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Introduction 

Background for studies 

Studies of cellular mechanisms of appetite control in fishes are only just beginning. In 2006 

when the work contained in this thesis commenced, only 2 papers were published with a 

specific focus of endocrine mechanisms of appetite control in fishes (Kurokawa et al., 2005; 

Huising et al., 2006a). Considerably more work has been conducted in mammals in 

association with the pathophysiological condition of obesity. Zhang and colleagues (1994) 

were the first to demonstrate a clear link between the absence of the hormone leptin (LEP) 

and severe obesity in mice. The subsequent discovery that both leptin and the appetite 

stimulating hormone ghrelin (GHRL) are also found in teleosts (Kurokawa et al., 2005; Kaiya 

et al., 2003a,b) provided the stimulus for the studies conducted in this thesis. Since 

considerable advancements have been made in the mammalian research field, a brief review is 

provided before discussing the status of research in fish.  

Mammals 

Central regulation of energy homeostasis  

Discoveries in mammals concerning the endocrine control of appetite and growth have led 

to a new understanding of how the metabolic demand for energy is regulated in the central 

nervous system. In mammals, it has been suggested that signals arising from peripheral 

tissues can be systematically divided into two categories; those that are produced in 

proportion to the amount of fat in the body (adiposity signals), and those generated during 

meals to cause satiation (satiety signals) (Woods et al. 1998; Schwartz et al. 2000; Margetic et 

al. 2002; Klok et al. 2007). Central control of food intake and energy expenditure occurs in 

the hypothalamus (Woods et al., 1998; Schwartz et al., 2000). Amongst other nuclei, the 



- 9 -

arcuate nucleus (ARC) is an important integrator of endocrine signals arising from peripheral 

tissues (Morton et al., 2005). ARC contains orexigenic neurons that co-express neuropeptide 

Y (NPY) and agouti-related protein (AgRP) (Ollmann et al., 1997; Baskin et al., 1999a) and 

anorexigenic neurons that co-express proopiomelanocortin (POMC) and cocaine- and 

amphetamine- regulated transcript (CART) (Boston et al., 1997; Ellacott and Cone, 2004). 

The opposing neuropeptide circuits promote feeding and inhibition of energy expenditure and 

food intake and increased catabolism, respectively (Wynne et al., 2005; Gao and Horvath, 

2007; review: Sainsbury and Zhang, 2010). Sophisticated control is augmented through the 

antagonism of each opposing neuropeptide system (Fig. 1).  

Figure 1. Schematic illustration of central nervous pathways involved in the regulation of food intake and 

satiety in mammals. + = agonistic; - = antagonistic; (redrawn after Sànchez-Lasheras et al., 2010 and Katharine 

Stuliff, 2003). 



- 10 -

In mammalian adults, peripheral secretory peptides such as leptin (LEP) from the adipose 

tissue, or ghrelin (GHRL) from the stomach enter the circulation and act via their cognate 

receptors, which are expressed throughout the body tissues, but also in the brain (Mercer et 

al., 1996; Elmquist et al., 1998; Nakazato et al., 2001; Zigman et al., 2006). Signal integration 

occurs in the ARC to regulate nutritional status through the expression of the appetite and 

energy-regulating neuropeptides. Consequently, the LEP-POMC-CART axis is thought to 

control satiety, while the GHRL-NPY-AGRP axis controls appetite (Wynne et al., 2005; Gao 

and Horvath, 2007).  

Actions of leptin and ghrelin 

LEP is a hormonal product of the obese (OB) gene, which is a member of the cytokine 

family expressed primarily by adipose tissue (Friedrich et al., 1995; Ahima and Flier, 2000). 

LEP is also secreted in the brain and other peripheral tissues such as the stomach (Tartaglia et 

al., 1995; Bado et al., 1998). Early experiments revealed that the absence of LEP causes 

extreme obesity in mice (Campfield et al., 1995; Halaas et al., 1995; Pellymounter et al., 

1995). The hypothesised cause was thought to be the ablation of the anorectic signalling 

cascade. For example, anorectic neuropeptides that are upregulated by LEP include POMC, 

CART and corticotrophin- releasing hormone (CRH) (Cowley et al., 2003; Dimeraki and 

Jatte, 2006; Abizaid and Horvath, 2008). The POMC-secreting neurons generate the cleavage 

product α-melanocyte-stimulating hormone (α –MSH), which is thought to be a key mediator 

of the anorectic LEP response (Schwartz, 2001; Gao et al., 2004). Simultaneously, the 

ablation of orexigenic signals occurs through the antagonistic actions of LEP on NPY, 

melanin concentrating hormone (MCH), orexins and AgRP. Consequently, the absence of 

LEP was argued to send the orexigenic pathways into overdrive (Zhang et al. 1994). 
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However, despite the early promise of these results, emerging evidence indicates that the link 

between adiposity and its hypothalamic regulation is more complex than originally envisaged 

(Margetic et al., 2002; Ahima and Osei, 2004).  

There has been an increasing amount of evidence that leptin exerts a pleiotropic effect. 

Multiple peripheral effects of leptin have been recently described, including synthesis of 

sexual, thyroid and growth hormone, as well as regulation of blood pressure, reproduction, 

osteogenesis, hematopoesis and angiogenesis. LEP also plays a regulatory function in 

immunity and in the process of tumorigenesis (reviewed by Himms-Hagen, 1999; Margetic et 

al., 2002; Bjørbæk and Kahn, 2004).  

Contrasting the anorectic effects of LEP, GHRL promotes growth as the endogenous 

ligand of the growth hormone secretagogue receptor (GHSR) (Fig. 2) (Bowers et al., 1984; 

Smith, 2005). In this respect, GHRL not only stimulates the growth hormone (GH) axis 

(Farhy et al., 2007), but also induces feeding and modifies body energy composition 

(Nakazato et al., 2001; Hosoda et al., 2006), as well as modulating the gonadotropic axis 

(Tena-Sempere, 2008). This occurs partly through induction of the NPY and AgRP circuits. 

