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Summary

This research endeavor presents a 4D seismic history matching work flow
based on the ensemble Kalman filter (EnKF) methodology. The objective
of this work is to investigate the sensitivity of different combinations of
production and seismic data on EnKF model updating. In particular, we
are interested to quantify the performance of EnKF-based model updating
experiments with respect to production and seismic data matching as well
as to estimate uncertain reservoir parameters, e.g., porosity and perme-
ability. The reservoir-seismic model system used consists of a commercial
reservoir simulator coupled to an implemented rock physics model and a
forward seismic modeling tool based on 1D convolution with weak con-
trast reflectivity approximation. One of the challenging issues of using
4D seismic data into reservoir history matching is to compare the mea-
sured data to the model data in a consistent way. Based on our realistic
synthetic reservoir characterization case, time-difference impedance data
generally performed better than time-difference amplitude data, and the
matching of seismic data mostly improved with the inclusion of seismic
data. In estimating posterior porosity and permeability, seismic difference
data provided better estimate than using only production data, especially
in aquifer region and also in areas that might be considered for in-fill wells.
We experienced that the integration of seismic data in the elastic domain
mostly provided better results than using seismic data at the amplitude
level. This may be due to the measurement error used, and hence, further
investigations are suggested to ascertain the appropriate level of seismic
data integration.

The reservoir simulation model used is a sector model based on a full
field North sea reservoir. The prior ensemble used consists of 100 model
realizations. For computational efficiency, we have used efficient subspace-
based EnKF implementations to handle the effects of large data sets such
as 4D seismic. It may be difficult to assimilate 4D seismic data since it is
related to the model variable at two or more time instances. Hence, we
have used a combination of the EnKF and the ensemble Kalman smoother



ii

(EnKS) to condition the reservoir with seismic data.
We performed a thorough study on the effects of using large number

of measurements in EnKF by considering a single update of a very simple
linear model. The sensitivity of EnKF update for several parameters, e.g.,
model dimension, correlation length, and measurement error variance
also presented. We investigated the accuracy of the traditional covariance
estimate with a large number of measurements. We demonstrated that the
ensemble size has to be much larger than the number of measurements in
order to obtain an accurate solution, and that the problem becomes more
severe when the measurement uncertainty decreases, indicating that some
kind of localization may have to be applied more often than previously
believed.

In the real field case study, we have focused on matching the inverted
acoustic impedance ratio (monitor survey/base survey) data between two
time steps of several years of production. Note that for this real field case,
there is a long period of production before the seismic data was assimilated.
Hence, the porosity and permeability fields had a large influence induced
by production data before they were actually updated with seismic data.
Global and local analysis schemes assimilate production data and seismic
data respectively. In our implementation of local analysis, we used three
significant regions and seismic data within a given local analysis region is
influenced by only variables in the same region. The posterior ensemble
of models showed good match to both production data and seismic data.
In most of the cases of reservoir characterization, the combined use of 4D
seismic with production data improved history matching for the wells and
also improved posterior impedance ratio data matching. In addition, 4D
seismic data provided more information related to permeability update
in the aquifer and in-fill areas. The results indicate that the local analysis
reduced the amount of spurious correlations and tendencies to ensemble
collapse seen with global analysis.
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The dissertation is submitted as a partial fulfillment of the requirements
for the degree of Doctor of Philosophy at the University of Bergen. The
research works leading to the submission of this thesis started in March
2007, and have been carried out at the Center for Integrated Petroleum Re-
search (CIPR), University of Bergen and also at the Statoil ASA Research
Center in Bergen. This work is a part of the PETROMAKS project titled
”Dynamic reservoir characterization and monitoring - Reservoir Monitor-
ing and Dynamic Reservoir Characterization with Production, Seismic and
Electromagnetic Data”. Principal Researcher and Adjunct Professor Sigurd
Ivar Aanonsen has been the main supervisor for this PhD project. Prin-
cipal Researcher and Adjunct Professor Trond Mannseth and Associate
Professor Morten Jakobsen have been co-advisers for this work. Senior
Researcher Jan-Arild Skjervheim at Statoil ASA has provided important
supervision to this PhD project. The Ensemble Reservoir Tool developed
at Statoil ASA has been used in this work.

This dissertation is divided into two parts: Part I focuses on the theoret-
ical background and methodology used for performing 4D seismic history
matching. In Part II a set of research papers and scientific reports devel-
oped as the part of this work is presented. A brief outline of the PhD thesis
is described in the following section.

Part I: General Background

Chapter 1 provides the context of this research work by describing the
scope of 4D seismic history matching in the EnKF framework. Further-
more, the main research objectives of the research work are outlined and
also an overview of the papers and the results are presented.

In chapter 2 we have described a comparative study of both qualitative
and quantitative integration of 4D seismic data in reservoir engineering.
Also we have discussed the definition of the 4D seismic history matching
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with an example work flow. At the end, we have outlined the challenges
of 4D seismic data integration.

In chapter 3 the concept of reservoir characterization is presented.
A general theory for reservoir history matching problem described in a
Bayesian framework is outlined, followed by the description of different
history matching techniques. The chapter end with a comparison between
EnKF and traditional history matching methods.

Chapter 4 provides a through description of all the forward models
used in this work. In particular, we have described theories for flow
in porous media and a detailed analysis of the rock physics models for
pressure-dependent unconsolidated sand reservoir is presented next. And
finally, generalized theory for 1D convolution model based on weak con-
trast approximation of reflection coefficient is delineated.

Chapter 5 contains an overview of the ensemble Kalman filter method-
ology as a data assimilation technique. Starting from basic Kalman filter
methodology, we have shown detailed derivation of EnKF algorithm. We
have described the basic steps for EnKF-based reservoir history matching
technique. The modeling error issue with EnKF is introduced as well.
The chapter ends with the major challenging aspects of EnKF method for
reservoir engineering problems.

Chapter 6 provides the mathematical derivation of the algorithm for
performing 4D seismic history matching in EnKF; particularly we have
shown the ensemble smoother concept in this section. A comprehensive
work flow for EnKF-based history matching for time-lapse seismic data is
presented. We have also proposed a methodology to incorporate seismic
modeling error in EnKF history matching. Finally, we have described the
main challenges of this research work in the context of 4D history matching
in EnKF framework.

In chapter 7, we have touched the important issue of integration of
large number of measurements that is relevant to seismic data integration
in EnKF. We have briefly described the efficient subspace EnKF algorithm
that has been used in this work. Also, different strategies to handle spu-
rious correlations and filter divergence, e.g., local analysis and covariance
localization are described in this chapter.

Finally, we have described the main research findings of this work in
the chapter 8. We have finished this introduction part by delineating some
further extensions based on the experience and findings of this research
task.
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Part I

General Background





Chapter 1

Introduction

With an ever-increasing rate of depletion of conventional fossil fuel re-
sources, one recurring question that resonates among versatile stake hold-
ers is “When do we run out of fossil fuels”? Intuitively, the hydrocarbon
reserves should decrease due to continued increasing consumption. There
are several reasons why the known reserves increase rather than decrease.
With the help of advanced technology deeper targets can be reached, new
frontiers deep offshore can be explored, and from existing fields more hy-
drocarbons can be produced. Due to the complexity of the reservoirs, the
current average recovery is quite low, and with advanced technology, it
should be possible to increase recovery, perhaps to an average of 70% in
the future [107]. Advances in technology are continuously occurring at
several fronts, e.g., the introduction of 4D seismic data. 4D seismic refers
to repeating seismic acquisition over time. It captures the dynamic be-
havior of the reservoir and aids reservoir management, allowing increased
recovery. Reservoir management also benefits from other technological
advances in e.g. stochastic modeling and uncertainty quantification of the
model’s production forecast. The implementation of the above mentioned
and other new developments requires further improvements as well as
new advances in the associated disciplines [27].

The main value of 4D seismic is the additional information to con-
strain or update a model of the reservoir, localization of undrained oil,
detailed well planning etc. Knowledge of reservoir connectivity, flow
barriers or bypassed hydrocarbons is the kind of information that is ex-
pected from 4D data [85]. Such knowledge helps to optimize reservoir
investment decisions. The reservoir models are, in general, constrained by
history matching with well production data. As this solution is most often
not unique, the combination of 4D seismic (large spatial distribution, but
with non-unique interpretation) and well data (single point location, but
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regarded as accurate) enormously reduces uncertainty. Using this infor-
mation, subsurface uncertainties are also reduced. This naturally leads to
cost reductions, better well placements and (sometimes drastic) changes
in field development plans. Today much of the 4D seismic application is
qualitative, or at best semi-quantitative, i.e., the 4D seismic data is used to
identify areas of changes in saturation and pressure distributions between
seismic survey times. The need to be more quantitative is already here,
i.e. to estimate not only what kind of changes but also how large are these
changes in saturation and pore pressure [123]. In the rapid work flows of
the future, the quantitative interpretation methods will be an integral part.

The simplest and the most direct method of using time-lapse seismic
data is to qualitatively monitor reservoir changes due to production. In
this approach, one simply identifies regions in which the amplitude or
impedance has changed with time and attributes these changes to changes
in saturation, pressure, or temperature. In Fig. 1.1a, the increase in acoustic
impedance ratio between monitor and base survey shows the part of the
reservoir which has been drained by injected water. This type of qualitative
use of 4D seismic data has been used for numerous oil and gas fields
around the world. For example, 4D seismic has been very useful on the
Gullfaks field to identify areas where significant gas saturation changes
have occurred and to locate fluid communication paths [91]. At Meren
field in Nigeria, the primary objective of 4D seismic data integration was
to identify pathways of injected water, sealing faults, and compartments
that may contain bypassed oil [96]. For the Gannet C oil and gas field in
the UK central North sea, 4D data revealed major extensions of reservoir
units previously presumed to be absent or thin over much of the reservoir
[136]. As a paradigm shift, 4D seismic monitoring can also be extended to
quantify the amount of injected CO2 and any changes that subsequently
occur due to leakage or dissolution [31]. At the North sea Sleipner site,
six repeat surveys over 12 years have revealed both an expansion and
compaction of the CO2 plume, see Fig. 1.1b which is taken from Sandø
et al. [123]. Distribution estimates of the CO2 saturation have been made
from 4D seismic data and have increased the understanding of CO2 flow,
with reasonable accuracy.

The development of assisted history matching techniques with 4D seis-
mic data is a very active domain which represents a significant improve-
ment towards a quantitative use of 4D seismic data in reservoir modeling
[119]. Seismic history matching is a process of improving reservoir simu-
lation models by constraining these model with both production and 4D
seismic data in order to improve the characterization of permeability and
porosity heterogeneity. Gosselin et al. [70] proposed a gradient based op-
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(a) Water drained reservoir (b) CO2 sequestration

Figure 1.1: Use of 4D seismic data in reservoir management.

timization method to simultaneously minimize the mismatch of all types
of measured, including 4D seismic, data to the simulated ones. Waggoner
et al. [151] used the 4D seismic results to constrain an optimized history
matching procedure along with production data for a condensate gas reser-
voir in the Gulf of Mexico. Stephen et al. [139] [138] applied a method
of multiple-model history matching based on simultaneous comparison
of spatial data offered by seismic as well as individual well-production
data for the UKCS Schiehallion reservoir. The work of Roggero et al.
[119] focused on the advanced parametrization technique to constrain fine
scale geo-statistical model by means of gradual deformation method in the
framework of 4D seismic history matching of the Girassol field. Dong et al.
[45] used an adjoint method to compute the gradient of the data mismatch
and a quasi-Newton method to compute the search direction in the context
of automatic history in order to incorporate 4D seismic data to a reservoir
in the Gulf of Mexico.

In general, conditioning reservoir model to seismic data is a difficult un-
dertaking. One of the challenging issues using seismic data is to compare
measured data to the model data [134]. Different types of 4D seismic data,
e.g., amplitude data or inverted acoustic impedance difference data are in
use. The amount of data, uncertainty and information content may be very
different and dependent the way seismic data are incorporated. Measur-
ing of mismatch between the model and data in a consistent way is always
required. Additional difficulties are related to the choice of appropriate
weighting of seismic attributes compared to production data in the objec-
tive function used in history matching. Moreover, as 4D attributes provide
much more spatial information compared to well or production data, more
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flexibility is required in the model parametrization. In the 4D work flow,
several differences in scales have to be taken into account. Fluid flow sim-
ulations are generally performed on a coarse grid in comparison with the
stratigraphic geological grid. The petro-elastic model (PEM) is used at the
fine scale, and finally, simulated seismic attributes include high-frequency
information due to the heterogeneity of the geological model. Hence, one
cannot use the modeled seismic parameters directly to real seismic data
which are characterized by a limited frequency bandwidth. Even though
a challenging task, there is a growing interest and necessity to incorporate
4D seismic data quantitatively in the work flow for reservoir management
[123].

The ensemble Kalman filter (EnKF) is well suited to combine widely dif-
ferent types of data, like, e.g. production history and seismic data [3]. The
EnKF method was introduced by Evensen in 1994 [58] and is a Monte Carlo
type sequential Bayesian inversion method, suitable for history matching
a reservoir simulation model. The EnKF method provides a solution of
the combined state and parameter estimation problem where the result is
an ensemble of solutions approximating the posterior distribution defined
from the likelihood and the prior model [61]. The use of EnKF for history
matching reservoir simulation model was first proposed by Naevdal et
al. [102]. They used the EnKF to update permeability fields for near-well
reservoir models. Applications of the method to real field cases are dis-
cussed in several recent works. The work of Bianco et al. [19] is one of
the first application which successfully used EnKF to history match a real
field reservoir model and showed how the EnKF can be used to evaluate
the uncertainty in the production forecast for a given development plan
for a real field model. The field at hand was an on-shore saturated oil
reservoir. Haugen et al [76] applied the EnKF to history match a North
Sea field model and found that the EnKF estimate improved the match
to the production data. More recently, Cominelli et al. [34] have used
EnKF to history match the simulation model and to assess the remaining
uncertainty on production forecast for a deep-water under saturated oil
reservoir.

Extending the EnKF method to assimilate seismic data, especially 4D
seismic on a real field case is first shown by Skjervheim et al. [135]. They
used a subspace EnKF inversion scheme to integrate interpreted seismic
data into simulation model for both a 2D synthetic model and a real field
case. For the real field case, Skjervheim et al. [135] assimilated Poisson’s
ratio difference data together with production data to improve a base case
model for the reservoir. Dong and Oliver [46] incorporated 4D impedance
data in EnKF for a small synthetic case. The observed data were matched



1.1 Main Research Objectives 7

very well, and the true model features were recovered. They also showed
that the estimated porosity field was better than the estimated permeability
field because seismic data are directly sensitive to porosity but only indi-
rectly sensitive to permeability. As an example of using seismic waveform
data in EnKF, Haverl and Skjervheim [78] used 4D stacked amplitude data
in EnKF to estimate reservoir properties such as gas-oil-contact. In spite
of having several challenges, e.g., issues of integration of large amount of
4D data and localization, the initial EnKF applications for 4D seismic data
provided promising results, see Aanonsen et al. [3].

1.1 Main Research Objectives

There is a recognized need to combine the skills of geoscientists and engi-
neers to build quantitative reservoir models that incorporate all available
reservoir data [20]. Available reservoir data include conceptual geologic
models, seismic, cores, well logs, and production. The challenge is to
integrate all these disparate data into a unified, self-consistent reservoir
characterization model. The primary objective of history matching (con-
ditioning reservoir models to dynamic data) is to modify a prior model for
the reservoir such that the updated model reflects the available production
data and the uncertainties in production forecasts are reduced. The incor-
poration of 4D seismic data to constrain the reservoir models to update
fine-scale geological model, has the potential to improve the overall reser-
voir characterization. It is a challenging endeavor to perform 4D seismic
history matching in the EnKF framework, especially for a real field case
with interpreted real 4D seismic data. Our work addresses various aspects
of this difficult task. For history matching, we are interested to quantify
the performance of the wells, also to match the assimilated seismic data
and to estimate the reservoir parameters, e.g., porosity and permeability.
We would like to investigate the sensitivity of different combinations of
production and 4D seismic data on EnKF model updating for a realistic
synthetic case based on a full field reservoir model from North sea.

In a model updating process or when conditioning a reservoir model
to 4D seismic data, the conditioning may be introduced at different levels
corresponding to where the mismatch between simulated and measured
data is evaluated. An illustration of the different seismic mismatch levels
is shown in Fig. 1.2 which is taken from the work of Skjervheim [131].
In order to calculate synthetic seismic data, one has to use a PEM model
to convert reservoir simulator output, e.g., pressure and saturation, to
seismic signatures (acoustic impedance or amplitude data). At the highest
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level, real field 4D amplitude data, e.g., seismograms, AVO attributes
or post-stack data, are compared to synthetic amplitudes. This is the
amplitude domain. At the next level, we assume that real seismic data have
been inverted to elastic properties such as acoustic impedance or Poisson’s
ratio. These interpreted seismic data are compared with the corresponding
simulated impedance or Poisson’s ratio data. At the bottom most level,
seismic data are assumed to be further inverted for pressure and saturation,
which then are directly compared with the flow simulator outputs. We
refer this level of integration as fluid changes domain. As it is seen that

Figure 1.2: Different levels of 4D seismic data integration.

seismic data can be integrated at various levels, i.e., amplitude, elastic and
fluid changes domain. In this work, we are interested to ascertain the
appropriate level of 4D data integration for our reservoir characterization.
For this purpose, we have made EnKF-based history matching experiments
with different types of 4D seismic data on a realistic synthetic case.

Because EnKF is typically applied with a limited ensemble size there are
not sufficient degrees of freedom to match all seismic data, especially when
we effectively have seismic data in every grid cells. As a consequence of
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finite ensemble size, an under estimation of ensemble variance may occur.
This variance reduction can be seen as spurious correlations over long spa-
tial distances or between variables known to be uncorrelated [62]. Several
possible methods based on localization, e.g., using local analysis [132] or
distance-based covariance localization [40] have been proposed to handle
large seismic data sets in EnKF. For the field case study with inverted real
4D seismic data, we are interested to improve the EnKF update results
by using a methodology based on a combination of a global and a local
analysis scheme. In addition, we intended to perform a thorough study
on the theoretical aspects of using large number of measurements in EnKF
updating formula.

