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Introduction 
1. Cell-extracellular matrix interactions 

1.1. Extracellular matrix  

In multicellular organisms the cellular and tissue organization is mediated by the extracellular 

matrix (ECM), a structure composed of a number of complex macromolecules.  Cells in tissues 

interact with other cells, or with ECM proteins, via specific receptors, like integrins. Different 

types of ECMs are usually divided into two major groups: the interstitial matrix and the 

basement membrane. 

The interstitial matrix is a hydrated gel containing polysaccharides and fibrous proteins, which 

fill the interstitial space. The type of collagens and proteoglycans define the structure and 

properties of interstitial matrices [1]. Collagen I is the most abundant of all collagens found in 

interstitial matrices except for cartilage which contains mainly collagen II. The interstitial 

matrices also contain non-collagenous proteins contributing to the structural organization of the 

ECMs, such as fibronectin [2], elastin [3] and fibrillin [4]. 

 

Basement membranes (BM) are the ECMs formed in sheet-like depositions oriented 

basolaterally to monolayers of epithelium and endothelium, providing separation from 

underlying connective tissue and providing support to the cells. The BMs also surround cells 

such as fat cells, individual muscle cells and Schwann cells. Collagen IV, laminins, nidogens 

and proteoglycans are major components of BMs [5]. The BMs in different tissues can contain 

specific isoforms of collagen IV or laminins, which reflects the specific functions of particular 

tissues. Other minor components of BMs include agrin, fibulins, collagen XV, collagen XVIII 

and SPARC, which all contribute to the tissue-dependent heterogeneity of BMs [6].  

 

The cell-ECM interactions regulate gene expression which further influences processes like 

cell differentiation and cell proliferation. These processes are important for tissue development, 

tissue homeostasis, tissue regeneration and in pathological conditions [7, 8]. Apart from the 

structure and composition of the ECM it is important to understand the complex dynamics of 

ECM. A number of pathological conditions such as tumor invasion and metastasis, rheumatoid 

arthritis and periodontal disease are characterized by destruction of the ECM by proteolytic 

enzymes such as matrix metalloproteinases (MMPs) [9]. 
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1.2. Cell-ECM interactions 

1.2.1. Integrins 

Integrins are composed of α- and β-subunits forming non-covalent heterodimers [10]. Each 

subunit is a type I transmembrane glycoprotein with a large N-terminal extracellular multi-

domain structure and short intracellular tail joined by a transmembrane domain. In vertebrates, 

there are 18 α-subunits and 8 β-subunits, forming 24 different integrin heterodimers (Figure 

1). The name integrin comes from the “integrating” nature of these receptors [11]. They 

physically link the cytoskeleton of the cell to the ECM or to other cells, allowing activation of 

a number of signaling pathways [12]. Integrin receptors bind a number of ligands present in the 

ECM and on cell surfaces [13].  

 
Figure 1. The integrin family. The figure is adopted and modified from Hynes, 2002 [14]. α1β1, 
α2β1, α10β1 and α11β1 are collagen-binding receptors.  
 

 

1.2.2. Integrin structure 

The integrin α-chains can structurally be divided into two groups depending on whether they 

contain or do not contain the inserted αI-domain. Nine of 18 α-subunits, α1, α2, α10, α11, 
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αM, αL, αD, αX and αE, contain the αI-domain, composed of approximately 200 amino 

acids. The αI-domain is inserted between blades 2-3 of the N-terminal β-propeller [15]. In the 

α-subunit the ligand-binding sites differ between the two groups of α-chains. In αI-domain 

containing α-chains the ligand-binding site largely resides in the αI-domain and it includes a 

crucially positioned Mg2+ ion. This latter site has been named the metal ion-dependent 

adhesion site (MIDAS) [16]. The interactions of the αI-domain with the β-chain are required 

for proper folding of some αI-domains [17]. In the α-chains lacking αI-domain, the ligand-

binding site is confined to an interface between the β-propeller in the α-subunit and the βI-

domain of the β-subunit [18].  

The integrin β-subunit has a very different structure compared to the α-chains (Figure 2). 

Instead of a β-propeller, the β-chain head consists of an N-terminal cysteine-rich region called 

PSI (Plexin, semaphorin and integrin)-domain [19] with an inserted βI-domain [20]. The C-

terminal end of the extracellular region contains four epidermal growth factor (EGF)-like 

cysteine-rich domains, which are thought to play an important role in the activation of integrins 

[21, 22]. The cytoplasmic tails of the β-chains are longer compared to the α-chains and are 

involved in anchorage to the cytoskeleton and interactions with signaling molecules [23]. The 

longest cytoplasmic tail, which is over 1000 amino acid long, has been described in the β4 

subunit [24]. 

 

 
Figure 2. Schematic structure of an αI-domain integrin.  (A) Schematic representation of integrin 
α- and β-subunits. (B) Schematic illustration of the α- and β-subunit domain arrangement from N- to 
C-terminal ends. Each domain color is the same as in figure A. TM refers to transmembrane domain 
and CD refers to cytoplasmic domain. Figure is adopted and modified from Luo et al., 2007 [25]. 
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1.2.3. The collagen-binding integrins 

Integrins can be grouped in subfamilies on the basis of their β-subunit content, characteristics 

of their α-subunit or based on the ligands that they bind. All four collagen-binding integrins 

α1β1, α2β1, α10β1 and α11β1 belong to the subfamily of β1-subunit containing integrins [26, 

27]. Collagen-binding integrins bind native collagen via their αI-domains which recognize a 

GFOGER motif [28-30] or similar sequences, depending on the collagen type [31]. Studies of 

collagen-binding integrins have shown that they are involved in cell adhesion, cell migration, 

remodeling of collagen lattices and regulation of collagen synthesis. These receptors can also 

affect cell proliferation, cell differentiation, angiogenesis, platelets adhesion and aggregation 

and endothelial tubulogenesis [26]. The α3β1 integrin initially was classified as a collagen 

receptor but further studies showed it was mainly a laminin-332 receptor [32, 33]. Later, it was 

demonstrated that α3β1 could regulate α2β1 activity through receptor cross-talk [34]. 

 

Integrin α1β1 was initially identified on a subpopulation of cultured activated T-cells [35, 36]. 

A characteristic feature of the α1 chain is a 20 amino acid insertion of unknown function, 

which is positioned at the beginning of 6th β-propeller blade [37]. The α1 chain contains a 

short cytoplasmic tail of 9 amino acids, the shortest of all integrins [26]. Experiments with 

transfected cells or isolated αI-domains showed that integrin α1β1 is a receptor for collagen I, 

collagen IV and laminins [38, 39]. α1β1 binds the network-forming collagen IV with higher 

affinity compared to the affinity to fibrillar collagen I [40]. Other ligands are matrilin-1 [41] 

and collagen XIII [42]. Integrin α1β1 is predominantly found in mesenchymally-derived 

tissues and is highly expressed in vivo on certain cell types such as capillary endothelial cells 

and smooth muscle cells [43]. Mice lacking α1 integrin subunit are viable. In vitro analysis of 

α1-deficient mouse embryonic fibroblasts (MEFs) revealed reduced proliferation rate of these 

cells compared to control MEFs when cells are plated on collagen I or mixture of collagens I 

and IV [44]. A characteristic feature of the dermis of α1-null animals is increased levels of 

collagen synthesis, but the dermal thickness is not increased, due to increased collagenase 

expression [45].  

Another collagen-binding integrin is α2β1. Similarly to α1β1 integrin, α2β1 was identified on 

activated T-cells in vitro [36]. α2β1 has been identified on a number of cells such as platelets, 

fibroblasts, Schwann cells of glia and on neuroglia, endothelial and epithelial cells [46]. The 

α2β1 integrin is a receptor for most of mammalian collagens and it was shown in certain 
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studies that it binds monomeric forms of collagen I, collagen II, collagen III, collagen V [47] 

and collagen XI [48]. Other collagens recognized by the α2β1 integrin include collagen IV 

[49], collagen IX [50], collagen XVI [51], collagen X [52] and collagen VII [47]. This receptor 

displays the highest binding affinity to fibrillar collagens [49] over lattice-forming collagens 

and it has been reported to bind to fibrils of collagens I-III [31, 53]. The α2β1 integrin can also 

recognize some forms of laminins [39]. It is involved in generation of mechanical forces and 

mediates collagen gel contraction [54-56]. α2β1 was also shown to participate in collagen 

fibrillogenesis [57, 58] and cell cycle progression [59, 60]. α2-deficient mice display no 

obvious defects during development and are fertile, however, they display diminished 

mammary gland branching [61] and a reduced response of platelets to collagen I [61, 62]. 

Upon vascular injury in α2-deficient mice, bleeding time is prolonged but no spontaneous 

bleeding has been observed [63]. A lack of the α2-subunit has also been reported to reduce the 

growth of thrombi after endothelial injury [64]. Finally, during excisional wound healing, the 

absence of the α2-subunit leads to enhanced neoangiogenesis while re-epithelialization 

remains normal whereas wound tensile strain is reduced [65, 66]. 

Integrin α10β1 was originally identified as a collagen II-binding integrin on chondrocytes [67]. 

Immunohistochemical analysis of embryonic murine tissues has shown that the α10-subunit is 

detected in collagen II-expressing tissues. It was found mainly on chondrocytes in the cartilage 

of joints, vertebral column, trachea and the cartilage supporting the bronchi. Furthermore, 

α10β1 was detected on fibroblasts in specialized fibrous tissues such as tendons, fascia of 

skeletal muscle or heart valves [68]. Studies using recombinant α10 I-domain showed that it 

recognizes collagens I-VI, laminin-111 [53] and collagen IX [50]. Similarly to the α1 I-

domain, the α10 I-domain prefers network-forming collagens to the fibrillar collagens [53]. 

The expression of α10-subunit is turned on during the initiation of chondrogenesis and is 

highly expressed during the different development changes suggesting that α10β1 is important 

during cartilage development. Surprisingly, α10-deficient mice display only a mild cartilage 

phenotype [69].  

 

1.2.4. Integrin α11β1 

Integrin α11β1 is the last addition to the integrin family and is most structurally related to 

integrin α10β1, but functionally it displays different collagen-binding specificity. The integrin 

α11-subunit associates only with the β1-subunit [70]. 
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1.2.4.1. Identification of the α11β1  integrin 

α11 integrin chain was initially detected as an extra protein band in immunoprecipitation 

experiments from differentiated cultures of human fetal myoblasts [71]. Cloning of α11 using 

human fetal muscle cDNA and uterus cDNA libraries revealed a typical I-domain integrin with 

the mature chain consisting of 1167 amino acids migrating as a 145 kDa band in SDS-PAGE 

under non-reducing conditions. α11 is the longest integrin α-subunit identified [70]. The 

extracellular domain contains seven FG-GAP repeats in the N-terminal end with an inserted I-

domain between repeats 2 and 3. The α11 I-domain consists of 195 amino acids and includes a 

conserved MIDAS motif. A characteristic feature distinguishing α11 integrin chain from other 

integrin α-subunits is the presence of a 22 amino acid insert in the calf-1 domain in the 

extracellular stalk region, at amino acids 804-826. The 23 amino acid long transmembrane 

region (amino acids 1142-1164) is followed by a cytoplasmic tail of 24 amino acids. Similarly 

to the α10 subunit, the α11 subunit lacks conserved GFFKR sequence and instead contains the 

sequence GFFRS [70]. In the human α10 subunit the corresponding sequence is GFFAH [72]. 