However, stimulation of NPY or AgRP by GHRL is not an obligate requirement for the 

regulation of energy balance (Qian et al., 2002). Other growth-promoting effects of GHRL 

that are unrelated to appetite occur through stimulation of adipogenesis. This latter effect may 

be mediated through GHSR-independent pathways (Fig. 2) (Tschop et al., 2000; Thompson et 

al., 2004). The observation that GHRL is also expressed in the placenta (Gualillo et al., 2001) 

as well as in the fetal and/or neonatal pancreas (Chanoine and Wong, 2004; Prado et al. 2004; 

Wierup et al. 2002, 2004), pituitary (Kamegai et al. 2001) and hypothalamus (Torsello et al. 

2003) has led some investigators to propose that GHRL developmentally regulates the onset 

of energy homeostatic mechanisms.   
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Figure 2. Schematic diagram of the effect of ghrelin on growth hormone (GH) and energy metabolism in 

adults. AgRP – agouti-related protein; GHRH – growth hormone releasing hormone; GHSR- growth hormone 

secretagogue receptor; NPY – neuropeptide Y; + = agonistic; - = antagonistic (redrawn after Chanoine 2005). 

Leptin signalling transduction  

LEP achieves most of its metabolic effects by interacting with specific receptors (LEPR) 

located in the central nervous system (CNS) (Bjørbæk et al., 1997) and ubiquitously 

distributed in peripheral tissues (Akerman et al., 2002; Buyse et al., 2001; Ebenbichler et al., 

2002; Frank et al., 2000; Goiot et al., 2001; Kim et al., 2000; Lee et al., 2002; Morton et al., 

1999). Although several splice variants of LEPR are known to exist (Chua et al., 1996), signal 

transduction only seems to occur when LEP binds to the long isoform of LEPRb (Ahima and 

Flier, 2000). The long-form receptor regulates multiple intracellular signalling cascades 

(Bjørbæk and Kahn, 2004), including the activation of the Janus kinase (JAK)-2/signal 

transducer and activator of transcription (STAT)-3, mitogen-activated protein kinase 

(MAPK3/1, formerly Erk1/2), and inositol 1,4,5-triphosphate (IP3) pathways (Sahu, 2004b). 

JAK2/STAT3 is the main pathway activated by LEP, with phosphorylation of JAK2 and 
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STAT3 which subsequently translocates to the nucleus to initiate transcription of target genes 

(Fig 3).   

Figure 3. Schematic diagram of the signalling transduction pathways of leptin (adapted from Sahu, 2004b). 

Abbreviations: JAK2 – janus kinase 2; STAT3 – signal transducer and activator of transcription 3; MAPK -  

mitogen activated protein kinase; suppressor of cytokine signaling 3 protein - SOCS3. 

  Ghrelin signalling transduction  

The actions of GHRL are mediated through G-protein coupled GHSRs (Howard et al., 

1996; McKee et al., 1997). Ligand binding promotes the release of guanosine diphosphate 

(GDP) and binding of guanosine triphosphate (GTP) to the G protein α subunit, thus 

activating G protein subunits to initiate signaling cascades. The regulation of ionic currents is 

triggered by a Gαq/11 protein that activates phosphatidylinositol-specific phospholipase C 
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(PI-PLC) to generate IP3 and diacylglycerol (DAG) from phosphatidylinositol 4,5-diphophate 

(PIP2) (Howard et al., 1996; McKee et al. 1997). IP3 mobilizes intracellular Ca2+, which in 

conjunction with DAG activate PKC. This results in inhibition of the K+ channels to cause 

cellular depolarization (Fig. 4) (Camina 2006).  

Figure 4. Schematic diagram of the signalling transduction pathways of ghrelin. (Redrawn from Gao et al., 

2007). Abbrevations: Phosphatidylinositol-specific phospholipase C – PI-PLC; inositol 1,4,5-triphosphate – IP3; 

diaclyglicerol – DAG; phosphatidylinositol 4,5-diphosphate – PIP2; Protein Kinase C - PKC. 

Fish 

Leptin  

The LEP hormone was long thought to be specific to Mammalia, but in the recent years the 

gene (lep) has been found in Amphibia (Boswell et al., 2006; Crespi and Denver 2006) and 

Teleostei. The discovery of lep in torafugu, Takifugu rubripes, by Kurokawa and colleages 
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(2005) revealed the ancient ancestry of this hormone. During the course of this thesis, several 

orthologues of lep have been identified in other teleosts. A single lep gene has been 

documented for green-spotted pufferfish, Tetraodon nigroviridis, (Kurokawa et al. 2005), 

rainbow trout, Oncorhynchus mykiss (Murashita et al. 2008), Arctic charr, Salvelinus alpinus

(Frøiland et al. 2010), silver carp, Hypophthalmichthys molitrix, and grass carp, 

Ctenopharyngodon idellus (Li et al. 2009). In other species there are reports of two closely 

related lep paralogues, including common carp, Cyprinus carpio (Huising et al. 2006) and 

goldfish, Carassius auratus (unpubished GenBank sequences; ACL68083, ACG69476). More 

distantly related lep genes have been found in medaka, Oryzias latipes,  (Kurokawa et al. 

2009) and zebrafish, Danio rerio (Gorissen et al. 2009). The present work led to the discovery 

of two closely related lep genes in Atlantic salmon (Salmo salar) (Paper I).  

