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Introduction

The vast water masses that cover about 71 percent of the world, represent
an enormous and complex ecosystem. Apart from being an important food
resource, the ocean has made much of the modern world’s transport and trade
possible. The climate changes that are currently faced are closely connected
with the rise of the sea level. The consequences will probably affect millions
[’ocean’, 2010].

A numerical model that successfully reproduces the processes of the ocean
is therefore an invaluable tool in climate and environmental studies, ocean
forecasting, and for all of the industries that are in any way dependent on the
existence of the sea. The improvements in computer science make it possible
to continuously do more complex studies.

A classification of ocean models

Most of the 3-D ocean general circulation models of today can be divided
into three different classes, characterised by their respective treatment of the
vertical coordinates [Haidvogel and Beckmann, 1999].

The earlier ocean models utilised geopotential z-coordinates in the verti-
cal, for instance the Geophysical Fluid Dynamics Laboratory (GFDL) model
from the late 1960’s [Bryan and Cox, 1968]. A more recent example is the
Hamburg Shelf Ocean Model (HAMSOM) [Backhaus and Hainbucker, 1987].

In z-coordinates, the equations appear on their standard form, so that no
transformations are required, see Figure 1. This leads to a simple computa-
tion of the pressure terms, which clearly is a favourable aspect. However, the
geopotential coordinates lead to problems with the resolution of the surface
and bottom boundary layers. At the bottom, a varying topography will re-
sult in a staircase-shaped boundary, which can cause 2∆x noise and artificial
divergence/convergence. In addition, the diapycnal diffusion is difficult to
resolve, since the vertical coordinates of the model are along iso-surfaces of
constant depth [Haidvogel and Beckmann, 1999].

1



2 Introduction

Figure 1: The z-coordinates, picture taken from [Haidvogel and Beckmann,
1999].

Figure 2: Example of isopycnal coordinates, picture taken from [Haidvogel and
Beckmann, 1999].

During the 1970’s, the concept of density layer models with isopycnal co-
ordinates was introduced. The models of this class consist of a number of im-
miscible layers that are free to adjust, i.e. the vertical grid is time-dependent,
see Figure 2. An example is the Miami Isopycnic Model (MICOM) [Bleck
and Smith, 1990].

The use of isopycnal coordinates leads to high resolution in the vertical
density gradients, and does not cause false diapycnal mixing. Transport
in the ocean appear mainly along the isopycnal surfaces. Meanwhile, the
resolution of the surface layer can be poor, since the layer has a tendency to
become very thick. The bottom boundary layer is also difficult to resolve with
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these coordinates. In addition, the isopycnal coordinate transformation leads
to an error in the internal pressure gradient. This error will be thoroughly
addressed below.

Models using terrain-following coordinates in the vertical entered the
scene at the same time as the diapycnal approach. These vertical coordi-
nates are fixed in time, but follow the underlying topography, see Figure 3.
Terrain-following models are widely used today, e.g. the σ-coordinate Prince-
ton Ocean Model (POM) [Blumberg and Mellor, 1987] and the s-coordinate
Rutgers University Model (SCRUM) [Song and Haidvogel, 1994]. In this
study, focus will be on the σ-coordinate system.

Figure 3: An example of the terrain-following approach: σ-coordinates with
equidistant layers, taken from [Haidvogel and Beckmann, 1999]. Note
how fine the resolution in the shallow is.

The σ-coordinates are advantageous when dealing with large variations in
topography. The bottom and top boundary layers are represented accurately.
However, in areas of steep topography, the use of these coordinates can lead
to a large error in the pressure gradient force.

The internal pressure gradient problem

After the transformation, the horizontal pressure gradient in the σ-coordinate
system consists of two terms which often are large, comparable in magnitude,
and opposite in sign. The numerical error resulting from the discretisation
of these terms can ultimately lead to an unacceptable result. The analytical
form of the equation, and the choice of numerical scheme, will naturally
affect the error. A solution to this problem would undoubtedly strengthen
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the position of the σ-coordinate models, and be a significant contribution to
the many advantages of the terrain-following approach.

The severity of the pressure gradient error is currently a topic of dis-
cussion. Haney [1991] introduced the concept of hydrostatic consistency. A
scheme is said to be hydrostatically consistent if

∣∣∣∣ σδσ δDD
∣∣∣∣ < 1 . (1)

Here, σ is the vertical sigma coordinate, δσ is the vertical grid size, δD is the
horizontal change of depth between two neighbouring cells and D = H + η
where H is the static depth and η is the free surface elevation. Note that
the condition (1) will not be satisfied closer to the bottom boundary if δσ is
small.

For this reason, Mellor et al. [1994] argued that criterion (1) is quite
restrictive. Furthermore, they derived the discretisation error for the second-
order internal pressure method used in the POM. To leading order, the error
is given by

E

(
δxb

δx

)
=
D

4

δxD

δx

(
∂2b

∂z2

)[
(δσ)2 − σ2

(
δxD

D

)2
]
, (2)

where x is the horizontal coordinate, z is the vertical coordinate, b = ρg
ρ0

is
the buoyancy, g is the gravity constant, ρ is the density, and ρ0 is a constant
reference density. In contrast to (1), equation (2) shows that the error de-
creases if δσ and δxD

D
goes to zero, see [Berntsen and Oey, 2010]. In other

words, hydrostatic consistency is not a particularly meaningful concept – in-
creasing the vertical resolution will not reduce the error if the term involving
δxD
D

is the limiting factor. After observing that the error was not numerically
divergent, Mellor et al. [1994] concluded that the internal pressure gradient
problem was not of great concern.

Simple test cases can enable the investigator to measure the internal
pressure error. By choosing an appropriate function for the density ρ, it is
possible to find an analytical solution to the problem. For example, Haney
[1991] studied geostrophic flow.

Beckmann and Haidvogel [1993] introduced the seamount case; a rect-
angular test basin featuring a tall, narrow peak. For horizontal isopycnals,
the horizontal pressure gradient force should always equal zero. In such
cases, possible errors can easily be identified as artificial velocities. Beck-
mann and Haidvogel experienced growing errors for some of their seamount
experiments.
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In 1998, Mellor et al. used the POM to study the seamount case. They
classified the errors from the 1994 paper as Sigma Errors of the First Kind
(SEFK), and related them to 2D problems. According to Mellor et al. [1998],
the SEFK will eventually die out. The growing errors in [Beckmann and
Haidvogel, 1993] were classified as Sigma Errors of the Second Kind (SESK).
Mellor et al. related these to the vorticity – relevant to 3D cases. The SESK
they observed decayed to a nonzero value.

Possible remedies

A significant amount of approaches have been developed for the purpose of
reducing the internal pressure gradient error. For instance, it is common
to subtract the background stratification that depends only on z from the
density field [Gary, 1973]. One can argue that this will make the remaining
terms in the equation smaller, and therefore lead to a reduced truncation
error [Gary, 1973], [Haney, 1991]. However, since the “correct” way of split-
ting the density field is unknown, the validity of these manipulations can be
questioned [Shchepetkin and McWilliams, 2003].

Even though the SESK are limited in the case treated by Mellor et al.
[1998], several later studies have suggested that the error term may grow
strongly in cases where more realistic viscosities are applied [Berntsen, 2002].
Adding viscosity will certainly dampen the artificial flow, yet it is desirable
to have ocean models that are able to represent situations as realistically as
possible.

Stelling and Van Kester [1994] proposed computing the internal pressure
in z-coordinates. By interpolation, they made two estimates of the horizon-
tal pressure gradient, and set it to zero when the results were of opposite
signs. If the estimates were of the same sign, the smaller term was used.
While this approach guarantees accurate results for the horizontal pycnoline
seamount case, Slørdal [1997] found that it will generally underestimate the
true geostrophic flow .

Song [1998] advocated the use of a Jacobian representation of the pres-
sure gradient term. He pointed out that applying the gradient before the
integration may reduce the truncation error of the scheme.

It is also possible to smooth the topography of the area of study [Barnier
et al., 1998], and by this directly removing the cause of the error. However,
altering the topography too much would mean solving the equations for a
different case than the one in question.
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Numerical methods

Much effort has been put into improving the numerical method used to com-
pute the internal pressure. In 1994, McCalpin addressed the seamount case
using a fourth order method. Chu and Fan [1997] showed that the error can
be further reduced by applying a sixth order method. However, they con-
cluded that there will be little advantage to using the sixth order scheme if
the bathymetry is not complex.

In [Shchepetkin and McWilliams, 2003], the area integrals of the pressure
are transformed to line integrals using Green’s theorem. The line integrals are
evaluated using integrations of polynomial fits of the integrands. Shchepetkin
and McWilliams reported results that were superior to the second order POM
method. Meanwhile, Berntsen and Oey [2010] questioned if this improvement
was indeed due to the new approach, or if the increased order was the most
important factor. They found that the POM approach generally gave better
results when methods of corresponding order were compared.

In 2006, Thiem and Berntsen calculated the internal pressure gradient in
a grid that was rotated 45 degrees [Thiem and Berntsen, 2006]. The new
pressure gradient was then weighted with the standard second order POM
method, using a fixed constant. For some weights this gave a reduced error,
implying that there could be some error term cancellation at work.

The focus of this study

Finite volume methods

Using finite differences is the traditional way of discretising the equations.
It is simple and efficient. However, it is possible to integrate over finite
volumes instead. The finite volume approach discretises the integral form
of the equation. For conservation laws, it is advantageous to find numerical
methods based on their integral form [LeVeque, 2002], and the laws of ocean
dynamics are expressed as conservation of quantities in a unit volume. In the
model FVCOM, the finite volume approach is combined with an unstructured
grid [Chen et al., 2003].

In this study, the traditional computation of the internal pressure in the
Princeton Ocean Model [Blumberg and Mellor, 1987] will be interpreted as a
finite volume method. New points will be included, so as to take it to higher
order. Some of the methods will also be combined with the weighted rotated
grid approach from [Thiem and Berntsen, 2006].



