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[1] The upper ocean circulation in the sub-polar northeast
Atlantic has been a challenge to quantify due to strong and
variable wind-forcing, and strong and variable deep currents
that lead to large uncertainties in the use of the standard
dynamical method. Since 1999 we have been operating an
acoustical Doppler current profiler on a container vessel that
operates between Denmark and Greenland to repeatedly
sample upper ocean currents across the northeast Atlantic.
Individual transects exhibit a highly energetic mesoscale
variability, but ensemble-averaging of the sections reveals a
striking organization of the mean field along the Reykjanes
Ridge: a distinct southward flow along its eastern slope and
two clearly defined peaks with seasonal modulation flowing
to the north along its western slope. Higher values of eddy
kinetic energy (about 150–600 cm2 s�2) are observed along
the transect, O(1.5) greater than surface drifter estimates.
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1. Introduction

[2] The advection of warm subtropical waters east- and
northward along the Subpolar Front plays a central role in
moderating the climate of the European subcontinent.
Further, it is known that there exist low frequency (seasonal
to decadal) variations in the circulation and hence poleward
transport of mass and heat [Bersch et al., 1999]. Unfortu-
nately, the lack of accurate information on currents (currents
and transports are rarely measured, they are inferred from
the density field) has made this variability difficult to define
and quantify.
[3] The literature on the North Atlantic circulation has a

long history and many studies have been conducted of the
hydrography of this ocean. The International Geophysical
Year (IGY) program in the late 1950s with extensive
surveys was probably the most ambitious effort ever [e.g.,
Dietrich et al., 1980; Ivers, 1975]. Out of these earlier
efforts other programs have sought to improve our knowl-
edge of the circulation [Krauss, 1986, 1995; Poulain et al.,

1996; Hansen and Østerhus, 2000; Lavender et al., 2000;
Cuny et al., 2002; Fratantoni, 2001; Jakobsen et al., 2003],
but it is an interesting fact that even today this knowledge
tends to be communicated in terms of sketches about how
warm waters are transmitted north rather than as quantita-
tive statements about the mean circulation and its variabil-
ity. The reasons for this can be traced to data uncertainties,
perhaps change over time, and/or to the dynamic or geo-
strophic method, which depends upon assumptions about
the velocity field at some depth. There are ways to work
around this limitation using inverse methods, data assimi-
lation into dynamical models, or by integrating the equa-
tions of motion given the mean density field, and average
forcing at the surface [Greatbatch et al., 1991; Bogden et
al., 1993; Bacon, 1997]. However, these estimates differ by
quite a bit, and depend upon assumptions about forcing, the
relative roles of advection, diffusion, baroclinicity and
bathymetry.
[4] In order to understand the total velocity field and its

variability, direct measurements of currents are necessary.
Since the eddy field is far more energetic than the mean,
many repeat observations are needed in order to construct
accurate ensemble averages of the mean field and eddy
fluxes of heat, salt and other tracers. Out of these needs, a
project to measure currents directly was started in late 1999.
The approach was to instrument a container vessel that
operates between Denmark and Greenland with a hull-
mounted ADCP to measure directly upper ocean currents.
This vessel, ‘Nuka Arctica’, operates on a three-week
schedule (see Figure 1). Since late 1999, the ‘Nuka Arctica’
has collected velocity data from nearly 50 transects to the
end of 2002.

2. Instrument and Methods

[5] The instrument is a RD Instruments Narrowband
150 kHz ADCP transducer mounted in a sea chest. In the
Atlantic Ocean the ADCP is configured to sample the
vertical structure of currents in 8 m bins to achieve reliable
data to about 400 m depths.
[6] The measured current is relative to the ship, and the

motion of the ship has to be determined from the GPS. The
accuracy of the ship’s speed from GPS is typically 0.05 m/s
[Rossby and Gottlieb, 1998], and the ship’s service speed is
16.5 knots. The ADCP records data which are averaged in
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five minute intervals, resulting in a spatial resolution of
about 2.5 km for the velocity profiles.
[7] Figure 1 show the ensemble of Nuka Arctica ADCP

transects to date between Denmark and Greenland. The
transects fall into two sub-groups, the largest of which is the
eastbound section along 60�N from Cape Farewell to
Shetland. The other group is a westbound great circle
section that goes farther to the north, about 62�N. All
transects were subject to various forms of quality control
leaving us with 33 good sections, 20 in the southern
group and 13 in the northern group. Anticipating that the
Reykjanes Ridge topography may play a significant role in
structuring the flow in the area, we define a coordinate
system that has one axis parallel to the Reykjanes Ridge and
one axis in the east-west direction. The data are then
grouped into 9–17 km boxes along latitude.