The large differences in the primary structures between endothermic mammalian and 

ectothermic teleost leptins raised the question of whether the energy homeostatic functions of 

the teleost leptins are conserved. Initial phylogenetic analysis has revealed that amino acid 

conservation with other mammalia LEP orthologues is low, with only ~13% sequence identity 

between torafugu and human LEP (Kurokawa et al., 2005). Subsequent investigations have 

confirmed the low amino acid identity of teleost Leps compared to mammalian LEP (Huising 

et al., 2006; Kurokawa et al., 2008; Kurokawa et al., 2005; Li et al., 2010; Paper I). Despite 

the low conservation of the primary structure, available data indicate that the three-

dimensional conformation is putatively conserved between teleosts and mammals (Kurokawa 

et al., 2005; Huising et al., 2006; Murashita et al., 2008; Gorissen et al., 2009; Kurokawa and 

Murashita, 2009; Li et al., 2010, Paper I). The study on torafugu (Kurokawa et al., 2005) 

indicated that lep mRNA is mainly expressed in the liver in contrast to the adipose secretion 

in mammals (Zhang et al., 1994; Montague et al., 1997). However recent studies have shown 

that lep is expressed in several peripheral tissues, including the intestine, kidney, ovary, 



- 16 -

muscle and adipose tissues (Murashita et al., 2008; Gorissen et al., 2009; Kurokawa and 

Murashita, 2009; Frøiland et al, 2010; Paper I; Paper II). The multiplicity of lep genes and 

their low conservation in Teleostei (Huising et al., 2006; Gorissen et al., 2009; Kurokawa and 

Murashita, 2009; Li et al., 2010), suggest that their physiological roles may be more divergent 

than reported for mammals.  

Ghrelin 

Ghrelin (ghrl) has been indentified in a number of fish species, including rainbow trout 

(Kaiya et al., 2003a,b), European sea bass (Diecentrarchus labrax; Terova et al., 2008), 

Atlantic salmon (Murashita et al., 2009) and Artic charr (Frøiland et al., 2010). ghrl has been 

demonstrated to be essential for GH expression, growth and metabolism during embryonic 

development (Xi et al., 2009) and that Ghrl exerts both GH secretagogue (Kaiya et al., 2005) 

and appetite stimulating roles (Riley et al., 2005; Matsuda et al., 2006a,b; Miura et al., 2006, 

2007) in fish. Recent studies have demonstrated that both short-term central or more long-

term peripheral treatment with homologous Ghrl may decrease food intake in rainbow trout, 

suggesting that Ghrl is an anorexigenic hormone in this species (Jönsson et al., 2010). 

Nevertheless, injection of rainbow trout with human growth hormone releasing hormone 

(GHRH) did stimulate feed intake (Shepherd et al., 2007). The former Ghrl study by Jönsson 

et al. (2010) is in contrast with studies on goldfish (Matsuda et al., 2006a,b; Miura et al., 

2006, 2007; Unniappan et al., 2002, 2004) and Mozambique tilapia (Oreochromis 

mossambicus) (Riley et al., 2005), where central and peripheral treatments of Ghrl increases 

food intake, similar to its action in mammals (Choi et al., 2003; Druce et al., 2005, 2006; 

Tschop et al., 2000; Wren et al., 2000, 2001a, b). Hence, the role of Ghrl in fish is still far 

from elucidated and more research in the putative role of Ghrl in short- and long-term 

regulation of appetite and energy homeostasis is needed.  
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Though LEP and GHRL are known to work in parallel at an equivalent level in mammals 

(Gao and Horvath, 2007; Cummings and Foster, 2003), most studies have focused on either 

one or the other. Studies in fish have lagged behind, with few studies yet demonstrating 

definitive physiological roles of either hormone. However Frøiland et al. (2010) suggested a 

possible role of these hormones in the long-term regulation of energy homeostasis during a 

seasonal feeding cycle. 

Neuropeptides 

In fish, a number of peptides homologuous to the mammalian appetite-regulating peptides 

have been identified, such as NPY (Blomquist et al., 1992; Cerdà-Reverter et al., 2000a; 

Murashita et al., 2009a), MCH (Baker et al., 1995; Logan et al., 2003a,b; Pissios and 

Maratos-Flier, 2003), POMC-derived peptides (Cerdà-Reverter et al., 2003a; Okuta et al., 

1996; Herzog et al., 2003; Paper IV), CART (Volkoff and Peter, 2001a, Murashita et al., 

2009a) and AgRP (Cerdà-Reverter and Peter 2003; Song et al., 2003; Klovins et al., 2004; 

Murashita et al., 2009a). Data on the role of these neuropeptides in the control of food intake 

and their mechanism of action in fish is growing but still limited. However it has been 

suggested that the  same series of neuropeptides and their receptor systems are involved in the 

control of feeding behaviour throughout the vertebrate phylum, although major differences 

may occur in their mode of action between fish and mammals (Matsuda, 2009).  

  

Atlantic salmon as a model species 

Atlantic salmon is a commercially important species. It is a representative of the class 

Protacanthopterygii and inhabits both freshwater and marine cold water environments.  

Although principally anadromous this species shows a wide range of life histories, which are 

linked to body size and energy stores (Verspoor et al., 2007). Adult Atlantic salmon are 
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known to biologically adjust to long periods of reduced feed intake during their spawning 

migration, and it may therefore take a long time before energy stores are affected compared 

with what is seen in other species (Bertile et al., 2003; Huising et al., 2006a). It is therefore 

of interest to examine the long- and short-term effects of feed restriction and response to 

hormone dose. From the perspective of growth, it is important to know what effect these 

experimental treatments might have on the putative signalling pathways (Fig. 5) involved in 

the regulation of food intake and appetite control in fish.  

