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Introduction

The reservoir characterization is the process of building a model by integration
of all data available at different stages of development. The dynamic reservoir
model permits us to evaluate different possible exploration scenarios [6]. During
the production life of the field, history matched models are required to improve
forecast reliability. For a given set of rock properties, a reservoir simulator (fluid
flow modeling) provides the dynamic behaviour of fluids in place at different dates.
From rock and fluid properties, it is also possible to simulate the seismic response
of the saturated medium. This is the main goal of the so called petro-elastic model
(PEM) or the rock physics model. A rock physics model performs the important
role to link the elastic parameters which govern wave propagation, and the rock
and fluid properties which govern fluid flow. The rock physics model calculates
the elastic properties (e.g. acoustic impedance and Poisson’s ratio) from bulk and
shear modulus of mineral constituents and rock frame and also from the densities
of the fluid mixture. The rock physics model is often composed of empirical laws
calibrated to laboratory measurements and analytical formulas. In order to perform
the fluid substitution based on Gassmann equations, we have used the forward
petro-elastic recipe from Statoil ASA for a North sea field. The 3D petro-elastic
model uses conventional existing rock physics models calibrated to well log data
measurements. We have implemented the rock physics recipe first in Matlab and
then in the Eclipse petro-elastic module [5].

From Reservoir to Seismic: Forward Modeling

The low frequency Gassmann theory predicts the resulting increase in effective bulk
modulus Ksat, and shear modulus Gsat, of the saturated rock through the following
equation:

Ksat = Kdry +
(1 − Kdry

Ks
)2

φ
K f luid
+

1−φ
Ks
− Kdry

Ks
2

; Gsat = Gdry, (1)

where K, is the effective bulk modulus with subscript referring to dry rock frame,
minerals and fluid mixture. G, is the corresponding shear modulus with different
constituents and φ is the porosity. The effective density ρsat, can be defined as a
volume average of the mineral density and the fluid density. The acoustic properties
of saturated porous media, e.g., isotropic compressional velocity VP, and shear

wave velocity VS, can be computed as VP =
√

Ksat+(4Gsat/3)
ρsat

, and VS =
√

Gsat
ρsat

. The
acoustic impedance can be defined as Ip = ρsatVP. Gassmann’s equation assumes
a homogeneous mineral modulus and statistical isotropy of the pore space but is
free of assumptions about the pore geometry. Most importantly, it is valid only at
sufficiently low frequencies such that the induced pore pressures are equilibrated
throughout the pore space, i.e., there is sufficient time for the pore fluid to flow and
eliminate wave-induced pore pressure gradients [9]. In order to model changes in
seismic response that result from fluid changes, we first need to know the initial and
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target fluid properties. The effective density, ρsat may be defined as a volume average
of the mineral density and the fluid density and hence, the acoustic properties of
saturated porous media, e.g., isotropic compressional and shear wave velocities and
acoustic impedance can be computed from these equations [1]. The effect of reservoir
property changes on acoustic impedance, Ip has a combined response to pressure and
saturation change. The polarity of the response depends on whether the pressure is
increasing or decreasing and the difference between the fluid properties at the start
and end of the period. Statistically, elastic properties decrease as porosity increases
[12]. From lithology point of view, unconsolidated sands may have high Vp/Vs ratio.
Full saturation of a liquid in a rock increases the compressional seismic properties and
shear impedance but decreases Vs, resulting in increased Vp/Vs. Seismic properties
in all rocks increase as effective pressure (difference between over-burden and pore
pressures) increases [7].

ECLIPSE Petro-Elastic Model Builder

The Petro-elastic Model option in ECLIPSE [5] provides the ability to generate simu-
lated seismic-derived quantities (such as acoustic impedance) in each active grid cell.
The acoustic response of the reservoir is a combination of the acoustic responses of
the different rocks and fluids that constitute the reservoir. In the Petro-elastic model,
conventional simulation properties (such as pressure, fluid density, fluid saturations
and effective porosity) are used to calculate the effective acoustic response of the
fluids. This is then combined with the acoustic response of the rocks (both frame
and minerals) to give the overall acoustic response of the reservoir. The acoustic
response is calculated and output for each grid cell in the simulation model.

