
0

c© Springer-Verlag Berlin Heidelberg 2010.
Appeared in: Adrian-Horia Dediu, Henning Fernau, Carlos Mart́ın-Vide (Eds.)
: LATA 2010, LNCS 6031, pp. 309–320, 2010.
The original publication is available at www.springerlink.com.
DOI: dx.doi.org/10.1007/978-3-642-13089-2_26
The self-archived version (the present one) is available at bora.uib.no.

www.springerlink.com
dx.doi.org/10.1007/978-3-642-13089-2_26
bora.uib.no

The Inclusion Problem for Regular Expressions

Dag Hovland

Institutt for Informatikk, Universitetet i Bergen, Norway,
dag.hovland@uib.no

Abstract. This paper presents a new polynomial-time algorithm for the
inclusion problem for certain pairs of regular expressions. The algorithm
is not based on construction of finite automata, and can therefore be
faster than the lower bound implied by the Myhill-Nerode theorem. The
algorithm automatically discards unnecessary parts of the right-hand
expression. In these cases the right-hand expression might even be 1-
ambiguous. For example, if r is a regular expression such that any DFA
recognizing r is very large, the algorithm can still, in time independent of
r, decide that the language of ab is included in that of (a+r)b. The algo-
rithm is based on a syntax-directed inference system. It takes arbitrary
regular expressions as input, and if the 1-ambiguity of the right-hand
expression becomes a problem, the algorithm will report this.

1 Introduction

The inclusion problem for regular expressions was shown PSPACE-complete by
Meyer & Stockmeyer [10]. The input to the problem is two expressions, which
we will call the left-hand expression and the right-hand expression, where the
question is whether the language of the left-hand expression is included in the
language of the right-hand expression. The classical algorithm starts with con-
structing non-deterministic finite automata (NFAs) for each of the expressions,
then constructs a DFA from the NFA recognizing the language of the right-
hand expression, and a DFA recognizing the complement of this language, then
constructs an NFA recognizing the intersection of the language of the left-hand
expression with the complement of the language of the right-hand expression,
and finally checks that no final state is reachable in the latter NFA. The super-
polynomial blowup occurs when constructing a DFA from the NFA recognizing
the right-hand expression. A lower bound to this blowup is given by the Myhill-
Nerode theorem [11,7]. All the other steps, seen separately, are polynomial-time.

1-unambiguous regular expressions were introduced by Brüggemann-Klein
& Wood [3,2]. They show a polynomial-time construction of DFAs from 1-
unambiguous regular expressions. The algorithm above can therefore be modified
to solve the inclusion problem in polynomial time when the right-hand expres-
sion is 1-unambiguous. This paper presents an alternative algorithm for inclusion
of 1-unambiguous regular expressions. As in the algorithm above, the left-hand
expression can be an arbitrary regular expression. An implementation of the al-
gorithm is available from the website of the author. The algorithm can of course

2 D. Hovland

also be run twice to test whether the languages of two 1-unambiguous regular
expressions are equal.

A consequence of the Myhill-Nerode theorem is that for many regular ex-
pressions, the minimal DFA recognizing this language, is of super-polynomial
size. For example, there are no polynomial-size DFAs recognizing expressions
of the form (b + c)∗c(b + c) · · · (b + c). An advantage of the algorithm pre-
sented in this paper is that it only treats the parts of the right-hand expres-
sion which are necessary; it is therefore sufficient that these parts of the ex-
pression are 1-unambiguous. For some expressions, it can therefore be faster
than the algorithm above. For example, the algorithm described in this paper
will (in polynomial time) decide that the language of ab is included in that of
(a+ (b+ c)∗c(b+ c) · · · (b+ c))b, and the sub-expression (b+ c)∗c(b+ c) · · · (b+ c)
will be discarded. The polynomial-time algorithm described above cannot easily
be modified to handle expressions like this, without adding complex and ad hoc
pre-processing.

To summarize: Our algorithm always terminates in polynomial time. If the
right-hand expression is 1-unambiguous, the algorithm will return a positive
answer if and only if the expressions are in an inclusion relation, and a negative
answer otherwise. If the right-hand expression is 1-ambiguous, three outcomes
are possible: The algorithm might return a positive or negative answer, which
is then guaranteed to be correct, or the algorithm might also decide that the 1-
ambiguity of the right-hand expression is a problem, report this, and terminate.