Figure 5. Illustration of possible signalling pathways involved in the regulation of food intake and appetite 

control in fish. Numbers indicate the number of genes that were studied during this thesis; 1-4: lepa1, lepa2, 

ghrl1, ghrl2; 5: lepr; 6-10: pomca1, pomca2, poma2s, pomcb, cart; 11-13: agrp1, agrp2, npy. 

Salmon undergo their greatest feeding and growth in seawater, however they return as 

adults to spawn in freshwater streams where the eggs hatch and juveniles grow through 

several distinct phases. The embryos and larvae of Atlantic salmon are ideally suited for 

investigations involving maternal effects and the onset of energy homeostatic systems prior to 
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exogenous feed intake, because the long period of yolk-sac nutrition removes any variation in 

feeding behaviour between treatments or individual.  

The work in this thesis therefore focused on:  

1. Characterisation of lep paralogues in Atlantic salmon 

2. The effects of feed restriction in adults 

3. The effects of recombinant salmon leptin on growth and appetite related peptide 

hormones in the brain 

4. The onset of energy homeostatic systems in embryos and larvae 
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Aims of the thesis 

In light of the present lack of knowledge on energy homeostatic signalling pathways and 

leptin function in fish the aims of the thesis work were:  

• To obtain full-length mRNA sequences for Atlantic salmon leps and the cognate 

receptor. The sequence information was then used to establish methods for quantifying 

mRNA levels, and to elucidate the pattern of tissue expression. (Paper I). 

• To investigate the long- and short-term relationships between lep expression and 

feeding regime in adult Atlantic salmon (Paper II). 

• To establish a production protocol for recombinant salmon lepa1 and how 

administration of this affected growth and appetite related neuropeptide genes in the 

brain (Paper III). 

• To elucidate the ontogeny of energy homeostatic pathways via neuroendocrine 

signalling in Atlantic salmon and how they relate to the present mammalian model. 

(Paper IV).  
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Synopsis of Papers 

Paper I 

In this study the cloning and sequencing of two lep paralogues (lepa1 and lepa2) and the 

cognate receptor (lepr) in Atlantic salmon were reported. The deduced amino acids (aa) 

sequences of the two Leps showed 71.6% identity to each other, but only 22.4% (lepa1) and 

24.1% (lepa2) identity to human LEP, respectively. The deduced amino acid sequences of the 

Atlantic salmon paralogues clustered phylogenetically with teleost type A Lep. Expression 

analyses revealed a differential distribution in peripheral tissues, with the highest lepa1 levels 

in the brain, white muscle, liver and ovaries. Conversely, lepa2 was mainly expressed in the 

stomach, midgut and kidney. Only one lepr orthologue was identified, which shared 24.2% aa 

sequence identity to human LEPR. However, several splice-variants were detected in Atlantic 

salmon that appear to match similar isoforms in human. The expression of lepr was 

ubiquitous in peripheral tissues, with the highest levels in the ovary. The initial test to verify 

if energy status affected lep levels showed that restricted feeding (60%) for 10 months 

resulted in lower lepa1 mRNA levels in visceral adipose tissue, and higher mRNA levels of 

lepa2 in the liver. For belly flap and white muscle no differences between treatments were 

observed. Interestingly lepa2 levels were more highly expressed in adult males compared to 

lepa1, which contrasts our observations for mRNA tissue distribution in parr. Neither the 

circulating plasma Lep levels nor lepr mRNA levels in the brain appeared to be affected by 

long-term feed restriction.  

The study partly supports anorectic signaling effects of lepa1 in line with the mammalian 

model, while lepa2 might have an unknown role in the digestive tract and liver. However, 

more specific studies on this hormone will be necessary to verify how leptin is involved in the 

regulation of energy homeostasis of adult Atlantic salmon. 
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Paper II 

This study investigated whether dietary restriction affects the expression of leptin 

paralogues (lepa1 and lepa2), in relation to plasma Lep, growth hormone (Gh) and 

insulin-like growth factor 1 (Igf1), as well as body weight and adiposity. We found that 

long-term feed restriction in Atlantic salmon did not significantly affect transcriptional 

regulation of either lepa1 or lepa2. This trend was also reflected in the plasma levels of 

Lep, Gh and Igf1. Unexpectedly, however, we noted that transcriptional levels of lepa1

in the visceral adipose tissue appeared to follow ambient day length. Only white muscle 

lepa1 expression showed the positive correlation reported in mammals when comparing 

leptin expression to the muscle lipid content, while hepatic expression of lepa1 showed 

a negative correlation to the organ lipid content. To further study the regulatory role of 

leptin, fish were trained to receive a single meal, and then the endocrine response in the 

presence or absence of a meal during a 24 hr period was examined. These studies 

showed that in the unfed fish, lepa1 expression peaked initially in the white muscle at 6 

hr, followed by other peripheral tissues at 9 hr. The one exception was lepa2 in visceral 

adipose tissue which peaked in the fed fish at 9 hr. However, lepa2 levels were 

expressed at an order of magnitude lower than that of lepa1, and likely do not reflect a 

physiological effect. However, no differences were noted between the treatments for 

plasma Lep. The absence of a clear leptin response to a single meal is consistent with 

data for humans but appears to contrast recent findings for other teleosts where injection 

of leptin has shown to reduce appetite. Taken together it can be suggested that leptins 

have a complex lipostatic function in Atlantic salmon, possibly under the influence of 

photoperiod as seen in some mammals. 
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Paper III 
In order to investigate the effect of leptin on growth and the expression of appetite related 

peptide hormones (agrp1, agrp2, npy, cart, pomca1, pomca2, pomca2s and pomcb) in 

Atlantic salmon, lepa1 was used to establish a production protocol for recombinant rsLepA1 

in Echerischia coli. This protocol yielded 1.7 mg pure protein per culture. rsLepA1 was then 

administered via intraperitoneal osmotic pumps at four different delivery concentrations 

(estimated pumping rates were 0, 10, 100 and 1000 ng h-1) to Atlantic salmon fed to satiation 

over 20 days.  Weight gain and specific growth rate over this period were significantly 

reduced in the highest dosage groups (1000 ng h-1). Measurements of the appetite-related 

neuropeptide mRNA levels via qPCR revealed that pomca1 levels were higher than controls 

in this high dose group, while no differences were observed between treatments for agrp1, 

agrp2, npy, cart, pomca2, pomca2s and pomcb. These findings indicate that high 

concentrations of lepa1 in Atlantic salmon can have an anorectic effect on the regulation of 

body weight in Atlantic salmon, however such dosages may represent a pharmacological 

effect, since they are an order of magnitude higher than concentrations measured in plasma. 

