reduction are applied, before the results are sent back to DAQ.

The hardware of the HLT cluster and the software applications running on them are
monitored by SysMES (System Management for Networked Embedded Systems and
Clusters) and Lemon (LHC era monitoring). SysMES is a decentralised operating,
rule based monitoring tool for networked targets. It can observe hardware sensors
such as CPU temperature measurements, as well as processes on the cluster nodes,
including their log files.

The results of the monitoring by SysMES are visualised by Lemon. Lemon is a
monitoring system based on the client / server principle, using agents on monitored
nodes to send the observation results to a central Measurement Repository. Informa-
tion is exchanged over ethernet. Through these agents it is also possible to observe

16Cluster finder modules for TPC and DiMUON are in development.

23

2.4 The ALICE offline / online systems ALICE at the LHC

Figure 2.22: The layout of the HLT for analysis task levels. In layer 1 event data is received
on the FEP nodes, which are assigned to the different detectors. In layer 2 and 3 cluster
finding and tracking are performed, layer 4 merges events globally. Layer 5 extracts trigger
information and selects events. In layer 6 data compression and reduction are applied.

remote entities, like the switches and racks of the HLT cluster [8] [40] [41].
Remote administration of the cluster nodes in case of problems is enabled by admin-

istration actuators. CHARM17 (Computer Health And Remote Management) cards
on each node fulfil this task allowing full control on the corresponding node [8].

Software - Operating system

HLT runs Ubuntu Linux as operating system on the cluster nodes, currently Ubuntu
6.06 LTS18 (aka Dapper Drake). The setup uses a 2.6 vanilla kernel19 with modified
configurations like bigphys memory access enabled. Additionally, third party libraries
are installed according to the needs of the various software applications of the HLT
[8] [40].

17The CHARM card is a PCI (Peripheral Component Interconnect) card for cluster monitoring.
In the early stages of the ALICE HLT planning the CHARM card was referred to as CIA (Cluster
Interface Agent) card [7].

18LTS signals Long Term Support versions of Ubuntu.
19The kernel is taken from http://kernel.org/.

24

2.4 The ALICE offline / online systems ALICE at the LHC

The HLT framework

The software tasks of the HLT, including data transportation, interface applications
and analysis components, are steered by a hierarchical system of TaskManagers (TM).
On top of it sits a so called RunManager controlling the setup. The RunManager is
steered by ECS via the HLT-proxy20. It manages underlying Master-, Servant- and
Slave-TaskManagers. The Servant- and Slave-TaskManagers start the actual compo-
nents for analysis and keep track of their execution. In addition they organise and
monitor the correct transactions by the data transportation framework PubSub (Pub-
lisherSubscriber - see below). The configurations for analysis chains are provided in
XML-files, which are prepared before the start of run and then distributed to the
assigned nodes. The different TaskManagers are started on all cluster nodes included
in the chain. There they start the tasks according to the given configuration. For
redundant checks the TaskManagers are interconnected.

A complex system of states handles the internal synchronisation. Communication
inside the HLT cluster is achieved by a dedicated InterfaceLibrary, hiding the connec-
tion details from the user. More details about the TaskManager system are presented
in section 4.3.2.

HLT has developed a generic data transportation framework, which is based on the
Publisher-Subscriber principle. It is called HLT PubSub system, and is responsible
for the communication between components, transportation of event data and results
and also load distribution. It is also able to dynamically re-route the data flow during
run time21. The system uses a pipelined push architecture. Components can receive
data by subscription, process the data and publish the result for the next component
in the chain. Thereby components can be pure publisher or pure sink components or
a combination of both forming a processing component. Special features like merger,
for merging different event streams, thereby combining same events from different
streams, scatterer, for splitting an event stream, and gatherer, for collecting streams
again, have been implemented by dedicated PubSub components22. Communication
between different nodes is achieved by special bridging components using the according
network protocols for communication, making the data access for analysis components
transparent from the source. The different types of PubSub components are sketched
in figure 2.23. The PubSub system primarily uses pipes and shared memories in
combination with the exchange of data descriptors in the communication, therefore
enabling a low overhead processing [8] [40] [42] [43] [44] [45].

The interface applications for exchanging data with the other ALICE systems
(ECS, DCS and Offline, including AliEve for online event monitoring) are also regarded
as part of the framework, their description follows in chapter 4.

20HLT stand-alone tests can be achieved by dedicated user front-ends, see section 4.3.2
21Therefore SysMES, the cluster monitoring tool of HLT, can interact with the PubSub framework.
22Scatterers and gatherers are mainly used for load balancing, locally on multiprocessor boards

and/or among several computing nodes.

25

2.4 The ALICE offline / online systems ALICE at the LHC

Figure 2.23: The figure displays the different features of the HLT PubSub framework.
Components can subscribe to a data stream and publish their results for other compo-
nents. Data exchange is mainly handled by shared memory. Special merger components
can subscribe to more than one data stream and publish the merged results for others.
Bridging components allow for data transportation between different nodes. Special scat-
terer components can split one data stream into several different streams, while gatherer
components can collect these streams again into one stream; individual processing of the
different streams in between is possible.

AliRoot integration

HLT has implemented an analysis framework23 separating analysis and data trans-
portation. It acts as middle layer between the PubSub system and the actual analysis
components. Since the analysis algorithms are written in AliRoot, it also integrates
the Offline framework into the online HLT analysis. Therefore the analysis compo-
nents can run online using the HLT PubSub system and stand-alone in offline mode.
This enables a comparison of the results of the HLT to Offline. A special processing
component, the AliRootWrapperSubscriber, acts as adapter and can load different
analysis modules written in AliRoot. To have the same module running in AliRoot
and HLT PubSub environment, binary compatibility of the libraries is required. This
is achieved by an external C interface, implementing all required online functionality
for running in a HLT processing chain [8].

23The AliRoot integration has been developed by Matthias Richter (IFT – University of Bergen,
Norway) and Dr.Timm M. Steinbeck (KIP – University of Heidelberg, Germany).

26

2.4 The ALICE offline / online systems ALICE at the LHC

Analysis Components

Analysis components for the different detectors participating in the HLT have been
developed. These components are written in AliRoot and tested with simulated data
generated by the corresponding AliRoot module.

For the TPC a fast online Cluster Finder and Tracker have been developed. The
Cluster Finder uses 3D space points for reconstruction, the Tracker combines the
clusters into tracks. The tracking is performed at sector level, when crossing more
than one sector the tracks are merged. The expected event size for the TPC is up to
75 MB. This leads to 15 GB/s after zero suppression. For an efficient storage of the
TPC data, the HLT applies a compression algorithm to the event data using online
pattern recognition. The reduced event size is only ≈ 11 % with a negligible loss in
tracking performance [46]. In addition HLT produces new calibration objects for the
TPC online, which are shipped to the OCDB using the dedicated interface application
(see section 4.4.1).

The TRD reconstruction in HLT uses the algorithms designed for offline analysis.
Calibration reference data produced in the TRD chain are shipped to the OCDB.

PHOS in HLT measures timing and energy information of electromagnetic (photon)
showers. Therefore algorithms for signal shape and shower reconstruction have been
implemented. The peak finder algorithm in the analysis is able to reduce the data
amount from 300 MB/s to 20 MB/s after zero suppression, which are then shipped to
DAQ. PHOS calibration parameters are relayed to the OCDB.

The DiMuon HLT algorithms perform a partial event reconstruction online, im-
proving the sharpness of the pt cut. The Cluster Finder and Tracker can handle the
expected event rate of 1-2 kHz [8].

2.4.6 Detector Control System – DCS

The DCS is responsible for the operation of the different detectors. In addition it allows
for monitoring of the detectors at different granularities. Thereby it takes care for
example of detector cooling, supervising of the FEEs, providing power to the various
parts of the detectors and synchronising their ramping up and down procedures with
the global run control of the experiment. The configuration of the FEEs can also be
done by DCS, using a dedicated database: the DCS Configuration DB. Furthermore
the DCS connects to the CERN Safety System, handles the logging done by the
detectors, takes care of the alarm and error handling and provides interlocks to the
different device units of the detectors.

The ALICE DCS is built as a tree. Its hierarchy control structure distinguishes
between two different types of elements in the tree. Nodes, that have a child or children
are called Control Units (CU). They can be seen as the branches and are modelled
by Finite State Machines (FSM). These FSMs reflect the states of a certain device
or a group of devices. Device Units (DU) form the leaves of the tree. They act as
adapter between the commands received via the FSM and the interface to the lower
level components. Via these commands the associated devices are actually controlled

27

2.4 The ALICE offline / online systems ALICE at the LHC

Figure 2.24: The hierarchical structure of the DCS looks like a tree with Control Units
(CU) as branches and Device Units (DU) as leaves. The services of the different detectors
like High voltage (HV), Low Voltage (LV), Cooling (Cool) are controlled by the CUs
implemented in software; the DUs are applying the chosen setting to the actual hardware.

and monitored. While the CUs consist of software, which will run in the DCS counting
room, the DUs can be either hardware (like sensors, power supplies or cooling plants)
or software / firmware running on a PC or PLC (Programmable Logic Controller).
Partitioning has been a major issue in the development of the DCS to grant local
operators to control certain systems or dedicated device units. The tree structure of
the DCS is presented in figure 2.24.

To integrate each detector into the DCS, the detector experts have developed their
control structure in a hierarchical manner up to the SCADA (Supervisory Control And
Data Acquisition) system, which connects to the global DCS. In ALICE DCS, PVSS-II
(Prozess Visualisierungs - und Steuerungs - System II) has been chosen as SCADA
system [7]. The connection of the FEEs of the TPC, TRD, PHOS and FMD into the
control of the DCS is described in more detail in section 3.2. These detectors have in
common, that they all use the Front-End-Electronics Communication (FeeCom) chain
in their integration to DCS [47] [48] [49] [50] [51].

28

Chapter 3

The FED-API in ALICE DCS

Although, this thesis focusses mainly on the HLT, part of the project work has been
carried out on DCS components. The FED-API (Front-End-Device - Application Pro-
gramming Interface), as presented here, has been primarily developed for the commu-
nication between the DCS and the FEE (FeeCom chain, FERO (Front-End Read-Out)
configuration). But parts of it are used in the interface from HLT to DCS as well (cf.
section 4.5.2), therefore becoming an important part of the thesis.

3.1 The DCS board

The FeeCom chain is used by several detectors, controlling their FEE via the custom
made DCS board1. The DCS board2 consists of an embedded system with an Altera
EPXA1 FPGA including a hard-wired ARM processor, a flash memory based hard
disc, 8 MB SRAM Memory, an Ethernet controller3 for 10 MBit connections and an
optical input for the TTC system. The DCS board is located as embedded system on
a Readout Control Unit motherboard (RCU4 – in the cases of the TPC, PHOS and
FMD) or on a ReadOut Board (ROB – in the TRD case). It facilitates the DCS to
contact the FEE of the corresponding detector. Additionally, the RCUs and ROBs
host an SIU to connect to DAQ. Furthermore, the RCUs handle the bus systems,
which talk to the Frond-End Cards (FEC)5 of the according detector. The ROBs have
direct contact to their FEEs. Since each RCU / ROB hosts exactly one DCS board,

1The list of detectors includes the TPC, TRD, PHOS and FMD; EMCal will join as well, because
it will use the same hardware (DCS board, RCU) like PHOS.

2The DCS board has been developed at the Kirchhoff Institute for Physic (KIP) – University of
Heidelberg, Germany.

3In order to operate the DCS board in the magnetic field of ALICE, the transformer coil has been
replaced by a small amplifier circuit, which boosts the output of the physical layer chip.

4The DCS board - RCU connection has been implemented by Dr. Johan Alme (IFT – University
of Bergen, Norway); together with Ketil Røed (Bergen University College, Norway) he has developed
the RCU radiation tolerance solution [52].

5The FECs host the read out of the actual detector sensors and have to be configured with e.g.
pedestals to achieve a proper readout. In FMD the FECs are replaced by so called FMD Digitizer
cards, which fulfil the same purpose.

29

3.2 The FeeCom chain The FED-API in ALICE DCS

the amount of them used per detector depends on the detector layout. TPC has 216
DCS boards in sum, one for each TPC partition. PHOS uses 4 per detector module,
after the full PHOS installation there will be 5 modules. In FMD one board is used
per FMD ring, 3 in total. TRD has a DCS board for each chamber layer, and therefore
the highest amount of DCS boards with 540.

The DCS boards run on their own in order to react autonomously to critical situa-
tions but receive their power by the hosting motherboard. The ARM processor in the
FPGA runs a Busybox-Linux based operating system, which has been specially ported
for the target system. Software for the DCS board can be compiled by a dedicated
cross-compiler designated for the ARM processor (e.g. arm-uclibc-gcc). Application
and data files can be either loaded to the flash disc on the board or mounted from a
file server via NFS (Network File System). During normal operation, communication
with the DCS board from the upper DCS layers is achieved over ethernet connections.

3.2 The FeeCom chain

The FeeCom chain consists mainly of three components: the FedClient which is part of
the PVSS panels of the corresponding detector, the InterCommunicationLayer (Inter-
ComLayer or ICL) on the control layer and the FeeServers with their ControlEngines
(CE) to contact the actual FEE in field layer. The latter one is running on the DCS
boards. The ICL consists of several modules. This includes the FedServer module6,
the ApplicationLayer module, which hosts the database access of the ICL and the
CommandCoder (CoCo), and the FeeClient module as contact to the FeeServers. The
whole chain is visualised in figure 3.1. The FeeCom chain components are classi-
fied as detector-independent and -specific parts. The components responsible for the
communication between PVSS and the DCS boards have been designed independent
of the detector-specific underlying hardware devices. The FedClient as a whole is
detector-specific, while on the ICL side the CoCo and on the FeeServer side the CE
are detector-specific.

In the FeeCom chain control and configuration commands are issued at the super-
visory layer. The FedClient, which is integrated in the PVSS system of the supervisory
layer, sends these commands to the FedServer of the ICL. More details about this in-
terface are described in section 3.4. In the ICL additional configuration data can be
added to these commands by requesting the DCS Configuration DB7. The detector-
specific CoCo prepares the data before the FeeClient module of the ICL distributes the
commands to the destined FeeServers. Broadcasts and multicasts to several FeeServers
are possible. In the case that these commands are meant for the FEE, the FeeServer
hands them over to the CE. The CEs are detector-specific modules, which are integral
part of the FeeSevers. They communicate via the well defined FeeServer-CE-API.

6The FedServer module of the ICL has been implemented by Benjamin Schockert (ZTT – Univer-
sity of Applied Science Worms, Germany).

7The DCS Configuration DB is hosted by an Oracle 10g database server. Data exchange with the
database is handled via the Oracle C++ Call Interface (OCCI), which allows for an object oriented
design in the database client calls.

30

3.2 The FeeCom chain The FED-API in ALICE DCS

Figure 3.1: The FeeCom chain connects the FEEs of TPC, TRD, PHOS and FMD to the
PVSS panels of the according detector. FeeServers on the custom made DCS boards con-
trol the underlying hardware devices via detector-specific CEs. The amount of connected
FeeServers is equal to the number of DCS boards in the corresponding detector design.
Monitored values of the FEEs (like temperatures, voltages, etc.) are delivered to the In-
terComLayer, where all channels from the FeeServers of one detector are collected. After
grouping of these values, they are handed to the PVSS system on the supervisory layer.
Control and configuration commands issued from the PVSS are sent to the FedServer of
the InterComLayer. Additional configuration data are fetched from the DCS Configuration
Database and prepared by the detector-specific CommandCoder, before these commands
are distributed to the different FeeServers. The actual execution of commands for the FEE
is handled by the CE of the corresponding FeeServer. Acknowledgements (ACK) or error
codes are handed back to the PVSS system. In addition the components can send log
messages to the supervisory layer.

31

3.3 Distributed Information Management The FED-API in ALICE DCS

The CEs know how to contact the underlying hardware devices and execute the given
commands. Acknowledgements (ACK) or appropriate error codes for the issued com-
mands are handed back to the FeeClient via separated ACK channels in the FeeServer.
Additional result data can be appended to these ACK / error codes. The data of the
ACK channel is handed further to the FedClient, as well as to the CoCo for evaluation.

Furthermore, the FeeCom chain allows for monitoring of the detector FEEs. The
CE requests information from the hardware devices and translates the answers. Tem-
peratures, voltages, currents, states or similar quantities can be monitored thereby.
To reduce the bandwidth for updating these values on the upper layer, a dead band
around each monitored value is applied. Only values, which exceed the dead band
around their last transmitted value, are sent. These values are collected in the ICL
and delivered further to the PVSS panels. Log messages, which are received via ded-
icated Message channels, are relayed to PVSS panels as well, after applying a filter
according to the set log level. To avoid loss of information, all messages are stored to
a local log file on the ICL stage.

The communication between FedClient and FedServer, as well as between FeeClient
and FeeServer utilises the Distributed Information Management (DIM). The contacts
between the CE and the hardware devices of the FEEs are performed via internal bus
systems and device drivers [47] [49] [53] [54] [55] [56].

3.3 Distributed Information Management

DIM is a communication framework developed at CERN and widely used among
all LHC experiments8. Its mechanism is based on the client-server principle. DIM is
especially well suited for distributed and heterogeneous environments where it provides
a network transparent inter-process communication layer. The communication can
facilitate TCP/IP for transportation and control.

A DIM Server provides services (implemented as DIM Service channels) and com-
mands (implemented as DIM Command channels). Both are identified by their names.
It is mandatory that these name are unique inside a DIM domain. A DIM domain is
defined by a DIM Domain Name Server (DIM_DNS). The DIM_DNS acts as broker
between DIM Servers and Clients. At start-up each DIM Server registers its services
and commands at the DIM_DNS. DIM Clients request the DIM_DNS9 for connection
details for a given DIM Service or Command. Afterwards the clients can contact the
corresponding DIM Server(s) directly. This mechanism is shown in figure 3.2. One
DIM Server can handle several DIM Clients. But there can be only one DIM_DNS
per DIM domain. The DIM_DNS ensures that the communication channel names are
unique among the domain. It keeps an up-to-date dictionary of all servers, services
and commands.

8DIM has been developed first for the DELPHI (DEtector with Lepton, Photon and Hadron
Identification) experiment at CERN.

9The host name, where the DIM_DNS is located, is provided to DIM Servers and DIM Clients
by the environment variable DIM_DNS_NODE .

32

3.3 Distributed Information Management The FED-API in ALICE DCS

Figure 3.2: The figure displays the role of the DIM_DNS in the connection of DIM Servers
and DIM Clients. A DIM Server publishes its services by registering them together with the
accepted commands at the central DIM_DNS. A DIM Client can retrieve the connection
details for a DIM Service or a DIM Command from the DIM_DNS. Afterwards it is able
to contact the DIM Server directly for subscribing to services or for sending commands.

When subscribing to a service the corresponding data are sent to the client. Af-
terwards the client receives updates on data change or after a given time interval or a
mixture of both. Thereby DIM uses a push architecture: the server informs the client
about the service data without further requests. This principle is visualised in figure
3.4. The locations of the DIM Services are transparent to the user applications on
the client side. The system automatically reconnects after a crash or network failure
or a connection break due to migration of a service to a different node / server. The
DIM_DNS plays the central role in this feature.

DIM exists in C, C++ and Java implementations and allows for an interface to
Fortran. When using the C++ version of DIM, servers can receive the according func-
tionality by inheriting from DimServer. DimService is the (parent) class for services
published by these servers. For commands the class DimCommand is used. DIM Clients
use (child) classes of DimInfo to subscribe to DIM Services, while the client function-

33

3.4 The FED-API – DCS integration The FED-API in ALICE DCS

Figure 3.3: The figure depicts the different
layers in a DIM application. The connection
and data transportation details are handled
by the DIM framework and are kept trans-
parent to the user application. The latter
one only interacts with the DIM library of
its system.

Figure 3.4: The figure displays the push
architecture of the DIM framework. DIM
Clients have to register only once to a DIM
Service, further service updates are trig-
gered by the DIM Server via callback rou-
tines on the client side [58].

ality is inherited from DimClient. Dedicated DIM modules have been developed for
LabView / EPICS (Experimental Physics and Industrial Control System) and PVSS,
which allow to integrate DIM Clients and Servers into these SCADA systems10. De-
dicated browsing tools (DID (Distributed Information Display), DimTree) enable the
investigation of a DIM setup. DIM is available on many different platforms like Unix,
Windows, Linux, VMS (Virtual Memory System), etc. . Architecture specific details
like byte ordering or data alignment are handled by the framework and are transparent
to the user applications [58] [57].

3.4 The FED-API – DCS integration

In the view of the DCS the tasks for configuring and controlling the FERO are very
similar among the various detectors. Therefore a common interface between the FED
and the supervisory system in DCS has been invented: the FED-API11. It connects
the SCADA system (PVSS-II) of the supervisory layer either with the control layer
(ICL) or with the application layer directly located on the field devices. Which setup
is applied depends on the detector design. The figure 3.5 shows how the FED-API is
applied to the different detector setups in ALICE. In principle they can be categorised

10DIM homepage: http://dim.web.cern.ch/dim/ .
11The FED-API has been developed together with Dr. Peter Chochula (CERN) and is based on an

idea of Christian Kofler (ZTT – University of Applied Science Worms, Germany).

34

3.4 The FED-API – DCS integration The FED-API in ALICE DCS

Figure 3.5: The FED-API is a common interface for different detectors between their
FERO and the controlling DCS system. It uses DIM as communication framework to
transport data for monitoring services and configuration- and control-commands. The
figure shows the two types in the setup, where the FED-API is applied. On the supervisory
layer PVSS panels are used for communicating with the FED-API. The left side shows a
setup where the application layer, hosted by dedicated hardware (e.g. a VME crate or a
PLC), sits directly in the field layer. It talks to the electronics on the field devices via
device drivers. In this case the monitoring tasks are taken over by Monitoring Agents
(MA), the configuration and control are performed by Control Agents (CA). This setup is
used for example by the SPD. The right side depicts the FED-API in the FeeCom chain,
which is used by TPC, TRD, PHOS and FMD. All these detectors use the InterComLayer,
which includes an implementation of the FED-API in its FedServer module. The field
devices are addressed by dedicated software (FeeServer) running on the embedded system
of the DCS board. Communication between ICL and the DCS board is performed over
ethernet. Communication with the control hardware of the field devices (TPC, PHOS,
FMD: Readout Control Unit (RCU) - TRD: Read Out Board (ROB)) is achieved via the
ControlEngines (CE) of the corresponding FeeServers.

35

3.4 The FED-API – DCS integration The FED-API in ALICE DCS

into two different types: detectors using the FeeCom chain and detectors having their
control layer directly located on the field devices [59].

This interface has been used as a guideline for the developers of the different
detectors implementing their DCS FERO-subsystem. In the implementation DIM is
used as communication and transport framework. The usage of the FED-API in the
FeeCom chain is described in the following.

The FED-API commands are represented as DIM Command channels. DIM Ser-
vice channels deliver monitored values and log messages from the FeeCom chain to
the supervisory layer. In addition, acknowledgements and respectively error codes for
given commands are provided. For certain service channels it is possible to have more
than one instance of the defined channel type. Unique channel names guarantee a
clear distinction between different instances of a channel type. Since these channels
are contacted inside a DIM domain only by their channel name, independent of the
hosting DIM Server, they do not even need to be provided by one single FedServer.

3.4.1 FED - Commands

Commands defined in the FED-API are used to send configuration data to the FERO
and to execute control commands. Moreover they allow for configuring and controlling
components of the FeeCom chain, especially detector-specific FeeServices representing
monitored values.

Four different command channels have been defined in the FED-API. They can
be divided in two groups: Configuration and Control of the FERO and Configuration
and Control of the FeeCom chain. These channels are used to transfer data from the
supervisory layer to the control layer (PVSS → FedServer). In detail these channels
are the following:

• Configuring Front-End Read-Out:
This DIM Command channel has the name ConfigureFERO. It is intended to
configure the FEEs. Therefore the FedClient sends configuration identification
tags to the FedServer. The actual configuration data is stored in the DCS Con-
figuration DB and retrieved using the tag(s). After the retrieval the data are
prepared by the CoCo and then handed to the ICL as Binary Large OBjects
(BLOB) for delivery to the FEEs. This leaves the actual configuration data
transparent to the detector-independent modules of the FeeCom chain. If more
than one tag is given, the CoCo has to iterate over the list of tags and fetch all
corresponding DB entries, before preparing the BLOB. The same applies if a tag
returns a ResultSet rather than a single data set.

In addition, by providing a target name the FedClient tells the ICL for which
FeeServer12 the configuration command has been issued. The target name is
transferred by a 20 Byte char array. Shorter target names have to be padded in
order to match the defined DIM Command structure representing this channel.

12Each FeeServer corresponds to a set of FEEs that can be addressed by one DCS board. In the
TPC case it corresponds to a partition, in TRD to a layer, in PHOS to a sector in a module.

36

3.4 The FED-API – DCS integration The FED-API in ALICE DCS

The detector experts have agreed on the usage of human readable versions of
target names13. The usage of the wildcard character "∗" in the target name
allows for broad- and multicasts14. This is achieved by means of the numbering
scheme inside a detector structure15. For the detectors SPD, TPC and TRD the
general structures look like the following:
spd-fed_<sector>_<layer>_<halfstave> 16;
tpc-fee_<side>_<slice>_<partition> ;
trd-fee_<supermodule>_<stack>_<layer> .

Channel name Channel content
ConfigureFERO target name list of tags

char array [20] int array[]

Table 3.1: Structure of the ConfigureFERO channel: The target name for the particular
command is transferred by a char array with a fixed size of 20 Bytes, wildcards in the target
name are allowed. The list of tags, given by an integer array, defines the configuration(s)
that ought to be fetched from the DCS Configuration DB and loaded to the FEE(s). An
arbitrary number of tags is possible.

