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Abstract

Seismic data are usually recorded in time and space on rectangular lattices. Seismic wave
propagation is described by the wave-equation, which yields a Fourier spectrum with smaller
bandwidth than the rectangular periodicity allows for. Using non-rectangular, multirate,
sampling lattices, it is possible to sample only the points which corresponds to propagating
waves. For 2D data this technique can sample the wavefield with half the data points without
introducing alias. Seismic migration is the process of inverting the recorded wavefield in
time to depth. The wavefield has circular bandwidth, which is also less than the rectangular
periodicity allows for.

It is also shown that the linear and parabolic Radon transform have a bandwidth which is
smaller than the rectangular periodicity.

Fourier filtering and seismic migration algorithms are modified and performed on multirate
lattices. Gazdag phase-shift and Reverse Time Migration (RTM) are implemented with mul-
tirate sampling, which makes the calculations more efficient.
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Chapter 1

Introduction

A signal s(t) is most often sampled by defining a constant interval between each sample, ∆t,
and a finite period T . Furthermore, the signal has a finite number of points N = T/∆t, and
is given sn = s(n∆t) for n = 0, 1, 2, . . . , N − 1. By the discrete Fourier transform (DFT) the
signal is periodic, hence also the Fourier spectrum. This yields the Nyquist-Shannon theorem,
which introduce a limit for ∆t. To avoid alias this theorem states that a signal with maximum
frequency, νmax, should have sampling interval ∆t ≤ 1/(2νmax).

2D and 3D functions or images are generally sampled by using 1D theory. When acquiring
data rectangular periodicity is assumed. To avoid alias, the conventional approach is to
apply the Nyquist-Shannon theorem for all variables. Many physical problems have a Fourier
spectrum where another periodicity would be preferable. Choosing another periodicity than
the rectangular, often result in lattices where the sampling points are not regularly spaced.

To find an optimal sampling geometry for a 2D or 3D signal without introducing alias, it
is important to analyze the Fourier spectrum. If a non-rectangular sampling grid is chosen,
the alias pattern becomes more difficult to analyze, there are Nyquist frequencies in other
directions.

In this thesis the sampling on non-rectangular lattices will be referred to as multirate sampling.
Important lattices often mentioned in the literature, the hexagonal and Quincunx lattice, will
be treated.

Seismic waves are described by the wave equation which gives an effective bound for the
Fourier spectrum, and conventional sampled seismic data is oversampled. Sampling the seis-
mic data on non-rectangular grids can reduce the data points by a factor 2. If the processing
algorithms can be implemented on these lattices it could also reduce the computation time.

Multirate sampling has many physical applications. Rattey and Lindgren (1981) shows that
a hexagonal lattice is most efficient for sampling the Radon transform in tomographic imag-
ing. Murphy and Gallagher (1982) shows that it can be used on Fourier and Fresnel digital
holograms.

Woodward and Muir (1984a,b) present a summary of the hexagonal sampling lattices and
constructs finite difference operators for 3D wave equation migration. They show that the
hexagonal symmetry results in a more accurate 2D Laplacian than rectangular sampling,
hence also the 3D paraxial wave equation. Woodward (1986) shows that a hexagonal lattice
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allows for three-pass Stolt and paraxial migration.

Bardan (1989) presents a bandwidth of both the wavefield and the linear Radon transform,
and suggests that a hexagonal sampling scheme would be preferable. The Peterson-Middleton
theorem gives weaker sampling requirements than the Nyquist sampling and therefore a hexag-
onal recording spread would be preferable for acquisition (Bardan, 1997, 2008).

A final migrated image have circular bandwidth and Mersereau (1979) shows that regular
hexagonal sampling for circular band limited signals are 13.4% more efficient. Gesbert et al.
(2007) performed Kirchhoff migration on a seismic data set sampled hexagonally. Further
modifying other known processing algorithms to such lattices may make the processing more
efficient.

This thesis is arranged as follows.

Chapter 2 covers the 2D discrete Fourier transform (DFT) on general sampling grids, calcu-
lating the transform with fast Fourier transform (FFT) using the Smith normal form theorem,
a matrix representation of sampling grids and lattices in more than 2D.

In Chapter 3, some examples of using different periodicity matrices, some specific sampling
patterns which later will be used with seismic data and different algorithms for calculating
the Hexagonal discrete Fourier transform are presented.

Chapter 4 presents an optimal sampling theory for seismic waves and 2D filtering. A band-
width for the Radon transform used in tomography, the (geophysical) linear and parabolic
Radon transform is presented.

Chapter 5 covers seismic migration and modifications of known algorithms for non-rectangular
sampling grids. The Gazdag phase-shift and reverse time migration are performed on multi-
rate sampling grids.

Finally, Chapter 6 offers some concluding remarks.

The appendix covers some important results on the Smith normal form, a brief overview of
Voronoi diagrams and interpolation methods.
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Chapter 2

The Fourier Transform

The 2D Fourier transform is a powerful tool for image processing and for solving partial
differential equations. One of the major problems in the discrete case is how to choose the
sampling grid. This chapter presents a matrix representation of sampling grids and defines
the 2D discrete Fourier transform for general sampling geometries. Theory for upsampling
and downsampling of functions are presented, and a generalization to multidimensional grids.

2.1 Definition of Sampling Grids and Lattices

When sampling a function in 1D the sampling points are given as a finite set of integers,
denoted by ZN = {0, 1, 2, . . . , N − 1}. In 2D the Cartesian discrete grid with N1 samples in
one direction and N2 in the other, can be given as the product of two finite sets, ZN1

× ZN2
.

In 2D it is possible to define more general lattices for sampling than in 1D, since it is possible
to rotate and skew the coordinate axes. A general sampling lattice can be represented by two
linearly independent column vectors u1 = (a, b)T and u2 = (c, d)T for a, b, c, d ∈ Z, where
Z = {0,±1,±2,±3, . . . } is the set of integers. The sampling points, n, on this grid can then
be written as

n = iu1 + ju2 = A

(

i
j

)

, (2.1)

where i, j ∈ Z. The vectors u1 and u2 generate a basis for a lattice. The span of two column
vectors are shown in Figure 2.1.

The range of the matrix R(A) is defined as the parallelogram from the vectors u1 and u2.
The points which are contained in this will be written as n ∈ R(A). An observation from
Figure 2.1 is that the sampling points inside one parallelogram have equivalents in another.
The triangles here represent equivalent points, also called congruent points. They can be
defined by using modular arithmetics. If x′ is a random point, its equivalent in the range of
A is given

x = x′ mod A, (2.2)
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Figure 2.1: The range of a random matrix, the triangles represent equivalent sampling points

or more explicitly

x = x′ −AbA−1x′c, (2.3)

where b×c is the “floor function”which gives the nearest integer towards minus infinity. This
can be defined as

b×c = max{n ∈ Z|n ≤ ×}, (2.4)

which will be used later when mapping from one lattice to another.

2.2 2D Discrete Fourier Transform on Rectangular Grids

The 2D discrete Fourier transform (DFT) of a function f = f(n1, n2) is given as

F (k1, k2) = F [f ] =

N1−1
∑

n1=0

N2−1
∑

n2=0

f(n1, n2)e
−2πi(

n1k1
N1

+
n2k2
N2

)
, (2.5)

where n1, k1 ∈ ZN1
and n2, k2 ∈ ZN2

. This sampling grid can be given as ZN1
× ZN2

, and
defines a rectangular grid. Using vector notation, defining n = (n1, n2)

T and k = (k1, k2)
T ,

equation (2.5) can be written

F (k) =
∑

n

f(n)e−2πi(kTN−1n) (2.6)

where

N =

(

N1 0
0 N2

)

. (2.7)

The range of the matrix N defines the sampling grid. Figure 2.2 is an example of a rectangular
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Figure 2.2: Example of rectangular sampling

sampling grid where N1 = N2 = 6. The exponential functions are orthogonal with respect to
the inner product, given as

∑

n

e2πi(k
′TN−1n)e−2πi(kTN−1n) =

{

det(N) if k = k′

0 otherwise
, (2.8)

and the total number of samples is det(N) = N1N2. This yields the inverse discrete Fourier
transform (IDFT)

f(n) =
1

det(N)

∑

k

F (k)e2πi(k
TN−1n). (2.9)

There are several algorithms for computing these transformations, the most popular is the Fast
Fourier Transform algorithm (FFT), presented by Cooley and Tukey in 1965. This algorithm
can compute the transformation in O(N logN) operations whereas the naive implementation
(summation) costs O(N2) arithmetic operations. The FFT is developed for 1D functions with
equidistant sampling points, but for the 2D case with a rectangular sampling grid there has
been developed an algorithm called Vector-Radix Fast Fourier Transform. This uses much
the same rearranging of the samples as the 1D FFT, for more extensive treatment of this, see
Dudgeon and Mersereau (1990).

2.3 2D Discrete Fourier Transform on General Grids

The range of the matrix

A =

(

a b
c d

)

∀ a, b, c, d ∈ Z (2.10)
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defines a general sampling grid. Sampling with this matrix, and using equation (2.9), gives

f(n+Al) =
1

det(A)

∑

k

F (k)e2πi(k
TA−1n)e2πi(k

TA−1Al)

=
1

det(A)

∑

k

F (k)e2πi(k
TA−1n)

= f(n) (2.11)

for any vector l ∈ Z×Z. The function f(n) is periodic with period A. This matrix is referred
to as the periodicity matrix.

A similar argument can be made in Fourier space or dual space using equation (2.6), the
periodicity is given

F (k+AT l) = F (k). (2.12)

This shows that using a general sampling grid R(A) results in a sampling grid in dual space
given by R(AT ). If the matrix A is diagonal, as in Section 2.2, A ≡ AT and the periodicity
are the same in both domains.

It is often convenient to move the sampling points to a rectangular period, for example to
the Nyquist interval. This can be done with the simple coordinate transformation κ = A−Tk

and the periodicity becomes

R(AA−T ) = R(I) (2.13)

where I is the identity matrix. An example of a periodicity matrix, its transpose and the
coordinate transformation is given

A =

(

3 2
1 4

)

, AT =

(

3 1
2 4

)

, A−T =
1

10

(

4 −1
−2 3

)

. (2.14)

This sampling matrix has det(A) = 10 data points, these are plotted in Figure 2.3. In Figure
2.3(c) the sampling points are not integer, this is a general problem and it is necessary with
interpolation for plotting these images.

For a given periodicity matrix it is often possible to find another matrix which covers the
exact same sampling points. In general, these sampling grids will have different periodicity in
dual space, which results in a different image on the Nyquist interval. This because different
sampling lattices yields different sampling of the transformation itself.

The 2D FFT can only be used when the periodicity matrix is diagonal, on rectangular periodic
functions, but in the next section a method for calculating a 2D FFT on general grids is
presented.
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(a) R(A) (b) Dual Space R(AT ) (c) Rectangular R(I)

Figure 2.3: Dual sampling grids

2.4 Calculating the 2D DFT on General Grids

To calculate the discrete 2D DFT on a general grid the naive implementation would be to sum
over the indexes in equation (2.6). Guessoum and Mersereau (1986); Bernardini and Manduchi
(1994) suggests a method based on the Smith normal form theorem for integer matrices. Any
integer matrix can be written as a product of three matrices where one is diagonal. The
periodicity matrix can then be written as

A = PDQ (2.15)

where P and Q are unimodular matrices, det(P) = det(Q) = ±1, and D is diagonal. This
and the Fourier transform from equation (2.6) yields

F (k) =
∑

n

f(n)e−2πi(kTA−1n)

=
∑

n

f(n)e−2πi(kT (PDQ)−1n)

=
∑

n

f(n)e−2πi(kTQ−1D−1P−1n)

=
∑

n

f(n)e−2πi(Q−T k)TD−1(P−1n). (2.16)

Defining the coordinate transformations

Γn : ñ = P−1n and Γk : k̃ = Q−Tk, (2.17)

gives the Fourier transformation over a rectangular period defined by R(D)

F (k̃) =
∑

ñ

f(ñ)e−2πi(k̃TD−1ñ). (2.18)

After the transformation Γn of the sampling points, it is possible to calculate the Fourier
transform with the FFT algorithm, now being in a rectangular grid. Then the transformation
Γ−1
k maps the points to the dual lattice, R(AT ). A schematic view of this process is given by
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n ∈ R(A)
Γn−−→ ñ ∈ R(D)

F−→ k̃ ∈ R(D)
Γk−→ k ∈ R(AT ) (2.19)

All these steps are readily inverted and the 2D DFT for functions with general periodicity
can be calculated in both directions by FFT. There have been developed other methods for
calculating fast 2D DFT for special grid geometries. For hexagonal sampling there is one
algorithm mentioned in Dudgeon and Mersereau (1990).

Finding the Smith normal form and properties of it is presented in Appendix A, an algorithm
for calculating the matrices implemented in matlab given in Appendix A.7.1.

2.5 The Fourier Transform and Reciprocal Lattices

A discrete sequence of samples of a 2D continuous function fc = fc(x), can be written

f(n) = fc(Vn) = fc(η), (2.20)

where η = (η1, η2)
T are discrete samples of x = (x1, x2)

T . The matrixV is called the sampling
matrix, and for 2D

V =

(

a11 a12
a21 a22

)

. (2.21)

If V is a diagonal matrix it generates the conventional rectangular lattice.

When sampling a continuous function a finite period is assumed, given by the matrix T, and
the sampling points of the function are η ∈ R(T). This matrix can be expressed

T = VA, (2.22)

where A is the periodicity matrix with integer entries. The matrix A is the one used with
Smith normal form. This yields an expression for the sampling points of the continuous
function

η = TA−1n. (2.23)

Using the exponent in the Fourier transform, equation (2.6), and the expression n = V−1
η,

yields

2πkTA−1n = 2πkTA−1V−1
η

= 2πkT (VA)−1
η. (2.24)

Letting

κ
T = 2πkT (VA)−1 (2.25)
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yields

κ = 2π(VA)−Tk = 2π(ATVT )−1k, (2.26)

which shows that the sampling of the continuous Fourier domain is given

F (k) = Fc(Sk) = Fc(κ), (2.27)

where S = 2π(ATVT )−1 is the sampling matrix.

This leads to the duality

STT = 2πI, (2.28)

where I is the identity matrix. Defining U = V−T as periodicity of the dual lattice gives

UTV = 2πI, (2.29)

(Mersereau and Speake, 1983). The Fourier lattice given by UT is called reciprocal lattice, or
in the area of mathematics, geometry of numbers, as the polar lattice. Here it will be refereed
to as the dual lattice.

For a conventional rectangular lattice with Cartesian axes x, y, the matrix V can be expressed

V =

(

∆x 0
0 ∆y

)

(2.30)

and periodicity matrix

A =

(

Nx 0
0 Ny

)

. (2.31)

This has reciprocal sampling matrix

S = 2π

(

1
Nx∆x 0

0 1
Ny∆y

)

, (2.32)

which is the samplings intervals for Fourier space.

Any given lattice generated by the sampling matrix V could also be generated by W, given
as

W = EV, (2.33)

where the matrix E is unimodular, det(E) = ±1. This shows that the sampling matrices are
not unique, but the quantity det(V) is unique for a given lattice.
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2.6 Upsampling and Downsampling of Functions

In 1D discrete Fourier analysis the upsampling g(n) of a discrete function f(i) for i =
0, 1, 2, . . . , N − 1, is by filling in M − 1 zeros between each sample, this can be defined as

g(n) =

{

f( n
M ) if n = 0,M, 2M, . . . ,M(N − 1)

0 otherwise
. (2.34)

The similarity theorem states that this operation results in a packing of M periods in the
Fourier domain. In the 2D discrete Fourier analysis the operation becomes fairly different.

For a 2D function f(j), defined on a lattice given by R(A), the upsampling operation can be
defined as

g(n) =

{

f(L−1n) if L−1n ∈ R(A)

0 otherwise,
(2.35)

where L is the upsampling matrix (Evans et al., 1994). This corresponds to a mapping from
the original grid to a larger grid R(LA). In Fourier domain this operation gives

G(k) =
∑

n

g(n)e−2πi(kT A−1n) (2.36)

letting n = Lj

G(k) =
∑

j

g(Lj)e−2πi(kTA−1Ln)

=
∑

j

f(j)e−2πi(LTk)TA−1n

= F (LTk). (2.37)

This shows that upsampling any function on a given lattice to a denser, changes the functions
grid in dual domain.