When we integrate different types of data for reservoir characterization,
we need different forward models to simulate synthetic data to compare
with the corresponding field observation. In this work, we have imple-
mented a PEM model for a pressure dependent sandstone North sea reser-
voir. We have used an initial manually history matched reservoir model
and a rock physics recipe from Statoil ASA. Both for the synthetic and real
case studies, we have used a sector model based on the full field reservoir
simulation model. For the calculation of synthetic amplitude data, we
implemented a forward seismic modeling tool based on 1D convolution
and weak contrast approximation of reflectivity. The mathematical formu-
lation of this forward model is based on the work of Buland and Omre
[24]. Next objective of our work has been the integration of the different
forward models in an EnKF framework. In this project, we mostly used
the Ensemble Reservoir Tool (ERT) developed at Statoil ASA to run EnKF
experiments. For the real field 4D seismic data, CGGVeritas provided us
with the inverted acoustic impedance data.

1.2 Summary of Papers and Reports

Paper A is mainly concerned with a methodology to choose an appropriate
level of 4D seismic data integration in history matching loop. The main
objective of this endeavor is to investigate the effects of different types of
seismic data on EnKF model updating. In this work, we have considered
a realistic synthetic reservoir sector model based on the full field model by
including the top 18 producing layers. We mainly considered two types of
synthetic time-difference seismic data, i.e., acoustic impedance difference
data and the amplitude difference data. We have introduced a simplified
method for seismic forward modeling for amplitude data in depth based on
1D convolution allowing a detailed study of the impact of vertical resolu-
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tion in seismic data, while neglecting other sources of seismic uncertainty.
We showed that the vertical resolution may have a significant effect on
the model update using EnKF. In order to handle time-difference data in
EnKF, we used ensemble Kalman smoother (EnKF) in a combination with
EnKF. An efficient subspace EnKF implementation was used to handle
large number of seismic measurements. In most of the cases of reservoir
characterization, time-difference impedance data performed better than
time-difference amplitude data, and considerably reduced posterior en-
semble spread. The matching of seismic data generally improved with the
inclusion of time-difference seismic data. In estimating posterior porosity
and permeability, seismic difference data provided better estimate than
using only production data, especially in aquifer region and also in areas
that might be considered for in-fill wells. Thus, in our realistic synthetic
case based on a full field reservoir model, we experienced that the integra-
tion of seismic data in the elastic domain mostly provided better results
than using seismic data at the amplitude level. The results for seismic data
matching also indicated that the introduction of large number of seismic
data, probably, introduced spurious correlations, and that some kind of
localization should be used. Still, without localization, the results indicate
an improvement in the estimate of porosity and permeability when adding
seismic data compared to using only production data.

In paper B, the ensemble Kalman filter (EnKF) with local analysis was
applied to match real, inverted 4D seismic data and production data for a
sector of a North Sea oil reservoir. In history matching process, we have
focused on matching the acoustic impedance Ip ratio, between two time
steps of several years of production. Note that for this real field case, there
is a long period of production before the seismic data was assimilated.
Hence, the porosity and permeability fields had a large influence induced
by production data before they were actually updated with seismic data.
Global and local analysis schemes assimilate production data and seismic
data respectively. In our implementation of local analysis, we used three
significant regions and seismic data within a given local analysis region is
influenced by only variables in the same region. The posterior ensemble
of models showed good match to both production data and seismic data.
In most of the cases of reservoir characterization, the combined use of 4D
seismic with production data improved history matching for the wells and
also improved posterior impedance ratio data matching. In addition, 4D
seismic data provided more information related to permeability update
in the aquifer and in-fill areas. The results indicate that the local analysis
reduced the amount of spurious correlations and tendencies to ensemble
collapse seen with global analysis.
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In paper C, we have investigated the performance of EnKF updating for
smaller ensemble members relative to a large number of measurements.
This is done by considering a single update of a very simple linear model
and compare the EnKF update with the traditional Kalman filter, which in
this case is exact. Because for linear models with Gaussian prior, minimum
variance estimation as such the Kalman filter update is the best approxima-
tion. The sensitivity of EnKF update for several parameters, e.g., model di-
mension, correlation length, and measurement error variance is presented.
The quality of the EnKF update is assessed by considering the mean and
variance of the updated state variable, as well as various error norms e.g.,
relative root mean square error (RMS) norm, scaled Frobenious matrix
norms and the eigen-spectrum of the covariance matrix. In particular, we
have varied the number of measurements, Nd alongside ensemble size, Ne.
This has provided us the opportunity to observe the spurious correlation
effect with large Nd. Even for this simple model and straight forward EnKF
implementation, spurious long-range correlation, ensemble collapse, etc.
are clearly seen as number of measurements increase for a given Ne. The
problems occur for Nd < Ne, and if the number of measurements are large,
a very large Ne is needed for an accurate solution.

Report 1 presents a detailed description of the rock physics model that
we have implemented as the part of this research work. The objective of
this work was to implement the PEM model so that we could integrate this
in our overall EnKF-based 4D seismic history matching framework. The
PEM model uses conventional existing models calibrated to well log data
measurements. In particular, we have shown how this PEM model can be
implemented in the PEM modeling tool in Eclipse simulation software [53].
The detailed mathematical formulation of the PEM model for pressure-
dependent unconsolidated sandstone reservoir and also the the necessary
input for the Eclipse PEM model are described. In our example, we have
used Archie’s formula to calculate a realistic water saturation profile based
on standard resistivity log parameter values [118]. We have also performed
some synthetic studies on the predicted seismic behavior.

In report 2, we have made a detailed description of the forward mod-
eling for synthetic seismic amplitude data that has been used in the EnKF
experiments. The model is based on 1D convolution and weak contrast
approximation of reflection coefficients. The mathematical formulation of
this forward model is based on the work of Buland and Omre [24]. Nor-
mally, the velocity or reflection coefficients calculated from the reservoir
simulation model are depth converted and sampled into a regular time grid
before performing the convolution. Since, the velocities and layer thick-
nesses normally are different for each layer in the reservoir model, this will
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always introduce a sampling, or scaling error. Here we have applied a
different procedure, where all the calculations, including the convolution,
are performed in depth. This will of course not be possible in a real case.
However, in this way we are able to generate a synthetic problem where
these errors are minimized, and also it simplifies calculations. For the
reservoir sector model, we have shown the use of this seismic modeling
tool in this report. Detailed analysis of the input parameters necessary for
this forward model is also illustrated with an example.



Chapter 2

4D Seismic Data for Reservoir
Management

The objective of reservoir management is to produce each reservoir opti-
mally according to economic, political, technical, and environmental con-
straints. Reservoir management is a complex task heavily depending on
the reservoir model. This reservoir model allows analyzing behavior of the
reservoir, but more importantly to forecast future production behavior. A
reservoir model has to be constrained to the observed static and dynamic
data. Static data comprise core data, logs, geological data, 2D and 3D seis-
mic data etc. Dynamic or historical data comprise production, well test,
and time-lapse seismic data. Termed ”four-dimensional seismology” by
Nur [104], 4D seismic data comprise the set of 3D seismic data acquired
at different times over the same area, with the objective of monitoring
changes occurring in a producing hydrocarbon reservoir over time [29].
It was originally observed from rock physics experiments that the change
of saturation and fluid pressure can lead to detectable changes in seismic
attributes forms the physical basis of time-lapse seismic monitoring [26].

4D seismic data record two types of changes: changes in reservoir prop-
erties due to production, and changes in external variables such as ambient
noise, recording equipment, etc. Changes in reservoir properties due to
production are recorded by 4D seismic data since seismic velocities and
impedance depend on changes in pore fluids, pressure and temperature
[105] [154]. The overall elastic modulus of a rock change with the type of
fluid in the pores, the effective pressure acting on the rock, and the tem-
perature the rock is subjected to. Due to the change in elastic modulus, the
rock becomes more or less resistant to wave-induced deformations; there-
fore, seismic velocities experience an increase or decrease in magnitude.
These observations are the basis for using 4D seismic data in predicting
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Figure 2.1: Oil saturation map in Tarbert formation from Gullfaks reservoir model:
Attribute maps from 4D inversion showing the average oil saturation values,
extracted from 4D inversions from surveys in 1996, 1999, 2003 & 2005. Warm
colors indicate high oil saturation.

fluid saturation and pressure changes in the reservoir. Typically, the differ-
ence between two 3D seismic data sets recorded at different times allows
mapping those areas in the reservoir where pressure and/or the distribu-
tion of fluids have changed. Therefore, 4D seismic data not only provides
information about the dynamic process occurring in the reservoir while
production takes place; but also provides information about the spatial
lithology heterogeneity where dynamic changes occur. In the context of
4D reservoir management, the reservoir production data can be utilized
along with the seismic data to improve the reservoir model through his-
tory matching. This technique allows a quantitative, rather than a visual,
interpretation of 4D seismic results. The resulting improvement provides
a direct linkage to reservoir management tools, so that the knowledge
gained from the 4D study can be better used to manage the reservoir fu-
ture performance.

4D seismic started in the early 1980’s and became commercial in the
late 1990’s. In the North Sea, 4D seismic was investigated on a full field
scale in 1995 in a joint Statoil-Schlumberger project at the Gullfaks field
[123]. On the Gullfaks field, time lapse (4D) seismic data has played a sig-
nificant role in management of tail end production [103]. 4D seismic data
have increased understanding of both the static properties and dynamic
behavior of the field, challenging the production strategy and driving the
reservoir management decision process, see Fig. 2.1 which is taken from
Sandø et al. [123]. The data have identified bypassed volumes in un-swept
reservoir compartments, improved the estimate of remaining reserves and
the associated uncertainties, and have helped to identify drilling hazards
that have evolved over the life time of the field. Since the first repeat
seismic survey in 1995, 4D seismic data have been integrated into a multi-
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disciplinary increased oil recovery (IOR) effort that aims to recover 70%
of the in-place reserves from a structurally complex and heterogeneous
reservoir sequence [5].

The arrival of time-lapse seismic data has forced different disciplines
to intensify their working relationship in order to optimally benefit from
the dynamic information content of the data [50]. These disciplines com-
prise, but are not limited to, geology, petro-physics, rock physics, reservoir
engineering, and seismic acquisition and processing, see Fig. 2.2 which is
taken from the work of Oldenziel [107]. To allow communication and in-
tegration between disciplines, modifications have to be made within each
discipline. Existing theories, algorithms, and models have to be revised or

Figure 2.2: Concepts of shared earth model.

improved to suit time-lapse seismic interpretation. Some are appropriate
for 3D data handling, but might not provide the answers for time-lapse
seismic. For example, processing of 3D seismic is adapted to include cross-
equalization in order to allow comparison of different time-lapse seismic
data sets. Within rock physics the focus has to be on the combined effect of
the changes in the reservoir rather than the effect of a pressure or a satura-
tion change [153]. To integrate the huge amount of data and information
generated by time-lapse seismic, reservoir engineering practices have to
be adapted [13].
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2.1 Qualitative Use of 4D Seismic Data

The simplest, most direct method of using time-lapse seismic data is to
qualitatively monitor reservoir changes due to production. In this ap-
proach, one simply identifies regions in which the amplitude or impedance
has changed with time and attributes these changes to changes in satura-
tion, pressure, or temperature [43]. Time-lapse seismic is not a new topic in
petroleum engineering and geophysics. The pioneering work of time-lapse
seismic can be traced back to late 1980s and early 1990s, e.g., Wayland and
Lee [155]. Similar studies have been reported by Cooper et al. at the Foin-
haven field [35] and by Lumley et al. [96] at the Meren field in Nigeria. The
primary objectives at Foinhaven were simply to map fluid movements and
to identify by passed oil. The authors of the study concluded that the time-
lapse signal qualitatively agreed with the expected reservoir performance.
At Meren, the goal was to identify pathways of injected water, sealing
faults, and compartments that may contain bypassed oil. 4D seismic has
been very useful on the Gullfaks field to identify areas where significant
gas saturation changes have occurred and to locate fluid communication
paths [145]. Also for the Gullfaks field, 4D seismic has been used to ascer-
tain depleted areas and so far, 14 infill wells have been drilled based on
4D studies [141] [55]. For the Gannet C oil and gas field in the UK central
North sea, 4D data revealed major extensions of reservoir units previously
presumed to be absent or thin over much of the reservoir [136]. More
recently, for the Heidrun field in the North sea, 4D seismic data improved
the understanding of reservoir fluid flow and communication across faults
[120].

2.2 Information Content of 4D Seismic Data

A change in pressure or saturation within a rock gives rise to a change
both in its bulk density and sonic velocity. The magnitude of the changes
is controlled by the physical properties of the rock frame and the filling
pore fluids. Fig. 2.3a illustrates the effect of these changes on acoustic
impedance (Ip) which is a function of density and p-wave velocity (Vp)
and therefore has a combined response to pressure and saturation change.
The polarity of the response depends on whether the pressure is increasing
or decreasing and the difference between the fluid properties at the start
and end of the period. The effect of the changes on amplitude seen at the
top of a reservoir depends on the contrast between the Ip of the reservoir
and the overlying cap rock, so an increase in reservoir impedance will
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(a) Qualitative 4D: Discrimina-
tion of pressure and saturation

(b) Quantitative 4D interpretation

Figure 2.3: Interpretation of 4D seismic data.

lead to an increase in the seismic amplitude at the top of the zone if the
overlying zone is acoustically softer. Most cap rock in the North Sea are
harder than the reservoir, so an increase in impedance leads to a dimming
of amplitude [97].

When cross plotting the change in Vp/Vs versus the change in Ip (time-
lapse change =monitor/base), each quadrant in the cross plot is associated
with effects from production (see, Fig. 2.3b). If both Ip and Vp/Vs are
reduced over time, then the associated effect may represent a gas flooding.
An increase in Ip and a decrease in Vp/Vs may correspond to effects from
pressure decrease (depletion), while a decrease in Ip and an increase in
Vp/Vs may correspond to pressure increase. An increase in both Ip ratio
and Vp/Vs ratio may correspond to effects from water flooding. As an
application of this quantitative 4D interpretation in a real filed case, we
can mention the work of Andersen and Zachariassen et al. [7]. Paper
B attached in the publication section of this thesis utilizes similar way of
incorporating 4D seismic data in history matching.

2.2.1 Different Types of 4D Seismic Data

There are few options available to incorporate 4D seismic data quanti-
tatively in the history matching loop. Landa and Horne [90] estimated
reservoir parameters assuming that water saturation changes could be de-
rived from the time-lapse seismic. They included dynamic data observed
from wells. Huang et al. [81] used time-lapse seismic amplitude data and
the finite perturbation method to calculate required derivatives. In a recent
work, Waggoner et al. [151] used acoustic impedance difference derived
from time-lapse seismic. Kretz et al. [89] matched water fronts extracted
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from time-lapse seismic surveys. Mezghani et al. [100] used time-lapse
seismic acoustic impedance in history matching, together with production
data. The finite perturbation method was used to compute the required
derivatives. Dong and Oliver [44] matched both seismic impedance change
data and production data in a medium scale problem. The work of Gos-
selin et al. [69] used different types of 4D seismic data for history matching;
Stephen et al. employed the Neighborhood algorithm in the context of 4D
seismic history matching [139] and Roggero et al. used gradual defor-
mation technique to constrain the geological models which were used in
seismic history matching [119]. For 4D seismic history matching of large
scale field cases in the North sea, we can mention the works of Kjelstadli
et al. [88] for the Vallhall field, the work of Van Ditzhuijzen [147] for the
Stratfjord field, and the work of of Haverl et al. [77].

The use of seismic amplitude data to characterize a reservoir quanti-
tatively, is a not a trivial task. Vasco and Datta-Gupta et al. [149] used a
trajectory-based methodology to infer reservoir flow parameters such as
permeability from time-lapse seismic data. Another application of quanti-
tative seismic amplitude data is the monitoring of water saturation fronts
showed by Jin and Sen et al. [83]. Skjervheim and Ruud applied a sim-
ple seismic modeling approach to simulate waveform data for a synthetic
2D reservoir model and used the waveform data together with produc-
tion data in EnKF setting [133]. Dahashpour et al [37] used a synthetic
time-lapse seismic amplitudes and synthetic time-lapse zero-offset ampli-
tude data with a 2D model and minimized the difference with simulated
data. They calculated the sensitivities to unknown grid parameters, e.g.,
porosity using finite differences and a Gauss-Newton scheme.

2.3 Seismic History Matching

The possibility of incorporating 4D seismic information into history match-
ing as additional dynamic data is an attractive proposition as it provides
images of fluid movements between wells [49]. It also reduces the extent
of non-uniqueness of traditional history matching. In the inverse problem
theory based on the least-square formulation (see, Tarantola [142]), the
objective function is generally expressed as follows [119]

F =
1
2
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)T
C−1

d

(
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)
+
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2
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(
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)
, (2.1)
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where F is the objective function value, m is the reservoir model parame-
ters, and dobs is the vector of observed values to be matched, and dsim(m)
is the vector of simulated values which depends on m. The inverse of
the covariance matrix Cd, characterizes the errors between observed and
simulated values and mprior is a vector of a priori mean parameter values
and finally, Cm is the inverse of the covariance matrix which defines the a
priori probability distribution for the parameters. The first term computes
a distance between observed ,and simulated data, using a norm defined
by the inverse of the data covariance matrix Cd. The a priori term accounts
for differences between current parameter estimates and a priori means.
The covariance matrix Cm and the mean values mprior define a priori Gaus-
sian probability distribution on the parameters. A more simplified form
of Eq. (2.1) is commonly used for assisted history matching applications.
As correlations between observed data are difficult to evaluate, only the
diagonal terms are often accounted for in the covariance matrices [119].
When matching production and seismic data together without a priori in-
formation, Eq. (2.1) takes the following form as
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where nprod is the number of production data series to be matched defined
by measurement type for a given well and nt

j is the number of measurement

times for the data series j; Pobs
i, j is an observation production data at time

i for the data series j, Psim
i, j is the simulated data from reservoir simulator

at the same time with σP
i, j is the standard deviation on production data

errors. Similarly nprod is the number of seismic data series to be matched
defined by a seismic attribute over a given reservoir region and ns

j, is
the total number of observed seismic data values for the data series j
with Sobs

i, j is an observed seismic data at time i for the data series j. Ssim
i, j

is the simulated data from petro-elastic (or seismic modeling) model at
the same time with σS

i, j is the standard deviation on seismic data errors.
The standard deviations σP

i, j and σS
i, j are used to normalize errors between

simulated and observed responses by uncertainty ranges. As a result,
different types of data can be combined to a single objective function F.
This normalized form of standard deviation term can also be viewed as
a weighting term, i.e., the larger the measurement error, the less is the
contribution of the mismatch to the overall objective function. However, it
is often necessary to adjust the relative contributions of the production and
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seismic data to obtain a comparable impact in the optimization process.
The weighting coefficients wP

j and wS
j applied on production and seismic

data series, are used to balance the influence of the different terms. In order
to integrate seismic impedance change data into the objective function
in Eq. (2.2), it is required to have some equations to compute seismic
impedance changes using outputs from the reservoir simulator. This task
is achieved by inserting a series of rock physics models, e.g., Gassmann
equation [68] in the reservoir simulator.