3. Results

[8] We focus on the circulation in the Iceland and
Irminger Basins where the effect of aliasing by tides is
minimal. Figure 2 shows the mean statistics based on all
data from the first four years of operation. The top panel,
Figure 2a, show the Eulerian mean velocity vectors and the
corresponding velocity variance ellipses along the track,
calculated for boxes of 45 km in the east-west direction. The
ellipses correspond to one standard deviation and their
shapes indicate the coupling between u0 and v0, where u0

and v0 represent the difference between the velocity com-
ponent and its local mean. In the East Greenland Current
(EGC) there is a strong coupling between them, somewhat
less in the Irminger Current and North Atlantic Current
(NAC), and for the rest of the transect the eddy field is
nearly isotropic. The vectors are enlarged four times to more
easily see their direction and variation in strength of the
flow along the section. Without this enlargement it is clear
that the mean flow vectors are small compared to the size of
the ellipses.
[9] The mean flow shown in Figures 2b and 2c with

9 km box width is vertically averaged for the upper 200 m
due to small vertical shear below in the range of the ADCP.
All the 33 sections are averaged to one mean field in

Figure 2b. The velocity is along and normal to the
Reykjanes Ridge, positive to the northeast and southeast,
respectively. The x-axis indicates distance in the east-west
direction, where x = 0 is the middle of the ridge. To the
extreme left the panel shows the East Greenland Current
(EGC) flowing southwest, which is the most powerful
signal in the dataset. Immediately to the east of the EGC
in the central Irminger Basin both the velocities and eddy
kinetic energies reach their lowest levels along the entire
section. Within about ±150 km spanning the Reykjanes
Ridge, Figure 2b reveals a striking northward flow on the
western side of the Reykjanes Ridge (x < 0) in the form of
a double peak whereas the southward flow on the eastern
flank of the ridge (x > 0) has only a single peak. The
velocity along the ridge is significantly higher than the
component normal to the ridge out to about 200 km away
from the ridge crest. Farther east, in the central parts of the
Icelandic Basin the NAC with its northeastward transport
stands out clearly.
[10] To underscore the robustness of the double peak of the

Irminger Current (IC) and the southward flow on the eastern
flank of the Reykjanes Ridge, Figure 2c shows that flow
patterns are quite similar for both the northern and southern
groups which cross the ridge about 190–200 km apart.
[11] The EKE panel, Figure 2d, reveals patterns similar

to what has been observed in the past with maxima in the
Iceland Basin, over the western slope of the Reykjanes
Ridge and in the EGC, but thanks to the high-resolution
repeat sampling, Figure 2d gives a more accurate reading
of the structure and amplitudes of the maxima, features
that previously have eluded quantification. The minimum
in the Irminger Sea, the maximum in the Iceland Basin,
and the asymmetry of the EKE between the eastern and
western slopes of the Reykjanes Ridge are particularly
striking features that emerge from the repeat sampling
program. Curiously, the EKE maximum in the Iceland
Basin coincides with the eastern part of the NAC, it is
much less on the western side of the current (Figures 2b
and 2d).
[12] The double peak appears to be a seasonal feature as

indicated in Figure 3, with two peaks clearly present in the
spring (black) and in somewhat reduced form in the

Figure 1. Ensemble of the transects between Denmark and Greenland collected by the Nuka Arctica. Additional
transects that fall out outside acceptable limits either due to transits to Reykjavik or bad weather are not shown. The green
areas are shallower than 500 m, and the depth contours range from 500 m to 3500 m in 500 m steps. The arrows
schematically represent from west to east: EGC, twin-peaks IC, southward flow on the eastern side of the Reykjanes
Ridge, and NAC.
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summer (red), and apparently merging into one broad
current in the autumn (blue). This seasonal pattern in the
northward current on the western side of the ridge is also
evident when averaging sections within each year. Our data
also show a tendency, although less pronounced, to this
seasonal ‘‘double peak’’ for the northeastward transport in
the mid-Icelandic Basin about 300–550 km east of the
Reykjanes Ridge. In this case the phenomenon also
decreases in the summer and is nearly absent in the
autumn. The NAC in the Icelandic Basin also exhibits a
seasonal pattern with a minimum in the summer. Deeper
down to below 400 m the currents are surprisingly similar
with only somewhat reduced amplitude, especially the
component normal to the ridge. Continued sampling should
clarify the robustness of these observations. The distribu-
tion of the transects within the seasons are as follows:
Spring: 9 sections, summer: 17 sections and autumn:
7 sections.

4. Discussion

4.1. The Mean Field

[13] To illustrate in more concrete terms the significance
of these Nuka Arctica results, we recall some problematic
uncertainties of the upper ocean circulation, particularly
with respect to the pathways by which the warm waters
reach the Nordic Seas. From a hydrographic section and
the deployment of 20 drifters along 62�N Krauss [1995]
suggested that the northward flow NE along the Reykjanes
Ridge splits into two branches, one that turns west towards
the Irminger Sea and one that turns east towards the
Iceland-Faroe Ridge with a significant fraction of the
transport entering the Nordic Seas to the northwest of

the Faroe Islands. On the one hand this was an important
contribution for it highlighted what seemed to have been
ignored for a long time, namely that a significant part of
the Nordic Sea inflow enters between Iceland and the
Faroe Islands [Østerhus et al., 2001; Jakobsen et al.,
2003]. On the other hand, his northward flow along the
Reykjanes ridge was appeared to be at variance with an
earlier study (mostly based on the IGY data set) that
suggested a southward flow along its eastern flank [Ivers,
1975]. Krauss [1995, Figure 7] showed a double-peak
similar to our findings on the western side of the ridge in
his drifter data, but he does not comment on it in the text.
His results showing almost no southward transport on the
eastern side of the ridge, is similar to a few of our