Downsampling can be defined as

g(n) = f(Mn) (2.38)

where M is the downsampling matrix. The range of this matrix defines the points on the grid
which will be kept and the rest will be discarded. A similar argument as for upsampling can
be made to show that as the sampling points decreases, the lattice in Fourier domain changes.
The results from a Fourier transform of a function and the transform of a downsampled or
upsampled function will differ with a factor det(M). This is corrected by multiplication with
this factor after resampling.

These upsampling and downsampling operators have input and output on uniform sampled
grids. If this is not the case interpolation is needed when mapping between lattices.

10



n1
n2

n
3

0
2

4
6 0

2
4

6
8

0

2

4

(a) Periodicity R(A)

k1 k2

k
3

0
2

4
6 0

2
4

6
8

0

2

4

(b) Dual domain R(AT )

Figure 2.4: 3D sampling lattice

2.7 Multidimensional Discrete Fourier Transform

There are many applications where there is need for more than a 2D Fourier transformation.
Examples of this are optical, acoustic and seismic waves which propagate in 3D, sometimes
4 if time is considered. It is naturally very difficult to visualize sampling grids and functions
in more than 3D, even in 3D there are difficulties.

The theory presented in the previous sections is a general approach to sampling lattices. With
some simple modifications it can be expanded to n dimensions. A sampling periodicity can
be defined with the matrix

A =











a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...
an,1 an,2 · · · an,n











, (2.39)

where the columns are linear independent vectors.

By defining n = (n1, n2, . . . nn)
T and k = (k1, k2, . . . , kn)

T the Fourier transform can be
written

F (k) =
∑

n∈R(A)

f(n)e2πi(k
TA−1n). (2.40)

The Smith normal form theorem is valid for any n×n integer matrices, which is discussed in
Appendix A.5, and the computations of the nD Fourier transform is the same as in Section
2.4. An example of a 3D sampling grid is the range of the matrix

A =





3 2 1
1 4 1
1 2 3



 . (2.41)

The range R(A) and the dual R(AT ), is plotted in Figure 2.4, with det(A) = 21 sampling
points.
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Chapter 3

Some Special Cases

In the first section of this chapter, a case where two sampling matrices covers the same
sampling points is presented. The second part is an overview of algorithms to calculate
the Hexagonal Fourier Transform. Thereafter two special cases of Hexagonal sampling is
presented, referred to as Quincunx and diamond sampling. Finally an example of sampling
and filtering a 2D signal on a Quincunx sampling grid.

3.1 Different Periodicity Matrices Covering the Exact Same

Region

As mentioned in Section 2.3 it is often possible to find different periodicity matrices which
cover the exact same sampling points in one domain and have a different sampling geometry
in their dual domain.

The periodicity matrix

A1 =

(

5 3
0 3

)

, (3.1)

yields det(A1) = 15 sampling points, given as n ∈ R(A1). Defining the Gaussian or Bell
function,

f(n) = e−λ||n||2 for n ∈ R(A1), (3.2)

on these points, results in the image Figure 3.1(a). The advantage of this function is that its
Fourier transform is another Gaussian, which makes it easy to compare Fourier transforms on
different grids. In this example the parameter λ = 0.1. To have an image for comparing the
different sampling geometries, the first will be the conventional rectangular sampling. The
image and the 2D DFT of the function sampled on a rectangular sampling grid given by

N =

(

7 0
0 3

)

, (3.3)
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Figure 3.1: Rectangular sampling of the function f(n) and its Fourier transform

is plotted in Figure 3.1(a) and 3.1(b). This sampling geometry gives det(N) = 21 sampling
points, 6 of these will have value zero because the Fourier domain will later be compared with
sampling schemes which does not cover these points. As a result of the similarity theorem
these zeros corresponds to interpolation of the Fourier domain.

The matrix

A2 =

(

4 3
−1 3

)

. (3.4)

covers the exact same sampling points as A1, i.e. the points in R(A2) equals the points in
R(A1). Both have the N = det(A1) = det(A2) = 15 equal sampling points, but have different
periodicity. Using one of these sampling geometries will be more efficient than sampling with
the matrix N. The methodology from Section 2.4 lets the DFT be calculated with FFT. The
first step is to diagonalize the matrices using the Smith normal form theorem, to A = PDQ.
The matlab code in Appendix A.7.1 gives the following matrices

P1 =

(

1 0
6 1

)

, Q1 =

(

5 3
−2 −1

)

, D1 =

(

1 0
0 15

)

(3.5)

P2 =

(

4 1
−1 0

)

, Q2 =

(

1 −3
0 1

)

, D2 =

(

1 0
0 15

)

. (3.6)

Figure 3.2 is a graphical representation of the steps in the transformation. The map from
plot (a) to (b) is Γn : ñ = P−1

1 n, the points then have a rectangular period R(D1) which is
naturally isomorphic to Z15. Therefore it is sufficient to calculate a 1D FFT. In Figure 3.2 (c)
the map Γ−1

k : k = QT
1 k̃ for k̃ = ñ has been calculated. The points from (c) is transformed

by κ = ATk to a period given by R(I) in (d), which have the same periodicity as the output
from the rectangular 2D FFT.

The same procedure is used for the periodicity matrix A2, and the results are given in Figure
3.3. In Figure 3.2(a) and 3.3(a) the same three points are marked with a red circle. After
the first map the three points are not in the same position, and that is the case throughout
the sequence. This illustrates that the use of different periodicity matrices results in different
sampling of the transform itself.
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Figure 3.2: The steps in sampling with matrix A1
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Figure 3.5: F (k) from different periodicity matrices interpolated to a rectangular grid on
the Nyquist period

The Fourier transformation of the function sampled with periodicity matrix AT
1 and AT

2 is
plotted, respectively in Figure 3.4(a) and Figure 3.4(b). The DC component, sample (0, 0),
has the same value in both plots, because the exponential in the transformation is equal to
1. If these images are periodically expanded the images would look much the same except
for differences in some of the values. This is a result of the different sampling of the Fourier
transformation itself.

The final problem of this example is to plot the results of the sampling with the matrices A1

and A2 on the Nyquist interval. Figure 3.2(d) and 3.3(d) shows that the sampling points after
the coordinate transform κ = A−Tk are not integers. To create an image on a rectangular grid
from these points interpolation is needed. First the points κ are shifted to the Nyquist interval
−1/2 to 1/2 by modular arithmetics and then interpolated with matlabs v4 interpolation
function, see Appendix C. The results of this are plotted Figure 3.5. The images are very
similar and a comparison with the rectangular DFT, Figure 3.1(b), shows similarities.

3.2 Hexagonal Sampling

There are many examples of methodology for sampling and defining the Fourier Transform
on hexagonal grids. Here there will be presented three possibilities. The first is regular
hexagonal sampling, where the sampling points are equidistant in all directions, a hexagonal
Fourier transform with rectangular output, and a method using Smith normal form.

A hexagonal sampling grid can be defined by a sampling matrix

V =
(

v1 v2

)

=

(

a11 a21
0 a22

)

, (3.7)

where v1 and v2 is given as in Figure 3.6(a). On a regular hexagonal sampling grid, a sampling
point have the same distance to its six nearest neighbors. The angle between the two vectors
is then 60 degrees, and defining

a21 =
a11
2

, (3.8)
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Figure 3.6: (a)Hexagonal sampling points and generating vectors, (b) Two periods with the
dame sampling points

gives

a22 = a21 tan 60
o =

√
3a21 =

√
3

2
a11. (3.9)

The lattice in Figure 3.6(a) is a hexagonal lattice, generated with a11 = 1. The lines enclosing
the sampling points is a Voronoi diagram, see Appendix B. A general hexagonal sampling
grid can be given

V =

(

d1 −d1/2
0 d2

)

, (3.10)

where d1 = a11 and d2 = a22.

The sampling points on a hexagonal sampling grid can be contained in two periods, Figure
3.6(b), which are equivalent. The black points illustrate hexagonal sampling points in a
rectangular period, and the blue circles the equivalent in a hexagonal coordinate system. The
two sampling periods can be represented by at least two integer periodicity matrices,

N1 =

(

N1 0
0 N2

)

(3.11)

and

N2 =

(

N1 N2/2
0 N2

)

, (3.12)

assuming N2 is even. The sampling period is defined by the matrix product T = VN. Using
the methodology from Section 2.5, the dual lattice when using periodicity matrix N2 is given
by

S = 2π(ATVT )−1 =

(

2π/d1N1 0
0 2π/d2N2

)

. (3.13)
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This is a diagonal matrix, which shows that Fourier domain for these choices of N and V is
a rectangular lattice, this will be treated in the next section.

An example of a function sampled on a regular hexagonal grid is given in Figure 3.7(a). The
function is given as

f(r) = J0(ar), (3.14)

where J0 is the zero order Bessel function of the first kind, a > 0, and

r =
√

x2 + y2. (3.15)

It can be shown by the Hankel transform that this function has a circular spectrum and the
parameter a governs the radius of this circle, chosen a = 3/2. The matrix generating the
sampling points is here given

V =

(

2/
√
3 −1/

√
3

0 1

)

, (3.16)

and the sampling points are in a rectangular period, given by N1. The periodicity matrix is
diagonal, and the dual lattice is also on a rectangular period. Fourier domain is generated by
the matrix V−T , and is shown in Figure 3.7(b). The DFT is calculated by summation over
all the indexes. Both Figures are generated by filling Voronoi cells with a color corresponding
to the functions value.

For the regular hexagonal sampling grid, there is developed a fast Fourier transform in
Mersereau (1979).

3.2.1 Hexagonal Fourier Transform with Rectangular Output

Often it is convenient to get the result of a Fourier transform of hexagonally sampled func-
tion on a rectangular grid. Ehrhardt (1993) presents a method which solves this without
interpolation afterwards.

The DFT is defined as in Section 2.3,

F (k) =
∑

n

f(n)e−2πi(kTN−1n), (3.17)

and the integer periodicity matrix is given by equation (3.12). By direct input, the DFT is
given

F (k1, k2) =

N1−1
∑

n1=0

N2−1
∑

n2=0

f(n1, n2)e
−2πi[(n1−n2/2)k1/N1+n2k2/N2]. (3.18)

This operation can be divided in to three steps, first

F1(k1, n2) =

N1−1
∑

n1=0

f(n1, n2)e
−2πik1n1/N1, (3.19)
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Figure 3.7: (a) The function in equation 3.14 on a regular hexagonal lattice, (b) its Fourier
transform.
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which is calculated with a 1D FFT. Then a filtering

F2(k1, n2) = F1(k1, n2)e
πik1n2/N1 , (3.20)

which is an interpolation of the points to a rectangular grid. This filtering is a special case of
the interpolation method described in Appendix C.1.

Next it is possible to calculate the 1D FFT in the other direction

F (k1, k2) =

N2−1
∑

n2=0

F2(k1, n2)e
−2πik2n2/N2 . (3.21)

The output from this algorithm is Fourier space on a N1 × N2 rectangular grid. A square
periodicity imply that N2/N1 = d1/d2 and d1/d2 has to be a rational number. This shows
that it is not possible to calculate the DFT of a regular hexagonal grid with this method.
Ehrhardt (1993) suggest to approximate the fraction

√
3/2 with a rational number.

When the sampling points are spanned within a rectangle, as the black points in Figure 3.6(b),
the filtering can be defined

F2(k1, n2) = F1(k1, n2)e
πik1mod(n2,2)/N1 , (3.22)

since it is shifting every second column of points down one half. To get a hermitian filter, and
output as the rectangular FFT, the sampling points k1 should be defined

k1 = mod(k1 + bN1/2c, N1)−N1/2, (3.23)

which is the Nyquist interval.

The same function as the example in the previous section is sampled on a lattice generated
by

V =

(

8/7 −8/14
0 1

)

, (3.24)

with N1 = 20 and N2 = 23, is given in Figure 3.8(a). Using the method described here,
results in the image in Figure 3.8(b). The result is on a rectangular grid and conventional
processing algorithms could be used directly.

Equation (3.20) is a expression for the Fourier transform in one direction, and many (geo-
physical) processing algorithms are defined in the frequency-offset domain. Therefore this
method could be used for these processing tasks.

The transformation is easily inverted, just changing the sign in the exponential function.
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Figure 3.8: (a) The function sampled on a hexagonal grid given by V, and (b) Fourier
domain on a rectangular grid.
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Figure 3.9: Regular hexagonal sampling

3.2.2 Assuming Hexagonal Periodicity in Fourier domain

Conventional 2D sampling assumes a rectangular periodicity in Fourier domain. Signals which
have a circular bandwidth are then oversampled. The most efficient sampling of a circular
bandwidth is hexagonal, shown in Figure 3.9(a). A regular hexagon is a six sided polygon
where all six sides have same length, a. If the circle enclosed in the hexagon have radius r,
which in this case is equal to the hexagons height b, the Pythagorean theorem gives

a =
2b√
3
.

Mersereau (1979) shows that this periodicity yields a 13.4% more efficient sampling than the
conventional rectangular sampling. By periodic expansion of the hexagon, see Figure 3.9(b),
the data in the hexagon can be contained in many different sampling periods. One period,
which can be represented with the matrix notation from Chapter 2, is the red parallelogram
in Figure 3.9(b). The range of the matrix

R =

(

3a
√
3
2 a

0 a
2

)

(3.25)

gives the hexagonal period, Figure 3.9(c).

Constructing a hexagon with an integer periodicity matrix will make it possible to calculate
DFT using the Smith normal form theorem. Choosing the vertical and horizontal number of
samples of the hexagon to be 2N + 1, the left and right side 2M + 1, where M,N ∈ Z, gives
a integer periodicity matrix. A periodic expansion of a hexagon where N = 2M and M = 2
is shown in Figure 3.10. The black parallelogram is a period which covers all the sampling
points and can be used with Smith normal form.

The sampling points enclosed in this hexagon is shown in Figure 3.11(a) and in Figure 3.11(b)
the points have been mapped to the parallelogram for Smith normal form. The colored circles
show how the points are mapped to the new period. This period can be expressed as the range
of the integer matrix

HT =

(

N 0
3M 2(N +M)

)

, (3.26)
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Figure 3.10: A periodic sequence of integer hexagons in the plane.

and for the example when N = 2M

HT =

(

N 0
3N/2 3N

)

. (3.27)

This sampling has det(H) = 2N(N+M) = 3N2 sampling points and compared to rectangular
sampling of the same bandwidth which would have 2N × 2N = 4N2 number of sampling
points, assuming hexagonal periodicity is 25% more efficient. The matrix is of right Hermite
normal form, if the hexagon is rotated 90 degrees, as the one in Figure 3.9(a), the periodicity
matrix would be of left Hermite normal form, (Appendix A.7.6). The sampling points in dual
domain, n ∈ R(H), is shown in Figure 3.11(c).

A function is generally sampled with a rectangular periodicity, which is best for plotting. If
this rectangular period can be given by the matrix

T =

(

T1 0
0 T2

)

, (3.28)

the sampling points on a rectangular period can be expressed

η = TH−1n. (3.29)

In Figure 3.11(d) a period T1 = T2 = 2N is assumed, and the Voronoi cells shows the
hexagonal shape of the lattice.

The same function as used with the previous methods are sampled on a lattice given by
N = 20, M = 10 and T1 = T2 = 20, Figure 3.12(a). Using the approach outlined, the
hexagonal Fourier domain is shown in Figure 3.12(b).

When assuming hexagonal periodicity the alias pattern naturally changes and become more
intricate. There is six directions where the spectrum folds. Choosing the radius of the circle
in Figure 3.12(b) larger than the bandwidth is a good example of this. In Figure 3.13 it is
clear that the circle folds around the six borders of the hexagon.

Sampling with a hexagon which is integer does not cover a circular band region, as a regular
hexagon, but it is preferable in some cases, this is illustrated with the circle outside the
hexagon in Figure 3.9(a).
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Figure 3.12: (a) The function f(r) = J0(ar) sampled on a lattice given by N = 20, M = 10,
T1 = T2 = 20, and (b) Fourier domain with hexagonal periodicity.
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It is naturally possible to construct the hexagon with a different number of samples along the
horizontal and vertical axis. But the analysis is simpler when assuming the same number of
samples in both directions.