Introduction 7

The optimal weighting

Weighting of different approaches is an idea often used in advanced shock-
capturing schemes. So-called flux-limited schemes are constructed as a com-
bination of a low order and a high order approximation [Yang and Przekwas,
1992]. The weighting can be constructed in such a way that the TVD (total
variation diminishing) property is satisfied, e.g. the Superbee limiter tech-
nique [Roe, 1986]. For example, a TVD-scheme with a Superbee limiter is
an option for advection in the Bergen Ocean Model (BOM) [Berntsen, 2000].

The finite volume methods developed here will all have fixed weights.
Inspired by the varying weights in the TVD-scheme, an optimal weighting for
the internal pressure gradient computation will be introduced. The weights
will be computed such that the internal pressure errors are minimised, and
will depend on the topography, the stratification, and the grid size.

All methods will be applied to an idealised test case - the seamount
problem.
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Chapter 1

Underlying equations and
approximations

The before mentioned numerical models are all built on the laws of fluid
flow. However, ocean models in general represent a wide array of applied
approximations, parametrisations and discretisations.

In the following, the well-merited σ-coordinate Princeton Ocean Model
(POM) [Blumberg and Mellor, 1987] will be used for all experiments. Some of
the basic principles that the POM is based on will be established, especially
focusing on the pressure term.

This chapter has been worked out in collaboration with Borghild Ness
[Ness, 2010].

1.1 The basic laws of fluid flow

Mass and momentum should always be conserved. Conservation of mass can
be expressed as

∂ρ

∂t
+∇ · (ρV) = 0 . (1.1)

This is called the equation of continuity. As for momentum, Newton’s second
law for fluids can be stated as

DV

Dt
= −1

ρ
∇p− 2Ω×V + g + F , (1.2)

where V is the velocity field [u, v, w], ρ is the density, p is the pressure, Ω is
the earth rotation vector, g is the gravity, F represents other forces, and D

Dt

9
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is the total derivative operator. The earth rotation vector can be expressed
as

Ω = Ω cos (ϕ) j + Ω sin (ϕ) k ,

where Ω is the angular velocity and ϕ is the latitude. Equation (1.2) is called
the equation of motion [Gill, 1982].

In component form the equations become

x : ρ

(
Du

Dt
+ f∗w − fv

)
= −∂p

∂x
+
∂τxx

∂x
+
∂τxy

∂y
+
∂τxz

∂z
,

y : ρ

(
Dv

Dt
+ fu

)
= −∂p

∂y
+
∂τxy

∂x
+
∂τ yy

∂y
+
∂τ yz

∂z
,

z : ρ

(
Dw

Dt
− f∗u

)
= −∂p

∂z
− ρg +

∂τxz

∂x
+
∂τ yz

∂y
+
∂τ zz

∂z
,

where

f = 2Ω sin (ϕ)

is the Coriolis parameter,

f∗ = 2Ω cos (ϕ)

is the reciprocal Coriolis parameter, and τ is the stress tensor [Cushman-
Roisin, 1994].

A Cartesian coordinate system where the positive x, y and z-axis point
to the east, north and upwards, respectively, is used. The reference level is
at z = 0, where the water is at equilibrium, z = −H(x, y) is the bottom
topography, and the free surface is located at z = η (x, y, t).

1.2 Approximations

Following Blumberg and Mellor [1987], two approximations will be applied
in order to simplify the equations. First, it will be assumed that the density
can be split into a mean value ρ0 and a small perturbation. Then all density
differences that are not multiplied by gravity can be neglected, the Boussinesq
approximation. Next, it will be assumed that the pressure at a given depth
equals the weight of the water above, the hydrostatic approximation.

The equation of continuity becomes

∇ ·V = 0
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which is equivalent to assuming that the fluid is incompressible [Gill, 1982].
In other words, conservation of mass can now be considered to be conserva-
tion of volume.

The reciprocal Coriolis parameter is generally very small, and can be set
to zero. In the following, only cases where the variation of the Coriolis force
with latitude is negligible will be considered, so f will be taken as a constant.
That is, all events will take place on a f-plane [Cushman-Roisin, 1994].

Often, it is sufficient to study the statistically averaged flow, leaving aside
all turbulence fluctuations. Reynolds suggested to divide each variable into
a mean and a fluctuation, e.g. V = V + Vf [Pond and Pickard, 1983]. The
mean part is found by averaging the value over a time period. Since only
mean values are used from now on, bars are dropped.

The Reynolds averaged momentum equations [Blumberg and Mellor, 1987]
become

∂u

∂t
+ V · ∇u− fv = − 1

ρ0

∂p

∂x
+ Fx ,

∂v

∂t
+ V · ∇v + fu = − 1

ρ0

∂p

∂y
+ Fy ,

ρg = −∂p
∂z

,

The vertical viscosity is set to zero. Fx and Fy represent the small-scale
unresolved processes according to

Fx =
∂

∂x

[
2AM

∂u

∂x

]
+

∂

∂y

[
AM

(
∂u

∂y
+
∂v

∂x

)]
, (1.3)

and

Fy =
∂

∂y

[
2AM

∂v

∂y

]
+

∂

∂x

[
AM

(
∂u

∂y
+
∂v

∂x

)]
. (1.4)

AM is the horizontal viscosity coefficient.

The energy equation becomes

Dρ

Dt
= 0 ,

where the diffusivities are set to zero.
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1.3 The linearised equations

In this study, the linearised version of the stated governing equations will be
solved, as in Mellor et al. [1998]. The equation of continuity is unchanged

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 .

To yet again simplify the equations, the density field can be split into a
reference density ρref (z) and a perturbation density ρ′(x, y, z, t) according to

ρ(x, y, z, t) = ρref (z) + ρ′(x, y, z, t) .

The equations become

∂u

∂t
− fv = − 1

ρ0

∂p

∂x
+ Fx , (1.5)

∂v

∂t
+ fu = − 1

ρ0

∂p

∂y
+ Fy , (1.6)

ρg = −∂p
∂z

, (1.7)

∂ρ′

∂t
+ w

dρref
dz

= 0 , (1.8)

where Fx and Fy are given by (1.3) and (1.4).
By integrating (1.7) from z to the free surface η, the pressure at depth z

can be found. The total pressure may be described as

p(x, y, z, t) = patm + pη(x, y, t) + pint(x, y, z, t) .

Here patm is the constant atmospheric pressure, pη = gρ0η is the pressure from

the surface elevation and pint = g
∫ 0

z
ρ(x, y, z′, t)dz′ is the internal pressure.

To reduce the local errors, the reference stratification ρref is subtracted
from the density ρ in the computations of pint. The internal pressure used in
the POM calculation is therefore

pint = g

∫ 0

z

ρ′(x, y, z′, t)dz′ .

Since the following discussion will concern the internal pressure gradient, the
perturbation ρ′ will be used exclusively in the equations. From this point, ρ
will be written instead of ρ′.
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Mode splitting

An ocean model should be able to reproduce different physical phenomena.
To reduce the computational cost of for instance resolving fast moving ex-
ternal gravity waves together with slow moving internal gravity waves, the
model is split into two different modes. In the POM the external mode cal-
culates the vertically integrated equations with small time steps, while the
internal mode calculates the full equations with longer time steps [Mellor,
2003].

1.4 Transformation to σ-coordinates

The σ-coordinate models are terrain-following, which means that the vertical
layers are shaped after the topography, see Figure 3.

Therefore, a transformation from (x, y, z, t) to (x∗, y∗, σ, t∗) coordinates is
needed

x∗ = x y∗ = y σ =
z − η
H + η

t∗ = t .

Note that σ = 0 at z = η and σ = −1 at z = −H.
Let D ≡ H + η and apply the chain rule to obtain

∂G

∂x
=

∂G

∂x∗
− ∂G

∂σ

(
σ

D

∂D

∂x∗
+

1

D

∂η

∂x∗

)
,

∂G

∂y
=

∂G

∂y∗
− ∂G

∂σ

(
σ

D

∂D

∂y∗
+

1

D

∂η

∂y∗

)
,

∂G

∂z
=

1

D

∂G

∂σ
,

∂G

∂t
=

∂G

∂t∗
− ∂G

∂σ

(
σ

D

∂D

∂t∗
+

1

D

∂η

∂t∗

)
,

where G is an arbitrary field variable.
By using the transformation formulae above, the following expression for

the partial derivative of the pressure that appears in (1.5) is obtained

∂p

∂x
= g

∫ η

z

∂ρ

∂x
dz = gD

∫ 0

σ

∂ρ

∂x∗
− ∂ρ

∂σ

(
σ

D

∂D

∂x∗
+

1

D

∂η

∂x∗

)
dσ .

A similar expression for the pressure term in (1.6) can be found. The internal
pressure gradient (here represented by the x-component) is

∂pint
∂x

= gD

∫ 0

σ

(
∂ρ

∂x∗
− σ

D

∂ρ

∂σ

∂D

∂x∗

)
dσ . (1.9)
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Equation (1.9) holds the source of the internal pressure gradient error.
Horizontal pressure gradients are usually small, since the largest density
changes often appear in the vertical. However, near steep topography, the
horizontal pressure gradient in σ-coordinates along the tilting surfaces of
constant σ will be large due to the vertical changes [Slørdal, 1997]. The
truncation errors in the possibly large terms in (1.9) can be quite severe.

By using integration by parts, it is possible to rewrite the last term of
the integrand in (1.9) according to

∫ 0

σ

σ
∂ρ

∂σ
dσ = −σρ−

∫ 0

σ

ρdσ .

Then (1.9) becomes

∂pint
∂x

= g

∫ 0

σ

(
D
∂ρ

∂x∗
+
∂D

∂x∗
ρ

)
dσ + gσρ

∂D

∂x∗
. (1.10)

Observe that the integrand in (1.10) does no longer contain a derivative
with respect to σ. It is slightly less complicated to discretise, and gives
approximately the same numerical results as the discretisations based on
(1.9) [Berntsen and Oey, 2010]. The computations in this study are mainly
based on (1.10), although some experiments will also be performed using
(1.9).

