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A quantum-mechanical approach is employed to study the binding of two bare nuclei of equal charge in
strong laser fields beyond the dipole approximation [Smirnova et al., Phys. Rev. Lett. 90, 243001 (2003)]. The
role of nondipole effects in the binding mechanism is investigated, and it is found that, in spite of a significant
contribution to the dynamics, the nondipole effects do not alter the characteristic lifetime of the system. The
results are supported by classical calculations addressing the question of decoupling of the center-of-mass and

relative motions.
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Quantum control, i.e., the ability to achieve a desired evo-
lution of a quantum system by applying external fields, is a
major theme of modern atomic, molecular, and optical sci-
ences. From a theoretical point of view, quantum systems
very quickly become incredibly difficult to handle with in-
creasing complexity of the system. On the other hand, the
dynamics of complex quantum systems can often be ad-
equately described by quasiclassical models.

Recently, it was suggested [1], based on solutions of the
time-dependent Schrodinger equation within the dipole ap-
proximation, that carefully selected combinations of strong
linearly and circularly polarized laser fields could bind two
same-sign charges, a proton and a deuteron. The nuclei are
bound in the sense that the Coulomb explosion is signifi-
cantly slowed down when the system is subject to external
fields. Even though the cycle-averaged potential in this case
does not give rise to stabilization, the mass difference of the
particles gives an additional dynamical effect which could
create a metastable state. Later, it was shown that the binding
could in fact be described by classical mechanics [2], but that
the spatial dependence of the laser fields may have a detri-
mental effect on the binding. However, care should be taken
when the role of nondipole effects is investigated within a
classical model [3], and a full quantum-mechanical analysis
of the problem, with nondipole effects included, is important.

In this work, we reconsider the problem of binding of a
proton and a deuteron with strong laser fields and discuss the
role of nondipole effects in the binding mechanism. Sup-
ported by nondipole wave packet calculations, we find that,
although the spatial dependence of the fields is substantial
for the dynamics, it does not affect the degree of binding. In
fact, by carefully selecting the initial wave function, the nu-
clei could apparently be even more strongly bound in the
nondipole case than in the dipole situation. This illuminates
how the initial wave packet influences the manifestation of
the nondipole effects in the system.

We use atomic units (a.u.) with m,=e=f=ay=1, except
where specified otherwise. Our system consists of two par-
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ticles with masses m, », charges ¢, ,, and positions r/ ,, re-
spectively. The nonrelativistic dynamics of two particles in-
teracting with a classical electromagnetic field is governed

by the time-dependent Schrodinger equation
i(013t)¥(ry,ry,t)=HY(r,,r,,1), with the Hamiltonian
1 1
H=—[p,-qAr.0) + = [p>— g2A(r>.0 ] + D2
2m, 2m, ry =7
(&

Following Smirnova ef al. [1] and Madsen and Hansen [2],
we use a linearly polarized field propagating in the x direc-
tion together with a circularly polarized field propagating in
the z direction, corresponding to the vector potential

E E
A(x,z,0) ==L sin(wt — k2 + )% + — cos(wf — kiz + $)F
()1 (1
E.
+ =2 sin(wyt — kox + )3. 2)
)

We now expand the vector potential (2) to first order in
the spatial derivatives and introduce center-of-mass (c.m.),
R=(1/M)(mr,+m,r,), and relative coordinates, r=r;—r,.
Finally, we apply the Kramers-Henneberger (KH) transfor-
mations [4] WD =W =ci®rPeiPU(r R 1) on the wave
function. Here,

ag(r)=— %f A(0,1")dt’ (3)
0
and
a,()=- Ef A(0,1")dt’ (4)
MmJo

represent the positions relative to the laboratory frame of
classical free particles with masses M =m;+m, (total mass)
and u=mm,/M (reduced mass), and charges Q=g,+q, (to-
tal charge) and g=pu(q,/m;—q,/m,) (reduced charge), re-
spectively, moving in the dipole field. In the following, the
vector potential A=A(0,7) and the electric field E=E(0,r)
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=-d,A depend only on 7. The Hamiltonian corresponding to
the new point of view becomes

H* = yRU + i(6,U)U*

= HKY 4 g _ MicP AEG+a-2)+Ex+a,-2)]

—%p~[E°(Z+afk~2)+E‘(X+aR~f()], 5)
with

1 1 2 ~2
HED = —p2 4 7<Q— + q—)A (Ez+EX) - LP B
2M c\M u Mc

tag 2)+E(X+ag X)], (6)

and

1 1 g qq'
HEM = —p2 4 D> +*(@+ﬂ>A'(EOZ+E‘X)
"

2u r+al c\M
 EGt a2+ B+ e, 2). )
uc

E° and E! denote the circularly and linearly polarized parts of
the electric field, q':(q|m§+q2mf)/M2 is the effective
charge [5], and R=[X,Y,Z] and r=[x,y,z]. Higher-order
terms proportional to (1/c)> along with purely time-
dependent terms have been omitted.