Figure 2. (a) Mean velocity vectors and variance ellipses (100 units on an axis = 25 cm/s and 100 cm2 s�2) for the upper
200 m. (b) Mean flow along the Reykjanes Ridge (blue line) and normal to (red line). The red arrows in Figure 1 indicate
the locations of the 5 major peaks. (c) Mean flow along the ridge, 13 from the northern (blue line) and 20 from the southern
main route (red line). (d) Eddy kinetic energy. (e) Topography along the average section. The x-axis show distance in km
east (x > 0) or west (x < 0) of the Reykjanes Ridge. Distance normal to the ridge is about 0.6 times the distance in the east-
west direction.

Figure 3. Mean velocity field in the upper 200 m in the
vicinity of the Reykjanes Ridge as a function of season:
Spring (Apr–June, black), summer (July–Sept, red),
autumn (Oct–Dec, blue). X-axis as in Figure 2.
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sections, but when averaging over several sections, the
current pattern including also the southward transport
stands out clearly.
[14] The Nuka Arctica (NA) data show good agreement

with the quasi-Eulerian map of current vectors published
by Jakobsen et al. [2003], although they show a single
broader flow on the western side of the Reykjanes Ridge,
in contrast to what has been observed here. Orvik and
Niiler [2002], show drifters with velocity greater than
30 cm/s defining the current pattern in the North Atlantic.
This pattern is overall in good accordance with Jakobsen et
al. [2003] and the NA measurements, but their velocities
are somewhat higher due to the fact that they only show the
drifters with east- or north velocities higher than 30 cm/s,
and such high velocities are smoothed out of the averaging
of the NA data.

4.2. Seasonal Variations

[15] A seasonal variability shown in Figure 3 of the NAC
is also shown by Jakobsen et al. [2003] where a winter
(November–April) maximum and a summer (May–Octo-
ber) minimum are reported. However, the NA data do not
show as great differences between the seasons as reported
by Jakobsen et al., possibly due to the lack of NA-sections
in January–March. Unfortunately they did not have enough
data [Jakobsen et al., 2003, Figure 7a] to extend their
analysis west of about 26�W, thus not reaching the Rey-
kjanes Ridge.
[16] Bower et al. [2002] show a map of EKE in the North

Atlantic based on subsurface floats on the density surface
Sigma-t = 27.5, which shows two local maxima, one in the
central Iceland Basin and one on the western slope of the
Reykjanes Ridge. Their values in those areas are 200–
400 cm2/s2, and about 50–200 cm2/s2 for the rest of the
northeast North Atlantic. Not surprisingly their values are
lower because they are at depth. Fratantoni [2001] com-
pares EKE based on surface drifters and altimetry, and
finds reasonably good agreement between the two, with
many similarities in the large-scale structure of the EKE
field. The EKE is on the order of 100 cm2/s2 lower in the
altimeter data than in the drifter data, but both notice local
maxima on the Reykjanes Ridge and in the central Iceland
Basin. His drifter EKE values are 100–200 cm2/s2 for the
Irminger Basin, 200–300 cm2/s2 for the western side of
the Reykjanes Ridge and maximum 300–400 cm2/s2 in the
Iceland Basin. Reverdin et al. [2003] present a slightly
more detailed picture of the EKE based on surface drifters,
with distribution along the NA section that corresponds
well with the NA data, although their minima are around
100 cm2/s2. Jakobsen et al. [2003] report similar EKE
distribution, but their values are often less than half of the
NA-data, which reflect the denser sampling and averaging
inherent to the NA program. Smoothing our data using
85 km between the boxes, still gives a maximum above
500 cm2/s2 in the EGC and NAC and a minimum of
180 cm2/s2 in the Irminger Sea. These values are in the
range of Fratantoni [2001] in the Irminger Basin, over the
Reykjanes Ridge and in the westernmost part of the Iceland
Basin, but the maximum in the central Iceland Basin is at
least 25% higher in the NA-data.
[17] These preliminary results of the Nuka Arctica data

analysis reveal a fine structure to the mean field with a

superimposed seasonal cycle we had not anticipated. They
indicate the existence of a rich mean field that apparently
varies seasonally and likely varies from year-to-year in
response to interannual variations in atmospheric forcing
of the ocean. The NA spans the northeast Atlantic in
an area where the north-flowing NAC supplies warm
salty water to both the Nordic Seas between Iceland and
the Faroes, as well as waters that flow towards Greenland
and the Labrador Sea. We hope that by continuing the
NA program we will be able to better address to what
extent these are apportioned in response to local atmo-
spheric forcing or reflect varying demands from the
areas where deep and intermediate waters are formed. In
summary, high resolution repeat sampling of the absolute
velocity field gives us new and quantitative insights
into the structure of flows and their spatial-temporal
variability.
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