From this point, all asterisks are dropped.



Chapter 2

The finite volume approach

2.1 Discretising in the POM

The C-grid

The Princeton Ocean Model [Blumberg and Mellor, 1987] uses the staggered
Arakawa C-grid. The value of the dynamic depth D, and the density ρ, is
given in the middle of the cell. The velocity component in the x-direction, u,
is given to the west of the ρ-point. The velocity component in the y-direction,
v, is given to the south, see Figure 2.1 for the horizontal view.

• •

• •

| |

| |

| |
ρ,D

v

−− −

−u − −

↑

→

∆y

∆x

y

x

Figure 2.1: The Arakawa C-grid, horizontal view.
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u

∆x

∆σ

∆y

Figure 2.2: The three-dimensional cell.

The internal pressure computation

Since the case considered is three-dimensional, the model domain is discre-
tised into a finite number of fixed control volumes. For the computation
of the internal pressure gradient, the three-dimensional grid cell is centred
around the u-point for the x-component (see Figure 2.2), and the v-point
for the y-component. In the standard POM-code, the pressure forces are
assumed to be constant in each cell, therefore only the value of the gradient
in the middle of the cell is calculated.

As an example, consider the internal pressure gradient in the x-direction,
which is derived from the one-dimensional integral in equation (1.9). The
trapezoidal rule is used for the vertical integration, and the value of the
integrand is computed in each u-point, using central differences for all spatial
derivatives.

2.2 A new integral

It is possible to estimate the pressure forces over finite volumes instead.
While finite differences approximate the value of a function in a point, the
finite volume approach approximate the average value of a function over an
interval, or a volume. The two are closely related, and one approach can
often be interpreted as the other [LeVeque, 2002].

In the finite volume approach, the average value of the integrand over
the three-dimensional cell will be estimated. By evaluating an integral in
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Figure 2.3: The domain of integration in the finite volume approach, see equation
(2.1).

three dimensions, the pressure differences that can occur on different sides of
the grid cell will be taken into account. Hopefully, this will result in a more
accurate computation.

From this point, the focus will be on the x-component of the internal
pressure gradient. Using equation (1.10), the new expression for the internal
pressure in the x-direction (henceforth omitting the subscript) becomes

∂p

∂x
=

[
g

∫ 1
2

− 1
2

∫ 1
2

− 1
2

[∫ 0

σ

(
D
∂ρ

∂x
+
∂D

∂x
ρ

)
dσ + σρ

∂D

∂x

]
dxdy

]
. (2.1)

Here, the horizontal part of the cells are scaled to have the area 1. The
domain of integration is displayed in Figure 2.3.

The discussion below will concern the horizontal integration, as earlier
studies indicate that this computation is the most significant for the error,
see [Berntsen and Oey, 2010]. The trapezoidal rule will always be used in
the vertical.

2.3 Evaluating the new integral

By using appropriate weights when computing ∂ρ
∂x

, ∂D
∂x

, ρ, and D in u-points,
a numerical method of integration for the horizontal part of equation (2.1)
can be constructed. That is, the integral



18 The finite volume approach

∫ 1
2

− 1
2

∫ 1
2

− 1
2

[(
D
∂ρ

∂x
+
∂D

∂x
ρ

)
+ σρ

∂D

∂x

]
dxdy , (2.2)

will be considered.
One can estimate the integral by multiplying the value of the integrand

with the area of the cell, which is 1 after the scaling. The weights can be
found by first making an approximation of the integrand, and then demand
that the method is exact for polynomials up to a certain order by calculating
the exact value of the integral in the given case. This is the method of
undetermined coefficients.

The translation of the coordinate system to the centre of each cell is
helpful, because it leads to a symmetrical area of integration. Therefore,
the integral of any polynomial of odd order over this region will be zero,
and a centred method of numerical integration will automatically satisfy the
demands of exactness.

Polynomials of even order will provide a system of equations to be solved.
First, the simplest possible case will be addressed.

2.3.1 Method A: Standard 2nd order POM

Let only two ρ or D-points be included when estimating ∂ρ
∂x

, ∂D
∂x

, ρ and D in
a u-point. The points are labelled with their x and y coordinates. Note that
the u-point now lies in the origin of the horizontal coordinate system. For
example, the point ρ 1

2
,0 is placed on the x-axis at a distance 1

2
to the east of

the u-point, see Figure 2.4.
For D and ∂ρ

∂x
in a u-point, the equations become

D|u = α(D 1
2
,0 +D− 1

2
,0) , (2.3)

∂ρ

∂x
|u = a(ρ 1

2
,0 − ρ− 1

2
,0) .

This represents an interpolation of the D-values, and a basic central finite
difference approach to the ∂ρ

∂x
-term. The fixed weights defining the integration

rule are given by α and a.
The two points will make it possible to find a method that is exact for

D = 1 and ∂ρ
∂x

= 1. In this case, the exact value of the integral is

∫ 1
2

− 1
2

∫ 1
2

− 1
2

D
∂ρ

∂x
dxdy =

∫ 1
2

− 1
2

∫ 1
2

− 1
2

1 dxdy = 1 . (2.4)
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Figure 2.4: Points ρ, D (×) and u (•) at a σ-level used in the standard 2nd order
POM method, Method A.

The numerical approximation of the integral of D = 1 and ∂ρ
∂x

= 1, using
(2.3), is

∫ 1
2

− 1
2

∫ 1
2

− 1
2

α
(
D 1

2
,0 +D− 1

2
,0

)
· a
(
ρ 1

2
,0 − ρ− 1

2
,0

)
dxdy =∫ 1

2

− 1
2

∫ 1
2

− 1
2

α · 2 · a · 1 dxdy = 1 ,

which leads to

αa =
1

2
.

A possible solution is α = 1
2

and a = 1, which are the weights used in
the standard POM-code. These are also the only weights that will make the
approximation (2.3) consistent, this concept will be explained in a moment.
The same rule will be applicable to the term ρ∂D

∂x
= 1 from (2.1).

Applying a second order finite volume method will in this case correspond
to using a finite difference approach, that is, it is equivalent to assuming a
constant pressure force. It is clear that the 2nd order POM method can
be interpreted as the simplest in a family of finite volume methods. It is
desirable to follow this line of thought, and expand the standard 2nd order
POM method by including new points. Increasing the order of the finite
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volume method will hopefully reduce the error and result in a more robust
model.

The calculation of the internal pressure gradient in the y-direction is
similar to that of the x-direction. The stencil from Figure 2.4 is rotated 90
degrees, and the coordinate system is centred in a v-point.

Consistency

A numerical scheme is consistent if the truncation error of the discretisation
goes to zero as the time step and the grid refinement approach zero [Haidvogel
and Beckmann, 1999]. Taylor expansions of the displaced variables give us
the discretised expressions for the derivative and the interpolated values. The
derivative is equal to the second equation of (2.3) with a = 1, divided by the
length between the displacements, plus higher order terms. In other words,
the expression from (2.3) with a = 1 corresponds to the approximation of
one derivative.

For a consistent approximation, the weights have to add up to exactly
one derivative and one variable value in each point. Above, the weight a = 1
will produce one derivative, and the weight α = 1

2
will compute the average

value of D or ρ from two points, and therefore scale it to the single value
corresponding to the middle point.

2.3.2 Method B: Expanding in the y-direction

The standard 2nd order POM method includes only two ρ or D-points. Now,
a 4th order method is sought. If two points are added symmetrically in the y-
direction above and below the cell (see Figure 2.5), the following expressions
for D and ∂ρ

∂x
in a u-point are obtained

D|u = α
∑

D± 1
2
,0 + β

∑
D± 1

2
,±1 , (2.5)

∂ρ

∂x
|u = a

(
ρ 1

2
,0 − ρ− 1

2
,0

)
+ b
[(
ρ 1

2
,1 − ρ− 1

2
,1

)
+
(
ρ 1

2
,−1 − ρ− 1

2
,−1

)]
.

Here, the fixed weights β and b are needed in addition to α and a.
The summation is done according to

∑
D± 1

2
,±1 = D 1

2
,1 +D− 1

2
,1 +D 1

2
,−1 +D− 1

2
,−1 .

If it is demanded that the rule is exact for D = 1 and ∂ρ
∂x

= 1, remembering
(2.4), the approximation becomes
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Figure 2.5: Points ρ, D (×) and u (•) at a σ-level used to construct the Method
B.

∫ 1
2

− 1
2

∫ 1
2

− 1
2

D
∂ρ

∂x
dxdy = (2.6)∫ 1

2

− 1
2

∫ 1
2

− 1
2

(2α + 4β) · (a+ 2b) dxdy = 1 ,

leading to

(2α + 4β) · (a+ 2b) = 1 . (2.7)

So as to exploit the new set of points, it is required that the method
should also be exact for D = x2 (while ∂ρ

∂x
= 1 as before). The exact value of

the integral becomes

∫ 1
2

− 1
2

∫ 1
2

− 1
2

D
∂ρ

∂x
dxdy =

∫ 1
2

− 1
2

∫ 1
2

− 1
2

x2 dxdy =
1

12
. (2.8)

After the substitution of the values of D and ρ at the chosen points in (2.5),
the equations become
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∫ 1
2

− 1
2

∫ 1
2

− 1
2

D
∂ρ

∂x
dxdy =∫ 1

2

− 1
2

∫ 1
2

− 1
2

(
1

2
α + β

)
· (a+ 2b) dxdy =

1

12
,

which leads to

(
1

2
α + β

)
· (a+ 2b) =

1

12
. (2.9)

Rewriting (2.7) gives

(
1

2
α + β

)
· (a+ 2b) =

1

4
. (2.10)

It is easy to see that the equations (2.9) and (2.10) can not be fulfilled at
the same time. Therefore, the approach applied here will not lead to a new,
4th order method of integration. The same will be true for the term ρ∂D

∂x
= 1

from (2.1).

However, a new 2nd order method can be found by using these points.
This will be addressed in Chapter 3.