3.2.3 Hexagonal Filtering

Downsampling of functions is generally a low-pass filtering. Assuming hexagonal periodicity
in Fourier domain and sampling a signal on this kind of lattice, is equivalent to a hexagonal
low-pass filtering. Studying such a filtering gives insight to the downsampling from rectangular
to hexagonal lattices. Starting with the “jinc”-function, defined as

jinc(r) =
J1(r)

r
, r =

√

x2 + y2, (3.30)

where J1(r) is the first order Bessel function of the first kind. The limit r � 0 is defined

lim
r→0

jinc(r) =
1

2
. (3.31)

This function is the impulse response of a circular low pass filter. The function sampled on a
lattice defined by

N =

(

41 0
0 41

)

, (3.32)

is shown in Figure 3.14. The jinc-function is real and symmetric, therefore also the Fourier
transform real and symmetric.
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Figure 3.14: (a) The jinc-function and (b) the Fourier transform

The filter

F(n) =

{

1 if n ∈ R(HT )

0 otherwise
(3.33)

where

HT =

(

20 0
10 90

)

, (3.34)

is plotted in Figure 3.15(a). Multiplying the jinc-function with this filter simulates the down-
sampling to the hexagonal periodicity in Fourier domain. The real, imaginary and absolute
value of the filtered function is shown in Figure 3.15(b,c,d). The Fourier transform is Her-
mitian, because the filter real. It has an imaginary part because it is not symmetric. Con-
structing a filter without the asymmetric sampling points results in a real symmetric Fourier
transform, see Figure 3.16.

A hexagon has six fold symmetry, and a circle is symmetric on such sampling. This example
shows that downsampling a function in Fourier domain to a hexagonal periodicity results in
an inverse Fourier transform with a real and imaginary part. Therefore the best interpolation
method to a rectangular grid is Fourier interpolation. The processing should be done in the
range of Smith normal form, and afterwards the sampling points should be transformed back
to hexagonal periodicity within a rectangular period. Fourier domain will then be Hermitian
and the inverse Fourier transform is real.

In general, a function should not be downsampled to a hexagonal lattice in Fourier domain,
since it introduce an imaginary part. Sampling the function on the points given by η ∈ R(T)
is preferable, but does in most cases involve interpolation.
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Figure 3.15: The hexagonal filter and the results from the low-pass filtering of the
jinc-function.
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Figure 3.16: The symmetric hexagonal filter and the results from the low-pass filtering of
the jinc-function.
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Figure 3.17: The different grids of Quincunx sampling

3.3 Special Sampling Patterns

Two special cases of hexagonal sampling will be presented. The Quincunx pattern which is
often referred to, and a pattern which will be used for sampling seismic waves.

3.3.1 Quincunx Sampling

The Quincunx sampling pattern is used in many applications, for example in televisions,
because it creates just enough disorder so the eyes do not realize that the signal is discrete.
The pattern has its name as the symbol for “five” on the playing dices, this pattern is shown
in Figure 3.17(a). The pattern is generated by the matrix

VQ =

(

1 −1
1 1

)

. (3.35)

In Figure 3.17(a) there are 50 points, and by multiplying these with the matrix 1
2AQ, which

is a 45 degree rotation and expansion counterclockwise, the lattice is given as R(AQ5
), where

AQ5
=

(

5 −5
5 5

)

. (3.36)
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This is plotted in Figure 3.17(b) and the points fit on the rectangular lattice lying behind
which makes it easy to plot functions on this lattice. The general Quincunx lattice can be
expressed as

AQN
=

(

N −N
N N

)

= N

(

1 −1
1 1

)

(3.37)

and the Smith normal form is

AQN
= NAQ =

(

−1 −1
1 0

)

(

N

(

1 0
0 2

)

)

(

1 1
−1 0

)

= P(ND)Q. (3.38)

The Smith normal form gives the coordinate transformations Γ, and the diagonal period is
plotted in 3.17(c). Moreover these points can be mapped to the dual lattice as shown in Figure
3.17(d). An advantage with this special pattern is that the rotation yield integer sampling
points on a rectangular period, and interpolation is not needed. The 45 degree rotation only
contracts or expands the area with a factor 2, so multiplying the rotation matrix with this
factor gives integers.

3.3.2 Diamond Sampling

Another special case of hexagonal sampling will be referred to as Diamond sampling, because
its periodicity in Fourier domain resembles the diamond on playing cards. In two dimensions
this can be defined by the matrix

Aa,b =

(

a −a
b b

)

(3.39)

where a, b ∈ Z.

In Figure 3.18(a) the diamond lattice given by A2,5 is plotted. This has 20 sampling points
and its dual lattice AT

2,5 is shown in Figure 3.18(b). To find the pattern in dual domain

corresponding to this matrix, the coordinate transformation κ = A−T
2,5 k results in points in

R(I). The transformation matrix is given as

A−T
2,5 =

1

10

(

5 2
−5 2

)

, (3.40)

and by multiplying this by a factor 10

10A−T
2,5 =

(

2 1
−2 1

)

. (3.41)

If this matrix is used for rotation, the sampling points will have the rectangular period given
by the matrix

N = AT
2,510A

−T
2,5 =

(

8 0
0 10

)

. (3.42)
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Figure 3.18: The Diamond sampling grid
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Figure 3.19: The signal and its Fourier transform

This period is plotted in Figure 3.18(c) and the points hit the integer grid lying behind
this lattice. This is a special example, but in many cases this is possible, and it makes the
calculations and plotting much simpler.

The Diamond sampling is equivalent to the Hexagonal sampling since any non singular integer
matrix can be transformed to Hermite normal form, see A.6. This is illustrated by the blue
curve enclosing the sampling points (Voronoi cells) in Figure 3.18(a). The transformation
to Hermite normal form is unimodular, the determinant of the transform matrix is ±1, and
therefore it is possible to have sampling points in a similar period as in Section 3.2.2.

3.4 2D Sampling and Filtering of a Signal

A function f is defined on a rectangular lattice given by N = diag(100, 100), Figure 3.19(a).
Its Fourier transform is plotted in Figure 3.19(b). Fourier domain is periodic, and by shifting
k2, the horizontal axis, from [−50, 50] to the interval [0, 100], Figure 3.20(a), it is apparent
that a more efficient sampling could be the Quincunx pattern. This lattice is given by the
periodicity matrix

AQ50
=

(

50 −50
50 50

)

, (3.43)

and points in dual domain has the periodicity AT
Q50

. By rotating this, the Quincunx pattern
is generated by the matrix

VQ =

(

1 1
−1 1

)

, (3.44)

which gives a pattern that hits all the black lines in Figure 3.19(a). The Smith normal
form is given by equation (3.38), and the map Γn yields Figure 3.20(b). This is Fourier
transformed to Figure 3.20(c) and then mapped to the Quincunx period, Figure 3.20(d).
By periodic expansion of Fourier domain it is observed that it is the same image as Figure
3.20(a). The rectangular grid has 100× 100 = 10, 000 sampling points and the Quincunx has
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Figure 3.20: (a) The Quincunx period and (b) the rectangular space for 2D FFT. (c) The
2D FFT on rectangular period and (d) the Quincunx period

det(AQ50
) = 5, 000. This shows that sampling this function with a Quincunx pattern is 50%

more efficient.

Straight lines are mapped orthogonal to the initial line by the Fourier transform. Therefore
the filter in Figure 3.21(a) should remove the lines in one of the directions. Transforming
these points to the rectangular lattice, Figure 3.21(b), multiplication with the original Fourier
domain and then inverse Fourier transform gives the image in Figure 3.21(c). Only the real
part is plotted, there are some small values in between the lines, probably due to various
discrete phenomena.
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Figure 3.21: Filtering of the function f
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Chapter 4

Seismic Waves

4.1 The Acoustic Wave Equation

Let p = p(x, y, z, t) = p(r, t) be the wavefield in 3D where x, y, z are the coordinates in space
and t is time. For a isotropic medium the acoustic wave equation is given as

ρ∇ ·
(1

ρ
∇p
)

=
1

c2
∂2p

∂t2
, (4.1)

where c = c(r) is the P-wave velocity and ρ = ρ(r) the density. Defining ω as the angular fre-
quency and k = (kx, ky, kz)

T as the wavenumber, the Fourier transform over these coordinates
is defined as

P (k, ω) = F [p(r, t)] =

∫ ∫ ∫ ∫ ∞

−∞
p(r, t)e−i(ωt−kT r)drdt, (4.2)

and its inverse

p(r, t) =
1

(2π)4

∫ ∫ ∫ ∫ ∞

−∞
P (k, ω)ei(ωt−kT r)dkdω. (4.3)

A general property of the Fourier Transformation is

F

[∂p

∂x

]

= ikxP, (4.4)

and by assuming constant velocity c and density ρ, the wave equation can be written

k2xP + k2yP + k2zP =
(ω

c

)2
P. (4.5)

This results in

||k||2 =
(ω

c

)2
⇒ ω = c||k|| (4.6)
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where || × || is the Euclidean norm. This is the dispersion relation for acoustic waves.

In a homogeneous medium with constant velocity the solution can be written

P (r, ω) =
1

r
e−iωr/c, where r = ||r||, (4.7)

which is spherical waves.

4.2 Sampling and Aliasing

The conventional method for sampling a wavefield in 2D is by defining t = n∆t for n =
0, 1, . . . , Nt − 1, and x = m∆x for m = 0, 1, . . . , Nx − 1. The Nyquist-Shannon theorem
states that to avoid aliasing the sampling interval should fulfill the inequality ∆t ≤ π

ωmax
,

where ωmax is the maximum angular frequency in the signal. If ωmax = π
∆t this frequency is

called the Nyquist frequency, ωNy. When sampling in space there is a Nyquist frequency or
wavenumber in all directions.

Letting ∆t = π
ωNy

and ∆x = π
kxNy

, gives the periodicity in Fourier domain by the intervals

ω ∈ [−ωNy , ωNy] and kx ∈ [−kxNy
, kxNy

]. This is a rectangular period and the integer
periodicity matrix in Fourier and spatial domain is

N = NT =

(

Nx 0
0 Nt

)

, (4.8)

which has a total of det(N) = NxNt sampling points.

A wavefield propagating in coordinates x and z, has vertical wavenumber kz,

kz = ±
√

(ω

c

)2
− k2x. (4.9)

For the waves to propagate downwards, the wavenumber in z direction, kz, should be real
and positive. This gives

|ω| ≥ c|kx|, (4.10)

which shows that the wavefield is limited in Fourier domain. This is illustrated in Figure
4.1, where seismogram of a point source at depth z = 4 km in a homogeneous medium with
velocity c = 2.5 km/s is approximated by a hyperbola. Figure 4.1(b) shows that the Fourier
spectrum is limited by the lines given by equation (4.10).

For a given medium with minimum velocity cmin and Nyquist frequency ωNy, the Nyquist
wavenumber should be chosen kxNy

= ωNy/cmin to minimize the data when sampling on a
rectangular grid. Using the relations between the Nyquist frequency and sampling interval
gives that the sampling in x should be given ∆x = cmin∆t.

A periodic expansion of the wavefield in Figure 4.1 is given in Figure 4.2. The black lines
illustrate the Nyquist frequency and wavenumber for rectangular sampling, the blue lines the
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Figure 4.1: (a) A seismogram from an exploding source with depth z0 = 4 km with velocity
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optimal periodicity. This Figure illustrate that a wavefield in Fourier domain will be contained
in the range of a matrix given by

RT =

(

kxNy
−kxNy

ωNy ωNy

)

, (4.11)

which can be written

RT =

(

kxNy
−kxNy

ckxNy
ckxNy

)

= kxNy

(

1 −1
c c

)

. (4.12)

Limiting the number of samples to even integers Nt and Nx, the Nyquist frequency and
wavenumber in units of ∆ω and ∆kx are Nt

2 and Nx

2 . The optimal sampling area is then given
by the periodicity matrix AT in Fourier domain.

AT =

(

Nx

2 −Nx

2
Nt

2
Nt

2

)

. (4.13)

In dual domain, time - space, this matrix is

A =

(

Nx

2
Nt

2

−Nx

2
Nt

2

)

(4.14)

and det(A) = NxNt

4 +NxNt

4 = NxNt

2 . Comparing with the conventional sampling, this sampling
geometry preserves the wavefield with only half the samples. This is the same as the diamond
sampling geometry from Section 3.3.2, where the sampling points in time offset domain is
integer.

For odd number of samples the Nyquist frequency and wavenumber in units of the sampling
interval can be defined (Nx − 1)/2 and (Nt − 1)/2. This does not result in such a simple
number of sampling points as for even sampling, but is also ≈ 50% more efficient.

Similar arguments can be made for 3D waves. The Fourier spectrum is bounded by

|ω| ≥ ±c
√

k2x + k2y , (4.15)

which is a cone, Figure 4.3(a). The optimal sampling would then be to sample within a
area bounded by two hexagonal pyramids. It is not possible to express such an volume with
this definition of the periodicity matrices. The periodicity matrix for sampling in 3D with
coordinates in Fourier domain, (kx, ky, ω)

T , can be expressed

AT =





Nx/2 −Nx/2 0
0 0 Ny

Nt/2 Nt/2 0



 . (4.16)

The range of this matrix is a volume in (kx, ky, ω) space, and by shifting half of the ky
wavenumbers to negative this is plotted over the bandwidth of acoustic waves in Figure
4.3(b). This has det(A) = NxNyNt/2 sampling points which is 50% less than the conventional
sampling with NxNyNt points.
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Figure 4.3: (a) The 3D bandwidth of acoustic waves and (b) the periodicity with half the
sampling points.

4.2.1 Example of 2D Sampling

The seismogram in Figure 4.4(a) is the same as in Figure 4.1(a) and is sampled on a lattice
given by the intervals ∆t = 0.03 s and ∆x = c∆t = 0.1 km. The optimal sampling is given
by the periodicity matrix in equation (4.12), with kxNy

≈ 31.4 rad/km and ωNy ≈ 78.5
rad/s. Figure 4.4(b) shows the absolute value of Fourier domain shifted from [−ωNy, ωNy]
to [0, 2ωNy]. The blue lines illustrate the optimal sampling periodicity. The conventional
rectangular sampling have Nt = Nx = 100 sampling points, therefore the periodicity matrix
in units of ∆x and ∆t becomes

AT =

(

50 −50
50 50

)

. (4.17)

This matrix is equal to the Quincunx periodicity matrix AQ50
from Section 3.3.1 and the

Smith normal form is given

AQ50
= PDQ =

(

−1 −1
1 0

)(

50 0
0 100

)(

1 1
−1 0

)

. (4.18)

Now sampling inside the R(AT ) in Fourier domain and calculating the coordinate transfor-
mation

Γk : k̃ = Q−1k, (4.19)

results in the function f(k̃), Figure 4.4(c). The function is on a rectangular grid and IFFT
results in Figure 4.4(d).

The next step to get the image in time-space, is to map the function to R(A), this by

Γ−1
n : n = Pñ, (4.20)

see Figure 4.4(e).

The coordinate transform

η = TA−1n (4.21)
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Figure 4.5: f(η) in hexagonal Voronoi cells

where T = diag(Nx∆x,Nt∆t), maps the sampling points to a rectangular period on the same
interval as the seismogram in Figure 4.4(a). The downsampled seismogram is plotted on this
lattice, Figure 4.4(f). The sampling points become integers as in Section 3.3.2, and the points
without value are plotted as zeros.

Another method for displaying images on a diamond or hexagonal lattice is to fill the Voronoi
cells which the lattice generates, with colors representing the functions value. Figure 4.5 shows
such a plot of the seismogram, it can be observed that the cells are hexagonal. This is a good
approach for displaying images on hexagonal lattices since it does not involve interpolation,
see Appendix B for details.

The result of the downsampling clearly shows that some artifacts are present. Because sam-
pling within an area given by R(AT ), is a low-pass filtering. It is preferable to downsample
in time-offset domain, because these artifacts will be avoided. The low-pass filtering when
downsampling in Fourier domain, will be investigated in the next section.

4.3 Bow-Tie Filter and Sampling

The sampling scheme defined in Section 4.2 is a low pass filter which resembles a velocity
filter, often referred to as a bow-tie filter. This filter is generally constructed in 2D to remove
alias and noise which is outside the region defined by the R(A) from Section 4.2.