Section 2 defines operations on regular expressions and properties of these.
Section 3 describes the algorithm for inclusion, and Sect. 4 shows some important
properties of the algorithm. The last section covers related work and a conclusion.

2 Regular Expressions

Fix an alphabet Σ of letters. Assume a, b, and c are members of Σ. l, l1, l2, . . .
are used as variables for members of Σ.

Definition 1 (Regular Expressions). The regular expressions over the lan-
guage Σ are denoted RΣ and defined in the following inductive manner:

RΣ ::= RΣ +RΣ |RΣ ·RΣ |R∗Σ |Σ | ε

r, r1, r2, . . . are used as variables for regular expressions. The sign for concate-
nation, ·, will often be omitted. The regular expressions denoting the empty
language are not included, as they are irrelevant to the results in this paper.

The semantics of regular expressions is defined in terms of sets of words over
the alphabet Σ. We lift concatenation of words to sets of words, such that if
L1, L2 ⊆ Σ∗, then L1 · L2 = {w1 · w2 |w1 ∈ L1 ∧ w2 ∈ L2}. ε denotes the empty
word of zero length, such that for all w ∈ Σ∗, ε ·w = w ·ε = w. Therefore we also
assume rε = εr = r for regular expressions r. Integer exponents are short-hand
for repeated concatenation of the same set, such that for a set L of words, e.g.,
L2 = L · L, and we define L0 = {ε}. sym(r) denotes the set of letters from Σ
occurring in r.

The Inclusion Problem for Regular Expressions 3

Definition 2 (Language of a Regular Expression). The language of a reg-
ular expression r is denoted ‖r‖ and is defined by the following inductive rules:
‖r1 + r2‖ = ‖r1‖ ∪ ‖r2‖, ‖r1 · r2‖ = ‖r1‖ · ‖r2‖, ‖r∗‖ =

⋃
0≤i‖r‖i and for

a ∈ Σ ∪ {ε}, ‖a‖ = {a}.

All subexpressions of the forms ε · ε, ε + ε or ε∗ can be removed in linear time,
working bottom up. We therefore can safely assume there are no subexpressions
of these forms. We use ri as a short-hand for r concatenated with itself i times.

The First-set of a regular expression is the set of letters that can occur first
in a word in the language, while the followLast-set is the set of letters which can
follow a word in the language. An easy, linear time, algorithm for calculating
the First-set has been given by many others, e.g., Glushkov [6] and Yamada &
McNaughton [9].

Definition 3 (First and followLast). [2,6,9]

first(r) = {l ∈ Σ | ∃w : lw ∈ ‖r‖}

followLast(r) = {l ∈ sym(r) | ∃u, v ∈ sym(r)∗ : (u ∈ L(r) ∧ ulv ∈ L(r))}

Definition 4 (Nullable Expressions). [6,9] The nullable regular expressions
are denoted N and are defined inductively as follows:

N ::= N +RΣ |RΣ + N |N ·N |R∗Σ | ε

It can be proved by induction on the regular expressions, that N are exactly the
regular expressions that have ε in the language.

Definition 5 (Marked Expressions). [6,9] If r ∈ RΣ is a regular expression,
µ(r) is the marked expression, that is, the expression where every instance of
any symbol from Σ is subscripted with an integer, starting with 1 at the left and
increasing.

For example, µ((a+ b)∗a) = (a1 + b2)∗a3. The mapping] removes subscripts on
letters, such that](µ(r)) = r.

Definition 6 (Star Normal Form). [3,2]: A regular expression is in star nor-
mal form iff for all subexpressions r∗: r 6∈ N and first(µ(r))∩ followLast(µ(r)) =
∅.

Brüggemann-Klein & Wood described also in [3,2] a linear time algorithm map-
ping a regular expression to an equivalent expression in star normal form. We
can therefore safely assume that all regular expressions are in star normal form.

Definition 7 (Header-form). A regular expression is in header-form if it is
of the form ε, l · r1, (r1 + r2) · r3 or r∗1 · r2, where l ∈ Σ and r1, r2, r3 ∈ RΣ.

