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Chapter 1

Introduction

The bore is a wave phenomenon that occurs in channels and rivers of shallow
water. Referred to as a discharge wave, a bore is generated by a sudden
increase of water flow. Bores appear in certain rivers as the tide pushes
water into the river mouth. The Severn river in England, the Dordogne river
in France and the Qiantang river in China are all examples of rivers that
display this phenomenon.

Simply described a bore is a transition between two uniform flows of
different flow depth. The point of transition is referred to as the bore front.
This front might be travelling or it might be stationary. However it is only
in the case of a travelling front that the phenomenon is named a bore. The
stationary case is named a hydraulic jump. The transition between the two
states of flow is often marked by violent turbulence. But there are also bores
in which no turbulence is observed. Such bores are called weak bores, as in
these cases, the difference in height between the two flow depths are small.
The weak bore displays a unique character not present in the turbulent bore.
It carries a train of undulating waves just behind the front. For this reason
it is often called the undular bore.

The bore phenomenon has been a topic of interest in hydrodynamics since
the late nineteenth century. Three main experiments on discharge waves
made by H. Bazin [2], H. Favre [8] and later J.A. Sandover & O.C. Zienkiewicz
[18] are especially worth mentioning and we will focus on the studies of
Favre. The first theories used to model the bore are those developed by
Lord Rayleigh, G.G. Stokes, G.B. Ariy, G.H. Kortweg & G. de Vries, and J.
Boussinesq. A good summary of these are found in G.B. Whithams book [20].
On the basis of these theories the main consensus on the bore phenomenon
was drawn by T.B. Benjamin and M.J. Lighthill in the brilliant paper [3].

This thesis aims to give an introductory summary on the theory of the
bore phenomenon and lay out a map for further study. In this way it ought
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2 Introduction

to serve as a good introduction for those not familiar with the subject and a
good repetition for those who are.

In the following investigation two models of the bore will be presented
in which water is treated as an ideal fluid. The first model is reached by
assuming hydrostatic pressure. This gives the shallow water equations. These
equations model the bore as a travelling discontinuity separating two uniform
flow depths. The water flow is steady, conserving mass and momentum, but
the water loses energy as it passes through the bore front. This energy loss
was first pointed out by Rayleigh in [17] and is commonly referred to as
the classical energy loss. The energy loss is a trait that coincides well with
turbulent bores and the shallow water equations model these bores quite well.

The shallow water equations do not model the undular bores as they
would not sustain the undulating waves behind the bore front. A second
model is based on a dispersive system. This is an extension of the shallow
water equations where, effectively, the treatment of pressure is refined. It
leads to various Boussinesq systems and in a specialized case, of all fluid
moving in one direction, it leads to the well know KdV equation. Modelling
a bore-like initial value by a dispersive system brings out the undulations
behind the bore front, however it does not capture the full nature of the
undular bore itself.

The nature of the undular bores is found through experiments. Of the
three experiments mentioned above, we focus on the work of Favre published
in his book [8]. From this study Favre concluded, as pointed out by Keulegan
and Patterson in [11], that:

1. The undulations are not formed immediately, but require a certain
amount of time to establish themselves.

2. After the undulations are formed, they are of similar size and shape.

3. The final configuration is a stable one1.

4. The height of the undulation at x is independent of θ, the time in which
the flow is established, for a considerable range of values of x, provided
θU/x < 0.2, U being the travelling speed of the front. In other words
within certain limits, a discharge which is not created instantaneously
will behave like a theoretically sudden increase of flow.

5. The wave length of the undulations depends only on the mean height
of the layer above the primitive surface. The former decreases as the
latter increases.

1By this they mean that the flow has become steady.
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The dispersive model agrees with these observations in all but case 3 and 5.
It does not show a rapidly stabilizing effect, i.e. the bores of the dispersive
model does not obtain the steady flow found in experimental bores. And the
model wave length seems independent of the mean height of the layer above
the primitive surface.

In [3] Benjamin and Lighthill develop the dispersive model in a new way
that illuminates the roll of mass flow, momentum flow and energy. Relaying
on the experimental results, they assume a steady flow at the bore front and
seek solutions of travelling waves. This assumption, might be unfortunate,
as the dispersive model has trouble attain steady flow when simulating a
bore like initial value. They find the undulations behind the front to be
one of three types of waves; sinusoidal, cnoidal or solitary. However only
solitary waves are allowed if conservation of energy is to be assumed. The
experimental observations suggest that the undulations are cnoidal. On this
basis Benjamin and Lighthill conclude that the undular bore must suffer an
energy loss through the bore front similar to the classical loss. Sturtevant [19]
continues this line of reasoning and tries to calculate the loss. His calculations
reveal the surprising result that the flow does not suffer an energy loss but
an energy gain. This result however is explainable if frictional effects of the
bottom are taken into account.

In this thesis we support the conclusion that adding frictional effects of
the boundary will improve the dispersive model of the undular bore. But
the arguments leading to this conclusion will be debated. The fact that the
undular bore quickly establishes steady flow while the dispersive model does
not, shows that model needs further work. But it also illustrates the problem
of Benjamin & Lighthill and Sturtevants reasoning. Assuming steady flow
and applying this to a model that, for the given phenomenon, does not attain
it, is likely to give an invalid argument. The model needs to be modified in
such a way that a simulated bore quickly obtains steady flow. Only then an
argument similar to Benjamin and Lighthills can be applied.

Finally we wish to clarify the idea of the classical energy loss. This
energy loss seems to be a source of confusion. The consensus is that the fluid
needs to loose energy as it passes through the bores transition between the
two flow depths, the bore front, however this idea is most likely a phantom
of the shallow water equations. A closer reading of Rayleighs paper [17],
where the energy loss was introduced, indicates that the use of the dispersive
model removes the need for an energy loss. The dispersive system, which
incorporates the fluids oscillation in the z-direction, appears to give the fluid
a dynamical property such that it contain its energy as it passes through
the bore front. Further evidence of this is given in [1] where Alfatih and
Kalisch, using a dispersive system, preforms a numerical study of bore-like
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Figure 1.1: The two bores are from the Severn and the Qiantang river. The
first picture is from the Severn river, showing an undular bore with marked
oscillations behind the bore front. The picture is found at the serven bore
page www.serven-bore.co.uk. The second picture is a vastly turbulent bore
in the Qiantang river. Notice the difference in flow depths and the turbulent
front dividing them.

initial values. Their study show that the simulated fluid conserve energy.
With this result we may conclude that our focus should not be on the bores
energy loss as such but rather on it ability to attain steady flow.

Preliminary equations for water waves.

In the following explanations we will use a Cartesian coordinate system with
the coordinates (x, y, z). The x and y axes will be the horizontal axes and
the z axis will be the vertical axis. The vector u = (u, v, w) will represent
the flow of the fluid in the spatial directions where u is the flow in the x
direction, v the flow in the y direction and so on. The fluid we consider is
water. This is commonly seen as an ideal fluid. By this we mean that it
is incompressible, homogeneous, non-viscous and irrotational. These ideal
properties of water will greatly simplify future equations.

As water is homogeneous and incompressible, the density of water ρ is
constant. The principle that water does not compress nor vanish but only
moves is expressed by the continuity equation. The continuity equation at a
point becomes ux + vy + wz = 0. Which in short is:

∇ · u = 0 (1.1)

The motion of water is described by an equation of motion. Any equation of
motion is based on Newtons second law of physics

ma = Fres (1.2)
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where m is matter, a is acceleration and Fres is the sum of all forces. Matter
changes its motion according to the sum of forces acting upon it. In this
study gravity and pressure are the forces acting upon water. Pressure is a
force acting on the water surface2. It can be divided into a force normal to
the surface and a force tangential to the surface. Since we state that water
is non-viscous the tangential force on water must be zero. The normal force
can be expressed as the gradient of pressure Fp = −∇p. Gravity is a force
acting on the entire fluid. Such a force is called a body force. Gravity is
a conservative body force and can thus be expressed as the gradient of a
potential Fg = −ρ∇Π where Π = gz and g is the intensity of gravity.

Summed up, the equation of motion used for water as an ideal fluid is
the Euler equation

ρ
Du

Dt
= −∇p− ρ∇Π (1.3)

where we will call D
Dt

= ∂
∂t

+ u · ∇ a material derivative. By a material
derivative we indicate that we are following a fluid particle and that we are
interested in the change that this particle is experiencing. The Euler equation
is a vector equation which written in full becomes:

ρ(ut + uux + vuy + wuz) = −px (1.4)

ρ(vt + uvx + vvy + wvz) = −py (1.5)

ρ(wt + uwx + vwy + wwz) = −pz − ρg (1.6)

It contains 4 unknowns (u, v, w) and p and together with the continuity
equation it expresses 4 different equation that constitute a complete set of
equations.

Assume that water is flowing in a flat bottomed lake of infinite length and
width. Let H0 be the undisturbed water depth and η(x, y, t) be the surface
deviation from the undisturbed depth. Now define h(x, y, t) = η(x, y, t) +
H0 as the total water depth. Two Boundary types are then treated. The
free surface boundary between water and air and the solid fixed boundary
between water and the bottom. For the free surface two principles apply.
The kinematic condition

ηt + uηx + vηy = w (1.7)

that water does not leave the free surface and the dynamic condition

p = p0 at z = h(x, y, t) (1.8)

2This is a general statement of the pressure force. Therefore in this case surface is to be
interpreted in the broadest possible sense, including the surfaces of arbitrary cross-sections.
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that the pressure at the surface is equal to the atmospheric pressure p0. In
addition no water pass through a solid fixed boundary. For a flat horizontal
bottom this gives

w = 0, at z = 0. (1.9)

This concludes the basics for water wave equations. Fluid mechanical
terms, not mentioned here, will appear with brief explanations during this
thesis. More thorough explanations are found in books of fluid mechanics
such as [13].



Chapter 2

The shallow water equations

In the study of bores and hydraulic jumps we assume that water is flowing in
an infinite and narrow channel with a flat horizontal bottom. We place the
coordinate system with the x-axis at the bottom in the direction of flow and
the z-axis in the vertical direction. We assume that there is no flow in the
y-direction as the channel is narrow. This gives us a two dimensional system
in x and z. The assumption characterizing the shallow water equations is
that the waves are long compared to the water depth. From this we may
neglect the flow in the z direction and the horizontal velocity is uniform at
each cross-section of the channel. Applying these simplifications to the Euler
equations we retain (1.4) and (1.6) and they become

ρ(ut + uux) = −px (2.1)

0 = −pz − ρg. (2.2)

Let H0 be the undisturbed water depth and η(x, t) be the surface deviation
from the undisturbed depth. Now define h(x, t) = η(x, t) + H0 as the to-
tal water depth. If h is integrated between to vertical cross-sections of the
channel, the integrand is the volume of water between the cross-sections per
unit width. Multiplying this with ρ we get the mass of water per unit width.
Since h is the only variable in this calculation, and the cross-sections were
chosen arbitrarily, h will often be referred to as the mass of the fluid.

The equation of continuity in the introduction gives continuity at a point.
Continuity at a vertical cross-section of the channel is an integrated form of
(1.1) ∫ h

0

{
∂u
∂x

+ ∂w
∂z

}
dz = 0

= ∂
∂x

∫ h
0
udz + [w]h0 − [u]z=h

∂h
∂x
,

(2.3)

7



8 The shallow water equations

Figure 2.1: An illustrating profile of water in a channel. The stapled line
is the undisturbed depth, i.e. where the water would be if it suffered no
disturbance. The full line indicate the water surface. The long wave shown
gives a negligible motion in the z-direction.

which using the boundary conditions (1.8) and (1.9) gives

∂

∂x

∫ h

0

udz +
∂h

∂t
= 0. (2.4)

Since u is independent of z the continuity equation becomes

ht + (hu)x = 0 (2.5)

expressing the conservation of mass. That (2.5) expresses the same principles
as (1.1) is checked by integrating (2.5) between two fixed cross-sections. The
resulting expression

d

dt

∫ x2

x1

hdx = (hu)|x1
x2

(2.6)

states that the change of mass with time, between the two cross-sections,
is given by the net mass flux. The water does not compress nor vanish, it
moves.