2.3.3 Method C: Two more points in the horizontal

Now, ignore the new points from the previous section. Instead, include one
additional point on each side in the x-direction, according to

D|u = α
∑

D± 1
2
,0 + γ

∑
D± 3

2
,0 (2.11)

∂ρ

∂x
|u = a

(
ρ 1

2
,0 − ρ− 1

2
,0

)
+ c
(
ρ 3

2
,0 − ρ− 3

2
,0

)
,

see Figure 2.6. The constants γ and c are the fixed weights needed in the
new approximation.

Demanding that the method should be exact for D = 1, x2 while ∂ρ
∂x

= 1
leads to
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Figure 2.6: Points ρ, D (×) and u (•) at a σ-level used to construct the Method
C.

∫ 1
2

− 1
2

∫ 1
2

− 1
2

D
∂ρ

∂x
dxdy =∫ 1

2

− 1
2

∫ 1
2

− 1
2

(2α + 2γ) · (a+ 3c) dxdy = 1 ,

and

∫ 1
2

− 1
2

∫ 1
2

− 1
2

D
∂ρ

∂x
dxdy =∫ 1

2

− 1
2

∫ 1
2

− 1
2

(
1

2
α +

9

2
γ

)
· (a+ 3c) dxdy =

1

12
.

For consistency,

a+ 3c = 1

is needed. This leads to

2α + 2γ = 1
1

2
α +

9

2
γ =

1

12
.

Correspondingly, requiring ∂ρ
∂x

= 1, x2 while D = 1, gives
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∫ 1
2

− 1
2

∫ 1
2

− 1
2

D
∂ρ

∂x
dxdy =∫ 1

2

− 1
2

∫ 1
2

− 1
2

(a+ 3c) · (2α + 2γ) = 1 .

and

∫ 1
2

− 1
2

∫ 1
2

− 1
2

D
∂ρ

∂x
dxdy =∫ 1

2

− 1
2

∫ 1
2

− 1
2

(
1

12
a+

27

12
c

)
· (2α + 2γ) dxdy =

1

12
.

Substituting

2α + 2γ = 1 ,

leads to

a+ 3c = 1

a+ 27c = 1 .

The system of equations can only be solved if c = 0. This results in the
following set of weights

α =
13

24
, γ = − 1

24
, a = 1 , and c = 0 . (2.12)

Consequently, the information from the points that are furthest away from
the origin is not used for the computation of the derivative.

The stencil in Figure 2.6 is identical to the one used for constructing
the 4th order McCalpin-method [McCalpin, 1994]. The McCalpin method is
found by doing Taylor expansions around the middle point to approximate
the derivative. It is important to note that the method obtained by McCalpin
is not equal to the finite volume method developed in this text. Also observe
that the order of the method is decided for the integral of the product, not
the individual terms.
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Figure 2.7: Points ρ, D (×) and u (•) at a σ-level used to construct the Method
D.

2.3.4 Method D: Six new points

Yet another method can be constructed by utilising the information in all of
the six points previously discussed, see Figure 2.7.

Consider the following approximation

D|u = α
∑

D± 1
2
,0 + β

∑
D± 1

2
,±1 + γ

∑
D± 3

2
,0 ,

∂ρ

∂x
|u = a

(
ρ 1

2
,0 − ρ− 1

2
,0

)
(2.13)

+ b
[(
ρ 1

2
,1 − ρ− 1

2
,1

)
+
(
ρ 1

2
,−1 − ρ− 1

2
,−1

)]
+ c

(
ρ 3

2
,0 − ρ− 3

2
,0

)
.

In addition,

∫ 1
2

− 1
2

∫ 1
2

− 1
2

y2 dxdy =
1

12
, (2.14)

will be used together with (2.4) and (2.8). If the method has to be exact for
D = 1, x2, y2, while ∂ρ

∂x
= 1, (2.13) leads to
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∫ 1
2

− 1
2

∫ 1
2

− 1
2

D
∂ρ

∂x
dxdy =∫ 1

2

− 1
2

∫ 1
2

− 1
2

(2α + 4β + 2γ) · (a+ 2b+ 3c) dxdy = 1 ,

and

∫ 1
2

− 1
2

∫ 1
2

− 1
2

D
∂ρ

∂x
dxdy =∫ 1

2

− 1
2

∫ 1
2

− 1
2

(
1

2
α + β +

9

2
γ

)
· (a+ 2b+ 3c) dxdy =

1

12
,

together with

∫ 1
2

− 1
2

∫ 1
2

− 1
2

D
∂ρ

∂x
dxdy =∫ 1

2

− 1
2

∫ 1
2

− 1
2

(4β) · (a+ 2b+ 3c) dxdy =
1

12
.

On substituting

a+ 2b+ 3c = 1 ,

needed for consistency, the system of equations becomes

2α + 4β + 2γ = 1 ,
1

2
α + β +

9

2
γ =

1

12
,

4β =
1

12
.

To determine the rest of the weights, exactness for ∂ρ
∂x

= 1, x2, y2 and D = 1
is demanded. This leads to
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∫ 1
2

− 1
2

∫ 1
2

− 1
2

D
∂ρ

∂x
dxdy =∫ 1

2

− 1
2

∫ 1
2

− 1
2

(a+ 2b+ 3c) · (2α + 4β + 2γ) = 1 ,

and

∫ 1
2

− 1
2

∫ 1
2

− 1
2

D
∂ρ

∂x
dxdy =∫ 1

2

− 1
2

∫ 1
2

− 1
2

(
1

12
a+

1

6
b+

27

12
c

)
· (2α + 4β + 2γ) dxdy =

1

12
,

together with

∫ 1
2

− 1
2

∫ 1
2

− 1
2

D
∂ρ

∂x
dxdy =∫ 1

2

− 1
2

∫ 1
2

− 1
2

(2b) · (2α + 4β + 2γ) dxdy =
1

12
.

The system of equations becomes

a+ 2b+ 3c = 1 ,

a+ 2b+ 27c = 1 ,

2b =
1

12
.

This system can only be solved exactly if c = 0. The following set of weights
is obtained

α =
1

2
, β =

1

48
, γ = − 1

24
, a =

11

12
, b =

1

24
, and c = 0 .

Again, the same method applies for the integral of ρ∂D
∂x

. All of the above
methods can also be used to compute the y-component of the pressure.
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Figure 2.8: Points ρ, D (×) and u (•) at a σ-level used to construct the Method
E.

2.3.5 Method E: Ten points - The last expansion

The approach can be taken one step further by adding four more points to
the scheme, see Figure 2.8.

Now, the approximation becomes

D|u = α
∑

D± 1
2
,0 + β

∑
D± 1

2
,±1 + γ

∑
D± 3

2
,0 + δ

∑
D± 3

2
,±1

∂ρ

∂x
|u = a

(
ρ 1

2
,0 − ρ− 1

2
,0

)
+ (2.15)

b
[(
ρ 1

2
,1 − ρ− 1

2
,1

)
+
(
ρ 1

2
,−1 − ρ− 1

2
,−1

)]
+

c
(
ρ 3

2
,0 − ρ− 3

2
,0

)
+

d
[(
ρ 3

2
,1 − ρ− 3

2
,1

)
+
(
ρ 3

2
,−1 − ρ− 3

2
,−1

)]
.

The following integral will be useful

∫ 1
2

− 1
2

∫ 1
2

− 1
2

x4 dxdy =
1

80
,
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together with equations (2.4), (2.8), and (2.14). The hope is, again, to pro-
duce a more exact rule. In this case, a 6th order method is sought.

Exactness for D = 1, x2, y2, x4, while ∂ρ
∂x

= 1, is demanded. Equations
(2.15) give

∫ 1
2

− 1
2

∫ 1
2

− 1
2

D
∂ρ

∂x
dxdy = (2.16)∫ 1

2

− 1
2

∫ 1
2

− 1
2

(2α + 4β + 2γ + 4δ) · (a+ 2b+ 3c+ 6d) = 1 ,

and

∫ 1
2

− 1
2

∫ 1
2

− 1
2

D
∂ρ

∂x
dxdy = (2.17)∫ 1

2

− 1
2

∫ 1
2

− 1
2

(
1

2
α + β +

9

2
γ + 9δ

)
· (a+ 2b+ 3c+ 6d) dxdy =

1

12
,

together with

∫ 1
2

− 1
2

∫ 1
2

− 1
2

D
∂ρ

∂x
dxdy =∫ 1

2

− 1
2

∫ 1
2

− 1
2

(4β + 4γ) · (a+ 2b+ 3c+ 6d) dxdy =
1

12
,

and

∫ 1
2

− 1
2

∫ 1
2

− 1
2

D
∂ρ

∂x
dxdy =∫ 1

2

− 1
2

∫ 1
2

− 1
2

(
1

8
α +

1

4
β +

81

8
γ +

81

4
δ

)
· (a+ 2b+ 3c+ 6d) dxdy =

1

80
.

Substitution of

(a+ 2b+ 3c+ 6d) = 1 ,

needed for the consistency of the derivative, leads to
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2α + 4β + 2γ + 4δ = 1 ,
1

2
α + β +

9

2
γ + 9δ =

1

12
,

4β + 4δ =
1

12
,

1

8
α +

1

4
β +

81

8
γ +

81

4
δ =

1

80
.

Unfortunately, it is not possible to solve this system of equations exactly.
At this point, the result should not be a surprise. The last expansion in this
way, from Method A to Method B, led to the same problem. The points used
can not lead to a new 6th order method.

2.3.6 When is the order increased?

The reason for the problem is quite simple. The methods A and C are
one-dimensional, and therefore the desired increased order is obtained by
expanding the stencil in only one direction. However, when it is attempted
to go to 4th order in Method B, it is not possible to get the desired order in
the x-direction. The approach fails. The same thing happens in Method E.

Method D is successful because it allows 4th order in both directions.
This suggests that adding more points symmetrically on each side of the
area in Figure 2.8 will eventually take the approach to 6th order. This will
not be addressed further.