4 D. Hovland

A regular expression can in linear time be put in header-form by applying the
mapping hdf. We need the auxiliary mapping header, which maps a pair of
regular expressions to a single regular expression. It is defined by the following
inductive rules:

header(ε, r) = r

header(r1, r2) =
{

if r1 is of the form r3 · r4 : header(r3, r4 · r2)
else: r1 · r2

For any regular expression r, hdf(r) = header(r, ε) is in header-form and recog-
nizes the same language as r. hdf also preserves star normal form, as starred
subexpressions are not altered.

2.1 1-Unambiguous Regular Expressions

Intuitively, a regular expression is 1-unambiguous if there is only one way a word
in its language can be matched when working from left to right with only one
letter of look-ahead.

Definition 8. [3,2] A regular expression r is 1-unambiguous if for any two
upv, uqw ∈ ‖µ(r)‖, where p, q ∈ sym(µ(r)) and u, v, w ∈ sym(µ(r))∗ such that
](p) =](q), we have p = q.

Examples of 1-unambiguous regular expressions are (a∗ + b)∗, a(a + b)∗ and
b∗a(b∗a)∗, while (ε + a)a and (a + b)∗a are not 1-unambiguous. An expres-
sion which is not 1-unambiguous is called 1-ambiguous. A language is called
1-unambiguous if there is a 1-unambiguous regular expression denoting it. Oth-
erwise, the language is called 1-ambiguous.

1-unambiguity is different from, though related with, unambiguity, as used
to classify grammars in language theory, and studied for regular expressions by
Book et al [1]. From [1]: “A regular expression is called unambiguous if every
tape in the event can be generated from the expression in one way only”. It fol-
lows almost directly from the definitions that the class of 1-unambiguous regular
expressions is included in the class of unambiguous regular expressions. The in-
clusion is strict, as for example the expression (a+b)∗a is both unambiguous and
1-ambiguous. See also [3,2] for comparisons of unambiguity and 1-unambiguity.

Brüggemann-Klein and Wood [3] showed that there exist 1-ambiguous regular
languages, e.g., ‖(a+b)∗(ac+bd)‖. They also showed that a regular expression is
1-unambiguous if and only if all of its subexpressions also are 1-unambiguous. We
will use this property below. Note at this point that hdf preserves 1-unambiguity.

Taking u = ε in Definition 8 it follows that if ln, lm ∈ first(µ(r)) and r
1-unambiguous, then n = m. This fact is employed by the algorithm below.

3 Rules for Inclusion

The algorithm is based on an inference system described inductively in Table
1 for a binary relation v over regular expressions. The core of the algorithm

The Inclusion Problem for Regular Expressions 5

is a goal-directed, depth first search using this inference system. We will show
later that a pair of regular expressions are in the relation v if and only if their
languages are in the inclusion relation.

We will say that r1 v r2 holds, if it is also true that ‖r1‖ ⊆ ‖r2‖. Each rule
consists of a horizontal line with a conclusion below it, and none, one, or two
premises above the line. Some rules also have side-conditions in square brackets.
We only allow rule instances where the side-conditions are satisfied. Note that
(StarChoice1) and (LetterChoice) each have only one premise.

Figure 1 describes the algorithm for deciding inclusion of regular expressions.
The algorithm takes a pair of regular expressions as input, and if it returns “Yes”
they are in an inclusion relation, if it returns “No” they are not, and if it returns
“1-ambiguous”, the right-hand expression is 1-ambiguous. The stack T is used
for a depth-first search, while the set S keeps track of already treated pairs of
regular expressions.

Figures 2 and 3 show examples of how to use the inference rules. The ex-
ample noted in the introduction, deciding whether ‖ab‖ ⊆ ‖(a + (b + c)∗c(b +
c) · · · (b+ c))b‖ is shown in Fig. 3. Note that branches end either in an instance
of the rule (Axm), usage of the store of already treated relations, or a failure. In
addition to correctness of the algorithm, termination is of course of paramount
importance. It is natural to ask how the algorithm possibly can terminate, when
the rules (LetterStar), (LeftStar), and (StarChoice2) have more complex premises
than conclusions. This will be answered in the next section.