• Control Front-End Read-Out:
To sent instructions directly to the FERO, the channel ControlFERO is used.
This command gets its data from the supervisory layer by a char array of arbi-
trary size, without contacting the DCS Configuration DB in the control layer.
The data is then directly sent as BLOB to the specified target(s). For the target
name the same usage applies as described above.

Channel name Channel content
ControlFERO target name data block

char array [20] char array[]

Table 3.2: Structure of the ControlFERO channel: The target name for the particular
command is transferred by a char array with a fixed size of 20 Bytes, wildcards in the target
name are allowed. The data block, given by the char array of arbitrary size, is transferred
directly to the according FEE(s).

13The target name encodes the detector name, as well as its location in ALICE; e.g. "trd-icl" for
the TRD InterComLayer, or "tpc-fee_x_y_z" for a certain FeeServer in the TPC (x defines the side,
y the slice, z the partition). It is ALICE naming conventions to use lowercase letters.

14With a multicast only a defined subset of nodes in a network are addressed [60].
15An example for a TPC multicast to all partitions on side A, slice 8 looks like this: tpc-fee_1_8_∗;

a TRD broadcast like this: trd-fee_∗_∗_∗ . In principle there are no restrictions in the combination
of the wildcard character usage, although some would not make any sense in the use.

16The SPD is not using the FeeCom chain software, although the scheme used in the FED-API
applies also for this detector. In principle all detectors in ALICE can be mapped to a three dimensional
structure, even though for some one or two of these dimensions are left blank.

37

3.4 The FED-API – DCS integration The FED-API in ALICE DCS

• Configuring FeeCom:
The command ConfigureFeeCom allows for (re-)configuring the detector-in-
dependent and -generic17 components of the FeeCom chain. The command itself
is encoded as an ID in an integer number. An optional integer and an optional
float value are used as additional command data, e.g. values for update rates or
log levels. Their usage and meaning depend on the issued command. For both
values at least a "Don’t-Care" - value has to be given to match the structure of
this command channel. At last a target name has to be specified by a char array
of arbitrary size. The allowed targets depend on the issued command and can
vary from specific FeeCom component names to FeeService18 names provided by
the FeeServer, respectively their CEs. For some, broad- and multicasts might
make sense. In that case the same as described earlier applies. Some of the
defined commands require the return of result data. If so, these data are handed
back by the acknowledge channel as described below. A list of so far defined
commands in the FeeCom chain can be found in the appendix A.1.

Channel name Channel content
ConfigureFeeCom CommandID int value float value target name

int int float char array[]

Table 3.3: Structure of the ConfigureFeeCom channel: The desired configuration com-
mand is given by an ID number, which is transferred as an integer. An additional value,
which can be given either as integer or as float, allows for a more precise setting of the com-
mand. Both values are not mandatory in the evaluation, but at least a detector-internally
defined "Don’t-Care" - value has to be set. The target name can be of arbitrary size
and has to define a module in the FeeCom chain to which the command shall be applied.
Wildcards in the target name are allowed.

• Control FeeCom:
The command channel ControlFeeCom has been introduced to control the
FeeCom chain. An ID given by an integer number specifies the corresponding
command. An optional integer is used to retrieve additional data for the issued
command, e.g. from the DCS Configuration DB. If this tag is not used a "Don’t-
Care" - value should be set. Again, the target name is given by a char array
of arbitrary size, and the same applies for the usage of broad- and multicasts,
like for the other commands. In the FeeCom chain commands of this channel
only correspond to the execution of the FeeSever. They do not return any
acknowledgement or result data. The appendix A.2 shows a list of all defined
commands in the FeeCom chain.

17"Generic" in terms of their treatment by the detector-independent part of the FeeCom chain.
Although for example the names of monitored services are detector-specific and update rates for
monitored values are as well, the update rate for each value is handled in the detector-independent
part. The same applies for the dead bands.

18A published service with a monitored property of the FEE is called FeeService.

38

3.4 The FED-API – DCS integration The FED-API in ALICE DCS

Channel name Channel content
ControlFeeCom CommandID int tag target name

int int char array[]

Table 3.4: Structure of the ControlFeeCom channel: An integer number defines the
issued control command. Additional command data can be defined by an optional integer
tag. The target name can be of arbitrary size and has to define the module in the FeeCom
chain to which the command shall be applied. Wildcards in the target name are allowed.

In the FeeCom chain these channels are implemented as DIM Commands of the
FedServer, which is a detector-independent module of the ICL. Depending on the
command their further execution or delivery is handled by the ICL itself. In the
design for the FeeCom chain it is not foreseen to have more than one instance of each
type of these command channels.

3.4.2 FED - Services

DIM Services published by the FedServer cover the sending of data to the supervis-
ing layer. In principle an arbitrary amount of DIM Clients could subscribe to these
services, but in the ALICE DCS only the FedClient located in the PVSS of the su-
pervisory layer should subscribe to them. The main purpose of these services is to
monitor the FEEs and to keep track of the results of issued commands. Monitored
values are for example voltages and currents of the FEEs, as well as their configu-
ration states. The service channels for observed values exist for grouped- and single
services. A mixture in the usage of these channels is possible and can make sense for
defining a priority hierarchy. Grouped service channels have been invented to reduce
the amount of channels the FedClient has to subscribe to. Tests with the PVSS have
shown that the DIM Client module of PVSS slows down dramatically when handling
a large amount of channels. In order to enhance performance, the number of DIM
Client modules representing FedClients can be increased. The following list of service
channels are defined in the FED-API:

• Grouped Service channels:
The Grouped Service channels provide monitored FEE properties to the su-
pervisory layer. These can be voltages, temperatures, currents, the states of the
FeeServers, or any other monitored property of the FEEs. The grouping policy
should be reflected in the channel names, which have "<Group-name>_Service"
as generic name structure. The respective Fee/Fed-Service defines which type
(integer value, float value or char array) of the transmitted values is valid19. It
is good practice to submit a "Don’t-Care" - value for the elements of the other
types. The name is given in a 256 Bytes char array. In the FeeCom chain a

19The char array for a transferred value has been appended at the end of the channel structure,
because in the beginning of the FED-API definition, only integer and float values were defined to be
Fee/Fed-Services.

39

3.4 The FED-API – DCS integration The FED-API in ALICE DCS

value is only updated when it exceeds a dynamically set dead band. The dead
band is applied around the last transmitted value of its service20.

The main idea for grouping services is to reduce the amount of channels the
PVSS has to connect to. The amount of grouped service channels depends on
the detectors and on the grouping policy chosen by the latter21.

Channel name Channel content
<Group-name>_Service int value float value service name char value

int float char[256] char[256]

Table 3.5: Structure of the Grouped Service channel: The actual transferred value is
either given by an integer or a float value or a 256 Byte char array. For the not-used-values
a "Don’t-Care" - value should be set. The corresponding Fee/Fed-Service name is given
by a 256 Byte char array. The grouping policy for a given Grouped Service channel is
indicated in the channel name.

• Single Service channels:
Single Service channels are supposed to provide the supervisory layer with
current measurements of observed properties of the FEEs. This includes volt-
ages, currents, temperatures, etc., as well as the current state of the FEEs.
The Single Service channels represent only one value. The corresponding
name is given by the channel name, which has the following generic structure:
"<Fee/Fed-ServicesName>". The actual value is transmitted as an integer, a
float or a char array, respective to the type of the value. The elements of the
not-used data types should contain a detector defined "Don’t-Care" - value. In-
teger and float values are only updated, if their current value exceeds a given
dead band around their last transmitted value.

The amount of used Single Service channels depends on the detector and the
usage of Grouped Service channels.

Channel name Channel content
<Service-name> int value float value char value

int float char array[]

Table 3.6: Structure of the Single Service channel: The actual transferred value is either
given by an integer or a float value or a char array of arbitrary size. For the not-used-values
a "Don’t-Care" - value should be set. The corresponding Fee/Fed-Service name is given
by the channel name.

20Dead bands are only applied to FeeServices represented by integer or float values. Char services
do not have any dead bands.

21Examples for grouping policies can be ’grouping by FeeServers’ or ’grouping-by-observable-
property’, like temperatures, voltages or states.

40

3.4 The FED-API – DCS integration The FED-API in ALICE DCS

• Acknowledge channel:
Normally, commands which are sent to the FEEs, return an acknowledgement
(ACK) of their execution or an appropriate error code. This is given by an
integer number22. In addition, possible result data, depending on the issued
command, can be appended. They are transported by a char array of arbitrary
size, which can also be empty. If the corresponding afore issued command has
been executed by a detector-specific part of the FeeCom chain, the ICL and
FedServer handle the result data as BLOB. Time-outs for commands issued to
the FeeServers are measured by the ICL. An appropriate error code is generated
accordingly if a FeeServer does not answer in time.

All these information are sent back to the supervisory layer via theAcknowledge
channel. The amount of ACK channels depends on the detector, the control
design and the handling of the command channels. In the FeeCom chain, the
FedServer hosts an ACK channel for each FeeServer plus one for the ICL. Broad-
casts to the FeeServers should be answered via the ICL ACK channel. Since there
can be several ACK channels a generic structure for the channel name has been
defined: "<Source-name>_ACK". In the FeeCom chain the <Source-name> is
given by the FeeServer name respectively the ICL.

Channel name Channel content
<Source-name>_ACK ACK / error code result data

int char array[]

Table 3.7: Structure of the Acknowledge channel: An ACK is represented by a "0", else
the appropriate error code is sent as an integer number. Possible additional result data is
appended in a char array of arbitrary size. The char array can be empty, if no results are
provided. The source of this channel is encoded in the channel name.

• Message channel:
The Message channel is used to send log messages from the lower layers (field
- and control layer) to the supervisory layer23. Its generic name encodes the
detector name / acronym in the channel name: "<DET>_MSG". An event
type encoded in an integer number represents the severity of the message24. The
detector, where the event has occurred, is given by a 4 Byte char array. A
256 Byte char array defines the component, which has issued the log message.
Another 256 Byte char array is reserved for the description of the log event.
Finally a 20 Byte char array shows the timestamp of the log message. The
structure of the timestamp is defined as "YYYY-MM-DD hh:mm:ss\0". If the
contents of the afore-mentioned char arrays are shorter than the defined size,

22A "0" represents an "OK" (ACK); some of the error codes are given by the FeeCom chain, the
rest depends on the definitions in the detector-specific components.

23In the FeeCom chain, these messages are additionally written to file by the ICL.
24In appendix A.3 a list with the possible log types / levels is given.

41

3.4 The FED-API – DCS integration The FED-API in ALICE DCS

they have to be padded with "\0"s. The structure of the Message channel is
common among all participating detectors in ALICE DCS and used as well in
the communication between FeeServer and ICL.

Channel name Channel content
<DET>_MSG logType detector source description date

int char[4] char[256] char[256] char[20]

Table 3.8: Structure of the Message channel: The logType (log level) is given by an
(unsigned) integer. The corresponding detector is transferred by its acronym in a 4 Byte
char array. A finer granularity of the source is given by a 256 Byte char array. The actual
message is sent by a 256 Byte char array, too. A 20 Byte char array is used for the
timestamp of the message.

All the above mentioned channels are implemented in the FedServer module of the
ICL. They allow DCS to have full control over the FeeCom chain and their connected
FEEs [47] [48] [61] [62]. A display showing the TPC FED-Client on a PVSS panel is
given in figure 3.625.

The service channel part of the FED-API is also used in the interfaces from the
HLT to the DCS. Data that have been calculated online in the HLT and are of interest
to the DCS, can be transferred to the DCS system using the FED-API. Therefore the
HLT has implemented the above mentioned service channels in its framework. More
details about the HLT - DCS connection via the FED-API is described in section
4.5.2.

25The PVSS panels for the TPC have been developed by Dr.Christian Lippmann (CERN).

42

3.4 The FED-API – DCS integration The FED-API in ALICE DCS

Figure 3.6: The figure shows a screenshot of a PVSS panel displaying the FED-Client
implementation for the TPC.

43

Chapter 4

The HLT interfaces

4.1 Design methodology

Most of the design and implementation of the various ALICE online / offline systems
was already done or in progress when the project for developing a calibration frame-
work for the ALICE HLT started. This fact had implications on the choice and on
the design of the HLT interfaces, especially on the mechanisms and protocols for com-
munication. The environment constituted itself as very heterogeneous with a mixture
of various proprietary and of-the-shelf techniques. A first goal had been to depict the
diversity in the setup. In this process UML (Unified Modelling Language) has been
used as a tool to visualise the existing design. In a second step the other systems
have been interfaced making the various mechanism used inside interoperable. Again
UML has been used to display smaller aggregations of the setup. In the following a
brief description of the UML notation employed in several figures within this thesis is
given1. The notation is following the UML 2.0 standard2 [63].

4.1.1 UML notation overview

UML 2.0 introduces a set of 13 different diagram types with symbol notations accord-
ing to the needs of their context. Some of the symbols and elements are common
among several or all diagram types, certain notations are domain specific. Additional
information to classifiers and relations between them can be given by attaching a note
to them. Stereotypes, which assign an element in the model to a certain group or style
are marked by "«...»" surrounding the name of the stereotype. Both notations are
used in all digram types [63].

1The description here is limited to the elements used in the UML diagrams in this thesis, the UML
standard includes many more.

2The Object Management Group (OMG) is responsible for the specification of UML, the standard
for UML 2.0 can be downloaded under: http://www.uml.org/ .

44

4.1 Design methodology The HLT interfaces

Notation UML Composite Structure Diagram

The internal structure of a system and the collaboration with other system compo-
nents can be visualised by UML Composite Structure Diagrams. The notations are
the following: Parts and components are represented by boxes. Connectors and ports
depict special interaction modules (small boxes attached to the component boxes).
Dedicated interfaces can be drawn via the so called lollipop representation. The rela-
tions (edges) between components are given by arrows. The different elements of the
notation are presented in figure 4.1.

Figure 4.1: The figure shows the different notation elements in a UML Composite Structure
Diagram.

Notation UML Class Diagram

UML Class Diagrams can model the design of an application written in object-oriented
programming languages. These diagrams display the classes, their inheritance(s) and
association(s). Classes are displayed as boxes with the class name written inside.
Methods and attributes of the classes can be mentioned in the boxes as well. Inher-
itance between two classes is signalled by an arrow with a closed but unfilled arrow
head. In addition to the normal inheritance notation, the implementation of an in-
terface can be expressed by lollipops, too. The associations between classes can occur
in different flavours: simple association, aggregation or composition. They normally
express a "has a" relation. They are drawn by a simple line or by an arrow with an
open arrow head. Multiplicities in the relation are given by numbers at the ends of
the connection lines. In addition the UML Class Diagram allows to order the classes

45

4.1 Design methodology The HLT interfaces

into the corresponding packages depicted by symbolic file folders [63]. The notation
elements are described in figure 4.2.

Figure 4.2: The figure shows the different notation elements in a UML Class Diagram.

Notation UML Deployment Diagram

The distribution of the different system components in an environment can be dis-
played by UML Deployment Diagrams. These diagrams show the deployment of ap-
plications and modules on the various nodes in the system. Nodes in a domain are
represented by 3-dimensional boxes, special roles of the nodes can be appended to the
node description / name. Associations between nodes are given by lines and arrows.
Components and applications (classifiers in normal boxes) running on these nodes are
assigned by «deploy» associations (deployments) [63]. Figure 4.3 shows the notation
elements of UML Deployment Diagrams.

Figure 4.3: The figure shows the different notation elements in a UML Deployment Dia-
gram.

46

4.1 Design methodology The HLT interfaces

Notation UML Use Case Diagram

The UML Use Case Diagrams visualises use cases of a setup. The different modules are
represented by elliptic circles, their associations are given by arrows or lines. Special
relations, like "include" or "extend", are signalled by attached «stereotypes». Actors
interacting with the system are indicated by stick figures, their role in the system is
given by the name of the stick figure [63]. The notation elements are presented in
figure 4.4.

Figure 4.4: The figure shows the different notation
elements in a UML Use Case Diagram.

Figure 4.5: The figure shows the
different notation elements in a
UML State Machine Diagram.

Notation UML State Machine Diagram

The internal states and state transitions of a system are displayed in UML State
Machine Diagrams. The different states are represented by boxes with rounded corners,
their transitions are given by arrows indicating the transition direction. Transition
command names can be added to the arrows [63]. The notation is shown in figure 4.5.

Notation UML Activity Diagram

The order of tasks performed by a component or application can be visualised with
UML Activity Diagrams. Normally, these diagrams have one entry point (black cir-
cle) and at least one exit point. The main exit point is marked by a black dot in a
white circle, exit points of side control flows have an "×" in the white circle. The
different activities are represented by rounded boxes, object nodes are given by sim-
ple boxes. Incoming and outgoing signals have their own representation (see UML
Activity Diagram example in figure 4.6). The flow (edge) of actions are signalled by
arrows. Branching in the flow is indicated by diamonds, a break or an "exception" in
the activity flow can be drawn by a zigzag line. Parallelisation and synchronisation of
control flows are presented by black bars with incoming and outgoing arrows. Struc-
tured nodes like loops or subcomponents are visualised by big rounded boxes with
dashed lines.

47

4.1 Design methodology The HLT interfaces

Figure 4.6: The figure shows the dif-
ferent notation elements in a UML Ac-
tivity Diagram.

Figure 4.7: The figure shows the different nota-
tion elements in a UML Sequence Diagram.

Notation UML Sequence Diagram

The UML Sequence Diagram shows the order of interactions (messages) between the
participants in a system. A participant is represented by a box with an outgoing
life line. Messages between the participants are indicated by arrows between the life
lines. These messages can be synchronous or asynchronous. Synchronous messages
have a closed and filled arrow head and a return message when the corresponding
task has finished. The duration of the task is shown by a bar on the life line of
the participant. The return message is indicated by an arrow with a dashed line.
Asynchronous messages have an open arrow head. The termination of a life line is
indicated by an "×"; it can be issued by other participants as well. Control flow
instructions (interaction operators – loops, branching, etc.) can be incorporated in so
called combined fragments [63]. These notations are shown in figure 4.7.

Other UML Diagram types

The set of diagrams defined in UML 2.0 comprises 13 different diagram types. In
addition to the afore describe ones, UML 2.0 provides Component Diagrams, Package
Diagrams, Object Diagrams, Communication Diagrams, Timing Diagrams and Inter-
action Overview Diagrams for modelling a system [63]. They are just mentioned here
for completeness reasons, but they are not used in the further description of the HLT
Calibration Framework.

48

4.2 Interfaces overview The HLT interfaces

4.2 Interfaces overview

In order to fulfil the tasks mentioned in section 2.4.5 the HLT has redundant interfaces
to the various systems in ALICE. These include the ALICE online systems like the
ECS, DAQ and DCS, as well as ALICE Offline and the AliEve.

Figure 4.8: The figure shows the different interfaces of the HLT with the other systems in
ALICE.

The raw event data are received on HLT side as copies from the DAQ-LDCs and
analysed inside the HLT. Afterwards the results, trigger information and compressed
event data are sent back to the DAQ nodes for permanent storage. Interfaces to the
other systems provide the analysis software of the HLT with required additional input.
Calculated results are sent back to the corresponding systems. In the DCS and Offline
case the tasks for communication in the two exchange directions (receiving data and
sending data) are separated in different applications. DCS values are fetched via the
so called Pendolino, while HLT is able to return data back to the DCS over the FED-
API. Offline can fetch data from HLT using the Offline Shuttle mechanism and the
HLT can retrieve calibration settings from the OCDB in Offline via the HLT Taxi.
Online monitoring is achieved by interfacing AliEve. A sketch of these interfaces is
shown in figure 4.8, the different involved interfaces are analysed step-by-step in the
following sections. They are the main topic of this thesis. Most of the figures in the
following descriptions use a colour code for distinguishing between components of the

49

4.2 Interfaces overview The HLT interfaces

different ALICE systems: green is used for the HLT related parts, orange for the ECS,
brown for the DAQ, blue for the DCS, pink for Offline and the AliEve and yellow is
used to indicate detector-specific components inside other systems.

The interface applications are hosted by dedicated portal nodes with at least two
network interfaces - one for connecting to the corresponding system, and one for
collecting or distributing data inside the HLT cluster. The portal nodes are redundant,
in case of a failure of one portal the backup node takes over the corresponding task.

Due to the heterogeneity of the ALICE systems different techniques are applied to
connect to the different parts. The UML Composite Structure Diagram in figure 4.9
visualises the heterogeneity and complexity of the system and shows the variety of the
different techniques used. The employed mechanisms are described in more detail in
the following sections. The interfaces to the DAQ and the AliEve are not in the main
focus of this thesis, and are mentioned here only very briefly for completeness reasons.

50

4.2 Interfaces overview The HLT interfaces

Figure 4.9: This UML Composite Structure Diagram visualises the complexity and hetero-
geneity of mechanisms used in the different HLT interfaces. The grey circles depict the
techniques used in interfacing other ALICE systems. The names and acronyms used in the
diagram are explained in the description of the corresponding interfaces.

51

4.3 ECS The HLT interfaces

4.3 ECS

As described in section 2.4 the ECS is responsible for steering and synchronising the
different ALICE systems and detectors. The ECS interface integrates the HLT into
the global ALICE control and provides the HLT with certain overall run conditions.
Two nodes of the HLT cluster are assigned for the connection to ECS. They own
a dedicated ethernet connection to the DAQ counting room, which hosts the ECS
computers. The high level interface is taken care of by the so called HLT-proxy.

Figure 4.10: Sketch of the ECS - HLT interface. ECS interacts with HLT via states and
transition commands (+ additional parameters).

4.3.1 HLT-proxy

During a run ECS controls all online systems in ALICE. Therefore each system like
the HLT, DCS, DAQ, TRG and all detectors have implemented Finite State Machines
(FSM) as interfaces towards the ECS3. From an abstract point of view a FSM consists
of a collection of well defined states and transitions between these states.

ALICE has chosen to implement these state machines with the SMI++ (State Ma-
chine Interface) framework. SMI++ has been developed for the DELPHI experiment
at CERN and the BaBar experiment at SLAC. The framework provides a dedicated
language to describe entities in a project and their states, the State Manager Lan-
guage (SML). Tools and libraries, written in C++, interpret this language and run
logic engines for each entity described in the SML file. The connections to the real
representations of the entities are done via so called proxies. These proxies inform the
logic engines about their current states and accept new transition commands. Each
system in an SMI setup can be divided into subsystems. This subcategorisation is
called partitioning in SMI and allows to have several instances of a system for differ-
ent purposes. For data exchange between proxies and logic engines the SMI package

3Dr. Franco Carena (CERN), Dr. Sylvain Chapeland (CERN) and Dr. Jean-Claude Marin (CERN)
have developed the corresponding modules on the ECS side.

52

4.3 ECS The HLT interfaces

uses DIM as communication framework. The transition commands and state changes
are communicated as DIM Command and DIM Services. Therefore a DIM_DNS is
required in the setup as well4 [64] [65] [66].

In ALICE the HLT is represented by one logic engine on the ECS side. This logic
engine can be partitioned into several independent HLT entities, if some ALICE de-
tectors are running independently of the global run in the HLT. Every set of detectors
performing analysis inside the HLT can be a composite of a partition. In this case the
different partitioned logic engines of the HLT represent the part of the HLT which is
connected to the corresponding detectors. For each partition a partitioned HLT-proxy
has to be started on the HLT side. It is connected to the RunManager controlling
the analysis chain of the corresponding detector(s). They communicate as well with
their corresponding logic engine(s) on the ECS side. If all detectors are steered by the
global run control, the whole HLT acts as a unity.

The deployment of the different modules of the HLT - ECS interface is shown in
figure 4.11. On the ECS side there exist the logic engine and the graphical user front-
end to steer the whole setup, in addition with the DIM_DNS, which is responsible for
the underlying DIM communication. The HLT hosts the corresponding HLT-proxy,
the representation of the particular partition of the HLT to the ECS world and the
set of RunManager and TaskManagers for the internal control.

The HLT-proxy is written in C++ and acts as a kind of adapter (Adapter Design
pattern [67]) between the HLT logic engine on the ECS side (based on SMI++ as
control mechanism) and the TaskManager framework for the HLT internal steering
(see section 4.3.2). The TaskManager framework is a proprietary development of the
HLT collaboration.

For state transitions ECS issues transition commands. The HLT-proxy receives
them via DIM channels through the SMI++ framework. After mapping these com-
mands to the syntax of the TaskManager system, the HLT-proxy relays them to the
RunManager. For the contact with the RunManager the HLT-proxy uses the Inter-
faceLibrary of the HLT framework and its internal communication mechanism [42].
The same applies for signalling the current RunManager states in the opposite direc-
tion. The proxy polls for this state in regular time intervals. After mapping of the
state name to the set used by ECS, it compares the newly received state name with
that of the current state. If a change has happened, a check for a valid transition is
performed and the ECS is informed. The polling of the states also acts as an intrinsic
alive checks of the RunManager.

Well defined transition commands are accepted in each stable state5. The HLT
enters a transition state, which implicitly changes to the next stable state, when all
corresponding tasks for the state transition are done. The different states and their
transition commands are described in more detail in section 4.3.2.

The UML State Machine Diagram in figure 4.12 shows the interface defined between
HLT and ECS. In this diagram the stable states are shown in the middle column. The

4Both, SMI++ and DIM, have been developed by Dr.Clara Gaspar (CERN).
5Stable states do not transit automatically to another state without a command, except of a

transition to the ERROR state.

53

4.3 ECS The HLT interfaces

Figure 4.11: UML Deployment Diagram of the HLT-ECS interface. In ALICE the ECS
and the DAQ are located on the same network. For simplification DIM_DNS, logic engine
and ECS GUI are located on one node. As long as they are together with the HLT-proxy
in the same DIM subnet, they can be distributed over several nodes. The logic engine
hosts two modules for HLT-proxies: "::HLT" and "::HLT_BCK". For redundancy a
backup system ("::HLT_BCK") is installed on a different node. It can be set to active
by ECS, in case the primary interface node portal-ecs0 is not responding. Then portal-ecs1
takes over. The RunManager can run on a different node in the HLT cluster than the
ECS-portal. Due to communication via the InterfaceLibrary of the HLT framework this is
transparent to the HLT-proxy.