A comparison of the α11 chain with other collagen-binding integrin subunits showed that the 

α11 subunit displayed 42% sequence identity to the α10 subunit, followed by 37% identity to 

the α1 subunit and 35% identity to the α2 subunit [70]. Regarding comparison to non I-domain 

containing integrins, α4 and α9 subunits show the highest sequence identity to α11. Human 

α11 has 86% identity to mouse α11 at the nucleotide level and 89% identity on the protein 

level [30]. 

 

1.2.4.2. α11 integrin gene and α11 promoter region  

The human α11 gene (ITGA11) and the mouse α11 gene (Itga11) have been mapped to 

chromosomes 15q23 and 9, respectively [70, 73]. No polymorphisms or mutations related to 

diseases have been mapped to the integrin α11 gene so far. The ITGA11 gene covers 130 kb of 

genomic sequence and the complete ITGA11 is assembled of 30 exons and 29 introns (Figure 

3). The ITGA11 transcription start site (TSS) was mapped 30 nucleotides upstream of the 

translation start site. Gene analysis in silico suggested several potential splice variants, which 

have not been validated at the RNA level yet [74]. The ITGA11 transcript is composed of a 30-

nucleotide (nt) 5’ untranslated region, a 3564-nucleotide open reading frame, and a 329-

nucleotide 3’ noncoding sequence including the polyA tail.  
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Figure 3. Schematic structure of integrin α11 protein and ITGA11 gene. In the protein 
representation, the 7 FG-GAP repeats (1-7), the transmembrane part (TM) and the cytoplasmic tail 
(ctpl) are marked. In the gene, exonic sequences representing untranslated regions are open boxes and 
the unknown size in intron 1 is marked with //. The figure is adopted and modified from Zhang et al., 
2002 [74]. 
 

 

In the ITGA11 promoter studies, a 3kb-long sequence of 5’-flanking region (nt -2962/+25, +1 

refers to the TSS) of the ITGA11 has been cloned by genomic polymerase chain reaction 

(PCR). Putative binding sites for a number of transcription factors including Sp1 sites were 

identified within the construct. Many of these binding sites were predicted within 1.5 kb 

upstream of the transcription start site [74]. For further analysis of promoter activity three 

additional promoter regions (nt -1519/+25, nt -400/+25 and nt -127/+25) were cloned into 

Luciferase reporter vectors. A region covering nt -127/+25 has been shown to have core 

promoter activity [74]. The ITGA11 promoter lacks TATA- and CCAAG-boxes in proximal 

promoter region, which is typical for the majority of integrin promoters [75]. Instead, it 

contains tandem Sp1-binding sites (SBS) and an ETS-binding site (EBS). Two SBS were 

located within nt regions -140/-134 and -122/-116, whereas the EBS was identified within nt-

113/-110 [76]. From the collagen-binding integrins subfamily ITGA2 and ITGA10 are also 

regulated by Sp1 or Ets-family members [77-80]. The work with ITGA11 has shown that the 

basal promoter is regulated by Sp1/Sp3/Ets-1 binding sites [76].  

 

1.2.4.3. ITGA11 regulation 

Recent studies have demonstrated that the ITGA11 proximal promoter is differently active 

within α11-expressing and non-expressing cells, which suggests that this specific part of the 

promoter decides whether α11 integrin will, or will not, be expressed by certain cell types. 

SBS and EBS within the proximal promoter are involved in the regulation of transcription of 

α11 protein 

ITGA11 gene 
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α11 integrin subunit in α11-expressing cells, such as HT1080 (fibrosarcoma cell line) and 

MEFs [76]. 

 

1.2.4.4.  Expression and ligands of the α11β1  integrin 

α11β1 was initially detected as a major integrin in cultured skeletal muscle cells [71]. α11 is 

up-regulated on mRNA and protein level during myogenic differentiation of human myoblast 

cultures in vitro. Analysis of adult human tissues revealed wide expression pattern of α11 

mRNA. The highest expression levels were detected in uterus, heart and skeletal muscle [70]. 

Based on these data, it was initially suggested that α11 would be expressed on muscle cells in 

vivo. However, analysis of α11 mRNA and protein expression and distribution in human [81] 

and mouse embryos [82] revealed a restricted expression on mesenchymal non-muscle cells in 

areas of highly organized interstitial collagen networks. Strong expression was detected in 

areas adjacent to forming cartilage. α11 protein was found in ectomesenchyme in the head, in 

periosteum around ribs, around vertebrae and tendons. High expression of α11 was also 

detected in intervertebral discs and in keratocytes of embryonic cornea where collagens are 

well organized in precise bundles and in multilayer arrangement [83]. No expression of α11 

was detected in muscle cells. In general, α11β1 integrin is expressed in mesenchymally-

derived cells in vitro, and in vivo on fibroblasts at sites of highly organized collagen structures. 

 

1.2.4.5. α11β1 integrin function   

In order to study the specific properties of α11β1 in a cellular context, in vitro studies in α11- 

[81, 84], and α11-EGFP (unpublished) transfected C2C12 cells (mouse myoblast cell line) 

lacking endogenous collagen-binding integrins were performed. Cell attachment assays 

showed that α11β1 integrin preferred collagen I to collagen IV [81] and studies of α11 I-

domain binding to collagens have confirmed these finding [30]. The α11 also binds 

recombinant bacterial Scl proteins harboring a GLPGER motif [84]. C2C12 cells transfected 

with α2β1 or α11β1 integrins are able to contract collagen lattices [81]. This ability is likely to 

be important in vivo and contribute to collagen reorganization in pathological processes. 

PDGF-BB and serum stimulate collagen-dependent chemotaxis of α11-over-expressing C2C12 

cells [81]. 

α11β1 integrin function in vivo and an α11-deficient mouse model is described in details in 

Paper I. 
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2.    Matrix metalloproteinases  

There are 24 MMPs identified in mice. None of the MMP-deficient mice are embryonic lethal, 

which indicates enzymatic redundancy, enzymatic compensation or adaptive development [9]. 

In vitro studies have demonstrated that MMPs have multiple overlapping substrates [85].  

 

2.1. The matrix metalloproteinase family  

The MMPs belong to the metzincin group of proteases named after the zinc ion and the 

conserved methionine residue at the active site [86]. Mammalian MMPs share a conserved 

domain structure (Figure 4).  
 

 
Figure 4. Schematic structure of matrix metalloproteinases. (A) Most MMPs have a conserved 
domain structure of a pro-domain, a catalytic domain, a hinge region and a hemopexin domain. (B) 
MMPs with fibronectin type II repeats. (C) Membrane type MMPs (MT-MMPs) are inserted in the 
plasma membrane. (D) Minimal MMPs lack the hinge and hemopexin domains. PM refers to plasma 
membrane. Figure is adopted and modified from Page-McCaw et al., 2007 [9]. 
 

 

In general, they consist of a catalytic domain containing a zinc-binding site with three highly 

conserved histidine residues, and an autoinhibitory pro-domain with conserved cysteine residue 

that coordinates the active-site zinc inhibiting catalysis [87]. Most of the MMPs contain at their 

C-termini a hemopexin domain attached by a flexible hinge. MMPs can degrade numerous 
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substrates at neutral pH [86]. Destabilization or removal of pro-domain allows the active site to 

cleave substrates. The hemopexin domain contains four-bladed β-propeller structure mediating 

protein-protein interactions contributing to enzyme activation, proper substrate recognition, 

and substrate degradation [9]. 

The MMP-mediated cleavage of ECM components generates fragments of different biological 

activities from their precursors with the ability to regulate tissue architecture through effects on 

the ECM and intracellular junctions. For example, MMP-mediated cleavage of ECM substrates 

removes physical barriers for cell migration. In vitro studies have shown that degradation of 

collagen I by MMP-1 is necessary for keratinocyte migration and wound healing [88] and that 

cleavage of collagen IV results in the exposure of cryptic sites which in turn promotes cell 

migration [89]. MMPs can also activate, deactivate or modify the activity of other proteinases, 

proteinase inhibitors, latent growth factors, chemotactic molecules, growth factor-binding 

proteins, cell surface receptors and cell-cell adhesion molecules [90]. These proteinases are up-

regulated in diverse human diseases such as cancer and rheumatoid arthritis [9]. 

The MMPs are controlled at a number of steps including synthesis and secretion, activation of 

their pro-enzymatic forms, inhibition of already active forms and their clearance [86]. MMPs 

with furin recognition sequence are activated in the Golgi and secreted as active enzymes. 

MMP-14, one of the membrane-bound MMPs, is activated in this manner and can further 

activate pro-MMP-2 and pro-MMP-13 [86, 91]. MMP-14 deficient mice display a severe 

phenotype including craniofacial dysmorphism, dwarfism, retardation of postnatal growth, 

arthritis and death by 3-12 weeks of age due to inadequate collagen turnover in connective 

tissues [92]. Explant cultures derived from lungs and submandibular glands of MMP-14-null 

mice displayed reduced pro-MMP-2 activation [93, 94]. These findings indicate a central role 

for MMP-14 in regulation of a number of events involving specific cleavage and ECM 

reorganization. More recent studies have shown that activation of pro-MMP-2 requires 

dimerization of MMP-14 [95].  

Tissue inhibitors of metalloproteinases (TIMPs) bind MMPs in a ratio of 1:1 and inhibit them 

[96]. All active MMPs can be non-specifically inhibited by α2-macroglobulin [97].  

 

2.2. Matrix metalloproteinases cleaving native collagens 

The MMPs with collagenolytic activity described in mammals are MMP-1 (collagenase -1), 

MMP-8 (collagenase-2) and MMP-13 (collagenase-3). MMP-1 and MMP-13 are synthesized 

by macrophages, fibroblasts and chondrocytes. MMP-8 is released predominantly from 
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neutrophiles and also from chondrocytes [86]. The degradation of collagen I requires specific 

collagenases because native, triple-helical molecules are resistant to cleavage by proteolytic 

enzymes at 37°C and neutral pH. The peptide bonds between residues Gly775 and Ile776 of 

the α1(I) chain and Gly775 and Leu776 of the α2(I) chain are the only sites in native collagen 

I molecules, which are known to be cleaved by collagenases. These cleavage sites are 

conserved in collagens from amphibians to mammals and are similar in collagens I-III [98, 99]. 

Cleavage of the collagens at this specific site by collagenases generates a three-quarter sized 

and a one-quarter sized helical fragments [100]. The collagenases show different specificity for 

different collagens. MMP-13 cleaves collagen II 10 times more efficiently than collagen I 

[101].  

Other MMPs such as MMP-2 and MMP-14 can also cleave collagens [86, 102]. MMP-14 can 

degrade collagen I, II, III, laminins-111 and -332, fibronectin, vitronectin, fibrin and aggrecan 

[103]. The ability of MMPs to cleave the ECM components modulates focal adhesion stability 

and promotes cell migration and invasion [104-106]. 