A key step in the development of a methodology for the integration of
4D seismic data in the history matching is the setup of an efficient method
for the minimization of the objective function, F. The main computational
bottleneck of any optimization method used in this case is given by the
forward model step. Hence, local iterative methods with good convergence
properties are usually preferred to slowly convergent global methods, even
if the former ones are usually trapped by local minima [70]. Local methods
require the gradient ∇F, and/or the hessian of the objective functions to
construct iteratively a better approximation of the true solution for the
minimization problem above.

It is important to note that production and the pressure data are charac-
terized by a very low resolution in space and a high resolution in time. On
the other hand, 4D seismic data has a very low resolution in time (several
years between two surveys) and a medium to low resolution in space ver-
tically, and a high resolution in space horizontally. Consequently, a correct
formulation of the objective function F, not only requires a proper weight-
ing between production/pressure data and seismic data, but also involves
up-scaling (horizontally) and down-scaling (vertically) the seismic data in
order to compare with the corresponding simulated data [70].

Another important aspect is the estimation of the data noise covariance
matrix. When only production data are used, the noise covariance matrix is
usually assumed to be diagonal with its entries equal to the noise variance
of each individual datum because the production data sampling interval
is generally larger than their correlation length in time space [2], so data
noise is uncorrelated. It is probably not valid, however, to assume that the
noise in the seismic data are not correlated. For the synthetic case study, a
diagonal noise covariance matrix is a valid approximation as both observed
and computed seismic impedance change data are generated at each grid
block using only pressure and saturation in that grid block, but for the real
case studies, it is more appropriate to use a non-diagonal banded error
covariance matrix [43].
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2.4 Challenges of 4D Seismic Data Integration

In general terms, the main challenge in linking time-lapse seismic measure-
ments to dynamic reservoir models can be expressed as ”How to benefit
optimally from time-lapse seismic ?” Achieving this, undoubtedly results
in a wider acceptance of time-lapse seismic as a standard technique. The
challenge is divided into two main categories, see Table 2.1 which is taken
from the work of Oldenziel [107]. The first is to link the seismic measure-
ment directly to fluid-flow properties. The second is to fully integrate the
time-lapse seismic data with reservoir engineering.

Link of 4D seismic data to reservoir
properties

Integration of 4D seismic data with
reservoir engineering

1. Repeatability

- acquisition

- re-processing

- cross-equalization

2. Interpretation

- rock physics

- quantitative application

- inversion

3. Lack of calibration data

- validation of different
methods

4. Decoupling of properties

5. Definition of time-lapse at-
tribute

1. Integration

- huge amount of data

- incommensurable data

- different scale

2. Quicken integration loop to in-
crease benefit of data

3. Parametrization

4. Non-uniqueness

5. Automated history matching

- misfit function

- optimization algorithm

- stopping criteria

6. Coupled reservoir-to-seismic
simulator

Table 2.1: Main challenges of 4D seismic data integration.

Acquisition and processing of time-lapse seismic is a challenge. Even when
both base and repeat surveys are shot for time-lapse purpose with identical
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techniques, one needs to address whether to work with the surveys sep-
arately or utilize their difference. Special reprocessing is required for the
latter to ensure the surveys can be compared to each other. It is not obvious
for the reservoir engineers to interpret time-lapse induced fluid properties
in same manner as the geophysicists; one challenge is to overcome this
issue of paradigm shifts among different professionals. Rock physics is
mainly based on models describing laboratory experiments or empirical
relations. It does not describe the complex physics in case a rock is ex-
cited by a seismic wave. Each rock is different in texture on the smallest
scale, which determines the actual behavior for the rock as a whole. Thus
it is nearly impossible to have a perfect rock physics model. Abundant
experience is available on how to obtain a better fit for the production and
well test data. With regard to time-lapse seismic data, a trial-and-error ap-
proach is used as experience is lacking. It takes a long process to integrate
time-lapse data with reservoir engineering applications from the time seis-
mic data are collected. The benefit and information content of time-lapse
seismic information is much higher when it could be made available in a
shorter time span.



Chapter 3

Reservoir Characterization:
History Matching

The reservoir characterization is the process of building a model by integra-
tion of all data available at different stages of development of a petroleum
reservoir. The dynamic reservoir model permits us to evaluate different
possible exploration scenarios. In order to evaluate the economic potential
of a petroleum reservoir, a forecast of the hydrocarbon production from the
reservoir under various recovery strategies is of paramount importance.
In order to minimize the uncertainty in the reservoir characterization, and
thereby also in the forecast, all available data should be conditioned to in
a mathematically consistent framework. The available data collected from
the reservoir typically consists of acoustic seismic surveys, well logs and
a production history data. To forecast the hydrocarbon production, these
data are used to estimate the parameters and state in a mathematical model
of the reservoir, which in turn is fed into a numerical reservoir simulator
to forecast the hydrocarbon production under a given recovery strategy,
see Fig. 3.1.

Despite the seemingly abundance of data, estimating the state and
parameters in the mathematical model of the reservoir is not a well-posed
problem. It might not be possible to find a single model that match the
observed data exactly. On the contrary, there might be multiple models that
match the observed data. Clearly the estimation of the state and parameters
in reservoir model must be treated as an inverse problem, see Tarantola
[142]. Unfortunately, most inverse problems are highly under-determined,
which means that the number of system parameters is much greater than
the number of system outputs. In this case, there are an unlimited number
of combinations of the system parameters, which, if this information is
fed back to the system, cannot reproduce the same system outputs. This
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Figure 3.1: Basic steps of reservoir characterization and forecasting.

non-unique feature makes it necessary to find an appropriate solution to
an inverse problem with aid of some particular criteria.

3.1 General Statement of History Matching

When conditioning a reservoir model to dynamic data, one needs to take
the effect of producing the reservoir into account. If the dynamic data to
be conditioned on is the production history, this is commonly known as
history matching. The primary objective of history matching is to modify
a prior model for the reservoir such that the updated model reflects the
available production data and the uncertainties in production forecasts are
reduced. This process mainly consists of the following steps [158]:

• Identifying model parameters that could be modified to affect history
matching and perform proper parametrization.

• Defining a suitable objective function for optimization.

• Proper selection and design of an optimization technique in order to
reduce the objective function to minimum.
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• Tracking computational cost associated with flow simulations and
within the selected optimization technique.

In the classical history match loop, the reliability of numerical reservoir
model is improved through the minimization of a similar weighted least-
squares type objective function like Eq. (2.2), a new objective function Fprod

can be defined which measures the misfit between computed and observed
well production data, as
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The parameters in Eq. (3.1) already defined in the chapter 2, see Eq.
(2.2). As assisted history matching can be thought of as a minimization
problem, efficient optimization algorithm is necessary to find the optimal
parameters from the Eq. (3.1). A plethora of optimization methods are
in use in reserver engineering community, and hence, various types of
optimization-based history matching techniques will be discussed in the
subsequent sections in this chapter.

3.2 Bayesian Framework

The most general theory of inverse problems can be achieved when using a
probabilistic point of view [87]. In a Bayesian framework one assumes that
prior information on model parameters is given by a probability density
function (PDF), and the available observations are linked to the param-
eters of interest through their respective likelihood models. Given prior
information on the model parameters, the likelihood distribution of the
measurements, and an uncertain relation between the data and the model
parameters, a posterior distribution can be established like the following
statement as

Posterior ∝ Likelihood × Prior

and represents the solution of the inverse problem. In order to obtain a
plausible solution, the model must be consistent with the physical con-
straints and the measured data. However, for inverse problems in reser-
voir characterization, infinitely many models may satisfy this criterion. In
a Bayesian setting, such a model will typically be a sample from the pos-
terior distribution [110]. The motivation for taking a Bayesian approach
to the history matching problem is to consistently honor prior geological
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knowledge, accounting for the observation error in the production data
and obtain multiple history matched models so that the forecast uncer-
tainty can be assessed.

Suppose that the reservoir parameters, e.g., porosity and permeability
are random variables [43]. The probability of occurrence of any partic-
ular configuration of flow properties can then be characterized using a
probability density function g(m). In our applications the random field is
assumed to be Gaussian. Under this assumption, the PDF of the reservoir
model can be written as

g(m) ∝ a exp
(
−1

2
(m −mprior)T C−1

M (m −mprior)
)
, (3.2)

where m is the vector of model parameters, a is a constant and mprior is the
best estimate for parameters based on prior information about the field,
and CM, is the model variable covariance matrix. The prior information
contains general knowledge about the reservoir, such as expected porosity
and permeability. The matrix CM, is usually constructed through geo-
statistical tools. Its diagonal entries are variances of all model parameters.

Observed data gathered during exploration and production, such as
production data from wells and seismic data from seismic surveys, can
be written as dobs = dtrue + ε, where ε, is measurement noise. The addi-
tion of noise term accounts for the fact that the recorded observations are
corrupted by noise due to limitations of measurement tools. If the mea-
surement noise is also assumed to be Gaussian with mean equal to zero,
then the PDF of the observation noise can be written as

g(dobs) = b exp
(
−1

2
εT C−1

D ε
)
, (3.3)

= b exp
(
−1

2
(dtrue − dobs)T C−1

D (dtrue − dobs)
)
, (3.4)

where b, is a constant and CD, is the measurement noise covariance matrix,
which defines correlations among noise contained in observed data, diag-
onal for production data but non-diagonal for real field seismic data [2].
The diagonal entries of CD are variances of the measurement noise. On the
other hand, if the true model mtrue, is given to a reservoir simulator, then
some “true” observations can be computed as dtrue = g(mtrue). Since the
measurement noise ε, is random, the observations given true model mtrue,
are also random and can be described using the conditional PDF written
as

g(dobs|mtrue) = b exp
(
−1

2
(g(mtrue) − dobs)T C−1

D (g(mtrue) − dobs)
)
, (3.5)
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where g(mtrue), represents forward simulation run. According to Baye’s
theorem, the conditional PDF for the model parameters m, given observa-
tions dobs, can be written as

g(m|dobs) =
g(dobs|m) g(m)

g(dobs)
, (3.6)

=
g(dobs|m) g(m)∫
g(dobs|u)g(u)du

, (3.7)

where g(dobs), is the PDF of the observation. Inserting two equations in
this formulation, the conditional PDF can be written as

g(m|dobs) = c exp
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−1

2
(m −mprior)T C−1

M (m −mprior)
)

×
(
−1

2
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D (g(mtrue) − dobs)
)
, (3.8)

where c, is the normalizing constant. The PDF in the above equation is
called the posterior PDF. For our automatic history matching problem, we
intend to generate an estimate of m, that has the maximum probability,
i.e., the maximum a posterior (MAP) estimate [14]. Obviously such an
estimate can be obtained by minimizing the arguments of the exponential
term in the equation which provides us with the objective function Q, in
the Bayesian framework as

Q(m) =
1
2

(m −mprior)T C−1
M (m −mprior) +

1
2

(g(m) − dobs)T C−1
D (g(m) − dobs) (3.9)

= Qm(m) +Qd(m), (3.10)

where Qm(m) is the model mismatch term and Qd(m) is the data mis-
match term . The total objective function Q, is conditioned to the observed
data and the prior information. Also the model mismatch term provides
normalization for the Hessian matrix [43].

From the perspective of reservoir management, values of permeability
and porosity at some specific places of the reservoir model are not very
meaningful, especially considering that the results of automatic history
matching problem are non-unique. The more important problem is to
characterize uncertainties of future reservoir performance. To quantify the
prediction uncertainty of the model parameters, an assessment of the full
posterior distribution g(m|dobs), is required. By using a non-linear forward
model an analytical evaluation will be prohibited and the exploration of
the posterior pdf can only be done by sampling. Rejection sampling and
Markov chain Monte Carlo (MCMC) are two sampling routines which
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can be used to sample from the posterior pdf, and both of the algorithms
can be shown to provide correct samples from the target pdf [131]. For
more efficient sampling algorithm, the Randomized Maximum Likelihood
(RML) method can also be used [108].

3.3 Different Methods for History Matching

As automatic history matching can be thought of as a minimization prob-
lem, efficient optimization algorithm is necessary. Based on this criterion,
history matching techniques can broadly be classified into the following
categories:

1. Gradient based methods

2. Global optimization methods

3. Geo-statistical techniques

4. Streamline based methodologies

5. Ensemble-based methods

Some gradient methods require only the gradient of the objective func-
tion, while other methods require also the second derivative (the Hessian).
To approximate the Hessian, one needs the sensitivity coefficients, which
are the derivatives of the data (the sensitivity coefficients are not the gradi-
ent of the objective function). Some widely used gradient based minimiza-
tion methods include Steepest Descent method, Gauss-Newton method,
Levenberg-Marquardt algorithm and Conjugate Gradient (CG) method
[43]. In order to calculate sensitivity coefficients for reservoir models of
the order of thousands of grid cells, efficient strategies are necessary. One
such approach for three phase flow problems is the adjoint method [93].
One major drawback of gradient-based methods is that they do not account
for the spatial covariance model exhibited by model parameters [158]. Fur-
ther, these approaches are computationally expensive since they involve
the computation of sensitivities. Also, these methods frequently converge
to a local minima of the objective function rather than a global minimum.

The main idea of global optimization methods is to transform an ini-
tial configuration of a problem into a configuration close to the optimum
where the objective function is at a minimum. One such approach is the
simulated annealing [39]. Genetic algorithm has been used in stochastic
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reservoir modeling [126]. Although non-gradient methods such as ge-
netic algorithm can be used to find the global minimization point, they
may require thousands or millions of simulation runs to converge. When
processing large scale or even medium scale automatic history matching
problems, this intensive demanding on simulation computation makes
the global optimization based methods impractical. The combination of
global and local optimization has been investigated by Schulze-Riegert et
al. [124]. In this approach, one uses global optimization methods to find
the initial better matched reservoir parameters. Once a location of the ac-
ceptable parameters in search space is found, local optimization methods
are used to fine tune the model.

The gradual deformation process causes the reservoir model to evolve
while preserving the overall statistical characteristics of the target reservoir
model [115]. Deformation is controlled by a limited number of parameters;
thereby improve the efficiency of the process. The pilot point method
[114] selects a series of optimal points in the field and employs Kriging
to interpolate among the pilot points to get field distributions of model
parameters. But this method has over-shooting problems at the pilot points
[43].

Streamlines-based history matching has been proposed by generalized
travel time inversion [157]. Instead of matching the production data di-
rectly, a “travel time shift” at each well divided by maximizing the cross
correlation between the observed and calculated responses is minimized.
An optimal control method is used to calibrate the sensitivity of the travel
time with respect to the reservoir parameters.

One of the more successful Bayesian approaches to the history matching
problem is the ensemble Kalman filler (abbreviated EnKF). The Ensemble
Kalman Filter is a Monte Carlo based sequential Bayesian data assimilation
method that relies on repeated random sampling to compute a result. In
the context of reservoir simulation, an ensemble of reservoir models is
sequentially updated during flow simulation to integrate production data,
and if available, seismic data as well. In the chapter 5, we will provide
a through introduction of EnKF, and in particular, we will delineate the
work flow for reservoir history matching with EnKF.

3.3.1 Traditional vs. EnKF-based History Matching

Traditional history matching methods suffer from one or more from the
following drawbacks as mentioned in the work of Wen and Chen [156].
First drawback is the fact that for traditional history matching methods,
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production data for the entire history are matched at the same time, and
hence, repeated flow simulations of the entire history are needed. This
makes history matching extremely time-consuming. In Fig. 3.2, we have
shown a comparative analysis between EnKF-based history matching and
a traditional history matching method. Note the sequential updating fea-

Figure 3.2: Traditional vs EnKF-based history matching.

ture of EnKF compared to the traditional method. Secondly, gradient based
history matching methods require sensitivity coefficient calculations and
minimization which are complicated, CPU-intensive and often, trapped by
local minima. Finally, it is difficult to assess uncertainty with traditional
methods and may involve repeating the history matching process with dif-
ferent initial models. As EnKF is a sequential model updating technique, it
provides a robust framework for history matching. A limitation of EnKF is
the fact that its computations are based on first and second order moments,
and there are problems that are difficult to handle, particularly when the
probability distributions are multi-modal (e.g., when representing a bi-
modal channel facies distribution) [76]. Despite outstanding theoretical
and practical questions on the applicability of the EnKF for highly non-
linear and non-Gaussian reservoir problems, there have been promising
results of EnKF as an history matching tool, see Aanonsen et al [3].



Chapter 4

Forward Models

In order to compare the field observation with simulated data, one needs to
perform forward modeling at different stages of reservoir modeling work
flow. Given a complete description of a physical system, we can forecast
or predict the outcome of some measurement of interest. The method of
predicting the results of a measurement can be termed as forward model.
Examples of forward modeling can be mentioned as, (a) production fore-
cast in reservoir simulator (fluid flow equations in porous medium) and
(b) simulation of synthetic seismograms (seismic modeling).