Input: Two regular expressions r1 and r2
Output: “Yes”, “No” or “1-ambiguous”

Initialize stack T and set S both consisting of pairs of regular expressions ;
push (r1, r2) on T;
while T not empty do

pop (r1, r2) from T;
if (r1, r2) 6∈ S then

if first(r1) 6⊆ first(r2) or r1 ∈ N ∧ r2 6∈ N or r2 = ε ∧ r1 6= ε then
return “No”;

end
if r1 v r2 matches conclusion of more than one rule instance then

return “1-ambiguous”;
end
add (r1, r2) to S;
for all premises r3 v r4 of the rule instance where r1 v r2 matches
conclusion do

push (hdf(r3), hdf(r4)) on T;
end

end
end
return “Yes”;

Fig. 1: Algorithm for inclusion of regular expressions

6 D. Hovland

Table 1. The rules for the relation v

(Axm)

ε v r [r ∈ N]

(Letter)
r1 v r2

l · r1 v l · r2

(LetterStar)
l · r1 v r2r∗2r3
l · r1 v r∗2r3

[l ∈ first(r2)]

(LetterChoice)
l · r1 v rir4

l · r1 v (r2 + r3)r4

»
i ∈ {2, 3}
l ∈ first(ri)

– (LeftChoice)
r1r3 v r4
r2r3 v r4

(r1 + r2)r3 v r4

(LeftStar)
r1r

∗
1r2 v r3r4
r2 v r3r4
r∗1r2 v r3r4

24 first(r1) ∩ first(r3) 6= ∅
r4 6= ε ∨ r2 6= ε

∃l, r5 : r3 = l ∨ r3 = r∗5

35
(StarStarE)
r1 v r∗2
r∗1 v r∗2

(StarChoice1)

r∗1r2 v rir5

r∗1r2 v (r3 + r4)r5

2664
i ∈ {3, 4}

first(r∗1r2) ∩ first(ri) 6= ∅
first(r∗1r2) ⊆ first(rir5)

r2 6∈ N ∨ ri ∈ N

3775
(StarChoice2)
r1r

∗
1r2 v (r3 + r4)r5
r2 v (r3 + r4)r5

r∗1r2 v (r3 + r4)r5

24 first(r∗1r2) ∩ first(r3 + r4) 6= ∅
(r2 ∈ N ∧ r3 6∈ N) ∨ first(r∗1r2) 6⊆ first(r3r5)
(r2 ∈ N ∧ r4 6∈ N) ∨ first(r∗1r2) 6⊆ first(r4r5)

35
(ElimCat)

r1 v r3
r1 v r2r3

24∃l, r4, r5 : r1 = l · r4 ∨ r1 = r∗4r5
r2 ∈ N

first(r1) ⊆ first(r3)

35

4 Properties of the Algorithm

To aid the understanding of the algorithm and the rules, Table 2 shows what
rules might apply for each combination of header-forms of the left-hand and
right-hand expressions. The only combinations that are never matched are when
the right-hand expression is ε while the left-hand expression is not, and the
combinations where the left-hand expression is ε while the right-hand is of the
form l · r. That the former are not in the inclusion relation follows from the fact
that subexpressions of the forms ε · ε, ε + ε and ε∗ are not allowed, while the
latter combinations follow from that ε 6∈ ‖l · r‖.

The Inclusion Problem for Regular Expressions 7

Store

(Letter) a∗b∗ v (a+ b)∗

(LetterChoice) aa∗b∗ v a(a+ b)∗

(LetterStar) aa∗b∗ v (a+ b)(a+ b)∗

(LeftStar) aa∗b∗ v (a+ b)∗

(Axm)

(Letter) ε v (a+ b)∗

(LetterChoice) b v b(a+ b)∗

(LetterStar) b v (a+ b)(a+ b)∗

(StarStarE) b v (a+ b)∗

b∗ v (a+ b)∗

a∗b∗ v (a+ b)∗

Fig. 2: Example usage of the inference rules to decide a∗b∗ v (a+ b)∗

Table 2. The rules that might apply for any combination of header-forms of the
left-hand and right-hand expressions