 

2.2.1. MMP-13 

MMP-13 (collagenase-3) was originally cloned from a human breast cancer cDNA library 

[107]. MMP-13, similarly to other MMPs is produced in the form of a pro-enzyme and needs 

to be cleaved to gain activity [9]. MMP-13 has wide substrate specificity but very restricted 

tissue expression [108]. Usually MMP-13 expression is limited to tissues with rapid 

remodeling of the ECM such as fetal bone. Elevated levels of MMP-13 have been identified in 

pathological conditions characterized by excessive ECM degradation such as rheumatoid 

arthritis, chronic cutaneous ulcers, malignant tumors and periodontal disease [9, 107, 109-112]. 

Over-expression of MMP-13 in human skin fibroblasts have demonstrated a role of MMP-13 

in promoting survival and proliferation of cells and in activation of Akt and ERK-1/2 signaling 

in floating 3D collagen gels [113]. These findings suggest the existence of MMP-13-mediated 

survival mechanism for fibroblasts. A number of studies have focused on searching for 

mechanisms regulating MMP-13 expression. MMP-13 was shown to be up-regulated in human 

chondrocytes by IL-1β and TNFα [114]. IL-1β- and TNF-α-mediated MMP-13 induction 

requires activation of p38 MAPKinase in human chondrocytes [115, 116]. In contrast to these 

results, studies with mouse periodontal ligament (PDL) fibroblasts revealed that p38 

MAPKinase negatively regulates IL-1β- and TNF-α-induced MMP-13 expression on both 

mRNA and protein level [117]. These finding suggest cell type-dependent regulatory 
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mechanism for MMP-13 expression. Another growth factor regulating MMP-13 expression is 

TGF-β. TGF-β-mediated induction of MMP-13 has been studied in several human cell types 

and the studies have revealed that induction occurs via activation of Smad and p38 pathways 

[118-120]. MMP-13 expression can be also regulated by other factors such as mechanical 

tension. It has been shown that in rheumatoid arthritis synovial cells MMP-13 levels were 

transiently decreased by mechanical stress [121]. The signaling pathways by which mechanical 

stimuli regulate MMP-13 expression are still unclear. In vitro studies indicated that MMP-13 

expression is regulated when cells are embedded in 3D collagen lattices. Human skin 

fibroblasts or MC615 mouse chondrocytic cells placed inside 3D collagen gels up-regulate 

MMP-13 and α1β1 and α2β1 integrins. The observed up-regulation is the result of activation 

of two different signaling pathways (p38 in skin fibroblasts and ERK in MC615 cells) [122, 

123]. In vivo studies, using orthodontic tooth movement model in rats, showed increased 

expression of MMP-13 on both compression and tension sides occurring very early following 

the application of a force in the PDL and alveolar bone [124, 125].  

 

MMP-13-deficient mice show abnormal skeletal development with dwarfism [126]. The 

observed phenotype is similar to deformities seen in patients with spondylo-meta-epiphyseal 

dysplasia-Missouri type, which is a result of a missence mutation in the MMP-13 gene [86, 

127]. Furthermore, MMP-13 knockout mice show an expansion of the hypertrophic 

chondrocyte zone and delay of apoptosis, which suggests that MMP-13 is needed for the 

transition from cartilage to bone at the growth plates of long bones [126]. The primary defect 

in MMP-13 deficient mice is the failure of chondrocytes to remodel the ECM rich in collagen 

II and aggrecan [126]. Another function for MMP-13 in long bone development occurs during 

ossification process. During this process, the cartilage ECM serves as a scaffold for 

mineralization and forms spicules or trabeculae. In MMP-13-deficient mice spicules of 

irregular shapes, were observed, indicating roles for MMP-13 in the initial remodeling. The 

abnormal increase in trabecular bone mass retained into adulthood in MMP-13-deficient mice, 

suggests a role for MMP-13 in bone remodeling. 

 

2.3. Integrin-ECM-MMP interactions 

Components of the ECM are substrate of MMPs, but the interactions of MMPs with the ECM 

is complex and includes influence of the 3D organization of the matrix on integrin-regulated 

MMP activity and synthesis.  
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2.3.1. Directed proteolysis via interactions with integrins 

Several studies have demonstrated that integrins and MMPs interact directly and co-localize in 

different cell types. It has been shown that α2β1 co-localizes with MMP-1 on migrating 

keratinocytes via interaction between α2 I-domain and linker-hemopexin domains of MMP-1 

[128]. Pro-MMP2 was reported to bind to α2β1 via fibronectin type II modules in the MMP 

[129]. It has also been shown that MMP-2 plays role in astrocyte motility and that MMP-2 and 

integrin β1 partially co-localize at the periphery of astrocyte. The MMP-2-β1 integrin 

interaction could thus act as a linker between pericellular proteolysis and the actin cytoskeleton 

[130].  

In vitro studies with endothelial cells have demonstrated that integrin clustering also influences 

co-localization of MMP-14 to aggregate with integrin complexes, which supports a role for 

integrin-mediated redistribution of active enzyme to sites of cell-ECM contact [131]. It has 

been shown that MMP-14 co-localizes with β1 and αvβ3 integrins on human endothelial cells 

and participates in migration of cells on different ECM proteins in 2D [131].  

 

2.3.2. Integrin-mediated synthesis of MMPs 

The regulation of MMP synthesis by integrins is well documented. The collagen-binding 

integrin α1β1 has been shown to regulate MMP-7 and MMP-9 levels in mouse models of 

tumor growth [132], whereas α2β1 has been demonstrated to regulate MMP-1 and MMP-13 

in normal human skin fibroblasts [55, 122] and in human osteosarcoma cells [133].  

Skin explants from α1-deficient mice display increased activity of MMP-13 [45], MMP-2, 

MMP-7 and MMP-9 [132]. mRNA expression of MMP-2, MMP-9 and MMP-14 is 

significantly increased in glomeruli and cultured mesangial cells from α1-deficient mice and 

increased expression can be abrogated in these cells by blocking the activation of p38. 

Furthermore, increased activity of MMP-2 and MMP-9 has been observed in cultured α1-

deficient mesangial cells [134]. α2-deficient keratinocytes showed elevated expression of 

MMP-2, MMP-3, MMP-8, MMP-9, MMP-13 and MMP-14 mRNA [65]. 

 

2.4. The MMPs during collagen remodeling 

MMPs have can mediate collagen matrices remodeling. MMP-13 has been shown to enhance 

the contraction of 3D free-floating collagen gels by human skin fibroblasts [113]. During 

cancer cell migration through 3D collagen gel, the MMP-14-mediated collagenolysis in 

cooperation with β1 integrins was found to be crucial [135]. However, in the same studies, 
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blocking of the collagenolytic activity did not prevent cell migration of cancer cells in the low 

and high-density collagen gels. The results suggested protease-independent cell invasion, 

where the physical forces displace matrix fibrils and cells adopt amoeboid-like cell shape 

[135]. These studies have been performed using pepsin-extracted collagen I which is lacking 

non-helical telopeptides supporting cross-linking necessary for stabilization of collagen gel 

architecture. More recently, it has been shown that MMP-14 supports invasion of cancer cells 

within 3D collagen gels, prepared using telopeptide-intact collagen I, and within the stromal 

environment of the mammary gland [136]. The protease-independent mechanism of cell 

migration was not observed in these studies. This finding suggests that previously described 

protease-independent amoeboid activity might be the result of impaired structural integrity of 

collagen gels prepared from pepsin-extracted collagen I. 

Recent studies have shown that not only the production of diffusible factors by tumor 

associated fibroblasts [137, 138] but also the physical matrix remodeling by these fibroblasts is 

indispensable for the invasion of carcinoma cells that retain their epithelial phenotype. Thus, 

the combination of proteolytic activity and force-mediated matrix remodeling by stromal 

fibroblasts is important to generate tracks through the matrix [139].  

 

3. The periodontal ligament  

3.1. The composition and the cells of the periodontal tissues 

The periodontium can be considered as an organ composed of hard tissues (cementum and 

alveolar bone) and soft tissues (gingiva and PDL) (Figure 5). The ECM of these tissues 

contains fibrous and non-fibrous elements such as collagens, fibronectin, elastin, laminins, 

osteopontin, bone sialoprotein (BSP), different growth factors, proteoglycans, lipids and 

minerals [140].  

The PDL is the only ligament that connects two distinct hard tissues. It is a fibrous, complex, 

soft connective tissue, attaching the tooth root to the inner wall of alveolar bone. The width of 

the PDL in human ranges from 0.15 to 0.38 mm with the thinnest part around the middle third 

of the root. The PDL thickness decreases with age. It is functionally important for tooth 

support, and for allowing the teeth to withstand the forces generated during mastication. 

Another important function is regulation of alveolar bone volume and serving as a cell 

reservoir for tissue homeostasis and regeneration [141]. The PDL also acts as a sensory organ 

necessary for the proper positioning of the jaws during mastication. The PDL has very high 

adaptability to rapid changes in applied forces and capacity to maintain its width [142]. This 

ability is an important measure of PDL homeostasis. The alveolar bone is a specialized bony 
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structure that supports the teeth and is constantly remodeled in response to tooth 

micromovements generated during mastication. Cementum is mineralized tissue limited to the 

surface of the root [143].  

 

 
 
Figure 5. The periodontium. (A) Schematic illustration of the periodontium. Adopted and modified 
from Lindhe, 2003 [144]. (B) Histological section of the periodontium. A-alveolar bone, C-cementum, 
G-gingiva, P-peridontal ligament, SF-Sharpey’s fibers, T-tooth. Courtesy of Knut A. Selvig. 
 
 

The fibroblasts are the dominant cell population in the PDL. Other cells include osteoblasts, 

osteoclasts, epithelial cell rests of Malassez, monocytes, macrophages, cementoblasts, 

odontoblasts and progenitor cells.  

The presence of the stem cells within the PDL has been reported in different species [145, 

146]. The PDL stem cells are located closely to blood vessels and exhibit some of the typical 

cytological features of the stem cells, such as small size and responsiveness to stimulating 

factors. The stem cells isolated from adult human and sheep PDL have characteristics of adult 

mesenchymal stem cells and are a population distinct from bone marrow-derived mesenchymal 

stem cells [147]. The PDL stem cells originate from the ectomesenchymal cranial neural crest 

cells [147]. These progenitor cells can differentiate into cementoblasts, osteoblasts and PDL 

fibroblasts (Figure 6) [148]. 

A B 

T C A 

P 

SF 

G 



26 
 

The human PDL stem cells from adult PDL show the capacity to generate clonogenic adherent 

cell colonies [146] and express the stem cell marker STRO-1 similarly to bone marrow stromal 

stem cells [147]. The PDL stem cells also express mineralized tissue markers such as collagen   

 

 

Figure 6. Cellular differentiation in the periodontal tissues. 
 

 

I, collagen III, alkaline phosphatase (ALP), osteopontin (OP), osteocalcin (OC) and bone 

sialoprotein (BSP), and have capacity to form mineralized noduli in vitro under differentiation 

conditions.  