Nevertheless, the data demonstrate that lepa1 can illicit an anorectic response as found in 

mammals.  
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Paper IV 
In this study the expression of leptins (lepa1, lepa2), ghrelins (ghrl1, ghrl2), their target 

neuropeptides (cart, pomca1, agrp, npy) and several growth factors (gh, igf1, igf2, igf1r) were 

examined during embryonic and larval development of Atlantic salmon. During 

embryogenesis initial experiments revealed differential expression of lep paralogues and ghrl

isoforms. Prior to exogenous feeding an upregulation in ghrl1 and ghrl2 was observed, while 

lepa1 did not surge until one week after first-feeding. Subsequent dissection of the embryos 

and larvae showed that lepa1, cart, pomca1, agrp are supplied as maternal transcripts. At 320 

day-degrees (dd) the first zygotic expression was detected for lepa1 and cart, which at 400 dd 

was localized in the head and coincided with similar upregulation of ghrl2 and npy. Over the 

hatching period growth factor signalling predominated. The observed ghrelin surge prior to 

first-feeding was mainly expressed in the internal organs and coincided with a surge of npy

and agrp in the head and agrp in the trunk. Major peaks were detected in the head for lepa1

and pomca1, and lepa1 in the trunk at one week after exogenous feeding was established. 

This coincided with increasing levels of cart. By integrating these results into an ontogenetic 

model the data suggest that mediation of Atlantic salmon energy homeostatic pathways via 

endocrine and neuropeptide signaling retains putative features of the mammalian system.  
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General discussion 

Teleost leptins and receptors 

The present work demonstrates the presence of two closely related lep paralogues in Atlantic 

salmon (Fig. 6). Recent studies on teleosts have shown that at least two leptin genes (lepa and 

lepb) exist in the crown-clade (Kurokawa et al. 2005; Huising et al., 2006; Gorissen et al., 

2009; Kurokawa and Murashita, 2009). Early findings have shown that lepa and lepb share 

low interspecific aa identity, and are argued to have arisen through whole genome duplication 

(Kurokawa et al. 2005), which occurred early in the teleost lineage (Jaillon et al., 2004). The 

duplicity of genes has been described for Atlantic salmon (Paper I), Japanese medaka, 

common carp and zebrafish (Gorissen et al., 2009; Kurokawa and Murashita, 2009; Huising 

et al., 2006). Both lep paralogues identified for Atlantic salmon in the present study cluster 

with lepa, and therefore suggest that at least one or more forms (lepb) may exist in this 

species, since it is tetraploid (Allendorf and Thorgaard, 1984). However, previous attempts 

using genomic synteny have only found the putative genomic duplicates in medaka and 

zebrafish paralogue (Gorissen et al., 2009; Kurokawa and Murashita, 2009). The presence of 

two lepa genes in other ostariophysan species such as goldfish and common carp are thus 

suggested to have arisen in a lineage-specific manner due to recent autotetraploidy in these 

species (Gorissen et al., 2009). Similarly the data for two lepa paralogues in Atlantic salmon 

likely represent a similar scenario, and it therefore remains unclear, whether lepb exists in 

other teleosts due to the degenerative nature of this paralogue. 
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Figure 6. Phylogenetic tree of vertebrate leptins redrawn from Paper I. 

Despite low amino acid identity between the different orthologues, three-dimensional 

modelling predicts conservation of the tertiary structure between Atlantic salmon and other 

teleost Leps compared to their mammalian orthologues (Fig. 7) (Paper I; Kurokawa et al. 

2005; Murashita et al., 2008; Gorissen et al., 2009; Kurokawa and Murashita, 2009).  
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Figure 7. Models of Atlantic salmon leptins (lepa1, lepa2) compared to human leptin (LEP) based on 

ProModII (Paper I). The human molecule 1AX8.pdb shows the four anti-parallel α-helices (1, 2, 4, 5) with 

corresponding domains in the Atlantic salmon proteins. The C-terminal cysteine (magenta) covalently linked to 

loop 3-4 is shown as ball and stick in the human render. 

Both lepa1 and lepa2 have two characteristic cysteine residues which are predicted to form 

disulfide bonds between the C-terminus and the loop between α-helics 3 and 4. This covalent 

linkage is considered a pre-equisite for the correct conformation and bioactivity of human 

LEP (Zhang et al., 1997; York et al., 1996).  

The putative models suggest that the folding of lepa2 might be different to lepa1. There are 

several differences between the 3D structures of lepa1 and lepa2; e.g. α-helix 5 is 

considerably shorter in lepa1 than lepa2. Furthermore α-helix 1 for lepa2 appears to be split 

by a short-disordered region, and may therefore have a poorer affinity.  However considering 

that it is a predicted model based upon the structure mask of human LEP, the significance of 

these putative conformational adjustments remains to be tested.  