Right
Left

ε l · r (r1 + r2) · r3 r∗1 · r2

ε (Axm) (Axm) (Axm)

l · r (Letter)
(ElimCat)

(LetterChoice)
(ElimCat)

(LetterStar)

(r1 + r2) · r3 (LeftChoice) (LeftChoice) (LeftChoice)

r∗1 · r2 (LeftStar)
(ElimCat)

(StarChoice1)
(StarChoice2)

(ElimCat)
(LeftStar)

(StarStarE)

4.1 Preservation of 1-Unambiguity

We must make sure that the rules given in Table 1 preserve 1-unambiguity for
the right-hand expressions. That is, if the right-hand expression in the conclu-
sion is 1-unambiguous, then the right-hand expression in all the premises are
1-unambiguous. For most rules we either have that the right-hand expression
is the same in the premise and the conclusion, or we can use the fact that
all subexpressions of a 1-unambiguous regular expression are 1-unambiguous.
The latter fact was shown by Brüggemann-Klein & Wood [3]. The only re-
maining rule is (LetterStar), where the right-hand expression of the premise
is of the form r1r

∗
1r2 and we know that r∗1r2 is 1-unambiguous. We must use

the fact that all expressions are in star normal form (see Definition 6), thus
r1 6∈ N, and first(µ(r1)) ∩ followLast(µ(r1)) = ∅. Take u, p, q, v and w as
in Definition 8, and assume (for contradiction) that](p) =](q) and p 6= q.
Since r∗1r2 and r1 are 1-unambiguous and r1 6∈ N, we can by symmetry assume
that p is from r1 while q is from r∗1r2. This is only possible if u ∈ ‖µ(r1)‖,
p ∈ followLast(µ(r1)), and q corresponds to a member of first(µ(r1)) or of
first(µ(r2)). But since first(µ(r1)) ∩ followLast(µ(r1)) = ∅, this means that also
r∗1r2 is 1-ambiguous, which is a contradiction

Secondly, we must substantiate the claim that if the side-conditions of more
than one applicable rule hold, the right-hand expression is 1-ambiguous.

Lemma 1. For any two regular expressions r1 and r2, where r2 is 1-unam-
biguous, there is at most one rule instance with r1 v r2 in the conclusion.

8 D. Hovland

Proof. This is proved by comparing each pair of rule instances of rules occurring
in Table 2 and using Definition 8. For each case, we show that the existence
of several rule instances with the same conclusion implies either that the right
hand expression is 1-ambiguous, or that the side-conditions do not hold.

– The only rules of which there can be several instances with the same conclu-
sion are (StarChoice1) and (LetterChoice). For (LetterChoice), the conclusion
is of the form l · r1 v (r2 + r3) · r4, and the existence of two instances im-
plies that l ∈ first(r2) ∩ first(r3). This can only be the case if the right-hand
expression is 1-ambiguous. For (StarChoice1), the conclusion is of the form
r∗1r2 v (r3 + r4)r5, and the existence of two instances of this rule would
imply that first(r∗1r2) and first(r4) have a non-empty intersection, which fur-
thermore is included in the first-set of r3r5. The expression (r3 + r4)r5 is
therefore 1-ambiguous.

– If instances of both (ElimCat) and either (LetterStar) or (LetterChoice) match
the pair of expressions, then the right-hand expression is of the form r2r3,
where r2 ∈ N and there is an l such that both l ∈ first(r2) and l ∈ first(r3).
Therefore r2r3 is 1-ambiguous.

– If instances of both (ElimCat) and (LeftStar) match the pair of expressions,
then the relation is of the form r∗1r2 v r3r4, where r3 ∈ N and both
first(r1) ⊆ first(r4) and first(r3) ∩ first(r1) 6= ∅. This can only hold if
r3r4 is 1-ambiguous.

– If instances of both (ElimCat) and either (StarChoice1) or (StarChoice2) had
the same conclusion, then this conclusion is of the form r∗1r2 v (r3 + r4)r5,
where r3 + r4 ∈ N and both first(r∗1r2) ⊆ first(r5) and first(r∗1r2) ∩ first(r3 +
r4) 6= ∅. Therefore the right-hand expression (r3 + r4)r5 is 1-ambiguous.