Similarly to the PDL stem cells, the PDL fibroblasts originate from the ectomesenchyme. The 

PDL fibroblasts are characterized by a high rate of collagen turnover in ECM [149], which 

occurs by simultaneous synthesis and degradation of collagen fibrils. The PDL fibroblasts are 

aligned along the general direction of the fiber bundles. They are large cells with a vast number 

of organelles associated with protein synthesis and secretion. The fibroblasts in the PDL are a 

heterogeneous population [150] with capacity to differentiate, depending on local 

microenvironment, into cementoblasts and osteoblasts [142, 151]. No PDL-specific marker is 

available, but due to common origin to cementoblasts and osteoblasts of the PDL, the 

osteoblast phenotype-related genes can be used as markers for identification of the PDL 

fibroblasts. The master regulatory transcription factor RunX2 is expressed by these cells, 

together with other genes encoding collagen I, ALP, OP and OC. The epithelial cell rests of 

Malassez are remnants from Hertwig's epithelial root sheath (HERS) and they are found close 

to cementum in the form of clusters. The exact function of these cells is not known but their 
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possible role in regeneration is suggested [152]. Cementoblasts and osteoblasts contribute to 

the production of cementum and the remodeling of alveolar bone, respectively. 

The elements of gingival connective tissue originate from oral mucosa connective tissue. The 

gingival fibroblasts are of mesenchymal origin and are important for development, 

reorganization and regeneration of gingival connective tissue [153].  

 

The ECM of the PDL contains collagenous and non-collagenous fibers. The majority of 

collagens in the PDL is organized in fiber bundles and these bundles are called principal fibers. 

The extremities of collagen fiber bundles are embedded in the alveolar bone and cementum of 

the tooth and form mineralized Sharpey’s fibers. Individual fibrils are continuously remodeled 

by fibroblasts while the overall fibers mesh maintains its structure and function. Other 

collagens, except for collagen I and III, found in the PDL are collagens V, VI, XII, and XIV 

[154, 155]. Elastic oxytalan fibers were identified within PDL and described as a 3D 

meshwork surrounding the root and terminating in the apical complex of arteries, veins and 

lymphatic vessels. It is believed that oxytalan fibers regulate vascular flow to the tooth. A vast 

number of non-collagenous proteins including proteoglycans [156], tenascin-C (in attachment 

zones along cementum and bone), fibronectin [157], vitronectin (found on collagen fibrils), 

elastin [140] have been detected in human PDL. A cell-bound ALP have been identified in the 

incisor PDL of a rat [158]. 

 

3.2. Integrin-ECM interactions in the PDL 

The regulation of the reorganization of ECM and the role of different cell types in the PDL is 

still poorly understood on the molecular level. The PDL fibroblasts interact with the ECM via 

integrins binding different collagenous and non-collagenous substrates. Integrins interacting 

with the ECM extracelullarly and with cytoskeletal components intracellularly are considered 

to be force transducing elements in fibroblasts [159].  

A number of studies have characterized the integrin repertoire on molar PDL fibroblasts under 

different culture conditions. Cultured human PDL fibroblasts express mRNA encoding α1, α2, 

α3, α4, α5, α6, αv, β1, β3 and β4 integrin subunits. The same cells upon mechanical 

stimulation showed increased expression of α6 and β1 integrins and decreased expression of 

α5 subunit [160]. Another studies by Palaiologou et al. have shown in human molar PDL 

fibroblasts the presence of mRNA for integrin chains α7, α8, α10, β5, β6 and β8 but not α11 

[161].  
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A very few functional studies of integrin-ECM interactions in PDL derived cells have been 

conducted. It has been reported that PDL fibroblasts migrate on collagen I, collagen III and 

collagen V but also on fibronectin and laminins. α1β1 integrin and α2β1 integrin have been 

detected on protein level in these cells [162]. α2β1 and α11β1 integrins are also known to 

enhance polymerization of collagens I and III, which indicates a role in matrix assembly for 

these integrins [58]. This property might have implications for the PDL reorganization and 

regeneration. Both collagen I and collagen III are up-regulated during wound healing and 

regeneration [163, 164] and during orthodontic movement (collagen I, collagen III and 

collagen V) [165].  

It has been shown that human molar PDL fibroblasts interact with collagen V via αvβ3 

integrin, but possibly other RGD-recognizing integrins also can mediate interactions with 

collagen V [166]. αvβ3 integrin, in addition, regulates extracellular assembly of fibrilin-1, 

thereby modulating cell-mediated homeostasis of microfibrils. It is also suggested that oxytalan 

fibers, may be controlled by PDL fibroblasts [167].  

Recently, it has been reported that αvβ6 integrin-mediated TGF-β1 activation in the junctional 

epithelium plays protective role in inflammatory periodontal disease. β6-deficient mice 

develop classic symptoms of chronic periodontal disease. In a rat model, αvβ6 blocking led to 

appearance of initial signs of periodontitis. αvβ6 integrin is also down-regulated in human 

periodontal disease [168].  

 

3.3. Matrix metalloproteinases in the PDL 

Tooth eruption involves bone and PDL reorganization [169]. This process requires degradation 

and reorganization of ECM components and MMPs play a central role in this event [9]. It has 

been demonstrated that MMP-2 is expressed constitutively in vitro and in vivo by human PDL 

fibroblasts [170, 171]. In experiments where media were collected from free-floating collagen 

gels containing human PDL fibroblasts, an increased collagenase activity was noted and the 

collagen content within collagen lattices was reduced. Active MMP-2 and pro-MMP9 were 

also detected in the conditioned media. In attached collagen gels such changes were not 

observed until gels were detached and tension released, suggesting that tension relaxation 

enhances collagenolytic activity [172].  

The PDL fibroblasts normally express MMP-13 and MMP-13 expression in these cells can be 

stimulated by IL-1α [173] or TNF-α [174]. Studies with mouse molar PDL fibroblasts 

revealed that p38 MAPKinase negatively regulates IL-1β and TNF-α-induced MMP-13 
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expression on both mRNA and protein level which is in contrary to results obtained from 

human skin fibroblasts [117].  

The PDL tissue is a reservoir of mineralized matrix-forming cells [175]. It has been shown in 

the osteoblastic MC3T3-E1 cells, that MMPs can regulate osteoblastic differentiation [176]. 

Studies with bacterial collagenases [177] added to cells, and induction of endogenous 

collagenases by IL-1β [178] showed decreased osteoblastic differentiation in MC3T3-E1 cells 

and human PDL fibroblasts, respectively. The exact mechanism for how this occurs is 

unknown, but most likely involves degradation of collagenous molecules needed for integrin-

dependent differentiation signals [179-181]. Integrin-mediated adhesion to collagen has been 

shown to enhance expression of osteoblastic markers such as ALP, OC and BSP in bone 

marrow cells [182]. Increased MMP-dependent bioavialability of latent growth factors stored 

in the ECM might also be involved [183]. The MMP-dependent changes in osteoblastic 

differentiation are reflected in varying levels of differentiation markers and such correlation 

has been shown in human molar PDL fibroblasts. One of the characteristics of the periodontal 

disease are increased MMP levels [184], thus the cell differentiation in the PDL might be 

inhibited which might result in a decreased pool of cells capable of bone regeneration and 

replacement [185]. 

 

3.4. Periodontal disease 

Periodontal disease is initiated by bacteria colonizing the dentogingival region of the tooth. 

The series of infections in the PDL tissue of a susceptible host may lead to soft and hard tissues 

destruction and loss of tooth attachment.  

Gingivitis is a prerequisite for the periodontal disease development. Microorganisms forming 

the dental biofilm release the factors triggering host immune response and inflammation. 

Inflammatory factors, such as IL-1 or TGF-β which are released during immune response 

cause up-regulation and/or activation of MMPs produced by PDL fibroblasts, leading to 

breakdown and loss of the ECM of the PDL [186]. Such interference with the fibroblast 

function by periodontal disease results in destruction and finally, loss of tooth supporting tissue 

[187]. Interestingly, not all individuals diagnosed with gingivitis will develop periodontal 

disease. As already mentioned, the microorganisms are crucial for the initiation of the 

inflammatory periodontal disease but the progression of the disease is dependent on host-

related risk factors such as genetic polymorphisms, systemic diseases and on environment-

related factors such as smoking [188]. It is estimated that there are more than 600 different 
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bacteria species residing in the oral cavity. The shift of balance from commensal gram-positive 

bacteria to pathogenic gram-negative, proteolytic organisms has been associated with PDL 

tissue breakdown [189]. Several of the pathogenic bacteria forming dental plaque have been 

associated with periodontal disease. The disease is not triggered by one organism but is a result 

of mixed infections. Aggregatibacter actinomycetemcomitans has been associated with 

aggressive periodontitis while Porphyromonas gingivalis, A. actinomycetemcomitans, 

Tannerella forsythia, Treponema denticola and Eikenella corrodens have been associated with 

chronic periodontitis. The colonization of host tissues starts with adhesion of bacteria to them. 

P. gingivalis adhesion to host cells requires formation of fimbriae and fimbriae have been 

found to bind epithelial cells, fibronectin and fibrinogen. The fimbriae of P. gingivalis were 

reported to compete with the ECM proteins to bind over-expressed αvβ3 and α5β1 integrins in 

Chinese hamster ovary (CHO) cells. It is suggested that such properties might affect normal 

ECM proteins turnover and the ECM repair, thus adding to damage to the gingival tissue [190]. 

In A. actinomycetemcomitans outer membrane, a protein named extracellular matrix adhesion 

protein A (EmaA) was identified as a direct mediator of adhesion to collagen V [191]. The 

adhesion of T. denticola to fibronectin and collagen I is followed by the degradation of the 

ECM proteins [189]. Increased levels of cytokines and chemokines are observed during 

inflammation and immune response in periodontal disease. In P. gingivalis, type II fimbriae, 

predominant fimbrial phenotype associated with periodontal disease, have been shown to 

induce expression of IL-1β, IL-8, IL-12 and TNF-α in macrophages-like U937 cells. The 

lipopolysaccharide (LPS) of P. gingivalis has been shown to induce levels of prostaglandin E2 

and IL-6 in human PDL fibroblasts. A. actinomycetemcomitans can stimulate gingival 

epithelial cells to express IL-8 and human PDL cells to express IL-6. P. gingivalis and A. 

actinomycetemcomitans can also induce bone-resorptive cytokines like TNF-α, IL-1β and IL-6 

when injected subcutaneously [189]. 

Under normal conditions, the synthesis and degradation of connective tissue is tightly 

regulated and balanced. Disturbed balance between MMPs and their inhibitors resulting in 

connective tissue matrix breakdown is observed during periodontal disease. Highly increased 

expression of MMP-13 is observed in the PDL of patients diagnosed with periodontitis [184]. 

MMP-8 and MMP-9 are major collagenase and gelatinase, respectively, detected in gingival 

cervical fluid of chronic periodontitis patients while MMP-1 is a major collagenase found in 

aggressive periodontitis [189]. Low levels of TIMPs have been detected in gingival cervical 

fluid of chronic periodontal disease [192]. An activation of different latent MMPs by 
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periodontopathogenic bacteria has been demonstrated. MMP-1 from gingival fibroblasts and 

MMP-8 from polymorphonuclear leukocytes can be activated by P. gingivalis trypsin-like 

protease and T. denticola chemotrypsin-like protease [193]. MMP-1 and MMP-3 from gingival 

fibroblasts and MMP-9 from medium of HT1080 cells can be activated by P. gingivalis thiol-

protease [194]. Periodontopathogenic proteases have also been reported to inactivate inhibitors 

of MMPs. P. gingivalis cysteine proteinase, periodontanin, can inactivate α1-protease 

inhibitor. In general, high levels of MMPs and decreased levels of TIMPs are characteristic for 

severe periodontal disease [195]. 