4.1 Flow Equations in Porous Media

In reservoir simulation, the flow equations governing the multi-phase flow
in porous media are obtained by combining Darcy’s Law and the equation
of mass conservation. In order to describe the flow of the phases, we have
to describe their interaction as well. The interaction between the phases is
described by saturations and capillary pressure. If water and oil are both
present in the pores of the medium, we have a two phase flow system for
which the Darcy’s equation becomes

Darcy’s law: uj = −K
κrj

μi
(∇Pj + ρ jgêz), (4.1)

where u, is average velocity, K, is permeability tensor, êz is the unit vector
in vertical direction, ∇P, is the pressure gradient, ρ, fluid density and j
corresponds to each of the phases. Each phase will occupy some pore
space. This yields a reduction in the permeability due to the presence of
other phases. So we introduced relative permeability, κrj. The relative per-
meability is generally obtained from experiments but formulas depending
on saturations, e.g., Corey-model [36] are also available.
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Conservation laws describe how a physical quantity is preserved within
a closed system. This means that the accumulation of this quantity must
be balanced by fluid flux and source or sink. If, for two phase flow, mass
balance is expressed in terms of fluid density, and flux in terms of specific
discharge, the differential form of mass conservation law in this case takes
the following form

Mass conservation: ∇ � (ρ juj) + φ
∂ρ jSj

∂t
= 0, (4.2)

where φ, is the effective porosity of the medium and Sj, denotes the corre-
sponding saturation for each phases. The total saturation for both phases
are expressed as:

Saturation: Sw + So = 1. (4.3)

The relationship ρ = ρ(P,T), between fluid density, temperature and pres-
sure is called an equation of state. For isothermal processes, i.e. processes
with constant temperature, the equation of state becomes

Equation of state: ρ j = ρ j(Pj). (4.4)

Fluid viscosity μ, is a measure of the ability of a fluid to flow. Like density,
viscosity vary as a function of temperature and pressure, μ = μ(P,T). This
can be expressed as

Viscosity: μ j = μ j(Pj). (4.5)

When two fluids with different properties are in contact, forces will act
between them. The molecules in each phase are forced closer together at
the boundary by surface tension. The surface tension between the phases
are balanced by a pressure difference called the capillary pressure Pc. When
the capillary pressure increases, larger pores are filled, and the amount of
fluid in the porous material increases. The capillary pressure for two phase
flow can be written as

Capilary pressure: Po − Pw = Pc(Sw). (4.6)

The unknowns are uj, Pj, ρ j, μ j, and Sj, for each phase j = o,w. From the
equations stated above, we can now compute solutions for the equations
for two phase flow. For general multi-phase flow equations, we refer to
Aziz and Settari [16].
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4.2 Rock Physics

By far the most widely used and successful method for determining the
effects of production-induced fluid change is the Gassmann substitution
method, see [15]. Generally, when a rock is loaded under an increment
of compression, such as from a passing seismic wave, a increment of pore
pressure change is induced, which resists the compression and therefore
stiffens the rock. The low frequency Gassmann theory [68] predicts the
resulting increase in effective bulk modulus Ksat, and shear modulus Gsat,
of the saturated rock through the following equation

Ksat = Kdry +
(1 − Kdry

Ks
)2

φ
K f luid
+

1−φ
Ks
− Kdry

Ks
2

; Gsat = Gdry, (4.7)

where K, is the effective bulk modulus with subscript referring to dry rock
frame, minerals and fluid mixture. G, is the corresponding shear modulus
with different constituents and φ is the porosity. The effective density ρsat,
can be defined as a volume average of the mineral density and the fluid
density. Gassmann’s equation assumes a homogeneous mineral modulus
and statistical isotropy of the pore space but is free of assumptions about
the pore geometry. Most importantly, it is valid only at sufficiently low fre-
quencies such that the induced pore pressures are equilibrated throughout
the pore space, i.e., there is sufficient time for the pore fluid to flow and
eliminate wave-induced pore pressure gradients [98].

In order to model changes in seismic response that result from fluid
changes, we first need to know the initial and target fluid properties. The
effective density ρsat, may be defined as a volume average of the mineral
density and the fluid density, as

ρsat = φ (Swρw + Sgρg + Soρo) + (1 − φ) ρs, (4.8)

where Sw, Sg, So are respectively water, gas and oil saturations and ρw,
ρg, and ρo are the corresponding densities of these three phases. If Ksat,
Gsat and ρsat are obtained from the above equations, the acoustic properties
of saturated porous media, e.g., isotropic compressional velocity VP, and

shear wave velocity VS, can be computed as VP =
√

Ksat+(4Gsat/3)
ρsat

, and VS =√
Gsat
ρsat

. The acoustic impedance can be defined as Ip = ρsatVP and the

Poisson’s ratio is expressed as PR =
V2

P−2V2
S

2V2
P−V2

s
. The effect of reservoir property

changes on Ip, has a combined response to pressure and saturation change.
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The polarity of the response depends on whether the pressure is increasing
or decreasing and the difference between the fluid properties at the start
and end of the period.

Although rocks are extremely complicated, their elastic properties de-
pend largely on a combination of connectivity and elasticity and density
of what is connected. As a result, many rules of thumb can be explained
by such combinations, see the work of Wang [152]. Statistically, elastic
properties decrease as porosity increases. From lithology point of view,
unconsolidated sands may have high Vp/Vs ratio. Full saturation of a
liquid in a rock increases the compressional seismic properties and shear
impedance but decreases Vs, resulting in increased Vp/Vs. When gas
is introduced to a fully liquid-saturated rock, the compressional seismic
properties and shear impedance all decreases, but Vs increases, resulting
in lower Vp/Vs. Seismic properties in all rocks increase as effective pres-
sure (difference between over-burden and pore pressures) increases [74].
Also better compacted rocks have higher elastic properties due to better
connectivity and contact.

4.2.1 Background on Elastic Bounds

Gassmann’s model requires homogeneous mixture. If the rock contains
more than one mineral phase, for instance clay rich sandstone, the different
mineral phases must be mixed and averaged. Many ”effective medium”
models have been proposed, attempting to describe theoretically the ef-
fective elastic modulus of rocks and sediments [15]. Theoretically when
trying to predict the effective elastic modulus of a mixture of grains and
pores, three aspects must be satisfied: (i) the volume fractions of the var-
ious phases, (ii) the elastic modulus of the various phases, and (iii) the
geometric details of how the phases are arranged relative to each other.
Regardless of the volume fractions, the effective modulus of a mixture of
solids will fall between an upper and lower boundary, referred to as the
upper and lower bounds. If only the conditions (i) and (ii) are determined,
the prediction of the upper and lower bounds is the most exact technique
that can be performed. Thus the bounds provide a useful and elegant
framework for velocity-porosity relations.

Hashin-Shtrikman Bounds

The Hashin-Shtrikman bounds [75] give the upper and lower limits for
elastic constants of isotropic rocks. The Hashin-Shtrikman bounds are
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regarded as the best bounds giving the narrowest possible range, without
information on the geometries of the constituents. For a mixture of two
solids, the Hashin-Shtrikman bounds are given by

KuHS = K1 +
f2

(K2 −K1)−1 + f1(K1 + 4G1/3)−1 ;

KlHS = K2 +
f1

(K1 −K2)−1 + f2(K2 + 4G2/3)−1 , (4.9)

with K1, K2, bulk modulus of individual phases and f1, and f2 volume
fractions of individual phases. Similar relationships can be obtained for
shear modulus as

GuHS = G1 +
f2

(G2 −G1)−1 + 2 f1(K1 + 2G1)/[5G1(K1 + 4G1/3)]
;

GlHS = G2 +
f1

(G1 −G2)−1 + 2 f2(K2 + 2G2)/[5G2(K2 + 4G2/3)]
, (4.10)

where G2, and G2, are bulk modulus of individual phases . Here the
stiffest material is subscripted 1 in the expressions above. The upper bound
realizes a stiff rock that will be less elastically affected by fluid substitution,
and geologically this bound refers to cemented rocks. The lower bound
can be utilized as a sorting trend for un-cemented or unconsolidated rocks
[52]. The separation between upper and lower bounds depends on how
elastically the different solids are. The bounds are often fairly similar when
mixing solids, since the elastic modulus of common materials are usually
within a factor of two of each other. Since many effective-medium models
assume a homogeneous mineral modulus, it is often useful (and adequate)
to represent a mixed mineralogy with an average mineral modulus [15],
equal either to one of the bounds computed for the mix of solids or to their
average Ks =

(KuHS+KlHS)
2 , and Gs =

(GuHS+GlHS)
2 . On the other hand, when the

constituent solids are very different, e.g., for minerals and pore fluids, then
the bounds are quite separated, and we lose some of the predictive values.

4.2.2 Contact Models

In case of rock physics perspective, the contact theories are used to calculate
the effective elastic properties of unconsolidated sediments or cemented
sediments. In contact models, rocks are assumed to be a collection of
separate grains. Their elastic properties are determined by the stiffness
and deformability of their grain-to-grain contacts.The majority of contact
models are based on the Hertz-Mindlin contact theory.
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Hertz-Mindlin Contact Theory

The contact theory of Hertz-Mindlin [101] describes seismic parameter
changes caused by pressure changes. This model is used to calculate the
elastic modulus of sand at critical porosity. An extended form of this theory
is achieved by using the modified Hashin-Shtrikman lower bound where
one end member has zero porosity and the modulus of the solid phase; the
other end member has critical porosity and a pressure-dependent modulus
given by the Hertz-Mindlin contact theory. This Hertz-Mindlin-Hashin-
Shtrikman (HMHS) model allows to account for the noticeable pressure
dependence normally observed in sands [51].

The elastic modulus of the dry well-sorted end member at critical poros-
ity, φc = 40% for sands [98], are modeled as an elastic sphere subject to
confining pressure by the Hertz-Mindlin theory as follows

KHM =

[
n2(1 − φc)2 G2

s

18π(1 − ν)2 Peff

] 1
3

, (4.11)

GHM =
5 − 4ν

5(2 − ν)

[
3n2(1 − φc)2 G2

s

2π2(1 − ν)2 Peff

] 1
3

, (4.12)

where KHM, and GHM, are dry rock bulk and shear modulus, respectively, at
critical porosity (depositional porosity); Peff, is the effective pressure (i.e.,
the difference between the overburden pressure and the pore pressure);
Gs, and ν are the shear modulus and Poisson’s ratio of the solid phase and
n, is the coordination number (the average number of contacts per grain).

The elastic modulus of the poorly sorted sands are with porosities
between 0 and φc are ”interpolated” between the mineral point and the
well-sorted member using the lower Hashin-Shtrikman bound. At poros-
ity φ, the concentration of the pure solid phase (added to the sphere pack
to decrease porosity) in the rock is (1−φ/φc) and that of the original sphere-
pack phase is φ/φc. Then the bulk (Kdry) and the shear (Gdry) modulus of
the dry unconsolidated sand mixture are defined as

Kdry =

[
φ/φc

KHM + 4GHM/3
+

1 − φ/φc

Ks + 4GHM/3

]−1

− 4
3

GHM, (4.13)

Gdry =

[
φ/φc

GHM + z
+

1 − φ/φc

Gs + z

]−1

− z, (4.14)

where

z =
GHM

6

(
9KHM + 8GHM

KHM + 2GHM)

)
.
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The modified Hertz-Mindlin-Hashin-Shtrikman (HMHS) method pro-
vides good estimates for velocities in un-cemented sands [98].

4.2.3 Effective Pore Fluid Properties

Pore fluids significantly influence the seismic properties of rocks. Pore flu-
ids have properties that vary substantially, but systematically, with com-
position, pressure and temperature [18]. Gas and oil density and modulus,
as well as oil viscosity, increase with molecular weight and pressure, and
decrease with temperature. Gas viscosity has a similar behavior, except at
higher temperatures and lower pressures, where the viscosity will increase
slightly with increasing temperature. Brine modulus, density, and viscosi-
ties increase with increasing salt content and pressure. Batzle and Wang
[18] has described these individual phase effects on hydrocarbon genera-
tion. From an exploration standpoint, pore fluid mixtures of liquid and
gas phases are extremely important. The density of a mixture is straight-
forward. Mass balance requires an arithmetic average of the separate fluid
phases. The effective fluid density ρ f , is the saturation weighted average
of the individual fluid component densities, and can be expressed as

ρ f = Swρw + Sgρg + Soρo. (4.15)

The effective modulus of the mixed phase fluid is easily calculable if we
assume that the pressures in the two phases are always equal. We must
also assume that there is no mass interchange between the two phases
during the passage of a sonic wave [12]. Thus, the bulk modulus of the
mixed pore fluid phase Kfl, can be estimated by inverse bulk modulus
averaging ( also known as Wood’s equation). This is simply a saturation
weighted harmonic average of the individual fluid bulk modulus, that is

1
Kfl

=
Sw

Kw
+

So

Ko
+

Sg

Kg
, (4.16)

where Kw/o/g, is the bulk modulus of the water/oil/gas. Thus, if we know the
properties of the individual fluids and their volume fraction, the properties
of the mixture can be calculated.

Rock Physics Work Flow

Starting from the Gassmann equation, we have now discussed the nec-
essary inputs for fluid substitution formula. With that end in view, we
can perform the rock physics modeling for unconsolidated sands in the
following steps (Fig. 4.1 is taken from Davies and Mave [38]):
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Figure 4.1: Basic steps of rock physics modeling.

1. At first we estimate the mineral properties Ks and Gs by using the
Hashin-Shtrikman average bounds for solid minerals (Eq. (4.9) and
Eq. (4.10)). The volume of mineral fractions can be calculated with
the aid of wire line logs, thin section analysis or from empirical
correlation between porosity and volume fractions.

2. Second step estimates the dry rock properties (KHM and GHM ) at
high porosity member, φc using the Hertz-Mindlin contact theory
(Eq. (4.11) and Eq. (4.12)). We can incorporate the pressure effect on
dry frame modulus at this level as well.

3. Next step includes the interpolation for dry rock bulk and shear
modulus (Kdry and Gdry), before fluid substitution, using the heuristic
Hashin-Shtrikman lower bounds (Eq. (4.13) and Eq. (4.14)).

4. At this step, we calculate the effective pore fluid properties (Kfl)
based on Batzle-Wang relations and Wood’s formulae (Eq. (4.16)).

5. Finally, using the effective pore fluid properties based on Batzle-wang
relations, we perform the Gassmann fluid substitution (Eq. (4.7) and
Eq. (4.8)) and calculate the seismic signatures, e.g. Vp and Ip.
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4.3 Seismic Modeling

Forward modeling of 4D seismic involves three processes: reservoir sim-
ulation, rock physics conversion and seismic modeling. Seismic modeling
is done in two main steps. First, reservoir parameters are converted to
seismic parameters, e.g., saturated P-wave velocity or density of fluid mix-
ture by using the rock physics models. Then, synthetic seismic sections
are calculated based on these seismic parameters. Seismic modeling in-
volves the calculation of synthetic seismic traces. Numerous methods for
seismic modeling exist including the finite difference method, reflectivity
method and a simple convolution-based method. For simplicity, we re-
strict ourselves to primary waves and post-stack data, and therefore use
simple convolution-based forward modeling [127]. A synthetic seismic
trace represents the combined reflection response of the layered ground
(i.e. the output for a spike input) and the recording system to a seismic
pulse. A synthetic seismogram or time series, E(x, t) may be considered
as the assumed source function ω(t), convolved with a reflectivity func-
tion r(x, t), representing the contrasts in acoustic impedance in the layered
model, and E(x, t) can be expressed as

E(x, t) = ω(t) ⊗ r(x, t), (4.17)

where x is the lateral location and t is the two-way vertical seismic travel
time. This process is also called 1D convolution. For 4D seismic modeling,
it is assumed that the wavelet does not change with production time. The
reflection coefficients are a function of seismic velocity and density and
are therefore dependent on the production time step. Eq. (4.17) is used to
generate the synthetic seismic response for different production time steps.
The earth’s impulse response is based on the combined amplitude effects of
transmission losses, reflection strength and (spherical) divergence. Some
of the effects that are generally not considered in 1D convolution are:
(1) multiple reflections; (2) conversion between seismic phases (S-waves,
surface waves); (3) spatial interference due to limited bandwidth; (4) ne-
glecting acquisition footprints, i.e., in terms of time-lapse seismic data this
refers to ideal repeatability and so on. However, in general the geological
structure in both overburden and reservoir may be more complex. Hence,
an accurate modeling is required, and typically finite-difference modeling
(FDM) [150] or ray-tracing methods [30] are applied.
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Figure 4.2: Reflections and trans-
missions at a single interface be-
tween two elastic half-space me-
dia for an incident plane P-wave,
PP(i). There will be both a reflected
P-wave, PP(r), and a transmitted
P-wave, PP(t). In addition, a re-
flected S-wave, PS(r), and a trans-
mitted S-wave, PS(t), will be pro-
duced.

4.3.1 Seismic Response of Layered Earth Model

In a homogeneous medium, waves propagate as spherical wavefronts, and
the wave amplitude decays with distance from the source [127]. On the
other hand, plane waves do not have geometric divergences loss in a ho-
mogeneous medium, and in an inhomogeneous-layered medium, plane
waves undergo reflection and transmission losses affecting their ampli-
tudes. Thus, plane-wave reflection coefficient, which determines parti-
tioning of seismic energy separating two media in welded contact, acts
as one of the most important factors affecting seismic amplitudes. The
reflection coefficient of plane elastic waves as a function of reflection angle
is described by complicated Zoeppritz equation [161]. For analysis of P-
wave reflections, a well-known linear approximation is given by Aki and
Richards formulation [6], assuming weak layer contrasts and is described
as

rpp(θ1) ≈ 1
2

(
1 − 4p2V̄

2
S

) Δ ρ

ρ̄
+

1
2cos2θ

ΔVP

V̄P
− 4p2V̄

2
S
ΔVS

V̄S
, (4.18)

where

p = sinθ1
VP1

θ = (θ1 + θ2)/2 ≈ θ1

Δ ρ = ρ2 − ρ1 ρ̄ = (ρ1 + ρ2)/2
Δ VP = VP2 −VP1 V̄P = (VP1 +VP2)/2
Δ VS = VS2 −VS1 V̄S = (VS1 +VS2)/2.

In the formulations above, rpp, is the vector of reflectivity coefficients at
each layer interface, p, is the ray parameter, θ1, is the angle of incidence,
and θ2, is the transmission angle; VP1, and VP2, are the P-wave velocities
above and below a given interface, respectively. Similarly, VS1, and VS2,
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are the corresponding S-wave velocities, while ρ1, and ρ2, are densities
above and below this interface (see, Fig. 4.3 which is taken from Avseth
et al. [15]). Also V̄P, V̄S, and ρ̄, are the average P-wave velocity, S-wave
velocity and density over the reflecting interface; Δ VP, Δ VS, and Δ ρ, are
the corresponding contrasts.

The approximation given by Aki and Richards can be further approxi-
mated, according to Shuey [130], as

rpp(θ) ≈ rpp(0) + G sin2θ + F (tan2θ − sin2θ), (4.19)

where,

rpp(0) = 1
2

(
ΔVP
V̄P
+ Δ ρ

ρ̄

)
,

G = 1
2
ΔVP
V̄P
− 2 V̄

2
S

V̄
2
P

(
2ΔVS

V̄S
+ Δ ρ

ρ̄

)
and

F = 1
2
ΔVP
V̄P

.
This form can be interpreted in terms of different angular ranges, where
rpp(0) is the normal-incidence reflection coefficient, G describes the varia-
tion at intermediate offsets and is often termed as AVO gradient , whereas
F dominates the far offsets, near critical angle. Normally, the range of
angles available for AVO analysis is less than 30o-40o. Therefore, we only
need to consider the first two terms, valid for angles less than 30o, and the
expression becomes as

rpp(θ) ≈ rpp(0) + G sin2θ. (4.20)

The zero-offset reflectivity rpp(0), is controlled by the contrast in acoustic
impedance across an interface. The AVO gradient, G, is more complex
and depends on the contrasts of VP, and VS [28]. Hence, the importance
of VP/VS ratio (or equivalently the Poisson’s ratio) change can be spotted
by AVO gradient. Ostrander [111] showed that a gas-filled formation
would have a very low Poisson’s ratio compared to Poisson’s ratios in
the surrounding non-gaseous formations. This would cause a significant
increase in positive amplitude versus angle at the bottom of the gas layer,
and a significant increase in negative amplitude versus angle at the top of
the gas layer.