– It is not possible that instances of (ElimCat) and (StarStarE) have the same
conclusion, because that would mean that r3 in (ElimCat) would be ε, and
that cannot satisfy the side-conditions of (ElimCat).

– It is neither possible to instantiate (LeftStar) and (StarStarE) with the same
expressions below the line, as this would not satisfy the side-conditions of
(LeftStar).

– Finally, it is not possible to instantiate (StarChoice1) and (StarChoice2) with
the same expressions below the line. The two last lines in the side-conditions
of both rules prevent this.

4.2 Invertibility of the Rules

It is now not hard to prove that each of the rules given in Table 1 are invertible,
in the sense that, for each rule instance, assuming that (1) the side-conditions
hold and (2) no other rule instance matches the conclusion, then the conclusion
holds if and only if the conjunction of the premises hold.

Proof. – For (Axm), we only note that the side-condition is that the right-hand
expression is nullable, and then {ε} is of course a subset of the language. The
absence of any premises is to be treated as an empty conjunction, which is
always true.

The Inclusion Problem for Regular Expressions 9

(Axm)

(Letter) ε v ε
(Letter) b v b

(LetterChoice) ab v ab
ab v (a+ (b+ c)∗c(b+ c) · · · (b+ c))b

Store

(Letter) (ab)∗a v a(ba)∗

(LetterStar) b(ab)∗a v ba(ba)∗

(Letter) b(ab)∗a v (ba)∗

(LeftStar) ab(ab)∗a v a(ba)∗

(Axm)

(Letter) ε v (ba)∗

a v a(ba)∗

(ab)∗a v a(ba)∗

Fig. 3: Example usages of the inference rules

– For (Letter) we are just adding (removing) a single letter prefix to (from)
both languages, and this preserves the inclusion relation.

– For (LetterStar), the conclusion is of the form lr1 v r∗2r3. We note first that
‖r2r∗2r3‖ ⊆ ‖r∗2r3‖, and therefore the premise implies the conclusion. For the
other direction, note that since l ∈ first(r2) and (ElimCat) does not match
the conclusion, the l in r2 must be the position used to match the first l in
a word, and the premise must therefore also hold.

– For (LetterChoice), that the premise implies the conclusion follows from Defi-
nition 2, while showing the other direction depends on the fact that no other
instance of (LetterChoice) nor (ElimCat) match the conclusion. The latter
implies then that l 6∈ (first(r5−i) ∪ first(r4)), so we must have the premise.

– For (LeftChoice), the implications follow from Definition 2.
– (LeftStar) and (StarChoice2) hold by Definition 2, as ‖r∗1r2‖ = ‖r1r∗1r2‖∪‖r2‖.
– For (StarStarE), note ‖r1‖ ⊆ ‖r∗1‖. So, obviously, if r∗1 v r∗2 , then also r1 v r∗2 .

The other direction holds by first seeing that ‖r1‖ ⊆ ‖r∗2‖ implies ‖r∗1‖ ⊆
‖r∗2

∗‖, and secondly that ‖r∗2
∗‖ = ‖r∗2‖. Both are standard results from

language theory.
– For (StarChoice1), that ‖r∗1r2‖ ⊆ ‖rir5‖ implies ‖r∗1r2‖ ⊆ ‖(r3 +r4)r5‖, when
i ∈ {3, 4}, follows from Definition 2. The other direction follows from the
assumption that no other rule instance matches the conclusion, combined
with the third side-condition, which together imply that ‖r∗1r2‖∩‖r7−ir5‖ =
∅.

– For (ElimCat), the fact that the premise implies the conclusion, can be seen
using Definition 2 and r2 ∈ N. For the other direction, note that since no
other rule instance matches the conclusion r1 v r2r3, and since first(r1) ⊆
first(r3), we must have first(r1) ∩ first(r2) = ∅. Therefore ‖r1‖ ∩ ‖r2r3‖ =
‖r1‖ ∩ ‖r3‖, and we get that ‖r1‖ ⊆ ‖r2r3‖ implies ‖r1‖ ⊆ ‖r3‖.

ut

Invertibility implies that, at any point during an execution of the algorithm, the
pair originally given as input is in the inclusion relation if and only if all the
pairs in both the store S and the stack T are in the inclusion relation. These
properties are used in the proofs of soundness and completeness below.