54

4.3 ECS The HLT interfaces

right column displays all intermediate states for the path from OFF to RUNNING
with the implicit transition to the next stable state after all tasks for the corresponding
transition state have been finished; the left side displays the opposite way.

As described earlier in this section, the HLT-proxy adapts the ECS control to the
HLT internal control system, i.e. the TaskManager framework. Therefore the states
and commands defined in this interface have to be mapped to the names used by the
HLT framework. Figure 4.13 shows the mapping of states and transition commands.
The same structure is applied like for figure 4.12.

During the complete configuration process several parameters are required to pre-
pare the HLT for the upcoming run. These parameters can be divided into CONFIG-
URE parameters and ENGAGE parameters.

The CONFIGURE parameters are a collection of general settings that can be valid
for a series of runs in a row. For all CONFIGURE parameters a default value can
be set, in case the ECS signals "DEFAULT" for them. These configuration defaults
as well as the connection details6 for the TaskManager InterfaceLibrary are fetched
from a dedicated property file per partition. While connection details are only read
on start up of the HLT-proxy, the default values can be changed during run time and
are evaluated each time a CONFIGURE command is received.

CONFIGURE parameters:

• DETECTOR_LIST: List of detectors participating in this partition.

• BEAM_TYPE: The experiment type (p + p (proton-proton), p + A (proton-
heavy ion) or A + A (heavy ion)).

• DATA_FORMAT_VERSION: The expected data format version that the
HLT writes out to the DAQ.

• HLT_TRIGGER_CODE: The HLT Trigger classes, which represent the de-
sired HLT configuration for the upcoming run.

• HLT_IN_DDL_LIST: List of active DDL cables entering the HLT counting
room and gathered in patch panels. From the patch panel the links are connected
to H-RORCs in the FEPs. From the cables mentioned in the list the HLT can
expect data from DAQ in the upcoming run. The items of the list encode the
cable names and their corresponding detector parts as key-value-pairs7 [68] [69].

• HLT_OUT_DDL_LIST: List of DDLs, through which the HLT can send its
output data back to the DAQ8 [68] [69].

6The connection details describe the host and port, where the RunManager/ Master-TaskManager
can be contacted.

7For separation of each pair commas (",") are used. The cable name (key) and corresponding
detector part (value) are separated by colons (":"). This leads to the following structure:
<CableName>:<DetectorPart>,<CableName>:<DetectorPart>,...

8The items of the list are separated by commas (",").

55

4.3 ECS The HLT interfaces

Figure 4.12: UML State Machine Diagram of the HLT-proxy. The stable states are lo-
cated in the middle column, the right column shows the intermediate states from OFF to
RUNNING, the left column the reverse direction.

56

4.3 ECS The HLT interfaces

Figure 4.13: UML State Machine Diagram showing the mapped HLT-proxy states to the
state names used by the HLT TaskManager framework.

57

4.3 ECS The HLT interfaces

• RUN_TYPE: The run type of the upcoming run (physics, pedestal, etc.). For
each detector several run types are defined, which can be mainly divided into
production runs and calibration runs9.

In order to speed up the configuration process, the more general settings (CON-
FIGURE parameters) are decoupled from the parameters which change from run to
run. The latter ones are collected as ENGAGE parameters and are sent together with
the ENGAGE command. This allows ECS to leave the HLT in the state CONFIG-
URED after a run (see figure 4.12), in case that the same configuration settings apply
also for the next run. Measurements for the configuration time after a CONFIGURE
command have been over one minute for the TPC alone. To minimise this time con-
suming step and to prevent delays in the start of ALICE runs, it is only performed
once for a series of runs with the same general settings.

The ENGAGE parameters HLT_MODE and RUN_NUMBER take no de-
fault values, the HLT mode and the run number must always be defined by ECS.
The CTP_TRIGGER_CLASS can have a default value, which is stored in the
Property file of the HLT-proxy [7] [8] [40] [45].

ENGAGE parameters:

• HLT_MODE: The mode in which the HLT runs:

– A: In this mode ALICE runs without the HLT. This leaves the control on
the HLT side for calibration, cluster maintenance, testing, etc. .

– B: The HLT participates in the upcoming run and performs its tasks of
online monitoring and final trigger decisions but decisions are discarded by
the DAQ. Nevertheless, the HLT output is stored for later analysis and
comparison with offline results.

– C: This is the main mode for the HLT. The HLT runs fully operational and
its trigger decisions are taken into account by the DAQ.

– D: The HLT receives data from the DAQ, but does not write anything back
to the DAQ via the HLT-out. There is no flow control at the DDL level.
This mode is also known as B\test1.

– E: The HLT receives data from the DAQ, but does not write anything back
to the DAQ via the HLT-out. The flow control is switched on at the DDL
level. This mode is also known as B\test2.

• RUN_NUMBER: The run number for the upcoming run10.

• CTP_TRIGGER_CLASS: The trigger classes used in the Central Trigger
Processor. This can be a list of IDs.

9The list of different run types defined in ALICE can be found here:
http://alice-ecs.web.cern.ch/alice-ecs/runtypes_3.16.html

10A run is defined as the continuously taking of data for some time with the same experiment
conditions. Each run is identified by a run number, which is increased by one from run to run.

58

4.3 ECS The HLT interfaces

4.3.2 HLT RunManager

Each set of detectors, which is compiled as an HLT partition, owns a RunManager that
is connected to the corresponding HLT-proxy. The RunManager is located on top of
the HLT internal control structure. It steers a set of Master-TaskManagers, which are
in charge of all Servant- and Slave-TaskManagers running on the (processing) nodes.

The Slave-TaskManagers are at the bottom of this hierarchical control structure
and are responsible for the tasks on the corresponding nodes. They start the actual
analysis and data exchange tasks on the cluster nodes and keep track of their execution.
The deployment of RunManager and TaskManagers can be seen in figure 4.11.

The setup of these tasks (initialisation and configuration) and their starting and
stopping are relayed as state transition commands from the HLT-proxy, via RunMan-
ager and Master-TaskManagers to the Slave-TaskManagers. All problems and errors
are handed back in the chain; if a problem cannot be solved intrinsically, the general
HLT state is switched to ERROR and the ECS gets a notification.

The different states of the HLT-proxy correspond to states of the RunManager
and TaskManagers. In the following the meaning of these states are described in more
detail. The bold state names refer to the name in the HLT-proxy, their correspond-
ing names on the RunManager / TaskManagers side are indicated in italic. In OFF
("off" / slaves_dead) either all components are off or only the RunManager is run-
ning. The command INITIALIZE switches the HLT to the state INITIALIZING
(starting_slaves / killing_processes). This leads to the start-up of the RunManager,
if it is not already running. The same applies for the RESET command, in case the
HLT is in ERROR state (error), remaining processes are killed and the cluster is
cleaned up for the next start. INITIALIZED (processes_dead) is the next stable
state the HLT reaches. Here the RunManager is ready to prepare the configurations
for the Master-TaskManagers. The nodes are clean for the upcoming run.

With the parameters from the CONFIGURE command the HLT changes to the
CONFIGURING state (starting) and the RunManager receives the basic settings
for the next upcoming run(s)11. Now the Master-TaskManagers are started and the
compiled configurations are passed to them. Furthermore, all Servant- and Slave-
TaskManagers on the included processing and interface nodes are started as well.
This is the most time consuming step in bringing up the HLT. In the following stable
state, CONFIGURED (ready_local), the complete TaskManager hierarchy is up
and connected but no analysis components are started yet.

When the parameters of the ENGAGE command are received during the EN-
GAGING state (connecting), the Slave-TaskManagers start the (analysis) compo-
nents with the relevant parameters, like run type and run number. Afterwards, the
components try to connect to the other components according to the configuration of
the analysis chain. The connection is performed first locally and then on the network.
Once this is finished, HLT reaches the READY state (ready / starting_run). Now
every component is ready, configured and connected; only the data sources are not
active. After the START command is received, the HLT switches to STARTING

11It can be either a single run or a series of runs with the same basic configurations.

59

4.3 ECS The HLT interfaces

(starting_run) and the transition command is percolated through the TaskManager
hierarchy. Once all components signal that they are running, global HLT enters the
RUNNING state (running). The TaskManager states busy and paused are mapped
as well to the RUNNING state in the HLT-proxy; they mainly refer to different
internal states the TaskManagers can take during the data taking and analysis. At
the event data stream the start is signalled by inserting a special event, the Start-
of-Data (SoD) event. While in RUNNING state the HLT analyses events, chooses
Regions-of-Interest (RoI) within an event, writes HLT-ESDs, compresses event data
and provides trigger decisions. These results are transferred to the DAQ via dedicated
DDLs.

When the run is stopped, ECS sends the STOP signal and HLT enters the COM-
PLETING state (stopping_run). At the data stream an End-of-Data (EoD) event
is received. During COMPLETING the last events are percolated through the ana-
lysis chain to the data sinks and possible calibration results or other data for offline
analysis are collected in the Shuttle-Portal (see 4.4.1 for detailed description of this
interface). Afterwards, the HLT changes back to the READY state. This transition
signals ECS that the HLT has finished all tasks of the current run. The HLT can now
be started for the next run. In order to do so, the HLT has to be brought back to the
CONFIGURED state by a DISENGAGE command. Thereby the HLT undergoes
the intermediate state DISENGAGING (disconnecting). This includes killing of
all analysis components in the chain, the TaskManagers remain active. The transi-
tion back to CONFIGURED is necessary because the run specific settings, like the
run number, are only transmitted together with the ENGAGE command. To reset
the more general settings valid for a series of runs, the HLT has to be brought back
to INITIALIZED, undergoing the DECONFIGURING state (stopping). This
state change is achieved by a RESET command. This command stops and exits all
the TaskManagers. The configuration settings are cleaned up and archived together
with the log files. To bring the HLT back to the OFF state a SHUTDOWN com-
mand can be issued. The HLT intermediately goes to the DEINITIALIZING state
(slave_kill) before switching to OFF [42] [43].

In case that a fatal failure has occurred while being in any of these states, except
the OFF state, the HLT transits to ERROR state (error). From there it can be
brought back either to the OFF or to the INITIALIZED state [70].

For local testing and running of an analysis chain the HLT can be steered as
well by a local HLT logic engine and a corresponding ECS GUI. Alternatively it
can be controlled directly from the TaskManager GUI of the HLT framework. The
TaskManager GUI connects to the RunManager directly.

4.3.3 Redundant ECS portals

For the ECS portal a backup node is prepared in the HLT cluster, having a HLT-
proxy and corresponding RunManager in standby. The original setup is installed on
portal-ecs0, the backup system on portal-ecs1. While the real HLT-proxy is attached
to the SMI object "HLT", the backup system uses "HLT_BCK". Corresponding

60

4.3 ECS The HLT interfaces

objects are created for both in the logic engine for the HLT. The deployment of this
setup is visualised in diagram 4.11.

The backup system is flagged as being passive by default, the backup RunManager
is observing the states in the HLT cluster but is not interfering with its control. The
HLT-proxy accepts two additional commands to set the corresponding RunManager
in active or passive state. These commands are referred to the RunManager and the
current state of the HLT gets confirmed. For setting an ECS portal setup active
the command SET_ACTIVE has been introduced, SET_PASSIVE is used for
switching to passive mode12. Both commands are accepted in every state - stable
states and transition states -, but they do not lead to a state change.

In case the setup on portal-ecs0 crashes, ECS sends a SET_ACTIVE to the HLT-
proxy attached to "HLT_BCK" on portal-ecs1. The corresponding RunManager on
that node takes over the control of the HLT cluster seamlessly and executes all further
state transition commands. This can be done all the time without interfering with the
current run.

12Again the HLT-proxy has to translate these commands to the syntax understood by the Run-
Manager, where set_active and set_passive is used.

61

4.4 Offline The HLT interfaces

4.4 Offline

The HLT has two different interfaces to Offline13, which are used for data exchange.
Each one takes care of the different directions of transferring data.

In the interactions between the HLT and Offline the Shuttle-Portal is designed to
offer data from HLT to Offline using the Offline Shuttle mechanism. The main purpose
of this mechanism is to include new objects into the OCDB. But it is also possible to
store data to the Offline Reference Database or the Reference File catalogue [33] [71].
While information required for analysis calculations like calibration and condition
settings should be put to the OCDB, data sent to Offline for referencing and save
keeping, is stored in the reference DB and the reference file catalogue. The reference
DB and file catalogue act as additional storage place.

In the opposite direction a special application called Taxi requests entries of the
OCDB and stores them locally in the HLT for calibration purposes of the HLT analysis
components [33]. Both interfaces are described in more details in the following sections.

4.4.1 The Shuttle-Portal

The Shuttle-Portal consists of a MySQL Database, a File EXchange Server (FXS) and
a dedicated subscriber component of the HLT Data transport framework for filling
database and FXS. The database, called hlt_logbook, is keeping track of all entries
made in the FXS starting with the first ALICE run. The FXS stores the actual
objects destined for the Offline storage (OCDB or reference storage).

Figure 4.14: Sketch of the interface to the Offline Shuttle. New calibration data is col-
lected by the FXS-Subscriber and offered to the Shuttle using an FXS and a MySQL DB.
Synchronisation is achieved via ECS.

13The Offline side of this interface and the corresponding Offline components have been developed
by Dr.Chiara Zampolli, Dr.Alberto Colla, Jan Fiete Grosse-Oetringhaus and Dr. Latchezar Betev
from the ALICE Offline group (CERN).

62

4.4 Offline The HLT interfaces

The Shuttle-Portal is placed on a dedicated portal node (portal-shuttle0), which
has an additional network interface to the CERN General Purpose Network (GPN).
This allows the Offline Shuttle to contact DB and FXS directly without any tunnelling
through the HLT cluster gateways. A direct access for the Offline Shuttle to the worker
nodes inside the HLT cluster14 is not possible. For redundancy reasons a backup setup
with the below described components is installed on portal-shuttle1.

FXS-Subscriber

The FXS-Subscriber is a special Subscriber component of the HLT PubSub system.
It collects all data objects that shall be fetched by the Offline Shuttle after a run. The
component fills them in the above mentioned database and FXS. Although its main
workload is at the end of a run, when all analysis components ship their produced
calibration data to the Shuttle-Portal, it is also able to receive data during a run.
Objects shipped to the Shuttle-Portal during the run are mostly intermediate results,
which are sent for temporary storage and backup. Should the chain break or certain
analysis components crash before the run ends, these intermediate results are at least
saved and can be fetched by the Offline Shuttle.

An analysis component that wants to ship data to the OCDB (or the reference
storages in Offline) has to provide additional meta data15 for naming and classification
of the object. The meta data and the actual object for the Offline Shuttle are sent as
payload of the data block by a publisher component through the PubSub framework.
The payload has its own protocol structure with a header and the appended actual
object for the Offline Shuttle. The header contains five elements and has a complete
size of 204 Bytes:

• HeaderVersion Nr: A 32 bit unsigned integer representing the header version
(currently only version number 1 is in usage).

• Run Number: A 32 bit unsigned integer containing the run number.

• Detector: A character array of 4 Bytes containing the abbreviation of the
corresponding detector.

• FileID: A character array of 128 Bytes, where the component can store the
name of the object.

• DDL Number: A character array of 64 Bytes; this has to be seen as a bit field,
where the participating DDLs are encoded in.

After the header the object for the Offline Shuttle is appended as BLOB. Its size
is calculated from the overall size of the payload of the PubSub data block minus the

14The HLT cluster nodes are located in a private network. Only dedicated portal nodes have
network interfaces to specified other nets, like the DCS net, the DAQ net or the GPN.

15The meta data provides additional information about the actual object, which is transferred.

63

4.4 Offline The HLT interfaces

Figure 4.15: Protocol structure of the Shuttle-Portal data. The payload received by the
FXS-Subscriber is divided into a header and a body part, where the header contains the
meta data of the transferred object while the object itself is located in the body. The
block(s) of BlockData can be repeated several times (blockCount) in the transferred
protocol.

Header size of 204 Bytes. An overview displaying this protocol structure is given in
figure 4.15.

The information contained in the protocol header, except for the "HeaderVersion
Nr", is used for the describing meta data which is included in the hlt_logbook. The
object taken from the BLOB is inserted into the FXS. Each block of data is processed
separately and then referred to the corresponding modules, the MySQL DB client and
the FXS client.

The FXS-Subscriber consists basically of four parts. The subscriber part is used for
receiving data sent through the PubSub chain. It inherits its main functionality from
the HLT framework (see UML Class Diagram in figure 4.16). A database connector
covers the tasks related to the MySQL DB connection. The FXS connector part is
responsible for contacting the FXS and storing the objects. A logger module handles
log messages issued from all parts.

On start-up the subscriber part initialises the connectors for the database and
the FXS. This includes setting of the FXS base path and the contact details for the

64

4.4 Offline The HLT interfaces

Figure 4.16: UML Class Diagram of the FXS-Subscriber. The Shuttle-Portal component
inherits its functionality from the HLT data transport framework package (see page 25); the
FXS-Subscriber receives data as child class from AliHLTProcessingSubscriber. The
actual storing of received calibration data is performed by dedicated connector classes (DB
and FXS - due to historical reasons "FES" instead for "FXS" is used in the name for
the corresponding connector). For testing purposes the Shuttle-Portal module has its own
logging class.

65

4.4 Offline The HLT interfaces

database16. Then it is ready to receive automatically data from the analysis chain
through a callback function of the framework. The structure of the received data is as
described above (see also figure 4.15).

All objects are filtered for the correct data type, before the connectors take over
the data. The field "fDataType" in the transferred protocol structure contains a 64 bit
unsigned integer encoding the data type. Data originated for the Shuttle-Portal have
to match the bit field pattern given by the characters of ’FXS_CAL ’ 17 (whitespace at
the end). After filtering the payload, data is enveloped in an AliHLTCalibrationObject
and handed to the database- and FXS-connector parts.

The two connectors for the Shuttle-Portal are collected in a dedicated library:
libShuttlePortal.so. The database connector uses a third party library, mysql++, to
contact the MySQL DB. Mysql++ clients wrap the MySQL native client calls, which
are written in C-style, into C++ like structures [72].

In the procedure of storing an object to the Shuttle-Portal, the database connector
checks first whether the hlt_logbook already contains an entry for this object. This
is done by testing for the unique key of the table, which is represented by the field
filePath . If it does not exist in the table, a new entry is made; else its version number
is increased (more about the table is described in the section "HLT logbook").

Then the FXS connector stores the actual object in the file catalogue of the FXS,
extracts the file size and calculates its checksum. Both values are afterwards inserted
into the corresponding fields of the hlt_logbook by the database connector. The se-
quence of storing calibration objects on the Shuttle-Portal is visualised in figure 4.17.

In addition, a logger module takes care of inserting log messages from the different
stages of the storing procedure. This also includes messages from the ShuttlePortal
library. All messages are inserted into the logging system of the HLT framework, which
is called MLUCLog18. Therefore the log messages from the FXS-subscriber, like for
all components of the HLT, can be observed centrally by the operator.

HLT logbook

The HLT logbook consists of a database, served by a MySQL Community server,
currently running on version 5.0.21. A MySQL Community server has been chosen
because it is a highly reliable, well maintained open source database, which has a
high reputation in scientific research [73]. The database itself is called hlt_logbook.
It contains a single table: calib_data. The table has columns for the run number,
the detector name, the file name to which the entry refers, the encoded participating
DDL numbers, the relative file path in the FXS, the timestamp for the creation of
this entry, the timestamp when the corresponding object has been processed by the

16These contact details for the database comprise the host name of the MySQL server, database
name and user name, as well as the corresponding password of the user. For the FXS the set contact
detail is the path to the base directory of the file catalogue.

17The bit field is used to identify the transferred data type. The representation as ’FXS_CAL ’ has
been chosen to use it in a human readable manner.

18MLUC stands for M ore or Less U seful C lasses, which is a proprietary utility package of the HLT
framework. The MLUCLog class feeds messages in the infoLogger system used for the HLT operator.

66

4.4 Offline The HLT interfaces

Figure 4.17: UML Sequence Diagram of the FXS-Subscriber. The blue highlighted loop
shows the main task of the FXS-Subscriber: received objects and their meta data are
checked and stored to hlt_logbook and FXS. Due to historical reasons the FXS connector
module is called AliHLTFESConnector. First, Offline had used "FES" as abbreviation.

67

4.4 Offline The HLT interfaces

Column name Description Provider Type
run Run number of the file HLT (FW) INT
detector Detector name HLT (DA) CHAR(3)
fileId File name HLT (DA) VARCHAR(128)
DDLnumbers Participating DDL numbers HLT (FW) CHAR(64)
filePath Full path to the file HLT (FW) VARCHAR(256)
time_created Timestamp of file creation HLT (FW) DOUBLE
time_processed Timestamp of file processing OfflineShuttle DOUBLE
time_deleted Timestamp of file deletion HLT DOUBLE
size Size of file in Bytes HLT (FW) INT
fileChecksum MD5 checksum of the file HLT (FW) CHAR(64)
versionNumber Latest file version number HLT (FW) INT

Table 4.1: This table shows the entities of the meta data for ShuttlePortal entries.

Offline Shuttle, the timestamp when the corresponding object has been deleted from
the FXS, the file size of the object in the FXS, the MD5 checksum19 (Message-Digest
algorithm 5) of the file and its version number. Table 4.1 displays the structure of the
table and the data types of the columns.

The HLT logbook stores the meta data for every object included in the FXS from
all runs. The Offline Shuttle uses the meta data to identify and classify the entries in
the FXS. They are requested after each run. The same mechanism is also used by the
Shuttle when requesting the DAQ and the DCS.

The run number is given by the ECS at the start of a run. The HLT framework
takes this run number and refers it to the FXS-Subscriber for each entry in the HLT
logbook, where it is stored as an integer number.

The detector name is given by the Detector Algorithm (DA), which has produced
the object. It is abbreviated by the official three-letter acronym of ALICE detectors
used by the online and offline systems [75].

The file name has to be given as well by the DAs. It is stored under fileId,
which consists of a variable character array with a maximum size of 128 Bytes.
In principle the name should describe its content. It must be unique for a given
"run/detector/DDLnumber".

The participating DDL numbers are retrieved from the framework. The multiple
numbers are encoded in a 64 Byte large bit field. The TPC as largest detector in
ALICE is taken here for an example of the encoding. A number of 216 DDLs connects
the TPC with the HLT, therefore a bit field with 216 positions would be required. To
encode this in hex numbers, each number can encode 4 bit → 216 / 4 = 54. A bit
field of 54 Bytes is needed, the usage of a character array of 64 allows for some buffer.
Hex numbers have been chosen in the encoding to make the bit field representing the
DDLnumbers human readable. They are saved as character representation in the
corresponding fixed size char array [69].

19The MD5 checksum allows for an integrity check by using a 128-bit hash function [74].

68

4.4 Offline The HLT interfaces

The full path of the file, relative to the FXS base folder, is stored in a variable
character array of 256 Bytes. It is stored under filePath. The scheme of the file
path looks like the following: "run/detector/DDLnumbers/fileId". This represents
the unique key of the calib_data table in the hlt_logbook.

There are three different timestamps stored in the HLT logbook. The first one,
time_created , gives the time, when the file has been inserted in the FXS. It is set by
the FXS-Subscriber component. The second one, time_processed , is written by the
Offline Shuttle, when it fetches and processes the file after a run. The last timestamp,
time_deleted , gives the time, when the file is deleted from the FXS by HLT. All
three timestamps are stored in a DOUBLE. A DOUBLE has been chosen, because it
is guaranteed to be 8 Bytes long. This allows for using the double precise timestamp
given by a timespec struct. The timespec struct has two members: a time_t20 is used
to store the seconds passed since Jan 1, 1970 00:00:00 UTC and a long integer for
storing nanoseconds. In the current implementation a single precision timestamp is
inserted. This means only the part for the seconds in the timespec struct is taken. If
a file has not been processed or deleted yet, the corresponding entries in the table are
set to NULL.

The file size of the FXS entry is stored as an integer number in size by the
connector.

A MD5 checksum of the file is inserted by the framework, too. A character array
of 64 Bytes is used for it [74]. The field for the checksum in the hlt_logbook is called
fileChecksum. Both, file size and MD5 checksum, can be used by the Offline Shuttle
for verification of correct file transportation when fetching FXS entries.

The last column in the table stores the latest version number of the file in the
FXS as an integer. The version number is used to keep track of different versions of
the same type of files in the FXS. It is for HLT internal usage only. If a component
sends an object with an already existing unique ID (see filePath), then the database
connector in the FXS-Subscriber increases the corresponding version number entry in
the hlt_logbook and the subscriber uses this incremented number for uniquely storing
the file in the FXS. Therefore the Offline Shuttle always gets only the last version of
an entry, although all versions are stored for bookkeeping. This is described in more
detail in the following section. The entries of one type and one run in the FXS should
be cumulative, so only the last version is needed by Offline. This mechanism has been
introduced to be able to ship at least the latest intermediate version of an FXS entry
to Offline, in case a component should crash during the run.

File Exchange Server (FXS)

The FXS is the last part of the Shuttle-Portal interface on the HLT side. It mainly
consists of a file catalogue that is owned by a dedicated HLT user. It is used as a
temporary storage for the calibration objects produced inside the HLT cluster.

Each time the FXS-Subscriber receives an object and its corresponding meta
data, it checks first if there is already an entry existing with the same unique key

20The default implementation is a 32 bit integer.