From (2.2) we see that the pressure is hydrostatic

p− p0 = ρg(h− z). (2.7)

By hydrostatic pressure we mean that the water pressure is given by gravity
alone, which naturally follows as flow in the vertical direction is neglected.
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Using this hydrostatic pressure in (2.1) with ρ as unity gives us

ut + uux + ghx = 0 (2.8)

the conservation of momentum. Together (2.5) and (2.8) constitute the shal-
low water system.

ht + (hu)x = 0
ut + uux + ghx = 0

(2.9)

2.1 Steady flow of the shallow water system

The following section is inspired by Rayleighs paper [17]. Assume that the
channel flow is steady. This means that in an inertial frame of reference
surface waves are given as travelling waves, e.g. waves travelling without
change of form. By placing the reference frame in wave fixed coordinates the
shallow water equations (2.9) become time independent.

(hu)x = 0
uux + ghx = 0

(2.10)

Take two vertical cross-sections of the channel at x1 and x2. Let u1 and
u2 be the two corresponding flow velocities, and let h1 and h2 be the two
corresponding flow depths. Let h1 = H0 and h2 = H0 + η0 where h0 is
the undisturbed water depth and η0 is an elevation of the fluid above the
undisturbed water depth. By the equation of continuity in (2.10) we have

u2(H0 + η0)− u1H0 = 0 (2.11)

The equation of motion in (2.10) gives

1

2
(u2

1 − u2
2)− gη0 = 0 (2.12)

Using (2.11) to express u2 in terms of u1 we get u2 = u1H0

H0+η0
. Substituting u2

in (2.12) by this expression gives

(
u2

1

H0

· 1 + η0/2H0

(1 + η0/H0)2
− g)η0 = 0 (2.13)

From this Rayleigh draws the following conclusions: “If, now, the ratio η0/H0

be very small, the coefficients of η0 becomes

u2
1

H0

− g, (2.14)
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Figure 2.2: Three pictures of a hydraulic jump created by here at University
of Bergen by letting water run from the tap down on a flat surface. As the
water hits the flat surface it carries a lot of momentum. Shooting out to the
sides it obtains a supercritical flow and shortly after preforms a hydraulic
jump. The jump is marked by a region of turbulence and beyond this region
the surface is calm.

and we conclude that the condition of a free surface is satisfied, provided
u2

1 = gH0. This determines the rate of flow, in order that a stationary wave
may be possible, and gives, of course, at the same time the velocity of a wave
in still water.

Unless η2
0 may be neglected, it is impossible to satisfy the conditions of a

free surface for a stationary long wave, which is the same as saying that it
is impossible for a long wave of finite height to be propagated in still water
without change of type.

A flow in which u >
√

(gH0) is called supercritical. As it does not satisfy
the free surface condition it is unstable and the water level will rise. This
increase in water depth is rapid and is called a hydraulic jump. The hydraulic
jump lowers the flow speed and increases the the limit for supercritical flow.
The phenomenon is often observed below weirs and dams. Something of
the kind may also be seen whenever a stream of water from a tap strikes a
horizontal surface.

2.1.1 The classical hydraulic jump

In the theory of hydraulic jumps, water is flowing super critically before
undergoing a relatively rapid increase of water depth from H0 to H0 + η0,
η0 being the size of the jump. The depth increase is stationary and often
associated with a very turbulent mixing of water, producing a significant
energy loss. The increase of the water depth is so rapid that it is modelled
as a discontinuity.

Lets assume that a channel is below a dam. Let the dam be an infinite
reservoir of water. Let water run from the dam into the channel at a su-
percritical flow ul. At x0 it undergoes a jump from H0 to H0 + η0 changing
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Figure 2.3: Hydraulic jump. The hydraulic jump consists of three parts: A
region of supercritical flow, a jump discontinuity and a region of sub-critical
flow.

flow velocity from ul to ur. The subscripts l and r indicates that the values
are to the left and to the right of the jump. All water arriving at x0 has
experienced the same amount of work, down to a slight difference in pressure
due to minor surface wave variations. These variations are neglected as there
are no surface waves to speak of in a supercritical flow. From this physical
argument we assume that the flow is steady as it passes through x0. A steady
flow conserves mass and momentum1. Conservation of mass given by (2.11)

ulH0 = ur(H0 + η0) = Q

states that the mass flux is the same in any vertical cross-section. Conserva-
tion of momentum states

Q(ul − ur) =
1

2
g((H0 + η0)2 − (H0)2) (2.15)

that the difference in momentum flux at the jump is due to the difference
in pressure left and right of the jump. By these equations ul and ur are
determined and we have:

u2
l =

1

2
g(2H0 + η0)(

H0 + η0

H0

), u2
r =

1

2
g(2H0 + η0)(

H0

H0 + η0

). (2.16)

1The conservation of momentum needs the flow to be frictionless. In a non-viscous
fluid frictionless flow is guaranteed.
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Considering the energy we see that the difference of work done on a fluid
particle at the two ends is (1

2
gη0). The volume flow passing through the jump

per unit time per unit width is Q. The product Q(1
2
gη0) is the difference of

work done on the fluid passing trough the jump per unit time and width.
The difference in kinetic energy per unit time and width is Q(1

2
u2
l − 1

2
u2
r)

and finally the difference in potential energies per unit time and width is
Q(1

2
gη0). The total loss of energy is then

Q(gη0 +
1

2
u2
l −

1

2
u2
r) = Q(gη0 +

1

4
g(2H0 + η0)(

H0 + η0

H0

− H0

H0 + η0

)

= Q
gη3

0

4H0(H0 + η0)
. (2.17)

per unit time and width which is the classical energy loss, first shown by
Rayleigh.

If an observer was standing by the channel at x0 he would see that the
water coming from the dam was rising from a depth H0 to a depth H0 + η0

creating a lot turbulence at x0 as the water was ridding it self of excess
energy.

2.2 The advection equations and conserva-

tion laws

Before we analyse the shallow water equations any further we will look at
some general properties of advection equations2. Let u be a property of the
fluid like the mass or the flow velocity. If we integrate the fluid property
between two cross sections of the channel and take the derivative of this
integral with respect to time we have an expression of the fluid property‘s
change with time inside a fixed volume. If the property studied is conserved
then the change must be given by the flux of this property through the
boundary of the volume. Let x1 and x2 be two cross-sections in the channel
and the flux of u be expressed as f(u). Then we have

d

dt

∫ x2

x1

u(x, t)dx = f(u(x1, t))− f(u(x2, t)). (2.18)

By moving the flux terms to the left hand side and expressing them as an
integral of x we get a nicer expression. With fixed limits we can move the

2The theory on advection equations, presented here, is tailored for our discussion. For
further reading we suggest [15]



2.2 The advection equations and conservation laws 13

derivative of time inside the integral to the left∫ x2

x1

ut + (f(u))xdx = 0. (2.19)

The size of the fixed volume is arbitrarily chosen. If we assume that both
u and f(u) are smooth we may take the limit of the integral above as its
volume goes to zero. We then get the equation in differential form

ut + (f(u))x = 0. (2.20)

We call this an advection equation. It states that the change of the fluid
property in a point is given by the net flow of the property at that point.
Later we will show that under certain assumptions we may treat the shallow
water equations as a system of equations on this form.

The solution of an advection equation is found through the study of its
characteristics. In the one dimensional case the material derivative is given
as

D

Dt
u = ut + x′(t)ux (2.21)

where x′(t) is the travelling speed of the property. Writing (2.20) on this
form

ut + f ′(u)ux = 0, (2.22)

it follows that if f ′(u) plays the same role as x′(t) then
D

Dt
u = ut+f

′(u)ux = 0

and the solution of u(x, t) is constant along each ray x − f ′(u)t = x0 called
the characteristics of the equation.

The solutions of the advection equations are thus largely determined by
the flux of the fluid property’s dependence on the fluid property. Let us
consider the initial value problem:

ut + (f(u))x = 0
u(x, 0) = u0(x)

(2.23)

with the simple flux relation f(u) = au where a is a constant. We get the
characteristics x − at = x0. The initial value u0(x) can be viewed as a
distribution of a fluid property in space. Given any particular value of x
we get the particular property at that point. Now following a characteristic
the fluid property is unaltered. All the characteristics are straight lines with
the same slope a. This leads us to conclude that the initial distribution is
unaltered, thus u(x, t) = u0(x − at) is a solution to the problem. However
f(u) need not have such a simple form.
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What happens in a non-linear case? Let f(u) = 1
2
u2. The characteristics

become x−u0(x0)t = x0. Again the characteristics are straight lines but what
about the slope of these lines? The slope varies with the initial distribution
of the fluid property. If u′0(x) < 0 for any x then there exists a point where
the characteristics will cross. This means that the solution u(x, t) becomes
multivalued and we have a shock condition.

2.3 The shallow water system as advective

equations.

We suggested that the shallow water system (2.9) is a system of advective
equations. This is shown by assuming a relation between h and u giving
h = h(u) and u = u(h). Such a relation is already indicated in the above
section of hydraulic jumps. This way the shallow water system becomes

ht + (u′(h) + u)hx = 0
ut + (u+ gh′(u))ux = 0

(2.24)

Further we claim that the conservation expressed by the two equations
applies to the same particles. From this claim it follows that the character-
istics of the two equations are equal. They are equal if and only if

(u′(h) + u) = (u+ gh′(u)) (2.25)

hold. Let u = 2
√
gh+C where C is a constant be the relation between u and

h. Then u′ = g√
gh

, h = u2−2uC+C2

4g
and h′ = u

2g
− C

2g
. Using these relations in

the above we get

u+
hg√
gh

= u+
u

2
− C

2
. (2.26)

Inserting for u we get

3
√
gh+ C = 3

√
gh+ C (2.27)

which is the slope of the characteristics for the system. We determine C by
claiming that u = 0 as η = 0 this gives C = −2

√
gH0. From this we see that

the solution of a simple wave moving to the right is given as:

h = h(ξ)

u = 2
√
gh(ξ)− 2

√
gH0

x = ξ +
{

3
√
gh(ξ)− 2

√
gH0

}
t

(2.28)

As long as h′(ξ) < 0 there will be crossing characteristics. Thus all shallow
water waves carrying an increase in elevation will break.
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2.4 Shock solutions

Any solution of a simple wave in the shallow water system develops a dis-
continuity and becomes multivalued. We say that the wave is breaking at
the discontinuity. Physically we are content as long as the conservation laws
are fulfilled. Mathematically a multivalued solution is unacceptable but a
discontinuity is manageable. A discontinuity is present on an infinitely small
domain. If the conservation laws are expressed on integral form, that is over
a volume containing the discontinuity, the presence of the discontinuity, liv-
ing on an infinitely small domain, is not significantly important. The main
task is to make sure that the integral expressions satisfy the conservation
laws. This is done by continually moving the discontinuity and we call the
speed at which the discontinuity moves for the shock speed. The solution of
an advection equation expressed in this manner is called a weak solution.

2.4.1 Weak solutions

Recall that (2.20) is on differential form. It requires that u is smooth. Now
define a set of test functions φ = φ(x, t) where φ ∈ C1

0(R×R). Here C1
0 is the

space of function that are continuously differentiable with compact support.
Multiplying φ into (2.20) and integrating over the entire domain we get∫ ∞

0

∫ ∞
−∞

φut + φ(f(u))xdxdt = 0 (2.29)

and integrating this expression by parts yield∫ ∞
0

∫ ∞
−∞

φtu+ φx(f(u))dxdt = −
∫ ∞
−∞

φ(x, 0)u(x, 0)dx. (2.30)

Having transferred the derivatives to the test function in (2.30) u no longer
needs to be smooth. The function u(x, t) is called a weak solution of the
advection equation if (2.30) is satisfied for all functions φ ∈ C1

0(R× R+).