Effective porosity The calculation of the effective porosity, φeff for a grid cell is
based on the porosity at the reference pressure, φ0, in the grid cell and the
effects of rock compressibility or rock compaction, depending on which type of
pressure effect is present in the model.

Mineral bulk and shear modulus In ECLIPSE petro-elastic model, the mineral
bulk modulus, Ks are calculated through the following polynomial function in
terms of effective porosity, φeff:

Ks = C0 + C1 φeff (2)

Here, C0 and C1 are respectively zeroth and first order polynomial coefficient of
effective porosity in calculation of the effective bulk modulus of the minerals.
The mineral shear modulus is given as a direct input in the ECLIPSE data file.

Dry rock bulk and shear modulus For the dry rock frame, ECLIPSE provides a
very flexible framework. We can choose any model for our choice to calculate
dry rock properties; all we have to provide is a specified tabular functions of
effective pressure and polynomial coefficients used to fit the dry rock properties
in terms of effective porosities for each petro-elastic region [5]. When the dry
frame bulk modulus, Kdry is independent of the mineral bulk modulus, it is
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expressed in terms of the following polynomial regression equation in effective
pressure and effective porosity:

(Kdry)α =
7∑

i=0

{CK,i(P) . φi
eff} (3)

= CK,0(P) + CK,1(P) . φ1
eff + CK,2(P) . φ2

eff + · · ·
where α is s specified constant (usually -1 or +1) and CK,i are specified tabular
functions of pressure. Both α and the tabular functions are supplied directly
as an input for each petro-elastic region as part of the petro-elastic model
definition in the simulation model. Similar set of equations exist for the dry
shear modulus:

(Gdry)α =
7∑

i=0

{CG,i(P) . φi
eff} (4)

= CG,0(P) + CG,1(P) . φ1
eff + CG,2(P) . φ2

eff + · · ·
Both α and CG,i are supplied directly as an input for each petro-elastic region
as part of the petro-elastic model definition in the simulation model.

Effective Pore Fluid Properties ECLIPSE calculates the modulus and densities of
each of the individual phases in every grid cell using the empirical equations
given by Batzle and Wang [2]. In order to estimate the fluid bulk modulus, Kfl,
it uses the generalized Wood’s law:

1
Kfl

=
Sw

Kw
+

So

Ko
+

Sg

Kg
(5)

where Kw/o/g is the bulk modulus of the water/oil/gas in each of the grid cells.
In addition, Eclipse provides an option to incorporate the so called patchy
saturation concept [3].

Fluid Substitution ECLIPSE petro-elastic model exploits the standard Gassmann
equation to perform the fluid substitution (see eqn. 1). Once we have found
the Ksat, we can calculate various seismic signatures, e.g., acoustic impedance.
Eclipse uses the standard formulae to calculate seismic properties.

Link Between PEM Recipe & ECLIPSE

The present rock physics recipe of the North sea field estimates the dry rock prop-
erties from porosity and volume of clay for a given effective stress datum. The
variations in elastic properties with changes in effective stress (because of changes
in pore pressure) were predicted from empirical equations calibrated to velocity -
stress data derived in the laboratory. The highly productive sands of this field are
poorly consolidated and hence, a friable-sand or unconsolidated-line model is used
to model dry rock frame [9]. In particular this rock physics model incorporates
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the Hashin-Shtrikman lower and upper bounds for solid constituents [8], modified
Hertz-Mindlin-Hashin-Shtrikman (HMHS) model for the dry rock properties [4],
Batzle and Wang equations for pore fluid properties and Gassmann equations for
fluid substitutions. The basic difference between the provided rock physics recipe
and the ECLIPSE built-in PEM model lies in the calculation of the pressure corrected
Kdry and Gdry modulus. Once the necessary polynomial regression coefficients, e.g.,
CK,i(P) have been calculated separately, we are ready to give these coefficients as
tabular function in ECLIPSE data file.

Step 1

The rock physics recipe uses a correlation model used to calculate volume of clay
from porosity: Vcl = 0.7 − 1.58 ∗ φ. The bulk and shear modulus of the solid
phases Ks and Gs are calculated from Kqtz, Kclay, Gqtz, Gclay and Vcl using the average
between upper and lower Hashin-Shtrikman bounds (at 0 porosity).