4.3.2 Convolution Model with Weak Contrast Reflectivity

Seismic reflection coefficients depend on material properties of the sub-
surface. An isotropic, elastic medium is completely described, according
to Sheriff and Geldart [129], by three elastic parameters, such as P-wave
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velocity, S-wave velocity and density, {Vp(t),Vs(t), ρ(t)} where t is the two-
way vertical seismic travel time. Several other parametrization can also
be used, e.g., based on acoustic impedance. The forward modeling of a
seismic time-angle gather used here is based on the matrix-vector formu-
lation in Buland and Omre [24]. The forward model is linear that uses
weak contrast expressions for reflection coefficients by Aki and Richards
(Eq. (4.18)). The single-interface reflection coefficient in the Eq. (4.18) can
be extended to a time-continuous reflectivity function cpp(t, θ), as follows
[140]

cpp (t, θ) = aVp (t, θ)
1
∂t

ln Vp(t) + aVs(t, θ)
1
∂t

ln Vs(t)

+ aρ(t, θ)
1
∂t

ln ρ(t), (4.21)

where aVp , aVs and aρ are the generalizations of the reflection coefficients
in expressions (4.18) with time dependent velocities V̄P(t) and V̄s(t). We
assume that V̄p(t) and V̄s(t) can be represented by constant or slowly vary-
ing known background model, such that V̄p(t) and V̄s(t) are the average or
moving average of Vp and VS in a relatively small time window. In this for-
mulation, reflection angle θ is considered independent variable. However,
the seismic data is recorded as a function of source-receiver distance, h
(offset). The transformation of the data from (t, h)-domain to (t, θ)-domain
depends on the velocity function [23].

The material parameters Vp(t), Vs(t) and ρ(t) are a priori assumed to
be log-Gaussian, which implies that the parameters are restricted to take
positive values. This assumption is required for later analytical treatment
due to expression in Eq. (4.21) [23]. The logarithm of these material
parameters defines a continuous Gaussian vector field m(t), and can be
written as

m(t) =
[

ln Vp(t) ln Vs(t) ln ρ(t)
]T
. (4.22)

The continuous form of the Gaussian field m(t), makes it possible to give
a proper definition of the time differentiated Gaussian field, m

′(t). Buland
[23] also incorporated spatial coupling between the elastic parameters via
a covariance model. Lateral and temporal (or vertical) dependencies be-
tween model parameters are also described by a factorized scalar function,
see Doyen [49]. Because of this assumption of linearity in the forward
model with log-Gaussian prior model, Buland and Omre [24] were able to
obtain analytical expressions for mean and covariance of the log-Gaussian
posterior distribution.
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Discretized Form of Reflectivity Function

In a computer program, continuous fields are represented on a grid. The
grid density should be determined by the temporal variability of the elastic
parameters, and not by the sampling density of seismic data [24]. A discrete
representation of m(t), is Gaussian in a given time interval and expressed
as

m =
[

ln VT
p ln VT

s ln ρT
]
. (4.23)

Similarly, a discrete representation of the differentiated field m
′(t) is also

Gaussian and noted as m
′ . A discrete version of the reflectivity function

cPP (t, θ), for a given time interval and a set of reflection angles, now can
be written in the matrix-vector form as

r = A m
′
= ADm, (4.24)

with the matrices defined as

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
AVp(θ1) AVs(θ1) Aρ(θ1)
...

...
...

AVP(θnθ) AVs(θnθ) Aρ(θnθ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ; D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 1 · · · 0

. . .
0 · · · −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
In the above formulation r, is the vector of reflectivity coefficients at each
layer interface and A is a sparse matrix. AVp(θi), AVs(θi), and Aρ(θi), are
(nm/3)×(nm/3) diagonal sub-matrices of A containing discrete time samples
of aVp(t, θi), aVp(t, θi), and aρ(t, θi), respectively. Also nθ is the number of
reflection angles and nm is the dimension of m and m

′ . An example of
the discrete version of the differentiated field of the layer properties D, is
shown above.

Wavelet Discretization and Convolution

The seismic observations d, are connected to the reflection coefficients cpp,
through the convolution model described by Dobrin and Savit [42] as

d(t, θ) =
∫
ωθ(t − u) cpp(θ,u) du + ε(t, θ), (4.25)

where ωθ(t−u), is a seismic wavelet dependent on the angle of incidence θ,
and u, is an auxiliary variable and ε is the error term. Ideally, the Eq. (4.25)
simulates the response to a delta function or a spike-like source because
only such a wavelet would enable us to identify individual interfaces [127].
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In practice, however, such an ideal source-time function is impossible
to achieve. As the Earth acts as a filter in which high frequencies are
attenuated as the energy propagates through the earth, the shape of the
wavelet changes with time. For all practical purposes, a wavelet is assumed
to be stationary and band-limited; often an average wavelet is estimated
from seismic data. In seismic data processing, the wavelet is usually
removed, and a simpler, so-called zero-phase wavelet is convolved. The
most common zero-phase wavelet is a Ricker wavelet [117] described as

f (t) = (1 − 2π2ω2
maxt2) exp(−π2ω2

maxt2), (4.26)

where f (t), is the amplitude of the wavelet at time t, and ωmax, is the peak
frequency of the wavelet. In the discretized framework for convolution
with reflection coefficient, one needs to perform discretization of the eval-
uated Ricker wavelet along a trace. The ability of the Ricker wavelet to
capture seismic information depends on the choice of the wave number
and the associated wave sampling frequencies [127]. Improper choice of
wavelet sampling frequencies may lead to numerical dispersions, or even
may violate the Shanon information theory relevant to the relationship be-
tween wavelet sampling interval and Nyquist frequency [128]. For seismic
exploration, a band-limited Ricker wavelet with 25-40 Hz peak frequency
and a proper choice of sampling frequency, generally satisfy these condi-
tions.

In the frequency domain, convolution is equivalent to multiplication
and hence, according to Buland and Omre [24], the integral expression for
convolution can be further discretized such that

dobs =W r + e, (4.27)

and in this expression e, is an nd-dimensional error vector, and W, is a
block-diagonal matrix containing one wavelet for each reflection angle.
In this setting, a seismic time-angle gather is represented by the vector
dobs ∈ Rnd . In an expanded form, this relationship can be further written as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
dobs(θ1)

...
dobs(θnθ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
W(θ1)

. . .
W(θnθ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ×
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

r(θ1)
...

r(θnθ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

e(θ1)
...

e(θnθ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (4.28)

The wavelets are allowed to be angle dependent, but assumed to be inde-
pendent of location. The block matrix W(θi), represents the wavelet for
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angle θi, and can be expressed in a block-matrix format as

W(θi) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1(θi)
w2(θi) w1(θi)
...

. . .
wns(θi) · · · · · · w1(θi)

. . . . . .
wns(θi) · · · · · · w1(θi)

. . .
...

. . .
...

wns(θi)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.29)

where w1(θi), · · · ,wns(θi), are the samples of the wavelet for angleθi. In this
case, the sampling of the wavelet is equal to the sampling of the seismic
data [121]. If the sampling of r and dobs are different, the rows of W, in Eq.
(4.29) contains wavelet corresponding to the sampling of r, and the rows
are shifted relatively according to the sampling of dobs [24].

The expressions for the seismic time-angle gather dobs can also be writ-
ten, in more compacted form, as

dobs = Gm + e =WADm + e, (4.30)

where G =WAD, is a linear modeling operator for the seismic time-angle
gather. In order to implement this formulation for a practical case, one
can use Ricker wavelet with frequency of 20 - 40 Hz and small incident
angle of the order of 5-20 degrees. By using seismic properties calculated
from rock physics model, we can use this linearized convolution model
Eq. (4.30) to simulate synthetic seismic amplitude data at different times
of the reservoir production period.

The method of Buland and Omre [24] presented here is extremely fast
because all computations are performed in the Fourier domain. However,
some limitations result from this simplified approach based on linearity
and log-Gaussian approximations [49]. First, the seismic data and the
model must both be discretized on the same 3-D grid, regularly sampled
in x, y, and time. Furthermore, covariance model for the prior distribution
and the noise covariance model must be stationary, i.e., they are not allowed
to vary in space. Escobar et al. [57] have recently expanded Buland’s
approach to work in stratigraphic grid and allow non-stationary covariance
structures.
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4.4 Vertical Resolution of Seismic Modeling

Normally, the velocity or reflection coefficients calculated from the reser-
voir simulation model are depth converted and sampled into a regular
time grid before performing the convolution. Since the velocities and layer
thicknesses normally are different for each layer in the reservoir model, this
will always introduce a sampling, or scaling, error. Here we have applied a
different procedure, where all the calculations, including the convolution,
are performed in depth. We also neglect over- and under-burden effects.
This will of course not be possible in a real case. However, in this way we

(a) Ricker wavelet (b) Vertical reflected ray paths

Figure 4.3: Discretized Ricker wavelet and time-to-depth relationship.

are able to generate a synthetic problem where these errors are minimized,
allowing us to focus on the differences using inverted and not-inverted
data in the history-matching procedure. In addition, it simplifies calcu-
lations. The discretized representation of the weak contrast reflectivity
signal corresponding to interface j, is then

d j =

Nω∑
i=−Nω

ωir j−1 + ej, (4.31)

where ej, is an error term and r j, is the reflectivity coefficient at interface j,
and ωi, a modified Ricker wavelet given by

ωi =
(
1 − 2α2(4(Nω + 1 − i)2)

)
exp

(
−α2(4(Nω + 1 − i)2)

)
, (4.32)

with α = πωmax, and Nω, is the number of discretization points on each side
of the wavelet center shown by the diamond label in Fig. 4.3a. This effec-
tively implies a deformation of the wavelet, which also varies with depth.
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However, since the same model is used both for the inverse modeling as
well as to generate the synthetic ”true” data, we believe that this is an effi-
cient way of removing the sampling error, and at the same time retaining
some of the main features related to the seismic modeling. As a next step,
the effect of the sampling error can be easily included by comparing this
approach with a traditional approach, where the convolution is performed
in the time domain. Note that if the layer thicknesses are constant, and
applying the common assumption that the velocity variations within the
reservoir section are small (ΔVi � Vi ≈ V), the time-depth relation for a
normal incident wave simplifies to

ti = 2
[
(

1
Vo
− 1

V1
)z0 + (

1
V1
− 1

V2
)z1 + · · · + zi

Vi

]
≈ 2

[ z0

Vo
+

zi − z0

V

]
, i = 1, · · · ,n. (4.33)

This model assumes each layer to be characterized by an interval velocity
Vi, and with zi, as the thickness of such interval and Vo is the over-burden
velocity (see, Fig. 4.3b). Here the horizontal layer interval velocity may
be averaged over several depth intervals to yield a time-average velocity
V. That is, our approach is exact within this approximation provided the
sampling interval Δt = 2Δz/V, where Δz is the average layer thickness.
The breadth (distance between each of the two side lobes) of a normal
Ricker wavelet in time is given by Bt =

√
6

πωmax
. From Eq. (4.33) it follows

that the average breadth of the wavelet (in depth) in our approach is equal
to Bd =

10
√

6
π Δz. Thus, the corresponding average time-wavelet frequency

in our approach, is given (in Hz) by

f =
√

6
πBt

=

√
6
π

V
2Bd
=

V

20Δz
. (4.34)

If we consider an average velocity V= 2500m/s, and an average cell thick-
ness Δz= 3.9 m, the “effective” wavelet frequency corresponding to a time
frequency is close to 30Hz. The corresponding sampling interval in time
becomes approximately 3 milliseconds. Thus, sampling of wavelet in
depth in our case is a reasonable approximation for a synthetic case. In
paper A, we have used this approximated method to check the sensitivity
to the vertical resolution applied in the EnKF experiments. The choice of
Nω had a significant effect on the results of history matching as shown in
the examples section of paper A.





Chapter 5

Ensemble Based Data
Assimilation

In data assimilation, one aims at merging the information from obser-
vations into a numerical model, typically of a geophysical system. The
analysis and forecasts in data assimilation techniques are best thought
of as probability distributions. The analysis step is an application of the
Baye’s theorem. Advancing the probability distribution in time, would be
done exactly in the general case by the Fokker-Planck equation, but that is
unrealistically expensive, so various approximations operating on simpli-
fied representations of the probability distributions are used instead [59].
If the probability distributions are normal, they can be represented by their
mean and covariance, which gives rise to the Kalman filter [84]. However
it is not feasible to maintain the covariance because of the large number
of degrees of freedom in the state, so various approximations are used
instead. One variant of this type of approximation is the use of ensemble
Kalman filter (EnKF). The probability distribution in EnKF is represented
by an ensemble of simulations and the covariance is approximated by sam-
ple covariance [54]. In reservoir history matching problem, the assumption
is often made that the initial state of the reservoir is known and the joint
probability of the reservoir parameters before assimilation of data can be
characterized [109]. It is often valid to assume that the conditional proba-
bility distribution of future states of the reservoir, given the present state
and all past states, depends only upon the current state and not on any
past states. The data (or observations) depends only upon the current state
of the reservoir, and not on previous states. If these assumptions are valid,
the probability density for the parameters and the state variables can be
defined recursively. Once we sample the posterior distribution, using the
prior and likelihood term by Baye’s theorem, we then have conditioned our
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reservoir model simultaneously with the most recent data available and
the prior information. Hence, EnKF can be used as a recursive sequential
data assimilation method to update the reservoir models. This chapter will
briefly outline the Kalman filter algorithm, and then we will describe the
mathematical background of EnKF. Finally, we will provide a work flow
for EnKF-based history matching for reservoir simulation models.

5.1 Kalman Filter Algorithm

The Kalman filter [84] can be viewed as an optimal recursive data process-
ing algorithm, and it is a technique for assessing the posterior distribution.
Assuming linear dynamics and Gaussian statistics, the Kalman filter is a
statistical consistent method, and provides the best linear unbiased esti-
mate (BLUE) of the posterior mean and the posterior covariance [95]. Since
the likelihood and the prior distributions are assumed Gaussian, the pos-
terior is also Gaussian and fully described by the mean and covariance,
and the Kalman filter utilizes the dynamical equations to evolve the most
probable model state and the error covariance matrix in time. The math-
ematical derivation of Kalman filter and EnKF algorithm presented here
closely follows the work of Skjervheim [131].

Let Ψ(x, t), denote the unknown model variable which constituted by the
model parameter, m(x) and model state, u(x, t). In the standard state-space
formulation, observations dk, are related to model variables Ψk, by a linear
observation-to-state equation

dk = HkΨk + ε
o
k εo

k � Nmk(0,Cεo
k
), (5.1)

where Hk, is the observation operator, and εo
k, is a Gaussian model noise

sequence with error covariance matrix Cεm
k
. The model state evolution

equation is defined by

Ψk = FkΨk−1 + ε
m
k εm

k � Nq(0,Cεm
k
), (5.2)

where Fk, is a linear model operator and εm
k , is a Gaussian model noise

sequence with error covariance matrix Cεm
k
. The initial prior distribution

has expectation E(Ψ0 = Ψinit
0 ), and covariance Cov(Ψ0) = Cinit

ε0
, and is

assumed to be Gaussian, Ψ0 � Nq(Ψinit
0 ,Cinit

ε0
). Let us assume that the

posterior distribution at time tk−1 defined by g(Ψk−1|dk−1:1), is known,

Ψk−1|dk−1:1 � Nq(Ψa
k−1,C

a
Ψk−1

). (5.3)
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Combining Eq. (5.3) and the system Eq. (5.2), we can write the prior
distribution g(Ψk|dk−1:1), at time tk as

Ψk|dk−1:1 � Nq(Ψ
f
k ,C

f
Ψk

), (5.4)

where Ψ
f
k , is the prior mean and C

f
Ψk

, is the prior covariance. Both of these
can be defined as

Ψ
f
k = E(Ψk|dk−1:1), (5.5)

C
f
Ψk
= E

(
(Ψk −Ψ

f
k )(Ψk −Ψ

f
k )T|dk−1:1

)
. (5.6)

For the linear state space model in Eq. (5.2), the prior moments can be
further written as

Ψ
f
k = FkΨ

a
k−1, (5.7)

C
f
Ψk
= FkC

a
Ψk−1FT

k + Cεm
k
. (5.8)

The derivation of the posterior distribution g(Ψk|dk:1), at time, tk is found
from the joint distribution of g(Ψk,dk|dk−1:1). The joint distribution is es-
tablished by observing from Eq. (5.1) that

Cov(Ψk,dk|dk−1:1) = Cov(Ψk,HkΨk + ε
o
k|dk−1:1) = C

f
Ψk

HT
k , (5.9)

and hence the joint distribution can be expressed as(
Ψk

dk

)
|dk−1:1

� Nq+mk

⎛⎜⎜⎜⎜⎝
(

Ψ
f
k

d
f
k

)
,

⎡⎢⎢⎢⎢⎣ C
f
Ψk

C
f
Ψk

HT
k

HkC
f
Ψk

C
f
Ψk

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ . (5.10)

By applying the formulas to the joint distribution in the above equation as
mentioned by Skjervheim [131], the posterior distribution g(Ψk|dk:1), can
be expressed as

Ψk|dk:1 � Nq(Ψa
k,C

a
Ψk

). (5.11)

Here the analysis mean and covariance are given by

Ψa
k = Ψ

f
k +Kk(dk −HkΨ

f
k ), (5.12)

Ca
Ψk
= (I −KkHk)Ψ

f
k , (5.13)

where the Kalman gain matrix Kk, is given by

Kk = C
f
Ψk

HT
k (HkC

f
Ψk

HT
k + Cεo

k
)−1. (5.14)

From the Kalman filter theory the state space models are assumed linear
with Gaussian statistics and the posterior distribution g(Ψk|dk:1), is then
Gaussian and subject to analytical evaluation. The objective is to sample
from the posterior pdf g(Ψk|dk:1), and to generate a sample from this distri-
bution, different sampling strategies, e.g., Rejection sampling and Markov
chain Monte Carlo (MCMC), can be applied [131].
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(a) Kalman filter (b) Ensemble Kalman filter

Figure 5.1: Comparative analysis of different filtering techniques.