The impulse response of such a filter is

g(x, t) =
1

4π2

∫ Ω

−Ω
sign(ω)eiωtdω

∫ κ

−κ
e−ixkxdkx (4.22)
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Figure 4.6: (a) The bow tie filter with velocity c = 2 km/s, (b) the impulse response
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Figure 4.7: (a) The bow tie filter with velocity c = 1.5 km/s resembles a hexagonal filter and
(b) the impulse response
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Figure 4.8: (a) A low-pass filter in Fourier domain, (b) the impulse response of the filter

where κ = ω/V , V the cutoff velocity and Ω the frequency band. These integrals can be
solved by use of the shift theorem, and more explicit the impulse response is

g(x, t) = −1

2
h̃(t) ∗ [δ̃(t− x/V )− δ̃(t+ x/V )], (4.23)

where δ̃(t) is a Ω band limited δ-function and h̃(t) = H [δ̃(t)] is the Hilbert transformation.
An example of a bow tie filter with V = 2 km/s is given in Figure 4.6(a), and its impulse
response in 4.6(b). If V = cmin, the impulse response is somewhat equivalent to sampling a
seismic wave on the lattice given by the optimal sampling matrix from Section 4.2.

When implementing this filter there is the general problem of oscillations of the impulse
response . To reduce this, smoothing of the edges would be preferable. Before downsampling
to a lattice with less sampling points such a filtering should be done.

An interesting result from this is if V is chosen smaller than cmin, the filter can be interpreted
as a period of the hexagonal filter from Section 3.2.3. A filter with V = 1.5 km/s < cmin

is plotted in Figure 4.7(a), which by changing period is a hexagon. The impulse response,
Figure 4.7(b), shows that the oscillations actually have a hexagonal shape. This is a result of
alias, the lines of the impulse response map back around the period.

4.4 Filtering in (kx, ω)-domain

The seismic section in Figure 4.1(a) is given, s(x, t), with maximum angular frequency and
wavenumber ωNy and kxNy

. A low pass filter which passes angular frequencies in a band Ω
and wavenumbers in a band Λ can be defined as

F (kx, ω) =

{

1 if ω ∈ Ω and kx ∈ Λ

0 otherwise
. (4.24)

The impulse response is a 2D sinc function, which oscillates from the center of the domain. An
example of the filter and its impulse response is given in Figure 4.8(a,b), here Ω = {ω||ω| <
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Figure 4.9: The impulse response of F (kx, ω) sampled with A
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Figure 4.10: (a) Low-pass filtering of s(x, t) and (b) the same filtering with optimal
sampling.

30 rad/s} and Λ = {kx||kx| < 15 rad/km}. The sampling scheme is given ∆t = 0.04 s,
∆x = c∆t, c = 2.5 km which is the velocity of the wavefield s(x, t). This gives Nt = Nx = 100,
when the period is T = 4 s and x is sampled from −5 km to 5 km.

By using the periodicity matrix A from equation (4.14), the impulse response changes because
of the different periodicity in time space domain, Figure 4.9. The oscillating lines are rotated
compared to the rectangular sampled impulse response. This illustrates that the change of
sampling grid, changes the periodicity in both domains and different alias effects is present.

The image is generated by filling the hexagonal cells enclosing the sampling points, Voronoi
cells, see Appendix B. The rectangular sampling had a total of NtNx = 10, 000 sampling
points while using the periodicity matrix A, results in half the points, det(A) = 5, 000.

This filter is applied to s(x, t) in Fourier domain and the result is plotted in 4.10(a). Com-
paring to 4.1(a) the main observation is that the wavelet contains lower frequencies. The
same filtering is applied by sampling the wavefield and filter with the matrix A. The result
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is upsampled to the initial grid after the filtering. This is plotted in Figure 4.10(b). The
upsampling is done by using matlabs implemented cubic spline interpolation. The results of
the filtering are basically the same, of course by careful inspection some differences will exist.

This example shows that non-rectangular sampling theory can be used in seismic processing,
resulting in only half the data points.

4.5 The Radon Transform and Slant Stacks

The Radon Transform in its original form was introduced by Johan Radon in 1917. The
transform has a wide range of applications for example in medicine (X-ray and CT), in
astronomy and in optics. Figure 4.11 shows that a ray can be defined

s = x cos θ + y sin θ, (4.25)

and the Radon Transform is defined as the integral along these rays,

g(s, θ) = R[f ] =

∫ ∫ ∞

−∞
f(x, y)δ(s − x cos θ − y sin θ)dxdy. (4.26)

The inversion of this transform is essential in almost all its applications and general references
on this subject is Deans (1983) and Jain (1989).

Only a finite number of projections can be calculated, and to analyze how many is necessary
to get the complete image, Rattey and Lindgren (1981) finds the Fourier spectrum of the
Radon transforms impulse response. An impulse at the point (a, b) can be given by the Dirac
delta function

f(x, y) = δ(x− a, y − b), (4.27)

for a, b 6= 0. The Radon transform is given

g(s, θ) = δ(s − a cos θ − b sin θ), (4.28)
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Figure 4.12: (a) The Radon transform of a point impulse in (a, b) = (2, 3) and (b) the
Fourier transform of Radon domain

which is unequal to zero when

s = a cos θ + b sin θ = r cos(θ − θ0), r =
√

a2 + b2, θ0 = arctan(b/a). (4.29)

Transforming the δ-function gives insight into the Radon Transform since any function f can
be expressed as a continuous sum of impulses

f(x, y) =

∫ ∫ ∞

−∞
f(a, b)δ(x − a, y − b)dadb. (4.30)

This shows that the Fourier transform of equation (4.28) gives a band region not only for the
impulse response but also for a general function. From equation (4.26), the Radon transform
is 2π periodic, g(s, θ) = g(s, θ + 2nπ) for n ∈ Z. Defining (s, θ) � (ωs, ωθ) as Fourier pairs
gives

G(ωs, ωθ) =

∫ 2π

0

∫ ∞

−∞
δ(s − r cos(θ − θ0))e

−i(ωss+ωθθ)dθds

=

∫ 2π

0
e−iωsr cos(θ−θ0)e−iωθθdθ. (4.31)

This integral can the be written as the Fourier series

G(ωs, ωθ) = 2π
∞
∑

m=−∞
e−im(π/2+φ0)Jm(rωs)δ(ωθ −m), (4.32)

where Jm(rωs) is the m’th order Bessel function of the first kind. Rattey and Lindgren (1981)
further show that the Fourier spectrum is approximately zero for |ω| < b|rωs|c+ 1, since the
Bessel functions have bandwidth 2(|rωs|+1)+1. This is an efficient bandwidth for the Radon
domain, which yields the number of projections necessary to get the image.
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The Radon Transform of an impulse in (a, b) = (2, 3) is plotted in Figure 4.12(a), and the
Fourier Transform of that in Figure 4.12(b). This shows that Radon domain would be most
efficiently sampled with a hexagonal geometry.

By making two assumptions on the initial function f ,� f(x, y) ≈ 0 for x2 + y2 > R2
M� F (ωx, ωy) ≈ 0 for ω2

x + ω2
y > W 2

M ,

whereRM is the radius of a circular element in space andWM is the bandwidth, Rattey and Lindgren
(1981) shows that the hexagonal sampling scheme requires

Nh ≈ 1

π
(RMWM )2 (4.33)

sampling points for large space-bandwidth products. The rectangular sampling theorems,
using Nyquist in both variables, result in

Nr ≈
2

π
(RMWM )2 (4.34)

and the hexagonal sampling requirement results in only half the samples.

4.5.1 The Linear Radon Transform

In geophysics the transform is called slant stacks, τ − p transform, or the linear Radon
transform (Schultz and Claerbout, 1978), and is defined as

R[s(x, t)] =

∫ ∫ ∞

−∞
s(x, t)δ(t − τ − px)dxdt

=

∫ ∞

−∞
s(x, τ + px)dx, (4.35)

which is the sum over all straight lines t = τ + px where τ is intercept time and p the ray-
parameter or slowness, p = 1/c. This transform is often used for multiple elimination and
there are examples of migrating data in this domain. The transformation maps linear events
to points and point impulses to lines, Figure 4.13(a) and 4.13(b) illustrates this. An impulse
in (x0, t0) is given by

s(x, t) = δ(x− x0)δ(t− t0)

and the Radon transform is

R[s(x, t)] = δ(τ − t0 + px0), (4.36)

which is a straight line, t0 = τ + px0. For any given time curve t0 = t0(x) the Radon
transform is the envelope of such lines. By defining F(p, τ ;x0) = 0 the envelope is given as
F = ∂F/∂x0 = 0 and the ray-parameter is given p = ∂t0/∂x0.
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Acoustic waves from a point source at depth z0 are generally modeled by a hyperbola given
as

(ct0)
2 = x20 + z20 (4.37)

where (x0, t0) is a point on the hyperbola. This gives

p =
∂t0
∂x0

=
x0
c2t0

,

τ = t0 − px0 =
z20
c2t0

, (4.38)

and elimination of x0 yields an ellipse in τ − p domain,

(cp)2 +
(cτ

z0

)2
= 1. (4.39)

The Fourier transformation of a Dirac δ-ellipse could then be an indication of optimal sam-
pling if the transform of hyperbolas is band limited. An analytic formula is derived by
Guizar-Sicairos and Gutierrez-Vega (2004), but this does not imply any band limitations on
the transform.

Another approach is to Fourier transform the τ − p transforms impulse response, equation
(4.36). This is given

R(ωp, ωτ ) = F

[

R[s(x, t)]
]

=

∫ ∫ ∞

−∞
δ(τ − t0 + px0)e

−i(pωp+τωτ )dpdτ (4.40)

= e−iωτ t0

∫ ∞

−∞
e−ip(ωp−ωτx0)dp,

which is the Dirac δ-function

R(ωp, ωτ ) = 2πe−iωτ t0δ(ωp − ωτx0), (4.41)

(Folland, 2009). This shows that the Fourier transform of the τ − p transform of an impulse
in (x0, t0), is a straight line given by ωτ = ωp/x0.

The τ − p transform is generally evaluated on discrete lattices, of finite length, say, xmin ≤
x ≤ xmax and tmin ≤ t ≤ tmax. Since any function can be represented by a sum of impulses
this introduce a bandwidth for the discrete slant stack given by the lines

L1 : ωp = ωτxmax and L2 : ωp = ωτxmin. (4.42)

With this bandwidth and a symmetric sampling in x, so that xmax = −xmin, the optimal
sampling is a diamond scheme, see Section 3.3.2. The periodicity matrix is given by

RT =

(

ωpNy
−ωpNy

ωτNy
ωτNy

)

= ωτNy

(

xmax −xmax

1 1

)

. (4.43)
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Figure 4.13: (a) A seismogram of a plane wave, (b) the Radon domain and (c) the Fourier
transform of Radon domain, the red lines indicate the bandwidth
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where ωτNy
= ωNy, since τ = t. The sampling area is then given det(R) = 2ωpNy

ωτNy
which

is one half the area of conventional sampling, 4ωpNy
ωτNy

. This is illustrated in Figure 4.13(c),
where the τ − p domain from Figure 4.13(b) is Fourier transformed. These band limits are
also shown by Bardan (1989) but with a different approach.

4.5.2 The Parabolic Radon Transform

The Radon transform can be generalized to curves other than straight lines. The most
common in seismic processing is the Parabolic Radon Transform defined by

R[f(x, t)] =

∫ ∞

−∞
f(x, τ + qx2)dx, (4.44)

(Yilmaz and Doherty, 2001). The impulse response is

R[s(x, t)] = δ(τ − t0 + qx20), (4.45)

and similar arguments as with the linear gives that the Fourier spectrum is limited by the
lines

L1 : ωq = ωτx
2
max and L2 : ωq = ωτx

2
min. (4.46)

Two seismic events at depths z = 1 km and z = 2 km in a medium of constant velocity c = 1
km/s are modelled by hyperbolas, Figure 4.14(a). The sampling grid are defined by 0 ≤ t ≤ 4
s with ∆t = 0.02 s and 0 ≤ x ≤ 2.5 km with ∆x = c∆t = 0.04 km. The Parabolic Radon
transform is given in Figure 4.14(b), the aperture is limited by the sampling in offset, and the
bandwidth is given by the lines

L1 : ωq = 6.25ωτ and L2 : ωq = 0.

The Fourier spectrum of the Radon transform is shown in Figure 4.15, the lines L1 and L2 are
plotted in red. This shows that a different choice of periodicity would sample the parabolic
Radon domain more efficiently.

4.5.3 Comments

To summarize, the Radon transform used in CT scans, have finite bandwidth. This is also
the case for the (geophysical) discrete linear and parabolic Radon transform. Therefore, a
multirate sampling scheme would be preferable and possibly make the transformation more
efficient.

In these examples the least squares solution of both the linear and parabolic radon transform is
used, (Beylkin, 1987; Yilmaz and Doherty, 2001). However, when using a diamond sampling
scheme as in Section 3.3.2, the Fourier transformation is no longer separable in space and the
transform in one direction is aliased. This imposes a problem when calculating the transform,
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Figure 4.14: (a) Two hyperbolic events at depths z = 1 km and z = 2 km with velocity
c = 1 km/s and (b) the Parabolic Radon transform.
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Figure 4.15: The Fourier transform of Figure 4.14(b).
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since the majority of transform algorithms are evaluated in frequency-offset. The hexagonal
Fourier transform with rectangular output could be a candidate for this. This transform does
give a frequency-offset domain. There have been developed fast methods for calculating the
transform in time-offset domain, (Yilmaz and Taner, 1994), which also could make it possible
to calculate on other lattices than the rectangular.
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Chapter 5

Seismic Migration

Seismic migration is the process of finding the wavefield p = p(x, y, z, t = 0) where z is the
depth from a wavefield recorded in time p = p(x, y, z = 0, t). It is often assumed that instead
of the waves traveling down to the reflectors and back, the reflectors is a collection of seismic
sources which explode at time zero. This is called an exploding reflector model and makes
the migration algorithms simpler to deduce and implement.

Seismic recordings can be expressed as

p(x, y, z = 0, t) = L[p(x, y, z, t = 0)] (5.1)

where L is the earths response to seismic waves. Seismic migration is the inverse of this

p(x, y, z, t = 0) = L−1[p(x, y, z = 0, t)], (5.2)

where the operator L is generally governed by the wave equation. All migration algorithms
are approximate solutions to this inversion.

The first section in this chapter is a study of Gazdag phase-shift algorithm implemented with
multirate sampling, and then a study of Reverse Time Migration (RTM).

General references on the subject of seismic migration is Stolt and Benson (1986) and
Yilmaz and Doherty (2001)

5.1 Seismic Migration by Extrapolation

The 2D acoustic wave equation is given as

∂2p

∂t2
= c2

(∂2p

∂x2
+

∂2p

∂z2

)

(5.3)

where p = p(x, z, t). If the velocity is only dependent on depth, c = c(z), it is possible to
Fourier transform the equation in t and x. By defining Q = Q(kx, z, ω), the equation becomes

∂2Q

∂z2
+
[(ω

c
)2 − k2x

]

Q = 0, (5.4)
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Figure 5.1: The real and complex part of the extrapolation filter E

which has the solution

Q = Ueizkz +De−izkz , (5.5)

when kz =
√

(

ω
c )

2 − k2x. Here U(kx, z, ω) and D(kx, z, ω) is the upwards and downwards

propagating wavefield. If the wavefield is known in a position z0, the upward propagating
wavefield in a position z ≤ z0 is given by

U(kx, z, ω) = U(kx, z0, ω)e
i(z−z0)kz (5.6)

and the downward propagating waves in position z ≥ z0

D(kx, z, ω) = D(kx, z0, ω)e
−i(z−z0)kz . (5.7)

This shows that if ∆z = |z − z0|, the wavefield in a position z0 ±∆z can be expressed

Q(kx, z ±∆z, ω) = Q(kx, z0, ω)e
−i∆zkz . (5.8)

The operator E = e−i∆zkz is called the extrapolation operator. Considering only propagating
waves, |ω/c| ≥ |kx|, this is an all-pass filter with phase shift (Gazdag, 1978). The filters real
and imaginary part is shown in Figure 5.1.

Seismic migration is generally a combination of extrapolation and imaging. The approach
is first to Fourier transform the data from (x, t) to (kx, ω), multiply with the extrapolation
operator E, and an inverse Fourier transform. This is done for each extrapolation step, n,
and the data at zero time corresponds to the wavefield at depth n∆z. Extracting at t = 0
for each extrapolation step until the desired depth is reached, results in the migrated image.
This algorithm is often called Gazdag phase-shift migration, and only allows for velocity as a
function of depth, c = c(z). This because the Fourier transform from (x, t) to (kx, ω) require
constant velocity.