Kuhs = Kqtz +
Vcl

(Kclay −Kqtz)−1 + (1 − Vcl)(Kqtz +
4
3Gqtz)−1

Klhs = Kclay +
1 − Vcl

(Kqtz −Kclay)−1 + Vcl(Kclay +
4
3Gclay)−1

Ks = 0.5 ∗ (Kuhs +Klhs) (6)

Guhs = Gqtz +
Vcl

(Gclay −Gqtz)−1 +
2 (1−Vcl)(Kqtz+2Gqtz)

5 Gqtz(Kqtz+
4
3 Gqtz)

Glhs = Gclay +
1 − Vcl

(Gqtz −Gclay)−1 +
2 Vcl(Kclay+2Gclay)

5 Gclay(Kclay+
4
3 Gclay)

Gs = 0.5 ∗ (Guhs +Glhs) (7)

In ECLIPSE petro-elastic model, the mineral bulk modulus are calculated through the
following polynomial function in effective porosity: Ks = C0 + C1 φeff , where C0 and
C1 are respectively zeroth and first order coefficient of effective porosity in calculation
of the effective bulk modulus of the minerals. The mineral shear modulus is given
as a direct input in ECLIPSE data file. We can implement the Hashin-Shtrikman
average bounds for solid phases separately from ECLIPSE and then, we can use 1st
order polynomial regression fit in order to calculate the necessary coefficients C0 and
C1. For a range of representative porosities, we can perform numerical calculations
to get the average Hashin-Shtrikman bounds for solid phase.

Step 2

The effective pressure, Peff in the rock physics recipe is calculated from the pore
pressure (Ppore) and the overburden pressure, Pover. The relation that is used:

Peff = Pover − η ∗ Ppore

Peff = (−2.6 + 0.0214 TVD) − Ppore (8)

4



here η is coefficient of internal deformation. It is common to assume η is close to
one. The overburden pressure is calculated from the TVD (True Vertical Depth) from
ECLIPSE. With a chosen range of representative pressure values, we can incorporate
pressure corrections using Hertz-Mindlin contact theory [10] (described below: step
3) and subsequently estimate the regression coefficients, CK,i(P), CG,i(P) used in
ECLIPSE input data file.

Step 3

The main effective stress and pore pressure in the porous media is explained by the
Hertz-Mindlin model. In the provided rock physics recipe, the following equations
are derived from Hertz-Mindlin contact theory:

KHM = Kφmax

(
Peff
Pref

)κ
(9)

GHM = Gφmax

(
Peff
Pref

)κ
(10)

Here, Kφmax and Gφmax are respectively high porosity bulk and shear modulus at
reference pressure, Pre f and the pressure sensitivity exponent, κ is fitted to measured
well log data of the North sea field at different production time. This Hertz-Mindlin
equation is in accordance with the actual theoretical formulation by Dvorkin [4] but
expressed in terms of reservoir-specific parameters Kφmax and Gφmax (explained in
Table 1). In ECLIPSE petro-elastic model, there is not any concrete keyword which
may implement this pressure corrections based on effective pressure. Once we have
calculated the KHM and GHM for a set of effective pressure, we can now calculate the
effective dry moduli of the solid phase for porosities below the critical porosity, φc

using a modified Hashin-Shtrikman upper and lower bound iteratively.

Step 4

In the rock physics recipe, the effective dry bulk and shear modulus at the given
porosity are calculated from the lower Hashin-Shtrikman bound between two end
members: zero porosity end member has the modulus of the solid phase (calculated
at step 1) and the high porosity-pressure dependent end member calculated in step
3. Thus the bulk modulus, Kdry), shear modulus, Gdry and density, ρdry of the dry
unconsolidated sand mixture are given by:

Kdry =

⎡⎢⎢⎢⎢⎣ φ/φc

KHM +
4
3GHM

+
1 − φ/φc

Ks +
4
3GHM

⎤⎥⎥⎥⎥⎦
−1

− 4
3

GHM (11)

Gdry =

[
φ/φc

GHM + z
+

1 − φ/φc

Gs + z

]−1

− z (12)

where

z =
GHM

6

(
9KHM + 8GHM

KHM + 2GHM)

)
.
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The density, ρdry of the dry unconsolidated sand mixture are given by:

ρdry = ρqtz + Vcl ∗ (ρclay − ρqtz) (13)