The host response to infectious pathogens depends on nature and virulence of pathogens, but 

also on genetic factors. Several genetic polymorphisms have been associated with periodontal 

disease. Most of research focused on possible polymorphisms of genes involved in 

inflammation and immune response. It has been observed that polymorphic genes regulating 

the production of IL-1 in response to bacterial LPS may have an impact on susceptibility of 

host to severe periodontitis. Polymorphisms within leukocyte Fc receptors, affecting affinity of 

the interaction with immunoglobulins, have been shown to associate with periodontitis 

severity. Low affinity receptors are more common in patients with more severe and rapidly 

progressing periodontal disease [196]. Certain chromosomal or genetic disorders such as 

Down’s syndrome, leukocyte adhesion deficiency syndrome, Papillon-Lefévre syndrome and 

the Ehlers-Danlos syndrome have been reported as predisposing to periodontal disease. 

Systemic disorders such as diabetes can increase the risk of periodontitis [188]. Smoking is one 

of the environmental factors strongly predisposing to periodontal disease. The relationship 

between periodontitis and smoking appears to be dose-dependent. It has been shown that more 

severe loss of tooth attachment apparatus are observed in heavy smokers compared to light 

smokers. The length of exposure to tobacco products is also a significant factor. The 

prevalence for periodontal disease increases with age [188]. 
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Aims of the present study 
The overall aim of this study was to increase our understanding for the role of α11β1 integrin 

in vivo and in vitro using an α11-deficient mouse model and cells isolated from such animals. 

The potential role of α11 in human tooth supporting apparatus was also evaluated. The specific 

aims of the present studies were: 

 

Paper I 

• To analyze the α11-deficient mouse phenotype in vivo. 

• To investigate the role of α11β1 integrin in cell attachment, cell spreading, cell 

proliferation and reorganization of 3D collagen lattices using MEFs isolated from α11-

deficient animals. 

 

Paper II 

• To isolate incisor PDL fibroblasts. 

• To characterize the repertoire of collagen-binding integrin in cultured mouse PDL 

fibroblasts. 

• To identify molecular mechanisms underlying α11-deficient phenotype in vitro, which 

most likely has consequences for the phenotype observed in vivo. 

 

Paper III 

• To examine the repertoire of collagen-binding integrins in human PDL fibroblasts and 

human PDL tissue. 

• To explore a possible contribution of α11β1 to reorganization of collagen gels by PDL 

fibroblasts. 

• To investigate the α11 expression pattern in the PDL tissue of healthy and 

periodontally diseased individuals. 

• To search for single nucleotide polymorphisms in the proximal promoter of ITGA11.  

 

Materials and Methods 
The experimental procedures and materials are described in Papers I-III. 
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Results  
1. α11β1 integrin-dependent regulation of periodontal ligament function in the erupting 

mouse incisor (Paper I) 

α1β1, α2β1, α10β1 and α11β1 integrins constitute the family of collagen-binding integrins, 

acting as primary receptors for native collagens. Data from in vitro studies of C2C12 cells 

expressing α11β1 as the only collagen-binding integrin have shown that α11β1 integrin prefers 

collagen I to collagen IV [81]. It was previously demonstrated that α11β1 is the only 

detectable collagen-binding integrin in the incisor PDL fibroblasts in moue [82]. The most 

abundant protein in the PDL is collagen I. In the continuously erupting rodent incisor, the 

PDL has been shown to play a central role during tooth eruption [197]. 

In Paper I we analyzed the phenotype of the α11-deficient mouse and characterized cells 

isolated from α11-deficient and α11-expressing mouse embryos.  

 

1.1. Generation of an integrin α11-deficient mouse strain  

The α11-deficient mouse was generated using gene targeting techniques. In order to introduce 

a null mutation in Itga11, parts of exon 3 and intron 3 were replaced with an internal ribosome 

entry site, a bacterial reporter LacZ, and PGK neo cassette. The targeting construct was 

introduced into R1 ES cells and colonies resistant to G418 were selected. A total of 325 clones 

were screened by Southern blotting and two clones (95 and 215) were selected for further 

work. These clones were injected into blastocyst of C57BL/6J mice. Obtained chimeric males 

were mated with C57BL/6J females, and the offspring were screened with Southern blotting 

for the presence of the targeted allele. Intercrossing of heterozygous F1 mice gave rise to live 

homozygous offspring with expected Mendelian ratios and no phenotypic defects at birth. Both 

homozygous males and females were fertile. 

 

1.2. The skeletal system of the α11-deficient mice 

When animals were 3 weeks old, it was noted that each litter contained mice smaller then their 

littermates. Genotyping showed that these smaller animals were homozygous mice and both 

males and females demonstrated 20-30% reduction in weight persisting through adulthood. X-

rays showed that overall skeleton size was smaller and compatible with proportional dwarfism. 

To rule out possible effect from the neo cassette, flanked by loxP sites, the neo cassette was 

deleted by crossing with Cre-deleter mice. The described phenotype persisted after the neo 

cassette removal, confirming that the observed weight difference was due to inactivation of 
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α11 integrin alleles. The neo-deleted mice were used for further analysis. Since previous 

reports showed that α11 is highly expressed in perichondrium [81, 82], initial studies focused 

on analysis of skeletal system. However no structural defects of the forming cartilage or bone 

at 1-8 weeks were observed. No differences in chondrocyte proliferation between control and 

mutant mice were detected. 

 

1.3. Tooth phenotype of α11-deficient mice 

The α11-deficient mice displayed increased mortality starting form 1 year of age, and 10 such 

mice died between 12-19 months compared to only one control mouse. Necropsy of the α11-

deficient mice revealed severe malnutrition, bringing attention to the digestive system. Even 

though α11 is co-expressed with α2 integrin in villus cluster fibroblasts, no defects were found 

in this area. In the older mice a incisor phenotype was clearly noticeable. Mutant mice showed 

delay in the time of incisor eruption and altered tooth shape. In the older animals the incisal 

part of the upper incisors was often missing, whereas intraalveolar part was still present. 

Analysis of tooth eruption showed that it was reduced at 3-6 weeks and was stopped at 6-7 

months. The smaller size of animals and tooth phenotype were present in both strains of 

independently generated Itga11-deficient mice. Micro-CT of incisor showed increased 

thickness of dentin layers in the apical region resulting in the pulp closure. 

Histological analysis of incisor PDL showed increased thickness due to increased amount of 

collagen as determined by Sirius red staining. Fibroblast density, but not the cell number, was 

reduced when compared with an even distribution in the control PDL. The acellular cementum 

was increased in thickness and increased number of cell rests of Malassez was a characteristic 

feature of the PDL in animals older than 6 months. Electron microscopy showed normal 

collagen fibrils and normal collagen network. The PDL of the molars did not display any 

abnormalities at any age with regard to tooth eruption or morphology. In order to examine 

whether defective incisors were the underlying cause of the proportional dwarfism, animals 

were fed a soft food diet. This regimen partially rescued the reduced weight phenotype. 

 

1.4. In situ localization of α11 RNA and immunohistochemical analysis of α11 protein in 

the PDL 

The expression of α11 RNA and protein was analyzed during embryonic day (E) 14-17 and 

postnatally. Immunohistochemistry detected α11 in the dental follicular mesenchyme that 

forms the PDL and in the preodontoblasts of developing molar and incisors. α1 and α2 integrin 
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proteins were detected only in capillaries in the PDL while α10 protein was completely 

lacking. α11 protein levels were significantly higher in adult incisor PDL compared to molar 

PDL. No compensatory regulation of collagen-binding integrins in molar or incisor PDL was 

observed when α11 was not detected in these young ages. Collagens III and XII and CD-31-

positive cells were detected in both control and mutant incisor PDL but no differences in 

expression between mutant and control animals were observed. Due to denaturating conditions 

of the decalcification protocols, performance of in situ MMP activity assay was not possible 

but instead PCR analysis was performed. In semiquantitative PCR increased mRNA levels of 

MMP-9 and decreased levels of MMP-14 were observed in the α11-deficient incisor PDL 

tissue. Reduced levels of MMP-13 were also noted. 

 

1.5. In vitro phenotype of α11-deficient mouse embryonic fibroblasts 

The MEFs isolated from α11-deficient embryos showed significantly reduced adhesion to 

collagen I compared to control cells, whereas adhesion to collagen IV was changed only 

marginally.  Adhesion to fibronectin was not affected by the absence of integrin α11. The 

proportion of α11-deficient cells that had spread on collagen I was reduced by 50% compared 

to control cells. No differences were observed in the case of spreading on fibronectin. Fewer 

vinculin-positive focal contacts were formed in α11-deficient MEFs seeded on collagen I. 

Mutant cells also displayed reduced capacity to reorganize collagen gels. Incubation of control 

cells with a mixture of α1 and α2 integrin-blocking antibodies did not alter their ability to 

contract collagen gels whereas α11-deficient cells reduced lattices to 60% of their original size. 

The simian virus 40 large T antigen (SV40)-immortalized α11-deficient MEFs retransfected 

with human α11 cDNA were able to contract collagen gels as efficiently as α11-expressing 

SV40 MEFs. Analysis of MMP expression and activity showed a reproducible decrease in 

MMP-13 and MMP-14 mRNA levels in mutant MEFs cultured in 3D collagen gels whereas 

the activities of MMP-2 and MMP-9 were not affected by the lack of α11 integrin. 

 

2. α11β1  integrin-mediated collagen lattice contraction by incisor periodontal ligament 

fibroblasts requires MMP-13 (Paper II) 

Results obtained from studies of α11-deficient mice (Paper I) allowed us to identify a specific 

population of cells affected by the lack of α11 integrin. The disturbed functions of mutant 

incisor PDL fibroblasts most probably have direct connection to the α11 phenotype.  
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2.1. Isolation of incisor PDL fibroblasts 

To study the mechanism underlying molecular defect at cellular level incisor PDL fibroblasts 

were isolated from mutant and control animals. Due to the small amount of tissue, the attempts 

to establish cultures from pooled isolated incisor PDLs or from extracted incisors, failed. To 

overcome this problem α11-deficient mice were crossed with immortomice carrying SV40 

large T under the control of the temperature-sensitive H-2Kb-tsA58 promoter [198] and cells 

were isolated by explant cultures from extracted incisors. Two control and two α11-deficient 

incisor PDL fibroblast isolates were established in this way (Figure 7). 

 

 

Figure 7. Isolation of immortalized incisor periodontal ligament fibroblasts.  