The importance of the conserved tertiary structure of Lep is most likely explained by 

requirements for specific LepR-binding affinity and is constrained by the structure of the 
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receptor-binding pocket (Crespi and Denver, 2006). This might also explain some of the 

results from studies on teleosts using heterologous mammalian LEP. For example, treatment 

with the mammalian hormone caused an anorectic effect in goldfish (Volkoff et al., 2003; De 

Pedro et al., 2006) and  green sunfish (Lepomis cyanellus) (Johnson et al., 2000), but not in 

coho salmon (Oncorhynchus kisutch) (Baker et al., 2000), channel catfish (Ictalurus 

punctatus) (Silverstein and Plisetskaya 2000) or green sunfish (Londraville and Duvall 2002). 

These contradicting results have been explained by the relatively large differences in amino 

acid sequences observed between mammals and fish (Kurokawa et al., 2005; Crespi and 

Denver 2006; Huising et al., 2006). However future studies in this area should focus on 

verifying whether or not the observed differences using mammalian or species-specific 

hormones are valid or whether there is actually a pharmacological effect.  

The present work identified five isoforms of lepr that have differences in the 3'-end of the 

mRNA sequence (Paper I). Of these, only the longest form retains each of the functionally 

important domains (such as three FN III domains, the Ig C2-like domain, a pair of WSXWS 

motifs, two JAK2-binding motif boxes, and a STAT-binding domain, Paper I), while the other 

four forms were predicted to only have the intracellular subdomains. The long form of 

mammalian LEPR has a function for full signal transduction through the JAK/STAT 

pathways, whereas the shorter isoforms exhibit partial or no signalling capabilities (Baumann 

et al., 1996; Tartaglia, 1997). The biological importance of the long form LEPR via the 

JAK/STAT pathway in maintaining body weight and energy homeostasis has been 

definitively demonstrated (Bates et al., 2003). Previous studies in teleosts have only identified 

a single lepr (Kurokawa and Murashita, 2009; Kurokoawa et al., 2008; Liu et al., 2010). 

Consequently, this work is the first identify multiple lepr transcripts in any ectothermic 

species. Comparison of the tertiary structures of lepa1 and lepa2 (Fig. 7) indicates that lepa1

shows greater conformational similarity to human LEP, and it could therefore be inferred that 
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similar binding properties exist for this paralogue. However, further studies would be needed 

to test this hypothesis. Nevertheless, the relatively ubiquitous expression of lepr in Atlantic 

salmon tissues implies diverse roles of Lep in teleosts (Paper I).  

The tissue expression pattern for the Atlantic salmon lep paralogues differs substantially 

(Paper I) and hence indicates a possible difference in function. With the exception of the 

results presented here, and those of zebrafish and Japanese medaka (Paper I, Gorissen et al., 

2009; Kurokawa and Murashita; 2009), few studies have investigated the broad tissue 

distribution of lep in teleost fishes. Interestingly the more distantly related lep genes (lepa and 

lepb) showed distinct differences in in tissue distribution, as shown in medaka, where lepa is 

being expressed in liver and muscle, while lepb are more highly expressed in the brain and 

eye (Kurokawa and Murashita; 2009). However these differences are also seen in more 

closely related lep paralogues, such as lepa1 in Atlantic salmon, being more highly expressed 

in the brain, liver and white muscle, while lepa2 is mainly expressed in the stomach and 

midgut (Fig. 8).  

Teleost ghrelins 

Previous studies have reported the cloning of ghrl1, ghrl2 in Atlantic salmon (Murashita et 

al., 2009b). Comparative analysis of the sequences obtained indicates that they represent 

splice variants of a single ghrl gene in Atlantic salmon. In the rainbow trout ghrl gene, an 

alternative splicing site has been found at the second intron, which results in the production of 

two types of ghrl (rtGhrl and des-VRQ-rtGhrl) (Kaiya et al., 2003). Furthermore, an exon–

intron boundary site was found in Atlantic salmon at the same position as the trout ghrl

second intron (Murashita,K., unpublished results). These data indicate that conserved splice 

variants exist in the closely related Salmonidae. However, very recently, two different salmon 

ghrl mRNA isoforms have been uploaded to GenBank (S. salar preproghrelin-1: EU513378
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and S. salar preproghrelin-2: EU513379), which suggests that Atlantic salmon may have up 

to four different ghrl mRNA isoforms. In other vertebrates, two different ghrl mRNA 

isoforms have been identified in channel catfish (Ictalurus punctatus) (Kaiya et al., 2005) and 

the red-eared slider turtle (Trachemys scripta elegans) (Kaiya et al., 2004). Atlantic salmon is 

thus appears to be the first species in which more than two different ghrl mRNA isoforms 

have been identified.  
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Effects of nutritional status 

The observations that long-term feed restriction does not significantly affect lep expression 

in Atlantic salmon (Paper II) has also been noted in other teleosts. However it is likely that 

prolonged feed restriction can influence several endocrine parameters to adapt to the 

nutritional condition. For example, in common carp, a rapid response was observed in lep

gene expression in hepatic tissues shortly after feeding, but no changes in expression in 

response to different long-term feeding regime were observed (Huising et al. 2006). These 

authors suggested that this effect could be explained by the fact that starved fish do not lose 

weight as rapidly as mammals, due to not having to deal with thermoregulation, and therefore 

can withstand longer periods of starvation. A similar study on grass carp showed that chronic 

injection of species-specific Lep did not affect long-term food intake and body weight, while 

acute injection decreased food intake (Li et al. 2009). Conversely, we observed increased 

pomca1 levels following chronic injection of Lep in Atlantic salmon (Paper III), which 

suggests that chronic exposure to elevated Lep levels can decrease food intake through the 

Pomc pathway in this species, and suggests that pomca1 could be a particular sensitive gene 