An example of a migration of two events at depths z = 2 km and z = 6 km in a medium
with constant velocity c = 2 km/s, approximated by hyperbolas is shown in Figure 5.2. The
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Figure 5.2: (a) Model with two exploding sources at depths z = 2 km and z = 6 km , (b)
the migrated image.
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sampling grid is given by ∆t = 0.03 s, ∆x = c∆t, the period T = 4 s and the offset is sampled
from −2.5 km to 2.5 km. This grid has Nt ×Nx = 134× 84 = 11, 256 sampling points.

The extrapolation operator has bandwidth with the same geometry as the optimal sampling
from Section 4.2, when only considering propagating waves, not the evanescent field, Figure
5.1. Therefore choosing a diamond periodicity will be most efficient. The periodicity matrix
in Fourier domain is given

AT =
1

2

(

Nx −Nx

Nt Nt

)

=

(

42 −42
67 67

)

, (5.9)

and the number of sampling points det(A) = 5, 628, which is exactly half the number of
sampling points compared to conventional sampling. Defining the imaging lattice, (x, z),
with the same matrix will make it possible to extrapolate downwards in depth and image
at time t = 0 for each ∆z. The sampling points on the lattice for imaging is integer with
diamond sampling, as shown in Section 3.3.2.

In this example the Smith Normal Form is

D =

(

1 0
0 5628

)

(5.10)

which shows that it is sufficient with 1D FFTs for each extrapolation step. The first step is to
resample the model from Figure 5.2(a) to the new lattice, this is plotted in Figure 5.3(a). The
result of migration on this lattice is shown in Figure 5.3(b). The migration is done by mapping
the extrapolation filter and the seismic section to the diagonal space and extrapolating there.
In this figure the traces are plotted over the multirate sampling points, which can be seen at
the top and bottom of the figures where every second trace start at later or earlier sample.

The diamond sampling scheme introduce a different periodicity in Fourier domain than rect-
angular sampling. Fourier domain of the conventional sampled migration is plotted in Figure
5.4(a). A periodic expansion of Fourier domain of the multirate sampled migration is shown
in Figure 5.4(b). The plot shows four periods, as indicated by the red parallelograms. The
blue lines show the conventional sampling period, and the multirate sampling scheme contains
only half the data. The periodic expansion shows that the Fourier spectrum of the multirate
sampled migration is almost the same as with rectangular periodicity, except for some small
differences due to migration artifacts and alias.

The wavelets in Figure 5.3(b) look different compared to Figure 5.2 this is because there are
much less sampling points. This can be corrected for with interpolation back to the original
grid after the migration.

5.1.1 3D Seismic Migration

The extrapolation operator E = e−i∆zkz can be used for seismic migration of 3D data. In 3D
the dispersion relation gives that

kz =

√

(ω

c

)2
− k2x − k2y, (5.11)
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Figure 5.3: (a) Multirate sampling and migration of a model with two exploding sources at
depths z = 2 and z = 6, (b) the migrated image
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the sampling period and blue indicate the conventional sampling period.
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Figure 5.5: A seismic recording of a single source at depth z = 2 km in a medium with
constant velocity c = 2 km/s

generates the filter E. A seismic source at depth z = 2 km in a medium with velocity c = 2
km/s is modeled with a hyperboloid, Figure 5.5. The model is sampled with ∆t = 0.03 s,
∆x = ∆z = c∆t which is optimal for rectangular sampling, the number of sampling points is
NtNxNy. Choosing a periodicity matrix as in Section 4.2,

AT =





Nx/2 −Nx/2 0
0 0 Ny

Nt/2 Nt/2 0



 , (5.12)

results in half the sampling points.

The 3D Fourier spectrum of the seismic section sampled with this geometry is plotted in
Figure 5.6, the spectrum is overlaid a double cone with velocity c = 3 km/s. On the line
through ky = 0 the periodicity given by R(A) is observed by the dotted lines.

A 3D Gazdag phase-shift migration is then calculated on this lattice, the filter have the same
bandwidth as the data, and the result is shown in Figure 5.7. The algorithm is a straight
forward expansion of the one for 2D.

Comments

The Gazdag phase-shift migration can be calculated for both 2D and 3D data sets on non-
rectangular sampling grids. The results are the same as with the conventional sampling
except for some differences in migration artifacts. The aliasing pattern of migration with a
smaller periodicity becomes different, therefore it could become more difficult to interpret
these problems. Both 2D and 3D migrations are performed on sampling grids with only half
the sampling points compared to conventional rectangular sampling.
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Figure 5.6: Fourier transform of the seismic recording in Figure 5.5 after downsampling to
the multirate grid
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Figure 5.7: Gazdag phase-shift migration of the model in Figure 5.5
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5.2 Reverse Time Migration

Reverse Time Migration (RTM) is based on solving the wave equation as a boundary value
problem. It was introduced in the 1980s by McMechan (1982, 1983); Loewenthal and Mufti
(1983); Baysal et al. (1983). This algorithm allows for a rapidly varying velocity field in
all space coordinates. It is constructed for 2D post-stack data with the exploding reflector
assumption, but there has also been developed methods for 3D pre-stack data
(Chang and McMechan, 1990).

Let p(x, z = 0, t) be the recorded wavefield at the surface, where x is the horizontal offset and
z is depth increasing downwards. As before the migrated section should then be p(x, z, t = 0).
Assuming that all energy has propagated away from the subsurface after the last time sample
TN , p(x, z, t) = 0∀ t > TN . Migration is performed by extrapolating the section backwards in
time until time t = 0, which is the imaging condition. The problem is then formulated as a
boundary value problem with p(x, z = 0, t) as boundary condition. McMechan (1983) called
this boundary value migration (BVM), but the most common term is that of Baysal et al.
(1983) namely reverse time migration (RTM).

McMechan (1983) constructs the algorithm by using a finite difference scheme for the deriva-
tives. The algorithm presented here is based on Fourier derivatives, (Gazdag, 1980), for the
spatial coordinates, (Baysal et al., 1983). The advantage of using Fourier derivatives is that
it does not introduce numerical dispersion as any finite difference scheme.

The dispersion relation for downwards traveling waves is

ω = c(k2z + k2x)
1/2, (5.13)

where (kx, kz) are horizontal and vertical wavenumbers, and ω the angular frequency. If the
velocity c is constant, the wave equation can be written

∂P

∂t
= ickz

(

1 +
k2x
k2z

)1/2
P, (5.14)

(Gazdag, 1981). Here P = P (kx, kz, t) is the two dimensional Fourier transform of p =
p(x, z, t). To allow for velocity variations, this equation can be written

∂p

∂t
= c F

−1
[

ikz

(

1 +
k2x
k2z

)1/2
F [p]

]

, (5.15)

where F is the Fourier transform over the space coordinates (x, z). Gazdag (1981) shows
that the step from equation (5.14) to (5.15) allows the velocity to become a function of the
space coordinates, c = c(x, z). The equation can also be written

∂p

∂t
= c F

−1
[

sign(kz)i(k
2
z + k2x)

1/2
F [p]

]

(5.16)

which does not have a singularity at kz = 0. This equation gives a numerical estimate of
the time derivative of the wavefield at time t = TN−n for n ∈ ZN . The approach is first to
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Figure 5.8: The differentiation filter D(kx, kz)

Fourier transform over (x, z), multiply with the filter D = sign(kz)i(k
2
z + k2x)

1/2, an inverse
Fourier transform, followed by multiplication by the velocity field. The differentiation filter
D is plotted in Figure 5.8.

The time derivative can be approximated by a centered finite difference around time TN−n.
Defining p(x, z, TN−n) = pN−n yields,

∂pN−n

∂t
=

pN−n+1 − pN−n−1

2∆t
(5.17)

where ∆t is the sampling interval in time, and TN−n = TN − n∆t. The RTM is based on
extrapolating the wavefield backwards in time, combining equations (5.16) and (5.17) gives

pN−n−1 = pN−n+1 − 2c∆t F
−1
[

sign(kz)i(k
2
z + k2x)

1/2
F [pN−n]

]

. (5.18)

The values of p(x, z = 0, TN−n) are provided from the recorded data at each time step.
Starting at n = 0 and calculating until n = N − 1, results in the final migrated image,
p(x, z, t = 0). There are many improvements of this algorithm, for example it can be expanded
to TTI anisotropic waves, (Du et al., 2007).

Figure 5.9(a) shows a seismic recording of a single source at depth z = 2 km in a homogeneous
medium with velocity c = 2 km/s. The sampling parameters is ∆t = 0.005 s, ∆x = ∆z = 0.05
km, the sampling period is T = 4 s, total offset Lx = 8 km and maximum depth Lz = 4 km.
This sampling scheme results in N = T/∆t = 800 extrapolation steps. Figure 5.9(b) and
5.9(c) shows the wavefield at time t = 1 and t = 0.5 s. This shows that the algorithm focuses
the wave front at the source, which is in the final migrated image at time t = 0 s, Figure
5.9(d).
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Figure 5.9: Time steps in Reverse Time Migration
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5.2.1 Stability of the RTM

When approximating derivatives with finite difference it is important to study the stability
of the operator.

Assuming constant velocity c, and the wavefield in Fourier domain P = P (kx, kz, t), equation
(5.16) can be written

∂P

∂t
= ic|k|P (5.19)

where |k| =
√

k2x + k2z . For a medium with a variable velocity, c should be chosen c = cmax.
Equation (5.17) results in

PN−(n+1) − PN−(n−1) = 2ic∆t|k|PN−n, (5.20)

letting a = c∆t|k| gives the second-order difference equation

PN−n+1 − 2iaPN−n − PN−n−1 = 0. (5.21)

This type of difference equations has general solution

Pn = Aλn
1 +Bλn

2 , λ ∈ C, (5.22)

where A and B are constants. The system is stable only when |λ1,2| ≤ 1 . The characteristic
polynomial is given

λ2 − 2iaλ− 1 = 0, (5.23)

hence two solutions

λ1,2 = ia±
√

1− a2 = i[a±
√

a2 − 1]. (5.24)

There are two possibilities for a, either |a| ≤ 1 or |a| > 1. The first case can be investigated
by letting a = cosφ, which is always smaller than, or equal to 1. Then the solution to the
characteristic polynomial becomes

λ1,2 = i[cosφ± i sinφ] = ie±iφ, (5.25)

hence

|λ1,2|2 = 1, (5.26)

and both solutions are on the unit circle in the complex plane. The solution to the difference
equation when |a| ≤ 1 is

Pn = iAe±iφn, (5.27)
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a = 1

which is stable when n → ∞.

The other possibility is that a > 1, the solution

λ1,2 = i[a±
√

a2 − 1], (5.28)

gives that one λ is outside and one inside the unit circle in the complex plane, the algorithm
is unstable.

If the velocity is a function of space, the maximum is chosen c = cmax, and the stability
condition for RTM is

a = cmax∆t|k| ≤ 1. (5.29)

On a finite rectangular sampling grid the maximum of kx and kz are the Nyquist wavenumbers
kxNy

= π
∆x and kzNy

= π
∆z , therefore

a = cmax∆t
√

k2xNy
+ k2zNy

= cmax∆t

√

( π

∆x

)2
+
( π

∆z

)2 ≤ 1. (5.30)

This equation shows that the (x, z) grid should be chosen as coarse as possible without
introducing alias because it lets the time step ∆t be larger. The time step generally becomes
quite small, the example in Figure 5.9(a) have ∆x = ∆z = 0.05 km, which gives

a =
√
2cmax∆t

π

∆x
(5.31)

and with cmax = 2 km/s and ∆t = 0.005 s the stability factor is

a ≈ 0.8886 ≤ 1, (5.32)

and the algorithm is stable. By fixing the sampling interval in (x, z) and using the maximum
velocity, the factor a can be plotted against the time step. Figure 5.10 shows that the time
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Figure 5.11: The time sampling interval ∆t when a = 1 and c = 2

step could be chosen larger, ∆t = 0.0056 s, this would decrease the number of steps until time
t = 0 and therefore make the algorithm finish faster.

The optimal sampling discussed in Section 4.2 will not work in this case. If the sampling grid
is chosen such that ∆x = ∆z = cmin∆t, the stability condition will not be fulfilled because

a = cmax

√
2

∆tπ

cmin∆t
=

√
2π

cmax

cmin
≥ 1, (5.33)

since cmax

cmin
≥ 1. The extreme limit for a stable migration is when a = 1, by fixing the migration

grid ∆x,∆z, the maximum ∆t can be expressed by

∆t =
1

cmax

√

k2xNy
+ k2zNy

. (5.34)

For a maximum velocity cmax = 2 km/s and ∆x,∆z both ranging from 0 to 0.5 km/s, ∆t is
shown in Figure 5.11. Choosing a grid for the migration defined by ∆x = ∆z = 0.1250 km,
the necessary time step is plotted by the red lines and circle. The maximum time step for
these parameters are given by equation (5.34), ∆t = 0.014 s.

A seismic recording of a single source at depth z = 2 km, sampled with this configuration
modeled by a hyperbola is shown in Figure 5.12(a). This is low pass filtered with a Blackman
window with a cutoff ω = cminkxNy

to avoid alias. Figure 5.12(b) shows the absolute value of
Fourier domain of this seismic section. It is oversampled due to the stability criteria. In Figure
5.12(c) the result of the migration is plotted. The absolute value of the Fourier transform of
the migrated image is shown in Figure 5.12(d), as expected it has circular bandwidth.

In Figure 5.12(c) the wavelets phase has changed compared to the recording where it is zero
phase. This is because the modeling with hyperbola is most suitable for 3D seismic, the
wavelet gets a phase change of π/4. This can be corrected by filtering the migrated image
with the all pass filter eiπ/4.
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(c) Migrated image

kx

k
z

-25 -15 -5 5 15

-25

-15

-5

5

15

(d) Fourier domain of migrated image

Figure 5.12: (a) A seismic section modeled by a hyperbola from a single exploding source at
depth z = 2 km in a medium with constant velocity c = 2 km/s. (b) the Fourier transform

of (a), (c) migrated image and (d) the Fourier transform of the migrated image
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5.2.2 Hexagonal Sampling

The band region of migrated images are circular, see Figure 5.12(d), therefore assuming
hexagonal periodicity is preferable for RTM. Assuming that the seismic is sampled with equal
number of samples for both x and z, the matrix from Section 3.2.2 can be used,

HT =

(

N 0
3M 2(N +M)

)

=

(

N 0
3N/2 3N

)

, (5.35)

where N = Nx/2 = Nz/2, M = Nx/4, for a even number of samples.

The lattice for imaging is then given by

x = TH−1n, (5.36)

where n ∈ R(H), x = (x, z)T and T is the rectangular period,

T =

(

X 0
0 Z

)

, (5.37)

when X is maximum offset and Z maximum depth. The lattice could also be given on the
integer interval from zero to the number of samples in both directions by choosing

TN =

(

Nx 0
0 Nz

)

, (5.38)

which makes the computer calculations simpler. These points is denoted by η ∈ R(TN ). The
lattice is generated by the sampling matrix

V = TNH−1 =

(

2 −3/4
0 1

)

, (5.39)

and from Section 2.5 the sampling points is given,

η = Vn, (5.40)

where n ∈ R(H).

The RTM gets input for each time step at z = 0, and generally when imaging on a lattice
other than the input lattice, interpolation would be necessary. But for the case outlined, the
sampling matrix V shows that η1 = 2n1 at z = 0, which is integer and no interpolation is
needed.

If the velocity function is sampled on a rectangular lattice it has to be downsampled. The
RTM finite difference scheme, equation (5.18), is only time dependent, and by using Smith
normal form, it can be calculated on the grid given by R(D), where

D = PAQ. (5.41)
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Figure 5.13: Hexagonal sampling of the differentiation filter D
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(b) Migrated image

Figure 5.14: Hexagonal sampled RTM results

The differentiation filter D and the velocity function is mapped with the coordinate transfor-
mations Γ from Section 2.4 to the range of the normal form. For each time step, the wavefield
at the given time is downsampled to the hexagonal lattice at z = 0, and mapped to R(D).