2.4.2 The Riemann Problem

A discontinuity in its simplest form is given in the Riemann problem. Let
the initial values for mass and momentum in an infinite channel be

h0 =

{
hl x < 0
hr x > 0

(uh)0 =

{
(uh)l x < 0
(uh)r x > 0

(2.31)

where hl > hr and (uh)l > (uh)r and the subscripts l and r indicates that
the values are to the left and to the right of the discontinuity. Let U denote
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Figure 2.4: The weak solution to the Riemann problem travelling to the right
with shock speed U .

the shock speed. For mass the shock speed is given as U = (uh)l−(uh)r
hl−hr

and

for momentum it is U =
(u2h+ 1

2
gh2)l−(u2h+ 1

2
gh2)r

(uh)l−(uh)r
. That these shock speeds

are equal follow from our assumption that the two conservation equations
have equal characteristics. The weak solution has the form of a discontinuity
travelling at shock speed:

h =

{
hl x < Ut
hr x > Ut

uh =

{
(uh)l x < Ut
(uh)r x > Ut

(2.32)

Using (2.30) we can test if this is a weak solution. The following calculation
shows that (2.30) is the weak solution conserving matter.∫ ∞

0

∫ ∞
−∞

φth+ φx(uh)dxdt

=

∫ ∞
0

∫ Ut

−∞
φx(uh)ldxdt+

∫ ∞
0

∫ ∞
Ut

φx(uh)rdxdt

+

∫ 0

−∞

∫ ∞
0

φthldtdx+

∫ ∞
0

∫ ∞
x
U

φthldtdx+

∫ ∞
0

∫ x
U

0

φthrdtdx

=

∫ ∞
0

{(uh)l − (uh)r}φ(Ut, t)dt+

∫ ∞
0

{hr − hl}φ(x,
x

U
)dx

−
∫ 0

−∞
φ(x, 0)hldx−

∫ ∞
0

φ(x, 0)hrdx

= −
∫ 0

−∞
φ(x, 0)hldx−

∫ ∞
0

φ(x, 0)hrdx

The last expression is reached by a variable change of the second integral
in the second to last equation. The weak solution exists only for the shock
speed stated above. Confirming the weak solution for momentum is similar.
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Generally the Rankine-Hugoniot jump condition gives the shock speed:

U =
f(ul)− f(ur)

ul − ur
=

[f ]

[u]
(2.33)

Here u is a fluid property and f the flux. Worth noting is that the equation
above may be written as

U [u] = [f ]

stating that the change of fluid property inside a control volume is equal to
the net flux of that property. Based on the Rankine-Hugoniot jump condition
we can restate the shallow water equations in which a discontinuity is fitted
in:

−U [h] + [uh] = 0 (2.34)

−U [uh] + [u2h+
1

2
gh2] = 0 (2.35)

An observant reader might suggest that (2.35) is not the equivalent of (2.8).
If uh is smooth (2.35) can be given in differential form:

(uh)t + (u2h+
1

2
gh2)x = 0 (2.36)

It is easy to check that (2.8) follow from (2.36) as long as (2.5) holds, however
this requires uh to be smooth.

2.5 The travelling bore and the hydraulic jump

The weak solution (2.32) is the shallow water equations model for the bore.
The bore is then a travelling discontinuity, with shock speed U . In a reference
frame moving at the shock speed U the bore and the hydraulic jump appears
to be the same. This is confirmed by calculating the energy loss for the bore.

2.5.1 Energy of the bore

Every particle has mechanical energy. The kinetic energy is 1
2
u2 and the

potential is gh, with ρ = 1. The total energy of a cross-section is∫ h

0

1

2
u2 + (gh)dy =

1

2
u2h+

1

2
gh2 (2.37)
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Integrating this from x1 to x2 we get the energy inside a volume. If the energy
is conserved, the change of energy with time inside the volume is given by
the net flux.

d

dt

∫ x2

x1

1

2
u2h+

1

2
gh2dx = (

1

2
u3h+ ugh2)|x1

x2
(2.38)

Rewriting this equation we get∫ x2

x1

(
1

2
u2h+

1

2
gh2)t + (

1

2
u3h+ ugh2)xdx = 0. (2.39)

Applying the argument that the volume is chosen arbitrarily we deduce that
the conservation of energy is given by

(
1

2
u2h+

1

2
gh2)t + (

1

2
u3h+ ugh2)x = 0. (2.40)

Since the shallow water equations model the bore as a travelling discontinuity
the energy conservation must be expressed as a shock equation

[
1

2
u3h+ ugh2]− U [

1

2
u2h+

1

2
gh2] = 0. (2.41)

This equation is stating that the difference between net flux and the change
of energy inside the control volume is zero. However we suspect the bore to
lose an amount of energy similar to the classical loss of the hydraulic jump.
To calculate the left hand side of (2.41) we need to rewrite (2.34) and (2.35)
with respect to U and ul. From (2.34) it follows that

ul = ur
hr
hl

+ U
(hl − hr)

hl
(2.42)

We use this in (2.35) to get an quadratic expression for the shock speed.

U2 − 2urU + u2
r −

g
2hr
hl(hl + hr) = 0

U = ur ±
√

ghl(hl+hr)
2hr

(2.43)

For ur = 0 we choose U to be positive. Inserting this in (2.42) we get the
mass and momentum conservation expressed in terms of the shock speed and
the fluid flow on the left hand side:

U = ur +
√

ghl(hl+hr)
2hr

, ul = ur + (hl−hr
hl

)
√

ghl(hl+hr)
2hr

(2.44)
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We are now ready to check if (2.41) is correct. As convenient abbreviations

we will use α =
√

ghl(hl+hr)
2hr

and β = (hl−hr
hl

).

U = ur + α 1
2
g(h2

l − h2
r) = βα2hr

ul = ur + βα Uu2
r = u3

r + u2
rα

u2
l = u2

r + 2urβα + β2α2 Uu2
l = u3

r + 2u2
rβα + urβ

2α2

u3
l = u3

r + 3u2
rβα + 3urβ

2α2 + β3α3 +u2
rα + 2urβα

2 + β2α3

[
1

2
u3h+ ugh2]− U [

1

2
u2h+

1

2
gh2]

=
1

2
(u3

l hl − u3
rhr) + g(ulh

2
l − urh2

r)−
1

2
U(u2

l hl + u2
rhr)− Uβα2hr

=
1

2
(hl − hr)u3

r +
1

2
hl(3u

2
rβα + 3urβ

2α2 + β3α3) + 2βα2urhr + βαgh2
l

− 1

2
hl(u

3
r + 2u2

rβα + urβ
2α2 + u2

rα + 2urβα
2 + β2α3)

+
1

2
hr(u

3
r + u2

rα)− βα2urhr − βα3hr

=
1

2
u2
rβαhl + urβ

2α2hl +
1

2
β2α3(β − 1)hl

+ βα2ur(hr − hl) + βαgh2
l +

1

2
αu2

r(hr − hl)− βα3hr

=
1

2
β2α3(β − 1)hr + βαgh2

l − βα3hr

= βαgh2
l −

1

4
β2αghl(hl + hr)−

1

2
βαghl(hl + hr)

=
1

2
βαghl(hl − hr)−

1

4
β2αghl(hl + hr)

=
1

2
αg(hl − hr)2(1− hl + hr

2hl
) =

αg

4hl
(hl − hr)3

We have found that (2.41) is not correct and we rewrite it as

[
1

2
u3h+ ugh2]− U [

1

2
u2h+

1

2
gh2] =

αg

4hl
(hl − hr)3 (2.45)

Say that we have a control volume containing the discontinuity of the bore.
The equation above states that the net energy flux, subtracted the change
of energy inside the volume due to shock speed, leaves a surplus of energy
as long as hl > hr. The relation hl > hr coincides with our choice of U > 0.
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This means that the control volume accumulates energy. In other words there
needs to be a loss of energy inside the control volume. The size of the energy
loss is given by hl and hr alone. Independent of U , ul and ur the energy loss
is equal in all reference frame translations. We are free to choose any inertial
reference frame and choose the frame of reference in which U = 0. From
(2.44) it follows that ur = −α. We are returning to the hydraulic jump! The
energy loss

αg

4hl
(hl − hr)3 = −urhrg

4hrhl
(hl − hr)3

= −Qg(hl − hr)3

4hrhl
(2.46)

is identical to the classical energy loss of the hydraulic jump. The negative
sign is due to the fact that this time the hydraulic jump is featured from right
to left, opposite to the previous discussion in subsection (2.1.1). Further we
see that −ur = α >

√
ghr if hl > hr so ur is supercritical conforming with

the theory of the hydraulic jump.

2.6 Conclusions of the shallow water system

The shallow water model states that a bore will travel in a steady flow without
the loss of mass nor momentum. It will however lose energy per time and
width according to (2.45). A control volume around the discontinuity will
contain the energy loss. The distance between the two cross-sections of this
volume may become arbitrarily small. In the limit as the distance of the two
cross-sections become zero the loss of energy needs to be instantaneous. The
only physical effect to mimic this type of energy loss is turbulence. Thus the
shallow water system postulates that all bores are turbulent.



Chapter 3

Favres experiments and the
scientific debate on weak bores

In 1935 Favre published an extensive report of experiments on bores [8]. The
experiments used a 75 meter long channel with a sink in one end and a source,
in form of a pump, in the other end. In this way he maintained a flow of
water of undisturbed depth and could superimpose a discharge on the flow,
creating a discharge wave. By controlling the discharge of the pump Favre
could create bores of variable bore heights.

Favres findings showed that the bore behaved qualitatively different de-
pending on the bore strength. For hl

hr
> 1.78 the bore was turbulent as

predicted by shallow water theory. If 1.28 < hl
hr
< 1.78 a formation of un-

dulations started to appear behind the bore front. Still the first undulations
broke resulting in turbulence. For hl

hr
< 1.28 a train of undulations appeared

behind the bore front none of which were breaking. These were the undular
bores. These weak bores were without turbulence contrary to the predictions
of the shallow water equations. This raised the question of how the undu-
lar bores were cooping with the classical energy loss found in the turbulent
bores.

Lemoine [14] was the first to address the problem. He pointed out that the
periodic waves observed behind the front of the weak bore somehow stored
the energy that otherwise would dissipate through turbulence at the front
of the bore. Further as Sturtevant puts it in [19]: “Keulegan and Patterson
suggested that these periodic waves were cnoidal waves, a type of non-linear
dispersive wave. Benjamin and Lighthill(1954), investigating the problem
further, showed that it is possible to patch a steady train of cnoidal waves
downstream of a front to a uniform upstream flow only if there is a change
at the front of either mass flux, momentum flux, or energy. If there were
no change then the only possible steady wave would be a cnoidal wave of

21
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infinite wavelength, the solitary wave.“ According to the study of Benjamin
and Lighthill a dissipation of about 20% of the classical energy loss is needed
to explain the cnoidal wave-train behind the bore front. Finally Sturtevant
complemented this study by showing that this predicted energy loss could
well be dissipated through frictional effects at the bottom.

3.1 The dispersive systems and the KdV equa-

tion

In the shallow water system all surface displacement with h′(x) < 0 break.
When confronted with Favres results on undular bores its therefore natural
to wonder why the undulations behind the bore front do not break. The
answer is that the weak bore does not follow the shallow water system. The
shallow water system is founded on the assumption of long waves compared
to the water depth, meaning no flow, and certainly no acceleration, in the
vertical direction. As a result all waves in this system break. However as the
wave is about to break the qualitative nature of the wave is changing. When
the wave is almost discontinuous in the z-direction we can no longer neglect
the acceleration of the water in this direction. To incorporate such effects
dispersive systems were developed.