69

4.4 Offline The HLT interfaces

("run/detector/DDLnumber/fileId"). If not, the version number is set to one and the
object is stored in the FXS. The run number 21, detector 22 and DDLnumber 23 are used
as names for the sub directories, where the object is stored. An underscore and the
version number are appended to the fileId and then the latter one is used as file name
for saving the object in the FXS. The original fileId name is used for a symbolic link
pointing to the latest entry for this type. In the case that it is the first entry of this
type for a given run number, detector and DDLnumber, the file is named "fileId_1".

If the hlt_logbook already contains an entry with that unique key, the version
number of the corresponding entry is incremented and the object is stored with the
new version number appended, e.g. "fileId_2". The symbolic link pointing to previous
latest entry is deleted and a new link is created pointing to the actual latest version
of this object ("fileId_2"). This allows for bookkeeping of the different versions,
although the Offline Shuttle has only a well defined access to the latest version without
knowing about version numbers. The latter ones are not foreseen in the Offline Shuttle
mechanism.

After the Shuttle has fetched and processed the entries produced during a run, they
can be deleted from the file catalogue. This is indicated by the field time_processed
in the hlt_logbook, which is then not filled any longer with "NULL". When the HLT is
performing a clean-up of old entries, the field time_deleted should be set accordingly.

Offline Shuttle

The Offline Shuttle has been introduced by the ALICE Offline project. Its purpose
is to fetch calibration and reference data from the HLT, DAQ and DCS after each
run and fill them in the OCDB or the Offline Reference Storage24. Therefore the
Offline Shuttle receives a notification from the ECS, when all of the online systems
have finished their processing after a run.

First the Shuttle contacts the databases of the corresponding systems: on HLT
side this is the hlt_logbook ; on DAQ side it is the daq_logbook ; and on DCS side
two different databases are requested, the database with the meta data for the DCS
FXS and the DCS Archive DB, where the monitored DCS values are archived. DCS
values can be sensor measurements like temperatures. After requesting the meta data
of the FXS entries the new files are transferred to Offline non-interactively using an
ssh-key25. The ssh-key is stored on the HLT, DAQ and DCS side respectively. On the
Shuttle side preprocessors for each detector26 process the data from the databases and

21The number of the run when this object has been created.
22The detector name of the DA, which has created that object.
23The encoded number of the participating DDLs, which have been used for creating that object.

This is mainly used to distinguish between similar objects from one run.
24Entries in the Offline Reference Storage are put on the GRID as well. The generic path for these

entries is: <baseGridReferenceFolder>/<DET>/<runNumber>_<gridFileName> ; the
base path for the reference storage is: /alice/data/<year>/<LHCPeriod>/Reference [71].

25Ssh-keys have been chosen to automatise the requests and not need manual authentication for
the copy processes.

26There are 20 different preprocessors; one for each of the 18 detectors of ALICE, plus a preprocessor

70

4.4 Offline The HLT interfaces

the FXSs before they are included in the OCDB or the Offline Reference Storage27.
The purpose of the preprocessors is to prepare and combine the fetched data with
information from other systems or merge them with former calibration objects. Since
the Shuttle can fetch any format of data the preprocessors have to "rootify" the data,
if this has not already been done before. The Shuttle supervises the execution of the
different preprocessors. The Shuttle itself can be monitored using MonALISA [71].

"Rootification" of or "to rootify" an object describes the process of enveloping
data in ROOT-objects, which then can be stored as ROOT-files [76]. ROOT-objects
and ROOT-files are widely used in the analysis procedure of ALICE. The OCDB is
designed to store only objects enveloped in ROOT-files [33].

As an example the HLT preprocessor is presented here. At the current state the
HLT preprocessor has two different tasks: preparation of created Huffman tables and
temperature histograms.

Huffman tables for the encoding of data for various detectors are calculated during
calibration runs inside the HLT. After each calibration run these tables are stored in
the OCDB for later usage, e.g. encoding TPC data during physics runs. The Offline
Shuttle requests these tables for the HLT Preprocessor and hands them over. The
preprocessor puts the tables of one detector into the dedicated ROOT-collection and
stores them to the OCDB [77].

In addition, temperature histograms produced in the HLT are taken by the HLT
Preprocessor and archived in the Offline Reference File Catalogue. For the Reference
File Catalogue no rootification of the files is required [71].

4.4.2 The Taxi portal

In Offline all important calibration settings are stored in the OCDB. The OCDB is a
database that is located in the ALICE GRID28. It can be accessed using AliEn, the
GRID middleware for ALICE. For offline analysis the required settings in the OCDB
have to be fetched via AliEn requests. Depending on the GRID availability there can
be some delays in the request.

For online analysis, like it is performed inside the HLT, these requests would sig-
nificantly reduce the performance of the system. Even worse would be a temporarily
inaccessibility of the OCDB during a run. The HLT would be blocked from processing
events. Therefore the HLT holds a local cache of necessary OCDB entries inside its
cluster.

This local cache exists in two separate versions:

• T-HCDB (Taxi-HCDB, where HCDB stands for HLT Conditions DataBase):
After fetching new objects from the OCDB, they are stored here first. The T-

for the HLT and one for GRP (General Run Parameters).
27The base class for the preprocesssors with the functionality for accessing and storing data, as

well as some helper functions, are provided by the Shuttle framework in AliRoot.
28The logical path where the OCDB is stored in the GRID uses this generic scheme:

/alice/data/<year>/<LHCPeriod>/OCDB/ . Replicas of the OCDB exists on the various
GRID sites [71].

71

4.4 Offline The HLT interfaces

Figure 4.18: The HLT Taxi fetches OCDB entries and stores them locally in the T-HCDB.
A frozen version per run of these entries is offered to the DAs via the HCDB.

HCDB can be updated all the time without interfering with a current run (see
also "T-HCDB" on page 72).

• HCDB (HLT Conditions DataBase):
This version is requested by the online analysis components inside the HLT clus-
ter during a run. It is a fixed version of the T-HCDB, and it is not updated with
new OCDB entries during the run29. In addition the HCDB includes DCS values
retrieved during a run and configuration entries made with the HCDBManager
script (see "HCDB" on page 87).

T-HCDB

The T-HCDB has been introduced to store fetched OCDB calibration and alignment
objects. Its structure is similar to the one of the OCDB. It contains a defined subset
of the OCDB entries. In the largest case this subset can cover all OCDB entries,
depending on the lists prepared by detector experts for the Taxi. No other objects
from other systems than Offline are included in the T-HCDB30. This guarantees that
the T-HCDB entries have only the official names and version numbers. It is required
for later comparison of online and offline analysis. Like the OCDB, it mainly consists
of a file catalogue organised in directories with a three layers of hierarchy 31. Figure
4.19 illustrates the structure of the file catalogue representing the T-HCDB / HCDB
/ OCDB.

Objects stored in the OCDB are described by a unique name, which consists of
three parts representing these three layers. Each of these parts is represented by a

29The version is fixed per run to have a coherent environment during the run.
30An exception here are certain GRP entries, which are run-specifically given by the ECS (see

section 4.5.1).
31On the HLT cluster the environmental variable ALIHLT_T_HCDBDIR defines the base

directory of the T-HCDB. Normally it should be set to /opt/T-HCDB .

72

4.4 Offline The HLT interfaces

Figure 4.19: This figure illustrates the file catalogue structure of the T-HCDB / HCDB
/ OCDB. On top is the base directory of the file catalogue located (blue). The
first layer is given by the directories representing the various detectors (yellow). Each
of them contains directories accumulating the general purposes of the entries - sec-
ond layer (orange). The third layer is given by directories with the actual name of
the entries (red). The actual files (green), representing the entries in the different
available versions, are stored in these directories. A general entry path is given by:
"DetectorAcronym/ObjectPurpose/ObjectName" - each part is represented by a
directory. The mentioned directories in this figure display only a subset of the real T-
HCDB / HCDB / OCDB to visualise their structure.

73

4.4 Offline The HLT interfaces

directory.
The first part defines the corresponding detector. The official three-letter acronyms

of ALICE detectors are used for representing the detector name [75]. Global objects are
stored under "GRP". The HLT acts as a detector in this perspective and has its own
detector directory. The second part of the name describes roughly the intention of the
object such as calibration, alignment or geometry. The last part gives the actual name
of the object, like Pedestals, ExB or ChamberVdrift. This leads to the following general
structure for OCDB objects: "DetectorAcronym/ObjectPurpose/ObjectName".

The actual objects are stored in ROOT-files inside the directories on the lowest
level of this hierarchy (directories consisting of the object name). Different versions
of an object are stored in separated files in the same directory (see Run validity and
versioning of calibration objects on page 74) [33].

On the GRID side a database keeps track of all the entries, using the identification
of the objects (pathname, version validity) and their corresponding meta data. Both
schemes are shown by table 4.2 and table 4.3. The actual objects are entries in an
AliEn file catalogue. All Entries in this file catalogue are read-only, new entries with
already existing names result in an increment of the corresponding version number.
The version numbers are encoded in the actual file name, thereby avoiding clashes in
the storage.

Specifier Data type Description
first_run INT First valid run for this CDB entry
last_run INT Last valid run for this CDB entry
version INT Version number of this CDB entry
path_level_0 VARCHAR(255) Corresponds to the detector acronym
path_level_1 VARCHAR(255) Corresponds to object purpose
path_level_2 VARCHAR(255) Corresponds to object name

Table 4.2: CDB table scheme, that is used for keeping track of all files in the AliEn file
catalogue corresponding to the OCDB entries [33].

Specifier Data type Description
object_classname VARCHAR(255) Class name of the corresponding object
responsible VARCHAR(255) Name of the responsible person/creator
beam_period INT Beam period of creation of the object
aliroot_version VARCHAR(255) Used AliRoot version for the creation
comment VARCHAR(255) Comment given by the creator

Table 4.3: CDB table scheme that is used for storing the meta data of OCDB entries [33].

Run validity and versioning of calibration objects

All entries in the OCDB (and so in the T-HCDB / HCDB as well) are run dependent.
Therefore each object has a run validity and a set of version numbers. Both are

74

4.4 Offline The HLT interfaces

encoded in the actual file name using a special versioning scheme.
The general structure on a file name in this storage looks like this:

RunX_Y_vA_sB.root

The run validity is encoded in X and Y, with X defining the first run this object
is valid for and Y defining the last one. An infinite validity is indicated by Y set to
99999999932.

Figure 4.20: The file name scheme of entries in the CDB (OCDB, T-HCDB, HCDB,
local dump) encodes run validity, version number and subversion number. The subversion
number is only used when the file is stored outside the OCDB (GRID).

The versioning scheme for CDB entries uses a set of two different numbers: a
version number and a subversion number. The version number is given by ’vA’, the
subversion number by ’sB ’. While objects in the OCDB (GRID) are stored only with
their version number, the subversion number is only appended when objects are stored
locally or, as in the HLT case, in the T-HCDB (respectively HCDB).

Normally an entry is first created locally getting tagged with version number and
subversion number 0 together with its run validity. Contingently it gets updated
locally before it it is transmitted to the OCDB. These updates result in an increment
of the subversion number. When the object is transferred to the OCDB the first
time, it gets registered in the corresponding database and tagged with version number
1, while removing all former subversion numbers. Further updates of this object in
the OCDB result in an increase of the version number, ignoring and removing any
subversion numbers. This means the version number is increased only each time an
updated version is transmitted to the OCDB. If an object is fetched from the OCDB
and stored locally, it is tagged again with a subversion number, reset to 0. Every local
update on this object afterwards leads to an incrementation of the subversion number
only. Figure 4.21 visualises this versioning scheme. The attempt to store an object
with a version number that has already been cached and updated locally (same version
number but subversion number higher than 0) will return an error.

32In the AliCDB access classes the value defining infinity can be retrieved by the static member
function AliCDBRunRange::Infinity().

75

4.4 Offline The HLT interfaces

Inclusion of an object with already existing name and an overlap in their run valid-
ity automatically results in an increase of their version number, respectively subversion
number in case of a local update.

Figure 4.21: Versioning scheme of CDB entries: an update locally of an existing entry
increases the subversion number, updates in the OCDB (GRID) increments the version
number [33].

The Taxi

In the HLT a dedicated interface application called Taxi is responsible for regular
updates of the local cache with new OCDB entries. The Taxi uses the T-HCDB for
this cache. It runs independently and asynchronously to any run. It has regular time
intervals for opening a connection to the OCDB and checking for new or updated
entries. For performance reasons the requests are decoupled from the run start-up
configuration of the HLT. This means the HLT does not have to wait for a Taxi
request to finish in order to go to RUNNING mode.

Each detector in the HLT has its own list(s), where it can specify required OCDB
objects. These lists are stored in the T-HCDB and read by the Taxi before each
request interval. This enables HLT to keep track of the fetched object names. The
detector experts can administrate their lists and add or remove items depending on

76

4.4 Offline The HLT interfaces

their needs. For the Taxi these entries are transparent and only the names are referred
to the OCDB during the request.

The Taxi has two different ways to request objects from the OCDB. The more
efficient procedure in terms of time spent for queries, checks for local availability before
the actual retrieval and storage. It uses single requests for the entries in the OCDB. In
this method the Taxi requests the OCDB first for the latest available version number
for a calibration object in combination with a given run number. Then it checks, if
the corresponding object has not already been cached in the T-HCDB. If not, the
object is fetched from the OCDB and stored to the T-HCDB. This procedure avoids
unnecessary network traffic, since it only fetches objects with latest version numbers,
which are not already cached locally.

The more flexible method allows for the usage of the wildcard "*" in the entry
name of the request. The asterisk can be included in the name of the list entries
to acquire several objects at once. Therefore either the part of the ObjectName
has to be replaced by the asterisk or the ObjectPurpose with the ObjectName
part left blank. If the asterisk is used for the ObjectName , then all objects inside
the subdirectory of the given DetectorAcronym/ObjectPurpose are fetched. If it
replaces the ObjectPurpose, all objects of the corresponding detector are requested.
In both cases the Taxi receives a collection containing all desired objects. Before
inserting them to the T-HCDB, it checks the version number of each object and stores
it only, if it has not already been cached. Due to the fact that the check can only be
performed after retrieving all objects connected to this list entry with the wildcard,
the second method is more time consuming. In most requests to the OCDB the Taxi
will step on to the next request after checking the version numbers, due to already
local availability of the latest object.

Both procedures, single requests and the usage of wildcards in the list entries, can
be mixed in one Taxi run. This means that the lists with the object names to be
fetched can contain the exact name for an object combined with instructions to get
all objects from a given OCDB subdirectory. The activities performed by the Taxi are
presented in the UML diagram in figure 4.22.

As run number the Taxi uses the last given run number from the ECS and incre-
ments this number by one, in order to request objects for the next upcoming run.

The Taxi itself consists of a set of bash scripts, C++ libraries and an AliRoot
macro. The scripts initialise the environment for accessing the OCDB (see section
"The Taxi GRID access – AliEn") and prepare the lists of calibration objects to be
fetched. After these preparations a macro in AliRoot is started to execute the actual
tasks of the OCDB requests. For the access to the OCDB and the storage of the
calibration objects in the T-HDCB the Taxi uses the AliCDB access classes of the
AliRoot package. Each time the Taxi contacts the OCDB, the AliRoot environment
is started freshly. Therefore it makes no sense for the Taxi to use the caching ability
that is built-in in the AliCDB access framework.

Since the T-HCDB is hosted by the HLT file server and distributed to the dedicated
nodes on the HLT cluster via AFS, the Taxi can run on any node that has an ethernet
interface to the CERN GPN as well. For redundancy reasons two nodes are equipped

77

4.4 Offline The HLT interfaces

Figure 4.22: UML Activity Diagram of the Taxi: The diagram visualises the activities
performed by the Taxi in order to request a CDB FC (OCDB or local).

78

4.4 Offline The HLT interfaces

with this hardware setup: portal-taxi0 and portal-taxi1. Should one of these nodes
fail, the Taxi can be started on the other one. The log output of all components used
by the Taxi are streamed together into a dedicated log file on the corresponding portal
node.

Logging on the Taxi portal

The log output of the Taxi is stored locally to file on the Taxi-portal node33. SysMES,
the cluster monitoring tool used in the HLT, monitors the files. Each time an error is
signalled, the corresponding message is presented in the user front-end of the cluster
management system, so that the operator can perform appropriate actions.

The Taxi GRID access – AliEn

To access data from the GRID a user has to authenticate himself / herself with a
GRID certificate. To gain access to the OCDB this certificate has to be registered in
AliEn and the ALICE VO.

Before accessing the OCDB the Taxi uses the certificate to generate a grid proxy
and to acquire an AliEn token. Both are used for the communication with the ALICE
GRID. During this process the certificate is verified by a cross check to AliEn. Nor-
mally proxy and token are valid for 24 hours, if not destroyed earlier. Their purpose is
to ease requests to the GRID, so that the user does not have to authenticate himself /
herself each time when accessing the GRID during this period. But in order to perform
a proper clean-up after each round of OCDB requests and for safety reasons the Taxi
destroys proxy and token after each Taxi run. They are recreated before starting the
next request interval.

33The Taxi log file can be found under "/tmp/taxi.log" on portal-taxi0 (portal-taxi1) in the HLT
cluster.

79

4.5 DCS The HLT interfaces

4.5 DCS

As described in section 2.4.6 the DCS takes care of the control of the various detectors
and installed equipments in ALICE. Thereby DCS reads out a lot of different device
measurements like temperatures, voltages, magnetic field values, etc. . They are col-
lected by the PVSS and stored in the DCS Archive DB34. Both parts are interfaced
by the HLT:

• To retrieve DCS values, the HLT requests data from the DCS Archive DB us-
ing an application called Pendolino. The retrieved DCS values are parameters
required for the analysis performed inside the HLT.

• For feeding data into the DCS, the HLT has implemented the FedServer part
of the FED-API (cf. description of the FED-API in section 3.4). DCS PVSS
panels can subscribe to the values published by this server.

The two interfaces are described in the following sections.

4.5.1 The Pendolino portal

DCS related observables of the detectors and ALICE devices are monitored by corre-
sponding DCS PVSS panels. These values are stored in the DCS Archive DB, where
they can be fetched by other systems. All measured values are timestamped with the
time they have been recorded by the PVSS panels. To reduce the amount of data
stored in the DCS Archive DB, entries are only inserted when the according value
has changed more than a given dead band. All entries in the DCS Archive DB are
identified by their DP (DataPoint) name. In addition, they own an Alias name which
can be used in the retrieval. The shipping of data from the PVSS panels to the DCS
Archive DB is governed by the PVSS RDB (Relational DataBase) Manager. It can
take some time until the data are included in the DCS Archive DB35. A subset of
these stored values are requested by the HLT Pendolino to make them available to the
online analysis components [59] [78].

Since the detectors and devices are not only monitored during data taking, but
also in-between, it can happen that certain values have no entries for the time period
of a given run. To avoid missing parameters in the analysis when requesting data for
this run, DCS has implemented a script which updates all entries in the DCS Archive
DB with the current value and timestamp at the Start-of-Run (SoR) signal36. This
guarantees especially the HLT to be able to retrieve initial values when requesting the
DCS Archive DB online37. The Pendolino has to cover the time period of the SoR in

34The design and implementation of the DCS Archive DB has been done by Dr. Peter Chochula
(CERN), Svetozar Kapusta (CERN) and Vladimir Fekete (CERN) from ALICE DCS.

35Currently, transfer times of up to one minute are measured.
36The ECS sends this signal to the DCS after the HLT has been brought to CONFIGURED

state; see state machine diagram on page 56.
37"Online" in this perspective means that the analysis can be performed in real time during a run

with all required parameters. The requested values are supposed to vary very little under normal

80

4.5 DCS The HLT interfaces

Figure 4.23: Sketch of the HLT Pendolino interface. The Pendolino requests data from the
DCS Archive DB in regular time intervals. The fetched values are prepared by detector-
specific PredictionProcessors and then provided to the DAs inside the HLT via the HCDB.

its first requests. To provide sufficiently up-to-date values to the analysis components
inside the HLT the Pendolino repeats its requests in regular time intervals during a
given run. The timing is visualised in the UML Sequence Diagram of figure 4.24. The
different steps of the Pendolino are explained in more detail on the following pages.

Layout

The Pendolino is started by the RunManager before each run, when an ENGAGE
command is received from the ECS. Before the actual requests to the DCS Archive DB
are issued, this application takes care of the preparation of the HLT-internal conditions
database, the HCDB. First, the initial values for certain GRPs are set, which are given
by the ECS together with the CONFIGURE and ENGAGE commands38. These
values are stored as T-HCDB entries in the corresponding folder of this FC. In addition
the Pendolino informs the Taxi about the current run number39.

Then the current version of the T-HCDB is frozen, using the release features of
AFS with read-only and read-write partitions. This is done in order to have a fixed set
of T-HCDB entries, so the general analysis condition settings are not changed during
the run. Before the HCDB gets filled now with links to these entries of the frozen
T-HCDB version, it is cleaned-up from old entries of the previous run40. After the
HCDB is prepared, the according FC is released to all computing nodes in the cluster.

As soon as the HCDB is prepared and released, the analysis components and DAs

run conditions, therefore the time shift given by the shipping time from PVSS panels over the DCS
Archive DB to the HLT is insignificant.

38This includes the parameters of BEAM_TYPE, RUN_TYPE and RUN_NUMBER.
39The Taxi uses this run number in the contact to the OCDB for upcoming runs, therefore increasing

the given run number by one in the requests.
40To allow the HLT components having configuration objects stored permanently in the HCDB, a

dedicated folder ("HLTPermanent") has been introduced, which is not cleaned up at the start-up.
These objects do not come from the OCDB and are normally included via the HCDBManager script
(see section 5.2).

81

4.5 DCS The HLT interfaces

Figure 4.24: UML Sequence Diagram of the Pendolino: At the SoR signal run-initial values
are set to the DCS Archive DB. With the ENGAGE command sent to the HLT, the HCDB
is prepared for the upcoming run and the Pendolino(s) are started. Links to a frozen version
of the T-HCDB FC are set to the HCDB. During the run, DCS values are fetched in regular
time intervals, prepared by detector-specific PredictionProcessors and stored to the HCDB.
Analysis components are notified about updated data.

82

4.5 DCS The HLT interfaces

on the HLT computing nodes can be started and initialised. The Pendolino starter
script informs the RunManager about that event via a dedicated signal41; afterwards
the TMs begin to instantiate their assigned analysis components.

Next, the interface application prepares the lists with Alias names of DCS values
to be fetched. The Pendolino owns a dedicated list folder, where detector experts can
create, edit and delete list files with DCS Alias names referring to the DCS Archive DB
entries. All files inside this folder ending with ".list" are used for the request, allowing
the detector experts having different files for different detectors and purposes. All
Alias names provided in these lists are used in the Pendolino requests. They have to
be prefixed by their corresponding detector name in the list files in order to assign the
retrieved values to their corresponding, detector-specific PredictionProcessors.

The above mentioned preparation tasks are performed by the Pendolino starter
script. When they are finished, the script starts the actual Pendolino(s). The prepa-
ration time has to be taken into account as well, when calculating the time interval
for the first request of the Pendolino(s) (see description above about the SoR update
of DCS Archive DB entries).

The Pendolino itself consists mainly of a steering bash script42, an AliRoot macro
and AliRoot libraries. These libraries are: the so called DCS-Client for the DCS
Archive DB contact, the PredictionProcessor framework (including the corresponding
detector-specific PredictionProcessors for preparation of the fetched values) and gen-
eral utilities like logging and benchmarking. The bash script serves for starting the
AliRoot macro repeatedly with the given frequency of the Pendolino and to calculate
the time interval for its requests43. The frequency of the Pendolino determines the
time interval after which the Pendolino is restarted.

For load balancing and due to the fact that not each DCS value changes in the
same manner and is not required with the same frequency, three different Pendolinos
have been introduced. Each one is requesting a different subset of DCS values and
each is running at a different frequency, meaning the time interval after which the
request is repeated.

In the current setup, the fast Pendolino runs every minute. It requests only a lim-
ited amount of entries in the DCS Archive DB. The normal Pendolino has a frequency
of five minutes and owns the highest load of entries to request. For the slow Pendolino
a request interval of every ten minutes has been chosen. It fetches DCS values which
changes very rarely. All three Pendolinos are started at the ENGAGE command
from the ECS. After preparation tasks they begin immediately with the requests to
the DCS Archive DB, in order to get the initial values stored at the SoR signal for
their subset of DCS Alias names.

The starter script and the different Pendolinos write their log output to separated,
41For sending this signal the InterfaceLibrary of the TaskManager framework is used.
42The Pendolino starter script comes in addition to this bash script.
43Lest not to miss a value update, the start point of a coming request interval is set to the end

point of the last request minus the maximum shipping time it can take to transfer the values from
the PVSS panels to the DCS Archive DB. In the current setup: startTime = lastEndTime - 60
(sec). The very first request time interval in a given run uses a different calculation (SoR update).

83

4.5 DCS The HLT interfaces

dedicated log files on the corresponding interface node. Different log files for these
modules have been chosen, because their tasks run in different cycles. Their log output
should not be mixed in order to achieve an easier association of these messages to the
corresponding Pendolino. All four log files are monitored by SysMES, which notifies
the operator in case of an error.

At the end of a run, the RunManager terminates the Pendolino by sending a
dedicated Unix signal. This signal is caught by the Pendolino starter script and
relayed to the different Pendolino(s) allowing them to perform a proper clean-up before
termination. The tasks for HCDB preparation and filling performed by the Pendolino
are presented in UML Activity Diagram in figure 4.25.

DCS-Client

The Pendolino sorts the Alias names for the request by there corresponding detector
names and sends the request for the set of one detector by a time. The actual request
is performed via the DCS-Client module of the AliRoot package.