 

2.2.  Characterization of incisor PDL fibroblasts 

Metabolic labeling and immunoprecipitation experiments with integrin antibodies revealed 

high levels of α11 integrin derived from control teeth and lack of protein in cell explants of 

α11-deficient PDL. α11 was not detected in a cloned molar PDL fibroblast cell line mPDL-L2 

isolated in a similar manner from immortomouse molar PDL [199]. Incisor PDL fibroblasts in 

vivo exist in a 3D microenvironment. To mimic this condition, cells were placed in a 3D 

collagen gel. Incisor PDL fibroblasts in attached collagen gels, display increased levels of α11 

protein at 48h demonstrating that mechanical strain supports high α11 integrin levels. α11 

levels decreased in cells cultured in free-floating collagen lattices. A characteristic feature of 
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PDL fibroblasts is their ability to express osteogenic markers and form osteogenic noduli when 

induced with differentiation medium containing BMP-2 [199]. When α11-deficient and control 

cells were subjected to such treatment they showed similar capacity to differentiate and form 

noduli. Semiquantitative PCR revealed that cells upon differentiation treatment expressed 

collagen α2(I), collagen α1(XII) and periostin, which are known PDL fibroblast markers. 

Incisor PDL fibroblasts also expressed mRNA for osteogenic markers such as the transcription 

factor RunX2, OP (bone ECM protein) and low levels of OC (detected in only one mutant and 

one control isolate). Based on this finding we concluded that the isolated cells had properties of 

PDL fibroblasts.  

 

2.3. Functional analysis of α11β1 integrin in incisor PDL fibroblasts 

To examine the effect of α11-deficiency on the ability of incisor PDL fibroblasts to interact 

with collagen I, cells were tested in cell adhesion, cell migration and collagen gel contraction 

assays. In adhesion assays, a reduced ability of α11-deficient cells to attach to collagen I was 

observed.  A combination of antibodies to α1 and α2 integrin reduced cell attachment of 

control cells by 50-60%. In order to evaluate the ability of the incisor PDL fibroblasts to 

remodel 3D collagen lattices, cells were incorporated into attached and free-floating gels. α11-

deficient cells showed reduced ability to reorganize both types of matrices. In floating gels 

α11-deficient cells contracted gels only to 80% of the initial area whereas control cells 

contracted gels even down to 20% of their initial area. The need for α11 integrin in 

reorganization of collagen gels was verified in an experiment with siRNA to α11 mRNA. 

Reduced levels of α11 protein to approximately 40% in the α11-expressing cells, reduced the 

ability of cells to contract collagen gels by 20%.  The effect of α11 expression on cell ability to 

migrate on collagen I was tested in chemotaxis assay. In absence of chemoattractant no 

migration was observed and presence of 10% serum only marginally stimulated cell migration. 

A very effective chemoattractant was PDGF-BB, which strongly stimulated migration of 

control cells, but migration of α11-deficient cells was strongly attenuated. 

In summary, α11β1 integrin is a major collagen receptor in incisor PDL fibroblasts mediating 

cell adhesion, migration and collagen lattice remodeling. 

 

2.4. α11β1 regulates MMP-13 levels inside a 3D collagen gel  

It has been shown in human skin fibroblasts and human osteosarcoma cell lines that fibroblasts 

within a 3D collagen gel induce MMP levels in a collagen-binding integrin-dependent manner 
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[122, 133]. Analysis of MMPs mRNA levels indicated dysregulated MMP-13 and MMP-14 

levels in α11 deficient MEFs (Paper I). 

To examine possible connection between α11 expression and regulation of MMP levels in 

incisor PDL fibroblasts, the cells were cultured in free-floating or attached gels and MMP 

protein levels and collagenase activity were tested. Western blot analysis of cells revealed that 

MMP-2 levels were strongly induced in floating and attached gels in an α11 integrin-

independent manner. MMP-13 protein levels were induced inside of 3D collagen gels only 

when α11β1 integrin was expressed by the cells. No consistent changes were seen in MMP-9 

and MMP-14 protein levels. Surprisingly, the analysis of conditioned media did not show 

increased collagenase activity in α11-expressing cells when placed inside 3D collagen gels. 

The possible explanation is that the collagenase partially might be trapped within the collagen 

gel, and hence is only partially detected in the media. A decreased collagenase activity in 

media collected from α11-deficient cells was observed in all conditions. In another type of 

assay, a clear reduction of collagenase activity in α11-deficient cells was shown in monolayers 

where cells were plated in a drop of collagen I and cultured for 48h. Cells were removed and to 

monitor collagense activity the remaining collagen was stained. α11-expressing cells produced 

clear zones in the area where the cells had been placed while α11-deficient cells showed only 

marginal effects on the collagen layer. 

 

2.5. α11β1-mediated collagen reorganization in part depends on MMP-13 

As already mentioned it has been shown before that fibroblast-mediated collagen gel 

contraction is dependent on MMP-13 [122]. To test if part of this activity is mediated by 

α11β1 integrin, the effects of a broad MMP inhibitor (GM6001) and MMP-13 specific 

inhibitor (CL-82198) were tested in collagen gel contraction assays. The contraction of 

collagen gels by α11-expressing cells was inhibited by 20% when GM6001 was used whereas 

CL-82198 reduced contraction somewhat less. These experiment were performed using pepsin-

extracted collagen I. When collagen I containing non-helical telopeptides at N- and C-terminal 

ends, allowing the collagen cross-linking formation [200] was used, the effects of both 

inhibitors were even greater (data not shown). Addition of exogenous MMP-13 to collagen 

gels containing α11-expressing incisor PDL fibroblasts increased the contraction of collagen 

gels by approximately 10%. 
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3. A role for α11β1 integrin in the human periodontal ligament (Paper III) 

Our earlier data demonstrated that α11β1 integrin is indispensable for the PDL-driven tooth 

eruption in mouse (Paper I). To explore a possible role of α11β1 integrin in human 

periodontium, the expression of α11 in human PDL tissue, in cultured human PDL fibroblasts 

and in human gingival fibroblasts, was characterized. A report by Lallier et al. suggested that 

in addition to the integrin chains α1 and α2, additional collagen-binding integrins are 

expressed by human PDL fibroblasts, which contribute to cell adhesion and cell migration on 

collagen I [162]. 

 

3.1. The repertoire of collagen-binding integrins in human PDL and gingival fibroblasts 

Analyses of collagen-binding integrins on mRNA and protein level were performed on three 

different primary fibroblast cultures, established from human PDL and gingival tissues. Using 

quantitative PCR, α1, α2 and α11 integrin mRNA were detected in all PDL fibroblast and 

gingival fibroblast isolates. α11 mRNA levels were higher in all PDL fibroblast isolates 

compared to gingival fibroblast isolates. α10 integrin mRNA was only detected in PDL 

fibroblasts, but expression was very weak. Further analysis was performed on selected PDL 

and gingival cells isolates (hPDLF1 and hGF1). To analyze collagen-binding integrins protein 

levels, immunoprecipitation experiments and immunofluorescence analysis were performed. 

Immunoprecipitation of metabolically labeled cells detected α1, α2 and α11 integrin chains, 

but not α10. The levels of α11 seemed to be higher in the PDL fibroblasts, which was 

confirmed by western blotting. Indirect immunofluorescence of PDL fibroblasts and gingival 

fibroblasts showed that α1, α2 and α11 integrins each localized in focal contact-like pattern 

when cells were plated on collagen I.  

 

3.2. α11β1-mediated collagen gel contraction is enhanced by IGF-II 

The ability of cells to reorganize 3D collagen lattices reflects the contractile activity of the 

cells. Addition of anti-β1 integrin antibody almost completely prevented collagen gel 

contraction, whereas addition of anti-α1 and anti-α2 antibodies mix was not enough to 

completely block contraction, indicating that other integrin(s) contributed to collagen gel 

contraction. Since function-blocking antibodies to α11 are not available, α11 mRNA was 

downregulated with siRNA, resulting in decreased α11 protein levels. α11 siRNA blocked 10-

20 % of the contraction of gingival fibroblasts and PDL fibroblasts and the combined use of 

α11 siRNA and an α2 function-blocking antibody almost completely abolished the ability of 
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both cell types to contract collagen lattices. In the present study the influence of IGF-II and 

PDGF-BB on collagen remodeling properties of gingival fibroblasts and PDL fibroblasts was 

tested. Addition of IGF-II or PDGF-BB increased contraction of both cell types. A stronger 

contraction of lattices containing PDL fibroblasts was observed. Western blot analysis showed 

that in gingival fibroblasts expressing moderate levels of α11 and IGF-II stimulated synthesis 

of α11 protein in a time-dependent manner. In PDL fibroblasts expressing high levels of α11 

to start with, the effect of IGF-II was not so obvious. To determine if PDGF-BB and IGF-II 

stimulated collagen gel contraction was preferentially α1, α2, or α11 integrin-mediated, we 

used C2C12 cells stably transfected with comparable levels of individual collagen-binding 

integrins. Under the conditions used, none of the C2C12-cell types displayed preference for 

any particular growth factor. 

 

3.3. The repertoire of collagen-binding integrins in healthy and diseased PDL tissue 

In a limited number of samples, mRNA and protein levels of collagen-binding integrins were 

analyzed. Reverse transcriptase PCR analysis showed the presence of mRNA encoding α1, α2, 

α10 and α11 integrins in both healthy and diseased PDL tissue. The expression levels of 

integrins differed within healthy and diseased groups themselves. Western blot analysis did not 

show any consistent difference in α11 levels in healthy or periodontitis-positive samples. 

 

3.4. Sequence analysis of the ITGA11 promoter 

Sequence analysis of the 223 bp upstream nucleotide region of ITGA11 promoter did not reveal 

any single nucleotide polymorphisms within the SBS1, SBS2 or EBS regions of the DNA, 

neither in patients, nor in controls. 
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Discussion and future perspectives 
1. α11β1 integrin-dependent regulation of periodontal ligament function in the erupting 

mouse incisor (Paper I) 

The α11 integrin is most closely related to the α10 integrin. In mouse embryos both subunits 

display expression patterns restricted to different interstitial connective tissue cells. 

Comparison with the expression pattern of other collagen-binding integrins has shown that the 

expression of α11 integrin partially overlaps with expression pattern of α2 and is 

complementary to expression of α10 integrin [82]. Analysis of mice deficient in α1, α2 or α10 

integrin subunits have revealed only mild phenotypes in unchallenged mutant animals [61, 62, 

69, 201]. The mild phenotypes of mice deficient in individual collagen-binding integrins 

suggest compensation in cell-collagen interactions in normal physiological conditions or 

possible overlapping roles of individual integrins. Both α2 and α11 integrins are co-expressed 

in the intestine [82] but no phenotype was identified in the intestine in α11-deficient animals 

by standard histological analysis. The existence of redundancy mechanism for these two 

integrins is one possible explanation for the lack of phenotype in the α11-null intestine.  

Even though α11 is expressed in perichondrium, α11-deficient mice did not display any 

cartilage defects. Other tissues normally expressing α11 integrin such as cornea, intervertebral 

disc, intestine and skin did not show any obvious phenotypes in corresponding unchallenged 

α11-deficient mice. Instead, the malnutrition and reduced body mass of α11-deficient mice 

correlated with the observed tooth phenotype. Supplementing the diet with the soft food 

prevented malnutrition and increased mortality but mutant mice still remained smaller. This 

indicates that other defects exist in addition to the tooth phenotype.  