In order to make both the rock physics recipe and ECLIPSE petro-elastic model
comparable, we have to perform polynomial curve fitting of the calculated dry rock
modulus with respect to effective porosity and effective pressure. One way of doing
this is to use the modified heuristic Hashin-Shtrikman bounds for dry frame (above
equations) as the input for the polynomial curve fitting. We can fit these calculated
values bulk modulus values by a suitable polynomial function of the maximum
order of 7 (restricted by ECLIPSE petro-elastic model). For a specified effective
pressure (as explained in step 2), we can calculate a series of Kdry values depending
on the effective porosities used all through. For example, if we use any Peff value
to calculate KHM and subsequently Kdry, we can describe the calculated polynomial
regression equation of the 2nd order as:

Kdry =

2∑
i=0

{CK,i(P) . φi
eff}

= CK,0(P) + CK,1(P) . φ1
eff + CK,2(P) . φ2

eff (14)

In this way we can use the rock physics recipe to calculate the necessary input, e.g.,
CK,i(P) for ECLIPSE petro-elastic model. Similarly, we can calculate the effective dry
shear modulus for the frame by combining both rock physics recipe and Eclipse:

Gdry =

2∑
i=0

{CG,i(P) . φi
eff}

= CG,0(Peff) + CG,1(P) . φ1
eff + CG,2(P) . φ2

eff (15)

Step 5

The modulus of the fluid mix, in the rock physics recipe, is calculated from Sw, So

and Sg using Wood’s formula in the rock physics recipe:

1
K f l

=
Sw

Kw
+

So

Ko
+

Sg

Kg

The fluid phase density is given by:

ρ f = Swρw + Sgρg + Soρo

In ECLIPSE petro-elastic model, Wood’s equation can be used as well with the proper
choice of an input parameter of the keyword PECOEFS [5]. ECLIPSE also provides
the scope to incorporate patchy saturation option [3].
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Step 6

Once Ks, Kdry and K f luid have been calculated, we can use the Gassmann fluid
substitution which is performed in order to predict the modulus of the saturated
rock from the dry rock modulus predicted in step 4. Both the rock physics recipe
and ECLIPSE petro-elastic model use the same Gassmann equation, see Eqn. (1).
The fluid mixture saturation is calculated according to this equation:

ρsat = φ ∗ ρ f luid + (1 − φ) ∗ ρdry (16)

Step 7

The elastic parameters are calculated from Ksat, Gsat and ρsat. Both the recipe and
ECLIPSE petro-elastic model use the same equations in order to calculate elastic
properties for saturated rock samples:

P-wave velocity, VP =
√

Ksat+(4Gsat/3)
ρsat

S-wave velocity, VS =
√

Gsat
ρsat

Acoustic Impedance, IP = ρsatVP Poisson’s ratio, PR =
V2

P−2V2
S

2V2
P−V2

S

An increase in IP generally indicates that an oil reservoir is drained by water and
a decrease of Poisso’s ratio refers to the increase of gas saturation. But these con-
clusions are not trivial and hence, other factors must be considered for the proper
interpretation from the saturated seismic properties.

Rock Physics Model Example in ECLIPSE

The important reservoir properties for the North sea field is shown in Table 1. We
have used these parameters in the framework of rock physics formulation based on
the combined recipe and ECLIPSE petro-elastic model.

Parameter Name Value from Statoil
Mineral bulk mod. of quartz, Kqtz 37
Mineral shear mod. of quartz, Gqtz 44
Mineral bulk mod. of clay, Kclay 14.9
Mineral shear mod. of clay, Gclay 1.95
High porosity end member, φmax 0.4
Reference pressure, Pre f 8.8 MPa
High porosity bulk mod. at Pre f 3.31
High porosity shear mod. at Pre f 2.84
Pressure sensitivity exponent, k 0.233
Salinity 43000 in ppm
Temperature, ToC 72

Table 1: North sea reservoir properties (modulus in GPa)
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The North sea reservoir quality is generally very good with porosities in the range
of 30%-35%. For the input porosity field, we have used a representative porosity
distribution for a sandstone reservoir with porosity values between 0 and 0.3. The
volume fraction, Vcl of the this field has been calculated in accordance to the empirical
relation with porosity (step 1).