The DCS-Client packs the Alias names in a special protocol, ADMP2 (AliDCS
Message Protocol 2), and sends the requests to AMANDA (ALICE MANager for Dcs
Archives). AMANDA is the server which handles the requests on the DCS Archive
DB side. It fetches the desired values from the DB44 and puts them in the appropriate
answer protocol, which is sent back to the DCS-Client. Important for the retrieval
from the DB is the requested time period for these values. AMANDA can handle the
real DP names and the Alias names for the DB entries. It is a proprietary development
of the ALICE DCS group [79] [80].

The DCS-Client wraps the retrieved values in AliDCSValue objects45 and relays
them over to the Pendolino in a collection of all objects of one request. This collection is
also referred to as DCS-Map [71]. The DCS-Map is handed to the PredictionProcessor
of the corresponding detector for data preparation and enveloping in ROOT files46.

PredictionProcessor

The PredictionProcessors are detector-specific components of the Pendolino, because
they have to prepare and envelope the DCS values according to the needs of their
respective detector analysis components, which require these values. They extract
the values and corresponding timestamps from the DCS-Map and process them. Old
entries of the HCDB and other calibration settings might be required in the preparation

44The DCS Archive DB is implemented in an ORACLE Real Application Cluster (RAC). The DCS
Archive DB and AMANDA run on Microsoft Windows based machines.

45The class AliDCSValue is defined in the AliRoot framework. It contains the actual DCS value,
its data type and the timestamp of the value recording.

46In case no values of the requested Alias names have been updated during the request time
interval, an empty DCS-Map is returned by the DCS-Client. It is also possible that only a subset of
the requested DCS values is returned in the DCS-Map, because only these values have been updated.
These are normal situations in the Pendolino environment, so Pendolino and the PredictionProcessors
have to able to handle them.

84

4.5 DCS The HLT interfaces

Figure 4.25: UML Activity Diagram of the Pendolino: The diagram illustrates the activities
performed by the Pendolino and its starter script. The Pendolino prepares the HCDB for a
run, requests the DCS Archive DB, processes the retrieved values and stores the resulting
entries to the HCDB. HCDB preparation and updates are notified to the TMs.

85

4.5 DCS The HLT interfaces

and can be used in the compilation of the resulting objects47. Depending on the
detector needs these PredictionProcessors must / can incorporate some prediction
processing in the DCS data before the latter on are stored in the HCDB. This is due
to the fact that the timestamps of the retrieved DCS values are older than the event
data streamed through the cluster for analysis. This feature has given them their
name: PredictionProcessors.

Important in the preparation by the PredictionProcessors is the rootification of
the DCS values. The data have to be enveloped in ROOT files in order to be able
to store them in the HCDB and to apply the run validity and versioning scheme
common to CDB entries. Moreover the PredictionProcessors have to give the entries
the appropriate names by which the analysis components can fetch them from the
HCDB, where the data are stored when preparation and rootification are finished.

After new entries have been made in the HCDB, the Pendolino informs the TM
framework about the update48. The TMs then percolate this information through the
analysis chain, allowing the analysis components and DAs to reload their required
HCDB entries with the updated values.

The Pendolino can host one PredictionProcessor per detector. In addition, it owns
an HLT- and a GRP-PredictionProcessor. Each PredictionProcessor can store objects
in the HCDB of its corresponding detector folder; HLT and GRP count as detectors
in this perspective.

The interface defined between Pendolino and PredictionProcessors allows the Pen-
dolino to initialise and hand over the DCS-Map to the PredictionProcessors. Addi-
tionally, by using this interface the PredictionProcessors can retrieve additional infor-
mation like the run number and other relevant settings like already included HCDB
entries, which are required for further processing of the DCS data. This interface also
takes care of the storing of new entries to the HCDB, hiding the CDB access details
to the PredictionProcessors. The Pendolino acts in that sense as a framework for the
detector-specific PredictionProcessors.

The mechanism of detector-specific modules preparing the data for the CDB has
been adapted from the Offline Shuttle, where Preprocessors prepare the data re-
trieved from the other ALICE systems before the resulting objects are included in the
OCDB. This concept allows a clear separation between detector-specific and detector-
independent operations. The interface between Pendolino and PredictionProcessors is
an extension of the Shuttle - Preprocesssor interface in order to allow detector experts
the re-usage of already existing components [71].

47For example: the TPC uses a temperature map of its detector in their analysis scheme. In
the preparation of this map certain geometry settings are utilised, which are normally stored in the
OCDB. These settings are fetched from the OCDB by the Taxi and copied to T-HCDB, respectively
HCDB. From the latter one they are provided to the TPC PredictionProcessor.

48This notification is sent through the InterfaceLibrary of the TM framework, using a dedicated
application called TM_Notifier.

86

4.5 DCS The HLT interfaces

HCDB

As described before the HCDB contains a per-run-frozen version of the T-HCDB. The
entries are included as links to the corresponding files in the T-HCDB before each
run49.

In addition, entries from the PredictionProcessors with DCS data and configura-
tion entries made by the HCDBManager script are included. The HCDB is distributed
to the computing and interface nodes inside the HLT cluster via AFS. Analysis com-
ponents and DAs inside the HLT have only access to the HCDB, but not to the
T-HCDB.

Like the T-HCDB and OCDB, the HCDB consists of a file catalogue50. Its struc-
ture, which is shown in figure 4.19, is the same as for the T-HCDB and OCDB. In
addition, the HCDB contains a folder called "HLTPermanent", where detector ex-
perts can store configurations for their online analysis components. This folder is only
filled by the HCDBManager script (see description on page 100). Its substructure is
identical to the one of the normal detector folders.

For the new entries produced by the PredictionProcessors the same rules apply for
run validity and versioning scheme as described for the T-HCDB on page 72. But, in
contrary to the links to the T-HCDB entries, these entries are included as real files.
Since the HCDB is only a local copy of the OCDB, updates of already existing entries
receive only an increased subversion number. The version number stays the same.
Depending on the frequency of the corresponding Pendolino and the changes of the
DCS values, a large amount of updated objects with increased subversion numbers
for one entry can be stored. Contrary to updates from the OCDB, these entries are
updated during a given run.

All entries in the HCDB, except the ones inside the "HLTPermanent" folder, are
cleaned up before the next run51. The clean-up is necessary because the frequent
requests of the Pendolino(s) can result in a large amount of updated entries52 and the
current conditions retrieved from DCS should not be ported from previous runs.

4.5.2 The FED-Portal

Normally detector data are inserted into the DCS via the FED-API (cf. section 3.4).
The HLT uses the same mechanism to feed data to the DCS. Therefore the Service
channel part of the FED-Server has been implemented. A dedicated subscriber compo-
nent, the FED-Subscriber, collects the values provided by DAs inside the HLT cluster.
The collected values are translated to the corresponding FED-Services and published

49The usage of links has been chosen to reduce the time spent in the preparation phase before each
run.

50In HLT, the base directory of the HCDB is defined by the environmental variable
ALIHLT_HCDBDIR and is normally located under /opt/HCDB .

51The clean-up of the HCDB is not performed at the end of a run, because analysis components
might still have events in the queue to analyse and issue requests to the HCDB, while the Pendolino
has already received an exit signal.

52Each update is stored in a new file with the old one remaining in the FC.

87

4.5 DCS The HLT interfaces

Figure 4.26: Sketch of the HLT FED-Portal interface: The HLT can send data, produced
by DAs inside the HLT, to DCS via the FEP-API. These data are received by PVSS panels
and included into the DCS Archive DB.

to the DCS. On the DCS side PVSS panels can subscribe to the published values
and store them to the DCS Archive DB. This also offers the possibility to let the
HLT system be monitored by the DCS. In general, all values transferred to the DCS
PVSS panels can be monitored online by operators. On the HLT side, the required
components for this interface are aggregated in the FED-Portal.

The UML diagram in figure 4.27 presents a use case, displaying the FED-Portal
in providing the calculated value of the TPC drift velocity. Event data which is
streamed from the FEEs to the HLT, are used by a TPC DA for calculating the TPC
drift velocity. The results are handed to the FED-Subscriber at the FED-Portal, where
they are published as a FED-Service. A dedicated PVSS panel on DCS side retrieves
the values and presents them for online monitoring to the operators. For later physics
analysis the values are stored in the DCS Archive DB.

The FED-Portal employs two different transportation frameworks in the data ex-
change. The FED-Subscriber receives HLT data via the HLT PubSub framework;
values sent out to the DCS are published via DIM Services. The implementation
of the FED-Portal uses the Adapter Design Pattern to combine both functionalities.
The Adapter Pattern is used to map one interface to the domain specific interface
of another system or package. There are two ways for the Adapter Pattern to be
implemented:

1. The adapter class inherits from both interfaces (multiple inheritance - class
adapter).

2. The adapter class composes an instance of one interface in the implementation
(inheritance) of the second interface (object adapter).

These two possibilities for an Adapter Pattern are depicted in figure 4.28 [67].
The FED-Portal component is a hybrid of both methods in its implementation. Its
subscriber class is derived from the AliHLTProcessingSubscriber (see Class Diagram
in figure 4.29) to receive data through the PubSub chain. Additionally, it inherits from
DimServer to get the DIM Server functionalities, like starting and stopping the server.

88

4.5 DCS The HLT interfaces

Figure 4.27: UML Use Case Diagram of the FED-Portal for the TPC drift velocity example.
Event data from the TPC FEEs are streamed to the HLT, where they are analysed. The
TPC drift velocity is calculated by a dedicated TPC DA. The results are sent to DCS PVSS
panels via the FED-Portal. On the DCS side they can be monitored online by operators.
Physics analysis can fetch them from the DCS Archive DB later-on.

89

4.5 DCS The HLT interfaces

Figure 4.28: This UML Class Diagram shows the two possibilities for an implementation
of the Adapter Design Pattern. On the left side the AdapterClass is inherited from
Interface 1 and Interface 2, thereby combining both functionalities (class adapter).
The right side shows the Adapter being inherited from Interface 1 and getting the
functionality of Interface 2 via a composition of its implementation in the Adaptee
class (object adapter).

Thereby it implements the class adapter. The actual FED-Service channels53 are given
by objects which are compositions in the FED-Subscriber class. Therefore it represents
an object adapter as well. The class structure of the FED-Portal is shown in the UML
Class diagram of figure 4.29.

The FED-Portal has to be located on a node having at least two ethernet interfaces:
one to the HLT cluster and one to the DCS net in the DCS CR (Counting Room)54.

The FED-Subscriber

A dedicated component of the PubSub framework, the FED-Subscriber55, is responsi-
ble for collecting specific DA results inside the HLT cluster. These results are destined
for sending to the DCS PVSS panels. The collected values are sorted into the assigned
FED-Service channels. The actual channel depends on the designed setup for the run-
ning chain and on what is provided by the DAs. In case the received data are not log
messages, they can be assigned to either Grouped- or Single Service channels.

In the protocol transferred to the FED-Subscriber, the field "fDataType", received
in the PubSub header, has to match the bit field pattern given by the characters of
’FED-SRV ’ (cf. general protocol structure of data shipped by the PubSub system
in figure 4.30). The transferred payload of the PubSub protocol has to match the

53FED-Service channels are represented by objects of the DimService class or derived subclasses.
54On the HLT cluster the nodes portal-dcs0 and portal-dcs1 fulfil these requirements.
55The FED-Subscriber is represented by the class AliHLTFEDSubscriber, see UML Class Diagram

4.29.

90

4.5 DCS The HLT interfaces

Figure 4.29: UML Class Diagram of the FED-Subscriber. The FED-Portal component is
derived from the PubSub framework; the FED-Subscriber receives data as child class from
AliHLTProcessingSubscriber. Additionally, it inherits the DIM Server functionalities
from DimServer of the DIM package. The FED-Services are interfaced by a composition
of specially wrapped DimService objects.

91

4.5 DCS The HLT interfaces

Figure 4.30: Protocol structure for the FED-Subscriber. The payload received at the FED-
Subscriber is divided again into a header and a body part. The header contains information
about offset, body type and body size. The body is called FEDPayload and contains the
data for either Service- or Message channels.

structure in table 4.4 in order to be understood by the FED-Subscriber.

Protocol structure for FED-Subscriber
HeaderOffset TypeOfFEDPayload SizeOfFEDPayload FEDPayload
int32 char int32 byte array[]

Table 4.4: The table presents the protocol structure of the data transferred to the FED-
Subscriber through the PubSub system. HeaderOffset: Size of this header in Bytes, used
as offset to the FEDPayload data. The offset is stored in a 32 bit integer. TypeOfFED-
Payload : Type of the FEDPayload, stored in a single char (’S’ = Single Service, ’G’ =
Grouped Service, ’M’ = Message Service). SizeOfFEDPayload : Size of the FEDPayload
in Bytes, stored in a 32 bit integer. FEDPayload : The actual payload used for the corre-
sponding FED-Service channel. It can vary in its size, depending on the given service data.
The possible structures of the FEDPayload are shown in the tables 4.5 and 4.6.

The FEDPayload, given in the above shown protocol in table 4.4, can have dif-
ferent structures, depending on the destined FED-Service channel (defined by the
TypeOfFEDPayload field). The tables 4.5 and 4.6 visualise the possible protocols.
Single- and Grouped Services are using the same FEDPayload structure.

After mapping of the FEDPayload to the required structure by the chosen FED-
Service, the data are handed to the corresponding FED-Service channel.

The FED-API in the FED-Portal

The FED-API, as used in the DCS, defines data exchange in both directions: DCS can
issue commands to the connected (sub-)systems, results and monitored values are sent

92

4.5 DCS The HLT interfaces

FEDPayload for Single- and Grouped Service channels
NameLength charValLength intValue floatValue ServiceName charValue
int32 int32 int32 float char[] char[]

Table 4.5: The table shows the FEDPayload structure for a Single- or Grouped Service
channel. The NameLength, the charValLength and the intValue are stored in 32 bit
integers. The floatValue is transferred by a float variable. The ServiceName is delivered
in a char array of arbitrary size. It has to be NULL terminated and has a size given by
NameLength (including the NULL termination). For the charValue a char array of arbitrary
size is used. Its size is defined in charValLength. The unused value types should contain
defined "Don’t-Care" - values. The aggregated size of this structure can vary.

FEDPayload for Message channel
logType source message timestamp
int32 char[256] char[256] char[20]

Table 4.6: The table shows the FEDPayload structure for a Message channel. The logType
is given by a 32 bit integer (see appendix A.3 for possible log types). The source (name
of the issuing component) is transmitted in a 256 Byte char array. The detector name has
to be encoded in source as well. A 256 Byte char array is used for the actual message.
The timestamp in the format "YYYY-MM-DD hh:mm:ss\0" is taken from a 20 Byte char
array. All char arrays have to be NULL terminated. This structure has a fixed size of
540 Bytes.

back to the DCS. Since the HLT is steered directly by the ECS (and not by the DCS),
only the FED-Service channels of the FED-API are used in the FED-Portal interface.
The FED-Command channels are omitted56. Via the FED-Services the HLT can
publish calculated results as integer, float or char values to the DCS. The structure of
the corresponding channels matches the description of theGrouped Service channel,
the Single Service channel and the Message channel in section 3.4.

The FED-Services

The channels defined in the FED-API are construed to be implemented in DIM Ser-
vices and Commands. Thereby DIM serves as transportation layer.

The created service channels are represented by DimService objects from the DIM
framework57. The data received from the DAs are mapped to the according fields of
the corresponding service channel. The service channel name, which is responsible for
offering the data, depends on the provided service name. After filling the channel an
update call for that channel is issued to DIM and the data of the channel fields are

56The Acknowledge channel is also obsolete, because no command channels are offered by the
HLT FED-Server.

57DimService is the (parent) class for services published by DIM Servers, when using the C++
version of DIM. For commands the class DimCommand is used.

93

4.5 DCS The HLT interfaces

transferred to the subscribed DIM Client(s).
A FED-Client using the DIM-PVSS module enables the DCS to subscribe to the

published FED-Services. In order to have the FED-Server of the FED-Portal connected
to the PVSS panels on the DCS side, it has to contact the DIM_DNS used by the
corresponding DCS PVSS panels. There it announces its services. The role of the
DIM_DNS in the connection between DIM Servers and DIM Clients is described in
section 3.3.

FED-Portal logging

Normally, logging on the FED-Portal is done using the logging facility provided by
the PubSub framework. These log messages can be centrally monitored by the HLT
operator. Additionally, log output can be offered as FED-Service to the DCS via the
Message channel of the FED-API. In the latter case the defined channel members
have to be provided, i.e. the log type58, the detector name59, the source (component
name), the actual message and the timestamp.

58Appendix A.3 shows the different log types defined in the FED-API.
59For log messages transferred via the FED-Portal, the detector name is always set to "HLT".

Should the message come from a detector-specific component inside the HLT, then the corresponding
detector name has to be included in the component name, which is set in the source field.

94

4.6 DAQ The HLT interfaces

4.6 DAQ

The interface to DAQ consists mainly of a hardware interface. It is constituted of the
DDL connections between the D-RORCs and the H-RORCs60. The HLT receives raw
event data from the D-RORCs on the DAQ LDC via 365 DDLs: 36 ITS (SPD and
SSD) links, 216 TPC links, 18 TRD links, 20 PHOS links, 24 EMCal links, 20 HMPID
links, 23 DiMUON links, 3 FMD links and 1 link for each of V0, T0, ACORDE, ZDC
and Trigger. It is foreseen that the missing detectors (SDD61, TOF and PMD) are
joining as well, having in the end 454 DDL links. The data is currently received by
185 H-RORCs, most of them being equipped with two DIUs. These H-RORCs are
hosted by dedicated 87 FEP nodes.

For handing back processed results and trigger decisions (see section 2.4.5 on page
21) the same transport mechanism is used. The HLT has 12 DDLs to sent them to the
DAQ LDCs. These DDLs are mounted on 10 H-RORCs, having two of them equipped
with two SIUs for sending. Different sets of physic triggers are to be defined and
communicated to the DAQ [8] [40].

Figure 4.31: The left side shows a picture of an H-RORC, the two connectors to the DDLs
are visible on the left end. On the right side the use cases of the two interfaces to the
DAQ are presented.

60The H-RORCs, and therefore also the interface to the DAQ, has been developed by Thorsten Alt
from the Kirchhoff Institute of Physics, Ruprecht-Karls-University Heidelberg (Germany).

61The SDD connection has been added lately in Autumn 2008.

95

4.7 AliEve The HLT interfaces

4.7 AliEve

The Offline event monitoring tool AliEve can be used in online analysis as well. To get
online access to this event display, HLT provides HOMER (HLT Online Monitoring
Environment including ROOT)62. This interface allows to send histograms and recon-
struction results to AliEve. It enables the HLT to perform direct detector performance
monitoring.

HOMER can be used to send results produced from any step of the HLT analysis
chain to an AliEve application running in the ALICE Control Room (ACR). Thereby
it enables online event monitoring to the operators. It connects to the PubSub chain
either by TCP/IP or shared memory connections. A screenshot of the AliEve usage
in online monitoring is given by figure 4.32 [8] [40].

Figure 4.32: The left picture shows a real "screenshot" from the AliEve online usage in
the ACR. On the right side the use case of HOMER is displayed.

62The HOMER interface has been developed by Dr.Timm M. Steinbeck and Jochen Thäder from
the Kirchhoff Institute of Physics, Ruprecht-Karls-University Heidelberg (Germany).

96

Chapter 5

HLT calibration framework

5.1 Putting the bits and pieces together

The afore described interfaces constitute the major components of the ALICE HLT
calibration framework. All these interface applications enable and support DAs inside
the HLT to perform their assigned tasks. Each of them plays a dedicated part in the
provision of calibration and condition settings from and in the distribution of results to
the connected ALICE systems. The applications handle the data exchange generically,
the actual data are transparently transferred by the framework1. Detector-related
subcomponents, integrated in these interfaces, take care of the specific preparation of
the data, according to the needs of the corresponding detector.

During their execution, these interfaces have also to interact and exchange data
among each other. Especially the HLT-proxy plays an important role here. Apart
from steering ALICE and synchronising the actions of its systems and subsystems,
the ECS distributes chosen general run parameters (see CONFIGURE- and ENGAGE
parameters on page 55f). Some of them are provided to the components through the
PubSub chain, inserted by the TMs. Others are included into the HCDB, where they
can be fetched by the DAs. Additionally, they are distributed to dedicated interface
applications by the RunManager. The run number, for example, is needed by most of
the interfaces. The Taxi requires it to issue requests to the OCDB for the next run2.
At the Shuttle-Portal, it is utilised as name for the first folder level in the FXS and to
create unique keys for the meta data stored in the involved MySQL DB. The Pendolino
receives the run number as well and hands it further to the PredictionProcessors.
They need it in the encoding of the real file names, under which the produced HCDB
entries are stored3. Additionally, the Pendolino provides other ECS parameters to the
PredictionProcessors, like the run type.

The assignments of the calibration framework can be mainly divided into two
1Except of certain settings, which are required for the preparation of the contact to the other

systems, like object- or corresponding detector names.
2"Next run" means the run after the one that is about to be started.
3The actual creation of the file name is done by the CDB access classes, but the PredictionPro-

cessors have to inform them about the current run number.

97

5.1 Putting the bits and pieces together HLT calibration framework

different operations:

• Bringing the calibration settings to the HLT cluster and distributing them to
the analysis components inside (Calibration input).

• Collecting newly calculated calibration data and sending them to the destined
system(s) (Calibration output).

5.1.1 Calibration Input

In the HLT calibration input procedures, the HCDB plays the central role. This is
the location, where most of the calibration- and run condition- settings are accessed
by the analysis components. The tasks involved in its filling and provision to the DAs
are visualised in figure 5.1. They are summarized in the following.

Figure 5.1: This figure visualises the complex tasks involved in filling the HCDB with
calibration- and condition data for the DAs.

Using AliEn the Taxi fetches calibration settings from the OCDB and fills them
to the T-HCDB. When a run is started, the HLT-proxy receives from the ECS the
according commands and parameters. They are relayed to the RunManager, which

98

5.1 Putting the bits and pieces together HLT calibration framework

starts the operations chosen for the upcoming run. In this process the initial GRP
values are stored to the T-HCDB as well. Then the T-HCDB is released using the AFS
read-only partition of the corresponding FC and its entries are linked to the HCDB.
Afterwards the Pendolino(s) are started and the HCDB is released to the computing
nodes. Here again, in the release process the AFS features of the read-only partitions
for the defined folders are used. The DAs have only read access to the HCDB on the
cluster.

The Pendolinos with their PredictionProcessors continuously fill retrieved DCS
values into the HCDB. After each update interval, the HCDB is released again and
the DAs receive according notifications. These notifications are issued by the Pen-
dolinos and sent first to the TMs. They percolate them then as special events to the
components through the PubSub chain.

Manual (re-)configuration of the components can be achieved via the HCDBMan-
ager script (see section 5.2 below), which uses the HCDB for storing of configuration
data as well.

A major focus in the development of the calibration input arrangement has been
on providing an environment, which makes it transparent for the DAs to run under
online or offline conditions.

5.1.2 Calibration Output

While processing event data, the HLT components produce new calibration settings.
The results are regarded as the HLT calibration output. They are shipped from the
DAs to the corresponding interface applications via the PubSub chain.

DCS related data are received at the FED-Portal and sent further to the corre-
sponding DCS PVSS panels. There they can be monitored online by operators. In
addition, they are inserted into the DCS Archive DB.

New calibration objects, which are destined for the OCDB, are collected by the
Shuttle-Portal. When the collecting procedure has finished, the Offline Shuttle can
start fetching them from the HLT FXS and the corresponding MySQL DB. After
preparation by Preprocessors, they are included into the OCDB. Synchronisation be-
tween HLT and the Offline Shuttle is achieved via the ECS.

A cycle of calibration objects production and usage later-on starts with DAs cal-
culating them online on the HLT computing nodes. The new objects are included into
the OCDB as described above4. During this procedure the official version numbers
are applied to the new objects. The HLT Taxi requests the latest OCDB entries and
caches them locally in the T-HCDB. Before each run, the HLT Pendolino prepares the
HCDB, inter alia by setting links to the content of the T-HCDB, and distributes it
to the computing nodes. There the DAs access them again to perform their assigned
tasks.

The cycle of sending first newly calculated calibration objects to the OCDB, before
they are fetched again for provision to the DAs, is required in order to use the official

4This thesis refers here only to online produced calibration objects. Offline produces calibration
objects as well and stores them to the OCDB.

99

5.2 The HCDBManager HLT calibration framework

Figure 5.2: The figure shows the tasks for sending out newly produced calibration data to
the destined systems.

version numbering set by ALICE Offline. This is necessary to be able to compare
results with Offline analysis later-on.

5.2 The HCDBManager

The HCDBManager script is used to set configuration entries for the HLT analysis
components into the HCDB. This can also be done online to perform a re-configuration
of certain components during a run. After the entry is set, the script notifies the
TMs, which percolate an according reconfigure event through the analysis chain5.
This informs the dedicated analysis components to call their reconfigure function and
reload the corresponding configuration entry from the HCDB. For the notification,
the script uses the TM_Notifier tool, which is based on the InterfaceLibrary of the

5Configuration entries without issuing reconfigure events can be set as well.

100

5.3 Synchronisation sequence HLT calibration framework

TM framework. The issued signal carries special information about the dedicated
component that shall perform the reconfiguration.

The HCDBManager script can load root files and transform them into the format
required for CDB entries6. Alternatively, it can accept strings, which are wrapped in
TObjString objects7, before they are included into the HCDB. The entries are either
stored under the normal detector folders of the HCDB or the script can put them in
the "HLTPermanent" folder. The latter one is not cleaned up at the start of a run,
therefore this folder has to be used, when the configuration entry is intended to be
re-used in several runs (cf. HCDB description on page 87).

The usage of the HCDBManager script is described in appendix B.6.

5.3 Synchronisation sequence

Since the HLT calibration framework applications interact with the other ALICE
systems, synchronisation is a vital issue for their interplay. It is achieved via commu-
nication with the ECS, which connects to all ALICE systems. In the timeline of the
interface employment, their usage can be divided into five stages.