(Murashita 2008; Paper III). However such dosages may represent a pharmacological effect, 

since the effective dosage were an order of magnitude higher than concentrations measured in 

plasma. We did not observe any difference of feed restriction in circulating plasma levels in 

our study (Paper II), which contrast recent results in rainbow trout (Kling et al., 2009) and 

suggests that the relation between circulating Lep levels and energy status differs from that in 

mammals.  However the RIA protocol for Atlantic salmon appears to allow interspecies 

assessment of plasma Lep levels. This only confirms that more comprehensive studies are 

needed for conclusive data interpretation. Studies on rainbow trout also implicated Lep as an 

anorectic hormone as in mammals. Injection of rainbow trout with recombinant trout leptin 

(rtLep) resulted in a significantly reduced appetite over two days that coincided with a 
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decrease in hypothalamic mRNA expression of npy and increase of pomc mRNAs, 

respectively (Murashita et al., 2008). Whether these observations are due to species-specific 

differences in the regulation of appetite or growth is not known, however, consensus data 

indicate that the effects of Lep on appetite regulation may be short-term in teleosts. Long-

term effects of Lep may be tuned to season, rather than feeding status as suggested in Paper 

II. This latter notion is consistent with studies that found increased lep expression during 

summer months in teleosts and mammals entrained to photoperiods of northern latitudes 

(Concannon et al., 2001; Frøiland et al., 2010). 

Daylength effect 

In the long term-trials, the lepa1 transcriptional expression in VAT seemed to be related to 

changing day-length. Leptin transcription could thus be associated with the pineal-melatonin 

axis, a finding that has also been proposed for mammals (Kus et al., 2004; Zieba et al., 2007; 

2008; Klocek-Gorka et al., 2010). Melatonin is a common output signal of the vertebrate 

circadian clock which is produced at two major sites, the pineal organ and the retina (Falcòn 

1999; Deguchi et al., 2005; Falcòn et al., 2007). Despite the fact that the photoperiodic and 

circadian controls of melatonin production have been profoundly modified during evolution, 

the melatonin signal released into the blood is the same from fish to mammals (Colin et al., 

1989). Plasma melatonin content is higher at night than during the day, thus reflecting the 

prevailing dark cycle of the photoperiod. The shape of these oscillations changes with the 

season. In fish, they are of short duration and high amplitude in the summer and of long 

duration and low amplitude in the winter, with intermediate situations occurring in the spring 

and autumn. Thus, the plasma melatonin profile is an indicator of both day-length and season, 

and melatonin is considered to be a time-keeping molecule (Underwood, 1989; Arendt, 1997; 

Ekstrôm, 1997). Recent data have provided evidence in ewes that LEP upregulates 



- 35 - 

photoperiodic hormones, such as melatonin during short days, but downregulates melatonin 

during long-days (Zieba et al., 2008). Furthermore, seasonal sensitivity to LEP has been 

demonstrated in sheep and it appears to serve as a mechanism of adaption to feed availability 

(Zieba et al., 2007; Klocek-Gorka et al., 2010). In teleosts, a recent study on another 

salmonid, the Arctic charr (Salvelinus alpinus), also found that Lep may be seasonally 

regulated (Frøiland et al., 2010). Interestingly the seasonal dynamics of lep expression that 

putatively occur in Atlantic salmon have also been reported for woodchuck’s photoentrained 

to a northern photoperiod (Concannon et al., 2001). Although the experiments in Paper II 

were not specifically designed as a photoperiod study, photoperiod was the only variable that 

seemed to influence lep expression during this period. It has also been suggested that 

melatonin might activate the phospholipase C (PLC) pathway through Gq proteins in 

mammals (Vanecek, 1998; Steffens et al., 2003), which is also implicated in the ghrelin 

signalling transduction pathway (Howard et al., 1996; McKee et al., 1997).  

The plasma data for Lep and Igf1 further appeared to be more correlated to day-length 

than to long-term feed restriction as observed for lep mRNA. A similar finding has also been 

noted in gilthead seabream (Sparus aurata), in which dietary composition or ration size did 

not affect hepatic expression levels of igf1 (Méton et al., 2000). Interestingly, however, this 

latter study found igf1 expression levels to be diurnally regulated. Conversely, in rainbow 

trout, a strong relationship between season and levels of Igf1 in plasma has been reported 

(Taylor et al., 2008). Although the plasma Igf1 levels in the present study did not show a 

strong seasonal relationship, plasma Lep did reflect the mRNA expression levels in VAT of 

the FF group. Consequently, season may thus have influenced the observed variation. Further 

studies will be necessary to validate the role of photoperiod in the energy homeostasis of 

Atlantic salmon. 
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Short-term feed restriction 

The short-term experiments revealed that lepa1 expression specifically peaks in the 

peripheral tissues (white muscle, visceral adipose tissue, belly flap and liver) after 6 – 9 hr in 

the unfed fish. This suggests that the transcript-specific response could be associated with the 

absence of food. Conversely since the unfed fish had not received food for 33 hr (24 + 9 hr), 

the peaks could represent an unrelated effect. Since there were no significant differences 

(p<0.05) in plasma Lep levels between fed and unfed fish, and the temporal upregulation of 

lepa1 occurred during a phase of falling plasma Lep, the increased expression does not in 

fact appear to be specifically related to the absence of food. The earliest peak of lepa1

occurred in the white muscle, which represents an important lipid reservoir in Atlantic 

salmon (Aursand et al., 1994). Unlike pufferfish, which utilize the liver as a major lipid 

repository (Kurokawa et al., 2005), Atlantic salmon show that despite a high visceral lipid 

content (Table 2, Paper II), hepatocytes contain few lipid droplets compared to other species 

of teleost (Bruslé and Gonzàlez, 1996), yet are an important site for lep expression (Paper I, 

II). Both lepa1 and lepa2 peaked at 9 hr in the liver of unfed fish. By contrast, however, 

studies in common carp demonstrated a peak in leptin-I (lepa1) and leptin–II (lepa2; see Fig. 