2.4 Comments on the methods

2.4.1 An inaccuracy

Note that this family of methods can not handle the case where both ∂ρ
∂x

and

D are assumed to be odd polynomials, e.g. ∂ρ
∂x

= x and D = x. The product
of the two will be x2, and the exact value of this integral is 1

12
from (2.8).

With (2.11) and (2.13), the approximated integral value will just be zero. So
in this case, the methods are quite inaccurate.

In other words, even though the approach gives enough equations to find
the weights, it can not take all demands into consideration. This results in
methods that are not truly of the order they were constructed to be.
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2.4.2 Masking out land cells

For a test case with a realistic topography, there will be some cells where
the depth is zero (islands, boundaries etc.). If this happens for any of the
cells in the 2nd order POM method, a mask variable will ensure that the
internal pressure gradient is set to zero. However, if this happens to any of
the outlying cells in the Methods B, C, D and E, another mask variable will
reduce the method to preserve the symmetry of the integration area. Method
C will be reduced to the order of Method A, Method E will be reduced to
Method C, or if necessary, even to Method A.
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Chapter 3

A weighted approach

The points used in Methods A-E can provide a new set of approaches, inspired
by the work of Thiem and Berntsen [2006].

3.1 More points, same order

3.1.1 An example

First, consider the stencil from Method B. By excluding the middle points
(see Figure 3.1), a new 2nd order method can be found. If α and a are set
to zero in equation (2.6), it becomes

∫ 1
2

− 1
2

∫ 1
2

− 1
2

D
∂ρ

∂x
dxdy = (3.1)∫ 1

2

− 1
2

∫ 1
2

− 1
2

(4β) · (2b) dxdy = 1 , (3.2)

which leads to

4β · 2b = 1 (3.3)

βb =
1

8
. (3.4)

From the theory in the Chapter 2, it is clear that the consistent choice
will be β = 1

4
and b = 1

2
, and that the weights define a 2nd order finite

volume method.

33
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Figure 3.1: Points ρ, D (×) and u (•) at a σ-level used to construct the Method
B, middle points excluded.

3.1.2 The motivation

Why is it desirable to include more points if it does not lead to higher order?
Even though the approach from the previous example can only result in 2nd
order accuracy, one can hope that the use of more points will increase the
robustness, since information from a larger area is taken into consideration.

There is another possible advantage to extending the stencil. It tends
to reduce the erroneous initial vorticity, and the vorticity error seems to be
closely correlated to the long-term circulation [Marsaleix et al., 2009]. This
error will be addressed in Chapter 5.

According to Thiem and Berntsen [2006], the internal pressure gradient
error can be reduced by combining different approximations, and weight them
against each other. In their work, the four points discussed above (Figure
3.1) were utilised to compute the internal pressure gradient in a grid that is
rotated 45 degrees, see Figure 3.2. The idea was to find an optimal combina-
tion of the methods with weights that eliminated the largest of the numerical
error terms. The rotated grid method was combined with the standard 2nd
order POM method, and the two were weighted against each other with a
fixed constant.

Thiem and Berntsen [2006] experienced that when only the rotated grid
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method was used, the results became worse than for the standard POM
method. However, by weighting the POM-approach three to four times more
than the method from the rotated grid, more promising results were obtained.

In the following, this idea will be subject to further investigation. First
of all, the theory from Chapter 2 will be used to show that the method from
[Thiem and Berntsen, 2006] in fact can be interpreted as a 2nd order finite
volume method.
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Figure 3.2: The rotated and original grid. The ρ-points are marked by (×), (•)
are the u and v-points in the original grid, (�) marks the u’ and
v’-points in the rotated grid, and (⊗) are the points used in Method
B.

3.2 The rotated grid method

In this section, ∂ρ
∂x
|u in a rotated grid will be found (Figure 3.2). The notation

and step-by-step description of the calculation from [Thiem and Berntsen,
2006] will be used. The goal is to arrive at an expression for ∂ρ

∂x
|u that can be

compared to the equations (2.5). The focus will still be on the x-component,
in accordance with Chapter 2.

Recall that the calculation of the internal pressure gradient in the stan-
dard 2nd order POM would simply be based on
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δxρu(i,j) = ρ(i, j)− ρ(i− 1, j) .

where i and j are the discrete coordinates in the x- and y-direction, respec-
tively. For the rotated grid, δx′ρu′(i,j) is computed in all u′(i, j)-points in the
x′-direction according to

δx′ρu′(i,j) = ρ(i, j)− ρ(i− 1, j − 1).

Then, δy′ρu′(i,j) is computed in all u′(i, j)-points in the y′-direction in a similar
way

δy′ρu′(i,j) = ρ(i− 1, j)− ρ(i, j − 1).

The same is done for the v′(i, j)-points.

δx′ρv′(i,j) = ρ(i+ 1, j)− ρ(i, j − 1)

δy′ρv′(i,j) = ρ(i, j)− ρ(i+ 1, j − 1) .

The components of the internal pressure gradients in u′ and v′-points
along the axes in the original grid are found. For the u′(i, j)-points in the
x-direction, the component is given by

δxρu′(i,j) =

√
2

2

(
δx′ρu′(i,j) − δy′ρu′(i,j)

)
=

√
2

2

[(
ρ(i, j)− ρ(i− 1, j − 1)

)
−
(
ρ(i− 1, j)− ρ(i, j − 1)

)]
=

√
2

2

[(
ρ(i, j)− ρ(i− 1, j)

)
+
(
ρ(i, j − 1)− ρ(i− 1, j − 1)

)]
.

Similarly, for the v′(i, j)-points in the x-direction the following must be com-
puted

δxρv′(i,j) =

√
2

2

(
δx′ρv′(i,j) − δy′ρv′(i,j)

)
=

√
2

2

[(
ρ(i+ 1, j)− ρ(i, j − 1)

)
−
(
ρ(i, j)− ρ(i+ 1, j − 1)

)]
=

√
2

2

[(
ρ(i+ 1, j)− ρ(i, j)

)
+
(
ρ(i+ 1, j − 1)− ρ(i, j − 1)

)]
.
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The constant
√

2
2

comes from the transformation formula for vectors between
coordinate systems that are rotated in proportion to each other, e.g. [Kundu
and Cohen, 2004].

The internal pressure gradients from the u′ and v′-points should then be
interpolated to the u-points of the original grid according to

δxρrot(i,j) =
1

2

(
δxρu′(i,j) + δxρv′(i,j+1)

)
=

1

2
√

2

[
ρ(i, j)− ρ(i− 1, j) + ρ(i, j − 1) −

ρ(i− 1, j − 1) + ρ(i, j)− ρ(i− 1, j) +

ρ(i, j + 1)− ρ(i− 1, j + 1)

]
=

1

2
√

2

[
2ρ(i, j)− 2ρ(i− 1, j) + ρ(i, j − 1) −

ρ(i− 1, j − 1) + ρ(i, j + 1)− ρ(i− 1, j + 1)

]
=

√
2

2

[
ρ(i, j)− ρ(i− 1, j)

]
+

1

2
√

2

[
ρ(i, j − 1)− ρ(i− 1, j − 1) + ρ(i, j + 1)− ρ(i− 1, j + 1)

]
.

The factor 1√
2

is needed to scale the approximation because the grid length

in the rotated grid is
√

2 times longer than in the original grid. If the last
equation is divided by the scaling factor

√
2,

∂ρ

∂x
|u =

1

2

(
ρ(i, j)− ρ(i− 1, j)

)
+ (3.5)

1

4

(
ρ(i, j − 1)− ρ(i− 1, j − 1) + ρ(i, j + 1)− ρ(i− 1, j + 1)

)
,

is obtained.

The approximation (3.5) is a combination of the 2nd order POM method
of computing ∂ρ

∂x
|u, and the method from Section 3.1.1, where the two ap-

proaches are weighted equally. A similar analysis will also give the weights
for D and ρ in a u-point.

Now, consider the method in terms of the equations (2.5). The fixed
weights are
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α =
1

4
, β =

1

8
, a =

1

2
, and b =

1

4
.

There exists a corresponding expression for δyρrot(i,j), and therefore the ap-
proach will render the same weights in the y-direction. They satisfy the
demands of equation (2.7), and the rotated grid method can therefore indeed
be interpreted as a 2nd order finite volume method.

3.3 Alternative Method E

A closer look at the equation (3.5) reveals that it simply is the 2nd order
POM method from three different j-levels (in the y-direction), weighted such
that they approximate the derivative of ρ in the middle cell. It is natural to
attempt a similar approach with the points from Method E. The 4th order
Method C is computed at three j-levels, and weighted as in the rotated grid
method.

j − 1

j

j + 1

i− 1 i i+ 1

•

×× ×

× ×
u

↑

→

y

x× ×

×

×

ρ,D

×××

Figure 3.3: Points ρ, D (×) and u (•) at a σ-level used to construct the alternative
Method E.

Recall the weights of Method C, given in (2.12). For ∂ρ
∂x
|u, the same

weights as for the rotated grid method just described are obtained. For D in
a u-point, the expression becomes
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D|u =
1

2

[
13

24
(D(i, j) +D(i− 1, j))− 1

24

(
D(i+ 1, j) +D(i− 2, j)

)]
+

1

4

[
13

24

(
D(i, j + 1) +D(i− 1, j + 1)

)
− 1

24

(
D(i+ 1, j + 1) +D(i− 2, j + 1)

)
+

13

24

(
D(i, j − 1) +D(i− 1, j − 1)

)
− 1

24

(
D(i+ 1, j − 1) +D(i− 2, j − 1)

)]
.

The weights, as they would have been in equations (2.15), are

α =
13

48
, β =

13

96
, γ = − 1

48
, δ = − 1

96
,

a =
1

2
, b =

1

4
, and c = d = 0 .

These weights satisfy the equations (2.16) and (2.17), and therefore this
way of utilising the points from Method E yields a 4th order method in x,
like in Method C. As before, the approach will result in the same expressions
for ∂D

∂x
and ρ in a u-point, both in the x- and y-direction.
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Chapter 4

Experiments

4.1 The seamount case

As mentioned earlier, using test cases featuring the steep topography of a tall,
narrow seamount is an effective way of revealing internal pressure gradient
errors. The case was first studied by Beckmann and Haidvogel in 1993. Now
it is a common test case, treated in e.g. [Mellor et al., 1998], [Shchepetkin
and McWilliams, 2003], and [Berntsen and Oey, 2010].