5.2 The Ensemble Kalman Filter

The Ensemble Kalman filter (EnKF) is a Monte Carlo type sequential
Bayesian inversion method, and was first introduced by Geir Evensen
in 1994 for data assimilation of non-linear ocean models [58]. The EnKF
applies a Monte Carlo method to solve the Fokker-Plank equation and is
based on the use of an ensemble representation for the PDFs of interest. The
EnKF is a sequential data assimilation method, and provides an approx-
imate solution to the combined parameter and state estimation problem
[61]. The result is an ensemble of solutions approximating the posterior
pdf. The essential difference between the Kalman filter and EnKF is that
the covariance matrix in EnKF is replaced by a sample covariance com-
puted from the ensemble, see Fig. 5.1. The ensemble is operated with
as if it were a random sample, but the ensemble members are really not
independent - the EnKF ties them together. One advantage of EnKF is that
advancing the PDF in time is achieved by simply advancing each member
of the ensemble.

Let us Consider the non-linear state space model:

Ψk = fk(Ψk−1) + εm
k εm

k � Nq(0,Cεm
k
), (5.15)

dk = hk(Ψk) + εo
k εo

k � Nmk(0,Cεo
k
), (5.16)

where fk : Rq → Rq is a non-linear model operator with model errors
εm

k , and hk : Rq → Rmk is the non-linear measurement operator, relating
the model variable Ψk, to the observations dk, allowing for measurement
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errors εo
k. One option to solve for the non-linearity in the context of state-

space formulation is to use the so called Extended Kalman filter (EKF) [99].
But EKF is not an optimal filter, but rather it is constructed on the basis
of a set of approximations. The EnKF was introduced as a Monte Carlo
alternative to the traditional EKF. Evensen [58] has shown that a Monte
Carlo approach can be utilized to solve an equation for the time evolution
of the pdf of the model variable. He also showed that EnKF is a stochastic
alternative to using the approximate error covariance equation in the EKF.

In the EnKF setting the nonlinear state space model is reformulated,
so that the observation equation can be treated as linear [59]. In order to
obtain a linear observation equation, it is possible to augment the model
variable with a diagnostic variable which is the model prediction of the
measurement. The linear observation equation can then be written as

dk = HkΨ̃k + ε
o
k, (5.17)

where Ψ̃k = (Ψk,hk(Ψk)), and Hk, being the linear measurement operator
that picks data from Ψ̃k. For simplicity we omit the augmented notation
and let Ψk, from now, include the parameters, the states and the model
prediction of the measurements.

Ensemble Representation of CΨ
Define the matrix holding the ensemble membersΨk ∈ Rq, at time tk, as

Ψk = Ψ(x, tk) = (Ψ1
k ,Ψ

2
k , · · · ,ΨN

k ) ∈ Rq×Ne , (5.18)

where Ne, is the ensemble size. The ensemble mean can be defined as

Ψk = Ψk1Ne , (5.19)

where 1Ne ∈ RNe×Ne , is the matrix where each element is equal to 1/Ne.
Based on the above equations, the ensemble perturbation matrix Ψ

′
k, can

be expressed as

Ψ
′
k = Ψk −Ψk = Ψk(I − 1Ne). (5.20)

The ensemble covariance matrix Ce
Ψk
∈ Rq×q, can then be defined as

Ce
Ψk
=

Ψ
′
k(Ψ

′
k)

T

Ne − 1
. (5.21)
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Measurement Perturbations

Given a vector of observations dk ∈ Rmk , the Ne vectors of perturbed obser-
vations can be expressed as

di
k = dk + ε

o,i
k , i = 1, 2, · · · ,Ne (5.22)

where the perturbed observations can be stored in the columns of a matrix

Dk = (d1
k ,d

2
k , · · · ,dNe

k ) ∈ Rmk×Ne . (5.23)

The ensemble of observation perturbations can be represented in the
columns of the matrix

Ek = (εo,1
k , ε

o,2
k , · · · , εo,Ne

k ), (5.24)

and the ensemble representation of the error covariance matrix of obser-
vations becomes

Ce
εo

k
=

EkE
T
k

Ne − 1
. (5.25)

The EnKF can be viewed as a sequential simulation with Kriging update
and is based on a variance minimizing scheme [61]. The ensemble repre-
sentation of the analysis equation can now be written as

Ψ̂a
k = Ψ̂

f
k + C

e, f
Ψk

HT
k (HkC

e, f
Ψk

HT
k + Cεo

k
)−1(di

k −HkΨ̂
f
k ). (5.26)

However, the EnKF is strictly a variance minimizing scheme only when
the assumption is made that the prior is Gaussian. The complete EnKF
update scheme in Eq. (5.26) can also be seen as combination of a nonlinear
prediction and and a linear update.

Ensemble Representation

At time tk, let us define the ensemble of innovation vectors D
′
k ∈ Rmk×Ne , as

D
′
k = Dk −HkΨ̂

f
k , (5.27)

the measurement of the ensemble perturbations Sk ∈ Rmk×Ne , as

Sk = HkΨ̂
f ′
k , (5.28)

and the matrix Gk ∈ Rmk×mk , as

Gk = SkS
T
k + (Ne − 1)Cεo

k
. (5.29)
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By using Eqs. (5.27)-(5.29) and the ensemble error covariance matrix defi-
nition in Eq. (5.21), the analysis equation already stated in the Eq. (5.26)
can further be expressed as the following:

Ψ̂a
k = Ψ̂

f
k + Ψ̂

f ′
k Ψ̂

f ′T
k HT

k (HkΨ̂
f ′
k Ψ̂

f ′T
k HT

k + (N − 1)Cεo
k
)−1D

′
k

= Ψ̂
f
k + Ψ̂

f
k (I − IN)ST

k G−1
k D

′
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Here we have used the ensemble perturbation matrix in Eq. (5.20) and
1NST

k = 0. The analyzed ensemble can be considered as a combination of
the forecast ensemble. Thus, the updated ensemble can be considered as a
weakly nonlinear combination of the forecast ensemble members. In appli-
cations, where we are trying to estimate, e.g. the permeability, this implies
that we can only expect to find corrections to the permeability estimates
which can be represented in the space spanned by the initial permeability
ensemble. This is, however, only a practical limitation. Because this effect
can be reduced by increasing the ensemble size and by choosing the initial
ensemble carefully [64].

5.3 Reservoir History Matching Using EnKF

The EnKF provides an ideal setting for real-time updating and prediction in
reservoir simulation models. Every time new observations area available
and are assimilated, there is an improvement of the model parameters,
and the associated model saturations and pressure. Thus, the analyzed
ensemble provides optimal realizations which are conditioned on all pre-
vious data, and these can also be used in a prediction of future production
[61]. In spite of outstanding theoretical and practical questions on the ap-
plicability of the EnKF for highly non-linear and non-Gaussian reservoir
problems, there have been promising results of EnKF as an history match-
ing tool. EnKF has provided good history matching results for several real
field case studies. For some references related to real field applications of
EnKF, we can mention the works of Cominelli et al. [34], Seiler at al. [125],
Haugen et al. [76], Bianco et al. [19], Evensen et al. [64] and Skjervheim
et al. [135]. An exhaustive analysis of most of these works together with a
comparison of the EnKF and related ensemble methods in other industries
can be found in the review paper by Aanonsen et al. [3].
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The history matching work flow involves three major steps as discussed
in Seiler et al. [125]: parametrization where the parameters that are uncertain
and characterize the major certainty of the model solution are identified,
thereafter a a prior error model is specified for the selected parameters based
on an initial uncertainty analysis, and finally a solution method needs to be
selected. All three steps are equally important and hence, the quality of
the EnKF-based history matching will depend how accurately these steps
are performed.

Parametrization

For traditional assisted history matching methods, only a restricted set of
reservoir parameters can be included for optimization. These parameters
must be selected on the basis of sensitivity and effectiveness. The pilot
point method [13] and gard-zoning process [22] are two methods that are
in use to select important parameters for updating with history match-
ing. The EnKF is not limited by number of model parameters, because
the dimension of the inverse problem is reduced to the number of realiza-
tions included in the ensemble. Thus, the solution is searched for in the
space spanned by the ensemble members rather than the high dimensional
parameter space [64]. In reservoir characterization process, variations in
porosity φ, have effects on the modeled oil in place. The permeability
κh determines how well fluids flow through the reservoir and need to be
adjusted to match the observed production rate as well as the timing of
water breakthrough. With a large number of faults and only few pressure
measurements, there is a large uncertainty in the assumed fault transmis-
sibilities and hence, fault transmissibility multiplier mult f lt, is a parameter
to be estimated. Another major set of parameters to be estimated is the
water-oil contact (WOC) and gas-oil contact (GOC) in different regions of
the model. The reason for including these contacts is that this determines
the volume of oil in the reservoir as well as the optimal vertical location of
horizontal production wells. We can also include vertical transmissibility
multipliers multz, which modify the effective vertical communication, as
parameters to be estimated.

State Vector

For the combined parameter and state estimation problem, the state vector
updated by EnKF contains both the dynamic variables and static param-
eters. It is useful to augment the state vector with a vector of predicted
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or simulated data. Typical predicted measurements are the oil, water and
gas rates for each well, as well as the gas-oil ratio and the water cut. These
data may be, in general, nonlinear functions of the state variables. Thus,
for a typical ensemble member j, the EnKF state vector takes the following
form [61]:

Update Forecast Covariances⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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, (5.31)

where i is a counter for predicted measurements, di. Thus, the updated
state vector consists of the forecast plus a combination of covariances be-
tween the predicted measurements and the updated variables. The coef-
ficients, αi j define the impact each measurement has on the update of an
ensemble member, j. It is seen that the different dynamic and static vari-
ables are updated by adding weighted covariances between the modeled
measurements and the variables, one for each measurement. The reason
why it is possible to update the parameters given only rate information
from the wells, is that the rates are dependent on the properties of the
reservoir as given by the parameter set defined above. Thus, there will ex-
ist correlations between reservoir properties and the observed production
rates [64].

Prior Error Models

An initial uncertainty analysis leads to a quantification of the prior un-
certainties of the parameters, which is then presented using probability
density functions (PDF). The specified PDFs then represent our prior be-
lief concerning the uncertainty of each particular parameter selected by
parametrization. Stochastic simulations are used to produce multiple re-
alizations of the porosity and permeability fields based on the geological
models. The uncertain parameters are normally characterized by a Gaus-
sian distribution with mean equal to the best estimate and a standard devi-
ation reflecting the uncertainty spread. There are generally large uncertain-
ties associated with the fault fluid flow properties and fault transmissibility
parameters. Treating fault multiplier uncertainty as Gaussian distribution
may lead to inaccurate or even insufficient update values for these param-
eters. One way to circumvent this issue of non-Gaussian parameters is to
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us an appropriate transformations, e.g. normal score transformations of
the non-Gaussian variables to Gaussian variables [71].

Geological Continuity and Prior Realizations

Statistical information from geological data is used when sampling the
initial ensemble such that the sample ensemble is consistent with the pa-
rameters and uncertainties given in the geo-model. The geological model
should integrate all available prior information from 3D seismic surveys,
core and well log data, outcrop studies, and conceptual models. Stochastic
simulation is a means for generating multiple equi-probable realizations
of the property in question, rather than simply estimating the mean. The
two most commonly used forms of simulation for reservoir modeling ap-
plications are sequential Gaussian simulation for continuous variables like
porosity and sequential indicator simulation for categorical variables like
facies. Variograms are used to describe the geological continuity of ”homo-
geneously heterogeneous” properties, and hence, variograms are typically
best suited for establishing continuity of porosity and permeability within
layers or facies bodies [25]. The experimental variogram is a quantitative
measure of spatial correlation and the correlation length or range indicates
the average extent of continuity/correlation along various directions. In

(a) Range, sill and nugget effect (b) Different variogram functions

Figure 5.2: Experimental varigrams in use.

most reservoirs, one expects the range in vertical/depth direction to be
shorter compared to horizontal direction. The plateau is termed as the sill
and corresponds to the statistical variance of the property. Often, there
is an apparent discontinuity on the y-axis of variogram plot (Fig. 5.2a),
termed nugget effect which reflects geological variability at scales smaller
than the smallest experimental distance |h|. Since it is required the correla-
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tion function used in calculating experimental variogram is positive defi-
nite, a number of parametric forms, e.g., exponential, Gaussian or spherical
correlation functions are commonly used, see Fig. 5.2b. Generally, the ini-
tial ensemble consists of 100 realizations of a Gaussian random field with
constant mean parameter value (e.g., porosity) and a chosen variogram
function; the popular choice in reservoir engineering is the spherical var-
iogram function. The porosity distribution can also be constrained at the
observed porosities in the appraisal wells. The dynamic variables, pres-
sure and saturation grid-cell values, are included in the initial ensemble
through an initialization using the flow simulator.

Measurement Error Model

During the ensemble analysis, the prior realizations will become closer
to the observations, e.g., production data and thus decrease the ensemble
spread. In the present EnKF setup for history matching, the model pre-
dicted well variables such as bottom hole pressure (BHP), oil production
rate (OPR), well water (WCT) and gas/oil ratio (GOR) are needed to up-
date the model state at analysis step. The production measurement errors
are drawn from a Gaussian distribution with a mean zero and standard
deviations (for example):

• Bottom hole pressure (BHP): 10%

• Oil production rate (OPR): 15%

• Water cut (WCT): 20%

• Gas/oil ratio: 15%

The standard deviations given above are relative to the actual value of the
measurements.

Any data set may contain contaminated data (outliers) that could result
in inconsistent updates, possibly leading to model instabilities. Thus it
is recommended that appropriate filters are employed to get rid of the
possible data outliers. For example, the following criteria proposed by
Haugen et al. [76] can be considered. Here, the distance between the model
and the data is compared with the sum of the predicted measurement
standard deviation:

|d −HΨ| < ζ(σd + σΨ), (5.32)

where σd and σΨ are the standard deviations of the observations and the
predictions, respectively. Furthermore, ζ is a specified constant (i.e., chosen
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to set the strength of the criteria). Normally, ζwill be chosen between 1 and
3, reflecting that the distributions should overlap within 1 to 3 standard
deviations.If the equation (5.35) is not satisfied, σd is updated as follows:

σd = |d −HΨ|/ζ − σΨ. (5.33)

That is, the error of the observation is increased and is given a smaller
weight in the EnKF update.

Work Flow of EnKF-based History Matching

When an initial ensemble of reservoir models is generated, the EnKF is used
to update the ensemble sequentially in time to honor the new production
observations at the time they arrive. The EnKF consists of a forward inte-
gration generate the forecast followed by the updating of state variable to
generate the analysis, see Fig. 5.3. An each assimilation step, the model is
updated according to the Eq. (5.26) and there is no need to run the sim-
ulator from time zero again. The assimilated observations are considered
as random variables having a Gaussian distribution with mean equal to

Figure 5.3: EnKF history matching work flow for production data.

observed value and an error covariance reflecting the accuracy of the mea-
surement. The updated ensemble is then integrated until the next update
time. The result is an updated ensemble of realizations, conditioned on all
previous production data, and thus provides the optimal starting point for
predictions of future production [125].
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EnKF and Model Predictability

The target of history matching is to prepare the ground for an evaluation
of the expected performance of the field. This should be integrated with
a technical risk analysis which highlights the expected bounds in the per-
formances according to the remaining uncertainty. This process can be
termed as the predictability of the history matched model [34]. At the final
update time in the production history, it is possible to use the updated
simulation models to compute a prediction of the future production. In
principle for a sufficiently large ensemble, the updated model ensemble
is adequately sufficient to approximate all the statistical integrals based
on posterior distribution. If one has a method to rank the quality of the
different realizations, it is also possible to integrate, e.g., the first, second
and third quartiles to obtain predictions with approximate uncertainty es-
timates [64]. The recent work of Cominelli et al. [34] has shown an example
of using EnKF to predict the future production scenarios for a deep water
reservoir.

5.4 Different Variations of EnKF Algorithm

In the EnKF the traditional analysis scheme uses a randomization or a
stochastic perturbation of the observations to ensure that the updated
ensemble attain the correct variance. The deterministic analysis is an alter-
native algorithm which avoids the perturbation of observations, and the
scheme is based on a square-root formulation [131]. Here, the updates of
the ensemble mean and the ensemble perturbations are performed sepa-
rately [92]. Several variations of implementing the square root filter are
introduced, caused by the non-uniqueness of analysis perturbations that
can be used to represent the covariance matrix of the analysis error [144].
An iterative form of the EnKF algorithm is proposed for the case when the
posterior pdf of interest may be non-Gaussian and the relation between
model variables and the predicted data may be highly nonlinear [159]. The
motivation of the iterative algorithm was that the EnKF update equations
can be derived as an approximation to the Gauss-Newton method, with
an ”average” sensitivity matrix. The iterative scheme combining random-
ized likelihood method (RML) and the EnKF and can be referred to as an
RML/EnKF algorithm [66]. The ensemble particle filter relies on the as-
sumption that a relatively small ensemble size represents the uncertainty
in a high dimensional model system [11]. The particle filter, more generally
known as a sequential Monte-Carlo method [47], is a fully nonlinear filter,
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where the first and second order moments of the error distribution are not
directly used in the calculation. Hence the particle filter has potential to
explore non-Gaussian probability distributions [131].

5.5 Model Error in EnKF History Matching

Successful reservoir prediction requires an accurate estimation of parame-
ters to be used in the reservoir model. The history matching process may
produce poor estimates for parameter space, as simulation errors are in-
troduced from using an approximate model [143]. Thus it is necessary to
develop error models for flow simulation error within the petroleum in-
dustry, enabling accurate parameter estimation. In the work of O’ Sullivan
et al. [112], the model error used is based on using simulation results from
an approximate model together with statistical error data (e.g., mean error
and error covariance).

In most of the EnKF applications, modeling error is commonly
neglected, assuming that all error is due to uncertainty in the estimated
parameters. While a good history match may be often be obtained by
tuning ”wrong” parameters when traditional methods are applied, this
is not always possible when using the EnKF method. The reason is that
EnKF requires a large solution space spanned by prior uncertainty with
adequate degrees of freedom. This is apparently a disadvantage of EnKF;
however, in such a situation a match obtained by traditional method may
hide a potential problem in the model. The work of Aanonsen [1] intro-
duced an explicit model error term in the formulation of the dynamical
system. The model error is added to the state vector and estimated as a
part in the EnKF update; thus correlations between model error and other
variables developed. The applicability of this approach has been tested
for a single phase flow model by assimilating well pressure data where an
unknown model error due to grid coarsening has introduced.