Solid Properties

We have used the Hashin-Shtrikman bounds for the solid phases and calculate Ks and
Gs. The distance between the upper and lower bounds depends on the differences in

(a) Ks (GPa) (b) Gs (GPa)

Figure 1: Hashin-Shtrikman bounds for solids (in terms of Vcl)

elastic moduli for the constituents. Widely spaced bounds can be seen for the Shear
modulus when mixing sand and clay. Whereas for the bulk modulus the bounds a
quite narrow as we mix sand and clay which has similar values of bulk modulus.
Figure 1 shows the variation of Ks and Gs with respect to volume of clay contents

(a) Ks (GPa) (b) Gs (GPa)

Figure 2: Hashin-Shtrikman bounds for solids (in terms of φ)

and Figure 2 explains this variation in terms of porosity. As expected, the solid bulk
modulus values increase as the porosity increases; in case of clay content, the inverse
effect is observed.
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If we perform 1st order polynomial fit of these Ks values in terms of porosities,
we calculate the zeroth and 1st order coefficients for ECLIPSE input: C1 = 33.0626
GPa and C0 = 19.0851 GPa (Fig. 3). For the input Gs in Eclipse, we have chosen an

Figure 3: Polynomial Fit of Ks for rock physics recipe and ECLIPSE

average value of porosity as 0.2 and the corresponding Gs value is obtained from
the average Hashin-Shtrikman curve Gavg which is approximately equal to 15 GPa
(Fig. 2b).

ECLIPSE Keyword for Solids

Based on information provided in the rock physics recipe and the before mentioned
combined recipe-ECLIPSE formulations, we can describe the ECLIPSE input param-
eters for the keyword PECOEFS [5] as

Salinity T ρmin C1 C0 CK CG Gs α e Brie

43000 72 2650 330626 190851 0 0 150000 1 1 0

Table 2: PECOEFS in ECLIPSE data file (Coefficients in Barsa)

Dry Frame Properties

In order to incorporate pressure effect on dry frame modulus, we have chosen a range
of representative pore pressure values starting from 100 Barsa to 350 Barsa. Thus
we have this set of values for pore pressure: Ppore = 100, 150, 200, 250, 300, 350 Barsa.
In our case, the reference reservoir TVD value is equal to 1900 m. With these values
defined, we have computed the corresponding effective pressures, Peff. For each
of these Peff, we have performed the pressure corrections based on StatoilHydro
recipe. Thus we have calculated pressure dependent Kdry and Gdry using both mod-
ified heuristic lower Hashin-Shtrikman bounds and Hertz-Mindlin contact theory.
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(a) Kdry (GPa) (b) Gdry (GPa)

Figure 4: Pressure dependent dry frame modulus

Figure 4 illustrates the modified Hashin-Shtrikman lower bound curves at varying
confining pressure for unconsolidated sand. In figure 5(a), the Kdry values increase
alongside the increased effective pressure. Also the variation of the dry frame bulk
modulus is inversely proportional to the porosity for each of the different effective
pressure value. In case for the dry shear modulus, we see higher Gdry values for
increased effective pressure. Now for each of the effective pressure values, we can
fit both the Kdry and Gdry with respect to porosity and in this way we can calculate
the tabular pressure dependent coefficient values CK,i(P) and CG,i(P) for the ECLIPSE
input data file.

ECLIPSE Bulk Modulus Table: PEKTABx

We have used 3rd order polynomial to fit Kdry and φ values as follows:

Kdry =

3∑
i=0

{CK,i (Peff) . φi
eff}

For an illustration, at 1900 m over-burden pressure, Pover = 380.06 Barsa and thus
with a varying pore pressure, we have a set of effective pressure values such as Peff
= 280, 230, 180, 130, 80, 30 Barsa. Now we perform step 3 and step 4 sequentially and
then employ 3rd order polynomial fit in order to calculate the necessary coefficient,
CK,i(P) at a specific Peff. In order to check how good is our polynomial fit, we have
chosen two extreme values of Peff such as 280 and 30 Barsa. Figure 5(a) illustrates
the curve fit for Peff. Similar trends are observed for other effective pressure values
as well. At this point we can tabulate all the polynomial coefficient values for each
of the Peff values. Here the units for the CK,i(P) values are in Barsa (standard in
ECLIPSE).
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(a) Kdry (GPa) (b) Gdry (GPa)