The setup of the model will be identical to that of the experiments in
[Berntsen and Oey, 2010], so as to make it possible to compare the results.
The topography in this study is given as

H(x, y) = H0

(
1.0− 0.90e−(x2+y2)/L2

)
. (4.1)

Here, H0 is 4500 m and L is 40 km, see Figure 4.1.
The seamount is placed in the centre of a channel of length 390 km and

width 294 km. The boundaries are closed at x = 0 km, x = 390 km, y = 0 km
and y = 294 km.

The initial reference stratification is defined to be

ρref (z) = 28 kgm−3 −∆ρe
z

500m (4.2)

where ∆ρ = 3.263 kgm−3. The initial perturbation density is defined as

ρ′(z) = 1.5 kgm−3e
z

500m . (4.3)

The Burger number

41
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Figure 4.1: The seamount

S =

√
gH0∆ρ/ρ0

fL
, (4.4)

is a measure of stratification in presence of rotation [Cushman-Roisin, 1994].
It is 3.0 for the present set of parameters.

Furthermore, ∆x = ∆y = 6 km and the Coriolis parameter is constant
and equal to 10−4 s−1. The horizontal viscosity AM is 100 m2s−1. The model
is run with 40 equidistant layers.

There is no external forcing, and the stratification is stable, so all veloci-
ties should always equal zero. However, the internal pressure gradient error
will set the system in motion. Therefore the maximum velocity and kinetic
energy will be an estimate of the error.

The kinetic energy is computed according to

Ekin =
1

2V

∑
i,j,k

[
4Vi+ 1

2
,j,ku

2
i+ 1

2
,j,k

+4Vi,j+ 1
2
,kv

2
i,j+ 1

2
,k

]
,

and the maximum velocity is

Vmax = max
[√

u2
i,j,k + v2

i,j,k

]
.
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Also,

V =
∑
i,j,k

4Vi,j,k

is the total volume of the domain. 4Vi,j,k,4Vi+ 1
2
,j,k, and4Vi,j+ 1

2
,k are control

volumes of ρ, u, and v-point grid boxes respectively.
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4.2 The Method Bα experiments

The seamount test case can be used to investigate whether a weighted com-
bination of methods (as discussed in Chapter 3 and [Thiem and Berntsen,
2006]) can give improved results. If there indeed exists a cancellation of er-
rors, the optimal fixed weighting of the standard 2nd order POM and the
rotated grid method from Section 3.2 will be sought.

To outline how the new internal pressure gradient actually will be com-
puted in a point (x, y, σ), at a time t, consider its x-component,

IPGx(x, y, σ, t) = α · IPG2
x(x, y, σ, t) + (1− α) · IPG2,4

x (x, y, σ, t) , (4.5)

where IPG2
x(x, y, σ, t) is the internal pressure gradient computed with the

2nd order POM method, and IPG2,4
x (x, y, σ, t) is the pressure gradient given

by the rotated grid method from Section 3.2. The superscripts indicate the
number and position of the applied points. The first number represents the
points included on the jth level, the next number shows how many points
are included symmetrically above and below, at level (j − 1) and (j + 1)
combined. See Figures 2.4 and 2.5.

The value α = 0 in (4.5) corresponds to the 2nd order POM method,
and α = 1 gives the pure rotated grid method. The same expression is valid
for the y-direction (but with the stencils from Figures 2.4 and 2.5 rotated 90
degrees).

The new rotated grid and the 2nd order POM pressure gradients are
computed in every cell, before they are weighted against each other. The
kinetic energy and the maximum velocity are taken out after 10 days for
different values of α. The value of α is set to some fixed number between 0
and 1 for each run, with intervals of length 0.05, see Figure 4.2.

For values of α below 0.4, the error is even larger than for the values
plotted. When the rotated grid method is dominant, (for values of α close
to zero) the model run is terminated before 10 days because of instability.
These results are not included, since the region of interest clearly lies in the
other end of the interval.

Since the energy should be as small as possible, the minimum point of this
graph is the point of greatest interest. It appears to be somewhere between
α = 0.85 and α = 0.9. The weight is therefore fixed at α = 0.875, and from
this point, the resulting method will be called Method Bα. Experimenting
with different weighting confirms that this estimate for a fixed value of α
seems to be the optimal choice, even when the model is run for 180 days.

The fact that there appears to be a cancellation of errors with this value
of α is consistent with what was found in [Thiem and Berntsen, 2006]. The
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Figure 4.2: The kinetic energy after 10 days as a function of α for the Method
Bα experiments.

4− 1 weighting for which the error was reduced, corresponds to α = 0.8.

4.3 The Method Eα experiments

By using the same weights as for the rotated grid method (as discussed in
Section 3.3), a new method based on Method C can be constructed. The
internal pressure gradient in the x-direction is computed according to

IPGx(x, y, σ, t) = α · IPG4
x(x, y, σ, t) + (1− α) · IPG4,8

x (x, y, σ, t) .

The superscripts indicate the number and position of the applied points, as
above. Recall the stencils in Figures 2.6 and 2.8. The same expression applies
for the y-direction.

An estimate of the optimal fixed value of α can be found with a similar
experiment. Below, the kinetic energy after 10 days is plotted for values of
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Figure 4.3: The kinetic energy after 10 days as a function of α for the Method
Eα experiments.

α between 0.4 and 1, see Figure 4.3. To make the minimum point easier to
find graphically, the values of α below 0.4 are excluded. The error grows as
α approaches zero. The methods seem to interact in much the same way as
the 2nd order POM and the rotated grid method.

In the plot of the energy (Figure 4.3), the error seems to reach its mini-
mum somewhere between α = 0.80 and α = 0.85. The weight α is fixed at
the value 0.825, and the result is called Method Eα.



Chapter 5

Initial vorticity and SESK

The description of the Sigma Errors of the Second Kind (SESK) from [Mellor
et al., 1998] clearly motivates a study of the vorticity-related errors of the
methods previously developed. According to Mellor et al. [1998], the SESK
appearing in 3D experiments are the errors of greatest concern, since they
tend to not die out prognostically.

By using the initial pressure forces to calculate the initial acceleration of
the vorticity, a measure of the internal pressure gradient errors and possible
improvements can be obtained. It leads to an economical way of anticipating
how well the methods will perform.

5.1 Results for the methods

The vertically integrated initial acceleration of the vorticity,

∂

∂t

∫ 0

−1

[
∂v

∂x
− ∂u

∂y

]
dσ ,

is computed.
The 2nd order POM method (Method A) gives the results seen in Figure

5.1(a). This eight-lobed pattern is a typical display of the SESK that appear
around the steep topography of the seamount. The plot presents a visual
motivation for the rotated grid method from Chapter 3. The flow in each of
the neighbouring vortices are oppositely directed, and one can imagine that
a 45 degree rotation should cancel the errors.

In Figure 5.1, plots of the initial acceleration of the vorticity for each of
the methods previously developed are included.

From this, one should in particular expect the fourth order Method D
and Method Eα to deliver good results.

47



48 Initial vorticity and SESK

(a) Method A (b) Method Bα

(c) Method C (d) Method D

(e) Method Eα

Figure 5.1: The vertically integrated initial acceleration of the vorticity for each
of the discussed methods.
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5.2 The weighted methods: Elimination of

the initial vorticity

The following plot series gives an impression of why the weighted Method
Bα displays a reduced error, and why the best fixed values are such that
the original method is dominant. The vortices of the rotated approach are
larger and oppositely directed. A smaller version of these vortices added
to the original vortices should intuitively lead to a cancellation. This is in
fact what seems to happen, see Figure 5.2. However, the cancellation is not
complete.

The alternative Method E and Method C interact in the same way, al-
though they seem to be a slightly better fit, see Figure 5.3. Note that the
shapes of the vortices for the two separate methods appear to be quite similar.
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(a) α = 0. (b) α = 0.5

(c) α = 0.7 (d) α = 0.8

(e) α = 0.9 (f) α = 1.

Figure 5.2: The vertically integrated initial acceleration of the vorticity for the
combination of the rotated grid approach and standard 2nd order
POM, different fixed weights.
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(a) α = 0. (b) α = 0.5

(c) α = 0.7 (d) α = 0.8

(e) α = 0.9 (f) α = 1.

Figure 5.3: The vertically integrated initial acceleration of the vorticity for the
combination of the alternative Method E and the Method C, different
fixed weights.



52 Initial vorticity and SESK



Chapter 6

The optimal weighting

The experiments with the weighted approaches suggest that there is an in-
teraction between the methods that leads to a cancellation of errors. It is
tempting to investigate this further, and try a new, more complex manner of
weighting.

Now, assume that two estimates of the erroneous internal pressure forces
in a u-point has been found, corresponding to each of the two methods in-
volved. If the estimates are of opposite signs and comparable in magnitude,
a weight between 0 and 1 can be found such that a combination of the two
will equal zero. The method can then be defined by a three-dimensional
field of weights, instead of by a single fixed constant. Ideally, it would only
be necessary to compute the weights once, before the model is propagated
in time. The error, and consequently the weights, will only depend on the
topography, the stratification and the grid size.

It is necessary to demand that the value of the weight is between 0 and
1, to ensure a stable result. Weights outside of this interval will imply that
an extrapolation of the internal pressure functions is needed, and that is
generally a more unstable process than interpolation. Of course, this means
that it is crucial for the two methods to be a ’perfect fit’ for the approach to
be successful.

This idea is in many ways similar to the approach proposed by Stelling
and Van Kester [1994]. They estimated the internal pressure in z-coordinates
in two different ways. The approach ensured that the estimates frequently
became of opposite sign. The gradient were in these cases set to zero. When
the estimates were of the same sign, the smaller value was utilised. Even
though the approach gave promising results, the calculations involved were
rather complex. In addition, Slørdal [1997] showed that the approach gener-
ally underestimated the geostrophic flow. The approach of optimal weighting
in principle is a simple and straightforward computation.
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Two separate fields of weights will be needed; one for the x-direction and
one for the y-direction. The focus will still be on the x-component, and the
weights will be called αx(x, y, σ).