1. Asynchronous to the runs: Before the start of a series of physics runs, and then
repeated in regular time intervals independent from any run, the Taxi requests
the OCDB for latest calibration settings. The fetched objects are stored to the
T-HCDB.

2. Preparation period at the Start-of-Run (SoR): The ECS informs the HLT about
an upcoming run and provides certain general run settings, i.e. run number, beam
type, trigger classes, etc. . In the following configuration steps, the HCDB gets
prepared and distributed to the computing nodes. Updates from the OCDB
after the start are not referred to the HCDB, in order to keep a coherent version
of calibration settings during a run. Once the HCDB is prepared, the analysis
components can be initialised. The Pendolino begins to request the DCS Archive
DB, the detector-specific PredictionProcessors process the retrieved values and
store them to the HCDB.

3. During a run: The start of data taking is signalled with the SoD event, which
should go along with the START command from the ECS. Raw event data are
received from the FEEs on the HLT FEP nodes. Over several analysis steps the
analysis components process the data and reconstruct events. The results, to-
gether with trigger information, are streamed out to DAQ for permanent storage
via the HLT-out nodes. In addition, the DAs produce new calibration settings.

6This "transformation" is mainly the extraction of the ROOT- or AliRoot object, containing the
calibration parameter. They must be derived from TObject. The extracted object is handed to the
CDB access classes for wrapping and storing it in the HCDB.

7TObjString is a class provided by the ROOT framework. It is derived from TObject and therefore
suitable for the use in CDB entries.

101

5.3 Synchronisation sequence HLT calibration framework

Figure 5.3: The diagram displays the timeline of the usage of the different HLT interfaces.
Synchronisation with the other ALICE systems is achieved via the ECS.

102

5.4 Applications HLT calibration framework

Current environment conditions (i.e. temperatures, pressure values, voltages, B-
field measurements, etc.) are continuously requested from the DCS via the
Pendolino and stored to the HCDB. After an update of the HCDB, the latter
is freshly released to the computing nodes and the DAs receive a notification.
Certain parameters, which are calculated by the HLT DAs and are relevant to
the DCS, like the TPC drift velocity, are published via the FED-Portal. DCS
PVSS panels can subscribe to them for online monitoring and store them to
the DCS Archive DB. Detector performance monitoring can be achieved online
via the HOMER - AliEve connection. Using this interface, selected events and
calibration results can be visualised during the run as well.

4. Postprocessing period at the End-of-Run (EoR): At the end of data taking the
ECS issues a STOP command and the EoD event is percolated through the HLT
chain. The HLT transits to the COMPLETING state. It can take some time
until all event queues on the computing nodes are emptied by the corresponding
analysis components. During this period the Shuttle-Portal collects newly calcu-
lated calibration settings and stores them to the FXS. Corresponding meta data
are included into the MySQL DB (hlt_logbook). After these tasks are finished,
the HLT switches implicitly to theREADY state. This state change is signalled
to the ECS.

5. After a run: Once the HLT is back to the READY state, the ECS can notify
Offline to start its Shuttle. The Offline Shuttle requests the HLT FXS and
the hlt_logbook and after some detector-specific preprocessing it puts the new
calibration objects to the OCDB. While the Shuttle is running, the HLT can
already be started for the next run.

The synchronisation timeline of the interfaces together with their corresponding
tasks are visualised in figure 5.3 [40]. The current HLT states play an important role
in the synchronisation interplay, the major course of activities related to certain states
or state transitions are shown in figure 5.4.

The above mentioned HCDBManager script can be executed by the operator at any
time. Beyond a run, it is employed for setting configuration entries for components
to the "HLTPermanent" folder. During a run, the operator can use it to issue a
reconfiguration of certain components.

5.4 Applications

5.4.1 General procedures

Alignment and component calibration

The prime example for the usage of this framework is the calibration of analysis com-
ponents with detector properties and configurations. In order to process received event
data properly, the analysis components need to know the pedestal settings, which are

103

5.4 Applications HLT calibration framework

Figure 5.4: The figure sketches how the different states in the interface to the ECS syn-
chronise the tasks of the other interfaces with the connected systems. With the ENGAGE
command, the HCDB gets prepared and the Pendolino begins to request the DCS Archive
DB. During the RUNNING state, the DAs process event data and produce new calibration
objects. In the COMPLETING state the Pendolino stops and the new calibration data
are shipped to the Shuttle-Portal. When these tasks are finished, the HLT returns to the
READY state and the ECS can inform Offline to start its Shuttle.

applied to the corresponding FEEs. In addition, they use information about the de-
tector alignment parameters. They are required to achieve an accurate reconstruction
of the events. These calibration settings are essential to send correctly reconstructed
results to the DAQ for storage and to AliEve for displaying them online.

Both parameters are fetched from the OCDB by the Taxi and cached to the T-
HCDB. During a run, the HLT calibration framework provides them to the components
via the HCDB. Their access is transparent to the DAs, independent of running in an
online or offline environment.

Huffman data compression

Another example for the usage of the HLT calibration interfaces is the Huffman en-
coding8 of event data by dedicated DAs inside the HLT cluster. In so called "training

8The Huffman coding is an entropy encoding algorithm for lossless data compression. In this
compression method the representations of the most common source symbols / blocks of data are

104

5.4 Applications HLT calibration framework

runs" the Huffman component(s)9 learn about the structure of event data and create
according tables for encoding. These tables are used as pattern for compression and
decompression of event data. After the training run they are collected at the Shuttle-
Portal and requested by the Offline Shuttle. A dedicated HLT Preprocessor prepares
the tables and envelopes them in ROOT objects. The resulting file is stored to the
OCDB. The next time the Taxi requests the OCDB for updated entries, the Huffman
calibration object is fetched and cached to the T-HCDB. At the start of the next run,
the HCDB gets prepared with the T-HCDB entries, thereby distributing the Huffman
calibration object to the computing nodes. Huffman components access the object
from the HCDB and extract the included Huffman table for its detector type. During
the run these tables are used for online encoding of received event data. The described
chain is presented in figure 5.5 [77].

Figure 5.5: The sketch shows the Huffman table use case of the two HLT-Offline interfaces.
Huffman tables produced by dedicated DAs inside the HLT cluster are shipped to the OCDB
after so called "training runs". Before the next physics runs, the tables are retrieved from
the OCDB and put to the HCDB, where they can be accessed by corresponding data
compression components. They use them for Huffman encoding of event data.

assigned to shorter strings of bits than the ones of less common source symbols / blocks of data. The
coding table is represented in a so called Huffman tree [81].

9The Huffman components have been developed by Jennifer Wagner (KIP – University of Heidel-
berg, Germany).

105

5.4 Applications HLT calibration framework

B-field calibration

In the reconstruction of events, tracking components combine clusters into particle
tracks. Due to the B-field of the L3- and dipole magnet, the tracks of charged particles
are bent. In order to calculate the track curvature correctly, these components need
information about the B-fields. The corresponding values can be requested from the
DCS via the Pendolino. They are either given by direct B-field measurements from
the according sensors or can be calculated in the PredictionProcessors by the retrieved
values for the magnet currents and polarities.

Figure 5.6: The figure presents the UML Use Case diagram for the B-field example. The
B-field measurements by the DCS are fetched via the Pendolino and inserted to the HCDB.
Tracking components retrieve these values from the HCDB during the run. Alternatively
to direct measurements, the B-field can be calculated by retrieved values for the magnet
currents and polarities.

Since the B-field is relevant to all tracking detectors, the preparation and enveloping
of the data is handled by the HLT or GRP PredictionProcessor10. After storage to the

10At the moment the preparation is performed by the HLT PredictionProcessor, but there are strong
arguments to move this part to the GRP PredictionProcessor. Only the GRP PredictionProcessor
can store the results into the GRP folder of the HCDB.

106

5.4 Applications HLT calibration framework

HCDB, the B-field values can be accessed by the corresponding tracking components.
The use case of the B-field retrieval is visualised in figure 5.6.

5.4.2 TPC procedures

Temperature histogram

The interfaces of the HLT calibration framework can also be used for creating and
displaying temperature histograms of the ALICE detectors, especially for tempera-
ture distributions of the TPC. Therefore DCS temperature measurements are fetched
from the DCS Archive DB via the Pendolino and stored to the HCDB. A dedicated
DA retrieves these values from the corresponding HCDB entry each time an "HCDB-
updated" notification has been triggered. New temperature values are filled to the
according histograms. These histograms can be sent to AliEve via the HOMER inter-
face for online monitoring by ALICE operators during the run. Using these histograms,
a temperature map showing the temperature distribution over the ALICE barrel can
be created and displayed to operators in the ACR as well.

At the end of a run, the histograms are shipped to the Shuttle-Portal, where the
Offline Shuttle collects them afterwards. After preparation by a dedicated Preproces-
sor, these histograms are stored to the GRID. The UML Use Case Diagram displaying
this example is given in figure 5.7.

Drift velocity

Knowledge about the drift velocity is important to calculate correctly the time elec-
trons need to drift towards the end plates of the TPC. The drift time gives the sensitive
window of the TPC. Several procedures allow for calculating the drift velocity, most
of them can be performed online. Therefore the according algorithms require input
from various other systems in ALICE. For the calculation using a temperature map,
the according calibration object has to be taken from the HCDB (fetched from the
OCDB by the Taxi and stored inside the HLT). It can also be calculated from the
current temperature and pressure measurements. Both values can be requested online
from the DCS using the Pendolino. In addition, the drift velocity can be measured
and monitored by laser tracks. The drift velocity results can be provided to Offline
via the Shuttle-Portal and to the DCS via the FED-Portal.

E×B

E×B effects have influence on the drift path11 [11]. These effects are parametrised
and wrapped into a calibration entry of the OCDB. Normally, E×B corrections are
created offline by analysing lasers tracks. But their calculations can also be done by
online DAs. The results are send to the OCDB via the Shuttle-Portal afterwards.

11E×B effects result from non-uniformities in the electric- and magnetic fields at the end caps of
the TPC, where the E and B vectors are not parallel.

107

5.4 Applications HLT calibration framework

Figure 5.7: The UML Use Case Diagram depicts the usage of the HLT interfaces in
temperature histogramming inside the HLT. Temperature values are acquired from the
DCS via the Pendolino and stored to the HCDB. A dedicated DA retrieves these values
from the HCDB and fills them into histograms. The histograms can be monitored online
via AliEve in the ACR. Additionally, they can be shipped to the Shuttle-Portal, where the
Offline Shuttle fetches them at the end of a run and includes them to the OCDB.

108

5.5 Benchmarks HLT calibration framework

HLT analysis components can fetch these parameters from the HCDB to apply the
corrections to the coordinates of the space points (clusters).

5.4.3 PHOS procedures

Gain equalisation

Establishing the response of the calorimeter to the deposition of a certain photon
energy is essential to the physics performance. In PHOS the signal produced by
the electronics is proportional to the amount of energy deposited. The gain factor
for the signal also depends on the voltage applied to the APDs measuring the light
produced in the crystals. This requires that the high voltage for each channel is
adjusted to equalise the gains between the channels. However, the precision of that
voltage equalisation does not suffice for the physics requirements. This means that
during reconstruction each channel needs an individual gain factor. In addition the
conditions may change between runs, requiring a re-calculation of these parameters
for each single run. Only after this procedure is carried out it is possible to correctly
establish the energy response of the calorimeter. A table of gain values is retrieved from
the OCDB before a run and an updated table is stored after the HLT has processed
the raw data. In this procedure the HLT Taxi and the Shuttle-Portal are involved.

Dead channel map

Another important task in the PHOS calibration process for each run is to investigate
and establish which channels are useful for physics, and to create a so called bad
channel map. Since a highly energetic particle entering PHOS will deposit energy in
several crystals producing a cluster, measuring the total energy is highly dependent
on the state of the channels involved in this cluster. The bad channel map is also
retrieved from OCDB before a run and made available to PHOS components via the
HCDB. After the run an updated version is stored back to the OCDB. This involves
both Offline interfaces.

5.5 Benchmarks

During ALICE commissioning, certain benchmark tests have been performed for the
Taxi and the Pendolino. The according interface applications were running under
normal working conditions (other applications running on the corresponding portal
nodes, additional network traffic on the involved ethernet connections). In these mea-
surements, outliers with significantly longer request times have been observed from
time to time. It is assumed that they are related to heavy network traffic or CPU load
at the request moment on the involved devices.

For the other interfaces, no real sensible performance measurements can be made.
The HLT-proxy exchanges only very limited amount of data with the ECS. The data
are transferred via DIM, for which performance measurements are available on the

109

5.5 Benchmarks HLT calibration framework

web12. The same applies to the FED-Portal. Only a small amount of data have to
be extracted from the received PubSub protocol, which are then shipped to the DCS
via DIM. On the Shuttle-Portal, objects are fetched by the Offline Shuttle, which
takes part in the interface, but it is not an HLT application. On the HLT side, only
collecting of the according data, and therefore the PubSub performance, is relevant.
The PubSub benchmarks are extensively discussed in: "A Modular and Fault-Tolerant
Data Transport Framework" [42].

Taxi benchmark

The Taxi requests are not time critical, since they are performed asynchronously to
the normal HLT operation cycle13. Nevertheless the tests have shown that the Taxi
requests OCDB entries in reasonable time limits; even the average request time for
100 OCDB objects is below one minute (see benchmark graph of the Taxi in figure
5.8).

The request time raises almost linearly and the Taxi performance scales very well.
Except for the single request, the average time spent in each entry retrieval is around
half a second (cf. table 5.1).

of OCDB entries av. total time [s] av. time per entry [s]

1 2.768 2.768
5 3.037 0.608
10 4.416 0.442
25 12.984 0.519
50 25.864 0.517
75 48.276 0.644
100 55.218 0.552

Table 5.1: The table displays the measured performance of the Taxi. The average total
request time and the average request time per entry, spent for a given number of OCDB
entries in the Taxi request, are presented.

During these benchmarks the T-HCDB had been cleaned completely before each
request interval. Therefore, none of the requested objects had been locally available
and all were transferred freshly from the OCDB. The measurements were taken from
the moment of establishing first contact to the OCDB14, until the last object had been
fetched and stored to the T-HCDB. The real Taxi-Portal node15 were used for the
measurements.

12http://dim.web.cern.ch/dim/DIM_Performance.pdf
13The normal HLT operation cycle is: Initialise and configure HLT cluster and involved tasks, start

run and process data, stop run and complete unfinished jobs, clean up and get ready for the next
run.

14The time spent for acquisition of the AliEn token and the GRID proxy are not included in the
measurement.

15The specs of this node (portal-taxi0) are: Linux 2.6.15-28-amd64-server #1 SMP Thu May 10
09:58:22 UTC 2007 x86_64 GNU/Linux (Ubuntu 4.0.3-1ubuntu5); dual board node with dual core

110

5.5 Benchmarks HLT calibration framework

Figure 5.8: Benchmark graph of the Taxi. The circles display the average measured
request time for a given number of OCDB entries. The vertical lines at each point depict
the outliers, observed from time to time in the measurements. Especially outliers to much
higher request times can be denoted, presumably due to heavy workload on the network
or the GRID hosting the OCDB. They illustrate that a fast a access to the OCDB cannot
always be guaranteed. The fit shows that after a short constant plateau (contact overhead
overweights the retrieval time), the request time rises roughly proportional with increased
numbers of fetched entries.

Annotation: The performance might look a little bit different, when real ALICE
runs have started. A lot more calibration entries will be produced and put to the
OCDB. Additionally, the storage procedure of event data to CASTOR files in AliEn
will take a huge fraction of the GRID bandwidth.

Pendolino benchmark

The measured request time for the Pendolino stays relatively constant at about one
second for the requests up to an amount of 75 demanded Aliases. In this section the
request protocol overhead seems to be the dominant part. With larger amounts of
Alias names, the performance scales linearly. Here, the retrieval of data from the DCS

CPUs (4 processing units on the node); CPU model name: Dual Core AMD Opteron(tm) Processor
265, CPU MHz: 1800.012, cache size: 1024 KB; total memory size: 4 GB, ethernet: 1 GBit/s .

111

5.5 Benchmarks HLT calibration framework

Archive DB by AMANDA and the data transportation seem to take a heavier weight
in the benchmarked time. But still, with an average query time of around 5 seconds
for 500 Alias values, the speed of the Pendolino remains in an acceptable range. The
average benchmark numbers are presented in table 5.2. These measurements have
been taken on the real Pendolino-Portal node16.

of Aliases av. total time [s] av. time per Alias [s]

1 0.725 0.725
10 0.930 0.093
20 0.797 0.040
50 0.930 0.019
75 0.876 0.012
100 1.098 0.011
200 1.885 0.009
300 2.800 0.009
400 3.780 0.009
500 4.932 0.010

Table 5.2: The table displays the measured performance of the Pendolino. The average
total request time and the average request time per Alias, spent for a given number of
Alias names in the Pendolino request, are presented.

For the performance of the Pendolino the current workload of involved nodes and
networks seems to have a even bigger impact. The size of the outliers have had a
significant larger deviation from the measured average. Figure 5.9 shows the measured
values for the Pendolino benchmarking. They were taken from the moment the DCS
Client gets prepared for the query until the answer from AMANDA is received at the
Pendolino17.

To optimise the execution of the Pendolino, a prioritisation of the requested Aliases
and their assignment to the three different Pendolinos introduced for the HLT can be
done. Only a limited amount of relatively often changing and in high accuracy needed
Alias values should be retrieved by the Pendolino with the highest frequency. The rest
has to be distributed among the two others. Nevertheless, it is not expected that the
Pendolino reaches critical performance regions. Only in the first request, when the
SoR signal and the consecutive update of all values in the DCS Archive DB is covered,
heavy workload is expected.

16The specs of this node (portal-dcs0) are: Linux 2.6.15-28-amd64-server #1 SMP Thu May 10
09:58:22 UTC 2007 x86_64 GNU/Linux (Ubuntu 4.0.3-1ubuntu5); dual board node with dual core
CPUs (4 processing units on the node); CPU model name: Dual Core AMD Opteron(tm) Processor
265, CPU MHz: 1800.011, cache size: 1024 KB, total memory size: 4 GB, ethernet: 1 GBit/s .

17The preparations of these values by the PredictionProcessors are not included in the measured
time period, because they might differ broadly depending on the tasks performed by the latter one.

112

5.5 Benchmarks HLT calibration framework

Figure 5.9: Benchmark graph of the Pendolino. The squares mark the average request
time for a given number of Alias names, the blue vertical lines visualise the outliers in the
measurements, especially to higher retrieval times. As seen for the numbers of 50 to 100
requested Aliases, the outliers can take three to seven times longer than the average. The
fit shows a relatively stable request time for low amounts of Aliases in the request (75 and
below), afterwards it seems to rise linearly.

113

Chapter 6

Summary and Outlook

The afore described interfaces constitute the HLT Calibration Framework. It is used
to provide the analysis components inside the HLT cluster with current condition and
calibration settings. In addition, produced calibration results are relayed to destined
targets.

The ECS steers and controls the execution of the HLT. Moreover, general run
parameters for each run are provided. The supervision is performed by states and state
transition commands with additional parameters. Most recent calibration settings
which are stored in the OCDB are fetched by the Taxi and cached locally to the
T-HCDB. The official versioning and validity scheme is kept in order to be able to
compare HLT results with offline analysis. The retrieval from the OCDB is employed
continuously and run-independently.

When the dedicated SoR signal from the ECS is received, the Pendolino is started
at the beginning of a run. First, it prepares the HCDB with links to a frozen version
of the T-HCDB and distributes the corresponding FC to the computing nodes. The
frozen version of the T-HCDB is required to have coherent calibration settings during
the run. Then the Pendolino starts requesting the DCS Archive DB for current experi-
ment conditions. The retrieved values are prepared and enveloped by detector-specific
PredictionProcessors, before they are stored to the HCDB. The structure of the stored
objects has to be similar to the one in the OCDB, in order to have analysis components
running regardless of being in an online or offline world. The analysis components re-
ceive notifications about HCDB-updates. The HCDB poses as the central part for the
input given by the calibration framework. All DAs can fetch their configuration- and
calibration settings there. The HCDB is run specific and therefore cleaned up and
freshly prepared before each run. Its structure matches the one introduced by Offline
for the OCDB.

Specific, DCS relevant conditions, which are calculated online by DAs, are provided
to the DCS via the FED-API on the FED-Portal. The FED-API is common among
all detectors interfacing DCS and it is (re-)used for the HLT-DCS connection. The
FED-Portal is one of two interfaces which allow for online monitoring of produced
results. The other one is the HOMER-AliEve interface, which is used for displaying
reconstructed events and monitoring detector performance during a run.

114

Summary and Outlook

The actual event data are received as direct copies from the DAQ-LDCs. DAs
analyse the data and reconstructed events. After making trigger decisions, selecting
RoIs (data reduction) and compressing event data, the results are streamed out to the
DAQ via the HLT-out nodes.

After a run, newly calculated calibration objects are collected at the Shuttle-Portal
and offered to Offline. They are fetched by the Offline Shuttle and included as new
entries into the OCDB. The Shuttle-Portal and the FED-Portal are the two interfaces
providing calibration output to other ALICE systems. Overall synchronisation is
achieved via the ECS. In addition, manual reconfiguration of HLT components during
a run can be done by the HCDBManager script.

All these interfaces connect to the heterogeneous system environment of ALICE
and integrate the HLT into them. The different protocols and techniques, which are
involved in the external data exchange, are mapped to the mechanisms used HLT-
internally. Constraints in the structure and versioning of calibration objects are to
allow comparison of results with Offline analysis later-on. In addition, they enable
analysis components running independently of being in an online or offline environ-
ment. The access to the calibration settings are kept transparent to the DAs.

Several examples for the usage of the HLT calibration framework have been ex-
plained. These examples reveal the diversity of the systems and the interaction inside
the framework. Additionally, performance measurements for dedicated interface ap-
plications haven been presented.

An outlook for possible future upgrades of the calibration framework includes addi-
tional interfaces to the DAQ and the DCS. System tests during ALICE commissioning
have shown that it can take a longer time period until data are fetched from the FXS
of the different systems by the Offline Shuttle. Therefore it also takes longer time after
a run until they are available in the OCDB. In order to have them included faster into
the HLT, an interface application could be implemented requesting the FXS of the
DAQ and the DCS directly. This would require a technique analogue to the Offline
Shuttle mechanism, involving data preparation similar to the work performed by the
Preprocessors. The drawback of this connection is that the new entries are no longer
following the official versioning scheme of the OCDB entries. It would not be possible
any more to correlate results to the used calibration settings in the comparison of
online and offline results. It is also unclear, whether this would lead to a faster avail-
ability of these calibration settings, when the new interface requests a similar amount
of data like the Offline Shuttle. Taking these arguments into account, it remains to
be discussed if this is really an option in the extension of the calibration framework.

Another possible enhancement of the calibration framework is the introduction
of an LDAP (Lightweight Directory Access Protocol) server to combine the interface
application requests to general run parameters. The LDAP server could provide the
run parameters given by the ECS to the requesting interfaces. Additionally, this would
allow for an HLT-internal book-keeping of past run settings. This technique is similar
to a mechanism used on the DAQ side with the "daq_run_logbook".

More discussions on enhancements will show, whether they could be integrated
to the HLT before ALICE really starts up - now, hopefully in spring 2009. But

115

Summary and Outlook

already with the current setup, the calibration framework provides the HLT with an
environment, where all required calibration settings can be accessed by the analysis
components and, vice versa, the HLT can provide new calibrations to the other systems
in ALICE.

116

Appendix A

FED-API FeeCom commands

The following two sections show the commands for ConfigureFeeCom and Con-
trolFeeCom channels of the FED-API defined in the FeeCom chain. The generic
structure used in the description looks like this:

Command name "Command ID" <used opt. value>

The third section shows the encoding of the different log levels in the FeeCom chain.

A.1 ConfigureFeeCom commands

Defined commands for the ConfigureFeeCom channel:

• Set FeeServer names: Tells the InterComLayer to which FeeServers it shall
subscribe. The additional integer value represents the tag by which the FeeServer
names can be retrieved from the Configuration DB.
◦ Only possible target is the InterComLayer.

SET_FEESERVER_NAMES "0x0001" <integer tag>

• Set FeeService names: Tells the InterComLayer to which FeeServices it shall
subscribe. The additional integer value represents the tag by which the FeeSer-
vice names can be retrieved from the Configuration DB.
◦ Only possible target is the InterComLayer.

SET_FEESERVICE_NAMES "0x0002" <integer tag>

• Set log level: Sets a new log level at the specified target. The InterComLayer
features two log levels: a remote and a local one. The local log level filters
messages issued by the InterComLayer itself, the remote log level filters mes-
sages received from the FeeServers. To distinguish between both log level filters
in the InterComLayer, "_local" or "_remote" is added to the "icl" as target

117

A.1 ConfigureFeeCom commands FED-API FeeCom commands

name. Only messages, which pass this filter are delivered further to the PVSS.
All received log messages at the ICL stage are written to a dedicated log file in-
dependent of their delivery to PVSS. The possible log levels are described later
in section A.3.
◦ Possible targets: FeeServers and InterComLayer.

SET_LOG_LEVEL "0x0003" <log level (integer)>

• Get log level: Requests the current log level of the specified target. To distin-
guish between local and remote log level filters of the ICL see description above.
◦ Possible targets: FeeServers and InterComLayer.

GET_LOG_LEVEL "0x0004" <no opt. value used>

• Set update rate: Sets the update rate for checking FeeService values against
their dead band in a FeeServer. The update rate is set in milliseconds [ms]. The
optional integer value contains the new update rate.
◦ Only FeeServers can be targets.

SET_UPDATE_RATE "0x0005" <update rate (integer)>

• Get update rate: Requests the update rate of a specified FeeService. The
update rate is returned in milliseconds [ms].
◦ Only FeeServers can be targets.