The result of the migration is on a hexagonal lattice, for comparison with rectangular migra-
tions it is upsampled with Fourier interpolation. Mapping the sampling points from diagonal
space to the hexagonal period in rectangular Fourier domain, an inverse Fourier transform
gives the migrated image on a rectangular period. Choosing the same model as Figure 5.12,
where Nz = Nx = 64, the periodicity matrix is

HT =

(

32 48
0 96

)

(5.42)

This yields det(H) = 3N2 = 3, 072 number of sampling points and compared to the conven-
tional sampling, Nx ×Nz = 4, 096, hexagonal sampling is 25% more efficient. The differenti-
ation filter is sampled within this hexagon, see Figure 5.13, and afterwards mapped to R(D).
The finite difference is fully calculated in the range of the diagonal matrix and the resulting
Fourier domain is shown in Figure 5.14(a). The upsampled migrated image in Figure 5.14(b)
is equal to the migration done on a rectangular period, except for some small oscillations in
the upper corners which are due to fewer sampling points.
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Figure 5.15: The maximum wavenumber (red line) in the hexagonal period

In this example the Smith normal form is

D =

(

16 0
0 196

)

, (5.43)

which means that a 2D FFT has to be calculated on each step. But for a different choice
of the hexagonal periodicity matrix, a diagonal which have first entry equal to 1 could be
possible, and a 1D FFT would be sufficient.

Another advantage of calculating the RTM on a hexagonal lattice is that the time step can be
increased. The stability condition from equation (5.29) is changed. The maximum wavenum-

ber on a hexagonal period is no longer given by |k| =
√

k2xNy
+ k2zNy

, which is in the upper

right corner, since this is not covered by the hexagon. The maximum is dependent on how
the period is chosen. In this example the maximum becomes

|k|max =
√

k2xNy
+ (M∆kz)2, (5.44)

which can be deduced from Figure 5.15.

Then the maximum time step becomes

∆t =
1

cmax

√

k2xNy
+ (M∆kz)2

(5.45)

and since M∆kz ≤ kzNy
, the time step will be larger with hexagonal, than with conventional

sampling. Equation (5.45) is valid when kxNy
= kzNy

. If these are different, one should do
the same analysis again. For the migration in Figure 5.14(b) the time step could be chosen
∆t = 0.0178 s, which is larger than the maximum time step with conventional sampling,
∆t = 0.0141 s. Hence with the hexagonal sampling there is need for only Nt = 449 iterations,
compared to 571 iteration for conventional sampling.
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(a) Overmigrated cmig = 3 km/s
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(c) Undermigrated cmig = 1 km/s
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(d) Fourier domain (undermigrated)

Figure 5.16: Over and under migration with the hexagonal sampled RTM, the seismic
sections are plotted by filling the Voronoi diagram.

In Figure 5.16(a) and 5.16(c), there are examples of overmigration (cmig > c), and under-
migration, (cmig < c) with this sampling geometry. Overmigration results in a “smile” and
undermigration a “frown” in the seismic image. By inspection of Figure 5.16(d), the cone in
Fourier domain is still a cone after migration, which shows that the image is not migrated
with the correct velocity. In Figure 5.16(b) the overmigration maps the Fourier spectrum to
the horizontal axis and may be even further. There is also a phase shift of the wavelet on the
overmigrated image, the wavelet changes phase as it moves through the focus.
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5.2.3 Synthetic Examples

In this section there will be presented a RTM of two synthetic examples, both on rectangular
and hexagonal lattices. The first example is data with a varying velocity function. The second
is a constant velocity model with many dips present, constructed to illustrate one of RTMs
imaging strengths.

Kirchhoff Modeled Data

A more realistic example than the single exploding point source is the velocity model given
in Figure 5.17(a). Zero offset data modeled with the Kirchhoff integral (Berryhill, 1979) is
provided by E. Mæland (Maeland, 1994), Figure 5.17(b). The modeling grid has 128 × 128
sampling points where ∆x = 0.1250 km and ∆z = 0.0625 km. The sampling interval in time
is ∆t = 0.0080 s, and the number of samples Nt = 1000. These sampling parameters yields
a stable RTM algorithm. The result of a migration on a rectangular grid is given in Figure
5.18(a). It can be observed that the RTM images steep dips in the data. There are some
migration artifacts on the left and right side of the image, this is probably due alias in the
operator.

A grid for the finite difference is defined with the matrix from equation (5.35), by N =
Nx/2 and M = Nx/4. This lattice has as previously shown 25% less sampling points. The
extrapolation is calculated on a rectangular lattice given by the range of the Smith normal
form,

D =

(

32 0
0 384

)

. (5.46)

One problem is to downsample the velocity field to the hexagonal lattice given by x = TH−1n

where n ∈ R(A). The periodicity is given as T = diag(X,Z), when X is maximum offset and
Z maximum imaging depth. The velocity function is downsampled by Fourier transforming
and picking the points within the hexagonal period. The real part of the inverse Fourier
transform calculated with Smith normal form is the interpolated velocity. The result of the
migration on the hexagonal lattice is given in Figure 5.18(b). The result is equal to the one
calculated on a rectangular lattice except for some small oscillations.

Both migration results are low-pass filtered with a cutoff frequency ωc = 40 rad/s. This
removes much of the oscillations and migration artifacts, but for the hexagonal example
much of the remaining oscillations could be removed with a lower cutoff.

The migration on a rectangular grid runs for approximately 5.2 s, by matlabs cpu time
function, and the hexagonal 4.5 s. This shows that migration on a hexagonal lattice is more
efficient with respect to computation time. Figure 5.19(a) and 5.19(b) shows the Fourier
spectrum, respectively, of the rectangular sampled and hexagonal sampled migration. These
images also resemble each other.

The sampling grid for (x, z) gives that kzNy
> kxNy

and the maximal time step for the
extrapolation on the hexagonal grid is

∆tmax =
1

cmax|k|max
=

1

cmax(kzNy
−∆kz)

≈ 0.01s. (5.47)
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(a) Fourier domain of RTM on a rectangular
lattice.
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(b) Fourier domain of RTM on a hexagonal
lattice.

Figure 5.19: Fourier domain of the migrations of Figure 5.17.

This shows that it is only necessary with 8s/0.01s = 800 iterations on a hexagonal lattice.
Downsampling by Dirichlet interpolation, Appendix C.2, and the migration result is given in
Figure 5.20. This is calculated with 200 less iterations than the previous and the cpu time is
reduced even further, now approximately 3.5 s.

For the migration to be exact on a hexagonal lattice the velocity function should be con-
structed here, and the modeling should be calculated on a hexagonal lattice. The modeling
scheme from Gazdag (1981), which essentially is the inverse operation of RTM, could be cal-
culated on such a lattice, but for testing a algorithm it is preferable to use another modeling.

Constant Velocity Fourier Modeled Data

A synthetic model which contains a wide range of dips are shown in Figure 5.21(a). In this
example the modeling is done in Fourier domain with a constant velocity c = 1.5 km/s.
Constant velocity imply that all the reflection coefficient are only a result of differences in
density. The Fourier transform of the model f = f(x, z) is given

F (kx, kz) =

∫ ∫ ∞

−∞
f(x, z)e−i(xkx+zkz)dxdz. (5.48)

The dispersion relation of the acoustic wave equation defines the map

kx =

√

(ω

c

)2
+ k2x, (5.49)

which gives

S(kx, ω) = F
(

kx,

√

(ω

c

)2
+ k2x

)

. (5.50)

where S(kx, ω) is the Fourier spectrum of the seismic section. Inverse Fourier transform results
in zero-offset seismic,

s(x, t) = F
−1[S(kx, ω)]. (5.51)
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(a) Synthetic model with constant velocity c = 1.5 km/s
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(b) Synthetic data modeled with FK-modeling

Figure 5.21: Synthetic model and constant velocity modeled seismic
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Number of time steps Calculation time

Rectangular, Kirchhoff data 1000 5.2 s

Hexagonal, Kirchhoff data 1000 4.5 s

Hexagonal, Kirchhoff data 800 3.5 s

Rectangular, FK modeled data 1348 32.8 s

Hexagonal, FK modeled data 1201 24.4 s

Table 5.1: Summary of different RTMs performed.

This is in principle the inverse operation of the FK or Stolt migration, (Stolt and Benson,
1986), except for the amplitude correction, it does not allow for varying velocities in any
direction.

When calculating this discrete map there is need for interpolation, and the Dirichlet kernel
described in Appendix C.2 is used. The zero-offset section modeled by this approach is given
in Figure 5.21(b). The sampling grid is given by ∆x = 0.0625 km, ∆z = 0.0312 km, the
number of sampling points is Nx = 256 and Nz = 512. In Figure 5.21(a) only the first 256
samples are shown, the rest is added to avoid alias in the modeling.

For the RTM on rectangular lattice the stability criteria yields ∆tmax = 0.0059 s, and there
is need for Nt = 1348 time steps until t = 0. RTM on a rectangular lattice is given in Figure
5.22(a). For the imaging on the hexagonal lattice the time step can be chosen ∆t = 0.006
s, which yields Nt = 1201. The result of imaging on the hexagonal lattice is given in Figure
5.22(b). The migration grid is defined with the same sampling intervals as the model, and with
Nx = Nz = 256, since the deepest reflector is shallower than Nz∆z = 256 × 0.0312 ≈ 8km.
The hexagonal lattice is defined as in the previous example, N = Nx/2 and M = Nx/4. After
the migration there is applied a circular Blackman low-pass filter with cutoff kz = 100 rad/km
and kx ≈ 49 rad/km. The images are equal except for some oscillations on the hexagonal
migration, which could be removed with a lower cutoff. It can be observed that almost all
dips are imaged, only the vertical part of the dome are a bit weak, due to coarse sampling.

The rectangular grid haveNx×Nz = 65, 536 sampling points and the hexagonal have det(H) =
49, 152, which shows that the hexagonal lattice has 25% less sampling points. The RTM is
faster on the hexagonal lattice, since it has fewer sampling points and fewer time steps are
necessary, it finishes in 24.4 s compared to the rectangular case which finishes in 32.8 s.

Comments

The results of RTM on hexagonal lattices are good, the images are the same as the results on
rectangular lattices except for some oscillations. Using a hexagonal lattice shows improvement
in computation time, the RTM on a hexagonal lattice is faster in both examples. A summary
of the computation times is given in Table 5.1. Calculating RTM on a hexagonal lattice
also allows for a larger time step than for rectangular sampling, which further reduce the
computation time.
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(a) RTM on a rectangular lattice
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(b) RTM on a hexagonal lattice

Figure 5.22: (a) Result of migration on a rectangular lattice and (b) on a hexagonal lattice.
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Chapter 6

Summary and Conclusions

A method for calculating the multidimensional DFT with FFT for general periodic signals has
been reviewed. The Smith normal form of the matrix defining the periodicity yields simple
coordinate transformations to a rectangular grid where the FFT is calculated. Assuming
non-rectangular periodicity results in a periodicity in Fourier domain given by the transpose
of the periodicity matrix.

For a given set of sampling points there are different periodicities covering the same points
which result in different sets of points in Fourier domain. This yields different sampling of
the Fourier transform itself.

Hexagonal sampling is preferable for images with circular bandwidth in Fourier domain. It
has been shown that the Fourier transform on such lattices can be calculated with different
methods. The hexagonal periodicity can be represented with an integer matrix and calculated
with FFT, using the Smith normal form theorem.

Seismic data recorded in time is oversampled, and boundaries for the Fourier spectrum are
given by the wave equation. An optimal sampling scheme is defined by periodicity matrices,
here referred to as Diamond sampling. This is a special case of hexagonal sampling, and the
Fourier transform is calculated by the Smith normal form. Using these periodicity matrices
on seismic data reduces the number of sampling points with a factor 2. This reduces the need
for data storage and makes processing algorithms more efficient. Filtering a seismic section
can be accomplished in the rectangular space given as the range of the normal form, which
makes it more efficient.

It is well known that the tomographic Radon transform has a hexagonal bandwidth. It is
shown that this is also the case for the (geophysical) linear and parabolic Radon transform.
Therefore sampling of the transformation could be more efficient by using non-rectangular
sampling. The hexagonal Fourier transform with rectangular output could be a candidate
for transforming from time to frequency, and thereafter calculating least squares solution for
each frequency.

Migrated images have circular bandwidth, therefore it is more efficient migrate on a hexagonal
lattice. A 2D and 3D Gazdag phase-shift migration is calculated on non-rectangular sampling
grid. The full operation is on the range of the Smith normal form. There is then need for
smaller FFT for each extrapolation step, and the process becomes more efficient compared to
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migrations on rectangular lattices.

Reverse time migration has been implemented for zero-offset seismic data and a stability
condition for the finite difference was derived. The RTM is more efficiently sampled on a
hexagonal lattice, in the examples shown there are 25% less sampling points. The algorithm
is performed on a lattice generated by assuming hexagonal periodicity in Fourier domain. The
results are similar to the rectangular migration. Assuming smaller periodicity gives another
stability condition and the recursion can be calculated with fewer time steps, which shows a
reduction in calculation time. RTM of two synthetic sections have been shown, and migration
on hexagonal grids are more efficient with respect to calculation time. The hexagonal sampling
does introduce some more oscillations than the rectangular sampled, as a result of the smaller
period, but these could be removed with a low-pass filter.
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Appendix A

Diagonalization of the Periodicity

Matrix

The Smith normal form is used to calculate DFT with FFT on more general grids than the
rectangular. This is shown in Chapter 2. In this appendix, a method for calculating the 2D
normal form and the matrices P and Q is presented. These are used in the coordinate maps
Γ, which maps a generally sampled function to a rectangular lattice given by R(D), where
D is the Smith normal form. Different aspects of the coordinate map matrices are covered
and important results on normal forms in more than 2D are presented. In the last section an
algorithm for finding the Smith normal form is implemented in matlab.

A.1 Smith Normal Form

Let Z be the set of integers, andP andQ be unimodular matrices with det(P) = det(Q) = ±1.
Any matrix in Mn(Z), n × n integer matrices, can be written on the Smith normal form
D = P−1AQ−1 where D is diagonal and the diagonal elements di is divisors of di+1, which
is written d1|d2| . . . |dn (Morandi, 2005). The simplest solution of this is for 2 × 2 integer
matrices, M2(Z), which is the case that will be treated here. In A.7 an algorithm is given for
n× n matrices.

A general periodicity matrix in M2(Z) is defined in Chapter 2 as

A =

(

a b
c d

)

.

Let g1 = gcd(a, c), where gcd is the greatest common divisor of the two elements, a and c,
(Fraleigh, 2003). Using the equations

g1 = ax+ cy

1 = αx+ βy (A.1)
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for x, y ∈ Z, a = αg1 and b = βg1, gives the matrix

P−1
1 =

(

x y
−β α

)

which is invertible and unimodular because

det(P−1
1 ) = αx+ βy = 1.

Then the product

P−1
1 A =

(

x y
−β α

)(

a b
c d

)

=

(

ax+ by bx+ dy
−aβ + cα −bβ + dα

)

and −aβ + cα = −αg1β + βg1α = 0, gives

P−1
1 A =

(

g1 ×
0 ×

)

.

The same operations for the first row, instead of the first column of the matrix A, results in a
zero in the upper right corner. Defining g2 = gcd(g1, h1) and then g1t+h1s = f ⇒ λt+µs = 1,
and the product

AQ−1
1 =

(

g1 h1
0 h2

)(

t −µ
s λ

)

results in a matrix

AQ−1
1 =

(

g2 0
× ×

)

.

It is sometimes necessary to perform these operations several times, depending on the initial
matrix. This will give a sequence of divisors g1, g2, . . . which eventually gives gi = gi+1 =
gi+2 . . . . The result will then be a matrix on the form

(

r 0
p q

)

or

(

r p
0 q

)

(A.2)

where p divides q and a single row operation (P−1
n ) will give a diagonal matrix and A can be

written as

A = P1 . . .PiD
′Q1 . . .Qj

= PAQ. (A.3)
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This shows that matrices in M2(Z) can be written as a product of three integer matrices,
where one is diagonal. This diagonalization holds for the calculations in Section 2.4 but for
the diagonal matrix D = diag(a1, a2) to be of Smith normal form, a1 must be a divisor of
a2. When the matrix is reduced to the form D′ = diag(r, q), elementary row and column
operations will give the desired result (Morandi, 2005). If d = gcd(r, q) = rx+ qy for x, y ∈ Z

and as before q and r can be written as a multiple of d, r = ρd, q = σd, then adding x times
row one results in the matrix multiplication

(

1 0
x 1

)(

r 0
0 q

)

=

(

r 0
rx q

)

and adding y times the second column to the first gives

(

r 0
rx q

)(

1 0
y 1

)

=

(

r 0
rx+ qy q

)

=

(

r 0
d q

)

.

Then subtracting ρ times the second row from the first

(

1 −ρ
0 1

)(

r 0
d q

)

=

(

0 −qρ
d q

)

and column two minus σ times column one results in the anti-diagonal matrix

(

0 −qρ
d q

)(

1 −σ
0 1

)

=

(

0 −qρ
d 0

)

.