It is interesting that α11 tooth phenotype is selective for incisors, which in contrast to molars 

erupt continuously in rodents. α11 is expressed in the dental follicle mesenchyme of both 

molars and incisors. But in adult teeth α11 is only expressed in the incisors, which most likely 

explains the restriction of the tooth phenotype to the incisors. Since molar eruption occurs by 

different mechanism, the role for collagen-binding integrins in this process is unclear. It is 

possible that receptors other than collagen-binding integrins can participate in attachment of 

molar PDL cells to collagen. Such a possibility has already been suggested for the dermal 

fibroblasts in the skin of α1-deficient animals [45]. These mice do not show any 

developmental and structural abnormalities and no α2 integrin up-regulation in embryos was 

observed. This was also true in adult smooth muscle cells and hepatocytes, which normally 
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express high levels of α1. Instead, it has been suggested that direct α1-mediated integrin-

collagen interactions are not required in these tissue, and indirect binding to collagen I might 

be mediated by proteins such as fibronectin [201]. This might also be the case for molar PDL 

tissue where no collagen-binding integrins are expressed and the tooth eruption process occurs 

normally. 

Except for α11β1 integrin, there are other molecular mechanisms underlying differences 

between molars and incisors. It has been reported that certain transcription factors expressed 

during embryonic development, growth factors or MMPs needed during different stages of the 

tooth eruption process, are differently expressed in molar and incisor PDL. For example, EGF 

affects only incisor eruption whereas CSF-1 preferentially affects the osteoclasts-dependent 

stage of molar eruption [202]. In the absence of FGF-10, which supports the stem cell 

compartment and is indispensable for incisor growth, only incisors, but not molars, are missing 

[203].  

Mice deficient in MMP-14 display affected molar root development and tooth eruption [204-

206]. The role of the PDL in rodent incisor eruption is still controversial. It has been suggested 

that PDL fibroblasts migrate occlusally through the PDL space and create the tractional force 

pulling the tooth towards the surface of the oral mucosa [207]. Alternatively the eruptive force 

has been suggested to be provided by the hydrostatic tissue pressure within vascular tissue of 

the PDL [208]. The α11-deficient mouse is the first genetic model supporting the tractional 

force model.  

Only partial inhibition of cell adhesion to collagen I has been observed in α1-null MEFs [201] 

and α2-null keratinocytes and dermal fibroblasts [56], indicating the presence of another 

collagen-binding integrin . In vitro studies of α11-deficient MEFs have shown that the absence 

of α11 significantly reduces cell attachment to collagen I, spreading on collagen I, and 

reorganization of collagen I lattices. These findings indicate that α11β1 integrin is a major 

collagen I receptor on MEFs. Our in vitro data imply that incisor PDL fibroblasts in the α11-

deficient mice bind collagen with lower affinity, resulting in weakened tractional force in turn 

affecting the continuos incisor eruption.  

The analysis of the PDL tissue showed increased thickness in α11-deficient animals, the 

presence of wide acellular cementum and increased number of cell rests of Malassez. 

Maintaining the correct width of the PDL is an essential function of PDL fibroblasts and such 

property of these cells might be lost in the absence of α11β1 integrin. Sirius red staining 

showed that increase in thickness of the PDL occurs due to collagen accumulation in α11-
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deficient mice. Collagen I and MMP synthesis have been shown to be regulated by integrins 

[122, 133]. α1-deficient mice display increased collagen synthesis in granulation tissue of the 

skin wounds but surprisingly no increase in skin thickness was observed due to up-regulation 

of collagenase (MMP-13) [45]. In the PDL tissue of the α11-null mice no changes in mRNA 

levels of collagen I and collagen III were detected by semiquantitative PCR. In the α11-

deficient mice the observed increase in collagen might also occur due to increased RNA 

stability or due to posttranslational mechanisms. Another explanation for the increased 

collagen amount might be reduced MMP activity in α11-null PDL tissue. mRNA analysis of 

the PDL tissue showed decreased levels of MMP-14 mRNA but increased levels of MMP-9. 

The observed phenotype in the α11-deficient mouse is manifested only postnatally when 

ossification has occurred. Since sectioning of PDL tissue requires lengthy decalcification 

protocols it does not allow for reliable in situ zymography to detect possible changes in MMP 

activity. Instead, the PCR analysis of MMPs in MEFs cultured within 3D collagen lattices was 

performed which revealed reduced expression of MMP-13 and MMP-14 mRNA in α11-

deficient cells. Based on the obtained results, we suggest that changed MMP levels are major 

factors that lead to the observed disturbed collagen turnover in the α11-null PDL. 

In summary, this data indicate a role for α11β1 integrin in incisor tooth eruption. Our data 

suggest that α11β1 is needed for the PDL fibroblasts to generate tractional forces needed for 

tooth eruption. In vitro studies showing reduced ability of α11-deficient MEFs to interact with 

collagen support the phenotype of impaired incisor eruption. In order to verify if re-expression 

of α11 integrin in the PDL of α11-deficient mouse can rescue the observed phenotype, α11-

over-expressing transgenic mice have been generated recently. The transgenic animals will be 

bred with wild type and α11-deficient mice in order to obtain α11+/+ and α11-/- offspring 

carrying transgenic α11 integrin. In vivo and in vitro analyses similar to those presented in this 

report will be performed to validate if the α11-transgene can rescue the α11-phenotype. It will 

also be interesting to determine the effect on tissue and cellular level when α11-transgene is 

over-expressed in wild type animals in tissues normally not expressing α11. 

 

2. α11β1  integrin-mediated  collagen lattice contraction by incisor periodontal 

ligament fibroblasts requires MMP-13 (Paper II) 

The major protein in the PDL is collagen I, and the most abundant cell population is the 

fibroblast. Finding the cellular collagen attachment mechanism in the PDL can help to 

understand physiology and pathophysiology of this specific tissue. Cell-collagen interactions 
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can be mediated by direct binding to collagen via collagen binding integrins [27] and indirect 

binding via αvβ3 integrin-mediated binding bridged via collagen-binding proteins such as 

fibronectin [209], osteopontin [210], periostin [211] or bigH3 [212]. Even though integrins are 

well characterized, a clear role for these receptors in developing and mature molar and incisor 

PDL has not been established yet. The molar PDL fibroblast cell line mPDL-L2 has been 

characterized before [199] but it still remains unclear how the attachment mechanism works in 

mouse molar PDL cells. The analysis of mPDL-L2 cells showed lack of all collagen-binding 

integrins in these cells. This finding suggests that indirect binding to the periostin matrix is 

involved in adhesion of these cells to the ECM. Periostin is a ligand for integrin αvβ1 and 

αvβ3 [211] and it has been reported to bind collagen I [213]. Periostin-deficient mice 

demonstrate a disturbed structure of both molars and incisors and the phenotype is described as 

periodontal-disease like. The phenotype develops within three months after birth, suggesting a 

critical role for periostin in the maintenance of the PDL structure [214]. Interestingly, the tooth 

phenotype of α11-deficient animals is manifested at similar age of the animals. 

Tooth development is a complex process involving molar and incisor specific transcriptional 

events. Although molar and incisor PDL fibroblasts have the same ectomesenchymal origin, 

FGF-10 [203] and α11β1 integrin (Paper I) is only present in the adult incisor PDL tissue. 

Periostin is also detected in incisor PDL tissue, but the mechanism of incisor PDL fibroblast 

cell attachment seems to be more complex and clearly involves direct cell attachment to 

collagen I via α11β1 integrin (Paper I).  

Part of α11-deficient mouse phenotype is a thickened PDL with increased collagen 

accumulation. In order to examine the molecular mechanism underlying observed phenotype, it 

was essential to isolate fibroblasts from incisor PDL. Since we failed to isolate primary cells 

due to limited amount of PDL tissue, the cells were isolated from α11-deficient animals 

carrying temperature sensitive SV40 large T [198]. Isolation of immortalized PDL cells from 

rodents has already been described before [199, 215, 216]. Molar PDL cell lines from rats and 

mice carrying temperature sensitive SV40 large T were isolated and characterized [199, 215]. 

Mouse dental follicle cells obtained from mouse incisor tooth germ, were immortalized by 

infection with mutant human papiloma virus type 16 E6 [216] resulting in a cell line with 

presumably incisor-like characteristics. To our knowledge, the incisor PDL cell isolates are the 

first incisor PDL cells to be isolated from already differentiated adult mouse incisor PDL 

tissue. The progenitor cells in the dental follicle are thought to contribute to the formation of all 

periodontal tissues like cementum, PDL and alveolar bone [217]. The PDL cells have been 
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suggested to have potential to differentiate to odontoblasts or cementoblasts [142, 151]. It has 

been demonstrated that PDL cells have osteoblast-like properties, including ALP activity [218] 

and display an ability to form mineralized nodules [219, 220] like osteoblasts. There is no 

marker typical for the PDL cells but a number of tendon/ligament phenotype- and osteoblastic 

phenotype-related genes are thought to be involved in the differentiation of the PDL cells. 

Initial analysis of incisor PDL fibroblasts confirmed expression of such markers like collagens 

I and XII, periostin, RunX2 and osteopontin. Furthermore, incisor PDL fibroblasts showed 

increased ALP activity and ability to form mineralized noduli. Based on these findings, we 

concluded that the cells we isolated have properties of PDL cells. Another important issue 

regarding the isolated incisor PDL fibroblasts concerns possible side effects resulting from 

immortalization or clonal effects following isolation. Previously, it has been shown that the 

immortalization process itself can influence and dysregulate expression of random genes. 

Infection of keratinocytes with oncogenic mutant of Ras (Ras12) causes switch in α3β1 

integrin function, which in turn induced MMP-9 expression in the cells [221]. To exclude 

clonal effects, at least three independent isolates of control and α11-deficient incisor PDL 

fibroblasts were generated and initially screened for expected expression of collagen-binding 

integrins. Two isolates from each group, with similar integrin expression patterns, were chosen 

for further analysis. Both independent isolates within each group responded similarly in 

functional assays such as cell attachment or collagen gel contraction. Analysis of MMP levels 

indicated similar expression pattern of MMP-13 and similar collagenase activity in both 

isolates within the group. In the PDL tissue of α11-deficient animals MMP-9 mRNA was 

strongly up-regulated (Paper I). In our incisor PDL fibroblasts the levels and the activity of 

MMP-9 differed between isolates from the same group thus suggesting that observed 

inconsistencies might be side effect of immortalization or clonal effect. 