The predictions of shallow water theory that all waves in shallow water
break were first challenged by Scott Russell(1844) who observed the solitary
wave in shallow water. His observation was of a single stable hump of water
travelling down a channel, with unaltered amplitude, for over a mile. The
observation showed that a stable wave could exist in shallow water and led
to a reform of shallow water theory.

The following derivation of the Boussinesq systems and the KdV equa-
tions is closely based on Whithams approach in [20]. Since we can no longer
simply assume hydrostatic pressure, we need to formally explore surface
waves. For this purpose it is convenient to express the flow by the veloc-
ity potential:

φx = u, φz = w (3.1)

This follows from our statement that water is irrotational ∇× u = 0. If we
use the velocity potential in (1.1) we get the Laplace equation:

φxx + φzz = 0 (3.2)

Lets assume an infinite channel with boundaries at the bottom and at the
surface. The Laplace equation describes the motion of water limited only
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by the boundary conditions. The water surface is defined by an interface
between the water and the air. Let

f(x, z, t) = 0 (3.3)

describe this interface. No fluid may cross the interface. It follows that

Df

Dt
= ft + φxfx + φzfz = 0 (3.4)

Recall that z = η(x, t) +H0 = h(x, t) at the surface. We define

f(x, z, t) ≡ h(x, t)− z.

From this we write
Dh

Dt
= ηt + φxηx = φz (3.5)

This is the kinematic boundary condition of the surface. The pressure in the
water is found by using (3.1) in (1.4) and (1.6) and integrating:

p− p0 = P (t)− φt −
1

2
(φ2

x + φ2
z)− gz (3.6)

This is known as Bernoullis equation, where p0 is the pressure at the surface.
It is common to absorb P (t) into φ by letting φ′ = φ −

∫
P (t)dt. However

let us consider the point at infinity on the free surface; at such a point
φt = u = w = h = 0, z = H0 and p = p0. Substituting this into (3.6) we
have:

P (t) = gH0.

From (3.6) with P (t) as stated above we can deduce the dynamic boundary
condition of the surface.

φt + 1
2
(φ2

x + φ2
z) + gη = 0 on z = h(x, t) (3.7)

In addition we have the kinematic boundary condition at the bottom stating
that no water is passing through the bottom.

φz = 0 on z = 0 (3.8)

Summarizing we have:

φxx + φzz = 0, 0 < z < h(x, t)
φz = 0, z = 0

ηt + φxηx − φz = 0
φt + 1

2
(φ2

x + φ2
z) + gη = 0

}
z = h(x, t)

(3.9)
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This is a general expression of surface waves in 2 dimensions. We now wish
to incorporate shallow water conditions in a less radical way then above.

Previously we have claimed that, due to the shallow water, u, was uniform
in any vertical cross-section. That is to say u is independent of z. Now
the boundary condition at the bottom suggest that we expand the velocity
potential as a power series:

φ =
∞∑
n=0

znfn(x, t), f1 = 0, (3.10)

Substituting this expression for φ into the Laplace equation and equating the
coefficients of zn to zero, term by term, we arrive at the convergent series

φ = f0 −
z2

2!

∂2f0

∂x2
+
z4

4!

∂4f0

∂x4
− z6

6!

∂6f0

∂x6
· · · (3.11)

Further more concerning the amplitude a of the surface waves we stated
that the fraction now called α = a

H0
is of a small but not insignificant size.

However α2 is viewed as insignificant of size. On the wavelength of the surface

waves we stated that the fraction now called β =
H2

0

λ2 was insignificant. That is
to say that the wavelength was a lot bigger then the depth of the undisturbed
water. However due to the wave steepening close to wave breaking we now
modify this assumption and treat β as a significant number, however hold
any term of β2 to be insignificant of size. In order to illuminate the size of
the terms in (3.9) we normalize the variables by taking the original variables
(primed) to be

x′ = λx, z′ = H0z, t′ = λt
c0

η′ = aη, φ′ = gλaφ
c0
.

In this way we can formulate (3.9) as

βφxx + φzz = 0, 0 < z < 1 + αη
φz = 0, z = 0

ηt + αφxηx − 1
β
φz = 0

φt + 1
2
(αφ2

x + α
β
φ2
z) + η = 0

}
z = 1 + αη

(3.12)

And (3.11) as

φ =
∞∑
n=0

(−1)m
z2m

(2m)!
βm

∂2mf0

∂x2m
(3.13)
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Substituting this into the surface conditions in (3.12) we get:

ηt + {(1 + αη) fx}x −
{

1
6

(1 + αη)3 fxxxx + 1
2
α (1 + αη)2 ηxfxxx

}
β +O(β2) = 0

η + ft + 1
2
αf 2

x − 1
2

(1 + αη)2 {fxxt + αfxfxxx − αf 2
xx} β +O(β2) = 0

(3.14)
Please note from the derivative of (3.11) with respect to x that fx is u to
the first order and is exactly u at the bottom. Since we are not using the y
dimension we borrow the variable v. Let v = fx.

In reaching the expressions above all terms of order β2 are neglected. If we
discard the β terms all together we have that u = fx and by substitution we
see that we get the shallow water equations (2.9) normalized. As stated above
we are keeping the β terms but since α and β are small we are neglecting any
terms of order αβ. Neglecting terms of order αβ and taking the derivative
of the second equation with respect to x gives

ηt + {(1 + αη) v}x −
1
6
βvxxx +O(αβ, β2) = 0

vt + αvvx + ηx − 1
2
(β)vxxt +O(αβ, β2) = 0

(3.15)

These are a variant of the Boussinesq’s equations. To the same order of
accuracy we have

φx = v − β z
2

2
vxx +O(β2). (3.16)

Averaging the value over the normalized depth gives

ũ = v − 1

6
βvxx +O(αβ, β2); (3.17)

expressed in terms of v

v = ũ+
1

6
βũxx +O(αβ, β2). (3.18)

We apply this to (3.15)

ηt + {(1 + αη)ũ}x +O(αβ, β2) = 0
ũt + αũũx + ηx − 1

3
(β)ũxxt +O(αβ, β2) = 0

(3.19)

This is a system of equations equivalent to (2.9) but with an extra term
−1

3
(β)ũxxt expressing the effect of the vertical acceleration on the pressure.

We will discuss this difference later.
The Korteweg-de Vries equation is derived from any of these systems by

specializing to a wave moving to the right. To lowest order, neglecting terms
of order α and β, such a solution of (3.15) has

v = η, ηt + ηx = 0.
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We look for a solution, corrected to first order in α and β, in the form

v = η + αA+ βB +O(α2, β2),

where A and B are functions of η and its x derivatives. Then equations
(3.15) become

ηt + ηx + α(Ax + 2ηηx) + β(Bx − 1
6
ηxxx) +O(α2, β2) = 0

ηt + ηx + α(At + ηηx) + β(Bt − 1
2
ηxxt) +O(α2, β2) = 0

(3.20)

Since ηt = −ηx + O(α, β), all t derivatives in the first order terms may be
replaced by minus the x derivatives. The two equations are consistent if

A = −1

4
η2, B =

1

3
ηxx

Hence we have

v = η − 1
4
αη2 + 1

3
βηxx +O(α2, β2)

ηt + ηx + 3
2
αηηx + 1

6
βηxxx +O(α2, β2) = 0.

(3.21)

The second equation is the normalized form of the Korteweg-de Vries equa-
tion. Returning to original variables the KdV equation becomes

ηt + c0

(
1 +

3

2

η

H0

)
ηx +

1

6
c0H

2
0ηxxx +O(α2, β2) = 0. (3.22)

3.2 Surface wave solutions

To check if this equation has solutions that do not break we search for trav-
elling solutions to η on the form:

η = H0ζ(ξ), ξ = x− Ut. (3.23)

Where U is the travelling speed of the solution corresponding to the shock
speed for the shallow water system. Assuming a solution on this form the
partial differential equation (3.22) turns into an ordinary differential equation

1

6
H2

0ζ
′′′ +

3

2
ζζ ′ −

(
U

c0

− 1

)
ζ ′ = 0.

Which integrates to

1

6
H2

0ζ
′′ +

3

4
ζ2 −

(
U

c0

− 1

)
ζ +G = 0.
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Multiplying this by ζ ′ and integrating again we obtain

1

3
H2

0

(
dζ

dξ

)2

+ ζ3 − 2

(
U

c0

− 1

)
ζ2 + 4Gζ +H = 0 (3.24)

where G and H are constants of integration. In the special case when ζ and
its derivatives tend to zero at ∞, G = H = 0, (3.24) simplifies to

1
3
H2

0

(
dζ
dξ

)2

= ζ2 (α− ζ) ,

U
c0

= 1 + α
2
.

(3.25)

Since ζ = 0 at ξ =∞ it follows that ζ rises from ζ = 0 to a maximum ζ = α
before symmetrically sinking to ζ = 0 at ξ = −∞. This is the solitary wave.
From this we see that the range of η is η0 = H0α showing that α plays the
same role as in deriving the KdV equation. The velocity of the solitary wave
is

U = c0

(
1 +

1

2

η0

H0

)
(3.26)

And the solution to (3.25) is

ζ = αsech2

(
3α

4H2
0

) 1
2

ξ (3.27)

which can be checked by inserting into (3.25). Written in terms of η it
becomes

η = η0sech2

{(
3η0

4H3
0

) 1
2

(x− Ut)

}
. (3.28)

This is a solitary wave travelling at the speed U . It appears to apply for all
heights, but this is not true as the KdV equation which this is a solution to
is derived under the assumption that α is small.

More generally equation (3.24) describes the wave profile of the steady
wave. Rewritten as

1

3
H2

0

(
dζ

dξ

)2

= −ζ3 + 2

(
U

c0

− 1

)
ζ2 − 4Gζ −H (3.29)

the equation states that the squared change of the surface with ξ is given
by a cubic polynomial of the surface. A cubic polynomial has 4 degrees of
freedom. Thereby it is given by its 3 zeros and the amplitude that connects
them. Factorized it becomes

p3(ζ) = a0(ζ − ζ1)(ζ − ζ2)(ζ − ζ3)
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Figure 3.1: The figure is showing a cubic p3(ζ). Since
(
dζ
dξ

)2

= p3(ζ), we are

interested in domains of ζ where p3(ζ) > 0. In this figure p3(ζ) has three
real and unique points of zero. This gives two domains of ζ where the cubic
is positive. Only the domain [ζ2, ζ1] gives bounded values for p3(ζ). The
smallest value ζ2 gives the wave trough and the largest value ζ1 gives the
wave crest.
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where a0 is the connecting amplitude. The surface wave can also be said to
have 4 degrees of freedom. Its minimum and maximum amplitude, its wave
length and its frequency. By introducing steady flow through the parameter
ξ, we have set the frequency of the surface waves to zero, but the minimum
and maximum amplitude and the wave length are still undetermined. The
cubic on the right hand side of (3.29) from which these are to be determined
has three degrees of freedom as the sign of ζ3 is given as negative.

Assume that the cubic in (3.29) has 3 zeros that are real and unique as
given in figure 3.1. The change of the surface with ξ is squared and only
real changes of the surface are meaningful. This means that only values
of ζ where the cubic is positive are allowed. Two such domains exist ζ ∈
[−∞, ζ3] and ζ ∈ [ζ2, ζ1]. The first domain is discarded as unbound values
of ζ are meaningless. We conclude that the two zeros ζ2 and ζ1 represent
the minimum and maximum value of ζ respectively. The wave length is
determined by a relation between ζ1, ζ2 and ζ3.

Let ζ(ξ2) = ζ2 and ζ(ξ1) = ζ1. The wave length is two times the distance
from the wave‘s minimum to the wave‘s maximum.