5.6 Challenging Aspects of EnKF

The EnKF works quite well when the prior probability distributions are
Gaussian and when the relationships between the model parameters, state
variables, and observation variables ar approximately linear. Generally,
there are two major approximations made in the EnKF which may have
consequences in practical cases: (1) the update is based on covariances only,
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and (2) these covariances are computed from a finite ensemble size. The
first approximation implies that third and other higher order moments of
the joint PDF of the model variables (including parameters and simulated
observations) are neglected, which makes it difficult to maintain a pri-
ori imposed non-Gaussian distributions. Thus EnKF update neglects any
non-Gaussian contributions in the predicted pdf, when the update incre-
ments are computed. On the other hand, the updated ensemble will inherit
the non-Gaussian contributions already present in the forecast ensemble.
Thus, the analyzed ensemble can not be considered as a re-sampling of a
Gaussian posterior pdf. This issue becomes very important when EnKF
is applied to complex reservoir models that are characterized by a distri-
bution of facies which cannot be represented by Gaussian distributions.
The approach currently taken is to attempt to identify a suitable manner to
”transform” the different facies types into intermediate random variables
having Gaussian distributions [3]. The use of truncated pluri-Gaussian
method [4] and the Gaussian mixture models [48] can be mentioned as
possible ways to handle non-Gaussian prior models in EnKF.

Methods for deling with nonlinearity in the state variables for ensemble
members can be categorized into two main approaches: parametrization
of the state variables and iterative filters. Chen et al. [32] re-parameterize
the state vector, replacing a non-Gaussian variable (water saturation) with
another related state variable (saturation arrival time) that is approximately
Gaussian. The introduction of the use of the discrete cosine transform
(DCT) parameterizations has been proposed by Jafarpour and McLaughlin
[82]. Most of the iterative forms of the EnKF can be viewed as algorithms for
minimizing a stochastic objective function. One such example is the work
of Reynolds et al. [116] that can be viewed as ensemble approximations of
the randomized maximum likelihood (RML) method [3].

The second approximation, i.e., the use of a limited number of model
realizations, while making the problem computationally tractable, intro-
duces errors in the covariance estimates, leading to incorrect updates.
Furthermore, it has been shown that such errors tend to lead to systematic
under-estimation of model error variances, and ultimately to filter diver-
gence [73], which in ensemble filters is accompanied by ensemble collapse.
Practical experiences also shown that similar problems can be encountered
when large number of relatively accurate data are assimilated. Using lo-
cal analysis and covariance localization, one can handle this issue of large
number of measurements, see Aanonsen et al. [3].





Chapter 6

4D Seismic History Matching
Using EnKF

Conditioning reservoir model to seismic data is a difficult task. Application
of EnKF to 4D seismic data in a real case was first proposed by Skjervheim
et al. [135]. They used a subspace EnKF inversion scheme to integrate
interpreted seismic data into simulation model for both a 2D synthetic
model and a real field case. As an example of using seismic waveform data
in EnKF, [78] used 4D stacked amplitude data in EnKF to estimate reservoir
properties such as gas-oil-contact. In spite of having several challenges,
e.g., issues of integration of large amount of 4D data and localization, the
initial EnKF applications for 4D seismic data provided promising results
[3].

6.1 Integration of 4D Seismic Data in EnKF

Incorporating time-lapse seismic data in sequential assimilation methods
are complicated since such data are time difference data, dependent on the
model state of the reservoir at two different time steps. Hence, traditional
EnKF formulations, described in chapter 5, must be modified to incorporate
4D seismic data. When the seismic data are given as a difference between
two surveys, a combination of EnKF and the ensemble Kalman smoother
(EnKS) has to be applied, see [135]. When we assimilate 4D seismic data,
or interpreted seismic data such as acoustic impedance or Poisson’s ratio,
we effectively have a data measurement corresponding to each grid block.
Thus, in assimilating seismic data, the matrix that must be inverted to apply
Kalman gain to the data mismatch term is extremely large, see Aanonsen et
al. [3]. Moreover, to introduce a sufficient number of degrees of freedom
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to match seismic data accurately, one may require a significantly large
ensemble size. These practical issues related to seismic data integration
are important in the EnKF-based history matching context.

Ψ j Ψ j
Ψ0 −→ Ψ1 · · · → Ψ j → Ψ j+1 · · · → Ψk → Ψk+1 → · · ·

d1 d j d j+1 dk dk+1

(6.1)

We have defined a sequence of data assimilation scheme in Eq. (6.1)
based on a model state sequence Ψi, and the corresponding available
measurement vectors di. Here the counter i, varies from the initial state at
0, to the base survey time j, and then to the monitor survey time k, and
next to k + 1, and so on. Let the non-linear state space model for times,
ti ∈ (tj, tk) be defined as

Ψ̃i =

[
fi(Ψi−1)

Ψ j
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i � Nmi(0,Cεo
i
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where Ψ̃i = [Ψi,Ψ j]T ∈ Rq̄, fi, is a non-linear model operator operating
only on Ψi−1 with model errors εm

i . The model errors are added only
to the terms where fi is operating on Ψi−1, and are zero elsewhere. The
linear measurement operator H̃i, is relating the model states Ψ̃i, to the
observations di, in accordance with the data assimilation scheme in Eq.
(6.1). Here dk, includes time difference observations between Ψk and Ψ j.
Also H̃i, allows for the measurement errors εo

i .
Let us consider now a joint ensemble matrix including the ensemble

matrices of the time instants Ψi = Ψ(x, ti), and Ψ j = Ψ(x, tj) as follows

Ψ̃i =

[
Ψi

Ψ j

]
∈ R q̄×Ne . (6.4)

The ensemble mean and ensemble perturbation matrix at time ti can be
written as

¯̃
Ψi = Ψ̃i1Ne , (6.5)

Ψ̃
′
i = Ψ̃i − ¯̃

Ψi = Ψ̃i(I − 1Ne), (6.6)

where 1N ∈ RNe×Ne , is the matrix where each element is equal to 1/Ne. The
ensemble covariances, Ce

Ψ̃i
∈ Rq̄×q̄, can then be defined as
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If we define at time ti, the measurement of the ensemble perturbations
Si ∈ Rmi×Ne , as

Si = H̃iΨ̃
f ′
i , (6.8)

and also the ensemble of innovation vectors as

D
′
i = Di − H̃iΨ̃

f
i , (6.9)

and the matrix Gi ∈ Rmi×mi , written as

Gi = SiS
T
i + (Ne − 1)Cεo

i
, (6.10)

then by following the similar analysis like in Eq. (5.30), we can define
the equation of the ensemble representation of the analysis step for both
smoother and filter solution as

Ψ̃a
i = Ψ̃

f
i Xi. (6.11)

Hence, the EnKF update equation for 4D data, in this case time-difference
data, can be expressed as[

Ψa
i

Ψa
j,i

]
=

[
Ψ

f
i Xi

Ψa
j,i−1Xi

]
, (6.12)

where Ψa
j,i is the smoother solution at time tj when the observations at

time ti have been assimilated. This updating process continues until time
tk where the time difference data are to be assimilated, and we have the
augmented ensemble as[

Ψ
f
k

Ψa
j,k−1

]
. (6.13)

At time tk, we use the time difference measurement operator H̃i which
relates the measurements to both Ψ

f
k and Ψa

j,k−1 and we compute a standard
EnKF analysis step like in Eq. (5.26). Note that the filter and the smoother
solution coincide at the time of the last measurement, so the predictions
from the smoother and filter solutions will be identical [3]. This method
is well suited for 4D data when measured at two different time instants.
However, special challenges, e.g., inversion of large covariance matrix and
potential loss of rank, are involved in the assimilation of large amount of
data coming from 4D seismic [131].
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6.2 Steps of 4D History Matching with EnKF

As discussed in chapter 5, any assisted history matching work flow in-
volves three major steps such as parametrization where sensitive reservoir
parameters are identified for model updating, a prior error model is spec-
ified for the selected parameters based on an initial uncertainty analysis,
and finally a solution method needs to be selected. In the case of 4D seis-
mic history matching, besides these three major steps, we also need a work
flow for integrating seismic data mismatching term. Additionally, a proper
uncertainty description of 4D seismic data is necessary.

Parametrization

Like the case with traditional history matching work flow previously dis-
cussed, we can choose a range of parameters that can be estimated in EnKF
by conditioning the reservoir models with 4D seismic data together with
production data. Let us define a state vector which is comprised of dy-
namic variables, e.g., pressure and gas saturation values in every grid-cells
and we have also included porosity and permeability values in all of the
active grid-cells. If we want to condition this model with 4D seismic data,
a typical stencil for the state vector takes the following form:
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where i is a counter for predicted 4D measurements d4D
i . Thus, the up-

dated state vector consists of the forecast plus a combination of covariances
between the predicted measurements and the updated variables. The co-
efficients βi j, define the impact each 4D measurement has on the update of
an ensemble member j. In addition, we can integrate predicted production
data values that can be included in this state vector as well.

Forward Models

Following the approach proposed by Bachrach [17], it is possible to link
the elastic parameters, VP, VS and ρ with the reservoir properties, e.g.,
porosity, φ and water saturation, sw through a non-linear function, g :
R3 → R3, by using the Biot-Gassmann theory [68] and the empirical results
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of Batzle and Wang [18]. In order to generate synthetic seismograms,
one needs to run the flow simulator to predict dynamic behavior of the
reservoir. In our study, we have used the Eclipse reservoir simulator
extensively [53] to predict the dynamic behavior of the reservoir. Rock

Figure 6.1: Example forward modeling work flow used in EnKF.

physics model use the outputs from the Eclipse simulator as the input for
the PEM model. Once we have calculated density and impedance values
in each of the active grid cell, we can use, e.g., 1D convolution model with
approximated reflection coefficients (discussed in chapter 4) to calculate
seismic gather data at each of this cells, see Fig. 6.1. The difference of
the calculated seismic properties between base and monitor survey times
provide the time-difference impedance data or amplitude data. Note that
in the context of EnKF-based 4D history matching, the prior realizations
used should be consistent with the observed 4D effects of the base case
model. Otherwise, it will be very difficult to match the real field seismic
data with the simulated posterior seismic data.

Ensemble Smoother Solution and Model Updating

For time difference data, the procedure for updating the state is exactly
same as the case with only production data, except that we need also to
update the smoother solution at the time of previous survey (base survey).
The smoother solution is opposite to the filter solution as it is comprised of
the solution at all times conditioned to all data. The filter solution depend
only on measurements taken at previous times. The smoother solution
can be obtained by sequential procedure such as the ensemble Kalman
smoother [63]. The filter and smoother solution coincides at the time of the
last measurement, so the predictions from the smoother and filter solutions
will be identical [3]. The modified version of the update equation for both
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smoother and filter solution becomes:

Ψ̃a,l
i = Ψ̃

f ,l
i + C

e, f

Ψ̃i
H̃

T
i (H̃iC

e, f

Ψ̃i
H̃

T
i + Cεo

i
)−1(dl

i − H̃iΨ̃
f ,l
i ), (6.15)

where Ψ̃i = [Ψi,Ψk]T, and H̃i picks data from both Ψi and Ψk. That is, if
the measurements to be assimilated at time ti is a combination of well data
at time, ti and the change in some seismic property from time tk to ti, thus
H̃i will be of the form

H̃i =

(
H

prod
i 0

Hseis
i Hseis

k

)
, (6.16)

where H
prod
i picks the simulated well data and Hseis

i picks the simulated
seismic data. In practical applications, smoother solution concept is imple-
mented by using same porosity values for both base and monitor surveys
to calculate seismic properties using rock physics model, see the attached
paper A and paper B.

4D Seismic Measurement Error Model

Results from EnKF studies, where the seismic data are used, show that
there is a close relationship between the improvement of the characteri-
zation and the error level used for the seismic data. However, a positive
impact should be found regardless of the high noise level in the real field
seismic data, see [132]. There is not any concrete established criteria to

(a) ΔIp data (b) Δd data

Figure 6.2: 4D seismic measurement error level used in EnKF.

determine the exact level of seismic data uncertainties. The challenge of
specifying uncertainties in 4D seismic data is resolved by using results
from Bayesian inversion techniques as reported by El Ouair et al. [56]. For
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the realistic synthetic case studies in the paper A, the level of noise in the
seismic data is taken as 30% of the average reference case time-difference
seismic data value over all active cells. In Fig. 6.2, the highlighted areas
show the average value of the corresponding reference case 4D seismic
data values. We have taken 30% of this reference case value as the stan-
dard deviation for 4D seismic data noise level in EnKF. For the synthetic
case study, one may use a diagonal seismic error covariance matrix. But
diagonal covariance matrix is not necessarily valid for synthetic data, since
the pressures and saturations in neighboring cells may be correlated. Thus,
it is more appropriate to use a non-diagonal seismic data covariance matrix
[43].

6.3 EnKF Work Flow for 4D History Matching

The EnKF work flow for 4D seismic history matching is shown in Fig. 6.3.
The history matching problem is addressed by first defining the model
parameters and their uncertainties. Then, an ensemble of N realizations
for each parameter is generated by sampling from the initial geo-model
with given statistics. This makes up what we call the prior distribution. We

Figure 6.3: 4D seismic history matching work flow for EnKF.

run the reservoir simulator up to the time where the first measurements
are available. Typically these are production data including oil production
rate, water-cut and gas-oil ratio. At that time the forecasted model state
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vector of dynamic and static variables are updated by including the mea-
surements and their uncertainties giving the analyzed model state. At each
assimilation step the model is updated and there is no need to run the
simulator from time zero again. At some certain time steps, seismic data
may be available in addition to production data. When the seismic data
are given as a difference between two surveys, a combination of EnKF and
the ensemble Kalman smoother (EnKS) has to be applied, see [135]. As an
implementation of EnKS, one can use the same porosity for both base and
monitor survey times to calculate respective seismic signatures (see, Fig.
6.3). In the paper A and paper B, we used this approach to incorporate
EnKS when we integrated 4D seismic data.

6.4 Challenges of 4D History Matching in EnKF

The inclusion in 4D seismic data in history matching process is a de-
manding task and when this integration is made in EnKF framework, this
becomes even more difficult because of the challenging issues of of EnKF
itself. In the following section, we have described some of the demanding
tasks in EnKF-based 4D history matching.

Seismic Modeling Error

4D seismic data offers spatial and dynamic information about changes in
reservoir fluid properties and can be used to constrain flow simulation
models thereby improving confidence in the reservoir characterization.
But this process is affected by scale and process dependent model errors
[137]. To speed up reservoir simulations, some form of up-scaling is re-
quired to capture two-phase flow properties such as relative permeability
and also to represent geological heterogeneity. The up-scaling may be
over-simplified or ignored. In addition, simplifications to the flow pro-
cesses may be made, for example by using streamline methods. Finally,
the petro-elastic transform contributes to the model errors due to assump-
tions about saturation distributions and cross-scaling is required because
modeled and observed seismic are obtained for different volumes. Also
the model errors in 4D seismic integration depends on the rock physics
parameters as well as the underlying geo-model. These can be important,
however, as they can affect the convergence rate, and may lead to incorrect
models or alter the posterior uncertainty estimate [33].



6.4 Challenges of 4D History Matching in EnKF 73

Proper Estimation of Rock physics Parameters

Estimation of rock physics parameters, e.g., lithology (clay ratio) or frac-
ture density parameter for fractured reservoirs may also be crucial if an
incorrect rock physics model is introduced in the seismic history matching
scheme. Such a model may introduce large modifications in the model
variables, and such large updates can lead to model instabilities and make
the prediction corrupt [132]. Hence, sensitivity studies related to rock
physics parameter should be performed.

Appropriate Level of 4D Seismic Data Integration

A challenging issue when using seismic data is how to compare the mea-
sured data to the model data (explained in chapter 1). In principle, seismic
data may be included in a number of different ways when conditioning
reservoir simulation models[134]. One possibility is to use seismic am-
plitude data, another is to use inverted and/or processed data (such as
acoustic impedance and Poisson’s ratio). Finally saturations and pressures
derived from the rock physics model can be used as well to compare with
inverted saturation and pressure data. The amount of data, uncertainty,
and information content may be very different and dependent on the way
seismic data are incorporated. But it is not always straight forward to
determine the appropriate level of 4D seismic data integration as shown
in paper A.

Spurious Correlations and Rank Issues

Problems related to an underestimation of the uncertainty in the low rank
covariance matrix representation of the static and dynamic variables may
occur when few ensemble members and a large amount of data are used
during the assimilation in EnKF. This may contribute to the long-range
spurious correlation effects in the updated fields, and a result of this sam-
pling error is that the updated ensemble variance is under estimated. The
rank of the error covariance matrix Ce

εo
k

is less than or equal to the number
of ensemble members, and consequently, the number of perfect data that
can be assimilated in a standard EnKF is severely limited. The problem
of rank deficiency is most significant for problems with large amount of
independent data, such as 4D seismic [3]. In the next chapter, we have
described both of these issues in more details. In Paper B, we have formu-
lated a localization strategy to handle large amount of 4D seismic data in
EnKF for a real field case study.





Chapter 7

EnKF and Large Number of
Measurements

When we assimilate 3D or 4D seismic data, or interpreted seismic data
such as acoustic impedance or Poisson’s ratio, we effectively have a data
measurement corresponding to each simulation grid block. Because of
practical limitations, EnKF is typically applied with an ensemble size of
the order of 100 and each updated (analyzed) model must be a linear
combination of the initial ensemble of models [64], there are not sufficient
degrees of freedom to match all seismic data. The loss of rank in the
updated covariance matrix, due to finite ensemble size, further exacerbates
the necessary degrees of freedom [86]. Moreover, even if a full rank version
of measurement error covariance matrix is used, the matrix that must be
inverted in the data assimilation step is Nd×Nd, where Nd, is the number of
data to be assimilated at a particular step [160]. When assimilating seismic
data, Nd is often so large that it is not feasible to solve a Nd × Nd, matrix
problem. Hence, there are certain features, e.g., filter divergence and
ensemble collapse are associated with EnKF when it is to assimilate large
data sets such as 4D seismic data. In this chapter we would investigate
these limitations of EnKF and would focus on the mitigation of these
problems by using localization [106].