6.1 Finding αx(x, y, σ)

When the discretisations are based on the following integral

∂p

∂x
= g

∫ 0

σ

(
D
∂ρ

∂x
+
∂D

∂x
ρ

)
dσ + gσρ

∂D

∂x
, (6.1)

as they have been up to this point, the vertical integration has to be computed
before the weighting is done. In other words, the errors in each layer are
added up. If the error is eliminated before the integration is done, better
results can be expected.

In this chapter, discretisations based on the other form of the integral
from Chapter 1 will be considered,

∂p

∂x
= gD

∫ 0

σ

(
∂ρ

∂x
− σ

D

∂ρ

∂σ

∂D

∂x

)
dσ . (6.2)

Initially, two estimates of the integrand will be made. The weights will
be constructed so that the integrand is zero when the value of the weight in
some u-point is between 0 and 1. If the expression for the internal pressure
gradient from (6.2) is used, it will suffice to consider a weighted approach of
the integrand, since the integral should be zero when the integrand is.

The estimate of the integrand in (6.2) computed with the standard 2nd or-
der POM method is called FINT2

x(x, y, σ, t), and the same estimate computed
with the rotated grid method from Chapter 3 is called FINT2,4

x (x, y, σ, t).
The superscripts indicate the number and position of the applied points, as
in Section 4.2.

For a given cell (x, y, σ), at the time t = 0, it is required that

αx(x, y, σ) · FINT2
x(x, y, σ, 0) + [1− αx(x, y, σ)] · FINT2,4

x (x, y, σ, 0) = 0 .

This gives the following expression for the weight

αx(x, y, σ) =
FINT2,4

x (x, y, σ, 0)

FINT2,4
x (x, y, σ, 0)− FINT2

x(x, y, σ, 0)
.
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If the value of αx(x, y, σ) is in the desired range, it will be used. If this is
not the case, the smaller of the two estimates will be used. Ideally, once the
weights are computed, they can be applied for the whole experiment, and
other experiments with the same topography, grid size, and similar stratifi-
cation.

The results of this approach is dependent on the weights actually being
between 0 and 1. The seamount test case will be applied, and αx(x, y, σ) will
be investigated.

6.2 Investigations around the seamount

The following plots are vertical profiles of the value of both the original ini-
tial integrand values, FINT2

x(x, y, σ, 0) and FINT2,4
x (x, y, σ, 0), and the initial

value of the final integrand, FINTx(x, y, σ, 0) in a small area around the
seamount (Figure 6.1). The middle cell in Figure 6.1 is the middle cell of the
whole test basin. The eight neighbouring cells are included.

The purpose of the investigation is to find out whether the two methods
are suited for this approach. The corresponding vertical profiles of αx(x, y, σ)
are also included.
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×
ubm×

ubl ×
ubr

→

×
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umr

×
uul

↑
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×
uum ×
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x

Figure 6.1: The area around the seamount, in which we investigate the effects of
the optimal weighting. (×) marks the u-points. Subscript gives the
position. ’u’ stands for ’upper’, ’m’ stands for middle, ’b’ stands for
’bottom’. ’l’ stands for ’left’, ’m’ stands for ’middle’, ’r’ stands for
’right’.
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(a) Plot for uul (b) Plot for uul

(c) Plot for uml (d) Plot for uml

(e) Plot for ubl (f) Plot for ubl

Figure 6.2: Plots for the three cells on the left side. To the left, the
dashed line represents FINT2

x(x, y, σ, 0), the dotted line represents
FINT2,4

x (x, y, σ, 0), and the solid line represents the best approxima-
tion. Note that the solid line covers the dashed line almost com-
pletely. The plots to the right show the vertical profile of αx(x, y, σ)
in the given point.
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(a) Plot for uum (b) Plot for uum

(c) Plot for umm (d) Plot for umm

(e) Plot for ubm (f) Plot for ubm

Figure 6.3: Plots for the three cells in the middle. To the left, the
dashed line represents FINT2

x(x, y, σ, 0), the dotted line represents
FINT2,4

x (x, y, σ, 0), and the solid line represents the best approxima-
tion. Note that the solid line covers the dashed line almost com-
pletely. The plots to the right show the vertical profile of αx(x, y, σ)
in the given point.
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(a) Plot for uur (b) Plot for uur

(c) Plot for umr (d) Plot for umr

(e) Plot for ubr (f) Plot for ubr

Figure 6.4: Plots for the three cells on the right side. To the left, the
dashed line represents FINT2

x(x, y, σ, 0), the dotted line represents
FINT2,4

x (x, y, σ, 0), and the solid line represents the best approxima-
tion. Note that the solid line covers the dashed line almost com-
pletely. The plots to the right show the vertical profile of αx(x, y, σ)
in the given point.
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At the points where the weighting actually has been done, the integrand
value is reduced to zero. Note the symmetry around the three middle cells.

Unfortunately, the two internal pressure gradient estimates do not satisfy
the necessary criteria for a complete cancellation. Typically, the eliminations
only occur in a few of the upper layers, see Figure 6.5.

Figure 6.5: A zoom-in on the area where the error elimination has been done.
The dashed line represents FINT2

x(x, y, σ, 0), the dotted line repre-
sents FINT2,4

x (x, y, σ, 0), and the solid line represents the best ap-
proximation.

The sudden drop to zero of the internal pressure gradient can potentially
create a sharp discontinuity, and lead to severe instabilities. This probably
would be a problem regardless of if more of the weights were in the desired
range, that is, as long as the optimal weighting does not deliver perfect
results.

Plots of αx(x, y, σ) for different values of σ in an area around the seamount
are also included, see Figure 6.6.
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(a) Plot for σ = 1 (b) Plot for σ = 10

(c) Plot for σ = 20 (d) Plot for σ = 30

(e) Plot for σ = 35 (f) Plot for σ = 40

Figure 6.6: Plot of αx(x, y, σ) for different σ-layers
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6.2.1 Shapiro filtering

The field of weights exhibits several singularities, and does not appear to be
particularly smooth. To remedy this, it is possible to use a linear filtering
technique. Consequently, a Shapiro filter [Shapiro, 1975] was applied in all
spatial directions, for the entire model domain. Consider the filtering in the
x-direction, given by

αx(i, j, k) =
1

4
αx(i− 1, j, k) +

1

2
αx(i, j, k) +

1

4
αx(i+ 1, j, k) , (6.3)

where i, j and k are the discrete coordinates in the x-, y-, and σ-direction,
respectively.

Shapiro filtering only once gave no visible impact on the integrand values
around the seamount – the results were similar to the Figures 6.2, 6.3 and
6.4, even though the vertical profile of αx(x, y, σ) in the given point clearly
became smoother. See Figure 6.7 for the point uur.

(a) Plot for uur (b) Plot for uur

Figure 6.7: Shapiro-filtered once. To the left, the dashed line represents
FINT2

x(x, y, σ, 0), the dotted line represents FINT2,4
x (x, y, σ, 0), and

the solid line represents the best approximation. The plot to the
right shows the vertical profile of αx(x, y, σ) in the given point.

To investigate the effects of further smoothing, the Shapiro filter was
applied three times to αx(x, y, σ), see Figure 6.8.

The experiments reveal a possible danger to Shapiro filtering αx(x, y, σ).
It becomes evident when filtering a field where so many of the weights are not
in the interval between 0 and 1. Some false weights, which are originally not
in the desired range, can suddenly appear. They create new, even sharper
discontinuities, see Figure 6.9 for an illustration.



6.2 Investigations around the seamount 63

(a) Plot for σ = 1 (b) Plot for σ = 10

(c) Plot for σ = 20 (d) Plot for σ = 30

(e) Plot for σ = 35 (f) Plot for σ = 40

Figure 6.8: Plot of αx(x, y, σ) for different σ-layers, Shapiro filter applied three
times.
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(a) Plot for uur (b) Plot for uur

Figure 6.9: The weights αx(x, y, σ), Shapiro-filtered three times. To the left, the
dashed line represents FINT2

x(x, y, σ, 0), the dotted line represents
FINT2,4

x (x, y, σ, 0), and the solid line represents the best approxima-
tion. The plot to the right shows the vertical profile of αx(x, y, σ) in
the given point.

6.2.2 The reappearance of the fixed weight

It was experimented with setting the weights to 0.875 (which is the fixed
weight obtained in Section 4.2), when they were not between 0 and 1. This
differs from the approach from above, where the smaller of the two estimates
were used.

Even though this approach also results in some discontinuities (see Figure
6.10), no instabilities were encountered. The field is still much smoother,
and the optimal weights are so seldom in the desired interval that the fixed
weighting is most significant for the results. However, the results are slightly
worse than for the Method Bα, so there is no beneficial effect of the optimal
weighting in this case.
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(a) Plot for uur (b) Plot for uur

Figure 6.10: No filtering, but with fixed weight instead of the smaller estimate.
To the left, the dashed line represents FINT2

x(x, y, σ, 0), the dotted
line represents FINT2,4

x (x, y, σ, 0), and the solid line represents the
approximation. The plot to the right shows the vertical profile of
αx(x, y, σ) in the given point.
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Chapter 7

Results

The methods from the previous chapters are all applied to the seamount case,
and the model is run for 180 days. The kinetic energy and the maximum
velocity are taken out after each day.

This test has been performed for new numerical methods in several previ-
ous studies, see for example [Shchepetkin and McWilliams, 2003] and [Berntsen
and Oey, 2010]. It gives a good impression of the long term stability of the
approaches.

7.1 Comments on the finite volume methods

The kinetic energy for each method is plotted in Figure 7.1. The optimal
weighting approach from Chapter 6 is not included, as it causes the model run
to go unstable within 5 days (see Section 7.2). Remember that the Method
A is equal to the standard 2nd order POM method, so the performance of
this method will provide a reference to which the others can be compared.