λ = 2

∫ ξ1

ξ2

dξ (3.30)

By separation of (3.29) we have that

2

∫ ξ1

ξ2

dξ =
2H0√

3

∫ ζ1

ζ2

dζ

[(ζ1 − ζ)(ζ − ζ2)(ζ − ζ3)]
1
2

(3.31)

Here we use the substitution

ζ = ζ2 + (ζ1 − ζ2) sin2 θ = ζ1 − (ζ1 − ζ2) cos2 θ

dz = 2(ζ1 − ζ2) cos θ sin θdθ
(3.32)

which gives the following expression for the wave length

λ = 4H0√
3

∫ π
2

0
(ζ1−ζ2) cos θ sin θdθ

[(ζ1−ζ2) sin2 θ(ζ1−ζ2) cos2(ζ1−ζ3−(ζ1−ζ2) cos2 θ)]
1
2

= 4H0√
3(ζ1−ζ3)

∫ π
2

0
dθ

[1−k2 sin2 θ]
1
2

= 4H0√
3(ζ1−ζ3)

K(k) (3.33)

where

K(k) =

∫ π
2

0

dθ[
1− k2 sin2 θ

] 1
2

(3.34)

is the complete elliptic integral of the first kind with modulus k =
[
ζ1−ζ2
ζ1−ζ3

] 1
2
.
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From what we have deduced so far it is obvious that we need 3 real zeros
of p3(ζ) to possibly have a surface. If 2 zeros are complex the surface will
be unbounded. However the restriction that the zeros needed to be unique
can be relaxed. If ζ1 = ζ2 we get that the maximum and minimum value
of the wave are equal, that is waves with zero amplitude. The question of
wave length of such waves is redundant. If ζ2 = ζ3 we have that k2 = 1. It
is possible to show that

K(k) ∼ 1

2
log
{

16/(1− k2)
}

(3.35)

as k2 → 1− and so K(k) → +∞ as k2 → 1−. It follows that as ζ3 → ζ2

the wave length becomes infinite λ → +∞. We conclude that if the zeros
coincide we either have no waves or as in the special case above the solitary
waves.

3.3 Cnoidal waves

The integral

v =

∫ φ

0

dθ[
(1− k2 sin2(θ)

] 1
2

(3.36)

is an elliptic integral. It differs from the complete elliptic integral in that it
has variable limits of integration. In connection with this integral Jacobi and
also Abel defined a new pair of inverse functions

sn(v|k2) = sinφ, cn(v, |k2) = cosφ (3.37)

which are two of the Jacobian elliptic functions. In the two special cases
where k2 ∈ {0, 1} the integral (3.36) gives v = φ and v = arcsech(cosφ). For
these cases the Jacobian elliptic function cn(v|k2) become

v = φ, cn(v|0) = cosφ = cos v,
v = arcsech(cosφ), cn(v|1) = sechv.

(3.38)

The elliptic function cn(v, |k2) is a periodic function for 0 ≤ k2 < 1 where as
at k2 = 1 the periodicity is lost as the period becomes infinite.

When developing the cnoidal wave solution to (3.24) we use the Jacobian
elliptic function cn(v, |k2), hence the name cnoidal wave. The development
follows the same procedure as for the wave length, but with different limits
of integration. Implicitly solved the solution to (3.24) is

ξ = ξ2 ±
2H0√

3

∫ f

ζ2

dζ

[(ζ1 − ζ)(ζ − ζ2)(ζ − ζ3)]
1
2

(3.39)



3.3 Cnoidal waves 31

where the top limit f(ξ) is the cnoidal wave solution. We use the substitution
(3.32) to transform this integral into a standard elliptic integral as before

ξ = ξ2 ±
4H0√

3(ζ1 − ζ3)

∫ φ

0

dθ[
(1− k2 sin2(θ)

] 1
2

. (3.40)

It follows from (3.32) that the wave solution is given as

f = ζ2 + (ζ1 − ζ2) sin2 φ = ζ1 − (ζ1 − ζ2) cos2 φ. (3.41)

Using the definition of the Jacobian elliptic function cn(v|k2) in (3.38) we
have that

cn
[
(ξ − ξ2)

{√
3(ζ1 − ζ3)/4H0

}
|k2
]

= cosφ, (3.42)

where the ± is suppressed since cn is an even function. Based on this we get

f(ξ) = ζ1 − (ζ1 − ζ2)cn2
[
(ξ − ξ2)

{√
3(ζ1 − ζ3)/4H0

}
|k2
]

(3.43)

the cnoidal wave solution.
From this solution we see that the spectre of wave forms called cnoidal

waves is quite large. The special cases when k2 ∈ {0, 1} gives the sinusoidal
wave form for k2 = 0 and solitary wave form for k2 = 1 and thus both
sinusoidal and solitary waves are cnoidal waves. In this thesis however we
treat these special cases as individual wave forms and differentiate them from
the wave forms found when the modulus is between 0 and 1. For further
reading on cnoidal waves [7] can be recommended.





Chapter 4

Benjamin and Lighthill

In the previous section we derived the KdV equation (3.22). Assuming steady
solutions, (3.22) could be written as (3.24) which was satisfied both by soli-
tary and more generally cnoidal waves. However (3.24) contains constants of
integration that lack explanation. Benjamin and Lighthill present the same
equation in a way that illuminates these constants. Their first assumption
is steady flow. By steady flow we mean that (1.4) and (1.6) has solutions of
the form u(x, z, t) = u(x − Ut, z) and w(x, z, t) = w(x − Ut, z). 1 That is
travelling wave solutions where U is the travelling speed. To see that this
is steady flow we go to a reference frame travelling at the same speed. If
the initial solutions be marked u′ and w′ then in this new reference frame
u = u′ − U and w = w′. Applying this to (1.4) and (1.6) we get

ut + Uux + uux + wuz = −px
ρ

wt + Uwx + uwx + wwz = −pz
ρ
− g. (4.1)

Since ut = −Uux and wt = −Uwx this simplifies to

uux + wuz = −px
ρ

uwx + wwz = −pz
ρ
− g. (4.2)

the time independent Euler equations of two dimensions. Now we introduce
the stream function. It applies to two dimensional flow and its definition,
ψy ≡ u and −ψx ≡ w, is designed to satisfy the continuity equation (1.1)
for an incompressible fluid. In addition the stream function gives the volume
rate of flow between two streamlines. Thus defining it to be zero at the
bottom, the stream function is Q at the surface where Q is the volume rate
of flow of the fluid. Finally since the flow is irrotational ψ satisfies the Laplace

1Note that we still regard v = 0.
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equation. Inserting ψ in (4.2) and integrating we get

1

2
ψ2
x +

1

2
ψ2
y + gz = −p

ρ
+R (4.3)

as in (3.6) but without time dependence. Here p is measured relative to the
atmospheric pressure. Thus at the surface we have:

1

2
ψ2
x +

1

2
ψ2
y + gh = R.

Where R is constant for all cross-sections of the flow. Benjamin and Lighthill
states further that in order to have time-independent flow the total moment
flux S needs to be independent of the cross-section. The moment flux in a
cross-section is given by:

S =

∫ h

0

(
p

ρ
+ ψ2

z)dy =

∫ h

0

[R− gy − 1

2
ψ2
x +

1

2
ψ2
y]dy (4.4)

The second integral is reached by replacing 1
2
ψ2
y in the first integral with its

equivalent from (4.3). Now Benjamin and Lighthill makes an assumption on
how the stream function can be expanded as a series in much the same way
as we did with the velocity potential in deriving the KdV equation.

ψ = zf(x)− z3

3!
f ′′(x) +

z5

5!
f (IV )(x)− · · · (4.5)

Using this series in the second integral of (4.4) neglecting terms of order z4

we get

S = Rh− 1

2
gh2 − 1

6
h3(f ′)2 +

1

2
hf 2 − 1

6
h3ff ′′ (4.6)

We know that at ψ = Q at z = h. Still neglecting terms of order z4 this
gives us:

Q = hf(x)− h3

6
f ′′(x).

Written as an expression for f(x) we have

f(x) =
Q

h
+

1

6
h2f ′′(x) (4.7)

Using this in (4.6) we get:

1

6
h3f ′2 =

1

6

Q2

h
h′2 +O(h′2h2, h′h3, h4)

1

2
hf 2 =

1

2

Q2

h
+

1

6
Qh2f ′′ +O(h4)

1

6
h3ff ′′ =

1

6
Qh2f ′′ +O(h4)
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And (4.6) becomes

S = Rh− 1

2
gh2 − 1

6

Q2

h
h′2 +

1

2

Q2

h
+O(h′2h2, h′h3, h4) (4.8)

Rearranging it we get

1

3
Q2(

dh

dx
)2 + gh3 − 2Rh2 + 2Sh−Q2 = 0 (4.9)

We see that this equation is equivalent to (3.24) but the meaning of the
constants are much clearer. Q is the volume flow per unit span; R is the
energy per unit mass; and S is the momentum flow rate per unit span. In
the absence of friction these values are constant, at every cross-section of a
steady flow. For a uniform stream of speed u1 and depth h1, Q, R and S
take the values

Q1 = u1h1, R1 = 1
2
u2

1 + gh, S1 = u2
1h1 + 1

2
gh2

1. (4.10)

From our equation (4.9) we see that Q, R and S determines the stationary
waves completely. For the undular bore the condition given in (4.10) must
hold upstream2 of the bore front, see region 1 in figure 4.1. Since Q, R and
S are constant in a frictionless flow we apply (4.10) in (4.9) factorizing the
cubic in (4.9) to

(h− h1)2(gh− v2
1) (4.11)

This is a case of coincident roots which we learnt means that we either
have no waves or a solitary wave. Either we have v2

1 < gh1 which is sub-
critical flow and no bore condition at all. Or the supercritical flow v2

1 > gh1

corresponding to a solitary wave. We see further that a train of cnoidal waves
is attainable if R in the cubic is reduced. This leads to a solution with three
simple roots. The conclusion of Benjamin and Lighthill is simple. In order to
get Favres observed cnoidal waves a reduction of R, that is a small amount
of dissipation, is needed.

4.1 Sturtevant

Sturtevant goes one step further in his paper [19] as he aims to show by what
means the energy is dissipated. The first step is to normalize (4.9) reached
by Benjamin and Lighthill. Let w = h

h1
be the non-dimensional depth and

2In figure 4.1 region 1 appears to be downstream but in bore fixed coordinates all fluid
move to the right and region 1 is upstream.
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z = x
h1

be the horizontal coordinate, where h1 is undisturbed depth. We
then need to normalize Q, R and S. For a uniform stream we have at some
cross-section

Q1 = u1h1, R1 = 1
2
u2

1 + gh1, S1 = u2
1h1 + 1

2
gh2

1 (4.12)

The flow speed u1 is normalized by c1 =
√

(gh1), the speed of travelling
waves on undisturbed water. The mass flow, energy and momentum flux Q,
R and S take values close to those of Q1, R1 and S1 leading to

q = Q
c1h1

, r = 2R
3c21
, S = 2S

3c21h1
(4.13)

as their normalization. Step by step the normalization of (4.9) is

1

3
q2 (c1h1)2

(
dh

dx

)2

+ gh3 − 3rc2
1h

2 + 3sc2
1h1h− q2 (c1h1)2 = 0

1

3
q2h3

1

(
dh

dx

)2

+ h3 − 3rh1h
2 + 3sh2

1h− q2h3
1 = 0

1

3
q2

(
dw

dz

)2

+ w3 − 3rw2 + 3sw − q2 = 0 (4.14)

The advantage of this normalization compared to the one chosen by Benjamin
and Lighthill in their paper, is that it makes the fluid volume flow explicit.