GET_UPDATE_RATE "0x0006" <no opt. value used>

• Set time out: Sets the watchdog time out for issued commands in milliseconds
[ms]. After this time out a FeeServer or CE is regarded as not responding.
◦ Possible targets: InterComLayer (timeout in the contact to the FeeServers),
FeeServers (timeout in the contact to their CEs).

SET_TIME_OUT "0x0007" <time out (integer)>

• Get time out: Requests the current watchdog timeout for issued commands at
the specified target. The result is given in milliseconds [ms].
◦ Possible targets: InterComLayer (timeout in the contact to FeeServers), Fee-
Servers (timeout in the contact to their CEs).

GET_TIME_OUT "0x0008" <no opt. value used>

118

A.2 ControlFeeCom commands FED-API FeeCom commands

• Set dead band: Sets a new dead band for the specified FeeService. The new
dead band is given as a float number. A service update to PVSS is only triggered
at the FeeServer side, if the corresponding FeeService value exceeds the given
dead band around its last transmitted value. The mechanism of its application
is shown in figure A.1.
◦ Only possible targets are FeeServices; the InterComLayer has to determine the
hosting FeeServer and issues the command to the corresponding FeeServer.

SET_DEAD_BAND "0x0009" <dead band (float)>

• Get dead band: Requests the current dead band of the specified FeeService.
◦ Only possible targets are FeeServices, the InterComLayer has to determine the
hosting FeeServer and issues the command to the corresponding FeeServer.

GET_DEAD_BAND "0x000A" <no opt. value used>

A.2 ControlFeeCom commands

The ControlFeeCom commands do not return acknowledgements from the FeeServers.
The only command using the optional tag is the command "Update FeeServer". In
this case the tag determines the DCS Configuration DB entry for the binary of the
new FeeServer version. Defined commands for the ConfigureFeeCom channel:

• Update FeeServer: Copies a new binary of a FeeServer to the DCS board(s)
and restarts the new FeeServer(s) (uses the optional integer tag for retrieval of
the binary from the DCS Configuration DB).

FEESERVER_UPDATE_FLAG "0x0004" <integer tag>

• Restart FeeServer: Restarts the specified FeeServer(s).

FEESERVER_RESTART_FLAG "0x0008" <no opt. value used>

• Reboot DCS board: Reboots the DCS board(s) of specified FeeServer(s).

FEESERVER_REBOOT_FLAG "0x0010" <no opt. value used>

• Shutdown DCS board: Shuts down the corresponding DCS board(s).

FEESERVER_SHUTDOWN_FLAG "0x0020" <no opt. value used>

119

A.3 Message channel log levels FED-API FeeCom commands

• Exit FeeServer: Exits specified FeeServer(s).

FEESERVER_EXIT_FLAG "0x0040" <no opt. value used>

Figure A.1: Sketch of the dead band mechanism used in DCS-FEE. Only measurements,
exceeding the given dead band around its last transmitted value, are relayed to the DCS.

A.3 Message channel log levels

The log messages in the FeeCom chain, as well as in the general ALICE DCS system,
can have the following log types (severity of the message):

log type integer representation
MSG_INFO "0x01"
MSG_WARNING "0x02"
MSG_ERROR "0x04"
MSG_FAILURE_AUDIT "0x08"
MSG_SUCCESS_AUDIT "0x10"
MSG_DEBUG "0x20"
MSG_ALARM "0x40"

120

Appendix B

Usage of the HLT interfaces

B.1 Usage of the HLT-ECS interface

B.1.1 Start of the Logic Engine

The Logic Engine is normally started on the ECS side, but for local tests it is necessary
to have it running inside the HLT.

start-logic-engine.sh [Domain_Name]

Domain_Name: The domain name defines the partition of the HLT,
that shall be steered by this logic engine. The parameter is
optional, per default "ALICE_HLT" is used.

The starter script checks in regular time intervals, if the Logic Engine is still running
and restarts it automatically, if it has stopped. A ’Ctrl-C’(SIGINT signal) ends the
logic engine and the start-up script.

B.1.2 Start of the HLT-proxy

The HLT-proxy is running on the HLT side. Its start-up script mainly passes its pa-
rameters further to the HLT-proxy binary. Certain default settings for the parameters
are provided by the script and referred to the binary.
Usage of the start script:

start-hlt-proxy.sh [--domain <domain_name> --dimDnsNode <node_name>
--propertyFile <file_name> --logFile <file_name>
--debug --help] [-h]

GENERAL REMARK: All parameters are optional and passed to
’hlt_SM_proxy’, except for ’-h’, which prints out this usage.

121

B.1 Usage of the HLT-ECS interface Usage of the HLT interfaces

The script has a default for the domain (’ALICE_HLT’), which
is set, if absolutely no parameter is provided. As soon as one
parameter is set, the ’--domain <domain_name>’ has to be set
as well.

--domain: gives the domain name for the HLT-proxy. If no
parameter is given, ’ALICE_HLT’ is assumed and added to
the call of ’hlt_SM_proxy’ (proxy binary).

--dimDnsNode: defines the node, where the DIM_DNS is running.
(Can be set also as environment variable via
’DIM_DNS_NODE’).

--propertyFile: defines the name of the property file.
(Can be set also as environment variable via
’HLT_PROXY_PROPERTY_FILE’).

--logFile: defines the name of the to be used log file.
(Can be set also as environment variable via
’HLT_PROXY_LOGFILE_NAME’).

--debug: if provided, additional debug output is switched on.
(This parameter must not have any value.)

--help: prints out the help of ’hlt_SM_proxy’
(other parameters are ignored).

-h: prints out this usage, all other parameters are ignored.

The HLT-proxy binary accepts the following parameters:

hlt_SM_proxy --domain <domain name> [--dimDnsNode <node name>
--propertyFile <file name> --logFile <file name>
--debug --help]

--domain: necessary parameter, gives the domain name for the
HLT-proxy (mandatory).

--dimDnsNode: defines the node, where the DIM_DNS is running
(Can be set also as environment variable via
’DIM_DNS_NODE’).

--propertyFile: defines the name of the property file
(Can be set also as environment variable via

122

B.1 Usage of the HLT-ECS interface Usage of the HLT interfaces

’HLT_PROXY_PROPERTY_FILE’).

--logFile: defines the name of the to be used log file
(Can be set also as environment variable via
’HLT_PROXY_LOGFILE_NAME’).

--debug: optional parameter, if provided, then additional
debug output is switched on in the HLT-proxy.

--help: prints out this help.

B.1.3 Start of ECS test-GUI

The ECS test-GUI allows to monitor the current state of the HLT and to send tran-
sition commands plus additional parameters, if required. It is started by a dedicated
script for setting required environment variables. An example picture of the ECS
test-GUI is shown in figure B.1. Its usage is as the following:

start-test-gui.sh [Domain_Name]

Domain_Name: The domain name defines the partition of the HLT,
that shall be monitored by the ECS test-GUI. The parameter
is optional, per default "ALICE_HLT" is used.

Figure B.1: Screenshot of the ECS test-GUI, showing the HLT in INITIALIZED state and
preparing a CONFIGURE command plus parameters to be sent.

Remember, that Logic Engine, HLT-proxy and ECS test-GUI require a DIM_DNS
running in the same net. Its location has to be given by the environment variable

123

B.1 Usage of the HLT-ECS interface Usage of the HLT interfaces

DIM_DNS_NODE. In order to have a correct setup running all three components have to
use the same domain name. The default for the domain name in all three components
is "ALICE_HLT", which refers to an ALICE global run.

124

B.2 Usage of the Shuttle-Portal Usage of the HLT interfaces

B.2 Usage of the Shuttle-Portal

B.2.1 FXS-Subscriber parameters

The FXS-Subscriber, that handles the Shuttle-Portal, needs certain settings given as
parameters on start up (This component has to be started on one of the two interface
nodes to the CERN GPN [portal-shuttle0 or portal-shuttle1 on the HLT cluster]):

AliHLTFXSSubscriber -FXSBase <FXS base path> -DBName <data base name>
-DBHost <DB host name> -DBUser <DB user name>
-DBPasswd <DB password>

-FXSBase <base path>:
Base path of the File Exchange Server (most likely "/opt/FXS")

-DBName <data base name>:
Database name of Shuttle-Portal (most likely "hlt_logbook")

-DBHost <DB host name>:
Host name of the Shuttle-Portal’s MySQL DB (use "localhost";
the MySQL DB server has problems with the usage of
"*.internal", which has been chosen as internal HLT cluster
subnet name).

-DBUser <DB user name>:
User name to access the MySQL DB on the Shuttle-Portal node
(use "hlt").

-DBPasswd <DB password>:
Password for the given user of MySQL DB on the Shuttle-Portal
node (ask the Administrator).

e.g.: AliHLTFXSSubscriber -FXSBase /opt/FXS -DBName hlt_logbook
-DBHost localhost -DBUser hlt -DBPasswd XX

125

B.2 Usage of the Shuttle-Portal Usage of the HLT interfaces

B.2.2 XML example file for FXS-Subscriber configuration

In order to include the FXS-Subscriber in an analysis chain, it has to be included in
the chain configuration. The chain configuration is given by an XML file, which is
interpreted by the TMs. A sample XML file for the usage of the FXS-Subscriber is
shown below.

<?xml version="1.0" encoding="ISO-8859-1"?>
<SimpleChainConfig2 ID="HLT" verbosity="0x78">

<infoblock>
<author> SB </author>
<date> 09/17/08 </date>
<description>

XML example for the usage of the FXS-Subscriber in a chain
</description>

</infoblock>

<ALICE>
<Sources type="DDL">

<!-- Here comes in the definition of the SOURCE -->
</Sources>

<FXS> <!-- FXS-Portal component -->
<Base> /opt/FXS </Base>
<!-- base directory for FXS, mandatory -->

<DB> hlt_logbook </DB>
<!-- The name of the DB to use, mandatory -->

<User> hlt </User>
<!-- the username for accessing the DB, mandatory -->

<Password> ***** </Password>
<!-- the password for accessing the DB, mandatory -->

<!--<Node> portal-shuttle0 </Node>-->
<!-- An additional node on which an FXS should be run,

optional, can occur multiple times -->

<!--<NodeExclude> portal-shuttle1 </NodeExclude>-->
<!-- Exclude the given node, run no FXS on this node,

optional, can occur multiple times -->

<Parent> TPC/DA4FXS </Parent>
<!-- at least one is mandatory -->

126

B.2 Usage of the Shuttle-Portal Usage of the HLT interfaces

</FXS>

<!-- Here comes in the Publisher options -->

<TPC>
<Component ID="DA4FXS">

<ComponentID> TPCCalibComp </ComponentID>

<Options>
<!-- Options of the calibration component -->

</Options>

<Shm blocksize="2M" blockcount="100"/>
<Multiplicity> 1 </Multiplicity>

<Library>
<!-- The Library containing the component -->

</Library>
</Component>

</TPC>

</ALICE>
</SimpleChainConfig2>

127

B.3 Usage of the Taxi Usage of the HLT interfaces

B.3 Usage of the Taxi

The Taxi application for fetching calibration objects from the OCDB is started by a
script called "TaxiDriver.sh". It has the following usage:

Usage (Version: 2.1.1):
TaxiDriver.sh <AliEn_user> <OCDB_path> <THCDB_path> <Calibration_list>

<PW_file> <Request_type> [Time_interval]

AliEn_user: the name of the corresponding AliEn user
(registered for the used GRID certificate).

OCDB_path: path to the used OCDB file catalogue in AliEn (GRID)
or to a local file catalogue storing entries to be
fetched. Which type (AliEn-GRID or local) is defined
by parameter ’<Request_type>’.
To take the path matching for the current LHC period
use the environment variable ’LHC_PERIOD_OCDB_PATH’.

THCDB_path: path to the local T-HCDB file catalogue. This should
be set to the environment variable ’ALIHLT_T_HCDBDIR’.

Calibration_list: file name or folder name containing the list(s)
of to be fetched calibration objects. If a folder name
is given, the lists from this folder are merged.
Since version 2.0, the Taxi can handle the wildcard
character ’*’ in the entries of the lists. The ’*’
can be written instead of a complete folder name. It
can be used to fetch all entries for a detector
(e.g. "TPC/*").
NOTE: This applies for the list entries, not for the
parameter ’Calibration_list’.

PW_file: file containing the certificate passphrase (incl. path).

Request_type: defines, if a AliEn-GRID request or local request
shall be made. If AliEn-GRID, the parameter has to be
set to ’alien’, if local, the parameter has to be set
to ’local’. For both types the path for the request
is given by the parameter ’OCDB_path’.

Time_interval: the time interval, after which the Taxi should
repeat its task. The interval is given in minutes.
(optional parameter: If it is left empty or is set
to 0, then Taxi exits after a single turn -

128

B.3 Usage of the Taxi Usage of the HLT interfaces

no automatic repetition.)

e.g. TaxiDriver.sh bablok /alice/data/2008/LHC08d/OCDB /opt/T-HCDB
/opt/T-HCDB/lists/lists-taxi /path/xY alien

or
TaxiDriver.sh roehrich $LHC_PERIOD_OCDB_PATH /opt/T-HCDB

/opt/T-HCDB/lists/lists-taxi /path/xY alien 30

NOTE: In order to have the Taxi monitored by SysMES, the log
output of the Taxi has to be piped to the following file:
’/tmp/taxi.log’.
Monitoring is only done, if the Taxi runs on ’portal-taxi0’
or ’portal-taxi1’. Use the following command for proper log
monitoring of the Taxi:

TaxiDriver.sh roehrich /alice/data/2008/LHC08d/OCDB /opt/T-HCDB
/opt/T-HCDB/lists/lists-taxi /path/xY alien 30
>> /tmp/taxi.log

129

B.4 Usage of the Pendolino Usage of the HLT interfaces

B.4 Usage of the Pendolino

The Pendolino application prepares the HCDB and fetches DCS values from the DCS
Archive DB during a run. It is started by a script called "StartPendolino.sh", with
the following usage:

Usage (v1.2.0):
StartPendolino.sh <Current_Run_Number> [Master_TaskManager_Address]

[Num_of_Pendolinos] [Beam_Type] [Run_Type] [Detector_List]

Current_Run_Number: The run number of the current run,
(should be provided by the starting RunManager).

Master_TaskManager_Address (optional): The address, where the
RunManager can be contacted for notification about
HCDB updates. When this parameter is not provided,
the default is taken.
(Default: tcpmsg://portal-ecs0.internal:20100)

Num_of_Pendolinos (optional): The number of Pendolinos, that
shall be started. Only a number of 1 to 3 Pendolinos
are accepted; default is number 1.
Note: If the number of Pendolinos is provided, the
’Master_TaskManager_Address’ has to be given as well.

Beam_Type, Run_Type, Detector_List (optional): Initial run
parameters given by ECS at start up. NOTE: When these
parameters are given, ’Master_TaskManager_Address’
and ’Num_of_Pendolinos’ have to be provided as well.

e.g. StartPendolino.sh 66 tcpmsg://portal-ecs0.internal:20100 2
pp PHYSICS ALICE_ALL

NOTE: In order to have the Pendolino starter log monitored by
SysMES, the command line output has to be piped to:
’/tmp/pendolino-starter.log’.
(Monitoring only on ’portal-dcs0’ and ’portal-dcs1’.)
The actual Pendolinos store their log output in:
’/tmp/pendolino-<type>.log’, where <type> is either ’fast’,
’normal’ or ’slow’. These files are also monitored by SysMES.

e.g. StartPendolino.sh 8 tcpmsg://portal-ecs0.internal:20100 3
pp PHYSICS ALICE_ALL > /tmp/pendolino-starter.log 2>&1

Additional remark: When starting the Pendolino from any operator,

130

B.4 Usage of the Pendolino Usage of the HLT interfaces

but the hlt-operator, dedicated operator log files for the
actual Pendolinos are used:
’/tmp/pendolino-<type>-test.log-<operatorName>’.
In addition the real HCDB (’/opt/HCDB’) is only used for the
hlt-operator; other operators get a HCDB copy in their home
folder: ’/afsuser/<operator>/HCDB’. The environment variable
’ALIHLT_HCDBDIR’ normally defines the used path to the HCDB.

In order to have the Pendolino application automatically started by the HLT Run-
Manager, a wrapper script around the actual starter script has to be called by the
RunManager1:

RunManager-PendolinoWrapper.sh <Current_Run_Number>
<Master_TaskManager_Address> <Num_of_Pendolinos>
<Log_File_Name> [Beam_Type] [Run_Type] [Detector_List]

Current_Run_Number: The run number of the current run,
(has to be provided by the RunManager).

Master_TaskManager_Address: The address, where the RunManager
can be contacted for notification of HCDB updates.

Num_of_Pendolinos: The number of Pendolinos, to be started.
Only a number of 1 to 3 Pendolinos are accepted.

Log_File_Name: The log file name, where the Pendolino starter
script puts its log output. Normally it should be
set to: ’/tmp/pendolino-starter.log’.

Beam_Type: The beam type, used for the initial GRP T-HCDB entries
(this is given by the ECS).

Run_Type: The current run type, used for the initial GRP T-HCDB
entries (this is given by the ECS).

Detector_List: List of participating detectors, used for initial
GRP T-HCDB entries (this is given by the ECS).

e.g. RunManager-PendolinoWrapper.sh 66
tcpmsg://portal-ecs0.internal:20100 2
/tmp/pendolino-starter.log pp PHYSICS ALICE_ALL

1This wrapper script has been introduced to have proper logging of the Pendolino application,
when started remotely by the RunManager.

131

B.5 Usage of the FED-Portal Usage of the HLT interfaces

B.5 Usage of the FED-Portal

The FED-Subscriber for publishing data over the FED-API needs certain settings
given as parameters on start up. The component has to be started on a node con-
nected to the DCS CR as well (portal-dcs0 or portal-dcs1):

AliHLTFEDSubscriber -dimServiceName <name>
-channelType <SingleServiceChannelInt |

SingleServiceChannelChar |
SingleServiceChannelFloat |
GroupedServiceChannel>

[-dimDnsNode <node name>]

-dimServiceName <name>:
Name of the Dim Service to create.

-channelType <SingleServiceChannelInt | SingleServiceChannelChar |
SingleServiceChannelFloat | GroupedServiceChannel>:

Determines the FED-API channel type. The channel structure
is defined implicitly ([I:1;F:1;C] - Single Services;
[I:1;F:1;C:256;C:256] for Grouped Services).

-dimDnsNode <node name>:
Specifies the node, where the DIM_DNS is running. If not
provided as command line parameter, it has to be set as an
environment variable. (semi-optional)

e.g.: AliHLTFEDSubscriber -dimServiceName TPC-drift-velocity
-channelType SingleServiceChannelFloat
-dimDnsNode alidcs-hlt01.cern.ch

132

B.6 Usage of the HCDBManager script Usage of the HLT interfaces

B.6 Usage of the HCDBManager script

The HCDBManager script is used to insert objects into the HCDB manually. This
script can either be called before a run to enter an initial configuration or during a
run to change current configurations. Most of the settings are given as command line
parameters, but a few settings have to be given interactively during the execution:

Usage (v1.3.1):
InsertInHCDB.sh <[--string <Configuration_String>]

[--file <filename>]> <--name ObjectName>
<--range startRun endRun> <--detector DetectorName>
[--permanent] [--help]

This command line tool allows to enter configuration entries in
the HCDB. After inserting the entry into the HCDB, the script
prompts to let the user specify, which component shall be notified
about the new entry. The notification is performed by the Master-
TaskManagers using a special software event. Targets can be a
single component or a list of components separated by a blank ’ ’.
If no component shall be specified, just hit ’RETURN’ when asked
for the component names. Wildcards are possible.
In addition the partition / detector corresponding the current
Master-TaskManager has to be specified; for a global run use
’ALICE’.

--string: Following parameter is a configuration string, that
shall be converted to a configuration object. A string
containing blanks has to be surrounded by ’ ’ .
(e.g. --string ’HV=5 LV=3’)

--file: Following parameter is ROOT-filename (inclusive path),
that shall be inserted to the HCDB.
(e.g. --file /tmp/TrackerConf.root)
NOTE: The name of the TObject inside the ROOT-file has to
be the same like the ’ObjectName’ provided by parameter
’--name’ -> the configuration object name will be the same
like the name of the inserted TObject.

--name: Following parameter is the name of the configuration
object, that shall be used in the HCDB for this object.
NOTE: The name will be prefixed by the following subfolder
structure in the HCDB:
HLT/Config<DetectorName>,
in case of storage in temporary mode; else HLT is replaced

133

B.6 Usage of the HCDBManager script Usage of the HLT interfaces

by HLTPermanent, (see below).
Accessable by:
HLT/Config<DetectorName>/<ObjectName>.
NOTE: The first part of the path will be either HLT for
temporary storage in HCDB (deleted before (!) next run)
or HLTPermanent for permanent storage inside the HCDB
(see also ’--permanent’).

--range: Following two parameters define the run range (’startRun’
until ’endRun’), for which the configuration object shall
be valid.
(e.g. --range 13 678; use ’-1’ as ’endRun’ for infinite
validity)

--detector: Following parameter defines the detector for which
this configuration object is designed. The detector name
is added to the subPath2 in the HCDB folder structure;
see description of ’--name’ above. Use the detector
abbreviations (TPC, TRD, ...).

--permanent (optional): Defines, if configuration object shall be
stored to the permanent section of the HCDB. When
provided, the permanent storage will be used.
Temporary storage path is:
’HLT/Config<DetectorName>/<ObjectName>’
Permanent storage path is:
’HLTPermanent/Config<DetectorName>/<ObjectName>’

--help: Prints out this usage.

Either ’--string <Configuration_String>’ OR ’--file <filename>’ has
to be provided together with ’--name ObjectName’.

NOTE (I): The order of the given parameters is important:
First ’--string’ (or ’--file’), then ’--name’ followed by
’--range’ and ’--detector’, as last (optionally) ’--permanent’

NOTE (II): The environment variable ’ALIHLT_HCDBDIR’ has to be set
in order to run the script. Current value is: ’/opt/HCDB’ .

e.g. InsertInHCDB.sh --string ’HV=5 LV=3’ --name TrackerVoltageSet
--range 13 678 --detector MUON

134

B.6 Usage of the HCDBManager script Usage of the HLT interfaces

e.g. InsertInHCDB.sh --file AliESDs.root --name esdTree --range 12 -1
--detector PHOS --permanent

After the script has inserted the calibration object into the HCDB, the user can type in
according information about which component shall be notified and on which partition
the corresponding Master-TaskManager is running. Both parameters are taken by
the TM_notifier tool and used by the TM framework to create and percolate the
according notification event through the analysis chain. This is only relevant in case
a reconfiguration of (a) component(s) shall be issued.

Please specify the component(s) [separated by ’ ’ (blank space)],
that shall be notified about the new entry. If left blank, all
current components are notified:

$ <insert component name>

And now please enter the partition (detector) of the corresponding
Master-TaskManager; for global run partition enter ’ALICE’,
(if left blank the default (’ALICE’) is used):

$ <insert partition name of Master TaskManager>

135

Appendix C

ALICE HLT Collaboration

Kenneth Aamodt1, Torsten Alt2, Harald Appelshäuser3, Sebastian R. Bablok4, Bruce
Becker5, Stefan Böttger2, Sukalyan Chattopadhyay6, Corrado Cicalo5, Jean

Cleymans7, Indranil Das6, Gareth de Vaux7, Øystein Djuvsland4, Roger Fearick7,
Øystein Haaland8, Håvard Helstrup8, Kirstin F. Hetland8, Per Thomas Hille1,

Kalliopi Kanaki4, Sebastian Kalcher2, Udo Kebschull2, Camilo Lara2, Dag Larsen4,
Volker Lindenstruth2, Gunnar Lovhoiden1, Davide Marras5, Joakim Nystrand4, Ralf

Panse2, Mateusz Ploskon9, Matthias Richter4, Dieter Röhrich4, Sabyasachi
Siddhanta5, Bernhard Skaali1, Kyrre Skjerdal4, Timm M. Steinbeck2, Artur Szostak5,
Jochen Thäder2, Trine Tveter1, Kjetil Ullaland4, Zeblon Vilakazi7, Boris Wagner4,

Pierre Zelnicek2, Gaute Øvrebekk4,

1Department of Physics, University of Oslo, Norway
2Kirchhoff Institute of Physics, Ruprecht-Karls-University Heidelberg, Germany

3Institute for Nuclear Physics, University of Frankfurt, Germany
4Department of Physics and Technology, University of Bergen, Norway

5I.N.F.N. Sezione di Cagliari, Cittadella Universitaria Cagliari, Italy
6Saha Institute of Nuclear Physics, Kolkata, India

7UCT-CERN, Department of Physics, University of Cape Town, South Africa
8Faculty of Engineering, Bergen University College, Norway

9Lawrence Berkeley National Laboratory, University of Berkley, USA

(42 physicists from 9 institutions)

136

Appendix D

Publications

As main contributor

• S. Bablok, E.S. Conner, G. Hartung, R. Keidel, C. Kofler, T. Krawutschke, V.
Lindenstruth and D. Röhrich: Front-End-Electronics Communication software
for multiple detectors in the ALICE experiment, Nuclear Instruments and Meth-
ods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment Volume 557, Issue 2, 15 February 2006

• S. Bablok, et al.: ALICE HLT interfaces and data organisation, Proc. of Com-
puting in High Energy Physics Conf. 2006 (CHEP 2006) - Mumbai (India), 2006,
ed S. Banerjee vol 1 (India: Macmillian India Ltd) pp 96-99, ISBN-10: 0-230-
63016-2; ISBN-13: 978-0230-63016-1

• The ALICE Collaboration, K. Aamodt, et al.1: The ALICE Experiment at the
CERN LHC, Journal of Instrumentation, 2008_JINST_3_S08002, 2008

• S. Bablok, et al.: High Level Trigger Online Calibration framework in ALICE,
Proc. of Computing in High Energy Physics Conf. 2007 (CHEP 2007) - Victoria
BC. (Canada), Journal of Physics: Conference Series (JPCS) vol 119, 022007,
by IOP Publishing, 2008

• S. Bablok: Communication Software for the ALICE Detector Control System at
CERN, VDM Verlag Saarbrücken (Germany), Mai 2008, ISBN: 3-639-01913-X,
ISBN-13: 978-3639-01913-1

As collaborator

• M. Richter, J. Alme, et al.: DCS Communication Software for the ALICE TPC
Front-End-Electronics, CERN Reports, 2005-011. (358-362)

1My contribution to this paper is located in the HLT chapter, mainly on section 6.3.5 "HLT
interfaces to other online systems and offline".