As seen in Eq. (5), there are nondipole cross terms that
prevent exact separation of the six-dimensional Schrodinger
equation in the c.m. and relative coordinates. However, for
the low-frequency and intense fields considered in this work,
we can neglect nondipole terms of type p-E in Eqs. (5)-(7)
compared to leading nondipole terms of type A-E for three
reasons. First, the latter terms depend quadratically on the
laser intensity [6]. Second, in contrast to the p-E terms, their
magnitude is inversely proportional to the frequency of the
applied field, Third, in the KH frame, and in the case of
high-intensity fields, the particles essentially follow the mo-
tion of free particles in the field. Hence, the particles’ mo-
mentum distributions are strongly centered about zero, mak-
ing terms of type p-E even less significant [7].

Thus, by neglecting these terms, the Schrodinger equation
separates and we are left with the following approximate
Hamiltonian for the relative motion:

= =
+l(%+ ﬂ)A (E°z+Ex).
M

1
H(KH)=27p2+ 9192
m [r+al ¢

®)

We follow Smirnova et al. [1] and start with an initial Gauss-
ian wave packet (in the KH frame)

2..2y/52 2, 2
\PO « e*(; +y )/vlefz /crz’ (9)

with 07=0.6 and 0,=1.2. The field parameters are w,
=0.06, w,=0.114, E;=33, and E,=260. The nondipole effect
of the linearly polarized field gives by far the dominant non-
dipole contribution to the dynamics. However, for complete-
ness, the spatial dependence of the circularly polarized field
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has also been included in the calculations. The three-
dimensional Schrodinger equation with the Hamiltonians (7)
and (8) is then solved numerically based on an accurate Fou-
rier transform split operator method [8]. Converged results
with an overall error of less than 2% were obtained with 180
grid points in the x and z directions, and 128 grid points in
the y direction, with —=10=<x,y,z=<10 a.u., and propagation
time step Ar=0.036 fs. An absorbing boundary is imposed at
the edges.

Supported by numerical calculations, it is found that the
Hamiltonians (7) and (8) yield practically identical results
for the problem at hand. The difference is much less than 1%
in all cases, suggesting that the approximation (8) is valid.
This gives further evidence for the correctness of the decou-
pling of the six-dimensional Schrodinger equation, since the
leading nondipole terms that prohibit separation in Eq. (5)
are of the same order as the ones omitted in the approxima-
tion from (7) to (8).

We have also performed a classical trajectory Monte
Carlo (CTMC) analysis of the six-dimensional problem and
solved the Newtonian equations of motion for a large num-
ber of randomly picked phase-space points (r,p,R,P). The
classical distributions resemble the probability density of the
initial wave packet (9) in both the position and momentum
space [2]. For tl}e cm. moliogl we use a distribution corre-
sponding to O 700" ith o) =\u/Ma, Newton’s
equation of motion for two interacting charged particles in an
electromagnetic field reads

. r
mi;=qlE(r1) +F; X Brin]+ (- 1)’+141[]2W’ (10)
r
with i=1,2, and B=V XA the magnetic field. In the dipole
limit the equation for the relative motion becomes

r

M;=§E+Q142W, (11)

and in the KH frame, with r' =r—a(t),

r'+a,

L rta
M —‘11‘12"‘/ +ar‘3'

(12)
Going beyond the dipole approximation introduces a cou-
pling to the c.m. motion, and we need to solve a six-
dimensional problem. The CTMC calculations were done us-
ing 100 000 initial phase-space points, and the simulations
were checked thoroughly for convergence. The classical
equivalent of the Hamiltonian (8) was obtained directly from
Hamilton’s equations xi:aH/ap,», p,:—ﬁ[fllaxi, and results
were compared with the full classical solutions of the corre-
sponding six-dimensional problem. In all calculations the re-
sults coincided within a few percent, showing that a first-
order expansion of the fields in the spatial derivatives is
indeed sufficient to describe the nondipole dynamics. Fur-
thermore, the calculations confirmed that the decoupling of
the c.m. and relative motions is valid. The problem is thus
effectively reduced from six to three dimensions.