7.1 Spurious Correlations and Rank Issues

The use of a finite ensemble size to approximate the error covariance matrix
introduces sampling errors that are seen as spurious correlations over long
spatial distances or between variables known to be uncorrelated [62]. A
result of this sampling error is that the updated ensemble variance is under
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(a) True field (b) Ne is small (c) Ne is very large

Figure 7.1: EnKF update & spurious long-range correlation effect.

estimated. In the Fig 7.1, we observe that for a relatively large number of
measurements (shown as black dots), we clearly see that the field far from
the measurement locations has been incorrectly updated due to the fact
that we have used smaller number of ensemble (Fig. 7.1b). As soon as we
have very large ensemble, the true field is recovered (Fig 7.1c). In paper C,
we concluded that the number of ensemble members has to be much larger
(ten times or more) than the number of measurements to avoid the spurious
correlations and obtain a good solution. Furthermore, it has been shown
by van Leeuwen [148], that such errors tend to lead to systematic under
estimation of model error variances, and ultimately to filter divergence,
which in ensemble filter is accompanied by ensemble collapse [8] [73].

The power of EnKF is a direct consequence of the ability to approxi-
mate the entire covariance matrix from an ensemble that is often orders
of magnitude smaller than the number of the state variables. As it has
been shown in the Eq. (5.25), the ensemble representation of the error
covariance matrix of observations can be written as:

Ce
εo
=

E ET

Ne − 1
. (7.1)

The rank of the matrix Ce
εo

k
, is less than or equal to the number of ensemble

members, and consequently, the number of perfect data that can be assim-
ilated in a standard EnKF is severely limited. The updates of the standard
EnKF are also restricted to the subspace spanned by the members of the
forecast ensemble (rank less or equal to Ne), and the assimilation of a per-
fect observation removes one degree of freedom from the ensemble [94].
The problem of rank deficiency is most significant for problems with large
amount of independent data, such as 4D seismic [3].
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7.2 Efficient Sub-space EnKF Formulation

One suggestion for dealing with the computational efficiency and rank
issues is to use a subspace EnKF inversion scheme [60] [131], where data
mismatches and simulated measurement errors are projected onto the sub-
space, Ls spanned by the principal left singular values of the measurement
of the ensemble perturbations S, shown in Eq. 5.28. First, we compute the
singular value decomposition of S as

S = UΣV T, (7.2)

with U ∈ Rm×m, Σ ∈ Rm×Ne , and V ∈ RNe×Ne . If there are p, non-zero singular
values and Σp, is the p × p, diagonal matrix with non-zero singular value
λ j, as its j-th diagonal entry, then the matrix SST, can be written as:

SST = UpΣ
2
pU

T
p , (7.3)

where Up, is an Ne×p, matrix with j-th column equal to the j-th left singular
vector. In order to avoid loss of rank E, is projected onto the subspace
spanned by columns of Up, and data mismatch terms are also projected
onto this space as shown by Zhao et al. [160]. With this approach and also
by using pseudo-inverse, the analysis equation in Eq. (5.26) can be written
as:

Ψ̂a = Ψ̂ f
(
I + Ŝp

T
(Σp ΣT

p + ÊpÊp
T
)−1D̂

′
p

)
, (7.4)

where Êp, is the projection of the ensemble of the measurement perturba-
tion E onto the subspace Ls, and Ŝp, is the projected measurements of the
ensemble perturbations and D̂p, is the projected ensemble of innovation
vectors [131]. This formulation ensures that the measurement perturba-
tions explain the variance within the ensemble space Ls, and we avoid the
loss of rank pointed out by Evensen [60]. However, there is no assurance
that when using this method, one will obtain realizations of model param-
eters that honor all observed data, and in this case, the estimate of model
parameters may be considerably less accurate than the estimate that could
be obtained by using a larger ensemble size [3].

7.3 Localization Methods

The sensitivity of the EnKF to ensemble size has been extensively inves-
tigated in the literature, with varied results [80] [8]. It is observed that



78 EnKF and Large Number of Measurements

because the increments derived from ensemble-based schemes, without
localization, are a linear combination of ensemble perturbations, it is es-
sential for a successful ensemble-based assimilation that the ensemble ad-
equately spans the model sub-space [59]. A possible solution to situations
when only a small ensemble is feasible is the use of a technique called
localization [106]. Localization is typically achieved either by masking of
covariances between distant elements of the model state vector [73] [79]
or by applying filters locally in physical space [113] [61]. The primary
benefit of localization is often considered to be the reduction of spurious
long-range covariances occurring when a small ensemble is used. More
importantly, localization effectively increases the rank of the system. By
increasing the rank of the system, an analysis can be computed that fits the
observations better.

7.3.1 Local Updating (Analysis)

An effective approach to reduce the influence of spurious estimate of cor-
relations on the update is the local analysis (local updating) [9] [132]. In the
simplest form of the local analysis, one would update all the components
of the state vector associated with simulator grid lock i using all data in
some local neighborhood Ni of grid block. If the neighborhood includes all
grid blocks in the simulation model, the local updating is equivalent to the
standard EnKF. The degree of approximation introduced by local analysis
is dependent on the range of influence defined for the observations. In
the limit when this range becomes large enough to include all the data, for
all the grid points, the solution becomes identical to the standard global
analysis [62].

The actual algorithm can be explained as follows [61]: we first con-
struct the input matrices to the global EnKF, i.e., the measured ensemble
perturbations S, the innovations D

′
, the measurements perturbations E, or

the measurement error covariance matrix, Cεε. We then loop through the
model grid, and for each grid point, e.g. (i, j) for a two dimensional model,
we extract the rows from these matrices corresponding to measurements
that will be used in the current update, and then compute the matrix X(i, j)

which defines the update for grid point (i, j). The analysis at grid point
(i, j), i.e. Aa

(i, j), becomes

Ψa
(i, j) = Ψ(i, j)X(i, j)

= Ψ(i, j)X +Ψ(i, j)(X(i, j) − X), (7.5)

where X is the global solution, while X(i, j) becomes the solution for a local
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(a) Local update stencil (b) Ce
ψ (c) Local update of Ce

ψ

Figure 7.2: Local updating procedure for Ce
ψ.

analysis corresponding to grid point (i, j) where only the nearest measure-
ments are used in the analysis. Thus, it is possible to compute the global
analysis first and then add the corrections from the local analysis if these
are significant [61]. In Fig. 7.2a, we observe a possible local update stencil
in the parameter grids; for us, the region of interest is the circular area.
Local scheme assumes that only observation data in the designated region
would impact state variable within the same region. The effect of this
choice of local area can be seen on the update of Ce

ψ, see Fig. 7.2c. The Fig.
7.2 and also the Fig. 7.3 are taken from the work of Pavel Sakov [122]. In
case for the global analysis scheme, we have only one region, and hence, at
the limit when this range of local analysis becomes large enough to include
all the data, for all the grid points, the solution becomes identical to the
standard global analysis. In paper B, we have introduced a localization
strategy based on a combination of a local and a global analysis scheme.
The global and the local analysis are used to assimilate the production and
4D seismic data respectively. The local scheme assumes that seismic data,
within a given local analysis region, is influenced by only variables in the
same region. This approach is different than the distance-based localiza-
tion as proposed by Skjervheim et al. [132], in the sense that we are using
a certain region of influence, instead of using local update centered on a
single grid cell.

Modified EnKF Analysis Scheme Based on Local Update

From basic EnKF formulation in Eq. (5.28), the ensemble representation of
the analysis equation can be written as:

Ψ̂a
k = Ψ̂

f
k + C

e, f
Ψk

HT
k (HkC

e, f
Ψk

HT
k + Cεo

k
)−1(di

k −HkΨ̂
f
k ). (7.6)
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This equation of analysis step is used as input to the local EnKF scheme,
where seismic data are assimilated. In the local scheme, only data from
a local region is applied when updating the state vector in a given grid
cell. Hence, the seismic data influencing the analysis for grid cell l, is
denoted by dsl ∈ Rmsl , and extracted by matrix Ll, which includes only
zeros and ones and picks the seismic data which within this prescribed local
region. Correspondingly, the local observation equation can be written as
following Skjervheim et al. [132]

dsl = H̃slΨ̃l + εsl εsl � Nmk(0,Cεsl), (7.7)

where H̃sl = LlH̃s, εsl = Llεs, and the error covariance matrix is given by
Cεsl = LlCεsL

T
l .

Defining the local representation of the seismic measurements of the
ensemble perturbations, Ssl ∈ Rmsl×Ne , as

Ssl = H̃slΨ̂
a′
p = LlH̃s(Ψ̂a

p − ¯̂
Ψa′

p ), (7.8)

and the ensemble innovation vectors D
′
sl ∈ Rmsl×Ne as

D
′
sl = Dsl − H̃slΨ̂

a′
p = Ll(Ds − H̃sΨ̂

a′
p ), (7.9)

and the matrix Gsl ∈ Rmsl×msl as

Gsl = SslS
T
sl + (N − 1)Cεsl

, (7.10)

finally, the local analysis equation at grid point l becomes
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sl) (7.11)

= Ψ̂a
p,l(I + ST

slG
−1
sl D

′
sl)

= Ψ̂a
p,lXl,

where the ensemble matrix conditioned to production data at the same
grid Ψ̂a

p,l, is used as forecast. The matrix Xl ∈ RNe×Ne , can be written as

Xl = I + ST
slG
−1
sl D

′
sl, (7.12)

where we have used that 1NST
sl ≡ 0. By solving the local analysis equation

in Eq. (7.11) for each grid cell in the reservoir, we obtain the global analysis
ensemble conditioned to both production and seismic data.
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(a) Correlation matrix, Ω (b) Ce
ψ (c) Ce

ψ,ω = Ω ◦ Ce
ψ

Figure 7.3: Covariance localization of Ce
ψ.

The benefit of using a local scheme is that the ratio between the dimen-
sion of the model state space and the ensemble size is smaller than for a
standard global analysis in the EnKF update, and this allows for a larger
flexibility to obtain different model solutions, since the analysis will use a
different combination of ensemble members for each grid point [132]. The
local scheme might also be more advantageous when many observations,
especially with long range correlated errors, are assimilated. A potential
disadvantage of the local scheme is that nonphysical modes may occur in
the analysis fields, because the updates are performed independently in
each local region, especially when observations with a fairly high white
noise are assimilated. It is then required that a large influence region is
used in the local update to preserve the smoothness of the analysis fields
[62].

7.3.2 Covariance Localization

An effective implementation of the localization can also be achieved by
multiplying the ensemble-based estimate of the covariance element wise
by a compactly supported positive definite matrixΩ, to produce a localized
covariance estimate Ce

ψ,Ω = Ω ◦ Ce
ψ. The element-wise product of matrices

are known as Schur or Hadamard product. Houtekamer and Mitchell [79]
simply applied a distance cutoff to the Kalman gain so that only model
parameters within a critical distance of the observation were updated, see
Fig. 7.3. In actual EnKF applications, the covariance matrix for the model
and state variables is never directly computed or even stored, and hence,
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the localization is typically preformed on components:

[(Ω ◦ Ce
ψ)HT][H(Ω ◦ Ce

ψ)HT + Cd
ψ]−1 =

[(ΩH) ◦ (Ce
ψHT)][(HΩHT) ◦ (HCe

ψHT) + Cd
ψ]−1.

(7.13)

Although the above relationship is not valid for arbitrary H, it is valid
for the block identity matrices typically used in the EnKF for augmented
state vectors. Most of the practitioners who use localization appear to have
chosen to use the fifth-order compactly supported correlated function of
Gaspari and Cohen [67] for Ω to eliminate spurious correlations. Instead
of using one particular correlation function for localization, Furrer and
Bengtsson [65] consider the problem of estimating an optimal distance-
dependent localization function. This approach involves the minimiza-
tion of the difference between true covariance matrix and the localized
ensemble estimate of the covariance. Devegowda et al. [40] proposed
a covariance localization method for reservoir flow that uses sensitivities
from the streamline simulation method to quantify the region of influence
of model parameters on the observed data. Trani et al [146] used this ap-
proach based on covariance localization and obtained promising results
for their synthetic case and they have updated parameters conditioned to
seismic data as well. However, it is not clear how well covariance localiza-
tion can work when the prior covariance has long-range correlations, see
Aanonsen et al. [3].

Inflation and Adaptive Localization

A covariance inflation procedure [12] can be used to counter the variance
reduction observed due to the impact of spurious correlations as well
as other effects leading to under estimation of ensemble variance. The
inflation factor is used to replace the forecast ensemble according to the
equation shown in Evensen [62]:

Ψ j = γ(Ψ j −Ψ) +Ψ, (7.14)

with the inflation parameter γ, slightly greater than one (typically 1.01)
and Ψ, is the mean of the ensemble. The inflation parameter is a tuning
parameter and optimally it is best estimated adaptively. The need for
inflation depends on the use of a local versus global analysis scheme, and
the use of a local scheme can, to a large scale, reduce the necessity of using
an inflation parameter [62].
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In adaptive localization methods, the assimilation system itself is used
to determine the localization strategy. Such algorithms are useful since the
dynamical covariance functions change in space and time, and the spurious
correlations depend on ensemble size [62]. The hierarchical appro¡ch by
Anderson [10] is based on the online computation of a flow-dependent
moderation function and Monte Carlo method is used to dump long-
range and spurious correlations. Although this approach is statistically
consistent, it is optimized for small ensemble and may become sub-optimal
when used with the full ensemble including all realizations. An alternative
online localization scheme is known as SENCORP (Smoothed Ensemble
Correlations raised to a Power) [21] which computes a flow-dependent
moderation function to dump the spurious correlations. The idea is that
the moderation functions can be generated from a smoothed covariance
function, which when raised to a power, will dampen small correlations
[62].





Chapter 8

Conclusions and Further
Investigations

We have presented a seismic history matching work flow based on the
ensemble Kalman filter (EnKF) for continuous model updating with both
production and 4D seismic data. One objective of this project is to per-
form a through sensitivity study of the effects of different types of 4D
seismic data in EnKF for a realistic synthetic reservoir model. We have
also investigated the issues of large number of measurements and spuri-
ous correlations in EnKF model updating. For the real field case study,
we have proposed a localization strategy based on a combined local and
global analysis schemes. It is already mentioned that 4D seismic history
matching in EnKF framework is a challenging task. Each of the preceding
chapters provided the testimony of the relevant challenges for each of the
different paradigm of field of applications that has to be dealt with. Still
a daunting endeavor, we made an effort to tackle various aspects of his-
tory matching for our real field case study. The research findings show
promising results, but to reach concrete conclusions, further investigations
are necessary. In the following, we will describe the summary and ac-
complishments of this work first and then, we will provide directions for
further research activities based on the findings and experiences from this
PhD work.

8.1 Summary and Results

In spite of several challenges, e.g., issues of integration of large amount of
4D data and localization, the initial EnKF applications for 4D seismic data
provided promising results. Still, examples of 4D seismic data integration
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in EnKF framework for real field cases are virtually non-existent except
few mentioned recent works. In this regard, this work makes an endeavor
to analyze some of the important issues relevant to real field case seismic
history matching using EnKF. In pursuit of this goal, we have implemented
the rock physics model and forward seismic modeling tool for the realistic
synthetic case. For the real field case, the additional task of interpretation of
inverted seismic data, and sensitivity study of the rock physics model with
respect to production effects were also performed. The next important task
was to integrate all these disparate modeling tools in the EnKF framework
which in our case was the Ensemble Reservoir Tool developed at Statoil
ASA. At the end of this project, we have an integrated EnKF framework
to update our reservoir model with both production and inverted seismic
data.

One of the primary objectives of this project was to ascertain an optimal
level of 4D seismic data integration in the history matching loop for the
synthetic case. We made a good progress in this direction; for most of
the cases of reservoir characterization, we experienced that the integration
of seismic data in the elastic domain provided better results than using
seismic data at the amplitude level. This may be due to the measurement
error used, and hence, further investigations are necessary to ascertain
the appropriate level of seismic data integration. The effect of vertical
resolution of seismic modeling on the quality of history matching was
an insightful finding. The linearity assumption of the forward modeling,
and the idea of working only in depth simplified our seismic modeling
tool to a great extent. Initial attempts were also made to consider fault
multipliers and vertical transmissibilities as uncertain parameters. But
because of large number of faults in the reservoir, and lack of related
proper sensitivity studies, it was difficult to analyze the effects of these
parameters.

For the real field case study, we intended to history match our compli-
cated reservoir model with inverted impedance data. In spite of simplifi-
cations related to scaling and filtering of PEM models, the initial matching
for seismic data are promising. All thorough the EnKF experiments, we
used an ensemble of 100 realizations, and used an efficient subspace EnKF
implementation. The localization strategy proposed for this field should be
regraded as a preliminary attempt to overcome the spurious correlations
effects of using finite ensemble size. Even with a very simple local analysis
scheme, we were managed to reduce some spurious correlation effects.
This showed that localization is of great importance when we integrate 4D
seismic data in EnKF. Further investigations are necessary to determine a
robust local analysis scheme for this field.
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8.2 Further Investigations

In all of the EnKF experiments presented in this work, we have used an
efficient subspace EnKF implementation. The relationship between reser-
voir parameters and measurements, especially seismic data, are non-linear,
and hence, the linearity assumption in standard EnKF introduces approx-
imations. A natural extension is to use some form of iterative Ensemble
filters. The iterative EnKF based on RML (randomized maximum likeli-
hood) proposed by Gu and Oliver [72] can be considered as a good start
to explore the possibilities of using iterative EnKF in case of using seismic
data.

For the coupled reservoir-seismic framework, we have considered same
reservoir grid for both forward seismic modeling and geo-modeling. In
reality, this is not appropriate as all these three paradigms have different
grid resolutions. Seismic attributes are computed using the PEM on the
fine grid includes high frequency term. On the other hand, seismic data are
inherently acquired in a band limited frequency domain. Hence, synthetic
attributes computed by PEM should be filtered, see Roggero et al. [119].
In order to be consistent to condition reservoir models with different data
types, we should use appropriate up-/down-scaling techniques.

For seismic modeling, we have applied a different procedure, where
all the calculations, including the convolution, are performed in depth.
We also neglected over- and under-burden effects. This will of course
not be possible in a real case. Hence, a proper depth-to-time conversion
should be made in order to perform wavelet convolution in time. For
a complicated reservoir like ours, one should use more accurate finite-
difference modeling (FDM) [150] or ray-tracing methods [30].

In order to reduce the spurious correlation effects and collapse of the
updated ensemble, different localization strategies should be explored.
One option is to use a covariance localization method for reservoir flow that
uses sensitivities from the streamline simulation method to quantify the
region of influence of model parameters on the observed data as proposed
by Devegowda et al. [41]. A covariance inflation procedure [12] can also
be used to counter the variance reduction observed due to the impact of
spurious correlations.
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