Rotating this gives

(

0 1
−1 0

)(

0 −qρ
d 0

)

=

(

d 0
0 qρ

)

,

which is the Smith normal form since d divides qρ. All of these operation matrices are
unimodular and can be combined to two matrices C and E.

(

x 1
−σy ρ

)(

r 0
0 q

)(

1 −σ
y ρx

)

= CD′E = D =

(

d 0
0 qρ

)

. (A.4)

The last equation gives that if r and q are relatively prime, d = 1, the Smith normal form
becomes D = diag(1, qρ) which is unique. In the case where r and q are not relatively prime
it is unique up to a multiple of the diagonal and the matrix A. Equation (A.4) can then be
used to find multiple diagonalizations for the same periodicity matrix.

A.2 Solving the Diophantine Equation

Equation (A.1) is a linear Diophantine equation, these equations are recognized by the fact
that they have less equations than unknowns. Since g1 is the greatest common divisor of a
and b it can be written on the form

αx0 + βy0 = 1 (A.5)
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which is the Bézout’s identity (Chabert, 1999), where x0 and y0 are solutions. It has infinitely
many solutions and different choice of solutions will result in different diagonalizations.

An algorithm for finding the greatest common divisor of a and b, is the well known Euclidean
algorithm. The simplest method is to define u = a and v = b, then if u > v the difference
between v and u is set to u. If v > u the subtraction v = v − u is done, continuing this until
u = v gives the greatest common divisor, gcd(a, b) = u.

To find all the solutions (x0, y0) of equation (A.5), the first step is to define

x0 =
1− βy0

α

and then split the fraction in two parts. This will be shown by solving the equation

5x+ 3y = 1.

The solution can be written as

x =
1− 3y

5
= −y +

1 + 2y

5
= −y + t (A.6)

where

t =
1 + 2y

5
=⇒ y = 2t+

t− 1

2
= 2t+ u. (A.7)

This gives

2u = t− 1 =⇒ t = 2u+ 1,

which by using equations (A.7) and (A.6) results in all the solutions on the form

x0 = −(1 + 3u) and y0 = 5u+ 2 ∀u ∈ Z.

A particular solution is x0 = −1 and y0 = 2, and the solutions of the homogeneous equation
is x = −3u and y = 5u. This is a general solution of linear equations, and can be compared to
solutions of for example linear differential and linear difference equations. The algorithm for
solving Diophantine equations equal to the gcd is called the Extended Euclidean algorithm,
this gives the particular solutions of the equations. For more details on these algorithms, see
Chabert (1999).

A.3 Diophantine Equations and Smith Normal Form

There are infinitely many solutions to equation (A.1), and the choice of solution will have an
impact on the results of the diagonalization. Starting with the periodicity matrix from the
example in Section 2.3

A =

(

3 2
1 4

)
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which gives the first Diophantine equation and solutions

3x+ y = 1 =⇒ y = 1− 3k , x = k ∀k ∈ Z.

This give the matrix P−1

P−1
1 =

(

k 1− 3k
−1 3

)

,

multiplying with A gives

P−1
1 A =

(

1 4− 10k
0 10

)

.

The next Diophantine equation and solution is then given as

s+ (4− 10k)t = 1 =⇒ s = 1− (4− 10k)n, t = n ∀n ∈ Z

which results in

Q−1
1 =

(

1− (4− 10k)n 10k − 4
n 1

)

.

Then multiplication

AQ−1
1 =

(

1 0
10n 10

)

will give a diagonal matrix after one row operation, written as a matrix

P−1
2 =

(

1 0
−10n 10

)

.

The Smith normal form is

D = P−1
1 P−1

2 AQ−1
1 =

(

k − 10n(1 − 3k) 1− 3k
−(1 + 30n) 3

)(

3 2
1 4

)(

1− (4− 10k)n 10k − 4
n 1

)

=

(

1 0
0 10

)

.. (A.8)

The conclusion is that the choice of k or n, hence the solution to the Diophantine equations,
has no impact on the final diagonal matrix. But the matrices P and Q are different and
this changes the coordinate transformations Γ, from Section 2.4. Different Γ’s will not make
any difference on the final Fourier transformation. For computational speed it would be an
advantage to choose k and n so the integers of the matrices P and Q become as small as
possible, since the multiplications and modular calculations computed then become smaller.
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A.4 Different Diagonalizations of the Same Matrix

The diagonalization of the matrix A from the previous section can be written as

A = PDQ

=

(

3 −1
1 0

)(

1 0
0 10

)(

1 4
0 1

)

=

(

3 2
1 4

)

(A.9)

when k = n = 0. The periodicity matrix A has det(A) = 10 sampling points, and the Smith
normal form is here given as D = diag(1, 10). It should be possible to find a diagonalization
with D2 = diag(2, 5), since det(D2) = 10. The integers 2 and 5 are not divisors of each
other and they are relatively prime, gcd(2, 5) = 1. Using equation (A.4) it is possible to find
a relationship between these two diagonal matrices. The equation 2x + 5y = d = 1 have
particular solutions x = −2 and y = 1, dividing by d gives ρ = 2 and σ = 5. By direct input
to the equation this results in

D =

(

1 0
0 10

)

=

(

−2 1
−5 2

)(

2 0
0 5

)(

1 −5
1 −4

)

= CD2E.

This and equation (A.9) gives another diagonalization of the same matrix

A = PCD2EQ

= P2D2Q2 (A.10)

=

(

−1 1
−2 1

)(

2 0
0 5

)(

1 −1
1 0

)

.

This is not Smith normal form, but it can be used as a diagonalization for calculation of the 2D
DFT. These are the two diagonal matrices possible for A, since det(A) = 10 = 1×10 = 2×5.
This method for finding equivalent diagonalizations can only be used when the goal is to find
a diagonal matrix which is not of normal form. An example where the method cannot be
used, is a matrix with determinant equal to 16, then the possible factors 1×16 = 2×8 = 4×4
all give diagonal matrices of normal form.

For the case of calculating 2D DFT these different diagonalizations make no difference on the
final result, but it can have an impact on the speed of the computations. If it is possible to
find a diagonal matrix which have first entry equal to one, then there is only need for 1D
DFT, this could speed up the computations. The coordinate transformations Γ in Section 2.4
should be as small as possible to minimize time used for the operations.

A.5 The Smith Normal Form in n-Dimensions

As mentioned in Section A.1 the Smith normal form can be found for integer matrices of n
dimensions, A ∈ Mn(Z). The matrix from the example in Section 2.7,

A =





3 2 1
1 4 1
1 2 3



 ,

90



has Smith normal form

D =





1 0 0
0 2 0
0 0 12



 ,

and the unimodular matrices

P =





3 4 1
1 −5 −1
1 0 0



 , Q =





1 2 3
0 1 5
0 −1 −4



 .

By doing the coordinate transform Γ from Section 2.4 the samples are mapped to R(D) which
is Z1 × Z2 × Z12

∼= Z2 × Z12 and a 2D FFT is possible. This property is interesting because
it can make the Fourier transformation more efficient.

The first step of finding the Smith normal form of a matrix is to reduce it to a diagonal
diag(d1, d2, . . . , dn) with no specific requirements on the elements. Further it is possible to
find the Smith normal form, where the diagonal elements have the property dj |dj+1 for j =
1, . . . , n−1. Rayward-Smith (1979) suggests an interesting method for finding the final form.
Given an n-dimensional matrix, the diagonal elements are given as a set S = {di}i=1,2,...,n,
and Sk is the set of possible k products in this set. Let hcf(Sk) where k ≤ n be the highest
common factor of the elements in Sk, which is the highest number the prime factorisations
of each element in Sk have in common. Then by defining the integers δ1 = hcf(S), δ2 =
hcf(S2), . . . , δi = hcf(Si), the invariant factors of the smith normal form can be computed as

s1 = δ1

s2 =
δ2
δ1

. . . (A.11)

si =
δi
δi−1

,

and the final matrix becomes D = diag(s1, s2, . . . , sn).

Starting with the matrix





3 0 0
0 14 0
0 0 9



 .

which is an example where the diagonal elements do not have the property dj |dj+1. The
computations become

δ1 = hcf(3, 14, 9) = hcf(1 × 3, 1 × 2× 7, 1 × 3× 3) = 1

δ2 = hcf(3× 9, 3 × 14, 9 × 14) = hcf(42, 126, 27) = 3

δ3 = hcf(3× 14× 9) = 378

91



and

s1 = 1

s2 =
3

1
= 3

s3 =
378

3
= 126.

The Smith normal form is diag(1, 3, 126). This shows that the computation of the hcf(×) can
be done by prime factor expansion, a computer algorithm for this is given by Rayward-Smith
(1979).

This gives an interesting result, the rectangular sampling geometry in n dimensions are given
by a diagonal periodicity matrix which is n×n. If the highest common factor of these diagonal
elements are one, hcf(d1, . . . , dn) = 1, the final Smith diagonal form will have the first element
equal to 1 and an n-dimensional Fourier transform can be reduced to (n − 1). As before a
2D can be reduced to 1D, and 3D to a 2D. Further if hcf(S2) = 1 the Fourier Transform is
actually reduced to (n − 2)-dimensions. An example of this is the lattice generated by the
matrix





3 0 0
0 5 0
0 0 7



 , (A.12)

which will have smith normal form





1 0 0
0 1 0
0 0 105



 . (A.13)

This is a possibility when all the diagonal entries are relatively prime. An algorithm and a
implementation of the Smith normal form for n× n matrices is given in Appendix A.7.

A.6 Bricklaying over Lattices

The Hermite normal form (HNF) of an integer matrix is a matrix on the form

H =











× 0 · · · 0
× × · · · 0
...

...
. . .

...
× × × ×











, (A.14)

which is called lower triangular and the × are positive integers. This form is found by doing
unimoduar matrix column operations, which is adding a multiple of one column to another,
changing position of two columns and multiplying a column by −1. These operations can be
written as matrix multiplications, and the HNF of a matrix A can be given HNF(A) = H =
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(a) Lattice by A (b) The brickwork of HR (c) The brickwork of HL

Figure A.1: A geometric interpretation of the Hermite normal form

AG, where G is unimodular. It is possible to find two forms of the HNF, the left HNF, HL,
which is a upper triangular matrix and right HNF, HR, which is lower triangular. Gilbert
(1993) presents a geometrical interpretation of matrices on this form.

Let the matrix

A =

(

2 −1
−1 2

)

(A.15)

span a sampling lattice, see Figure A.1(a). By doing unimodular column operations

(

2 −1
−1 2

)

∼
(

−1 2
2 −1

)

∼
(

−1 0
2 3

)

∼
(

1 0
1 3

)

(A.16)

the right HNF is

HR =

(

1 0
1 3

)

. (A.17)

If the first diagonal element represent the length along the first axis and the second element
the second axis, the size of the bricks will be the product of these elements. Since all the
operations for finding the Hermite normal form is unimodular, det(G) = ±1, the area of the
bricks are given det(HR) = det(A). The lower left element represents the offset to the next
brick along the second coordinate. By these rules the brickwork shown in Figure A.1(b) is
generated by the right Hermite normal form of the matrix A.

The left Hermite normal form is found by a different set of column operations and becomes

HL =

(

3 1
0 1

)

. (A.18)

Using the same approach as for the right Hermite normal form, the resulting brickwork is given
in Figure A.1(c). The column operations are in this case also unimodular, so the resulting
bricks have the same area. But the complete brickwork becomes different, since the shifting
is in the opposite direction.

Gilbert (1993) also presents a geometric representations of the HNF in 3 dimensions. These
brickworks becomes somewhat more complicated since then the bricks are translated in two
directions.
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A.7 The n× n Smith Normal Form Algorithm

Many algorithms for fast computations of the Smith normal form of integer matrices are
developed. The straight forward implementation will be outlined here, and a matlab code
is given in A.7.1. This algorithm is given in Rayward-Smith (1979). The algorithm will
give an explosive growth in size of the intermediate entries and another method with better
performance is presented by Havas and Majewski (1997).

The Smith normal form of a n × n matrix A is given D = EAH where D is diagonal, E
and H are results of respectively elementary unimodular row and column operations. These
operations are� Add or subtract a integer multiple of one row/column to another� Permute rows and columns� Multiplying a row/column by −1.

It can be seen that all operations will have det(×) = ±1, which also shows the operations are
invertible.

Then the steps in the computation are

1. Permuting rows and columns until the matrix element a1,1 is the smallest one in absolute
value, done by the sortmatrix function in A.7.1.

2. If a1,k for k 6= 1 is a non zero element in the first column, using the division algorithm
with respect to the first entry reduces the element to the smallest integer possible.
Defining q = ba1,ka1,1

c gives the rest r of a column operation as r = a1,k − a1,1q. Then if

r = 0, continue to the next entry, if it is not go back to step 1. This should be done until
all the entries of column 1 except for a1,1 is zero. Then the same is done for the first
row. These steps are implemented in the matlab functions reduceCol and reduceRow.

3. When all the entries of the first row and column are zero, as in equation A.19, the first
entry should be a divisor of all the entries which are unequal to zero. If aj,i is not
divisible by a1,1 add the column containing this element to the first column and go back
to step 1. Both testing for zero in the first row and column, and if a1,1 is a divisor of
the rest of the elements is done by the isdivisorzero.m code.











a1,1 0 · · · 0

0 a2,2 · · · a2,n
...

...
. . .

...
0 an,2 · · · an,n











(A.19)

4. If the diagonal element is negative, multiply by −1. Then continue by defining the
matrix as in A.20, and go back to step 1.







a2,2 · · · a2,n
...

. . .
...

an,2 · · · an,n






(A.20)
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This procedure should be done until all the elements except for the diagonal is zero, the
diagonal is positive, and di|di+1. Then the matrix is on Smith normal form.

The matlab script returns the matrices A = PDQ, where P = E−1 and Q = H−1, for direct
usage with the Fourier calculations in Section 2.4.

A.7.1 matlab codes

smithnormalform.m

1 %[D,P,Q] = smithnormalform(A)
2 % Finds the smith normal form of a square integer matrix A, returns
3 % unimodular matrices P and Q, such that A = PDQ, (D = EAH),where D is of
4 % smith normal form.
5 % Depends on the functions: reduceRow(), reduceCol(), sortmatrix() and
6 % isdivisorzero()
7 function [D,P,Q] = smithnormalform(A)
8 n =length(A);
9 E = eye(n);

10 H = eye(n);
11 Etemp = eye(n); Htemp = eye(n);
12 i = 1;
13 while i < n %runs untill the matrix A is in Smith Normal Form
14

15 [A1,E1,H1] = sortmatrix(A(i:n,i:n)); %putting the smallest integer to A(i,i)
16 A(i:n,i:n) = A1;
17 Etemp(i:n,i:n) = E1;
18 E = Etemp* E;
19 Htemp(i:n,i:n) = H1;
20 H = H* Htemp;
21 Etemp = eye(n); Htemp = eye(n);
22

23 [A1,E1,H1] = reduceCol(A(i:n,i:n)); %Elementary column operations
24 A(i:n,i:n) = A1;
25 Etemp(i:n,i:n) = E1;
26 E = Etemp* E;
27 Htemp(i:n,i:n) = H1;
28 H = H* Htemp;
29 Etemp = eye(n); Htemp = eye(n);
30

31 [A1,E1,H1] = reduceRow(A(i:n,i:n)); %Elementary row operations
32 A(i:n,i:n) = A1;
33 Etemp(i:n,i:n) = E1;
34 E = Etemp* E;
35 Htemp(i:n,i:n) = H1;
36 H = H* Htemp;
37 Etemp = eye(n); Htemp = eye(n);
38

39 if A(i,i) <0 % is the diagonal element is negative, multiply by −1
40 H1 = eye(n);
41 H1(i,i) = −1;
42 A = A* H1;
43 H = H* H1;
44 end
45

95



46 %Is A(i,i) a divisor and is the first row and colum zero exept for
47 %A(i,i).
48 [zero,divisor,column] = isdivisorzero(A(i:n,i:n));
49 if divisor ==1 && zero == 1
50 i = i+1;
51 elseif divisor == 0 && zero == 1
52 Col = eye(n);
53 Col(column,i) = 1;
54 A = A* Col;
55 H = H* Col;
56 end
57 end
58

59 if A(n,n) < 0 % if the last diagonal element is negative, multiply by −1
60 H1 = eye(n);
61 H1(i,i) = −1;
62 A = A* H1;
63 H = H* H1;
64 end
65