Figure 5: Comparing Rock physics Recipe and ECLIPSE: Kdry & Gdry

ECLIPSE Shear Modulus Table: PEGTABx

We have used 3rd order polynomial to fit Gdry and φ values as follows:

Gdry =

3∑
i=0

{CG,i (Peff) . φi
eff}

With the previously specified Peff values, Now we perform step 3 and step 4 first for
dry shear modulus and then employ 3rd order polynomial fit in order to calculate
the necessary coefficient, CG,i(P) at any specific Peff value. In order to check the
goodness of the polynomial fit, we have chosen two extreme values of Peff such as
280 and 30 Barsa. Figure 5(b) illustrates the curve fit for Peff in the case of Gdry.
Similar trends are observed for other effective pressure values as well. At this point
we can tabulate all the polynomial coefficient values for each of the Peff values. Here
the units for the CG,i(P) values are in Barsa.

Synthetic Example of Saturated Elastic Properties

In our example we have used Archie’s formula [11] to calculate a realistic water
saturation profile based on standard resistivity log parameter values. The Archie
equation takes the following form:

Sn
w =

a
φm ∗ Rw

Rt

Where, Sw is water saturation, n is the saturation exponent, resistivity of the forma-
tion fluid, Rw, rock resistivity of the possible hydrocarbon, Rt, cementation factor, m
and a constant value, a. In our case, we have used: a=1, Rw =1, Rt =265, n =2.9 and
m =1.14. The calculated water saturation profile is displayed in the Fig. 6.
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Figure 6: Representative Water saturation profile

Pore Fluid Properties

We have used the Batzle and Wang empirical relationships for brine, oil and gas
in order to calculate the fluid mixture bulk modulus and density. For example, in
case of Peff = 280 Barsa, we have found these fluid mixture bulk modulus values
for each of the different types of fluid: Kw =2.197, Kg =2.523 and Ko =3.04 GPa.
Then, we have used the Wood’s formula to find the effective fluid bulk modulus,
Kfl. The water saturation, Sw is being calculated using Archie formula and we have
considered the case when we have only oil, the gas saturation considered to be zero.

Pressure Dependent saturated Elastic Properties: No Gas

At this point, we have measured the effective solid properties based on the rock
physics recipe using Hashin-Shtrikman average bounds, Ks, pressure dependent dry
frame modulus by Hertz-Mindlin based modified Hashin-Shtrikman lower bounds,
Kdry and the effective pore fluid properties, Kfl by Batzle and Wang empirical rela-
tionships. Thus, we can use the Gassmann fluid substitution formula (eqn. 1) to

(a) VP, VS (Km/s) (b) Posson’s ratio

Figure 7: Saturated Seismic Signatures Vs. Porosity
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predict the saturated synthetic elastic properties for the field at different effective
pressure. In this case, we have used Peff = 30 Barsa. We have also calculated the sat-
urated compressional and shear velocities, VP, VS and poisson’s ratio, PR for a given
water saturation profile (Fig. 6). We have plotted these elastic properties against
the porosity values in the Fig. 7. Also we have reported the variation of seismic
velocities with respect to water and oil saturation (Fig. 8). From Fig. 7a, it is evident

(a) Oil Saturation (b) Water Saturation

Figure 8: Saturated Seismic Signatures Vs. Saturation

that the both compressional and shear seismic velocities decrease with increased
porosity which is the characteristic V-shape trend for a sandstone reservoir in the
North sea [1]. Also VP > VS and this is the trend along the porosity variation. Fig.
7b describes the Poisson’s ratio variation with respect to porosity. With increased
porosity, the value of Poisson’s ratio decrease for a specific effective pressure. Also
as water replaces oil, the Poisson’s ratio is increased at a later situation where we
have higher water saturation values (Fig. 8b). With a increased oil saturation values,
there is decrease of seismic velocities and this effect can be observed from the Figure
8(a). An opposite situation prevails when oil is replaced by water. Fig. 8b shows the
effect of increased water saturation on the seismic velocities.

Discussion & Comments

In this work, we have calculated synthetic seismic signatures based on a rock physics
recipe. In addition, we have implemented this recipe in ECLIPSE-PEM module. The
goal of this report is to implement the rock physics model so that we can integrate
this PEM modeule in our overall 4D seismic history matching framework.
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