10 D. Hovland

4.3 Termination and Polynomial Run-time

The algorithm always terminates in polynomial time. Termination is guaranteed
by two properties. First, the use of the store S means that any pair of regular
expressions is treated at most once. Secondly, all regular expressions occurring
in conclusions are either ε or of the form r1 · r2, where r1 is a subexpression of
the corresponding expression input to the algorithm, while r2 is unique for each
r1. Both properties can be shown by induction on the steps in an execution of
the algorithm.

Since a regular expression has only a quadratic number of subexpressions,
then the number of possible different rule instances in a run of the algorithm is
O(n4), where n is the sum of the length of the regular expressions input to the
algorithm. Since the work at each rule instance is polynomial in the size of the
input to the algorithm, we get a polynomial run-time for the whole algorithm.

4.4 Soundness and Completeness

The only obstacle to showing soundness of the algorithm, is to show that our
usage of the store is safe. Most critical is the use of the store to eliminate loops.
To get an intuition as to why this is safe, we refer the reader to the right hand
example in Fig. 3. Note that the conclusion holds if and only if ∀i, i ≥ 0 :
‖ab‖i{a} ⊆ ‖a(ba)∗‖ This can be proved by an induction on i. The right-hand
branch in Fig. 3 corresponds to the base case i = 0. And we get the induction case
by taking the left-hand branch and replacing the ∗ in the left-hand expressions
by ab repeated i − 1 times. We will use a similar observation to show that the
use of the store is safe.

We model an execution of the algorithm as a directed tree. The internal nodes
in this tree are rule instances, and the leaves are pairs where the first element
is a pair of regular expressions and the second element is either (Axm), Store or
Fail. Each node has, for each premise, an edge going either to a node with that
conclusion, or to a leaf containing the corresponding pair of regular expressions.

With a loop in an execution of the algorithm, we mean a directed path in
its tree, the start being an internal node and the end a leaf containing Store,
such that the conclusion in the rule instance in the first node, corresponds to
the pair of regular expressions in the leaf. The intuition is that this path would
have been repeated indefinitely, looped, if the store S had not prevented it.

Let the size of a regular expression be the sum of the number of letters
and operators ∗ and + occurring in the expression. We will say that a rule
instance in a directed path is left-increasing or right-increasing, respectively, if
the left-hand or right-hand expression in the conclusion has smaller size than
the corresponding expression in the next node in the loop. Left-decreasing and
right-decreasing instances are defined similarly.

Instances of (StarChoice2) and (LeftStar) are either left-increasing or left-
decreasing, while an instance is right-increasing if and only if it is an instance
of (LetterStar). Instances of all other rules, except (Axm) and (ElimCat) are al-
ways left-decreasing, right-decreasing, or both. An instance which is neither left-
increasing nor left-decreasing has the same expression on the left-hand side in the

The Inclusion Problem for Regular Expressions 11

conclusion and the premise corresponding to the next node in the path. Except
for certain instances of (ElimCat), the same holds for the right-hand side.

Lemma 2. In any loop, there is at least one right-increasing and one left-
increasing instance.

The proof is omitted for space considerations.
Remark at this point, that only the rules (LeftStar) and (StarChoice2) can

have premises not containing starred sub-expressions which are in the left-hand
expression of the conclusion. Thus, given a tree modeling an execution of the
algorithm, in any directed path starting at a node where the left-hand expression
has a subexpression r∗1 and going to a node where the left-hand expression does
not contain such a subexpression, there is a left-decreasing instance where the
conclusion has left-hand side r∗1r2 for some r2.