Madsen and Hansen [2] showed that classical mechanics
can describe the binding of the two nuclei when the dipole
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FIG. 1. Upper panel: Quantum-mechanical probability for the
two particles to be less than 10a, apart in the KH frame, and for
three different combinations of the phases ¢; and ¢,. Solid lines:
The solution with inclusion of retardation effects, and with
{p1,}={-7/2,m/3} (upper line), {¢p, p,}={~m/2,m/5} (inter-
mediate line), and {¢,, ¢,}={0,0} (lower line). Dash-dotted line:
The dipole result. Lower panel: Corresponding result of the classi-
cal CTMC calculations, with {¢, ¢o}={—m/2,7/3} (upper line),
{p1,p}={-m/2,m/5} (intermediate line), and {¢;,$.}={0,0}
(lower line).

approximation is used, and obtained essentially the same re-
sult as in the quantum-mechanical approach [1]. However,
when the full nondipole interaction was taken into account, it
was found that trapping is less likely, from which they con-
cluded that the spatial dependences of the fields have a det-
rimental effect on the binding. In Fig. 1 we show the prob-
ability as a function of time for the proton and deuteron to be
less than 10a, apart in the KH frame of reference. The upper
panel presents the result of the nondipole ab initio wave
packet calculations (solid lines) with the Hamiltonian (8), for
three different combinations of the phases {¢,, ¢,}. The di-
pole result (dashed line) is added for comparison. As ex-
pected, and due to the symmetry of the problem, the dipole
result does not depend on the values of the phases. On the
other hand, in the nondipole case this symmetry is broken.
The lower panel shows the corresponding classical results,
which indeed resemble and follow the quantum-mechanical
results for all combinations of the phases ¢, and ¢, except
one, i.e., ¢;=¢p,=0. It turns out that the classical orbits are
especially sensitive to nondipole effects for this particular
choice of phases, and that the binding is significantly weak-
ened. However, the quantum-mechanical results do not show
the same degree of sensitivity, and reveal that the degree of
binding is essentially the same, regardless of the values of
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FIG. 2. Projection of the wave function on the initial wave
packet (9) versus time for a case where the nondipole interaction is
turned on for 5 fs, and for ¢;=¢,=0. The black and white curves
show the results of the nondipole and dipole calculations,
respectively.

the phases. But, more importantly, it was found that in the
long term the decay is exponential in both the dipole and
nondipole cases, with a common characteristic lifetime of
267(x2%) fs. Although a different choice of initial wave
function than Eq. (9) or imposition of a laser pulse turn-on
would strongly influence the short-term decay of the system,
the exponential decay of the metastable component of the
wave function is unaltered [1]. The facts that the classical
results were extremely sensitive to the initial conditions and
that the decay seemed to be nonexponential raise a question
about the applicability of classical models in the nondipole
regime [3].

Now, one could argue that, since the nondipole fields do
not vanish at r=0 and vary with ¢, and ¢,, the actual differ-
ences in the results in Fig. 1, in effect, only reflect different
choices of the initial wave function, and the observed nondi-
pole effects are in some sense artificial. However, this is not
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FIG. 3. Quantum-mechanical probability for the two particles to
be less than 10aq apart for the nondipole (dash-dotted line in black)
and the dipole calculation (dash-dotted line in white), for the case in
Fig. 2. The inset shows the classical result in the nondipole (solid
line) and dipole (dashed line) limits.
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the case. Figure 2 shows the square of the autocorrelation
function [(Wo| W(#))|* as a function of time for a case where
the nondipole terms are turned on slowly over the course of
5 fs. The turn-on amounts to starting the system at =5 fs
with an equally optimal initial wave packet for the nondipole
case as is the wave function (9) for the dipole case. In this
constructed example, the results of the dipole and nondipole
calculations can be compared on equal footing. The clear
difference between the dipole and nondipole results in Fig. 2
confirms that the nondipole terms have a significant dynami-
cal effect. The very rapid oscillations of frequency 4w, in the
nondipole curve reflect the wave packet oscillations and are
due to the dominating nondipole term in Eq. (8), namely, that
of the linearly polarized field (~A-E). Figure 3 shows the
probability for the two nuclei to be less than 10a, apart. In
contradiction to the situation in Fig. 1, the phase dependence
is now completely removed. With the turn-on, the degree of
binding is identical in the dipole and nondipole cases, even
in the short term, showing that the binding is not affected by
the nondipole effects after all.

PHYSICAL REVIEW A 76, 013415 (2007)

In conclusion, we have analyzed the problem of binding
two bare nuclei, a proton and a deuteron, in strong laser
fields, by solving the time-dependent Schrodinger equation
for an initial Gaussian wave packet [1]. Our treatment has
gone beyond the dipole approximation. We have shown that
the binding of the stripped HD** molecule is maintained
even when the nondipole interaction is taken into account. In
fact, the decay of the initial wave packet is the same in the
dipole and nondipole cases, illustrating that the binding is
just as likely to occur in the nondipole limit. This opens the
way for applications in controlling high-energy nuclear col-
lisions on the femtosecond time scale [1]. We have also
solved the problem within a quasiclassical model and found
that the nondipole dynamics of the system at hand is not
always adequately described by classical mechanics.
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