 

The PDL is a tissue characterized by high mechanical tension. In adult molar and incisor PDL 

tissue proteins are synthesized and degraded constantly maintaining the tissue homeostasis. 3D 

collagen lattices are model systems that have been used to mimic the normal microenvironment 

of tissues [222]. It has been reported that 3D collagen gels induce expression of MMP-13 

human skin fibroblasts [122] and addition of exogenous MMP-13 to collagen gels containing 

skin fibroblasts increased the ability of cells to reorganize collagen matrices [113]. The 

addition of the MMP inhibitor GM6001 decreased the ability of fibroblasts to contract collagen 

gel by human osteosarcoma cells [223]. It has also been reported that MMP-13 is a major 
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MMP regulated by integrins in fibroblasts [113, 122]. ECM proteins like collagen I, collagen 

XII and periostin can be regulated by mechanical tension in the PDL [224-227]. The regulation 

of collagen α1(I) and periostin synthesis by mechanical stress involves autocrine TGF-β loops 

[226, 227]. TGF-β latent complexes are activated by mechanical stretching [228] and MMP-13 

gene expression has been reported to be enhanced by TGF-β [119]. Thus it is possible that the 

tractional force reduction, due to absence of α11-integrin, results in decreased levels of active 

TGF-β causing the drop in MMP-13 levels. In the future it will be important to clarify if such 

regulation occurs in incisor PDL fibroblasts in vitro and in vivo. In α11-deficient PDL, 

collagen is accumulated and this report suggest that impaired collagen turnover is in part due to 

disturbed MMP synthesis. Matrix remodeling requires presence of MMPs secreted by 

fibroblasts embedded in the ECM. Interestingly, western blot analysis of MMP-13 levels 

showed induction only in α11-expressing incisor PDL fibroblasts placed in attached collagen 

gels. Since human skin fibroblasts or MC615 mouse chondrocytic cells placed inside 3D 

collagen gels up-regulate MMP-13 via two different signaling pathways, resulting in the up-

regulation of p38 in skin fibroblasts and ERK in MC615 cells [122, 123], it appears that 

regulation mechanism of MMP-13 might be cell type specific. It is interesting to note that 

MMP-13-deficient mice have a bone phenotype but no tooth phenotype. The most trivial 

explanation is that MMP-13 shows a limited expression in the normal PDL tissue, and only 

partially contributes to normal tissue homeostasis. Other possible explanations include the 

existence of redundancy or molecular compensation mechanism. MMP-13 deficient mice show 

up-regulated MMP-8 during wound healing, suggesting compensation within the MMPs gene 

family [229]. Another possibility is compensation by MMP-14, which has properties of 

collagenase. MMP-14 has a clear molar PDL phenotype in a MMP-14-deficient mouse model 

indicating that MMP-14 is indispensable for the tooth eruption process and collagen turnover 

[205]. Its role in incisor remains to be defined. In addition to molecular compensation 

mechanisms, the lack of tooth phenotype of MMP-13-deficient mice might be due to 

physiological adaptation or compensation mechanism of unknown nature. 

Another interesting issue is a clarification of MMP-13 regulation in the context of fibroblast 

involved in stromal regulation of cancer. MMP-13 is expressed in breast carcinoma, 

chondrosarcomas, basal cell carcinomas and squamous cell carcinomas of the head and neck 

[230]. Several proteins are known to be substrates for MMP-13 in vitro, including TGF-β and 

collagen I. TGF-β secreted by carcinoma-associated fibroblasts (CAFs) and acting on the 

epithelium promotes carcinogenesis [231]. MMP-13 degrades components of basement 
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membranes promoting tumor invasion and progression of human squamous cell carcinoma and 

human fibrosarcoma HT1080 cells [230]. MMP-13 is expressed by CAFs cells in human 

breast cancer, and in vitro, breast cancer cells can stimulate fibroblasts to secrete MMP-13. 

α11 is also expressed by CAFs in lung cancer [232]. It will be interesting to determine if α11β1 

mediates part of the MMP-13 synthesis in CAFs.  

In summary, the present data suggest that in the incisor PDL fibroblast α11β1 is regulated by 

mechanical strain. In a future it might be interesting to study the regulation of α11 during 

molar and incisor tooth movement. Since α11β1 integrin is a major collagen receptor of 

fibroblasts, its potential role in downstream events in various connective tissue disorders 

remains to be defined. The expression and activity of MMP-13 in incisor PDL fibroblast is 

regulated in α11β1-depandent manner. It remains to be confirmed if MMP-13 is involved in 

collagen remodeling by incisor PDL fibroblasts in vivo. 

 

3. A role for α11β1 integrin in the human periodontal ligament (Paper III) 

Since α11β1 integrin is needed during the PDL-driven tooth eruption in mouse and α11-

deficient mice display a PDL phenotype (Paper I), it was important to explore a possible role 

of this integrin in human PDL. The integrin repertoire on human PDL cells has been partially 

characterized previously [161, 162, 233, 234] but a very few functional analyses of collagen-

binding integrins in PDL cells have been performed. Studies by Lallier et al. using antibodies 

to α1 and α2 to investigate PDL cells interactions with collagen, suggested that other integrins, 

like α10β1 and α11β1 might be functional and mediate such interactions [162]. Since 3D 

collagen gel contraction assay has been suggested to mimic tooth eruption [235] and is a 

convenient assay to analyze collagen receptor function, we used it to evaluate the role of α11 

on human PDL fibroblasts.  

Analysis of human gingival fibroblasts and PDL fibroblasts showed that three collagen-binding 

integrins α1β1, α2β1 and α11β1 are expressed at the protein level. Similarly to the functional 

studies by Lallier et al. only partial inhibition of collagen gel contraction occurred when α1 

and α2 integrin-blocking antibodies were used. In our studies the inhibitory effect was most 

pronounced in gingival fibroblasts expressing lower levels of α11 protein than PDL 

fibroblasts. Downregulation of α11 by siRNA to α11 mRNA, caused a strongly reduced ability 

of both cell types to contract collagen lattices. A combination of α11 siRNA treatment with a 

function-blocking antibody to α2 almost completely abolished the ability of the cells to 
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contract collagen gels. The obtained results stand in line with previous studies of MEFs 

indicating α11β1 as a major integrin mediating collagen gel contraction [81]. Based on these 

results it was concluded that on fibroblasts α2β1 and α11β1 are the major collagen-binding 

integrins mediating collagen lattice remodeling in human gingival and PDL fibroblasts. It is 

interesting that in adult mice, α11 expression is limited only to incisor PDL while in human 

α11 was detected also in adult molar PDL.  

Further detailed analyses are required to investigate if α11 levels are increased in inflamed 

PDL tissue. Growth factors such as PDGF-BB or IGF-II are involved in PDL tissue 

regeneration after injury [236-238]. In the present study, the contraction of collagen lattices by 

human gingival fibroblasts and human PDL fibroblasts was stimulated by PDGF-BB and IFG-

II. Comparison of the ability of gingival fibroblasts (expressing low α11 levels) and PDL 

fibroblasts (expressing high levels of α11) to reorganize collagen gels implied that the strength 

of contractile activity of cells is governed by the relative levels of collagen-binding integrins. 

IGF-II appeared to stimulate α11 levels in gingival fibroblasts cells whereas such effect was 

not seen in PDL fibroblasts cells, expressing high levels of α11 to start with. The stronger 

contractile activity of PDL fibroblasts cells in response to IGF-II might reflect a higher level of 

α11β1 integrin in these cells. Based on the obtained results, it seems that in both cells types, 

α11β1 integrin mediates collagen gel contraction in an IGF-II-dependent manner. A 

stimulation of α11β1 integrin during regeneration of PDL might be important in the 

contraction phase of the granulation tissue. This mechanism might allow more efficient 

replacement with new non-fibrotic PDL tissue.  

In conditions afflicting connective tissues, such as Ehlers-Danlos syndrome or Marfan’s 

syndrome, severe defects of the PDL have been observed [239, 240]. These findings suggested 

that defects in the PDL might be a contributing factor for increased susceptibility to 

periodontal disease [239, 240]. More recently, it has been shown that αvβ6 can be of 

importance in preventing of periodontal disease. The αvβ6 integrin levels are downregulated in 

patients suffering from periodontal disease [168]. Recently, it has been shown in a pig model, 

that β6 integrin levels are increased in both skin and gingiva during wound healing [241]. 

Based on these results, it seems that decreased levels of β6 integrin in periodontal disease 

might prevent PDL tissue regeneration. In general, genetic background influences 

susceptibility to different diseases including chronic inflammatory periodontal disease.  Most 

of the gene polymorphism studies in the PDL have focused on cytokines (IL and TNF genes), 

immune receptors and MMPs since these factors are suggested to contribute to development of 
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periodontal disease [242]. Genetic polymorphisms within MMP-1, MMP-2 and MMP-3 

promoters have been studied in the context of periodontal disease but no associations with 

increased susceptibility to periodontal disease were found [243, 244]. In mice deficient in α11 

integrin no direct PDL fibroblasts-collagen interaction occurs due to lack of any collagen-

binding integrin and results in severely disturbed tooth eruption due to decrease of tractional 

force. The synthesis of collagen is increased in the PDL of such animals. The promoter region 

is crucial for binding of RNA polymerase and initiation of RNA transcription, and existence of 

polymorphisms might lead to dysregulated α11 integrin levels, potentially predisposing to 

periodontal disease. We assumed that decreased expression of integrin α11 in human might 

result in weakened PDL fibroblast-collagen interactions potentially predisposing to periodontal 

disease. Thus, it seemed relevant to clarify if there were any polymorphisms within the 

ITGA11 promoter. However, no polymorphisms were identified by sequencing 223 bp 

upstream nucleotide region representing the proximal promoter of ITGA11, containing SBS1, 

SBS2 and EBS regions. The comparison of mRNA and protein expression of α11 in healthy 

and inflamed PDL tissues showed presence of the α11 integrin in both tissue types but the 

levels varied within the control and inflamed tissues. 

Further studies of human PDL might include comparison of integrin repertoire of primary and 

permanent teeth to clarify which integrins are involved in cell-collagen interactions and with 

possible implications for tooth eruption and PDL integrity. 
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Concluding remarks 
The studies included in this thesis attempted to investigate the function of α11β1 integrin in 

vivo and in vitro.  

 

First of all, α11-deficient mice have been generated and the α11-null phenotype has been 

described. Our data support a model in which tractional force is needed for tooth eruption to 

occur, and that α11β1 integrin by interaction with the collagen matrix of the PDL provides the 

“tool” for generating this force. Thus, α11-deficient mouse is the first genetic model 

supporting a role for tractional force in the late phase of the incisor eruption process. The 

presented data also indicate that α11β1 integrin in incisor PDL fibroblasts is a regulator of the 

PDL width. 

 

Secondly, α11-deficient immortomouse was generated which enabled the isolation of 

fibroblasts from adult incisor PDL. Our data show that α11β1 integrin is a major collagen-

binding integrin expressed by these cells, while α11 was not detected on fibroblasts derived 

from adult molar PDL. Mechanical strain was identified as a factor regulating α11 expression. 

Furthermore, we could show that α11β1 integrin regulated MMP-13 protein levels. Since 

MMP-13 is expressed in a number of cancers, it might be important to clarify the molecular 

mechanism of α11-mediated regulation of MMP-13. 

 

A final issue addressed in the present study was the role of α11β1 integrin in the human tooth 

apparatus. For the first time, all collagen-binding integrins have been characterized on the 

protein level in PDL and gingival fibroblasts. In contrast to mouse PDL, α11 was detected in 

both incisor and molar adult human PDL tissue. Comparative analysis of healthy and inflamed 

PDL tissue did not reveal any differences in α11 levels. Based on the α11-null phenotype in 

vivo it was suggested that decreased levels of α11 might predispose to periodontal disease. 

However, within a limited part of the proximal ITGA11 promoter no polymorphisms were 

found in DNA collected from a limited cohort of patients suffering from chronic periodontitis.  
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