6) in the liver at 3 and 6 hr post feeding, respectively (Huising et al., 2006). The earlier 

expression response of lep in common carp likely reflects the higher temperature under 

which the experiments were conducted, but contrast the findings of upregulation of lepa1 in 

Atlantic salmon due to the absence of food. Similarly, in mice, a postprandial increase in 

hepatic leptin expression has also been reported (Saladin et al., 1995). However, a recent 

study in grass carp has shown that intraperitoneal injection of recombinant Lep only alters 

the appetite on the first day, and does not influence food intake during the ensuing 12 days 

(Li et al., 2010). The present data for Atlantic salmon are therefore quite different and 

suggest that lep expression in this species may have a complex lipostatic function.  
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Acute administration of species specific lep (rs-lepa1)  

To further elucidate the role of leps in energy homeostasis, a protocol for species-specific 

administration of lep was established (Paper III). Recombinant Lepa1 (rs-lepa1) was 

harvested from bacterial (E. coli) cultures and administered by intraperitoneal osmotic pumps 

to test the effects of the protein on appetite and growth of Atlantic salmon over 20 days. 

Weight gain and specific growth rate were significantly reduced at the highest dosage (1000 

ng H-1). This high dosage also increased pomca1 levels significantly in the brain. Lep 

treatment is known to reduce body weight and food intake in many mammalian species, such 

as rats, mice, pigs and monkeys (Seeley et al., 1996; Sahu 1998; 2004; Wetzler et al., 2004). 

However, these dosages may represent a pharmacological and not a physiological effect since 

when recalculated they are at least 10-fold higher than concentrations measured in Atlantic 

salmon plasma (Paper II). Furthermore we do not know how much leptin was absorbed into 

the blood, and it is a possibility that some of the rs-lepa1 was broken before absorption. 

Nevertheless, the data demonstrate that lepa1 can illicit an anorectic response as found in 

mammals. The increased pomca1 levels correspond to the role of α-MSH, as a derivative of 

pomc, which has a strong anorexigenic function, and is activated in a Lep downstream-

pathway (Schwartz et al., 2000). This was also observed in acute short-term examination in 

rainbow trout (Murashita et al., 2008), and contrasts the findings of increased blood Lep 

concentration during long-term fasting in trout (Kling et al., 2009).  

Ontogeny  

In order to investigate the ontogeny of neuropeptide signalling, transcripts for several 

neuropeptides involved in the mammalian energy homeostatic circuitry were cloned from 

Atlantic salmon (Murashita et al., 2009a,b; Paper III). By studying the developmental 

expression levels, Paper IV is the first to show that lepa1, cart, pomca1 and agrp transcripts 
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are maternally supplied in Atlantic salmon. The transcripts decreased significantly between 

320-400 dd, suggesting that these mRNAs are latently degraded when zygotic expression of 

lepa1 and cart are co-upregulated in the embryo. This suggests that the regulatory 

communication between Lep secretion and neuropeptide signalling may be established early in 

the developmental program. This notion is supported by related evidence demonstrating that 

Lep transactivates CART in mammalian ARC neurons (Schwartz et al., 1997; Ahima et al., 

2000; Ahima and Osei, 2004; Bjørbæk and Kahn, 2004; Pinto et al., 2004; Sahu, 2004a, b; Gao 

and Horvath, 2007). By integrating the data observed here, and assuming that expression in the 

head is localised in the brain, a putative model is proposed (Paper IV) for the early endocrine 

and neuropeptide signalling of Atlantic salmon. While this model is consistent with known 

regulatory loops in mammals, it is recognised that other lep and ghrl paralogues may exist in 

Atlantic salmon, which is tetraploid (Allendorf and Thorgaard, 1984). Nevertheless, the current 

data for Atlantic salmon appear to support the putative neuropeptide circuitry induced by lep

and ghrl as found for mammals.   

The endocrine effects of mammalian LEP, however, have also been found to be 

pleiotropic. For example, ob-/ob- mice with complete LEP deficiency show evidence of 

developmental defects, including the failure to undergo sexual maturation (Chehab et al., 

1996; Barash et al., 1996), as well as structural neuronal abnormalities and impaired 

myelination in the brain (Bereiter, et al., 1979; 1980; Sena et al., 1985). This is further 

supported by the high levels of lepr in the brain and notochord of embryonic zebrafish (Liu et 

al., 2010). Taken together, these findings suggest that vertebrate Lep may be involved in 

various aspects of CNS development. Maturation of neuronal pathways by LEP might require 

basal leptin levels or an increase in LEP at some critical period, independent of its later role as 

a sensor of energy stores. LEP has also been implicated in promoting the development of 

mouse preimplantation embryos in vitro (Kawamura et al., 2002), which raises the possibility 
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of a developmentally regulated paracrine/autocrine LEP signalling system. Some of these 

functions appear to be conserved in amphibia, since studies in African clawed frog (Xenopus 

laevis) tadpoles, have shown that LEP stimulates food intake, limb and lung development 

(Crespi and Denver, 2006; Torday et al., 2009). Hence further studies are necessary to verify 

which role leptin might have during early development in fish.  

Major Findings 

� At least two lep genes (lepa1 and lepa2) exist in Atlantic salmon 

� Five receptor isoforms were found in Atlantic salmon 

� Long-term feeding status and growth appear unaffected by lep

� Season may influence lep expression 

� Short-term feed restriction induces latent (6-9 hr) peaks of lep in peripheral tissues 

� High dosages of recombinant Lep can affect the appetite and growth of Atlantic 

salmon 

� Ontogeny of energy homeostatic and neuropeptide signals reflect the mammalian 

appetite control circuitry 
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