137

Publications

• J. Alme, M. Richter, et al.: A distributed, heterogeneous control system for
the ALICE TPC electronics, International Conference Workshops on Parallel
Processing 2005, ICPP 2005 Workshops, Oslo (Norway), 14-17 June 2005

• M. Richter, et al: Communication software for the ALICE TPC front-end elec-
tronics, Prepared for 11th Workshop on Electronics for LHC and Future Exper-
iments (LECC 2005), Heidelberg (Germany), 12-16 September 2005 - Published
in "Heidelberg 2005, Electronics for LHC and future experiments"

• M. Richter, J. Alme, et al.: The control system for the front-end electronics of
the ALICE time projection chamber, Proc. of the Real Time Conference 2005,
14th IEEE-NPSS, Stockholm (Sweden), 4-10 June 2005 - published in IEEE
Transactions on Nuclear Science, Volume 533 No 3 Part 1, June 2006, ISSN:
0018-9499

• The ALICE Collaboration, et al.: ALICE Technical Design Report of the Com-
puting, CERN-LHCC-2005-018, ALICE TDR 012, Printed at CERN, June 2005,
ISBN 92-9083-247-9

• T. Alt, H. Appelshäuser, et al.: Benchmarks and implementation of the ALICE
High Level Trigger, IEEE Transactions on Nuclear Science, Volume 53, Issue 3,
Part 1, June 2006

• The ALICE Collaboration, et al.: ALICE: Physics Performance Report, Volume
II, Journal of Physics G: Nuclear and Particle Physics 32 (1295-2040), September
2006

• M. Richter, et al.: High Level Trigger Applications for the ALICE Experiment,
IEEE Transactions on Nuclear Science, Volume: 55, Issue: 1, Part 1, February
2008

• The ALICE Collaboration, et al.: ALICE Electromagnetic Calorimeter - Techni-
cal Design Report, CERN-LHCC-2008-014, ALICE-TDR-014, Printed at CERN,
September 2008, ISBN 978-92-9083-320-8

Additionally, a total number of 93 publications credited as member of the ALICE
Collaboration and the ALICE TPC Collaboration are listed since 2005 (based on
results at SPIRES-HEP search).

138

Bibliography

[1] The ALICE Collaboration, et al.: ALICE : Physics Performance
Report, Volume II J. Phys. G: Nucl. Part. Phys. 32 (2006) 1295-
2040, 2006

[2] S. Eidelman, et al.: Particle Physics Booklet 2004, extracted from
the Review of Particle Physics, Physics Letters B592, 1 (2004), July
2004

[3] CERN faq LHC the guide, Communication Group, CERN-
Brochure-2008-001-Eng, January 2008
http://cdsweb.cern.ch/record/1092437/files/CERN-
Brochure-2008-001-Eng.pdf

[4] B. Povh, K. Rith, C. Scholz, F. Zetsche: Teilchen und Kerne (6.
Auflage), Springer Verlag Berlin Heidelberg New York, ISBN: 3-
540-21065-2, Januer 2004

[5] Particle Data Group: Particle Physics Booklet (2006), Institute of
Physics Publishing, July 2006

[6] ALICE Technical Proposal for A Large Ion Collider Experiment
at the CERN LHC, Printed at CERN, CERN-LHCC-95-71, ISBN:
92-9083-077-8, December 1995

[7] ALICE Technical Design Report of the Trigger, Data Acquisition,
High-Level Trigger and Control System, ALICE TDR 010, Printed
at CERN, CERN-LHCC-2003-062, ISBN: 92-9083-217-7, December
2003

[8] The ALICE Collaboration, K. Aamodt, et al., The ALICE Experi-
ment at the CERN LHC, 2008_JINST_3_S08002, 2008

[9] L. Betev, P. Chochula: Definition of the ALICE Coordinate
System and Basic Rules for Subdetector Components Number-
ing, ALICE internal note ALICE-INT-2003-038, EDMS: 406391;
https://edms.cern.ch/document/406391/2

139

BIBLIOGRAPHY BIBLIOGRAPHY

[10] ALICE ITS TDR - Technical Design Report of the Inner Tracking
System (ITS), ALICE TDR 04, Printed at CERN, CERN-LHCC-
99-12, ISBN: 92-9083-144-8, June 1999

[11] ALICE TPC TDR - Technical Design Report of the Time Projection
Chamber (TPC), ALICE TDR 07, Printed at CERN, CERN-LHCC-
2000-001, ISBN: 92-9083-155-3, January 2000

[12] ALICE TRD TDR - Technical Design Report of the Transition Ra-
diation Detector (TRD), ALICE TDR 09, Printed at CERN, CERN-
LHCC-2001-021, ISBN: 92-9083-184-7, October 2001

[13] ALICE TOF TDR - Technical Design Report of the Time-Of-Flight
(TOF) detector, ALICE TDR 08, Printed at CERN, CERN-LHCC-
2000-12, ISBN: 92-9083-159-6, February 2000

[14] ALICE PHOS TDR - Technical Design Report of the Photon Spec-
trometer, ALICE TDR 02, Printed at CERN, CERN-LHCC-99-4,
ISBN: 92-9083-138-3, December 1999

[15] ALICE HMPID TDR - Technical Design Report of the High Mo-
mentum Particle Identification Detector (HMPID), ALICE TDR
01, Printed at CERN, CERN-LHCC-98-19, ISBN: 92-9083-134-0,
August 1998

[16] ALICE DiMUON TDR - Technical Design Report of the Dimuon
Forward Spectrometer, ALICE TDR 5, Printed at CERN, CERN-
LHCC-99-22, ISBN: 92-9083-148-0, August 1999

[17] ALICE Addendum to the Technical Design Report of the Dimuon
Forward Spectrometer, Addendum 1 to ALICE TDR 5, Printed
at CERN, CERN-LHCC-2000-046, ISBN: 92-9083-173-1, December
2000

[18] ALICE Technical Design Report on Forward Detectors: FMD, T0
and V0, ALICE TDR 011, Printed at CERN, CERN-LHCC-2004-
025, ISBN: 2-9083-229-0, September 2004

[19] ALICE PMD TDR - Technical Design Report of the Photon Multi-
plicity Detector, ALICE TDR 6, Printed at CERN, CERN-LHCC-
99-32, ISBN: 92-9083-153-7, September 1999

[20] ALICE ZDC TDR - Technical Design Report of the Zero Degree
Calorimeter, ALICE TDR 3, Printed at CERN, CERN-LHCC-99-
5, ISBN: 92-9083-139-1, March 1999

[21] ALICE EMCal TDR - Technical Design Report of the Electromag-
netic Calorimeter (EMCal), Printed at CERN, CERN-LHCC-2006-
014, ISBN: 92-9083-270-3, April 2006

140

BIBLIOGRAPHY BIBLIOGRAPHY

[22] ROOT homepage: http://root.cern.ch

[23] AliRoot homepage:
http://aliceinfo.cern.ch/Offline/AliRoot/Manual.html

[24] Microsoft Encarta 2005 about Monte Carlo simulations

[25] FLUKA homepage: http://www.fluka.org/

[26] GEANT homepage:
http://wwwasd.web.cern.ch/wwwasd/geant/

[27] Geant 4 homepage:
http://geant4.web.cern.ch/geant4/

[28] LCG homepage: http://lcg.web.cern.ch/LCG/

[29] MONARC homepage: http://monarc.web.cern.ch/MONARC/

[30] P. Buncic, A. J. Peters, P. Saiz: The AliEn system, status and
perspectives, Proceedings of the CHEP 2003 - Conference for Com-
puting in High-Energy and Nuclear Physics, La Jolla (California),
pp MOAT004, March 2003

[31] P. Saiz, et al: AliEn - ALICE environment on the GRID, Nuclear
Instruments and Methods A502: 437-440, 2003

[32] A. J. Peters, P. Buncic, P. Saiz: AliEnFS: A Linux file system for
the AliEn grid services, Proceedings of the CHEP 2003 - Confer-
ence for Computing in High-Energy and Nuclear Physics, La Jolla
(California), pp THAT005, March 2003

[33] The Offline Conditions DB framework:
http://aliceinfo.cern.ch/Offline/Activities/
ConditionDB.html

[34] ALICE Technical Design Report of the Computing, ALICE TDR
012, Printed at CERN, CERN-LHCC-2005-018, ISBN: 92-9083-247-
9, June 2005

[35] The ALICE Offline Manual:
http://aliceinfo.cern.ch/export/download/Offline
Download/OfflineBible.pdf

[36] J. Alme, et al: Radiation-Tolerant, SRAM-FPGA Based Trigger
and Readout Electronics for the ALICE Experiment, IEEE Trans-
actions on Nuclear Science, Volume 55, Issue 1, Part 1, February
2008, Digital Object Identifier 10.1109/TNS.2007.910677

141

BIBLIOGRAPHY BIBLIOGRAPHY

[37] M. Munkejord, A. Stangeland, et al: Busy Generation in a large
Trigger Based Data Acquisition System, in Proceedings of the 4th
FPGAworld Conference, Lund and Stockholm (Sweden), 11. - 13.
September 2007, ISSN 1404-3041 ISRN MDH-MRTC-215/2007-1-
SE

[38] M. Munkejord: Development of the ALICE Busy Box, Master The-
sis at Department of Physics and Technology (University of Bergen),
October 2007

[39] S. Chapeland, et al: Commissioning of the ALICE Data Acquisition
system, Proceedings of the CHEP 2007 - International Conference
on Computing for High Energy Physics, Victoria BC. (Canada),
published in Journal of Physics: Conference Series (JPCS) vol 119,
022006, by IOP Publishing, 2008

[40] S. Bablok, et al: High Level Trigger Online Calibration framework in
ALICE, Proceedings of the CHEP 2007 - International Conference
on Computing for High Energy Physics, Victoria BC. (Canada),
published in Journal of Physics: Conference Series (JPCS) vol 119,
022007, by IOP Publishing, 2008

[41] Lemon homepage:
http://lemon.web.cern.ch/lemon/index.shtml

[42] T. M. Steinbeck: A Modular and Fault-Tolerant Data Transport
Framework (Dissertation), University of Heidelberg (Germany),
April 2004,
http://www.ub.uni-heidelberg.de/archiv/4575

[43] T. M. Steinbeck, et al: A Control Software for the ALICE High Level
Trigger, Proceedings of the Computing in High Energy Physics 2004
(CHEP04), Interlaken (Switzerland), 2004

[44] T. M. Steinbeck, et al: New experiences with the ALICE High Level
Trigger Data Transport Framework, Proceedings of the Computing
in High Energy Physics 2004 (CHEP04), Interlaken (Switzerland),
2004

[45] S. Bablok, et al: ALICE HLT interfaces and data organisation, Pro-
ceedings of the CHEP 2006 - International Conference on Comput-
ing for High Energy Physics, Mumbai (India), Macmillian India Ltd,
ed S. Banerjee vol 1, pp 96-99, ISBN-10: 0230-63016-2; ISBN-13:
978-0230-63016-1, 2007

[46] J. Wagner, et al: Lossless Data Compression for ALICE HLT, AL-
ICE internal note ALICE-INT-2008-020 v1, EDMS: 948159, August

142

BIBLIOGRAPHY BIBLIOGRAPHY

2008; https://edms.cern.ch/file/948159/1/ALICE-INT-2008-
020.pdf

[47] C. Kofler: Design and realisation of a communication software to
configure and control distributed embedded devices in a large scale
research project at CERN, Diploma Thesis, University of Applied
Sciences, Worms, February 2005

[48] B. Schockert: Development of Command and Database interfaces
for a distributed Control System in the context of a large scale
research project at CERN, Diploma Thesis, University of Applied
Sciences, Worms, June 2006

[49] S. Bablok: Development and implementation of a safe and efficient
communication software in a heterogeneous system environment of
a major research project, Diploma Thesis, University of Applied
Science Worms, June 2004

[50] S. Bablok: Communication Software for the ALICE Detector Con-
trol System at CERN, VDM Verlag, Saarbrücken (Germany), Mai
2008, ISBN: 3-639-01913-X

[51] S. Bablok, E.S. Conner, et al: Front-End-Electronics Communi-
cation software for multiple detectors in the ALICE experiment,
Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment
Volume 557, Issue 2, 15 February 2006

[52] J. Alme: Firmware Development and Integration for ALICE
TPC and PHOS Front-end Electronics (Dissertation), University
of Bergen (Norway), ISBN: 978-82-308-0658-6, October 2008

[53] J. Alme, M. Richter, et al: A distributed, heterogeneous control
system for the ALICE TPC electronics, International Conference
Workshops on Parallel Processing (ICPP) 2005 Workshops, 14-17
June 2005

[54] M. Richter, J. Alme, et al: The control system for the front-end
electronics of the ALICE time projection chamber, Proceedings of
Real Time Conference, 2005. 14th IEEE-NPSS, 4-10 June 2005;
published in IEEE Transactions on Nuclear Science / Volume 533,
No 3, Part 1 / June 2006 / ISSN 0018-9499

[55] M. Richter, J. Alme, et al: DCS Communication Software for the
ALICE TPC Front-End-Electronics CERN Reports, 2005-011. (358-
362)

143

BIBLIOGRAPHY BIBLIOGRAPHY

[56] M. Richter et al: Communication software for the ALICE TPC
front-end electronics, Prepared for 11th Workshop on Electronics for
LHC and Future Experiments (LECC 2005), Heidelberg (Germany),
12-16 September 2005; Published in "Heidelberg 2005, Electronics
for LHC and future experiments"

[57] C. Gaspar, J. Schwarz: A Highly Distributed Control System for a
Large Scale Experiment, Presented at: 13th IFAC workshop on Dis-
tributed Computer Control Systems - DCCS 95, Toulouse (France),
September 1995

[58] C. Gaspar, M. Dönszelmann, Ph. Charpentier: DIM, a Portable,
Light Weight Package for Information Publishing, Data Transfer
and Inter-process Communication, Presented at: International Con-
ference on Computing in High Energy and Nuclear Physics 2000,
Padova (Italy), February 2000

[59] Private communication with Dr. Peter Chochula (CERN, Geneva,
Switzerland)

[60] RFC of the Internet Engineering Task Force about Multicast:
http://tools.ietf.org/html/rfc3170

[61] S. Bablok, P. Chochula, et al: FedServer API for ALICE DCS,
http://alicedcs.web.cern.ch/AliceDCS/Documents/
FedServerAPI.pdf

[62] Private communication with Benjamin Schockert (Zentrum für
Technologietransfer und Telekommunikation - ZTT, University of
Applied Science Worms, Germany)

[63] M. Jeckle, et al: UML 2 glasklar, Carl Hanser Verlag, München
(Germany), ISBN: 3-446-22575-7, 2004

[64] B. Franek, C. Gaspar: SMI++ object oriented framework for design-
ing and implementing distributed control systems, Nuclear Science
Symposium Conference Record, page 1831-1835 Vol. 3, 2004 IEEE,
16-22 Oct. 2004, E-ISBN: 0-7803-8701-5, ISSN: 1082-3654, ISBN:
0-7803-8700-7

[65] B. Franek, C. Gaspar: SMI++ - Object Oriented Framework for
Designing Control Systems for HEP Experiments, Proceedings of
the CHEP 97 - International Conference on Computing for High
Energy Physics, Berlin (Germany), Apr 7-11 1997

[66] SMI++ homepage: http://smi.web.cern.ch/smi/

144

BIBLIOGRAPHY BIBLIOGRAPHY

[67] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns,
Addison-Wesley Professional Computing Series, Boston (USA),
ISBN 0-201-63361-2, April 2005

[68] R. Divià, T. M. Steinbeck: Data format and spec-
ifications for the HLT-to-DAQ interface, ALICE in-
ternal note ALICE-INT-2007-015 v2, EDMS: 871995;
https://edms.cern.ch/file/871995/2/ALICE-INT-2007
-015.pdf

[69] C. Cheshkov, R. Divià, T. M. Steinbeck: Identifi-
cation of DDL links in ALICE data, ALICE inter-
nal note ALICE-INT-2007-016 v3, EDMS: 871996;
https://edms.cern.ch/file/871996/3/ALICE-INT-2007
-016.pdf

[70] Private communication with Dr.TimmMorton Steinbeck (Kirchhoff
Institute for Physics, University of Heidelberg, Germany)

[71] A. Colla, J. F. Grosse-Oetringhaus: The Shuttle Framework - A
system for automatic readout and processing of conditions data,
ALICE internal note ALICE-INT-2008-011 v1, EDMS: 924807, May
2008; https://edms.cern.ch/file/924807/1/ALICE-INT-2008-
011.pdf

[72] MySQL++ homepage: http://tangentsoft.net/mysql++/

[73] MySQL Community Server pages:
http://dev.mysql.com/downloads/mysql/5.0.html

[74] RFC of the Internet Engineering Task Force about MD5 checksum:
http://tools.ietf.org/html/rfc1321

[75] L. Betev, P. Chochula: Naming and Numbering Conven-
tion for ALICE detector part identification - Generic Scheme,
ALICE internal note ALICE-INT-2003-039, EDMS: 406393;
https://edms.cern.ch/document/406393/1

[76] ROOT documentation on ROOT files:
ftp://root.cern.ch/root/doc/11InputOutput.pdf

[77] J. Wagner: Data compression for the ALICE detector (Diploma
thesis), University of Heidelberg (Germany), 2008,

[78] Private communication with Svetozar Kapusta (CERN, Geneva,
Switzerland)

145

BIBLIOGRAPHY BIBLIOGRAPHY

[79] S. Kapusta, et al: Data Flow in ALICE Detector Control System,
Poster at the 11th International Vienna Conference on Instrumen-
tation, Vienna (Austria), February 19Ű24, 2007

[80] ALICE DCS AMANDA pages:
http://alice-project-dcs-amandaserver.web.cern.ch/
alice-project-dcs-amandaserver

[81] D. A. Huffman, A Method for the Construction of Minimum-
Redundancy Codes, Proceedings of the I.R.E., pp 1098-1102,
September 1952

146

Glossary

ACK ACKnowledge
ACORDE ALICE COsmic Ray DEtector
ACR Alice Control Room
ADMP2 AliDCS Message Protocol 2
AFS Andrew File System
ALICE A Large Ion Collider Experiment
AliEn Alice Environment
AliEve Alice Event Visualisation Environment
AliRoot Alice Root
alt. alternative(ly)
AMANDA Alice MANager for DCS Archives
AMD Advanced Micro Devices
APD Avalanche Photo Diode
API Application Programming Interface
ARM Advanced RISC Machines
ATLAS A Toroidal LHC ApparatuS
av. average
BLOB Binary Large OBject
BNL Brookhaven National Laboratory
C2H2F4 Tetrafluoroethane
C6F14 Perfluorohexane
CA Control Agent
CASTOR CERN Advanced STORage manager
CDB Conditions DataBase
CDH Common Data Header
CE Control Engine
CERN Conseil Europeen pour la Recherche Nucleaire (European Organ-

isation for Nuclear Research)
cf. confer (compare to)
CH4 Methane
CHARM Computer Health And Remote Management
CIA Cluster Interface Agent
CINT C INTerpreter
cm centimeter
Cmd Command

147

BIBLIOGRAPHY BIBLIOGRAPHY

CMS Compact Muon Solenoid
CO2 Carbon DiOxid
CoCo CommandCoder
Cool Cooling
CPU Central Processing Unit
CPV Charged Particle Veto
CR Counting Room
CsI Caesium Iodide
CTP Central Trigger Processor
CU Control Unit
D-RORC DAQ - ReadOut Receiver Card
DA Detector Algorithm
DAQ Data AcQuisition
DB DataBase
DCS Detector Control System
DDL Detector Data Link
DDR-SDRAM . . . Double Data Rate Synchronous Dynamic Random Access Memory
DELPHI DEtector with Lepton, Photon and Hadron Identification
DID Distributed Information Display
DIM Distributed Information Managment
DIU Destination Interface Unit
DMA Direct Memory Access
DNS Domain Name Service
DP DataPoint
DS DAQ Services
DU Device Unit
ECS Experiment Control System
EDM Event Distribution Manager
EMCal ElectroMagnetic Calorimeter
EoD End-of-Data
EoR End-of-Run
EPICS Experimental Physics and Industrial Control System
ESD Event Summary Data
et al et alii (and others)
etc. et cetera (and so forth)
eV electron Volt
EVGEN EVent GENerator
FAIR Facility for Antiprotons and Ions Research
FC File Catalogue
FEC Front End Card
FED... Front End Device ... (alt. Fed)
FEE... Front End Electronics ... (alt. Fee)
FeeCom Fee Communication
FEP Front End Processor

148

BIBLIOGRAPHY BIBLIOGRAPHY

FERO Front-End Read-Out
FES File Exchange Server - old abbreviation used by Offline
FLUKA FLUktuierende KAskade
FMD Forward Multiplicity Detector
FORTRAN FORmula TRANslating System
FPGA Field Programmable Gate Array
FSM Finite State Machine
FW FrameWork
FXS File EXchange Server
G3 GEANT3
G4 Geant4
GDC Global Data Concentrator
GEANT GEometry ANd Tracking - since version 4: Geant
GPN General Purpose Network
GRP General Run Parameter
GSI Gesellschaft für SchwerIonenforschung
GUI Graphical User Interface
H-RORC HLT - ReadOut Receiver Card
HCDB HLT Conditions DataBase
HEP High Energy Physics
HLT High Level Trigger
HMPID High Momentum Particle Identification Detector
HOMER HLT Online Monitoring Environment including ROOT
HV High Voltage
Hz Herz
i-C4H10 Isobutane
i.e. id est (that is)
ICL InterCommunication Layer
ID IDentifier
InterComLayer . . . InterCommunication Layer
IP Internet Protocol
IROC Inner ReadOut Chamber
ITS Inner Tracking System
kHz kilo Herz
LCG LHC Computing GRID
LDAP Lightweight Directory Access Protocol
LDC Local Data Concentrator
Lemon LHC era monitoring
LEP Large Electron Positron Collider
LFN Logical File Names
LHC Large Hadron Collider
LHCb Large Hadron Collider beauty
LHCf Large Hadron Collider forward
LTS Long Term Support

149

BIBLIOGRAPHY BIBLIOGRAPHY

LTU Local Trigger Unit
LV Low Voltage
m meter
MA Monitor Agent
MD5 Message-Digest algorithm 5
MonALISA Monitoring Agents using a Large Integrated Service Architecture
MONARC Models Of Networked Analysis at Regional Centres for LHC Ex-

periments
MRPC Multi-gap Resistive-Plate Chamber
MSG MeSsaGe
MWPC Multi Wire Proportional Chamber
N Nitrogen
Ne Neon
NFS Network File System
OCCI Oracle C++ Call Interface
OCDB Offline Conditions DataBase
OMG Object Management Group
OpenGL Open Graphics Library
opt. optional
OROC Outer ReadOut Chamber
OS Operating System
p proton
Pb Plumbum (lead)
PC Personal Computer
PCI Peripheral Component Interconnect
PDS Permanent Data Storage
PFN Physical File Names
PhD Philosophiae Doctor
PHOS PHOton Spectrometer
PLC Programmable Logic Controller
PMD Photon Multiplicity Detector
PubSub Publish Subscriber
PVSS ProzessVisualisierungs - und Steuerungs - System
QCD Quantum-Chromo-Dynamics
QGP Quark-Gluon-Plasma
RAID Redundant Array of Inexpensive Disks
RAM Random Access Memory
RCU Readout Control Unit
RDB Relational DataBase
RHIC Relativistic Heavy Ion Collider
RICH Ring Imaging CHerenkov
ROB Read Out Board
RoI Region-of-Interest
RTTI Run Time Type Information

150

BIBLIOGRAPHY BIBLIOGRAPHY

SCADA Supervisory Control And Data Acquisition
SDD Silicon Drift Detector
sec second, alt. s
SF6 Sulfur hexafluoride
SIS SchwerIonenSynchroton
SIU Source Interface Unit
SLAC Stanford Linear Accelerator Center
SLC Scientific Linux CERN
SM Standard Model
SMI State Management Interface
SML State Manager Language
SoD Start-of-Data
SoR Start-of-Run
SPD Silicon Pixel Detector
SPS Super Proton Synchrotron
SQL Structured Query Language
SRAM Static Random Access Memory
SSD Silicon Strip Detector
SuSy Super-Symmetry
SysMES System Management for Networked Embedded Systems and Clus-

ters
T Tesla
t ton
T-HCDB Taxi - HLT Conditions DataBase
T0 Time 0 Detector
TCP Transmission Control Protocol
TDR Technical Design Report
TDS Transient Data Storage
TDSM Transient Data Storage Mover
TM TaskManager
TOF Time - Of - Flight
TOTEM TOTal Elastic and diffractive cross section Measurement
TPC Time Projection Chamber
TRD Transition Radiation Detector
TRG TRiGger system
TTC Timing Trigger and Control
UML Unified Modelling Language
V Volt
V0 Vertex 0 Detector
VME Virtual Machine Environment
VMS Virtual Memory System
VO Virtual Organisation
Xe Xeon
ZDC Zero Degree Calorimeter

151