Even though Method C gives the largest values here, the graph seems
to flatten more than the graph for Method A. This may indicate that the
robustness is increased by applying the two extra points, recall Figure 2.6.

The Methods Bα and Eα are supposed to be improved versions of the
Methods A and C, respectively. Indeed, this seems to be the case. The
better performance of Method Bα is consistent with the results from [Thiem
and Berntsen, 2006]. The difference between Method C and Method Eα is
even larger, and quite remarkable. There certainly seems to be some error
cancellation at work.

The Method D clearly gives the best results here. Recall that this is a
fourth order method in both x and y.

A plot of the maximum velocities for the 180 days runs is also included.
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Figure 7.1: Kinetic energy for the methods

These results are consistent with the kinetic energy values, see Figure 7.2.

Figure 7.2: Maximum velocity for the methods
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7.2 Results for the optimal weighting approach

The experiments with the optimal weighting resulted in severe instabilities
that caused the model run to be terminated before 10 days. See Figure 7.3
for the maximum velocity of the approach with unsmoothed weight fields
(αx(x, y, σ) and αy(x, y, σ) without Shapiro filtering), plotted together with
the finite volume methods from above.

In Figure 7.4, the maximum velocities for the optimal weights, Shapiro
filtered once and thrice, are compared to the results for the optimal weighting
with no filtering. The filtering has no beneficial effect in this case.

Figure 7.3: Maximum velocity for the methods, including the optimal weighting
approach.

An experiment was also performed with a weighting of 0.875 where αx(x, y, σ)
and αy(x, y, σ) were not in the desired range between 0 and 1 (instead of us-
ing the smaller estimate). The results were similar to those of the Method
Bα, only more oscillatory, see Figure 7.5.
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Figure 7.4: Maximum velocity for the optimal weighting approach, including no
Shapiro-filtering, and Shapiro-filtered once and thrice.

Figure 7.5: Maximum velocity for the methods, including optimal weighting -
version with fixed weight of 0.875 instead of smaller estimate.
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7.3 The vorticity evolving in time

To observe the long-term behaviour of the errors, the depth-integrated vor-
ticity

∫ 0

−1

[
∂v

∂x
− ∂u

∂y

]
dσ ,

was plotted over a time span of 100 days for the standard 2nd order POM
(Method A), see Figure 7.6.

A pattern of eight vortices, four cyclonic and four anticyclonic, is estab-
lished around Day 20. This pattern seems to represent a stable state, where
the SESK errors cease to grow. This agrees with the error observed in the
kinetic energy and maximum velocity, see Figures 7.1 and 7.2.

To illustrate the clear connection between the initial acceleration of the
vorticity, and the strength of the later vorticity, the corresponding results
for Method D is included (Figure 7.7). Note that the vorticity errors are
one order of magnitude smaller than for the Method A. Apart from this, the
same stagnation of the error growth can be observed.

The depth-integrated vorticity for the unstable optimal weighting (with-
out Shapiro filtering) is included in Figure 7.8, showing the five days before
the run is terminated. The chaotic picture is a clear contrast to the ’smooth’
vortices resulting from Method A and D.

7.4 Comparison to the methods from [Berntsen

and Oey, 2010]

A good way of measuring the value of the methods obtained here, is to
consider the finite difference methods that already have been used for the
Princeton Ocean Model. Since the setup used in [Berntsen and Oey, 2010]
is also utilised in this study, a comparison is permitted.

The study of the plots of the kinetic energy and maximum velocity (e.g.
Figures 7.1 and 7.2), reveals that the best method of 4th order obtained here,
Method D, has an error comparable to the well-known 4th order McCalpin
method [McCalpin, 1994], [Berntsen and Oey, 2010]. This indicates that a
real breakthrough has not yet been made.
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(a) Day 1 (b) Day 20

(c) Day 40 (d) Day 60

(e) Day 80 (f) Day 100

Figure 7.6: The depth-integrated vorticity for the standard 2nd order POM
(Method A).
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(a) Day 1 (b) Day 20

(c) Day 40 (d) Day 60

(e) Day 80 (f) Day 100

Figure 7.7: The depth-integrated vorticity for the Method D.



74 Results

(a) Day 1 (b) Day 2

(c) Day 3 (d) Day 4

(e) Day 5

Figure 7.8: The depth-integrated vorticity for the optimal weighting (without
Shapiro-filtering).



Chapter 8

Discussion

The error in the internal pressure gradient is one of the greatest concerns
of the users of σ-coordinate ocean models. After the transformation to the
terrain-following coordinates, the gradient consists of two terms, which are
often both large and opposite of sign. Therefore, the estimation is vulnerable
to the truncation errors of the numerical discretisation. Much effort has
been put into finding new approaches, to reduce, and hopefully eliminate
this problem entirely.

8.1 The finite volume approaches

To this end, a new family of finite volume methods has been developed,
using the standard 2nd order POM as a starting point. During the pro-
cess, the close relationship between the finite difference and finite volume
approaches has been clearly demonstrated. The method of undetermined
coefficients provided the fixed weights needed to take the methods to higher
order. However, the expansion of the computational stencil did not always
result in an approximation of the order that was sought initially.

The performances of the finite volume methods found in Chapter 2 turned
out to be varying. Generally, they were either worse or only marginally
better than the finite difference approaches of corresponding order. The
work of Berntsen and Oey [2010] made a comparison possible. One should
not underestimate the impact of the problem described in Section 2.4. If a
way to overcome this could be found, perhaps the advantages of the finite
volume approach would be more evident.

Furthermore, the method of undetermined coefficients is not the only way
of producing new finite volume methods. A Taylor expansion approach could
also be applied, and possibly give another set of methods with different, and
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more advantageous properties.

8.2 The weighted approaches

The work of Thiem and Berntsen [2006] inspired an attack on the problem
from a different angle: The internal pressure gradient was computed in a
rotated grid, and the estimates were weighted with the standard 2nd order
POM method, using a fixed constant. This approach made it possible to
utilise the stencils from the finite volume study which previously did not
lead to new methods.

The results for the weighted approaches were promising. The experiments
with a fixed constant weight in Section 4.2 clearly displayed error reduction,
which was consistent with the results from Thiem and Berntsen [2006]. This
spurred the research in yet another direction; towards the optimal weighting
approach.

The purpose of the optimal weighting was to create a field of weights
that ideally would eliminate the internal pressure gradient error entirely.
The weights should not vary in time, but in space, and be such that the
pressure gradient would be set to zero when the methods gave estimates of
comparable order and opposite signs. If not, the smaller value should be
used.

Unfortunately, the first attempt at the optimal weighting was unsuccess-
ful. The two methods did not seem to be able to interact in the desired way.
Two estimates of opposite signs are needed to make the weighting effective,
and this was only achieved in a few points. It does not necessarily follow that
the optimal weighting is a fundamentally bad idea, only that the methods
considered are ill-suited for the purpose. If a new pair of methods could be
found, it would mean renewed hope for the approach.

But even if this could be achieved, it would be natural to expect that
the optimal weighting will result in discontinuities in the internal pressure
gradient. A possible solution could then be to use filtering techniques to
smooth out the field. To investigate, some experiments were performed with
Shapiro-filtering in all spatial dimensions. It was discovered that this can
lead to ’false’ weights between 0 and 1 – causing new disturbances.

One can argue that the optimal weights should vary in time, i.e. that an
αx(x, y, σ, t) should be computed at each time step. After all, the density
profile is time-dependent. In this study, the weights were kept constant in
time mainly for simplicity, and to reduce the computational cost. In addition,
the initial errors are generally assumed to be closely correlated to the later
errors. Even if the error cancellation should happen to be a little inaccurate,
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the approach should, if successful, improve the results in any case.

8.3 Concluding remarks

Beyond doubt, the idea of weighting is enticing. The hope that in combining
two schemes, the best of two worlds can be achieved at the same time, is
both intuitive and accessible.

Instead of limiting the weighting to the horizontal, consider the possibil-
ity of using weighting in the vertical to reduce the internal pressure gradient
error. Some work on this has been done before, for instance Song [1998] sug-
gested the use of a vertically weighted Jacobian when computing gradients.

As mentioned before, Stelling and Van Kester [1994] constructed a new
method of computing the internal pressure gradient by interpolating the
derivatives back to z-coordinates. As a consequence, it was ensured that
for a test case with a density field that only varies in z, the numerical solu-
tion would equal the analytical solution. The approach can be interpreted
as a sort of optimal weighting in the vertical. Even though the method may
have other short-comings [Slørdal, 1997], the idea in itself is interesting.

It is clear that the two terms resulting from the transformation to σ-
coordinates in expression (1.9), should cancel out in the case of horizontal
isopycnals. To exploit this, one can imagine that an alternative sort of opti-
mal weighting can be found, by the means of any sort of adjustment of the
approximations in the given terms. Vertical interpolation is just one possi-
bility. Similarly to the attempted optimal weighting in the horizontal, the
weights will then be determined by demanding that the pressure gradient
is zero when this is given by the analytical solution. The challenge will be
how to carry out the idea, while still satisfying the need for consistency and
stability.

The discussion here is mainly based on the results of experiments. A
closer look at the error terms of the different methods could probably offer
additional analytical insight, and consequently more fundamental explana-
tions to the performances of the different methods. It is clear that both
approaches have the potential to reduce the internal pressure gradient. The
actual execution of the ideas, however, requires further efforts.

In addition, some errors will not show in idealised test cases, and therefore
more realistic tests should be applied in order to fully understand the value
of new approaches. Certain methods will even perform better when used in
a more realistic context. For example, the use of more points can poten-
tially give more robust approximations in the presence of a rougher bottom
topography, and this advantage is not revealed by the present seamount case.
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One should keep in mind that new approaches can introduce new sources
of errors. For instance, whenever interpolation is utilised, one must take the
inaccuracies produced by this into consideration as well. It is important to
always weigh the improvement in one area up against what could be lost in
another.
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