Theorem 1 (Soundness). (r1 v r2)⇒ ‖r1‖ ⊆ ‖r2‖

Proof. Assume a successful execution of the algorithm. Since the rules are in-
vertible, and the base case (Axm) holds by definition of N, we only need to show
that the usage of the store S was sound. The store is used in two different sit-
uations. The cases where the pair was added to the store in a different branch
hold because the rules are used depth-first. The other cases correspond to the
loops. From Lemma 2, every such leaf has a left-increasing parent node. If we
can show that the conclusion r∗1r2 v r3 of these left-increasing nodes are true,
we are done. We only need to show that for any i > 0, the branch rooted in
the child (in the loop) of this node can be used to show that ‖r1‖i‖r2‖ ⊆ ‖r3‖.
This can be done by replacing r1r∗1r2 by ri1r2 in the conclusion. The steps in the
branch can be used in a similar way, except that the loop(s) will be unrolled at
most i−1 times, and that at least i−1 left-increasing instances will be removed
together with the subbranches corresponding to the premises with smaller left-
hand expressions. At the ith minimal left-increasing instance we get that the
conclusion is the same as the premise with the smaller left-hand expression, and
can be treated by the corresponding branch. ut

Theorem 2 (Completeness). If ‖r1‖ ⊆ ‖r2‖, the algorithm will either accept
r1 v r2, or it will report that the 1-ambiguity of r2 is a problem.

Proof. Since the rules are invertible and the algorithm always terminates, all
that remains is to show that for all regular expressions r1 and r2, where their
languages are in an inclusion relation, there is at least one rule instance with
conclusion r1 v r2. This is done by a case distinction on the header-forms of r1
and r2, using Tables 1 and 2 and Definitions 2 and 3, and noting that ‖r1‖ ⊆ ‖r2‖
implies first(r1) ⊆ first(r2). ut

5 Related Work and Conclusion

Hosoya et al [8] study the inclusion problem for XML Schemas. They also use
a syntax-directed inference system, but the algorithm is not polynomial-time.

12 D. Hovland

Salomaa [12] presents an axiom systems for equality of regular expressions, but
does not treat the run-time of doing inference in the system. The inference system
used by our algorithm has some inspiration from the concept of derivatives of
regular expressions, first defined by Brzozowski [4]. Chen & Chen [5] describe
an algorithm for inclusion of 1-unambiguous regular expressions, which is based
on derivatives, and which has some similarities with the algorithm presented in
the present paper. They do not treat the left-hand and right-hand together in
the way that the rules of the algorithm in this paper does. The analysis of their
algorithm depends on both the left-hand and the right-hand regular expressions
being 1-unambiguous.

We have described a polynomial-time algorithm for inclusion of regular ex-
pressions. The algorithm is based on a syntax-directed inference system, and is
guaranteed to give an answer if the right-hand expression is 1-unambiguous. If
the right-hand expression is 1-ambiguous the algorithm either reports an error
or gives the answer. In addition, unnecessary parts of the right-hand expression
are automatically discarded. This is an advantage over the classical algorithms
for inclusion. An implementation of the algorithm is available on the author’s
website.

References

1. Book, R., Even, S., Greibach, S., Ott, G.: Ambiguity in graphs and expressions.
IEEE Transactions on Computers c-20(2), 149–153 (1971)

2. Brüggemann-Klein, A.: Regular expressions into finite automata. Theoretical Com-
puter Science 120(2), 197–213 (1993)

3. Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Informa-
tion and Computation 140(2), 229–253 (1998)

4. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
5. Chen, H., Chen, L.: Inclusion test algorithms for one-unambiguous regular expres-

sions. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigün, H. (eds.) ICTAC. LNCS,
vol. 5160, pp. 96–110. Springer (2008)

6. Glushkov, V.M.: The abstract theory of automata. Russian Mathematical Surveys
16(5), 1–53 (1961)

7. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

8. Hosoya, H., Vouillon, J., Pierce, B.C.: Regular expression types for XML. ACM
Trans. Program. Lang. Syst. 27(1), 46–90 (2005)

9. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata.
IRE Transactions on Electronic Computers 9, 39–47 (1960)

10. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions
with squaring requires exponential space. In: Proceedings of FOCS. pp. 125–129.
IEEE (1972)

11. Nerode, A.: Linear automaton transformations. Proceedings of the American Math-
ematical Society 9(4), 541–544 (1958)

12. Salomaa, A.: Two complete axiom systems for the algebra of regular events. J.
ACM 13(1), 158–169 (1966)

	The Inclusion Problem for Regular Expressions
	Dag Hovland