The cubic in (4.14)

w3 − 3rw2 + 3sw − q2 = 0 (4.15)

may have the zeros w1, w2, and w3 where, as before, the first two zeros are
the depth under the crest and through of the cnoidal waves and the last zero
indicates the wavelength by the relation, given by Sturtevant,

Λ =
λ

h1

= 4

[
w1w2

3

(
w1

w1 − w2

k2 − 1

)] 1
2

K(k) (4.16)

where K(k) is the complete elliptic integral of the first kind with modulus

k = [(w1 − w2)/(w1 − w3)]
1
2 . Given w1, w2 and Λ, (4.16) gives k, or w3. Once

we found the zeros of (4.15) we can factorize it giving

w3 − 3rw2 + 3sw − q2 = (w − w1)(w − w2)(w − w3) (4.17)

From this we see that

(w − w1)(w − w2)(w − w3)

= w3 − w2(w1 + w2 + w3) + w(w1w2 + w2w3 + w1w3)− w1w2w3 (4.18)
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Figure 4.1: Figure from Sturtevants paper [19]: This figure displays the
undular bore in 4 regions. Region 1 is the undisturbed water depth of the
channel. Region a shows the stable part of the oscillation at the front. Region
b shows the unstable part of the bore where new waves are continuously
created. Finally region 2 is the sum of undisturbed water and extra discharge
released by the pump i.e. the potential from where the bore originate. The
figure is in channel fixed coordinates where the bore speed v is to the left.

And comparing this with the first form of the cubic reveals

q2 = w1w2w3, 3r = w1 + w2 + w3, 3s = w1w2 + w2w3 + w1w3. (4.19)

It follows that from experimental data measuring the depth under the wave
crest and through and the wave length it is possible to calculate the mass
flux, momentum flux and energy of the flow in the region of the cnoidal
waves. These measurements are found in six of Favres runs. Before looking
at the specific calculations we review Sturtevants arguments.

When considering a bore Sturtevant divides it into 4 regions as shown
in figure 4.1. Region 1 is ahead of the bore front. This region is obviously
steady as the flow velocity, using channel fixed coordinates, is u1 = 0 in this
region. At the bore front we have region a. This region is also said to be
steady as it is assumed to contain a wave train of cnoidal waves developed
as the bore has travelled down the channel. The steady solutions travel at
the bore velocity and thus we use a reference frame travelling with the bore
front. Behind region a is the unsteady region b where new waves continually
form and grow until they have developed into the cnoidal waves of region a.
At the end is region 2 which is the potential from which the cnoidal waves
grow out of. In Favres experiment this is the extra water being continually
pumped into the channel. Sturtevant writes: ”As the bore propagates down
the channel, waves continually form behind it, region a grows, and region
b moves downstream relative to the front. Presumably, a long time after
generating the bore, the flow downstream of the front consists of an infinite
train of stationary waves.“.
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Since the flow is steady in region 1 and region a, q is constant at every
cross section of these regions. But we can evaluate momentum and energy loss
through the bore front by comparing s1 with s and r1 with r. The measure-
ments in Favres six runs are given in table (4.1) and the results of Sturtevants
calculations are given in table (4.2). The tables presented contains some cor-
rections of minor calculation errors done by Sturtevant, however these errors
in no way changes the conclusion drawn by the results. It is worth noting
that Favre measured the wave lengths with one decimals accuracy, and the
extra decimals presented by Sturtevant and here are unfounded however this
lack of accuracy does not effect the calculations of energy and momentum.

Table 4.1: Favres measurements: This tables present the measurements done
by Favre in run 21-24, 26 and 29. The values h1 and h2 are given in decimetre
and are the depths of region one and two in figure (4.1) respectively. The
values w1 and w2 are the normalized depths under the crest and trough of
the undulations found behind the bore front as shown in region a of figure
(4.1). Λ is the normalized wavelength of these waves. The normalization
used is the undisturbed depth given by h1.

Run no h1 h2 w1 w2 Λ
21 1.078 1.164 1.108 1.020 11.309
22 1.073 1.223 1.259 1.050 9.413
23 1.079 1.327 1.443 1.029 8.434
24 1.074 1.376 1.560 1.031 8.007
26 1.075 1.478 1.603 1.250 5.860
29 1.061 1.592 1.635 1.465 5.090

The first step in these calculations is to find k2, the rest follow from this.
The k2 is calculated from (4.16).

Λ = 4

[
w1w2

3

(
w1

w1 − w2

k2 − 1

)] 1
2

K(k)

Rewritten to solve for k2 implicitly we have:

k2 =

[(
Λ

4K(k)

)2
3

w1w2

+ 1

](
w1 − w2

w1

)
(4.20)

This expression is not solved analytically. But using built in Matlab codes
like quad for the elliptic integral and fzero to solve (4.20), solutions to k2
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Table 4.2: Sturtevants calculations: This table display the values calculated
from Favres measurements as described in this section. Of these results the
values r

r1
and s

s1
are most important. These values are always greater then

one and this indicates that the fluid is gaining energy as it, in bore fixed
coordinates, passes from region 1 to region a completely contrary to what we
would believe.

Run no k2 w3 q = F1
r
r1

s
s1

r−r2
r1−r2

21 0.5325 0.9427 1.032 1.0017 1.0017 23.5
22 0.6704 0.9472 1.119 1.0012 1.0014 4.4
23 0.7964 0.9232 1.171 1.0072 1.0068 5.9
24 0.8181 0.9134 1.212 1.0102 1.0094 5.1
26 0.4376 0.7963 1.263 1.0149 1.0201 3.8
29 0.1813 0.6973 1.292 1.0346 1.0499 4.0

are easily obtained. Once we have a value of k2 we calculate w3 from the
modulus relation k2 = (w1 − w2)/(w1 − w3). We get q, r and s from (4.19).
While the values

q1 = q = F1, r1 = 1
3
F 2

1 + 2
3
, s1 = 2

3
F 2

1 + 1
3

(4.21)

follow from the normalization. To calculate r2, in the last column of table
(4.2) we use the difference r1 − r2 which expresses the classical energy loss
for any volume of fluid having passed through the bore front

r1 − r2 =
g(h2 − h1)3

4h1h2

. (4.22)

The results of Sturtevants calculations are at first very surprising. Since
r
r1
> 1 in all runs there is not a loss but a gain of energy through the bore

front in contrary to the classical theory. Sturtevants explanation is that the
boundary lair must influence the bore. Following the bore in figure 4.1 in
bore fixed coordinates we see that in region 1 the boundary has no influence
on the fluid as both the boundary and the fluid are moving with the same
speed. The same is not case for region a where the boundary obviously moves
to the right faster then the fluid, presumably adding energy and momentum
to the fluid in this region. This explains why the fluid in region a has gained
energy rather then lost it. Finally the last column of table 4.2 shows that
the energy added by the boundary are in all cases several times the classical
energy loss indicating that the boundary plays a vital role.
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4.2 Conclusion of Benjamin and Lighthill and

Sturtevant

Summing up the reasoning of Benjamin and Lighthill, they showed that for
any steady flow in shallow water the range of possible surface waves is the
full spectre of cnoidal waves from sinusoidal to solitary waves. Further they
showed that the type of surface waves encountered was dependent on the
conservation of mass, energy and momentum. If all three are conserved the
only possible surface waves are solitary waves. Only a loss of energy or in-
crease in momentum, loss of mass being unacceptable, would give oscillating
periodic surface waves. The undular bores were observed to have oscillating
waves of a cnoidal character. This lead to the conclusion that the undular
bore somehow dissipates some energy. Sturtevant followed up this train of
thought by calculating the energy loss through the bore front. He found an
energy gain. And he presented frictional effects at the bottom as the only
possible explanation for this result. However both these lines of reasoning
hinge on the idea that the bore obtains a steady flow which as Alfatih and
Kalisch puts it neglects dynamical effects.



Chapter 5

Three lines of argument that
challenge the views of Benjamin
and Lighthill and Sturtevant.

We must be aware that there are two issues under discussion. One concerns
the dispersive model of the undular bore. The other concerns the undular
bore itself. The dispersive model of the undular bore and the undular bore
itself are not the same. It is not possible to make statements of the bore itself
from the model of the bore unless the model of the bore and the bore itself co-
incide. Also any statement made on the basis of the model can not go beyond
the reach of the model. It is however possible, by comparing experimental
data on the bore itself and simulated data by the model, to make statements
about the bore models accuracy. These principles seems not to be upheld by
Sturtevant. The claim that the bore experiences dissipation through friction
at the boundary lair is based upon calculations using a model in which the
fluid is in-viscous. Such a claim must then be viewed with suspicion. Further
Benjamin and Lighthills analysis is founded on the assumption that the bore
quickly establishes a steady flow at the front. This assumption is based on
Keulegan and Pattersons calculations of the experimental data recorded by
Favre, where the travelling speed of the waves were found close to those of
cnoidal waves. But even Keulegan and Patterson have reservations on the
results and suggest further experiments. No argument is put forward, to sug-
gest, that the dispersive model used has such steady solutions to the undular
bore. In other words: Even if the experimental data suggest that the flow
is steady, this does by no means guarantee that the dispersive model gives a
steady flow. This can only be determined by a numerical treatment of the
KdV equation or an equivalent dispersive system.

From a physical point of view steady flow is connected with a balance
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Three lines of argument that challenge the views of Benjamin and Lighthill

and Sturtevant.

of forces. Expressions of steady flow typically appears in channels of slight
tilts were the effects of gravity and friction are cancelled out. Friction plays
an integral part in the concept of steady flow and a model without friction
might have problems establishing such a flow. When modelling a bore it is
common to use

η(x, 0) =
1

2
a0[1− tanh(kx)]

as an initial value for the surface. Here η is the deviation from the undis-
turbed depth. This initial profile is the smooth equivalent of the shock solu-
tion in classical shallow water theory. In the case of the KdV equation this
initial profile is rapidly changing, attaining a profile of undulations behind
the bore front, which suggests that at least initially it is not steady. When
does it become steady? This question has been neglected.

5.1 Simulation of Favres experiments using a

dispersive model

The KdV equation was given in (3.22). An equation of the same approxi-
mation is reached by interchanging ηx = ηt

c0
. In this way we get the BBM

equation.

ηt + c0(1 +
3

2

η

H0

)ηx −
1

6
H2

0ηxxt = 0 (5.1)

This equation is known to be preferable from a numerical point of view. By
giving initial values with bore strengths identical to those in Favres exper-
iments and having the bore travel a similar length it is possible to recreate
the experiments of Favre. Here we have simulated four of Favres runs numer-
ically in order to compare the dispersive model with experimental values.
Comparing the simulated values with the experimental values the largest dif-
ference is found in the wave length. Favre found the wave lengths to shorten
with bore strength, the same does not happen to these simulated bores.

Under the assumption that the simulated flow has obtained a steady
flow behind the bore front we can do the same calculation as Sturtevant.
Comparing the calculations from the simulated bore with the calculations of
the experimental bore gives two interesting observations. Firstly the modulus
k2 is closer to 1 for the simulated data then for the experimental data. This
is indicating that the waves in the simulated data are closer to solitary form.
Also we find that that the fraction r

r1
> 1 in all the simulated runs. This

observation casts doubt on Sturtevants result. For the simulated bore we can
not draw the conclusion that the fluid is experiencing friction at the bottom,
since frictional effects are not part of the model. Our conclusion must be
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Figure 5.1: These three plots shows the surface of the bore in run 23, having
travelled approximately 65 meters down the channel. All the plots are of
the same bore at the same time but with different scaling at the axes. The
first plot is in a global scale focusing on the surface deviation and it does not
show a stable region a suggested by Sturtevant in figure 4.1. The global scale
shows that the oscillations differ, indicating that the flow is not steady. In
the locally scaled plots, the flow appears to be steady, showing how hard it is
to make qualitative judgements from plots alone. According to the theory of
Benjamin and Lighthill these undulations should drift apart, becoming more
and more solitary.
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Table 5.1: Measurements of simulated bores: This table presents the numer-
ically measured equivalent of Favres measurements in table 4.1. The values
h1 and h2 are set identically to the values in Favres experiments and the
values w1, w2 and Λ are the measurements of wave crest, wave trough and
wave length of the first oscillation behind the bore front, as the bore has
travelled 65m down the channel.