66 D=A;
67 P = round(inv(E));
68 Q = round(inv(H));

sortmatrix.m

1 %[A,E,H] = sortmatrix(A),
2 % Searches for the smallest integer in a square matrix A, finds unimodular
3 % matrices E and H which moves this number to A(1,1).
4 function [A,E,H] = sortmatrix(A)
5 %Size of the matrix to sort
6 n = length(A);
7 %Permutation matrices
8 Pcol(n,1) = 1; Pcol(:,2:n) = eye(n,n −1);
9 Prow(1,n) = 1; Prow(2:n,:) = eye(n −1,n);

10 ismall = 1; jsmall = 1;
11 for i=1:n
12 for j =1:n
13 if A(ismall,jsmall) == 0 %if the first entry is zero, change the initial point
14 ismall = ismall+1;
15 elseif abs(A(ismall,jsmall)) > abs(A(i,j)) && abs(A(i,j)) > 0
16 ismall = i;
17 jsmall = j;
18 end
19 end
20 end
21 A = Prow^(n −ismall+1) * A * Pcol^(n −jsmall+1);
22 E = Prow^(n −ismall+1);
23 H = Pcol^(n −jsmall+1);

reduceRow.m

1 %[A,E,H] = reduceRow(A)
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2 % reduceRow does elementary unimodular row operations to a square matrix
3 % A. Returns the reduced matrix and the oprerations matrices E and H.
4 function [A,E,H] = reduceRow(A)
5 n = length(A);
6 j =2;
7 Row = eye(n);
8 H = eye(n); E = H;
9 while j ≤ n

10 aj1 = A(j,1); a11 = A(1,1);
11 q = floor(aj1/a11);
12 r = aj1 − a11* q;
13 Row(j,1) = −q;
14 A = Row* A;
15 E = Row* E;
16 Row = eye(n);
17

18 [A1,E1,H1] = sortmatrix(A);
19 A = A1;
20 E = E1* E;
21 H = H* H1;
22 if r == 0
23 j = j +1;
24 end
25 end

reduceCol.m

1 %[A,E,H] = reduceCol(A)
2 % reduceCol does elementary unimodular column operations to a square matrix
3 % A. Returns the reduced matrix and the oprerations matrices E and H.
4 function [A,E,H] = reduceCol(A)
5 n = length(A);
6 k = 2;
7 Col = eye(n);
8 E = eye(n);
9 H = eye(n);

10 while k ≤ n
11 a1k = A(1,k); a11 = A(1,1);
12 q = floor(a1k/a11);
13 r = a1k − a11* q;
14 Col(1,k) = −q;
15 A = A* Col;
16 H = H* Col;
17 Col = eye(n);
18

19 [A1,E1,H1] = sortmatrix(A);
20 A = A1;
21 E = E1* E;
22 H = H* H1;
23 if r == 0
24 k = k+1;
25 end
26 end
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isdivisorzero.m

1 %[zero,isdivisor,column] = isdivisorzero(A),
2 % A is a n x n matrix, isdivisorzero finds if the first row and column
3 % are zero exept for the first entry A(1,1), then returns the bolean
4 % variable zero = 1 if true and zero = 0 if false. If A(1,1) is divisor
5 % of all the entrys of the submatrix A(2:n,2:n) then the bolean variable
6 % isdivisor = 1, if not isdivisor = 0 and column gives the integer number
7 % of the column which contains the number wich A(1,1) does not divide.
8 function [zero,yes,column] = isdivisorzero(A)
9 n = length(A);

10 yes = 1;
11 column = 0;
12 zero = 0;
13 for i = 2:n
14 for j = 2:n
15 if floor(A(i,j)/A(1,1)) 6= A(i,j)/A(1,1)
16 yes = 0; column = j;
17 end
18 end
19 end
20

21 if A(1,2:n) == zeros(1,n −1)
22 if A(2:n,1) == zeros(n −1,1)
23 zero = 1;
24 end
25 end
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Appendix B

Voronoi Diagrams

Voronoi diagrams have a wide range of applications, for example in anthropology, astronomy,
biology, chemistry, physics and geophysics. It will be used here for plotting 2D functions
sampled on general sampling grids.

In the 17th century Descartes used Voronoi like diagrams to show the disposition of matter
in the solar system. Dirichlet later used it in his studies of positive definite quadric forms in
two and three dimensions. It has its name after Georgy Fedoseevich Voronoy (1868 - 1908)
which used it for the same application but in m-dimensions, (Okabe et al., 2009).

Let P be a set of n distinct points in the 2D plane, P = {p1, p2, . . . , pn}. The points can be
defined as vectors xi = (xi, yi)

T , and the distance from a given points p to pi can be given by
the Euclidean norm,

||x− xj || =
√

(x− xj)2 + (y − yj)2. (B.1)

If the nearest point or one of the nearest points to p is pi, the relation,

||x− xi|| ≤ ||x− xj|| for i 6= j where i, j ∈ Zn (B.2)

holds. Then the planar Voronoi polygon to a points pi can be given as

V (pi) = {x| ||x− xi|| ≤ ||x− xj || for i 6= j where i, j ∈ Zn}. (B.3)

This leads to the definition of the Voronoi diagram for the point set P in the 2D plane

V = {V (p1), . . . , V (pn)} (B.4)

Okabe et al. (2009). A Voronoi diagram of a random point set is given in Figure B.1.

The Voronoi diagram gives cells that encloses sampling points with the minimum distance.
Generally when plotting 2D functions sampled on a non-rectangular lattice interpolation is
needed. To avoid interpolation, it could be preferable to fill Voronoi cells with color repre-
senting the functions value. Examples of Voronoi diagrams are shown in Section 3.3.1 and
3.3.2. An example of an image by filling these cells are shown in Figure 4.5.

A matlab code which generates these plots are given below.
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Figure B.1: Example of Voronoi diagram of 10 points

image voronoicells.m

1 %[] = image_voronoicells(eta,dx,dy,fv)
2 % Finds the voronois cells for a lattice given by eta, and
3 % fills these cells with colors from the function fv.
4 % eta − samplingpoints, column vector
5 % dx,dy − sampling interval, if integer samplingpoints dx = 1
6 % fv − the function in a vector corresponding to eta
7 function image_voronoicells(eta,dx,dy,fv)
8

9 %first put one row with points over the lattice, so the voronoi diagram converges.
10 max_x_retn = max(eta(:,1));
11 max_y_retn = max(eta(:,2));
12 min_x_retn = min(eta(:,1));
13 min_y_retn = min(eta(:,2));
14 k = 1;
15 [p,q] = size(eta);
16 eta(k * p+1:length(min_x_retn −1:max_x_retn+1)+(k * p),1) = [min_x_retn −1:max_x_retn+1];
17 eta(k * p+1:length(min_x_retn −1:max_x_retn+1)+k * p,2) = ...
18 ones(length(k * p+1:length(min_x_retn −1:max_x_retn+1)+k * p),1) * (min_y_retn −1);
19 %under the lattice.
20 k = 2;
21 eta(k * p+1:length(min_x_retn −1:max_x_retn+1)+(k * p),1) = [min_x_retn −1:max_x_retn+1];
22 eta(k * p+1:length(min_x_retn −1:max_x_retn+1)+k * p,2) = ...
23 ones(length(k * p+1:length(min_x_retn −1:max_x_retn+1)+k * p),1) * (max_y_retn+1);
24 [v,c]=voronoin(eta,{ 'Qbb' });
25 for i = 1:length(c)
26 if all(c{i} 6=1) && i ≤p %If one of the indices is 1 the region is open,
27 % i ≤p Fill cells only for the sampling
28 % points.
29 o = patch(v(c{i},1),v(c{i},2),fv(i)); % use color i.
30 set(o, 'edgecolor' , 'none' )
31 end
32 end
33 hold on, axis([min_x_retn max_x_retn min_y_retn max_y_re tn])
34 return
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Appendix C

Interpolation

There are many interpolation methods in the literature, and to compare the quality of the
different methods it is important to analyze the Fourier spectrum, (Maeland, 1988).

Generally interpolation is a result of the Nyquist-Shannon sampling theorem, any bandlimited
function f(t) can be written as the convolution

f(t) =

∞
∑

−∞
fnsinc(π(t− tn)/∆t) for ∆t =

π

Ω
, (C.1)

where Ω is the bandwidth. The sinc function (Cardinal Sine) is defined on an unlimited
aperture. Hence, in general the interpolation from discrete sequences to new sampling points
are given

f(t) =

N−1
∑

n=0

fnu(t− n∆t) = fn ∗ u, (C.2)

where N is the number of sampling points, ∆t the original sampling interval and u = u(t) is
the interpolation kernel. There are many possibilities for choosing the interpolation kernel.
For example, linear interpolation, which is the midpoint between two values, has kernel

ub(t) =

{

1− |t|/∆t for|t| ≤ ∆t

0 otherwise
, (C.3)

which is the Bartlett window. Another example is the cubic spline which are constructed
with the Parzen window,

up(t) =











(A+ 2)|t/∆t|3 − (A+ 3)|t/∆t|2 + 1 for 0 ≤ |t/∆t| ≤ 1

A(|t/∆t|3 − 5|t/∆t|2 + 8|t/∆t| − 4) for 1 ≤ |t/∆t| ≤ 2

0 otherwise

(C.4)

where A is a free parameter. Maeland (1988) shows that the general interpolation kernel is a
low pass filter in Fourier domain.
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The resampling of data on a rectangular lattice to a hexagonal is generally a downsampling.
There are many techniques for this operation, there are developed special interpolation kernels
for given lattices. Ville et al. (2002) presents a spline model for both rectangular and hexag-
onal lattices, a least squares resampling technique between regular lattices. This is beyond
the scope of this work, and 2D resampling, both upsampling and downsampling, are done
by matlabs implementation of the biharmonic spline interpolation (Sandwell, 1987) when
needed.

In Section C.2 there is presented an example where the interpolation kernel is the Dirichlet
kernel, often referred to as the discrete sinc function. Using this allows full bandwidth in
Fourier domain, which is an advantage when interpolation of seismic which are often approx-
imated by Fourier waves.

C.1 Fourier Interpolation

One of the simplest interpolation methods of a discrete signal fn is filling in (M − 1)N zeros
after the signal in Fourier domain. If the signal is real, Fourier domain is Hermite, the zeros
have to be placed in the middle of Fourier domain to keep the symmetry, and a real signal
after inverse DFT. The signal then have a total of (M − 1)N interpolated values.

A discrete signal can be written with the DFT

fn =

N−1
∑

k=0

Fke
2πikn/N , (C.5)

and by defining ñ = n+ α, where 0 ≤ α < 1, it is possible to define the signal

fn+α =

N−1
∑

k=0

[Fke
2πikα/N ]e2πikn/N . (C.6)

Here Gk(α) = e2πikα/N is a interpolation filter which gives the functions values at the new
points n+ α. The filter Gk is generally not Hermitian, GN−k 6= G∗

k, since

GN−k = e2πi(N−k)α/N = e2πiαG∗
k. (C.7)

To get real values from the interpolation, the filter have to be Hermitian. Letting

n̂ = mod(n+ bN/2c, N) − bN/2c, (C.8)

which are the sampling points symmetric about the origin, results in a Hermitian filter if N
is odd. If N is a even number, bN/2c = dN/2e, the filter at the Nyquist number becomes

GN/2(α) = eπiα = cos(πα) + i sin(πα) (C.9)
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Figure C.1: Interpolation of a step function

and Gk is not Hermitian. This is solved by defining the value at the Nyquist number as the
real part

GN/2(α) = <(eπiα) = cos(πα). (C.10)

The interpolation algorithm is to Fourier transform the data, multiply with the filter Gk(α)
and an inverse Fourier transform.

An example of this interpolation is given in Figure C.1(a), a signal fn = n for n = 0, 1, 2, 3, 4
is given (black curve), and the Fourier interpolated hn for M = 4 in red. The filtering is done
with α = 1/4 these are shown in blue, the interpolated points hit the same as the points from
the interpolation by filling in zeros, since Mα is an integer.

Choosing α =
√
2/4, Figure C.1(b), results in another picture, the points naturally does not

hit the red curve. Finding interpolated values for points where α is irrational is one advantage
of this filtering, these values can never be found by filling in zeros. The algorithm does not
contain the heavy convolutions, as in the regular interpolation routines, just fast FFTs.

This algorithm can also be used for upsampling of functions, for example choosing α = 1/2
will give sampling between the original sampling points. An example of this is given in Figure
C.2. Starting with the Hilbert transformation of a Ricker wavelet

s(t) = H [r(t)], (C.11)

where

r(t) = −2λ(2λt2 − 1)e−λt2 , . (C.12)
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Figure C.2: Interpolation of the function s(t) = H [r(t)], where λ = 1

The signal s(t) is sampled with ∆t = 0.4 andN = 16 sampling points, represented by the black
circles in Figure C.2(a). To upsample this function 4 times, new sampling interval ∆t = 0.1,
the filtering is calculated for α = 1/4, 2/4, 3/4, red curve in Figure C.2(a). This interpolation
is equivalent to filling in zeros M = 4. The same interpolation is done with matlab’s
implemented cubic spline, blue curve in Figure C.2(b). The black dashed curve in both figures
are the signal s(t) sampled on the resulting points. Comparing with this the observation is
that interpolation in Fourier domain gives better result than the one interpolated with cubic
spline. This is probably due to the Ricker wavelet being a exponential function. This shows
that when processing Fourier waves it would be preferable to do interpolation with the Fourier
transform.

A matlab implementation of the filtering interpolation is given below.

filterinterp.m

1 function [fint,nny] = filterinterp(f,alpha)
2 %Finds interpolated values in the points n + alpha, where 0 < alpha < 1
3 N = length(f);
4 n = 0:N −1;
5 nny = n + alpha;
6 m = mod(n + floor(N/2),N) − floor(N/2);
7 F = fft(f);
8 if floor(N/2) == ceil(N/2) %even sampling
9 J = exp(2 * pi * 1i * m* alpha/N);

10 J(N/2+1) = cos(pi * alpha);
11 else%odd sampling
12 J = exp(2 * pi * 1i * m* alpha/N);
13 end
14

15 fint = ifft(F. * J);
16 return
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C.2 Dirichlet Kernel

Using convolution it is possible to get interpolated values of a function fn at sampling
points tn which are not necessarily equidistant. Defining a time sequence fn ∈ R for n =
0, 1, 2, . . . , 2N + 1, with Fourier domain Fk for k = −N, . . . , 0, . . . N . The Fourier spectrum
will be hermitian since fn is real. The Z transformation gives

g(Z) =

N
∑

k=−N

FkZ
k, (C.13)

By defining E = exp(−2πi/N) and Fourier Transforming

g(Z) =
1

N

N
∑

k=−N

[

2N+1
∑

n=0

fnE
nk
]

Zk, (C.14)

changing the order of summation

g(Z) =
1

N

2N+1
∑

n=0

fn

[

N
∑

k=−N

ZkEnk
]

, (C.15)

the last sum is a geometric series and

g(Z) =
1

N

2N+1
∑

n=0

fn

[

(ZEn)−N 1− (ZEn)2N+1

1− ZEn

]

. (C.16)

Defining Z = exp(2πt∆ω) gives ZEn = exp(i2π(t − tn)/T for tn = n∆t and ∆ω = 2π/T .
This gives the cyclic convolution

g(t) =

2N+1
∑

n=0

fnw(t− tn), (C.17)

where

w(t) =
sin(π(t)(2N + 1)/T )

N sin(π(t)/T )
, (C.18)

is the Dirichlet kernel, the discrete equivalent to cardinal sine, equation (C.1). This interpo-
lation kernel is periodic which gives that the resulting time sequence g also is periodic. This
will be an advantage when interpolating seismic waves. The interpolation result g(t) can now
be evaluated in any discrete points t.

A matlab implementation of this is given below.
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direcletinterp.m

1 %diricletinterp Interpolation with the Direclet kernel.
2 % f_new = direcletinterp(t,f,t_new,dt)
3 % t − original time sampling
4 % f − original function
5 % t_new − new samplingpoints
6 % dt − equidistant original sampling interval
7 function [f_new] = direcletinterp(t,f,t_new,dt)
8 N = length(t);
9 for n=1:length(t_new)

10 w = diric(2 * pi * (t_new(n) −t)/(N * dt),N);
11 f_new(n) =sum(f. * w);
12 end
13 return
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