Run no h1 h2 w1 w2 Λ
22 1.073 1.223 1.270 1.013 12.02
23 1.079 1.327 1.455 1.011 11.12
24 1.074 1.376 1.563 1.009 11.17
26 1.075 1.478 1.783 1.005 11.16

Table 5.2: Calculations from measurements of the simulated bores: These are
the calculated results from the measurements presented in table 5.1. Most
important is column 3 which indicate that also for the simulated bore the
fluid picks up energy as it passes through the bore front. This can not be
explained by frictional effects and casts doubt on the assumption of steady
flow for the bore expressed by the dispersive model.

Run no k2 w3
r
r1

r−r2
r1−r2

22 0.8821 0.9788 1.0008 3.05
23 0.9329 0.9791 1.0014 1.98
24 0.9550 0.9829 1.0014 1.55
26 0.9752 0.9852 1.0021 1.09

that, using a dispersive model, the bore flow does not become steady and
the apparent energy gain through the bore front is a dynamical effect of the
dispersive model.

5.2 Conservation of energy in the dispersive

model

Benjamin and Lighthill proves that the surface waves of a steady flow in
non-viscous shallow water is given by the relation in (4.9). This proves that
the three properties Q, R and S determine the surface waves. In the case
of the bore the values of Q, R and S are known up stream of the bore
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front. Starting from these values a loss of energy in the region of zero to the
classical energy loss, gives a spectre of different surface waves at the front
from solitary, cnoidal, sinusoidal to none respectively. Favres experimental
results showed that the undulations behind the bore front were steady and
Keulegan and Pattersons found the undulations to be cnoidal. From this
Benjamin and Lighthill concluded that in order to achieve such undulations
the flow was losing energy of about 20% of the classical energy loss through
the bore front.

The model used is a non-viscous dispersive system and simulations of
Favres experiments show that, using such a model, the simulated bore does
not obtain a steady flow in the same region of the channel as the experimental
bore. This does not invalidate Benjamin and Lighthills result that Q, R and
S determine the the surface waves of a steady flow in a dispersive system,
only its application on the experimental bore.

This error in method seems to come from a will to connect the classical
energy loss of the turbulent bore to the undular bore. The energy loss in the
turbulent bore is an instantaneous energy loss connected to the discontinuity
of the bore front. In this way it differs from any energy loss through frictional
effects. It might be that the investigations of the undular bores are better
served if the concept of the classical energy loss is dismissed all together as
a relic of the shallow water system.

To back up this statement we will present two arguments claiming that
the need for the classical energy loss disappears as we go from the travelling
discontinuity to the dispersive model.

5.2.1 Rayleighs removal of the classical energy loss

Most cites to Rayleighs paper [17] refer to it as the paper introducing the
classical energy loss. This is however an inaccuracy as the loss was included
only to rectify an earlier publication. The following investigation was the
main motivation for the paper. We deduced (2.13)

(
u2

1

H0

· 1 + η0/2H0

(1 + η0/H0)2
− g)η0 = 0

as the condition for the free surface. It could be satisfied only if η0
H0

could be
neglected. Here Rayleigh writes: Although a constant gravity is not adequate
to compensate the changes of pressure due to acceleration and retardation
in a long wave of finite height, it is evident that complete compensation is
attainable if gravity be made a suitable function of height; and it is worth while
to enquire what the law of force must be in order that long waves of unlimited
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height may travel with type unchanged. He found that if he let gravity be a
function of height f(z) the condition of constant surface pressure became

1

2
u2

1

{
1− η2

0

(η0 +H0)2

}
=

∫ η0

0

fdh (5.2)

whence

f = −u
2
1

2
· d
dh

η2
0

(η0 +H0)2
= u2

1

η2
0

(η0 +H0)3
. (5.3)

The force must vary inversely as the cube of the distance from the bottom.
Take note of Rayleighs remark: It may be remarked that we are concerned
only with the values of f at water-levels which actually occur. A change in f
below the lowest water level would have no effect upon the motion, and thus
no difficulty arises from the law of inverse cube making the force infinite at
the bottom of the channel.

The main reason why this part of Rayleighs paper is uncommented must
be that the intensity of gravity is not a function of height. This assumption
appears non-physical. However gravity’s role in the Euler equation is to
determine the pressure in the fluid. Rayleighs approach may be interpreted,
not as modifying gravity as such, but as a modification of the pressure.
What is interesting about this approach is that it now allows for waves of
any heights to travel in shallow water without braking in the same way as
with the dispersive models.

Rayleigh further study the energy loss under the same condition. Let
gravity be replaced by a force f , which is a function of height. This leads to
the following expressions for the pressure.

p1 =
∫ h1

z
fdz, p2 =

∫ h2

z
fdz (5.4)

We use these when we rewrite (2.15)

Q(u1 − u2) =

∫ h2

0

p2dz −
∫ h1

0

p1dz

= [p2z]h2

0 − [p1z]h1

0 −
∫ h2

0

z
dp2

dz
dz −

∫ h1

0

z
dp1

dz
dz

=

∫ h2

0

zfdz −
∫ h1

0

zfdz =

∫ h2

h1

zfdz, (5.5)

where the integrated terms vanish at the limits. In summing up the energy
loss both the potential energy and the work done by pressure is changed if
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gravity is a function of height, however the difference in kinetic energy is
unaffected. Let dE be the energy loss. Rayleigh show that the loss becomes

dE = Q

{
1

2
u2

1 −
1

2
u2

2 −
∫ h2

h1

fdz

}
. (5.6)

This is the classical loss if f = g. However if f = µz−3, with (2.11) and (5.5)
giving µ = u2

1h
2
1 = u2

2h
2
2, the energy loss disappears. This same expression

of gravity that gave travelling waves in shallow water also gives no energy
loss. In section (3.1) we deduced a dispersive system (3.19) where the term
−1

3
(β)ũxxt was this systems improvement on the shallow water system (2.9).

In [16] Peregrine writes about this term: It expresses the effect of the vertical
acceleration of water on the pressure. It is absent in Airy’s theory1 where the
pressure is taken to be hydrostatic. If it is possible to show that its effects
on pressure is approximately2 the same as the effects of letting gravity vary
inversely as the cube of the distance from the bottom of the channel, this
would prove that the dispersive models conserve energy.

5.2.2 Numerical study showing the conservation of en-
ergy in the dispersive model.

In a recent paper [1] Alfatih and Kalisch published a numerical study of the
dispersive system

ht + (wh)x +
H3

0

6
wxxx = 0

wt + ghx + wwx +
gH2

0

6
hxxx = 0

(5.7)

which can be deduced from (3.15). Here w is the horizontal velocity at the

height
√

2
3
H0 and h(x, t) = η(x, t) + H0 is the total depth. Also ht = ηt

and hx = ηx meaning that depth changes are given by surface changes. The
energy between two cross-sections of the channel in this system is

Edisp =
1

2

∫ x2

x1

{
hw2 + gh2 +

H3
0

3
wwxx +

H3
0

3
w2
x

}
dx. (5.8)

Using this energy integral they could study bore like initial conditions

η(x, 0) = 1
2
a0[1− tanh(kx)], w(x, 0) = 1

2
u0[1− tanh(kx)] (5.9)

1By Airy’s theory is meant what we know as the shallow water system.
2Approximately in this context meaning to the same degree of accuracy as the dispersive

model is derived.
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and calculate the energy change in a control volume containing the bore front.
They found that the change of energy inside the control volume subtracted
the net flux was always zero.

dEdisp
dt

− (F1 − F2) = 0. (5.10)

This suggests that, in addition to mass and momentum, the dispersive system
conserves energy.



Chapter 6

Summary, Conclusion and
further work

6.1 Summary

In this thesis we have given an introductory treatment of the bore phe-
nomenon with the main focus on the undular bore. We have restricted the
study to a narrow channel of shallow water. Keeping the channel narrow has
allowed us to neglect any flow transversely to the channel, thereby turning
the water flow into a two dimensional entity with a flow in the vertical direc-
tion and a horizontal flow in the direction of the channel. In regarding water
as an ideal fluid we have made two major simplifications. Foremost of these
is the treatment of water as non-viscous removing all frictional effects. But
also the assumption of water as homogeneous and incompressible is useful
as a constant density absolves the need for the internal thermodynamic con-
siderations of water. This procedure of simplifications was justified by our
objective of giving a general and simple account of the bore phenomenon.

At the outset we assumed that the waves were long compared to the
depth of the channel. This led us to assume that we could neglect vertical
flow. Without vertical flow the pressure would be hydrostatic as given in
(2.7) and the shallow water equations (2.9) followed. We studied this system
as a system of non-linear advection equations and found that it could not
attain travelling wave solutions. All surface waves of this system would form
a discontinuity and break. We established a weak solution (2.32) for the
system, modelling the bore as a travelling discontinuity with shock speed U .
In section (2.5) we calculated (2.45) which showed that this bore, conserving
mass and momentum, had an energy loss through the front. This calculation
provided the connection between the hydraulic jump and the bore and might

49
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have led one to believe that all bores experience some form of turbulent
dissipation.

Favre’s experiments revealed that also non-turbulent bores exist. These
bores carry a train of undulations behind the bore front and are called undu-
lar bores. Such undulation being incompatible with the shallow water system
motivated the need for a dispersive system. A more detailed description of
the fluid velocity using the velocity potential φ lead to this system. The
dispersive system was deduced for moderately small wave amplitudes and

moderately long wave lengths, that is both α = a
H0

and β =
H2

0

λ2 were small
but not insignificant. Studying the KdV equation (3.22), a specialized form
of the dispersive system, where the flow moves in one direction, we found
that several travelling wave solutions were possible.

Benjamin and Lighthill derived the equation for travelling wave solutions
of a dispersive system in a way that illuminated the roll of mass flux, mo-
mentum flux and energy. They found, from the flow conditions up stream of
the bore front, that an undular bore attaining a steady flow without the loss
of energy or momentum would display a solitary wave rather then a train of
undulations. Since experimental data suggested that the undulations were
cnoidal waves they postulated that the undular bore suffered an energy loss.

Using the BBM equation to simulate bore-like initial values showed that
the dispersive system display the bore as a travelling front carrying a train
of undulations much like the undular bore. However the experimentally
found steady flow of the undular bore was not reflected in the simulated
undular bore. Assuming steady flow for the simulated bore and repeating
the calculations done by Sturtevant on the experimental bore showed that
the bores of the dispersive systems do not obtain steady flow in the same
region as the experimental bores of Favre.

The classical energy loss (2.17) derived by Rayleigh suggests that the bore
carry an amount of energy which it in some cases liberate through turbulence
at the bore front. This energy loss was repeatedly referred to by Benjamin
and Lighthill and they proposed that different degrees of energy loss within
the domain of the classical energy loss would be reflected in different types
of surface waves behind the bore front. The final part of the thesis present
two arguments which claim that the dispersive system posses a dynamical
effect capable of conserving this energy within the fluid. This leads us to
think that any energy loss sustained by an undular bore is independent of
the classical energy loss predicted for the shallow water system.
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6.2 Conclusion

Benjamin and Lighthill concluded that the physical values Q, R and S de-
termined the surface waves of a steady flow in a dispersive system. They
applied this to the bore and based on Favres experimental measurements
of its surface waves deduced that the bore needed to dissipate some energy.
Specificity they write: For a bore with no frictional effects at all, any wave-
train produced (whatever the intervening motion in the neighbourhood of the
bore) must have Q, R and S equal to the values which they take upstream.
But the only wave with these values for Q, R and S is the solitary wave....
The solitary wave must therefore be the unique wave which can appear out of
a uniform motion without frictional action.

Any simulation of the bore using a dispersive system will model a bore
experiencing no frictional effect. As we simulate the bore we find that a
train of waves appear behind the bore front. The explanation for this is that
Benjamin and Lighthill does not address the transitional phase where the flow
goes from the unsteady initial discharge wave to the steady solitary wave.
Taking note of this we understand that the solitary wave profile predicted by
Benjamin and Lighthill is the profile reached as time goes to infinity. This
shows, as we have pointed out, that the stabilizing effect found experimental
is not reflected in the dispersive model.

In Favres experiments the bore is said to obtain a steady flow and the
measurements are taken only 65 meters from where the bore is generated.
This should be the main argument for why the dispersive model is not satis-
factory as a model for the undular bore. Shifting the focus from the energy
dissipation of the flow to stability conditions of it should be very useful when
searching for the new model. When including frictional effects, a study of
the steadying effect would determine the success of the model. Measuring if
a flow is stable should be simple since Q needs to be constant at any verti-
cal cross-section of the flow. Once bore models that quickly obtain steady
flow are provided a study along the line of Benjamin and Lighthills would
determine which of the models are best from a surface wave perspective.

The classical energy loss found for the turbulent bore has been subject of
discussion. This energy amount is connected to the fluids transition between
the two uniform flow depths of the bore. In the simplest model we assumed
that energy instantly disappeared, in form of turbulence, as the fluid passed
through the front. We have argued that the dispersive system, allowing
flow in the vertical direction, has given the flow dynamical effects, in form of
wave motion, able to conserve this energy otherwise turbulently dispersed. In
searching of a new model the classical energy loss will represent the maximum
amount of energy dissipation allowed without simultaneously altering the
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horizontal momentum of the flow, however the model should not focus on
satisfying any energy loss condition as such.

6.3 Further work and the search for a new

model

Through out this treatment there has risen several issues that requires further
attention, and tasks of analytical, numerical and experimental nature lies
ahead.

The main analytical task is to include frictional effects in the dispersive
model. With this new model for the bore there will be a need to repeat Ben-
jamin and Lighthills work where frictional effects are taken into account. In
addition we suggested a connection between Rayleighs treatment of gravity
as a function of height in the shallow water system and the dispersive modi-
fication of this system. Proving such a relation would be a nice result from
which the conservation of energy in the dispersive system could be confirmed.

Numerically we should verify the results of Benjamin and Lighthill by
showing that bore like initial values eventually establish solitary waves behind
the bore front. Also in developing the new model, numerics will be essential
in checking that this model obtains a stable flow.

Experimentally we should study the steadiness of the bore. Modern tech-
nology, using super cameras, gives an improved ability to measure the bore
as it travels down its channel. This should allow us confirm whether the
bore obtains a steady flow, measure how quickly it does so, and determine
whether the waves behind the bore front are of a cnoidal character.

Many of the suggestions raised here have already been undertaken. On
adding frictional effects to the dispersive model a good starting point would
be to expand on the analytical and numerical work done by Chester [6],
Byatt-Smith [5] and Johnson [10]. In addition newer experimental results
are being published where the use of modern measuring techniques are im-
proving the data. Whether these focus on steady flow should be investigated.
But even if good experiments have been done, anyone seeking deeper under-
standing of the bore phenomenon needs to do physical testing themselves.



Appendix A

This appendix gives a short description of the finite difference schemes behind
the numerical algorithm, applying the BBM equation on bore like initial
values in chapter 5.

A.1 The numerical method

The aim is to make a numerical algorithm that can be used in simulating a
one-dimensional propagation of a bore along a channel. A bore will be given
as an elevation a0 traveling to the right into undisturbed water of depth H0.
The commonly used initial value for a bore is

η0 =
(a0

2

)
(1− tanh(kx))

where k is a parameter for the initial steepness of the elevated water. The al-
gorithm will treat the bores on a finite domain for a finite time. The domain
will be sufficiently large for us to assume that the flow up and down stream of
the propagating bore is uniform. Since the fluid flow is uniform at the bound-
ary its surface will take constant values there. We will describe this by giving
Dirichlet boundary conditions for η at these boundary points. For solitary
waves the boundary conditions are homogeneous with η = 0 at the boundary.
For propagating bores the boundary conditions are non-homogeneous. The
left boundary is the the deviation from the surface of undisturbed depth i.e.
a0 and the right boundary is the surface of undisturbed depth i.e. 0. Note
that constant values of η at the boundary imply that ηt = 0 at the boundary.

The foundation of the numerical algorithm solves the dimensionless BBM
equation:

ηt +
(
η + η2

)
x
− ηxxt = 0 (A.1)

The equation is better approached if we order the t derivatives on the left
hand side.

ηt − ηxxt = −
(
η + η2

)
x

(A.2)
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It is a natural choice to deal with the x derivatives by a finite difference
scheme. We discretise the spacial dimension into a set of equidistant grid
points where ∆x represents the distance between the grid points. In this
case ∂

∂x
= 1

∆x
g0 40 + O(∆2

x) and ∂2

∂x2 = 1
∆2
x
42

0 +O(∆2
x) where 40 is the

central difference operator and g0 is the averaging operator. This is the
notation used in [9]. Our numerical expression for the BBM equation then
becomes (

I − 4
2
0

∆2
x

)
ηt = −g040

∆x

(
η + η2

)
(A.3)

With an initial value for η, the right hand side of the equation (A.3) is
possible to calculate. Thus we can view (A.3) as an equation of the form

Aηt = b

where the ηt is the unknown with the solution:

ηt = −
(
I − 4

2
0

∆2
x

)−1 g040

∆x

(
η + η2

)
(A.4)

When we have solved for ηt, it is a straightforward process to apply He-
uns method, a second order Runge-Kutta method, to approximate the time
evolution of the equation.

A.1.1 Implementing the algorithm.

The overall idea for the solver was explained above. Implementing the solver
turns our attention to practical details. On inspection the algorithm can be
divided into three parts, which can be treated individually. One is the cal-

culation of the −g040

∆x

(η + η2) term. Two is the solving the linear equation

Aηt = b. Three is the application of Heuns method.

The −g040

∆x

(η + η2) term.

Since we are given an initial value it is possible to calculate −g040

∆x

(η + η2).

Let ηk denote the value of η at the k-th grid point. Then by our approxi-

mation
∂ηk
∂x

=
ηk+1 − ηk−1

2∆x

and similarly for η2. With a discretization of the

x-dimension in n grid points we get a vector u of n components for η. This
approximation can be expressed by vector manipulation. Here is a simple
Matlab code:
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temp=[bl, u, br];

temp=temp+temp.^2;

f=-(temp(3:end)-temp(1:end-2))/(2*dx);

Here temp is a temporary vector, bl and br are left and right boundary value,
dx is ∆x and

f = −g040

∆x

(
η + η2

)
This code reveals that the vector u, approximating η, does not itself contain
the boundary values. These are added temporarily when the approximation
of the x derivative is calculated. In this way the boundary values are kept
constant.

Using the linear equation Aηt = b to solve for ηt.

Having calculated the −g040

∆x

(η + η2) term we have determined the right

hand side of the equation. Now we concentrate on the matrixA =

(
I − 4

2
0

∆2
x

)
.

Finite difference gives the following approximation of the double derivative

∂2zk
∂x2

=
zk+1 − 2zk + zk−1

∆2
x

+O(∆2
x)

where z is some arbitrary vector. It follows that A is tridiagonal where
the diagonal terms are I + 2

∆2
x

and the −1 and +1 diagonals are both −1
∆2
x
.

This means that A can be expressed as a combination of three vectors. The
solutions of such tridiagonal systems are fairly simple and a solving routine,
called trisolv, was made based on the recipe given in [12] page 180. The
boundary gives no contribution in this calculation as ηt = 0 at the boundary.

Time evolution with Heuns method.

Having found how the surface deviation η is momently changing with time,
i.e. the ηt terms, we can calculate a time step of η. As our approximations
so far are of second order it is reasonable to use a second order routine for
this prediction as well. To do this we employ the Heun method. This is a
modification of Eulers method. Eulers method states our simplest intuition:
Let s = 1, 2 · · · , n be the number of time-steps taken. Then a future value
of η, denoted as ηs+1, is given by a present value of η, denoted ηs, plus some
change with time given by (ηs)t∆t where ∆t is our time step. This gives

ηs+1 = ηs + (ηs)t∆t +O(∆2
t ) = η̂s+1 +O(∆2

t )
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If (ηs)t does not change during the time step then this is exactly true.

Heuns method improves on Eulers method in that it gives an approxima-
tion to how (ηs)t does change with time. This is done by first taking a step
with Eulers method giving

ηs+1 = η̂s+1 +O(∆2
t ).

Using this expression in (A.4) we get

(ηs+1)t = (η̂s+1)t +O(∆2
t )

Assuming that this process does not effect the order with respect to ∆t. By
derivating Eulers method with respect to t we get:

(ηs+1)t = (ηs)t + (ηs)tt∆t +O(∆2
t ) = (η̂s+1)t +O(∆2

t )

giving the following:

(ηs)tt =
(η̂s+1)t − (ηs)t

∆t

+O(∆t)

estimate for (ηs)ts change with time. This leads to an equation for Heuns
method.

ηs+1 = ηs +
1

2
[(ηs)t + (η̂s+1)t] ∆t +O(∆3

t ) (A.5)

Figure A.1: Here is the solitary wave, used in the convergence testing, prop-
agating to the right. The dotted figure is the initial wave.
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A.2 Testing convergence.

As mentioned in the development of the KdV equation,

ηt +
(
η + η2

)
x
− ηxxt = 0

has exact solitary-wave solutions. The solutions are of the form

η(x, t) = asech2

{(
a

4a+ 6

) 1
2
[
x−

(
1 +

2

3
a

)
t

]}
(A.6)

where a > 0 is a parameter specifying the amplitude (and the speed) of the
wave, see [4]. Using these exact solutions we can test the convergence of the
algorithm.

The test used a solitary wave, seen in figure 1, with amplitude a = 1,
centred at x = 40 at initial time t0 = 0 as initial value. The homogeneous
boundary conditions η = 0 was used at the left and right boundary points.
The wave traveled to t = 5. The interval of x, x ∈ [0, 28π], was chosen
such that the wave never had a value exceeding 10−10 close to the interval
endpoints. At the first test the discretization of the x-axis was kept constant
at ∆x = 0.001 while the time steps were halved from ∆t = 0.1 to ∆t =
0.003125. In the second test the roles of ∆t and ∆x was reversed. The result
are stored in the two following tables.

Table A.1: Convergence test for ∆t with fixed ∆x

∆x ∆t L∞ -error ratio
0.001 0.100000 367.92e-05
0.001 0.050000 92.27e-05 3.99
0.001 0.025000 23.10e-05 3.99
0.001 0.012500 5.77e-05 4.00
0.001 0.006250 1.44e-05 4.02
0.001 0.003125 0.35e-05 4.10

These results suggest that the algorithm has second order convergence
with respect to ∆x and ∆t.
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Table A.2: Convergence test for ∆x with fixed ∆t

∆x ∆t L∞ -error ratio
0.100000 0.001 115.12e-05
0.050000 0.001 28.78e-05 3.99
0.025000 0.001 7.17e-05 4.01
0.012500 0.001 1.76e-05 4.06
0.006250 0.001 0.41e-05 4.26
0.003125 0.001 0.08e-05 5.47
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in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, second edi-
tion, 1992.

[16] DH Peregrine. Calculations of the development of an undular bore. Jour-
nal of Fluid Mechanics, 25(02):321–330, 2006.

[17] L. Rayleigh. On the theory of long waves and bores. Proceedings of the
Royal Society of London. Series A, Containing Papers of a Mathe-
matical and Physical Character, 90(619):324–328, 1914.

[18] JA Sandover and OC Zienkiewicz. Experiments on surge waves. Water
Power, 9:418–424, 1957.

[19] B. Sturtevant. Implications of experiments on the weak undular bore.
Physics of Fluids, 8:1052, 1965.

[20] G. B. Whitham. Linear and nonlinear waves. Wiley-Interscience [John
Wiley & Sons], New York, 1974. Pure and Applied Mathematics.


